random.c 67.8 KB
Newer Older
L
Linus Torvalds 已提交
1 2 3
/*
 * random.c -- A strong random number generator
 *
4 5 6
 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
 * Rights Reserved.
 *
7
 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
L
Linus Torvalds 已提交
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
 *
 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
 * rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, and the entire permission notice in its entirety,
 *    including the disclaimer of warranties.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. The name of the author may not be used to endorse or promote
 *    products derived from this software without specific prior
 *    written permission.
 *
 * ALTERNATIVELY, this product may be distributed under the terms of
 * the GNU General Public License, in which case the provisions of the GPL are
 * required INSTEAD OF the above restrictions.  (This clause is
 * necessary due to a potential bad interaction between the GPL and
 * the restrictions contained in a BSD-style copyright.)
 *
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
 * DAMAGE.
 */

/*
 * (now, with legal B.S. out of the way.....)
 *
 * This routine gathers environmental noise from device drivers, etc.,
 * and returns good random numbers, suitable for cryptographic use.
 * Besides the obvious cryptographic uses, these numbers are also good
 * for seeding TCP sequence numbers, and other places where it is
 * desirable to have numbers which are not only random, but hard to
 * predict by an attacker.
 *
 * Theory of operation
 * ===================
 *
 * Computers are very predictable devices.  Hence it is extremely hard
 * to produce truly random numbers on a computer --- as opposed to
 * pseudo-random numbers, which can easily generated by using a
 * algorithm.  Unfortunately, it is very easy for attackers to guess
 * the sequence of pseudo-random number generators, and for some
 * applications this is not acceptable.  So instead, we must try to
 * gather "environmental noise" from the computer's environment, which
 * must be hard for outside attackers to observe, and use that to
 * generate random numbers.  In a Unix environment, this is best done
 * from inside the kernel.
 *
 * Sources of randomness from the environment include inter-keyboard
 * timings, inter-interrupt timings from some interrupts, and other
 * events which are both (a) non-deterministic and (b) hard for an
 * outside observer to measure.  Randomness from these sources are
 * added to an "entropy pool", which is mixed using a CRC-like function.
 * This is not cryptographically strong, but it is adequate assuming
 * the randomness is not chosen maliciously, and it is fast enough that
 * the overhead of doing it on every interrupt is very reasonable.
 * As random bytes are mixed into the entropy pool, the routines keep
 * an *estimate* of how many bits of randomness have been stored into
 * the random number generator's internal state.
 *
 * When random bytes are desired, they are obtained by taking the SHA
 * hash of the contents of the "entropy pool".  The SHA hash avoids
 * exposing the internal state of the entropy pool.  It is believed to
 * be computationally infeasible to derive any useful information
 * about the input of SHA from its output.  Even if it is possible to
 * analyze SHA in some clever way, as long as the amount of data
 * returned from the generator is less than the inherent entropy in
 * the pool, the output data is totally unpredictable.  For this
 * reason, the routine decreases its internal estimate of how many
 * bits of "true randomness" are contained in the entropy pool as it
 * outputs random numbers.
 *
 * If this estimate goes to zero, the routine can still generate
 * random numbers; however, an attacker may (at least in theory) be
 * able to infer the future output of the generator from prior
 * outputs.  This requires successful cryptanalysis of SHA, which is
 * not believed to be feasible, but there is a remote possibility.
 * Nonetheless, these numbers should be useful for the vast majority
 * of purposes.
 *
 * Exported interfaces ---- output
 * ===============================
 *
104 105
 * There are four exported interfaces; two for use within the kernel,
 * and two or use from userspace.
L
Linus Torvalds 已提交
106
 *
107 108
 * Exported interfaces ---- userspace output
 * -----------------------------------------
L
Linus Torvalds 已提交
109
 *
110
 * The userspace interfaces are two character devices /dev/random and
L
Linus Torvalds 已提交
111 112 113 114 115 116 117 118 119 120 121 122
 * /dev/urandom.  /dev/random is suitable for use when very high
 * quality randomness is desired (for example, for key generation or
 * one-time pads), as it will only return a maximum of the number of
 * bits of randomness (as estimated by the random number generator)
 * contained in the entropy pool.
 *
 * The /dev/urandom device does not have this limit, and will return
 * as many bytes as are requested.  As more and more random bytes are
 * requested without giving time for the entropy pool to recharge,
 * this will result in random numbers that are merely cryptographically
 * strong.  For many applications, however, this is acceptable.
 *
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
 * Exported interfaces ---- kernel output
 * --------------------------------------
 *
 * The primary kernel interface is
 *
 * 	void get_random_bytes(void *buf, int nbytes);
 *
 * This interface will return the requested number of random bytes,
 * and place it in the requested buffer.  This is equivalent to a
 * read from /dev/urandom.
 *
 * For less critical applications, there are the functions:
 *
 * 	u32 get_random_u32()
 * 	u64 get_random_u64()
 * 	unsigned int get_random_int()
 * 	unsigned long get_random_long()
 *
 * These are produced by a cryptographic RNG seeded from get_random_bytes,
 * and so do not deplete the entropy pool as much.  These are recommended
 * for most in-kernel operations *if the result is going to be stored in
 * the kernel*.
 *
 * Specifically, the get_random_int() family do not attempt to do
 * "anti-backtracking".  If you capture the state of the kernel (e.g.
 * by snapshotting the VM), you can figure out previous get_random_int()
 * return values.  But if the value is stored in the kernel anyway,
 * this is not a problem.
 *
 * It *is* safe to expose get_random_int() output to attackers (e.g. as
 * network cookies); given outputs 1..n, it's not feasible to predict
 * outputs 0 or n+1.  The only concern is an attacker who breaks into
 * the kernel later; the get_random_int() engine is not reseeded as
 * often as the get_random_bytes() one.
 *
 * get_random_bytes() is needed for keys that need to stay secret after
 * they are erased from the kernel.  For example, any key that will
 * be wrapped and stored encrypted.  And session encryption keys: we'd
 * like to know that after the session is closed and the keys erased,
 * the plaintext is unrecoverable to someone who recorded the ciphertext.
 *
 * But for network ports/cookies, stack canaries, PRNG seeds, address
 * space layout randomization, session *authentication* keys, or other
 * applications where the sensitive data is stored in the kernel in
 * plaintext for as long as it's sensitive, the get_random_int() family
 * is just fine.
 *
 * Consider ASLR.  We want to keep the address space secret from an
 * outside attacker while the process is running, but once the address
 * space is torn down, it's of no use to an attacker any more.  And it's
 * stored in kernel data structures as long as it's alive, so worrying
 * about an attacker's ability to extrapolate it from the get_random_int()
 * CRNG is silly.
 *
 * Even some cryptographic keys are safe to generate with get_random_int().
 * In particular, keys for SipHash are generally fine.  Here, knowledge
 * of the key authorizes you to do something to a kernel object (inject
 * packets to a network connection, or flood a hash table), and the
 * key is stored with the object being protected.  Once it goes away,
 * we no longer care if anyone knows the key.
 *
 * prandom_u32()
 * -------------
 *
 * For even weaker applications, see the pseudorandom generator
 * prandom_u32(), prandom_max(), and prandom_bytes().  If the random
 * numbers aren't security-critical at all, these are *far* cheaper.
 * Useful for self-tests, random error simulation, randomized backoffs,
 * and any other application where you trust that nobody is trying to
 * maliciously mess with you by guessing the "random" numbers.
 *
L
Linus Torvalds 已提交
194 195 196 197 198 199
 * Exported interfaces ---- input
 * ==============================
 *
 * The current exported interfaces for gathering environmental noise
 * from the devices are:
 *
200
 *	void add_device_randomness(const void *buf, unsigned int size);
L
Linus Torvalds 已提交
201 202
 * 	void add_input_randomness(unsigned int type, unsigned int code,
 *                                unsigned int value);
203
 *	void add_interrupt_randomness(int irq);
204
 * 	void add_disk_randomness(struct gendisk *disk);
205 206 207
 *	void add_hwgenerator_randomness(const char *buffer, size_t count,
 *					size_t entropy);
 *	void add_bootloader_randomness(const void *buf, unsigned int size);
L
Linus Torvalds 已提交
208
 *
209 210 211 212 213 214 215 216
 * add_device_randomness() is for adding data to the random pool that
 * is likely to differ between two devices (or possibly even per boot).
 * This would be things like MAC addresses or serial numbers, or the
 * read-out of the RTC. This does *not* add any actual entropy to the
 * pool, but it initializes the pool to different values for devices
 * that might otherwise be identical and have very little entropy
 * available to them (particularly common in the embedded world).
 *
L
Linus Torvalds 已提交
217 218 219
 * add_input_randomness() uses the input layer interrupt timing, as well as
 * the event type information from the hardware.
 *
220 221 222
 * add_interrupt_randomness() uses the interrupt timing as random
 * inputs to the entropy pool. Using the cycle counters and the irq source
 * as inputs, it feeds the randomness roughly once a second.
223 224 225 226 227 228
 *
 * add_disk_randomness() uses what amounts to the seek time of block
 * layer request events, on a per-disk_devt basis, as input to the
 * entropy pool. Note that high-speed solid state drives with very low
 * seek times do not make for good sources of entropy, as their seek
 * times are usually fairly consistent.
L
Linus Torvalds 已提交
229 230 231 232 233
 *
 * All of these routines try to estimate how many bits of randomness a
 * particular randomness source.  They do this by keeping track of the
 * first and second order deltas of the event timings.
 *
234 235 236 237 238 239 240 241
 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
 * entropy as specified by the caller. If the entropy pool is full it will
 * block until more entropy is needed.
 *
 * add_bootloader_randomness() is the same as add_hwgenerator_randomness() or
 * add_device_randomness(), depending on whether or not the configuration
 * option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
 *
L
Linus Torvalds 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
 * Ensuring unpredictability at system startup
 * ============================================
 *
 * When any operating system starts up, it will go through a sequence
 * of actions that are fairly predictable by an adversary, especially
 * if the start-up does not involve interaction with a human operator.
 * This reduces the actual number of bits of unpredictability in the
 * entropy pool below the value in entropy_count.  In order to
 * counteract this effect, it helps to carry information in the
 * entropy pool across shut-downs and start-ups.  To do this, put the
 * following lines an appropriate script which is run during the boot
 * sequence:
 *
 *	echo "Initializing random number generator..."
 *	random_seed=/var/run/random-seed
 *	# Carry a random seed from start-up to start-up
 *	# Load and then save the whole entropy pool
 *	if [ -f $random_seed ]; then
 *		cat $random_seed >/dev/urandom
 *	else
 *		touch $random_seed
 *	fi
 *	chmod 600 $random_seed
 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 *
 * and the following lines in an appropriate script which is run as
 * the system is shutdown:
 *
 *	# Carry a random seed from shut-down to start-up
 *	# Save the whole entropy pool
 *	echo "Saving random seed..."
 *	random_seed=/var/run/random-seed
 *	touch $random_seed
 *	chmod 600 $random_seed
 *	dd if=/dev/urandom of=$random_seed count=1 bs=512
 *
 * For example, on most modern systems using the System V init
 * scripts, such code fragments would be found in
 * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
 *
 * Effectively, these commands cause the contents of the entropy pool
 * to be saved at shut-down time and reloaded into the entropy pool at
 * start-up.  (The 'dd' in the addition to the bootup script is to
 * make sure that /etc/random-seed is different for every start-up,
 * even if the system crashes without executing rc.0.)  Even with
 * complete knowledge of the start-up activities, predicting the state
 * of the entropy pool requires knowledge of the previous history of
 * the system.
 *
 * Configuring the /dev/random driver under Linux
 * ==============================================
 *
 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
 * the /dev/mem major number (#1).  So if your system does not have
 * /dev/random and /dev/urandom created already, they can be created
 * by using the commands:
 *
 * 	mknod /dev/random c 1 8
 * 	mknod /dev/urandom c 1 9
 *
 * Acknowledgements:
 * =================
 *
 * Ideas for constructing this random number generator were derived
 * from Pretty Good Privacy's random number generator, and from private
 * discussions with Phil Karn.  Colin Plumb provided a faster random
 * number generator, which speed up the mixing function of the entropy
 * pool, taken from PGPfone.  Dale Worley has also contributed many
 * useful ideas and suggestions to improve this driver.
 *
 * Any flaws in the design are solely my responsibility, and should
 * not be attributed to the Phil, Colin, or any of authors of PGP.
 *
 * Further background information on this topic may be obtained from
 * RFC 1750, "Randomness Recommendations for Security", by Donald
 * Eastlake, Steve Crocker, and Jeff Schiller.
 */

Y
Yangtao Li 已提交
321 322
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335
#include <linux/utsname.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/genhd.h>
#include <linux/interrupt.h>
336
#include <linux/mm.h>
337
#include <linux/nodemask.h>
L
Linus Torvalds 已提交
338
#include <linux/spinlock.h>
339
#include <linux/kthread.h>
L
Linus Torvalds 已提交
340
#include <linux/percpu.h>
341
#include <linux/fips.h>
342
#include <linux/ptrace.h>
343
#include <linux/workqueue.h>
344
#include <linux/irq.h>
345
#include <linux/ratelimit.h>
346 347
#include <linux/syscalls.h>
#include <linux/completion.h>
348
#include <linux/uuid.h>
349
#include <crypto/chacha.h>
350
#include <crypto/sha1.h>
351

L
Linus Torvalds 已提交
352
#include <asm/processor.h>
353
#include <linux/uaccess.h>
L
Linus Torvalds 已提交
354
#include <asm/irq.h>
355
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
356 357
#include <asm/io.h>

358 359 360
#define CREATE_TRACE_POINTS
#include <trace/events/random.h>

361 362
/* #define ADD_INTERRUPT_BENCH */

L
Linus Torvalds 已提交
363 364 365
/*
 * Configuration information
 */
366 367 368 369 370
#define INPUT_POOL_SHIFT	12
#define INPUT_POOL_WORDS	(1 << (INPUT_POOL_SHIFT-5))
#define OUTPUT_POOL_SHIFT	10
#define OUTPUT_POOL_WORDS	(1 << (OUTPUT_POOL_SHIFT-5))
#define EXTRACT_SIZE		10
L
Linus Torvalds 已提交
371 372


373 374
#define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))

375
/*
T
Theodore Ts'o 已提交
376 377
 * To allow fractional bits to be tracked, the entropy_count field is
 * denominated in units of 1/8th bits.
378
 *
379
 * 2*(ENTROPY_SHIFT + poolbitshift) must <= 31, or the multiply in
380
 * credit_entropy_bits() needs to be 64 bits wide.
381 382 383 384
 */
#define ENTROPY_SHIFT 3
#define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)

L
Linus Torvalds 已提交
385 386 387 388 389
/*
 * If the entropy count falls under this number of bits, then we
 * should wake up processes which are selecting or polling on write
 * access to /dev/random.
 */
390
static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
L
Linus Torvalds 已提交
391 392

/*
393 394 395 396 397 398 399 400 401 402
 * Originally, we used a primitive polynomial of degree .poolwords
 * over GF(2).  The taps for various sizes are defined below.  They
 * were chosen to be evenly spaced except for the last tap, which is 1
 * to get the twisting happening as fast as possible.
 *
 * For the purposes of better mixing, we use the CRC-32 polynomial as
 * well to make a (modified) twisted Generalized Feedback Shift
 * Register.  (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR
 * generators.  ACM Transactions on Modeling and Computer Simulation
 * 2(3):179-194.  Also see M. Matsumoto & Y. Kurita, 1994.  Twisted
403
 * GFSR generators II.  ACM Transactions on Modeling and Computer
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
 * Simulation 4:254-266)
 *
 * Thanks to Colin Plumb for suggesting this.
 *
 * The mixing operation is much less sensitive than the output hash,
 * where we use SHA-1.  All that we want of mixing operation is that
 * it be a good non-cryptographic hash; i.e. it not produce collisions
 * when fed "random" data of the sort we expect to see.  As long as
 * the pool state differs for different inputs, we have preserved the
 * input entropy and done a good job.  The fact that an intelligent
 * attacker can construct inputs that will produce controlled
 * alterations to the pool's state is not important because we don't
 * consider such inputs to contribute any randomness.  The only
 * property we need with respect to them is that the attacker can't
 * increase his/her knowledge of the pool's state.  Since all
 * additions are reversible (knowing the final state and the input,
 * you can reconstruct the initial state), if an attacker has any
 * uncertainty about the initial state, he/she can only shuffle that
 * uncertainty about, but never cause any collisions (which would
 * decrease the uncertainty).
 *
 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
 * Videau in their paper, "The Linux Pseudorandom Number Generator
 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf).  In their
 * paper, they point out that we are not using a true Twisted GFSR,
 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
 * is, with only three taps, instead of the six that we are using).
 * As a result, the resulting polynomial is neither primitive nor
 * irreducible, and hence does not have a maximal period over
 * GF(2**32).  They suggest a slight change to the generator
 * polynomial which improves the resulting TGFSR polynomial to be
 * irreducible, which we have made here.
L
Linus Torvalds 已提交
436
 */
437
static const struct poolinfo {
438 439
	int poolbitshift, poolwords, poolbytes, poolfracbits;
#define S(x) ilog2(x)+5, (x), (x)*4, (x) << (ENTROPY_SHIFT+5)
L
Linus Torvalds 已提交
440 441
	int tap1, tap2, tap3, tap4, tap5;
} poolinfo_table[] = {
442 443 444
	/* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
	/* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
	{ S(128),	104,	76,	51,	25,	1 },
L
Linus Torvalds 已提交
445 446 447 448 449
};

/*
 * Static global variables
 */
450
static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
451
static struct fasync_struct *fasync;
L
Linus Torvalds 已提交
452

453 454 455
static DEFINE_SPINLOCK(random_ready_list_lock);
static LIST_HEAD(random_ready_list);

456 457 458 459 460 461
struct crng_state {
	__u32		state[16];
	unsigned long	init_time;
	spinlock_t	lock;
};

462
static struct crng_state primary_crng = {
463 464 465 466 467 468 469 470 471 472 473 474
	.lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
};

/*
 * crng_init =  0 --> Uninitialized
 *		1 --> Initialized
 *		2 --> Initialized from input_pool
 *
 * crng_init is protected by primary_crng->lock, and only increases
 * its value (from 0->1->2).
 */
static int crng_init = 0;
T
Theodore Ts'o 已提交
475
#define crng_ready() (likely(crng_init > 1))
476
static int crng_init_cnt = 0;
477
static unsigned long crng_global_init_time = 0;
478 479
#define CRNG_INIT_CNT_THRESH (2*CHACHA_KEY_SIZE)
static void _extract_crng(struct crng_state *crng, __u8 out[CHACHA_BLOCK_SIZE]);
480
static void _crng_backtrack_protect(struct crng_state *crng,
481
				    __u8 tmp[CHACHA_BLOCK_SIZE], int used);
482
static void process_random_ready_list(void);
483
static void _get_random_bytes(void *buf, int nbytes);
484

485 486 487 488 489 490 491 492 493 494
static struct ratelimit_state unseeded_warning =
	RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
static struct ratelimit_state urandom_warning =
	RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);

static int ratelimit_disable __read_mostly;

module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");

L
Linus Torvalds 已提交
495 496 497 498 499 500 501 502 503
/**********************************************************************
 *
 * OS independent entropy store.   Here are the functions which handle
 * storing entropy in an entropy pool.
 *
 **********************************************************************/

struct entropy_store;
struct entropy_store {
504
	/* read-only data: */
505
	const struct poolinfo *poolinfo;
L
Linus Torvalds 已提交
506 507 508 509
	__u32 *pool;
	const char *name;

	/* read-write data: */
510
	spinlock_t lock;
511 512
	unsigned short add_ptr;
	unsigned short input_rotate;
513
	int entropy_count;
514
	unsigned int last_data_init:1;
M
Matt Mackall 已提交
515
	__u8 last_data[EXTRACT_SIZE];
L
Linus Torvalds 已提交
516 517
};

518 519 520 521 522 523
static ssize_t extract_entropy(struct entropy_store *r, void *buf,
			       size_t nbytes, int min, int rsvd);
static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
				size_t nbytes, int fips);

static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
524
static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
L
Linus Torvalds 已提交
525 526 527 528

static struct entropy_store input_pool = {
	.poolinfo = &poolinfo_table[0],
	.name = "input",
529
	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
L
Linus Torvalds 已提交
530 531 532
	.pool = input_pool_data
};

533 534 535 536
static __u32 const twist_table[8] = {
	0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
	0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };

L
Linus Torvalds 已提交
537
/*
538
 * This function adds bytes into the entropy "pool".  It does not
L
Linus Torvalds 已提交
539
 * update the entropy estimate.  The caller should call
540
 * credit_entropy_bits if this is appropriate.
L
Linus Torvalds 已提交
541 542 543 544 545 546
 *
 * The pool is stirred with a primitive polynomial of the appropriate
 * degree, and then twisted.  We twist by three bits at a time because
 * it's cheap to do so and helps slightly in the expected case where
 * the entropy is concentrated in the low-order bits.
 */
547
static void _mix_pool_bytes(struct entropy_store *r, const void *in,
548
			    int nbytes)
L
Linus Torvalds 已提交
549
{
550
	unsigned long i, tap1, tap2, tap3, tap4, tap5;
551
	int input_rotate;
L
Linus Torvalds 已提交
552
	int wordmask = r->poolinfo->poolwords - 1;
553
	const char *bytes = in;
554
	__u32 w;
L
Linus Torvalds 已提交
555 556 557 558 559 560 561

	tap1 = r->poolinfo->tap1;
	tap2 = r->poolinfo->tap2;
	tap3 = r->poolinfo->tap3;
	tap4 = r->poolinfo->tap4;
	tap5 = r->poolinfo->tap5;

562 563
	input_rotate = r->input_rotate;
	i = r->add_ptr;
L
Linus Torvalds 已提交
564

565 566
	/* mix one byte at a time to simplify size handling and churn faster */
	while (nbytes--) {
567
		w = rol32(*bytes++, input_rotate);
M
Matt Mackall 已提交
568
		i = (i - 1) & wordmask;
L
Linus Torvalds 已提交
569 570

		/* XOR in the various taps */
M
Matt Mackall 已提交
571
		w ^= r->pool[i];
L
Linus Torvalds 已提交
572 573 574 575 576
		w ^= r->pool[(i + tap1) & wordmask];
		w ^= r->pool[(i + tap2) & wordmask];
		w ^= r->pool[(i + tap3) & wordmask];
		w ^= r->pool[(i + tap4) & wordmask];
		w ^= r->pool[(i + tap5) & wordmask];
M
Matt Mackall 已提交
577 578

		/* Mix the result back in with a twist */
L
Linus Torvalds 已提交
579
		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
580 581 582 583 584 585 586

		/*
		 * Normally, we add 7 bits of rotation to the pool.
		 * At the beginning of the pool, add an extra 7 bits
		 * rotation, so that successive passes spread the
		 * input bits across the pool evenly.
		 */
587
		input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
L
Linus Torvalds 已提交
588 589
	}

590 591
	r->input_rotate = input_rotate;
	r->add_ptr = i;
L
Linus Torvalds 已提交
592 593
}

594
static void __mix_pool_bytes(struct entropy_store *r, const void *in,
595
			     int nbytes)
596 597
{
	trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
598
	_mix_pool_bytes(r, in, nbytes);
599 600 601
}

static void mix_pool_bytes(struct entropy_store *r, const void *in,
602
			   int nbytes)
L
Linus Torvalds 已提交
603
{
604 605
	unsigned long flags;

606
	trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
607
	spin_lock_irqsave(&r->lock, flags);
608
	_mix_pool_bytes(r, in, nbytes);
609
	spin_unlock_irqrestore(&r->lock, flags);
L
Linus Torvalds 已提交
610 611
}

612 613 614
struct fast_pool {
	__u32		pool[4];
	unsigned long	last;
615
	unsigned short	reg_idx;
616
	unsigned char	count;
617 618 619 620 621 622 623
};

/*
 * This is a fast mixing routine used by the interrupt randomness
 * collector.  It's hardcoded for an 128 bit pool and assumes that any
 * locks that might be needed are taken by the caller.
 */
624
static void fast_mix(struct fast_pool *f)
625
{
626 627 628 629
	__u32 a = f->pool[0],	b = f->pool[1];
	__u32 c = f->pool[2],	d = f->pool[3];

	a += b;			c += d;
G
George Spelvin 已提交
630
	b = rol32(b, 6);	d = rol32(d, 27);
631 632 633
	d ^= a;			b ^= c;

	a += b;			c += d;
G
George Spelvin 已提交
634
	b = rol32(b, 16);	d = rol32(d, 14);
635 636 637
	d ^= a;			b ^= c;

	a += b;			c += d;
G
George Spelvin 已提交
638
	b = rol32(b, 6);	d = rol32(d, 27);
639 640 641
	d ^= a;			b ^= c;

	a += b;			c += d;
G
George Spelvin 已提交
642
	b = rol32(b, 16);	d = rol32(d, 14);
643 644 645 646
	d ^= a;			b ^= c;

	f->pool[0] = a;  f->pool[1] = b;
	f->pool[2] = c;  f->pool[3] = d;
647
	f->count++;
648 649
}

650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
static void process_random_ready_list(void)
{
	unsigned long flags;
	struct random_ready_callback *rdy, *tmp;

	spin_lock_irqsave(&random_ready_list_lock, flags);
	list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
		struct module *owner = rdy->owner;

		list_del_init(&rdy->list);
		rdy->func(rdy);
		module_put(owner);
	}
	spin_unlock_irqrestore(&random_ready_list_lock, flags);
}

L
Linus Torvalds 已提交
666
/*
667 668 669
 * Credit (or debit) the entropy store with n bits of entropy.
 * Use credit_entropy_bits_safe() if the value comes from userspace
 * or otherwise should be checked for extreme values.
L
Linus Torvalds 已提交
670
 */
671
static void credit_entropy_bits(struct entropy_store *r, int nbits)
L
Linus Torvalds 已提交
672
{
673
	int entropy_count, orig;
674 675
	const int pool_size = r->poolinfo->poolfracbits;
	int nfrac = nbits << ENTROPY_SHIFT;
L
Linus Torvalds 已提交
676

677 678 679
	if (!nbits)
		return;

680
retry:
681
	entropy_count = orig = READ_ONCE(r->entropy_count);
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
	if (nfrac < 0) {
		/* Debit */
		entropy_count += nfrac;
	} else {
		/*
		 * Credit: we have to account for the possibility of
		 * overwriting already present entropy.	 Even in the
		 * ideal case of pure Shannon entropy, new contributions
		 * approach the full value asymptotically:
		 *
		 * entropy <- entropy + (pool_size - entropy) *
		 *	(1 - exp(-add_entropy/pool_size))
		 *
		 * For add_entropy <= pool_size/2 then
		 * (1 - exp(-add_entropy/pool_size)) >=
		 *    (add_entropy/pool_size)*0.7869...
		 * so we can approximate the exponential with
		 * 3/4*add_entropy/pool_size and still be on the
		 * safe side by adding at most pool_size/2 at a time.
		 *
		 * The use of pool_size-2 in the while statement is to
		 * prevent rounding artifacts from making the loop
		 * arbitrarily long; this limits the loop to log2(pool_size)*2
		 * turns no matter how large nbits is.
		 */
		int pnfrac = nfrac;
		const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
		/* The +2 corresponds to the /4 in the denominator */

		do {
			unsigned int anfrac = min(pnfrac, pool_size/2);
			unsigned int add =
				((pool_size - entropy_count)*anfrac*3) >> s;

			entropy_count += add;
			pnfrac -= anfrac;
		} while (unlikely(entropy_count < pool_size-2 && pnfrac));
	}
720

721
	if (WARN_ON(entropy_count < 0)) {
Y
Yangtao Li 已提交
722
		pr_warn("negative entropy/overflow: pool %s count %d\n",
723
			r->name, entropy_count);
724
		entropy_count = 0;
725 726
	} else if (entropy_count > pool_size)
		entropy_count = pool_size;
727 728
	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
		goto retry;
L
Linus Torvalds 已提交
729

730
	trace_credit_entropy_bits(r->name, nbits,
731
				  entropy_count >> ENTROPY_SHIFT, _RET_IP_);
732

733
	if (r == &input_pool) {
734
		int entropy_bits = entropy_count >> ENTROPY_SHIFT;
735

736
		if (crng_init < 2 && entropy_bits >= 128)
737
			crng_reseed(&primary_crng, r);
738
	}
L
Linus Torvalds 已提交
739 740
}

741
static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
742
{
743
	const int nbits_max = r->poolinfo->poolwords * 32;
744

745 746 747
	if (nbits < 0)
		return -EINVAL;

748 749 750 751
	/* Cap the value to avoid overflows */
	nbits = min(nbits,  nbits_max);

	credit_entropy_bits(r, nbits);
752
	return 0;
753 754
}

755 756 757 758 759 760 761 762 763 764
/*********************************************************************
 *
 * CRNG using CHACHA20
 *
 *********************************************************************/

#define CRNG_RESEED_INTERVAL (300*HZ)

static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);

765 766 767 768 769 770 771 772 773 774
#ifdef CONFIG_NUMA
/*
 * Hack to deal with crazy userspace progams when they are all trying
 * to access /dev/urandom in parallel.  The programs are almost
 * certainly doing something terribly wrong, but we'll work around
 * their brain damage.
 */
static struct crng_state **crng_node_pool __read_mostly;
#endif

775
static void invalidate_batched_entropy(void);
776
static void numa_crng_init(void);
777

778 779 780 781 782 783 784
static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
static int __init parse_trust_cpu(char *arg)
{
	return kstrtobool(arg, &trust_cpu);
}
early_param("random.trust_cpu", parse_trust_cpu);

785
static bool crng_init_try_arch(struct crng_state *crng)
786 787
{
	int		i;
788
	bool		arch_init = true;
789 790 791 792
	unsigned long	rv;

	for (i = 4; i < 16; i++) {
		if (!arch_get_random_seed_long(&rv) &&
793
		    !arch_get_random_long(&rv)) {
794
			rv = random_get_entropy();
795
			arch_init = false;
796
		}
797 798
		crng->state[i] ^= rv;
	}
799 800 801 802

	return arch_init;
}

803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
static bool __init crng_init_try_arch_early(struct crng_state *crng)
{
	int		i;
	bool		arch_init = true;
	unsigned long	rv;

	for (i = 4; i < 16; i++) {
		if (!arch_get_random_seed_long_early(&rv) &&
		    !arch_get_random_long_early(&rv)) {
			rv = random_get_entropy();
			arch_init = false;
		}
		crng->state[i] ^= rv;
	}

	return arch_init;
}

821
static void __maybe_unused crng_initialize_secondary(struct crng_state *crng)
822
{
823
	chacha_init_consts(crng->state);
824 825 826 827 828 829 830
	_get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
	crng_init_try_arch(crng);
	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
}

static void __init crng_initialize_primary(struct crng_state *crng)
{
831
	chacha_init_consts(crng->state);
832
	_extract_entropy(&input_pool, &crng->state[4], sizeof(__u32) * 12, 0);
833
	if (crng_init_try_arch_early(crng) && trust_cpu) {
834 835
		invalidate_batched_entropy();
		numa_crng_init();
836
		crng_init = 2;
Y
Yangtao Li 已提交
837
		pr_notice("crng done (trusting CPU's manufacturer)\n");
838
	}
839 840 841
	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
}

842
#ifdef CONFIG_NUMA
843
static void do_numa_crng_init(struct work_struct *work)
844 845 846 847 848 849 850 851 852 853
{
	int i;
	struct crng_state *crng;
	struct crng_state **pool;

	pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
	for_each_online_node(i) {
		crng = kmalloc_node(sizeof(struct crng_state),
				    GFP_KERNEL | __GFP_NOFAIL, i);
		spin_lock_init(&crng->lock);
854
		crng_initialize_secondary(crng);
855 856
		pool[i] = crng;
	}
857 858
	/* pairs with READ_ONCE() in select_crng() */
	if (cmpxchg_release(&crng_node_pool, NULL, pool) != NULL) {
859 860 861 862 863
		for_each_node(i)
			kfree(pool[i]);
		kfree(pool);
	}
}
864 865 866 867 868 869 870

static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);

static void numa_crng_init(void)
{
	schedule_work(&numa_crng_init_work);
}
871 872 873 874 875 876 877 878 879 880 881 882 883

static struct crng_state *select_crng(void)
{
	struct crng_state **pool;
	int nid = numa_node_id();

	/* pairs with cmpxchg_release() in do_numa_crng_init() */
	pool = READ_ONCE(crng_node_pool);
	if (pool && pool[nid])
		return pool[nid];

	return &primary_crng;
}
884 885
#else
static void numa_crng_init(void) {}
886 887 888 889 890

static struct crng_state *select_crng(void)
{
	return &primary_crng;
}
891 892
#endif

893 894 895 896
/*
 * crng_fast_load() can be called by code in the interrupt service
 * path.  So we can't afford to dilly-dally.
 */
897 898 899 900 901 902 903
static int crng_fast_load(const char *cp, size_t len)
{
	unsigned long flags;
	char *p;

	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
		return 0;
T
Theodore Ts'o 已提交
904
	if (crng_init != 0) {
905 906 907 908 909
		spin_unlock_irqrestore(&primary_crng.lock, flags);
		return 0;
	}
	p = (unsigned char *) &primary_crng.state[4];
	while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
910
		p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp;
911 912
		cp++; crng_init_cnt++; len--;
	}
913
	spin_unlock_irqrestore(&primary_crng.lock, flags);
914
	if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
915
		invalidate_batched_entropy();
916
		crng_init = 1;
Y
Yangtao Li 已提交
917
		pr_notice("fast init done\n");
918 919 920 921
	}
	return 1;
}

922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
/*
 * crng_slow_load() is called by add_device_randomness, which has two
 * attributes.  (1) We can't trust the buffer passed to it is
 * guaranteed to be unpredictable (so it might not have any entropy at
 * all), and (2) it doesn't have the performance constraints of
 * crng_fast_load().
 *
 * So we do something more comprehensive which is guaranteed to touch
 * all of the primary_crng's state, and which uses a LFSR with a
 * period of 255 as part of the mixing algorithm.  Finally, we do
 * *not* advance crng_init_cnt since buffer we may get may be something
 * like a fixed DMI table (for example), which might very well be
 * unique to the machine, but is otherwise unvarying.
 */
static int crng_slow_load(const char *cp, size_t len)
{
	unsigned long		flags;
	static unsigned char	lfsr = 1;
	unsigned char		tmp;
941
	unsigned		i, max = CHACHA_KEY_SIZE;
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
	const char *		src_buf = cp;
	char *			dest_buf = (char *) &primary_crng.state[4];

	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
		return 0;
	if (crng_init != 0) {
		spin_unlock_irqrestore(&primary_crng.lock, flags);
		return 0;
	}
	if (len > max)
		max = len;

	for (i = 0; i < max ; i++) {
		tmp = lfsr;
		lfsr >>= 1;
		if (tmp & 1)
			lfsr ^= 0xE1;
959 960
		tmp = dest_buf[i % CHACHA_KEY_SIZE];
		dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
961 962 963 964 965 966
		lfsr += (tmp << 3) | (tmp >> 5);
	}
	spin_unlock_irqrestore(&primary_crng.lock, flags);
	return 1;
}

967 968 969 970 971
static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
{
	unsigned long	flags;
	int		i, num;
	union {
972
		__u8	block[CHACHA_BLOCK_SIZE];
973 974 975 976 977 978 979
		__u32	key[8];
	} buf;

	if (r) {
		num = extract_entropy(r, &buf, 32, 16, 0);
		if (num == 0)
			return;
980
	} else {
981
		_extract_crng(&primary_crng, buf.block);
982
		_crng_backtrack_protect(&primary_crng, buf.block,
983
					CHACHA_KEY_SIZE);
984
	}
985
	spin_lock_irqsave(&crng->lock, flags);
986 987 988 989 990 991 992 993
	for (i = 0; i < 8; i++) {
		unsigned long	rv;
		if (!arch_get_random_seed_long(&rv) &&
		    !arch_get_random_long(&rv))
			rv = random_get_entropy();
		crng->state[i+4] ^= buf.key[i] ^ rv;
	}
	memzero_explicit(&buf, sizeof(buf));
994
	WRITE_ONCE(crng->init_time, jiffies);
995
	spin_unlock_irqrestore(&crng->lock, flags);
996
	if (crng == &primary_crng && crng_init < 2) {
997
		invalidate_batched_entropy();
998
		numa_crng_init();
999 1000 1001
		crng_init = 2;
		process_random_ready_list();
		wake_up_interruptible(&crng_init_wait);
1002
		kill_fasync(&fasync, SIGIO, POLL_IN);
Y
Yangtao Li 已提交
1003
		pr_notice("crng init done\n");
1004
		if (unseeded_warning.missed) {
Y
Yangtao Li 已提交
1005
			pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n",
1006 1007 1008 1009
				  unseeded_warning.missed);
			unseeded_warning.missed = 0;
		}
		if (urandom_warning.missed) {
Y
Yangtao Li 已提交
1010
			pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
1011 1012 1013
				  urandom_warning.missed);
			urandom_warning.missed = 0;
		}
1014 1015 1016
	}
}

1017
static void _extract_crng(struct crng_state *crng,
1018
			  __u8 out[CHACHA_BLOCK_SIZE])
1019
{
1020 1021 1022 1023 1024 1025 1026 1027 1028
	unsigned long v, flags, init_time;

	if (crng_ready()) {
		init_time = READ_ONCE(crng->init_time);
		if (time_after(READ_ONCE(crng_global_init_time), init_time) ||
		    time_after(jiffies, init_time + CRNG_RESEED_INTERVAL))
			crng_reseed(crng, crng == &primary_crng ?
				    &input_pool : NULL);
	}
1029 1030 1031 1032 1033 1034 1035 1036 1037
	spin_lock_irqsave(&crng->lock, flags);
	if (arch_get_random_long(&v))
		crng->state[14] ^= v;
	chacha20_block(&crng->state[0], out);
	if (crng->state[12] == 0)
		crng->state[13]++;
	spin_unlock_irqrestore(&crng->lock, flags);
}

1038
static void extract_crng(__u8 out[CHACHA_BLOCK_SIZE])
1039
{
1040
	_extract_crng(select_crng(), out);
1041 1042
}

1043 1044 1045 1046 1047
/*
 * Use the leftover bytes from the CRNG block output (if there is
 * enough) to mutate the CRNG key to provide backtracking protection.
 */
static void _crng_backtrack_protect(struct crng_state *crng,
1048
				    __u8 tmp[CHACHA_BLOCK_SIZE], int used)
1049 1050 1051 1052 1053 1054
{
	unsigned long	flags;
	__u32		*s, *d;
	int		i;

	used = round_up(used, sizeof(__u32));
1055
	if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) {
1056 1057 1058 1059
		extract_crng(tmp);
		used = 0;
	}
	spin_lock_irqsave(&crng->lock, flags);
1060
	s = (__u32 *) &tmp[used];
1061 1062 1063 1064 1065 1066
	d = &crng->state[4];
	for (i=0; i < 8; i++)
		*d++ ^= *s++;
	spin_unlock_irqrestore(&crng->lock, flags);
}

1067
static void crng_backtrack_protect(__u8 tmp[CHACHA_BLOCK_SIZE], int used)
1068
{
1069
	_crng_backtrack_protect(select_crng(), tmp, used);
1070 1071
}

1072 1073
static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
{
1074 1075
	ssize_t ret = 0, i = CHACHA_BLOCK_SIZE;
	__u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088
	int large_request = (nbytes > 256);

	while (nbytes) {
		if (large_request && need_resched()) {
			if (signal_pending(current)) {
				if (ret == 0)
					ret = -ERESTARTSYS;
				break;
			}
			schedule();
		}

		extract_crng(tmp);
1089
		i = min_t(int, nbytes, CHACHA_BLOCK_SIZE);
1090 1091 1092 1093 1094 1095 1096 1097 1098
		if (copy_to_user(buf, tmp, i)) {
			ret = -EFAULT;
			break;
		}

		nbytes -= i;
		buf += i;
		ret += i;
	}
1099
	crng_backtrack_protect(tmp, i);
1100 1101 1102 1103 1104 1105 1106 1107

	/* Wipe data just written to memory */
	memzero_explicit(tmp, sizeof(tmp));

	return ret;
}


L
Linus Torvalds 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116
/*********************************************************************
 *
 * Entropy input management
 *
 *********************************************************************/

/* There is one of these per entropy source */
struct timer_rand_state {
	cycles_t last_time;
1117
	long last_delta, last_delta2;
L
Linus Torvalds 已提交
1118 1119
};

1120 1121
#define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };

1122
/*
1123 1124
 * Add device- or boot-specific data to the input pool to help
 * initialize it.
1125
 *
1126 1127 1128
 * None of this adds any entropy; it is meant to avoid the problem of
 * the entropy pool having similar initial state across largely
 * identical devices.
1129 1130 1131
 */
void add_device_randomness(const void *buf, unsigned int size)
{
1132
	unsigned long time = random_get_entropy() ^ jiffies;
1133
	unsigned long flags;
1134

1135 1136
	if (!crng_ready() && size)
		crng_slow_load(buf, size);
1137

1138
	trace_add_device_randomness(size, _RET_IP_);
1139
	spin_lock_irqsave(&input_pool.lock, flags);
1140 1141
	_mix_pool_bytes(&input_pool, buf, size);
	_mix_pool_bytes(&input_pool, &time, sizeof(time));
1142
	spin_unlock_irqrestore(&input_pool.lock, flags);
1143 1144 1145
}
EXPORT_SYMBOL(add_device_randomness);

1146
static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
1147

L
Linus Torvalds 已提交
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
/*
 * This function adds entropy to the entropy "pool" by using timing
 * delays.  It uses the timer_rand_state structure to make an estimate
 * of how many bits of entropy this call has added to the pool.
 *
 * The number "num" is also added to the pool - it should somehow describe
 * the type of event which just happened.  This is currently 0-255 for
 * keyboard scan codes, and 256 upwards for interrupts.
 *
 */
static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
{
1160
	struct entropy_store	*r;
L
Linus Torvalds 已提交
1161 1162
	struct {
		long jiffies;
1163
		unsigned cycles;
L
Linus Torvalds 已提交
1164 1165 1166 1167 1168
		unsigned num;
	} sample;
	long delta, delta2, delta3;

	sample.jiffies = jiffies;
1169
	sample.cycles = random_get_entropy();
L
Linus Torvalds 已提交
1170
	sample.num = num;
1171
	r = &input_pool;
1172
	mix_pool_bytes(r, &sample, sizeof(sample));
L
Linus Torvalds 已提交
1173 1174 1175 1176 1177 1178

	/*
	 * Calculate number of bits of randomness we probably added.
	 * We take into account the first, second and third-order deltas
	 * in order to make our estimate.
	 */
1179 1180
	delta = sample.jiffies - READ_ONCE(state->last_time);
	WRITE_ONCE(state->last_time, sample.jiffies);
1181

1182 1183
	delta2 = delta - READ_ONCE(state->last_delta);
	WRITE_ONCE(state->last_delta, delta);
1184

1185 1186
	delta3 = delta2 - READ_ONCE(state->last_delta2);
	WRITE_ONCE(state->last_delta2, delta2);
1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197

	if (delta < 0)
		delta = -delta;
	if (delta2 < 0)
		delta2 = -delta2;
	if (delta3 < 0)
		delta3 = -delta3;
	if (delta > delta2)
		delta = delta2;
	if (delta > delta3)
		delta = delta3;
L
Linus Torvalds 已提交
1198

1199 1200 1201
	/*
	 * delta is now minimum absolute delta.
	 * Round down by 1 bit on general principles,
1202
	 * and limit entropy estimate to 12 bits.
1203 1204
	 */
	credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
L
Linus Torvalds 已提交
1205 1206
}

1207
void add_input_randomness(unsigned int type, unsigned int code,
L
Linus Torvalds 已提交
1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
				 unsigned int value)
{
	static unsigned char last_value;

	/* ignore autorepeat and the like */
	if (value == last_value)
		return;

	last_value = value;
	add_timer_randomness(&input_timer_state,
			     (type << 4) ^ code ^ (code >> 4) ^ value);
1219
	trace_add_input_randomness(ENTROPY_BITS(&input_pool));
L
Linus Torvalds 已提交
1220
}
1221
EXPORT_SYMBOL_GPL(add_input_randomness);
L
Linus Torvalds 已提交
1222

1223 1224
static DEFINE_PER_CPU(struct fast_pool, irq_randomness);

1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245
#ifdef ADD_INTERRUPT_BENCH
static unsigned long avg_cycles, avg_deviation;

#define AVG_SHIFT 8     /* Exponential average factor k=1/256 */
#define FIXED_1_2 (1 << (AVG_SHIFT-1))

static void add_interrupt_bench(cycles_t start)
{
        long delta = random_get_entropy() - start;

        /* Use a weighted moving average */
        delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
        avg_cycles += delta;
        /* And average deviation */
        delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
        avg_deviation += delta;
}
#else
#define add_interrupt_bench(x)
#endif

1246 1247 1248
static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
{
	__u32 *ptr = (__u32 *) regs;
1249
	unsigned int idx;
1250 1251 1252

	if (regs == NULL)
		return 0;
1253 1254 1255 1256 1257
	idx = READ_ONCE(f->reg_idx);
	if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
		idx = 0;
	ptr += idx++;
	WRITE_ONCE(f->reg_idx, idx);
1258
	return *ptr;
1259 1260
}

1261
void add_interrupt_randomness(int irq)
L
Linus Torvalds 已提交
1262
{
1263
	struct entropy_store	*r;
1264
	struct fast_pool	*fast_pool = this_cpu_ptr(&irq_randomness);
1265 1266
	struct pt_regs		*regs = get_irq_regs();
	unsigned long		now = jiffies;
1267
	cycles_t		cycles = random_get_entropy();
1268
	__u32			c_high, j_high;
1269
	__u64			ip;
1270

1271 1272
	if (cycles == 0)
		cycles = get_reg(fast_pool, regs);
1273 1274
	c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
	j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1275 1276
	fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
	fast_pool->pool[1] ^= now ^ c_high;
1277
	ip = regs ? instruction_pointer(regs) : _RET_IP_;
1278
	fast_pool->pool[2] ^= ip;
1279 1280
	fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
		get_reg(fast_pool, regs);
1281

1282 1283
	fast_mix(fast_pool);
	add_interrupt_bench(cycles);
1284

T
Theodore Ts'o 已提交
1285
	if (unlikely(crng_init == 0)) {
1286 1287 1288 1289 1290 1291 1292 1293 1294
		if ((fast_pool->count >= 64) &&
		    crng_fast_load((char *) fast_pool->pool,
				   sizeof(fast_pool->pool))) {
			fast_pool->count = 0;
			fast_pool->last = now;
		}
		return;
	}

1295 1296
	if ((fast_pool->count < 64) &&
	    !time_after(now, fast_pool->last + HZ))
L
Linus Torvalds 已提交
1297 1298
		return;

1299
	r = &input_pool;
1300
	if (!spin_trylock(&r->lock))
1301
		return;
1302

1303
	fast_pool->last = now;
1304
	__mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
1305
	spin_unlock(&r->lock);
1306

1307
	fast_pool->count = 0;
1308

1309
	/* award one bit for the contents of the fast pool */
1310
	credit_entropy_bits(r, 1);
L
Linus Torvalds 已提交
1311
}
1312
EXPORT_SYMBOL_GPL(add_interrupt_randomness);
L
Linus Torvalds 已提交
1313

1314
#ifdef CONFIG_BLOCK
L
Linus Torvalds 已提交
1315 1316 1317 1318 1319
void add_disk_randomness(struct gendisk *disk)
{
	if (!disk || !disk->random)
		return;
	/* first major is 1, so we get >= 0x200 here */
1320
	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1321
	trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
L
Linus Torvalds 已提交
1322
}
1323
EXPORT_SYMBOL_GPL(add_disk_randomness);
1324
#endif
L
Linus Torvalds 已提交
1325 1326 1327 1328 1329 1330 1331 1332

/*********************************************************************
 *
 * Entropy extraction routines
 *
 *********************************************************************/

/*
G
Greg Price 已提交
1333 1334
 * This function decides how many bytes to actually take from the
 * given pool, and also debits the entropy count accordingly.
L
Linus Torvalds 已提交
1335 1336 1337 1338
 */
static size_t account(struct entropy_store *r, size_t nbytes, int min,
		      int reserved)
{
S
Stephan Müller 已提交
1339
	int entropy_count, orig, have_bytes;
1340
	size_t ibytes, nfrac;
L
Linus Torvalds 已提交
1341

1342
	BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
L
Linus Torvalds 已提交
1343 1344

	/* Can we pull enough? */
1345
retry:
1346
	entropy_count = orig = READ_ONCE(r->entropy_count);
1347
	ibytes = nbytes;
S
Stephan Müller 已提交
1348 1349
	/* never pull more than available */
	have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1350

S
Stephan Müller 已提交
1351 1352 1353
	if ((have_bytes -= reserved) < 0)
		have_bytes = 0;
	ibytes = min_t(size_t, ibytes, have_bytes);
G
Greg Price 已提交
1354
	if (ibytes < min)
1355
		ibytes = 0;
1356

1357
	if (WARN_ON(entropy_count < 0)) {
Y
Yangtao Li 已提交
1358
		pr_warn("negative entropy count: pool %s count %d\n",
1359 1360 1361 1362 1363 1364 1365
			r->name, entropy_count);
		entropy_count = 0;
	}
	nfrac = ibytes << (ENTROPY_SHIFT + 3);
	if ((size_t) entropy_count > nfrac)
		entropy_count -= nfrac;
	else
1366
		entropy_count = 0;
1367

G
Greg Price 已提交
1368 1369
	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
		goto retry;
L
Linus Torvalds 已提交
1370

1371
	trace_debit_entropy(r->name, 8 * ibytes);
1372
	if (ibytes && ENTROPY_BITS(r) < random_write_wakeup_bits) {
1373
		wake_up_interruptible(&random_write_wait);
1374 1375 1376
		kill_fasync(&fasync, SIGIO, POLL_OUT);
	}

1377
	return ibytes;
L
Linus Torvalds 已提交
1378 1379
}

G
Greg Price 已提交
1380
/*
1381
 * This function does the actual extraction for extract_entropy.
G
Greg Price 已提交
1382 1383 1384
 *
 * Note: we assume that .poolwords is a multiple of 16 words.
 */
L
Linus Torvalds 已提交
1385 1386
static void extract_buf(struct entropy_store *r, __u8 *out)
{
1387
	int i;
1388 1389
	union {
		__u32 w[5];
1390
		unsigned long l[LONGS(20)];
1391
	} hash;
1392
	__u32 workspace[SHA1_WORKSPACE_WORDS];
1393
	unsigned long flags;
L
Linus Torvalds 已提交
1394

1395
	/*
1396
	 * If we have an architectural hardware random number
1397
	 * generator, use it for SHA's initial vector
1398
	 */
1399
	sha1_init(hash.w);
1400 1401 1402 1403
	for (i = 0; i < LONGS(20); i++) {
		unsigned long v;
		if (!arch_get_random_long(&v))
			break;
1404
		hash.l[i] = v;
1405 1406
	}

1407 1408 1409
	/* Generate a hash across the pool, 16 words (512 bits) at a time */
	spin_lock_irqsave(&r->lock, flags);
	for (i = 0; i < r->poolinfo->poolwords; i += 16)
1410
		sha1_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1411

L
Linus Torvalds 已提交
1412
	/*
1413 1414 1415 1416 1417 1418 1419
	 * We mix the hash back into the pool to prevent backtracking
	 * attacks (where the attacker knows the state of the pool
	 * plus the current outputs, and attempts to find previous
	 * ouputs), unless the hash function can be inverted. By
	 * mixing at least a SHA1 worth of hash data back, we make
	 * brute-forcing the feedback as hard as brute-forcing the
	 * hash.
L
Linus Torvalds 已提交
1420
	 */
1421
	__mix_pool_bytes(r, hash.w, sizeof(hash.w));
1422
	spin_unlock_irqrestore(&r->lock, flags);
L
Linus Torvalds 已提交
1423

1424
	memzero_explicit(workspace, sizeof(workspace));
L
Linus Torvalds 已提交
1425 1426

	/*
1427 1428 1429
	 * In case the hash function has some recognizable output
	 * pattern, we fold it in half. Thus, we always feed back
	 * twice as much data as we output.
L
Linus Torvalds 已提交
1430
	 */
1431 1432 1433 1434 1435
	hash.w[0] ^= hash.w[3];
	hash.w[1] ^= hash.w[4];
	hash.w[2] ^= rol32(hash.w[2], 16);

	memcpy(out, &hash, EXTRACT_SIZE);
1436
	memzero_explicit(&hash, sizeof(hash));
L
Linus Torvalds 已提交
1437 1438
}

1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
				size_t nbytes, int fips)
{
	ssize_t ret = 0, i;
	__u8 tmp[EXTRACT_SIZE];
	unsigned long flags;

	while (nbytes) {
		extract_buf(r, tmp);

		if (fips) {
			spin_lock_irqsave(&r->lock, flags);
			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
				panic("Hardware RNG duplicated output!\n");
			memcpy(r->last_data, tmp, EXTRACT_SIZE);
			spin_unlock_irqrestore(&r->lock, flags);
		}
		i = min_t(int, nbytes, EXTRACT_SIZE);
		memcpy(buf, tmp, i);
		nbytes -= i;
		buf += i;
		ret += i;
	}

	/* Wipe data just returned from memory */
	memzero_explicit(tmp, sizeof(tmp));

	return ret;
}

G
Greg Price 已提交
1469 1470 1471 1472 1473 1474 1475 1476 1477
/*
 * This function extracts randomness from the "entropy pool", and
 * returns it in a buffer.
 *
 * The min parameter specifies the minimum amount we can pull before
 * failing to avoid races that defeat catastrophic reseeding while the
 * reserved parameter indicates how much entropy we must leave in the
 * pool after each pull to avoid starving other readers.
 */
1478
static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1479
				 size_t nbytes, int min, int reserved)
L
Linus Torvalds 已提交
1480 1481
{
	__u8 tmp[EXTRACT_SIZE];
1482
	unsigned long flags;
L
Linus Torvalds 已提交
1483

1484
	/* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1485 1486 1487
	if (fips_enabled) {
		spin_lock_irqsave(&r->lock, flags);
		if (!r->last_data_init) {
1488
			r->last_data_init = 1;
1489 1490
			spin_unlock_irqrestore(&r->lock, flags);
			trace_extract_entropy(r->name, EXTRACT_SIZE,
1491
					      ENTROPY_BITS(r), _RET_IP_);
1492 1493 1494 1495 1496 1497
			extract_buf(r, tmp);
			spin_lock_irqsave(&r->lock, flags);
			memcpy(r->last_data, tmp, EXTRACT_SIZE);
		}
		spin_unlock_irqrestore(&r->lock, flags);
	}
1498

1499
	trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
L
Linus Torvalds 已提交
1500 1501
	nbytes = account(r, nbytes, min, reserved);

1502
	return _extract_entropy(r, buf, nbytes, fips_enabled);
L
Linus Torvalds 已提交
1503 1504
}

1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
#define warn_unseeded_randomness(previous) \
	_warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))

static void _warn_unseeded_randomness(const char *func_name, void *caller,
				      void **previous)
{
#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
	const bool print_once = false;
#else
	static bool print_once __read_mostly;
#endif

	if (print_once ||
	    crng_ready() ||
	    (previous && (caller == READ_ONCE(*previous))))
		return;
	WRITE_ONCE(*previous, caller);
#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
	print_once = true;
#endif
1525
	if (__ratelimit(&unseeded_warning))
1526 1527 1528
		printk_deferred(KERN_NOTICE "random: %s called from %pS "
				"with crng_init=%d\n", func_name, caller,
				crng_init);
1529 1530
}

L
Linus Torvalds 已提交
1531 1532
/*
 * This function is the exported kernel interface.  It returns some
1533
 * number of good random numbers, suitable for key generation, seeding
1534 1535
 * TCP sequence numbers, etc.  It does not rely on the hardware random
 * number generator.  For random bytes direct from the hardware RNG
1536 1537 1538 1539
 * (when available), use get_random_bytes_arch(). In order to ensure
 * that the randomness provided by this function is okay, the function
 * wait_for_random_bytes() should be called and return 0 at least once
 * at any point prior.
L
Linus Torvalds 已提交
1540
 */
1541
static void _get_random_bytes(void *buf, int nbytes)
1542
{
1543
	__u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1544

1545
	trace_get_random_bytes(nbytes, _RET_IP_);
1546

1547
	while (nbytes >= CHACHA_BLOCK_SIZE) {
1548
		extract_crng(buf);
1549 1550
		buf += CHACHA_BLOCK_SIZE;
		nbytes -= CHACHA_BLOCK_SIZE;
1551 1552 1553 1554 1555
	}

	if (nbytes > 0) {
		extract_crng(tmp);
		memcpy(buf, tmp, nbytes);
1556 1557
		crng_backtrack_protect(tmp, nbytes);
	} else
1558
		crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE);
1559
	memzero_explicit(tmp, sizeof(tmp));
1560
}
1561 1562 1563 1564 1565 1566 1567 1568

void get_random_bytes(void *buf, int nbytes)
{
	static void *previous;

	warn_unseeded_randomness(&previous);
	_get_random_bytes(buf, nbytes);
}
1569 1570
EXPORT_SYMBOL(get_random_bytes);

1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620

/*
 * Each time the timer fires, we expect that we got an unpredictable
 * jump in the cycle counter. Even if the timer is running on another
 * CPU, the timer activity will be touching the stack of the CPU that is
 * generating entropy..
 *
 * Note that we don't re-arm the timer in the timer itself - we are
 * happy to be scheduled away, since that just makes the load more
 * complex, but we do not want the timer to keep ticking unless the
 * entropy loop is running.
 *
 * So the re-arming always happens in the entropy loop itself.
 */
static void entropy_timer(struct timer_list *t)
{
	credit_entropy_bits(&input_pool, 1);
}

/*
 * If we have an actual cycle counter, see if we can
 * generate enough entropy with timing noise
 */
static void try_to_generate_entropy(void)
{
	struct {
		unsigned long now;
		struct timer_list timer;
	} stack;

	stack.now = random_get_entropy();

	/* Slow counter - or none. Don't even bother */
	if (stack.now == random_get_entropy())
		return;

	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
	while (!crng_ready()) {
		if (!timer_pending(&stack.timer))
			mod_timer(&stack.timer, jiffies+1);
		mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
		schedule();
		stack.now = random_get_entropy();
	}

	del_timer_sync(&stack.timer);
	destroy_timer_on_stack(&stack.timer);
	mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
}

1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
/*
 * Wait for the urandom pool to be seeded and thus guaranteed to supply
 * cryptographically secure random numbers. This applies to: the /dev/urandom
 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
 * family of functions. Using any of these functions without first calling
 * this function forfeits the guarantee of security.
 *
 * Returns: 0 if the urandom pool has been seeded.
 *          -ERESTARTSYS if the function was interrupted by a signal.
 */
int wait_for_random_bytes(void)
{
	if (likely(crng_ready()))
		return 0;
1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645

	do {
		int ret;
		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
		if (ret)
			return ret > 0 ? 0 : ret;

		try_to_generate_entropy();
	} while (!crng_ready());

	return 0;
1646 1647 1648
}
EXPORT_SYMBOL(wait_for_random_bytes);

1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
/*
 * Returns whether or not the urandom pool has been seeded and thus guaranteed
 * to supply cryptographically secure random numbers. This applies to: the
 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
 * ,u64,int,long} family of functions.
 *
 * Returns: true if the urandom pool has been seeded.
 *          false if the urandom pool has not been seeded.
 */
bool rng_is_initialized(void)
{
	return crng_ready();
}
EXPORT_SYMBOL(rng_is_initialized);

1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677
/*
 * Add a callback function that will be invoked when the nonblocking
 * pool is initialised.
 *
 * returns: 0 if callback is successfully added
 *	    -EALREADY if pool is already initialised (callback not called)
 *	    -ENOENT if module for callback is not alive
 */
int add_random_ready_callback(struct random_ready_callback *rdy)
{
	struct module *owner;
	unsigned long flags;
	int err = -EALREADY;

1678
	if (crng_ready())
1679 1680 1681 1682 1683 1684 1685
		return err;

	owner = rdy->owner;
	if (!try_module_get(owner))
		return -ENOENT;

	spin_lock_irqsave(&random_ready_list_lock, flags);
1686
	if (crng_ready())
1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
		goto out;

	owner = NULL;

	list_add(&rdy->list, &random_ready_list);
	err = 0;

out:
	spin_unlock_irqrestore(&random_ready_list_lock, flags);

	module_put(owner);

	return err;
}
EXPORT_SYMBOL(add_random_ready_callback);

/*
 * Delete a previously registered readiness callback function.
 */
void del_random_ready_callback(struct random_ready_callback *rdy)
{
	unsigned long flags;
	struct module *owner = NULL;

	spin_lock_irqsave(&random_ready_list_lock, flags);
	if (!list_empty(&rdy->list)) {
		list_del_init(&rdy->list);
		owner = rdy->owner;
	}
	spin_unlock_irqrestore(&random_ready_list_lock, flags);

	module_put(owner);
}
EXPORT_SYMBOL(del_random_ready_callback);

1722 1723 1724 1725 1726 1727 1728 1729 1730
/*
 * This function will use the architecture-specific hardware random
 * number generator if it is available.  The arch-specific hw RNG will
 * almost certainly be faster than what we can do in software, but it
 * is impossible to verify that it is implemented securely (as
 * opposed, to, say, the AES encryption of a sequence number using a
 * key known by the NSA).  So it's useful if we need the speed, but
 * only if we're willing to trust the hardware manufacturer not to
 * have put in a back door.
1731 1732
 *
 * Return number of bytes filled in.
1733
 */
1734
int __must_check get_random_bytes_arch(void *buf, int nbytes)
L
Linus Torvalds 已提交
1735
{
1736
	int left = nbytes;
1737 1738
	char *p = buf;

1739 1740
	trace_get_random_bytes_arch(left, _RET_IP_);
	while (left) {
1741
		unsigned long v;
1742
		int chunk = min_t(int, left, sizeof(unsigned long));
1743

1744 1745
		if (!arch_get_random_long(&v))
			break;
1746

L
Luck, Tony 已提交
1747
		memcpy(p, &v, chunk);
1748
		p += chunk;
1749
		left -= chunk;
1750 1751
	}

1752
	return nbytes - left;
L
Linus Torvalds 已提交
1753
}
1754 1755
EXPORT_SYMBOL(get_random_bytes_arch);

L
Linus Torvalds 已提交
1756 1757 1758 1759 1760 1761 1762 1763 1764
/*
 * init_std_data - initialize pool with system data
 *
 * @r: pool to initialize
 *
 * This function clears the pool's entropy count and mixes some system
 * data into the pool to prepare it for use. The pool is not cleared
 * as that can only decrease the entropy in the pool.
 */
1765
static void __init init_std_data(struct entropy_store *r)
L
Linus Torvalds 已提交
1766
{
1767
	int i;
1768 1769
	ktime_t now = ktime_get_real();
	unsigned long rv;
L
Linus Torvalds 已提交
1770

1771
	mix_pool_bytes(r, &now, sizeof(now));
1772
	for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1773 1774
		if (!arch_get_random_seed_long(&rv) &&
		    !arch_get_random_long(&rv))
1775
			rv = random_get_entropy();
1776
		mix_pool_bytes(r, &rv, sizeof(rv));
1777
	}
1778
	mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
L
Linus Torvalds 已提交
1779 1780
}

1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
/*
 * Note that setup_arch() may call add_device_randomness()
 * long before we get here. This allows seeding of the pools
 * with some platform dependent data very early in the boot
 * process. But it limits our options here. We must use
 * statically allocated structures that already have all
 * initializations complete at compile time. We should also
 * take care not to overwrite the precious per platform data
 * we were given.
 */
1791
int __init rand_initialize(void)
L
Linus Torvalds 已提交
1792 1793
{
	init_std_data(&input_pool);
1794
	crng_initialize_primary(&primary_crng);
1795
	crng_global_init_time = jiffies;
1796 1797 1798 1799
	if (ratelimit_disable) {
		urandom_warning.interval = 0;
		unseeded_warning.interval = 0;
	}
L
Linus Torvalds 已提交
1800 1801 1802
	return 0;
}

1803
#ifdef CONFIG_BLOCK
L
Linus Torvalds 已提交
1804 1805 1806 1807 1808
void rand_initialize_disk(struct gendisk *disk)
{
	struct timer_rand_state *state;

	/*
1809
	 * If kzalloc returns null, we just won't use that entropy
L
Linus Torvalds 已提交
1810 1811
	 * source.
	 */
1812
	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1813 1814
	if (state) {
		state->last_time = INITIAL_JIFFIES;
L
Linus Torvalds 已提交
1815
		disk->random = state;
1816
	}
L
Linus Torvalds 已提交
1817
}
1818
#endif
L
Linus Torvalds 已提交
1819

1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
static ssize_t
urandom_read_nowarn(struct file *file, char __user *buf, size_t nbytes,
		    loff_t *ppos)
{
	int ret;

	nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
	ret = extract_crng_user(buf, nbytes);
	trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
	return ret;
}

L
Linus Torvalds 已提交
1832
static ssize_t
1833
urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
L
Linus Torvalds 已提交
1834
{
1835
	unsigned long flags;
1836
	static int maxwarn = 10;
1837

1838
	if (!crng_ready() && maxwarn > 0) {
1839
		maxwarn--;
1840
		if (__ratelimit(&urandom_warning))
Y
Yangtao Li 已提交
1841 1842
			pr_notice("%s: uninitialized urandom read (%zd bytes read)\n",
				  current->comm, nbytes);
1843 1844 1845
		spin_lock_irqsave(&primary_crng.lock, flags);
		crng_init_cnt = 0;
		spin_unlock_irqrestore(&primary_crng.lock, flags);
1846
	}
1847 1848

	return urandom_read_nowarn(file, buf, nbytes, ppos);
L
Linus Torvalds 已提交
1849 1850
}

1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861
static ssize_t
random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
{
	int ret;

	ret = wait_for_random_bytes();
	if (ret != 0)
		return ret;
	return urandom_read_nowarn(file, buf, nbytes, ppos);
}

1862
static __poll_t
1863
random_poll(struct file *file, poll_table * wait)
L
Linus Torvalds 已提交
1864
{
1865
	__poll_t mask;
L
Linus Torvalds 已提交
1866

1867
	poll_wait(file, &crng_init_wait, wait);
1868 1869
	poll_wait(file, &random_write_wait, wait);
	mask = 0;
1870
	if (crng_ready())
1871
		mask |= EPOLLIN | EPOLLRDNORM;
1872
	if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1873
		mask |= EPOLLOUT | EPOLLWRNORM;
L
Linus Torvalds 已提交
1874 1875 1876
	return mask;
}

1877 1878
static int
write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
L
Linus Torvalds 已提交
1879 1880
{
	size_t bytes;
1881
	__u32 t, buf[16];
L
Linus Torvalds 已提交
1882 1883
	const char __user *p = buffer;

1884
	while (count > 0) {
1885 1886
		int b, i = 0;

1887 1888 1889
		bytes = min(count, sizeof(buf));
		if (copy_from_user(&buf, p, bytes))
			return -EFAULT;
L
Linus Torvalds 已提交
1890

1891 1892 1893 1894 1895 1896
		for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
			if (!arch_get_random_int(&t))
				break;
			buf[i] ^= t;
		}

1897
		count -= bytes;
L
Linus Torvalds 已提交
1898 1899
		p += bytes;

1900
		mix_pool_bytes(r, buf, bytes);
1901
		cond_resched();
L
Linus Torvalds 已提交
1902
	}
1903 1904 1905 1906

	return 0;
}

1907 1908
static ssize_t random_write(struct file *file, const char __user *buffer,
			    size_t count, loff_t *ppos)
1909 1910 1911
{
	size_t ret;

1912
	ret = write_pool(&input_pool, buffer, count);
1913 1914 1915 1916
	if (ret)
		return ret;

	return (ssize_t)count;
L
Linus Torvalds 已提交
1917 1918
}

M
Matt Mackall 已提交
1919
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
L
Linus Torvalds 已提交
1920 1921 1922 1923 1924 1925 1926
{
	int size, ent_count;
	int __user *p = (int __user *)arg;
	int retval;

	switch (cmd) {
	case RNDGETENTCNT:
M
Matt Mackall 已提交
1927
		/* inherently racy, no point locking */
1928 1929
		ent_count = ENTROPY_BITS(&input_pool);
		if (put_user(ent_count, p))
L
Linus Torvalds 已提交
1930 1931 1932 1933 1934 1935 1936
			return -EFAULT;
		return 0;
	case RNDADDTOENTCNT:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p))
			return -EFAULT;
1937
		return credit_entropy_bits_safe(&input_pool, ent_count);
L
Linus Torvalds 已提交
1938 1939 1940 1941 1942 1943 1944 1945 1946
	case RNDADDENTROPY:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p++))
			return -EFAULT;
		if (ent_count < 0)
			return -EINVAL;
		if (get_user(size, p++))
			return -EFAULT;
1947 1948
		retval = write_pool(&input_pool, (const char __user *)p,
				    size);
L
Linus Torvalds 已提交
1949 1950
		if (retval < 0)
			return retval;
1951
		return credit_entropy_bits_safe(&input_pool, ent_count);
L
Linus Torvalds 已提交
1952 1953
	case RNDZAPENTCNT:
	case RNDCLEARPOOL:
1954 1955 1956 1957
		/*
		 * Clear the entropy pool counters. We no longer clear
		 * the entropy pool, as that's silly.
		 */
L
Linus Torvalds 已提交
1958 1959
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
1960
		input_pool.entropy_count = 0;
L
Linus Torvalds 已提交
1961
		return 0;
1962 1963 1964 1965 1966
	case RNDRESEEDCRNG:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (crng_init < 2)
			return -ENODATA;
1967
		crng_reseed(&primary_crng, &input_pool);
1968
		WRITE_ONCE(crng_global_init_time, jiffies - 1);
1969
		return 0;
L
Linus Torvalds 已提交
1970 1971 1972 1973 1974
	default:
		return -EINVAL;
	}
}

1975 1976 1977 1978 1979
static int random_fasync(int fd, struct file *filp, int on)
{
	return fasync_helper(fd, filp, on, &fasync);
}

1980
const struct file_operations random_fops = {
L
Linus Torvalds 已提交
1981 1982
	.read  = random_read,
	.write = random_write,
1983
	.poll  = random_poll,
M
Matt Mackall 已提交
1984
	.unlocked_ioctl = random_ioctl,
1985
	.compat_ioctl = compat_ptr_ioctl,
1986
	.fasync = random_fasync,
1987
	.llseek = noop_llseek,
L
Linus Torvalds 已提交
1988 1989
};

1990
const struct file_operations urandom_fops = {
L
Linus Torvalds 已提交
1991 1992
	.read  = urandom_read,
	.write = random_write,
M
Matt Mackall 已提交
1993
	.unlocked_ioctl = random_ioctl,
1994
	.compat_ioctl = compat_ptr_ioctl,
1995
	.fasync = random_fasync,
1996
	.llseek = noop_llseek,
L
Linus Torvalds 已提交
1997 1998
};

1999 2000 2001
SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
		unsigned int, flags)
{
2002 2003
	int ret;

2004 2005 2006 2007 2008 2009 2010 2011
	if (flags & ~(GRND_NONBLOCK|GRND_RANDOM|GRND_INSECURE))
		return -EINVAL;

	/*
	 * Requesting insecure and blocking randomness at the same time makes
	 * no sense.
	 */
	if ((flags & (GRND_INSECURE|GRND_RANDOM)) == (GRND_INSECURE|GRND_RANDOM))
2012 2013 2014 2015 2016
		return -EINVAL;

	if (count > INT_MAX)
		count = INT_MAX;

2017
	if (!(flags & GRND_INSECURE) && !crng_ready()) {
2018 2019
		if (flags & GRND_NONBLOCK)
			return -EAGAIN;
2020 2021 2022
		ret = wait_for_random_bytes();
		if (unlikely(ret))
			return ret;
2023
	}
2024
	return urandom_read_nowarn(NULL, buf, count, NULL);
2025 2026
}

L
Linus Torvalds 已提交
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036
/********************************************************************
 *
 * Sysctl interface
 *
 ********************************************************************/

#ifdef CONFIG_SYSCTL

#include <linux/sysctl.h>

2037
static int min_write_thresh;
L
Linus Torvalds 已提交
2038
static int max_write_thresh = INPUT_POOL_WORDS * 32;
2039
static int random_min_urandom_seed = 60;
L
Linus Torvalds 已提交
2040 2041 2042
static char sysctl_bootid[16];

/*
G
Greg Price 已提交
2043
 * This function is used to return both the bootid UUID, and random
L
Linus Torvalds 已提交
2044 2045 2046
 * UUID.  The difference is in whether table->data is NULL; if it is,
 * then a new UUID is generated and returned to the user.
 *
G
Greg Price 已提交
2047 2048 2049
 * If the user accesses this via the proc interface, the UUID will be
 * returned as an ASCII string in the standard UUID format; if via the
 * sysctl system call, as 16 bytes of binary data.
L
Linus Torvalds 已提交
2050
 */
2051
static int proc_do_uuid(struct ctl_table *table, int write,
2052
			void *buffer, size_t *lenp, loff_t *ppos)
L
Linus Torvalds 已提交
2053
{
2054
	struct ctl_table fake_table;
L
Linus Torvalds 已提交
2055 2056 2057 2058 2059 2060
	unsigned char buf[64], tmp_uuid[16], *uuid;

	uuid = table->data;
	if (!uuid) {
		uuid = tmp_uuid;
		generate_random_uuid(uuid);
2061 2062 2063 2064 2065 2066 2067 2068
	} else {
		static DEFINE_SPINLOCK(bootid_spinlock);

		spin_lock(&bootid_spinlock);
		if (!uuid[8])
			generate_random_uuid(uuid);
		spin_unlock(&bootid_spinlock);
	}
L
Linus Torvalds 已提交
2069

J
Joe Perches 已提交
2070 2071
	sprintf(buf, "%pU", uuid);

L
Linus Torvalds 已提交
2072 2073 2074
	fake_table.data = buf;
	fake_table.maxlen = sizeof(buf);

2075
	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
L
Linus Torvalds 已提交
2076 2077
}

2078 2079 2080
/*
 * Return entropy available scaled to integral bits
 */
2081
static int proc_do_entropy(struct ctl_table *table, int write,
2082
			   void *buffer, size_t *lenp, loff_t *ppos)
2083
{
2084
	struct ctl_table fake_table;
2085 2086 2087 2088 2089 2090 2091 2092 2093 2094
	int entropy_count;

	entropy_count = *(int *)table->data >> ENTROPY_SHIFT;

	fake_table.data = &entropy_count;
	fake_table.maxlen = sizeof(entropy_count);

	return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
}

L
Linus Torvalds 已提交
2095
static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
2096 2097
extern struct ctl_table random_table[];
struct ctl_table random_table[] = {
L
Linus Torvalds 已提交
2098 2099 2100 2101 2102
	{
		.procname	= "poolsize",
		.data		= &sysctl_poolsize,
		.maxlen		= sizeof(int),
		.mode		= 0444,
2103
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
2104 2105 2106 2107 2108
	},
	{
		.procname	= "entropy_avail",
		.maxlen		= sizeof(int),
		.mode		= 0444,
2109
		.proc_handler	= proc_do_entropy,
L
Linus Torvalds 已提交
2110 2111 2112 2113
		.data		= &input_pool.entropy_count,
	},
	{
		.procname	= "write_wakeup_threshold",
2114
		.data		= &random_write_wakeup_bits,
L
Linus Torvalds 已提交
2115 2116
		.maxlen		= sizeof(int),
		.mode		= 0644,
2117
		.proc_handler	= proc_dointvec_minmax,
L
Linus Torvalds 已提交
2118 2119 2120
		.extra1		= &min_write_thresh,
		.extra2		= &max_write_thresh,
	},
2121 2122 2123 2124 2125 2126 2127
	{
		.procname	= "urandom_min_reseed_secs",
		.data		= &random_min_urandom_seed,
		.maxlen		= sizeof(int),
		.mode		= 0644,
		.proc_handler	= proc_dointvec,
	},
L
Linus Torvalds 已提交
2128 2129 2130 2131 2132
	{
		.procname	= "boot_id",
		.data		= &sysctl_bootid,
		.maxlen		= 16,
		.mode		= 0444,
2133
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
2134 2135 2136 2137 2138
	},
	{
		.procname	= "uuid",
		.maxlen		= 16,
		.mode		= 0444,
2139
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
2140
	},
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
#ifdef ADD_INTERRUPT_BENCH
	{
		.procname	= "add_interrupt_avg_cycles",
		.data		= &avg_cycles,
		.maxlen		= sizeof(avg_cycles),
		.mode		= 0444,
		.proc_handler	= proc_doulongvec_minmax,
	},
	{
		.procname	= "add_interrupt_avg_deviation",
		.data		= &avg_deviation,
		.maxlen		= sizeof(avg_deviation),
		.mode		= 0444,
		.proc_handler	= proc_doulongvec_minmax,
	},
#endif
2157
	{ }
L
Linus Torvalds 已提交
2158 2159 2160
};
#endif 	/* CONFIG_SYSCTL */

2161 2162
struct batched_entropy {
	union {
2163 2164
		u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)];
		u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)];
2165 2166
	};
	unsigned int position;
2167
	spinlock_t batch_lock;
2168
};
2169

L
Linus Torvalds 已提交
2170
/*
2171
 * Get a random word for internal kernel use only. The quality of the random
2172 2173
 * number is good as /dev/urandom, but there is no backtrack protection, with
 * the goal of being quite fast and not depleting entropy. In order to ensure
2174
 * that the randomness provided by this function is okay, the function
2175 2176
 * wait_for_random_bytes() should be called and return 0 at least once at any
 * point prior.
L
Linus Torvalds 已提交
2177
 */
2178 2179 2180 2181
static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
	.batch_lock	= __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock),
};

2182
u64 get_random_u64(void)
L
Linus Torvalds 已提交
2183
{
2184
	u64 ret;
2185
	unsigned long flags;
2186
	struct batched_entropy *batch;
2187
	static void *previous;
2188

2189
	warn_unseeded_randomness(&previous);
2190

2191 2192
	batch = raw_cpu_ptr(&batched_entropy_u64);
	spin_lock_irqsave(&batch->batch_lock, flags);
2193
	if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2194
		extract_crng((u8 *)batch->entropy_u64);
2195 2196
		batch->position = 0;
	}
2197
	ret = batch->entropy_u64[batch->position++];
2198
	spin_unlock_irqrestore(&batch->batch_lock, flags);
2199
	return ret;
L
Linus Torvalds 已提交
2200
}
2201
EXPORT_SYMBOL(get_random_u64);
L
Linus Torvalds 已提交
2202

2203 2204 2205
static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
	.batch_lock	= __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock),
};
2206
u32 get_random_u32(void)
2207
{
2208
	u32 ret;
2209
	unsigned long flags;
2210
	struct batched_entropy *batch;
2211
	static void *previous;
2212

2213
	warn_unseeded_randomness(&previous);
2214

2215 2216
	batch = raw_cpu_ptr(&batched_entropy_u32);
	spin_lock_irqsave(&batch->batch_lock, flags);
2217
	if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2218
		extract_crng((u8 *)batch->entropy_u32);
2219 2220
		batch->position = 0;
	}
2221
	ret = batch->entropy_u32[batch->position++];
2222
	spin_unlock_irqrestore(&batch->batch_lock, flags);
2223 2224
	return ret;
}
2225
EXPORT_SYMBOL(get_random_u32);
2226

2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
/* It's important to invalidate all potential batched entropy that might
 * be stored before the crng is initialized, which we can do lazily by
 * simply resetting the counter to zero so that it's re-extracted on the
 * next usage. */
static void invalidate_batched_entropy(void)
{
	int cpu;
	unsigned long flags;

	for_each_possible_cpu (cpu) {
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
		struct batched_entropy *batched_entropy;

		batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu);
		spin_lock_irqsave(&batched_entropy->batch_lock, flags);
		batched_entropy->position = 0;
		spin_unlock(&batched_entropy->batch_lock);

		batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu);
		spin_lock(&batched_entropy->batch_lock);
		batched_entropy->position = 0;
		spin_unlock_irqrestore(&batched_entropy->batch_lock, flags);
2248 2249 2250
	}
}

2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
/**
 * randomize_page - Generate a random, page aligned address
 * @start:	The smallest acceptable address the caller will take.
 * @range:	The size of the area, starting at @start, within which the
 *		random address must fall.
 *
 * If @start + @range would overflow, @range is capped.
 *
 * NOTE: Historical use of randomize_range, which this replaces, presumed that
 * @start was already page aligned.  We now align it regardless.
 *
 * Return: A page aligned address within [start, start + range).  On error,
 * @start is returned.
 */
unsigned long
randomize_page(unsigned long start, unsigned long range)
{
	if (!PAGE_ALIGNED(start)) {
		range -= PAGE_ALIGN(start) - start;
		start = PAGE_ALIGN(start);
	}

	if (start > ULONG_MAX - range)
		range = ULONG_MAX - start;

	range >>= PAGE_SHIFT;

	if (range == 0)
		return start;

	return start + (get_random_long() % range << PAGE_SHIFT);
}

2284 2285 2286 2287 2288 2289 2290 2291 2292
/* Interface for in-kernel drivers of true hardware RNGs.
 * Those devices may produce endless random bits and will be throttled
 * when our pool is full.
 */
void add_hwgenerator_randomness(const char *buffer, size_t count,
				size_t entropy)
{
	struct entropy_store *poolp = &input_pool;

T
Theodore Ts'o 已提交
2293
	if (unlikely(crng_init == 0)) {
2294 2295
		crng_fast_load(buffer, count);
		return;
2296
	}
2297 2298 2299 2300 2301

	/* Suspend writing if we're above the trickle threshold.
	 * We'll be woken up again once below random_write_wakeup_thresh,
	 * or when the calling thread is about to terminate.
	 */
2302
	wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2303
			ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2304 2305 2306 2307
	mix_pool_bytes(poolp, buffer, count);
	credit_entropy_bits(poolp, entropy);
}
EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
H
Hsin-Yi Wang 已提交
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320

/* Handle random seed passed by bootloader.
 * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
 * it would be regarded as device data.
 * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
 */
void add_bootloader_randomness(const void *buf, unsigned int size)
{
	if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER))
		add_hwgenerator_randomness(buf, size, size * 8);
	else
		add_device_randomness(buf, size);
}
2321
EXPORT_SYMBOL_GPL(add_bootloader_randomness);