random.c 50.2 KB
Newer Older
1
// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
L
Linus Torvalds 已提交
2
/*
3
 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4
 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5 6 7 8 9 10 11 12 13 14 15 16 17
 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
 *
 * This driver produces cryptographically secure pseudorandom data. It is divided
 * into roughly six sections, each with a section header:
 *
 *   - Initialization and readiness waiting.
 *   - Fast key erasure RNG, the "crng".
 *   - Entropy accumulation and extraction routines.
 *   - Entropy collection routines.
 *   - Userspace reader/writer interfaces.
 *   - Sysctl interface.
 *
 * The high level overview is that there is one input pool, into which
18 19 20 21 22 23
 * various pieces of data are hashed. Prior to initialization, some of that
 * data is then "credited" as having a certain number of bits of entropy.
 * When enough bits of entropy are available, the hash is finalized and
 * handed as a key to a stream cipher that expands it indefinitely for
 * various consumers. This key is periodically refreshed as the various
 * entropy collectors, described below, add data to the input pool.
L
Linus Torvalds 已提交
24 25
 */

Y
Yangtao Li 已提交
26 27
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37 38
#include <linux/utsname.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/fs.h>
C
Christoph Hellwig 已提交
39
#include <linux/blkdev.h>
L
Linus Torvalds 已提交
40
#include <linux/interrupt.h>
41
#include <linux/mm.h>
42
#include <linux/nodemask.h>
L
Linus Torvalds 已提交
43
#include <linux/spinlock.h>
44
#include <linux/kthread.h>
L
Linus Torvalds 已提交
45
#include <linux/percpu.h>
46
#include <linux/ptrace.h>
47
#include <linux/workqueue.h>
48
#include <linux/irq.h>
49
#include <linux/ratelimit.h>
50 51
#include <linux/syscalls.h>
#include <linux/completion.h>
52
#include <linux/uuid.h>
53
#include <linux/uaccess.h>
54
#include <linux/suspend.h>
55
#include <linux/siphash.h>
56
#include <crypto/chacha.h>
57
#include <crypto/blake2s.h>
L
Linus Torvalds 已提交
58 59
#include <asm/processor.h>
#include <asm/irq.h>
60
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
61 62
#include <asm/io.h>

63 64 65 66 67 68 69 70 71
/*********************************************************************
 *
 * Initialization and readiness waiting.
 *
 * Much of the RNG infrastructure is devoted to various dependencies
 * being able to wait until the RNG has collected enough entropy and
 * is ready for safe consumption.
 *
 *********************************************************************/
72

73
/*
74
 * crng_init is protected by base_crng->lock, and only increases
75
 * its value (from empty->early->ready).
76
 */
77 78 79 80
static enum {
	CRNG_EMPTY = 0, /* Little to no entropy collected */
	CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */
	CRNG_READY = 2  /* Fully initialized with POOL_READY_BITS collected */
81 82 83
} crng_init __read_mostly = CRNG_EMPTY;
static DEFINE_STATIC_KEY_FALSE(crng_is_ready);
#define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY)
84
/* Various types of waiters for crng_init->CRNG_READY transition. */
85 86
static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
static struct fasync_struct *fasync;
87
static ATOMIC_NOTIFIER_HEAD(random_ready_notifier);
88

89
/* Control how we warn userspace. */
90
static struct ratelimit_state urandom_warning =
91
	RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE);
92 93
static int ratelimit_disable __read_mostly =
	IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM);
94 95 96
module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");

97 98
/*
 * Returns whether or not the input pool has been seeded and thus guaranteed
99
 * to supply cryptographically secure random numbers. This applies to: the
100
 * /dev/urandom device, the get_random_bytes function, and the get_random_{u8,
101
 * u16,u32,u64,long} family of functions.
102 103 104 105 106 107 108 109 110 111
 *
 * Returns: true if the input pool has been seeded.
 *          false if the input pool has not been seeded.
 */
bool rng_is_initialized(void)
{
	return crng_ready();
}
EXPORT_SYMBOL(rng_is_initialized);

112
static void __cold crng_set_ready(struct work_struct *work)
113 114 115 116
{
	static_branch_enable(&crng_is_ready);
}

117 118 119 120 121
/* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
static void try_to_generate_entropy(void);

/*
 * Wait for the input pool to be seeded and thus guaranteed to supply
122
 * cryptographically secure random numbers. This applies to: the /dev/urandom
123
 * device, the get_random_bytes function, and the get_random_{u8,u16,u32,u64,
124
 * long} family of functions. Using any of these functions without first
125
 * calling this function forfeits the guarantee of security.
126 127 128 129 130 131
 *
 * Returns: 0 if the input pool has been seeded.
 *          -ERESTARTSYS if the function was interrupted by a signal.
 */
int wait_for_random_bytes(void)
{
132
	while (!crng_ready()) {
133
		int ret;
134 135

		try_to_generate_entropy();
136 137 138
		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
		if (ret)
			return ret > 0 ? 0 : ret;
139
	}
140 141 142 143
	return 0;
}
EXPORT_SYMBOL(wait_for_random_bytes);

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
/*
 * Add a callback function that will be invoked when the crng is initialised,
 * or immediately if it already has been. Only use this is you are absolutely
 * sure it is required. Most users should instead be able to test
 * `rng_is_initialized()` on demand, or make use of `get_random_bytes_wait()`.
 */
int __cold execute_with_initialized_rng(struct notifier_block *nb)
{
	unsigned long flags;
	int ret = 0;

	spin_lock_irqsave(&random_ready_notifier.lock, flags);
	if (crng_ready())
		nb->notifier_call(nb, 0, NULL);
	else
		ret = raw_notifier_chain_register((struct raw_notifier_head *)&random_ready_notifier.head, nb);
	spin_unlock_irqrestore(&random_ready_notifier.lock, flags);
	return ret;
}

164
#define warn_unseeded_randomness() \
165 166 167
	if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \
		printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \
				__func__, (void *)_RET_IP_, crng_init)
168 169


170
/*********************************************************************
L
Linus Torvalds 已提交
171
 *
172
 * Fast key erasure RNG, the "crng".
L
Linus Torvalds 已提交
173
 *
174 175 176
 * These functions expand entropy from the entropy extractor into
 * long streams for external consumption using the "fast key erasure"
 * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
177
 *
178 179
 * There are a few exported interfaces for use by other drivers:
 *
180
 *	void get_random_bytes(void *buf, size_t len)
181 182
 *	u8 get_random_u8()
 *	u16 get_random_u16()
183
 *	u32 get_random_u32()
184
 *	u32 get_random_u32_below(u32 ceil)
185 186
 *	u32 get_random_u32_above(u32 floor)
 *	u32 get_random_u32_inclusive(u32 floor, u32 ceil)
187 188 189 190
 *	u64 get_random_u64()
 *	unsigned long get_random_long()
 *
 * These interfaces will return the requested number of random bytes
191
 * into the given buffer or as a return value. This is equivalent to
192 193 194 195
 * a read from /dev/urandom. The u8, u16, u32, u64, long family of
 * functions may be higher performance for one-off random integers,
 * because they do a bit of buffering and do not invoke reseeding
 * until the buffer is emptied.
196 197 198
 *
 *********************************************************************/

199 200 201 202
enum {
	CRNG_RESEED_START_INTERVAL = HZ,
	CRNG_RESEED_INTERVAL = 60 * HZ
};
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

static struct {
	u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
	unsigned long generation;
	spinlock_t lock;
} base_crng = {
	.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
};

struct crng {
	u8 key[CHACHA_KEY_SIZE];
	unsigned long generation;
	local_lock_t lock;
};

static DEFINE_PER_CPU(struct crng, crngs) = {
	.generation = ULONG_MAX,
	.lock = INIT_LOCAL_LOCK(crngs.lock),
};
222

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
/*
 * Return the interval until the next reseeding, which is normally
 * CRNG_RESEED_INTERVAL, but during early boot, it is at an interval
 * proportional to the uptime.
 */
static unsigned int crng_reseed_interval(void)
{
	static bool early_boot = true;

	if (unlikely(READ_ONCE(early_boot))) {
		time64_t uptime = ktime_get_seconds();
		if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
			WRITE_ONCE(early_boot, false);
		else
			return max_t(unsigned int, CRNG_RESEED_START_INTERVAL,
				     (unsigned int)uptime / 2 * HZ);
	}
	return CRNG_RESEED_INTERVAL;
}

243
/* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */
244
static void extract_entropy(void *buf, size_t len);
245

246
/* This extracts a new crng key from the input pool. */
247
static void crng_reseed(struct work_struct *work)
248
{
249
	static DECLARE_DELAYED_WORK(next_reseed, crng_reseed);
250
	unsigned long flags;
251 252
	unsigned long next_gen;
	u8 key[CHACHA_KEY_SIZE];
253

254 255 256 257
	/* Immediately schedule the next reseeding, so that it fires sooner rather than later. */
	if (likely(system_unbound_wq))
		queue_delayed_work(system_unbound_wq, &next_reseed, crng_reseed_interval());

258
	extract_entropy(key, sizeof(key));
259

260 261 262 263 264 265 266 267 268 269 270 271
	/*
	 * We copy the new key into the base_crng, overwriting the old one,
	 * and update the generation counter. We avoid hitting ULONG_MAX,
	 * because the per-cpu crngs are initialized to ULONG_MAX, so this
	 * forces new CPUs that come online to always initialize.
	 */
	spin_lock_irqsave(&base_crng.lock, flags);
	memcpy(base_crng.key, key, sizeof(base_crng.key));
	next_gen = base_crng.generation + 1;
	if (next_gen == ULONG_MAX)
		++next_gen;
	WRITE_ONCE(base_crng.generation, next_gen);
272
	if (!static_branch_likely(&crng_is_ready))
273
		crng_init = CRNG_READY;
274 275
	spin_unlock_irqrestore(&base_crng.lock, flags);
	memzero_explicit(key, sizeof(key));
276 277
}

278
/*
279
 * This generates a ChaCha block using the provided key, and then
280
 * immediately overwrites that key with half the block. It returns
281 282 283
 * the resultant ChaCha state to the user, along with the second
 * half of the block containing 32 bytes of random data that may
 * be used; random_data_len may not be greater than 32.
284 285 286 287 288 289 290
 *
 * The returned ChaCha state contains within it a copy of the old
 * key value, at index 4, so the state should always be zeroed out
 * immediately after using in order to maintain forward secrecy.
 * If the state cannot be erased in a timely manner, then it is
 * safer to set the random_data parameter to &chacha_state[4] so
 * that this function overwrites it before returning.
291 292 293 294
 */
static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
				  u32 chacha_state[CHACHA_STATE_WORDS],
				  u8 *random_data, size_t random_data_len)
295
{
296
	u8 first_block[CHACHA_BLOCK_SIZE];
297

298 299 300 301 302 303 304 305
	BUG_ON(random_data_len > 32);

	chacha_init_consts(chacha_state);
	memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
	memset(&chacha_state[12], 0, sizeof(u32) * 4);
	chacha20_block(chacha_state, first_block);

	memcpy(key, first_block, CHACHA_KEY_SIZE);
306
	memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
307
	memzero_explicit(first_block, sizeof(first_block));
308 309
}

310
/*
311 312 313
 * This function returns a ChaCha state that you may use for generating
 * random data. It also returns up to 32 bytes on its own of random data
 * that may be used; random_data_len may not be greater than 32.
314
 */
315 316
static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
			    u8 *random_data, size_t random_data_len)
317
{
318
	unsigned long flags;
319
	struct crng *crng;
320

321 322 323 324 325
	BUG_ON(random_data_len > 32);

	/*
	 * For the fast path, we check whether we're ready, unlocked first, and
	 * then re-check once locked later. In the case where we're really not
326
	 * ready, we do fast key erasure with the base_crng directly, extracting
327
	 * when crng_init is CRNG_EMPTY.
328
	 */
329
	if (!crng_ready()) {
330 331 332 333
		bool ready;

		spin_lock_irqsave(&base_crng.lock, flags);
		ready = crng_ready();
334
		if (!ready) {
335
			if (crng_init == CRNG_EMPTY)
336
				extract_entropy(base_crng.key, sizeof(base_crng.key));
337 338
			crng_fast_key_erasure(base_crng.key, chacha_state,
					      random_data, random_data_len);
339
		}
340 341 342
		spin_unlock_irqrestore(&base_crng.lock, flags);
		if (!ready)
			return;
343
	}
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370

	local_lock_irqsave(&crngs.lock, flags);
	crng = raw_cpu_ptr(&crngs);

	/*
	 * If our per-cpu crng is older than the base_crng, then it means
	 * somebody reseeded the base_crng. In that case, we do fast key
	 * erasure on the base_crng, and use its output as the new key
	 * for our per-cpu crng. This brings us up to date with base_crng.
	 */
	if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
		spin_lock(&base_crng.lock);
		crng_fast_key_erasure(base_crng.key, chacha_state,
				      crng->key, sizeof(crng->key));
		crng->generation = base_crng.generation;
		spin_unlock(&base_crng.lock);
	}

	/*
	 * Finally, when we've made it this far, our per-cpu crng has an up
	 * to date key, and we can do fast key erasure with it to produce
	 * some random data and a ChaCha state for the caller. All other
	 * branches of this function are "unlikely", so most of the time we
	 * should wind up here immediately.
	 */
	crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
	local_unlock_irqrestore(&crngs.lock, flags);
371 372
}

373
static void _get_random_bytes(void *buf, size_t len)
374
{
375
	u32 chacha_state[CHACHA_STATE_WORDS];
376
	u8 tmp[CHACHA_BLOCK_SIZE];
377
	size_t first_block_len;
378

379
	if (!len)
380 381
		return;

382 383 384 385
	first_block_len = min_t(size_t, 32, len);
	crng_make_state(chacha_state, buf, first_block_len);
	len -= first_block_len;
	buf += first_block_len;
386

387 388
	while (len) {
		if (len < CHACHA_BLOCK_SIZE) {
389
			chacha20_block(chacha_state, tmp);
390
			memcpy(buf, tmp, len);
391 392 393 394 395 396 397
			memzero_explicit(tmp, sizeof(tmp));
			break;
		}

		chacha20_block(chacha_state, buf);
		if (unlikely(chacha_state[12] == 0))
			++chacha_state[13];
398
		len -= CHACHA_BLOCK_SIZE;
399 400 401 402 403 404 405
		buf += CHACHA_BLOCK_SIZE;
	}

	memzero_explicit(chacha_state, sizeof(chacha_state));
}

/*
406 407 408 409 410
 * This returns random bytes in arbitrary quantities. The quality of the
 * random bytes is good as /dev/urandom. In order to ensure that the
 * randomness provided by this function is okay, the function
 * wait_for_random_bytes() should be called and return 0 at least once
 * at any point prior.
411
 */
412
void get_random_bytes(void *buf, size_t len)
413
{
414
	warn_unseeded_randomness();
415
	_get_random_bytes(buf, len);
416 417 418
}
EXPORT_SYMBOL(get_random_bytes);

419
static ssize_t get_random_bytes_user(struct iov_iter *iter)
420 421
{
	u32 chacha_state[CHACHA_STATE_WORDS];
422 423
	u8 block[CHACHA_BLOCK_SIZE];
	size_t ret = 0, copied;
424

425
	if (unlikely(!iov_iter_count(iter)))
426 427
		return 0;

428 429
	/*
	 * Immediately overwrite the ChaCha key at index 4 with random
430
	 * bytes, in case userspace causes copy_to_iter() below to sleep
431 432 433 434 435 436 437 438
	 * forever, so that we still retain forward secrecy in that case.
	 */
	crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE);
	/*
	 * However, if we're doing a read of len <= 32, we don't need to
	 * use chacha_state after, so we can simply return those bytes to
	 * the user directly.
	 */
439 440
	if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) {
		ret = copy_to_iter(&chacha_state[4], CHACHA_KEY_SIZE, iter);
441 442
		goto out_zero_chacha;
	}
443

444
	for (;;) {
445
		chacha20_block(chacha_state, block);
446 447 448
		if (unlikely(chacha_state[12] == 0))
			++chacha_state[13];

449 450 451
		copied = copy_to_iter(block, sizeof(block), iter);
		ret += copied;
		if (!iov_iter_count(iter) || copied != sizeof(block))
452
			break;
453

454
		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
455
		if (ret % PAGE_SIZE == 0) {
456 457 458 459
			if (signal_pending(current))
				break;
			cond_resched();
		}
460
	}
461

462
	memzero_explicit(block, sizeof(block));
463 464
out_zero_chacha:
	memzero_explicit(chacha_state, sizeof(chacha_state));
465
	return ret ? ret : -EFAULT;
466 467 468 469 470 471 472 473 474
}

/*
 * Batched entropy returns random integers. The quality of the random
 * number is good as /dev/urandom. In order to ensure that the randomness
 * provided by this function is okay, the function wait_for_random_bytes()
 * should be called and return 0 at least once at any point prior.
 */

475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
#define DEFINE_BATCHED_ENTROPY(type)						\
struct batch_ ##type {								\
	/*									\
	 * We make this 1.5x a ChaCha block, so that we get the			\
	 * remaining 32 bytes from fast key erasure, plus one full		\
	 * block from the detached ChaCha state. We can increase		\
	 * the size of this later if needed so long as we keep the		\
	 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE.		\
	 */									\
	type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))];		\
	local_lock_t lock;							\
	unsigned long generation;						\
	unsigned int position;							\
};										\
										\
static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = {	\
	.lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock),			\
	.position = UINT_MAX							\
};										\
										\
type get_random_ ##type(void)							\
{										\
	type ret;								\
	unsigned long flags;							\
	struct batch_ ##type *batch;						\
	unsigned long next_gen;							\
										\
	warn_unseeded_randomness();						\
										\
	if  (!crng_ready()) {							\
		_get_random_bytes(&ret, sizeof(ret));				\
		return ret;							\
	}									\
										\
	local_lock_irqsave(&batched_entropy_ ##type.lock, flags);		\
	batch = raw_cpu_ptr(&batched_entropy_##type);				\
										\
	next_gen = READ_ONCE(base_crng.generation);				\
	if (batch->position >= ARRAY_SIZE(batch->entropy) ||			\
	    next_gen != batch->generation) {					\
		_get_random_bytes(batch->entropy, sizeof(batch->entropy));	\
		batch->position = 0;						\
		batch->generation = next_gen;					\
	}									\
										\
	ret = batch->entropy[batch->position];					\
	batch->entropy[batch->position] = 0;					\
	++batch->position;							\
	local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags);		\
	return ret;								\
}										\
EXPORT_SYMBOL(get_random_ ##type);

528
DEFINE_BATCHED_ENTROPY(u8)
529 530 531
DEFINE_BATCHED_ENTROPY(u16)
DEFINE_BATCHED_ENTROPY(u32)
DEFINE_BATCHED_ENTROPY(u64)
532

533 534 535 536 537 538 539 540 541 542 543
u32 __get_random_u32_below(u32 ceil)
{
	/*
	 * This is the slow path for variable ceil. It is still fast, most of
	 * the time, by doing traditional reciprocal multiplication and
	 * opportunistically comparing the lower half to ceil itself, before
	 * falling back to computing a larger bound, and then rejecting samples
	 * whose lower half would indicate a range indivisible by ceil. The use
	 * of `-ceil % ceil` is analogous to `2^32 % ceil`, but is computable
	 * in 32-bits.
	 */
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
	u32 rand = get_random_u32();
	u64 mult;

	/*
	 * This function is technically undefined for ceil == 0, and in fact
	 * for the non-underscored constant version in the header, we build bug
	 * on that. But for the non-constant case, it's convenient to have that
	 * evaluate to being a straight call to get_random_u32(), so that
	 * get_random_u32_inclusive() can work over its whole range without
	 * undefined behavior.
	 */
	if (unlikely(!ceil))
		return rand;

	mult = (u64)ceil * rand;
559 560 561 562 563 564 565 566 567
	if (unlikely((u32)mult < ceil)) {
		u32 bound = -ceil % ceil;
		while (unlikely((u32)mult < bound))
			mult = (u64)ceil * get_random_u32();
	}
	return mult >> 32;
}
EXPORT_SYMBOL(__get_random_u32_below);

568 569 570 571 572
#ifdef CONFIG_SMP
/*
 * This function is called when the CPU is coming up, with entry
 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
 */
573
int __cold random_prepare_cpu(unsigned int cpu)
574 575 576 577 578 579 580
{
	/*
	 * When the cpu comes back online, immediately invalidate both
	 * the per-cpu crng and all batches, so that we serve fresh
	 * randomness.
	 */
	per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
581 582
	per_cpu_ptr(&batched_entropy_u8, cpu)->position = UINT_MAX;
	per_cpu_ptr(&batched_entropy_u16, cpu)->position = UINT_MAX;
583 584 585 586 587 588
	per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
	per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
	return 0;
}
#endif

589 590 591 592 593 594 595

/**********************************************************************
 *
 * Entropy accumulation and extraction routines.
 *
 * Callers may add entropy via:
 *
596
 *     static void mix_pool_bytes(const void *buf, size_t len)
597 598 599
 *
 * After which, if added entropy should be credited:
 *
600
 *     static void credit_init_bits(size_t bits)
601
 *
602
 * Finally, extract entropy via:
603
 *
604
 *     static void extract_entropy(void *buf, size_t len)
605 606 607
 *
 **********************************************************************/

608 609
enum {
	POOL_BITS = BLAKE2S_HASH_SIZE * 8,
610 611
	POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */
	POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */
612 613 614 615 616
};

static struct {
	struct blake2s_state hash;
	spinlock_t lock;
617
	unsigned int init_bits;
618 619 620 621 622 623 624 625
} input_pool = {
	.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
		    BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
		    BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
	.hash.outlen = BLAKE2S_HASH_SIZE,
	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
};

626
static void _mix_pool_bytes(const void *buf, size_t len)
627
{
628
	blake2s_update(&input_pool.hash, buf, len);
629
}
630 631

/*
632 633 634
 * This function adds bytes into the input pool. It does not
 * update the initialization bit counter; the caller should call
 * credit_init_bits if this is appropriate.
635
 */
636
static void mix_pool_bytes(const void *buf, size_t len)
637
{
638 639 640
	unsigned long flags;

	spin_lock_irqsave(&input_pool.lock, flags);
641
	_mix_pool_bytes(buf, len);
642
	spin_unlock_irqrestore(&input_pool.lock, flags);
643 644
}

645 646 647 648
/*
 * This is an HKDF-like construction for using the hashed collected entropy
 * as a PRF key, that's then expanded block-by-block.
 */
649
static void extract_entropy(void *buf, size_t len)
650 651
{
	unsigned long flags;
652 653 654 655 656
	u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
	struct {
		unsigned long rdseed[32 / sizeof(long)];
		size_t counter;
	} block;
657
	size_t i, longs;
658

659 660 661 662 663 664 665 666 667 668 669 670
	for (i = 0; i < ARRAY_SIZE(block.rdseed);) {
		longs = arch_get_random_seed_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
		if (longs) {
			i += longs;
			continue;
		}
		longs = arch_get_random_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
		if (longs) {
			i += longs;
			continue;
		}
		block.rdseed[i++] = random_get_entropy();
671
	}
672 673

	spin_lock_irqsave(&input_pool.lock, flags);
674 675 676 677 678 679 680 681 682

	/* seed = HASHPRF(last_key, entropy_input) */
	blake2s_final(&input_pool.hash, seed);

	/* next_key = HASHPRF(seed, RDSEED || 0) */
	block.counter = 0;
	blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
	blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));

683
	spin_unlock_irqrestore(&input_pool.lock, flags);
684 685
	memzero_explicit(next_key, sizeof(next_key));

686 687
	while (len) {
		i = min_t(size_t, len, BLAKE2S_HASH_SIZE);
688 689 690
		/* output = HASHPRF(seed, RDSEED || ++counter) */
		++block.counter;
		blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
691
		len -= i;
692 693 694 695 696 697 698
		buf += i;
	}

	memzero_explicit(seed, sizeof(seed));
	memzero_explicit(&block, sizeof(block));
}

699 700 701
#define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits)

static void __cold _credit_init_bits(size_t bits)
702
{
703
	static struct execute_work set_ready;
704
	unsigned int new, orig, add;
705 706
	unsigned long flags;

707
	if (!bits)
708 709
		return;

710
	add = min_t(size_t, bits, POOL_BITS);
711

712
	orig = READ_ONCE(input_pool.init_bits);
713
	do {
714
		new = min_t(unsigned int, POOL_BITS, orig + add);
715
	} while (!try_cmpxchg(&input_pool.init_bits, &orig, new));
716

717
	if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) {
718
		crng_reseed(NULL); /* Sets crng_init to CRNG_READY under base_crng.lock. */
719 720
		if (static_key_initialized)
			execute_in_process_context(crng_set_ready, &set_ready);
721
		atomic_notifier_call_chain(&random_ready_notifier, 0, NULL);
722 723 724
		wake_up_interruptible(&crng_init_wait);
		kill_fasync(&fasync, SIGIO, POLL_IN);
		pr_notice("crng init done\n");
725
		if (urandom_warning.missed)
726 727 728
			pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
				  urandom_warning.missed);
	} else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) {
729
		spin_lock_irqsave(&base_crng.lock, flags);
730
		/* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */
731
		if (crng_init == CRNG_EMPTY) {
732
			extract_entropy(base_crng.key, sizeof(base_crng.key));
733
			crng_init = CRNG_EARLY;
734 735 736 737 738
		}
		spin_unlock_irqrestore(&base_crng.lock, flags);
	}
}

739 740 741 742 743 744 745 746

/**********************************************************************
 *
 * Entropy collection routines.
 *
 * The following exported functions are used for pushing entropy into
 * the above entropy accumulation routines:
 *
747
 *	void add_device_randomness(const void *buf, size_t len);
748
 *	void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after);
749 750
 *	void add_bootloader_randomness(const void *buf, size_t len);
 *	void add_vmfork_randomness(const void *unique_vm_id, size_t len);
751
 *	void add_interrupt_randomness(int irq);
752
 *	void add_input_randomness(unsigned int type, unsigned int code, unsigned int value);
753
 *	void add_disk_randomness(struct gendisk *disk);
754 755 756 757 758 759 760 761 762 763 764 765 766
 *
 * add_device_randomness() adds data to the input pool that
 * is likely to differ between two devices (or possibly even per boot).
 * This would be things like MAC addresses or serial numbers, or the
 * read-out of the RTC. This does *not* credit any actual entropy to
 * the pool, but it initializes the pool to different values for devices
 * that might otherwise be identical and have very little entropy
 * available to them (particularly common in the embedded world).
 *
 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
 * entropy as specified by the caller. If the entropy pool is full it will
 * block until more entropy is needed.
 *
767 768
 * add_bootloader_randomness() is called by bootloader drivers, such as EFI
 * and device tree, and credits its input depending on whether or not the
769
 * command line option 'random.trust_bootloader'.
770
 *
771 772 773 774
 * add_vmfork_randomness() adds a unique (but not necessarily secret) ID
 * representing the current instance of a VM to the pool, without crediting,
 * and then force-reseeds the crng so that it takes effect immediately.
 *
775 776 777 778 779
 * add_interrupt_randomness() uses the interrupt timing as random
 * inputs to the entropy pool. Using the cycle counters and the irq source
 * as inputs, it feeds the input pool roughly once a second or after 64
 * interrupts, crediting 1 bit of entropy for whichever comes first.
 *
780 781 782 783 784 785 786 787 788 789 790 791 792
 * add_input_randomness() uses the input layer interrupt timing, as well
 * as the event type information from the hardware.
 *
 * add_disk_randomness() uses what amounts to the seek time of block
 * layer request events, on a per-disk_devt basis, as input to the
 * entropy pool. Note that high-speed solid state drives with very low
 * seek times do not make for good sources of entropy, as their seek
 * times are usually fairly consistent.
 *
 * The last two routines try to estimate how many bits of entropy
 * to credit. They do this by keeping track of the first and second
 * order deltas of the event timings.
 *
793 794
 **********************************************************************/

795 796
static bool trust_cpu __initdata = true;
static bool trust_bootloader __initdata = true;
797 798 799 800
static int __init parse_trust_cpu(char *arg)
{
	return kstrtobool(arg, &trust_cpu);
}
801 802 803 804
static int __init parse_trust_bootloader(char *arg)
{
	return kstrtobool(arg, &trust_bootloader);
}
805
early_param("random.trust_cpu", parse_trust_cpu);
806
early_param("random.trust_bootloader", parse_trust_bootloader);
807

808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data)
{
	unsigned long flags, entropy = random_get_entropy();

	/*
	 * Encode a representation of how long the system has been suspended,
	 * in a way that is distinct from prior system suspends.
	 */
	ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() };

	spin_lock_irqsave(&input_pool.lock, flags);
	_mix_pool_bytes(&action, sizeof(action));
	_mix_pool_bytes(stamps, sizeof(stamps));
	_mix_pool_bytes(&entropy, sizeof(entropy));
	spin_unlock_irqrestore(&input_pool.lock, flags);

	if (crng_ready() && (action == PM_RESTORE_PREPARE ||
825 826
	    (action == PM_POST_SUSPEND && !IS_ENABLED(CONFIG_PM_AUTOSLEEP) &&
	     !IS_ENABLED(CONFIG_PM_USERSPACE_AUTOSLEEP)))) {
827
		crng_reseed(NULL);
828 829 830 831 832 833 834
		pr_notice("crng reseeded on system resumption\n");
	}
	return 0;
}

static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification };

835
/*
836 837
 * This is called extremely early, before time keeping functionality is
 * available, but arch randomness is. Interrupts are not yet enabled.
838
 */
839
void __init random_init_early(const char *command_line)
840
{
841
	unsigned long entropy[BLAKE2S_BLOCK_SIZE / sizeof(long)];
842
	size_t i, longs, arch_bits;
843

844 845 846 847 848
#if defined(LATENT_ENTROPY_PLUGIN)
	static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;
	_mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));
#endif

849
	for (i = 0, arch_bits = sizeof(entropy) * 8; i < ARRAY_SIZE(entropy);) {
850
		longs = arch_get_random_seed_longs(entropy, ARRAY_SIZE(entropy) - i);
851 852 853 854 855
		if (longs) {
			_mix_pool_bytes(entropy, sizeof(*entropy) * longs);
			i += longs;
			continue;
		}
856
		longs = arch_get_random_longs(entropy, ARRAY_SIZE(entropy) - i);
857 858 859 860
		if (longs) {
			_mix_pool_bytes(entropy, sizeof(*entropy) * longs);
			i += longs;
			continue;
861
		}
862 863
		arch_bits -= sizeof(*entropy) * 8;
		++i;
864
	}
865

866
	_mix_pool_bytes(init_utsname(), sizeof(*(init_utsname())));
867
	_mix_pool_bytes(command_line, strlen(command_line));
868 869 870

	/* Reseed if already seeded by earlier phases. */
	if (crng_ready())
871
		crng_reseed(NULL);
872 873 874 875 876 877 878 879 880 881 882 883 884 885 886
	else if (trust_cpu)
		_credit_init_bits(arch_bits);
}

/*
 * This is called a little bit after the prior function, and now there is
 * access to timestamps counters. Interrupts are not yet enabled.
 */
void __init random_init(void)
{
	unsigned long entropy = random_get_entropy();
	ktime_t now = ktime_get_real();

	_mix_pool_bytes(&now, sizeof(now));
	_mix_pool_bytes(&entropy, sizeof(entropy));
887
	add_latent_entropy();
888

889
	/*
890 891
	 * If we were initialized by the cpu or bootloader before jump labels
	 * are initialized, then we should enable the static branch here, where
892 893 894 895 896
	 * it's guaranteed that jump labels have been initialized.
	 */
	if (!static_branch_likely(&crng_is_ready) && crng_init >= CRNG_READY)
		crng_set_ready(NULL);

897
	/* Reseed if already seeded by earlier phases. */
898
	if (crng_ready())
899
		crng_reseed(NULL);
900

901 902
	WARN_ON(register_pm_notifier(&pm_notifier));

903 904
	WARN(!entropy, "Missing cycle counter and fallback timer; RNG "
		       "entropy collection will consequently suffer.");
905
}
906

907
/*
908 909
 * Add device- or boot-specific data to the input pool to help
 * initialize it.
910
 *
911 912 913
 * None of this adds any entropy; it is meant to avoid the problem of
 * the entropy pool having similar initial state across largely
 * identical devices.
914
 */
915
void add_device_randomness(const void *buf, size_t len)
916
{
917 918
	unsigned long entropy = random_get_entropy();
	unsigned long flags;
919

920
	spin_lock_irqsave(&input_pool.lock, flags);
921
	_mix_pool_bytes(&entropy, sizeof(entropy));
922
	_mix_pool_bytes(buf, len);
923
	spin_unlock_irqrestore(&input_pool.lock, flags);
924 925 926
}
EXPORT_SYMBOL(add_device_randomness);

927
/*
928 929 930
 * Interface for in-kernel drivers of true hardware RNGs. Those devices
 * may produce endless random bits, so this function will sleep for
 * some amount of time after, if the sleep_after parameter is true.
931
 */
932
void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy, bool sleep_after)
933
{
934
	mix_pool_bytes(buf, len);
935 936
	credit_init_bits(entropy);

937
	/*
938
	 * Throttle writing to once every reseed interval, unless we're not yet
939
	 * initialized or no entropy is credited.
940
	 */
941
	if (sleep_after && !kthread_should_stop() && (crng_ready() || !entropy))
942
		schedule_timeout_interruptible(crng_reseed_interval());
943 944 945 946
}
EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);

/*
947 948
 * Handle random seed passed by bootloader, and credit it depending
 * on the command line option 'random.trust_bootloader'.
949
 */
950
void __init add_bootloader_randomness(const void *buf, size_t len)
951
{
952
	mix_pool_bytes(buf, len);
953
	if (trust_bootloader)
954
		credit_init_bits(len * 8);
955 956
}

957
#if IS_ENABLED(CONFIG_VMGENID)
958 959
static BLOCKING_NOTIFIER_HEAD(vmfork_chain);

960 961 962 963 964
/*
 * Handle a new unique VM ID, which is unique, not secret, so we
 * don't credit it, but we do immediately force a reseed after so
 * that it's used by the crng posthaste.
 */
965
void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len)
966
{
967
	add_device_randomness(unique_vm_id, len);
968
	if (crng_ready()) {
969
		crng_reseed(NULL);
970 971
		pr_notice("crng reseeded due to virtual machine fork\n");
	}
972
	blocking_notifier_call_chain(&vmfork_chain, 0, NULL);
973
}
974
#if IS_MODULE(CONFIG_VMGENID)
975
EXPORT_SYMBOL_GPL(add_vmfork_randomness);
976
#endif
977

978
int __cold register_random_vmfork_notifier(struct notifier_block *nb)
979 980 981 982 983
{
	return blocking_notifier_chain_register(&vmfork_chain, nb);
}
EXPORT_SYMBOL_GPL(register_random_vmfork_notifier);

984
int __cold unregister_random_vmfork_notifier(struct notifier_block *nb)
985 986 987 988
{
	return blocking_notifier_chain_unregister(&vmfork_chain, nb);
}
EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);
989
#endif
990

991
struct fast_pool {
992
	unsigned long pool[4];
993
	unsigned long last;
994
	unsigned int count;
995
	struct timer_list mix;
996 997
};

998 999
static void mix_interrupt_randomness(struct timer_list *work);

1000 1001
static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
#ifdef CONFIG_64BIT
1002
#define FASTMIX_PERM SIPHASH_PERMUTATION
1003
	.pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 },
1004
#else
1005
#define FASTMIX_PERM HSIPHASH_PERMUTATION
1006
	.pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 },
1007
#endif
1008
	.mix = __TIMER_INITIALIZER(mix_interrupt_randomness, 0)
1009 1010
};

1011
/*
1012 1013 1014
 * This is [Half]SipHash-1-x, starting from an empty key. Because
 * the key is fixed, it assumes that its inputs are non-malicious,
 * and therefore this has no security on its own. s represents the
1015
 * four-word SipHash state, while v represents a two-word input.
1016
 */
1017
static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2)
1018
{
1019
	s[3] ^= v1;
1020
	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1021 1022
	s[0] ^= v1;
	s[3] ^= v2;
1023
	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1024
	s[0] ^= v2;
1025 1026
}

1027 1028 1029 1030 1031
#ifdef CONFIG_SMP
/*
 * This function is called when the CPU has just come online, with
 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
 */
1032
int __cold random_online_cpu(unsigned int cpu)
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
{
	/*
	 * During CPU shutdown and before CPU onlining, add_interrupt_
	 * randomness() may schedule mix_interrupt_randomness(), and
	 * set the MIX_INFLIGHT flag. However, because the worker can
	 * be scheduled on a different CPU during this period, that
	 * flag will never be cleared. For that reason, we zero out
	 * the flag here, which runs just after workqueues are onlined
	 * for the CPU again. This also has the effect of setting the
	 * irq randomness count to zero so that new accumulated irqs
	 * are fresh.
	 */
	per_cpu_ptr(&irq_randomness, cpu)->count = 0;
	return 0;
}
#endif

1050
static void mix_interrupt_randomness(struct timer_list *work)
1051 1052
{
	struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
1053
	/*
1054 1055 1056 1057 1058
	 * The size of the copied stack pool is explicitly 2 longs so that we
	 * only ever ingest half of the siphash output each time, retaining
	 * the other half as the next "key" that carries over. The entropy is
	 * supposed to be sufficiently dispersed between bits so on average
	 * we don't wind up "losing" some.
1059
	 */
1060
	unsigned long pool[2];
1061
	unsigned int count;
1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073

	/* Check to see if we're running on the wrong CPU due to hotplug. */
	local_irq_disable();
	if (fast_pool != this_cpu_ptr(&irq_randomness)) {
		local_irq_enable();
		return;
	}

	/*
	 * Copy the pool to the stack so that the mixer always has a
	 * consistent view, before we reenable irqs again.
	 */
1074
	memcpy(pool, fast_pool->pool, sizeof(pool));
1075
	count = fast_pool->count;
1076
	fast_pool->count = 0;
1077 1078 1079
	fast_pool->last = jiffies;
	local_irq_enable();

1080
	mix_pool_bytes(pool, sizeof(pool));
1081
	credit_init_bits(clamp_t(unsigned int, (count & U16_MAX) / 64, 1, sizeof(pool) * 8));
1082

1083 1084 1085
	memzero_explicit(pool, sizeof(pool));
}

1086
void add_interrupt_randomness(int irq)
L
Linus Torvalds 已提交
1087
{
1088
	enum { MIX_INFLIGHT = 1U << 31 };
1089
	unsigned long entropy = random_get_entropy();
1090 1091
	struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
	struct pt_regs *regs = get_irq_regs();
1092
	unsigned int new_count;
1093

1094 1095
	fast_mix(fast_pool->pool, entropy,
		 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq));
1096
	new_count = ++fast_pool->count;
1097

1098
	if (new_count & MIX_INFLIGHT)
L
Linus Torvalds 已提交
1099 1100
		return;

1101
	if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ))
1102
		return;
1103

1104
	fast_pool->count |= MIX_INFLIGHT;
1105 1106 1107 1108
	if (!timer_pending(&fast_pool->mix)) {
		fast_pool->mix.expires = jiffies;
		add_timer_on(&fast_pool->mix, raw_smp_processor_id());
	}
L
Linus Torvalds 已提交
1109
}
1110
EXPORT_SYMBOL_GPL(add_interrupt_randomness);
L
Linus Torvalds 已提交
1111

1112 1113 1114 1115 1116 1117 1118 1119
/* There is one of these per entropy source */
struct timer_rand_state {
	unsigned long last_time;
	long last_delta, last_delta2;
};

/*
 * This function adds entropy to the entropy "pool" by using timing
1120 1121 1122 1123
 * delays. It uses the timer_rand_state structure to make an estimate
 * of how many bits of entropy this call has added to the pool. The
 * value "num" is also added to the pool; it should somehow describe
 * the type of event that just happened.
1124 1125 1126 1127 1128
 */
static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
{
	unsigned long entropy = random_get_entropy(), now = jiffies, flags;
	long delta, delta2, delta3;
1129
	unsigned int bits;
1130

1131 1132 1133 1134 1135
	/*
	 * If we're in a hard IRQ, add_interrupt_randomness() will be called
	 * sometime after, so mix into the fast pool.
	 */
	if (in_hardirq()) {
1136
		fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num);
1137 1138 1139 1140 1141 1142
	} else {
		spin_lock_irqsave(&input_pool.lock, flags);
		_mix_pool_bytes(&entropy, sizeof(entropy));
		_mix_pool_bytes(&num, sizeof(num));
		spin_unlock_irqrestore(&input_pool.lock, flags);
	}
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172

	if (crng_ready())
		return;

	/*
	 * Calculate number of bits of randomness we probably added.
	 * We take into account the first, second and third-order deltas
	 * in order to make our estimate.
	 */
	delta = now - READ_ONCE(state->last_time);
	WRITE_ONCE(state->last_time, now);

	delta2 = delta - READ_ONCE(state->last_delta);
	WRITE_ONCE(state->last_delta, delta);

	delta3 = delta2 - READ_ONCE(state->last_delta2);
	WRITE_ONCE(state->last_delta2, delta2);

	if (delta < 0)
		delta = -delta;
	if (delta2 < 0)
		delta2 = -delta2;
	if (delta3 < 0)
		delta3 = -delta3;
	if (delta > delta2)
		delta = delta2;
	if (delta > delta3)
		delta = delta3;

	/*
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
	 * delta is now minimum absolute delta. Round down by 1 bit
	 * on general principles, and limit entropy estimate to 11 bits.
	 */
	bits = min(fls(delta >> 1), 11);

	/*
	 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness()
	 * will run after this, which uses a different crediting scheme of 1 bit
	 * per every 64 interrupts. In order to let that function do accounting
	 * close to the one in this function, we credit a full 64/64 bit per bit,
	 * and then subtract one to account for the extra one added.
1184
	 */
1185 1186 1187
	if (in_hardirq())
		this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1;
	else
1188
		_credit_init_bits(bits);
1189 1190
}

1191
void add_input_randomness(unsigned int type, unsigned int code, unsigned int value)
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
{
	static unsigned char last_value;
	static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };

	/* Ignore autorepeat and the like. */
	if (value == last_value)
		return;

	last_value = value;
	add_timer_randomness(&input_timer_state,
			     (type << 4) ^ code ^ (code >> 4) ^ value);
}
EXPORT_SYMBOL_GPL(add_input_randomness);

#ifdef CONFIG_BLOCK
void add_disk_randomness(struct gendisk *disk)
{
	if (!disk || !disk->random)
		return;
	/* First major is 1, so we get >= 0x200 here. */
	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
}
EXPORT_SYMBOL_GPL(add_disk_randomness);

1216
void __cold rand_initialize_disk(struct gendisk *disk)
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
{
	struct timer_rand_state *state;

	/*
	 * If kzalloc returns null, we just won't use that entropy
	 * source.
	 */
	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
	if (state) {
		state->last_time = INITIAL_JIFFIES;
		disk->random = state;
	}
}
#endif

1232 1233 1234 1235 1236 1237
struct entropy_timer_state {
	unsigned long entropy;
	struct timer_list timer;
	unsigned int samples, samples_per_bit;
};

1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
/*
 * Each time the timer fires, we expect that we got an unpredictable
 * jump in the cycle counter. Even if the timer is running on another
 * CPU, the timer activity will be touching the stack of the CPU that is
 * generating entropy..
 *
 * Note that we don't re-arm the timer in the timer itself - we are
 * happy to be scheduled away, since that just makes the load more
 * complex, but we do not want the timer to keep ticking unless the
 * entropy loop is running.
 *
 * So the re-arming always happens in the entropy loop itself.
 */
1251
static void __cold entropy_timer(struct timer_list *timer)
1252
{
1253 1254 1255
	struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer);

	if (++state->samples == state->samples_per_bit) {
1256
		credit_init_bits(1);
1257 1258
		state->samples = 0;
	}
1259 1260 1261 1262 1263 1264
}

/*
 * If we have an actual cycle counter, see if we can
 * generate enough entropy with timing noise
 */
1265
static void __cold try_to_generate_entropy(void)
1266
{
1267
	enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = HZ / 15 };
1268 1269 1270
	struct entropy_timer_state stack;
	unsigned int i, num_different = 0;
	unsigned long last = random_get_entropy();
1271

1272 1273 1274 1275 1276 1277 1278 1279
	for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) {
		stack.entropy = random_get_entropy();
		if (stack.entropy != last)
			++num_different;
		last = stack.entropy;
	}
	stack.samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1);
	if (stack.samples_per_bit > MAX_SAMPLES_PER_BIT)
1280 1281
		return;

1282
	stack.samples = 0;
1283
	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1284
	while (!crng_ready() && !signal_pending(current)) {
1285
		if (!timer_pending(&stack.timer))
1286
			mod_timer(&stack.timer, jiffies);
1287
		mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
1288
		schedule();
1289
		stack.entropy = random_get_entropy();
1290 1291 1292 1293
	}

	del_timer_sync(&stack.timer);
	destroy_timer_on_stack(&stack.timer);
1294
	mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
1295 1296
}

1297 1298 1299 1300 1301 1302 1303 1304

/**********************************************************************
 *
 * Userspace reader/writer interfaces.
 *
 * getrandom(2) is the primary modern interface into the RNG and should
 * be used in preference to anything else.
 *
1305 1306 1307 1308 1309 1310 1311 1312
 * Reading from /dev/random has the same functionality as calling
 * getrandom(2) with flags=0. In earlier versions, however, it had
 * vastly different semantics and should therefore be avoided, to
 * prevent backwards compatibility issues.
 *
 * Reading from /dev/urandom has the same functionality as calling
 * getrandom(2) with flags=GRND_INSECURE. Because it does not block
 * waiting for the RNG to be ready, it should not be used.
1313 1314 1315 1316
 *
 * Writing to either /dev/random or /dev/urandom adds entropy to
 * the input pool but does not credit it.
 *
1317 1318
 * Polling on /dev/random indicates when the RNG is initialized, on
 * the read side, and when it wants new entropy, on the write side.
1319 1320 1321 1322 1323 1324 1325
 *
 * Both /dev/random and /dev/urandom have the same set of ioctls for
 * adding entropy, getting the entropy count, zeroing the count, and
 * reseeding the crng.
 *
 **********************************************************************/

1326
SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags)
L
Linus Torvalds 已提交
1327
{
1328 1329 1330 1331
	struct iov_iter iter;
	struct iovec iov;
	int ret;

1332 1333
	if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
		return -EINVAL;
1334

1335 1336 1337 1338 1339 1340
	/*
	 * Requesting insecure and blocking randomness at the same time makes
	 * no sense.
	 */
	if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
		return -EINVAL;
1341

1342
	if (!crng_ready() && !(flags & GRND_INSECURE)) {
1343 1344 1345 1346 1347 1348
		if (flags & GRND_NONBLOCK)
			return -EAGAIN;
		ret = wait_for_random_bytes();
		if (unlikely(ret))
			return ret;
	}
1349 1350 1351 1352 1353

	ret = import_single_range(READ, ubuf, len, &iov, &iter);
	if (unlikely(ret))
		return ret;
	return get_random_bytes_user(&iter);
1354 1355
}

1356
static __poll_t random_poll(struct file *file, poll_table *wait)
L
Linus Torvalds 已提交
1357
{
1358
	poll_wait(file, &crng_init_wait, wait);
1359
	return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM;
L
Linus Torvalds 已提交
1360 1361
}

1362
static ssize_t write_pool_user(struct iov_iter *iter)
L
Linus Torvalds 已提交
1363
{
1364
	u8 block[BLAKE2S_BLOCK_SIZE];
1365 1366
	ssize_t ret = 0;
	size_t copied;
L
Linus Torvalds 已提交
1367

1368 1369 1370 1371 1372 1373 1374 1375 1376
	if (unlikely(!iov_iter_count(iter)))
		return 0;

	for (;;) {
		copied = copy_from_iter(block, sizeof(block), iter);
		ret += copied;
		mix_pool_bytes(block, copied);
		if (!iov_iter_count(iter) || copied != sizeof(block))
			break;
1377 1378 1379 1380 1381 1382 1383

		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
		if (ret % PAGE_SIZE == 0) {
			if (signal_pending(current))
				break;
			cond_resched();
		}
L
Linus Torvalds 已提交
1384
	}
1385

1386
	memzero_explicit(block, sizeof(block));
1387
	return ret ? ret : -EFAULT;
1388 1389
}

1390
static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter)
1391
{
1392
	return write_pool_user(iter);
L
Linus Torvalds 已提交
1393 1394
}

1395
static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1396 1397 1398
{
	static int maxwarn = 10;

1399 1400 1401 1402 1403 1404 1405
	/*
	 * Opportunistically attempt to initialize the RNG on platforms that
	 * have fast cycle counters, but don't (for now) require it to succeed.
	 */
	if (!crng_ready())
		try_to_generate_entropy();

1406 1407 1408 1409 1410
	if (!crng_ready()) {
		if (!ratelimit_disable && maxwarn <= 0)
			++urandom_warning.missed;
		else if (ratelimit_disable || __ratelimit(&urandom_warning)) {
			--maxwarn;
1411 1412
			pr_notice("%s: uninitialized urandom read (%zu bytes read)\n",
				  current->comm, iov_iter_count(iter));
1413
		}
1414 1415
	}

1416
	return get_random_bytes_user(iter);
1417 1418
}

1419
static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1420 1421 1422
{
	int ret;

1423 1424 1425 1426 1427
	if (!crng_ready() &&
	    ((kiocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) ||
	     (kiocb->ki_filp->f_flags & O_NONBLOCK)))
		return -EAGAIN;

1428 1429 1430
	ret = wait_for_random_bytes();
	if (ret != 0)
		return ret;
1431
	return get_random_bytes_user(iter);
1432 1433
}

M
Matt Mackall 已提交
1434
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
L
Linus Torvalds 已提交
1435 1436
{
	int __user *p = (int __user *)arg;
1437
	int ent_count;
L
Linus Torvalds 已提交
1438 1439 1440

	switch (cmd) {
	case RNDGETENTCNT:
1441
		/* Inherently racy, no point locking. */
1442
		if (put_user(input_pool.init_bits, p))
L
Linus Torvalds 已提交
1443 1444 1445 1446 1447 1448 1449
			return -EFAULT;
		return 0;
	case RNDADDTOENTCNT:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p))
			return -EFAULT;
1450 1451
		if (ent_count < 0)
			return -EINVAL;
1452
		credit_init_bits(ent_count);
1453
		return 0;
1454 1455 1456 1457 1458 1459
	case RNDADDENTROPY: {
		struct iov_iter iter;
		struct iovec iov;
		ssize_t ret;
		int len;

L
Linus Torvalds 已提交
1460 1461 1462 1463 1464 1465
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p++))
			return -EFAULT;
		if (ent_count < 0)
			return -EINVAL;
1466 1467 1468 1469 1470
		if (get_user(len, p++))
			return -EFAULT;
		ret = import_single_range(WRITE, p, len, &iov, &iter);
		if (unlikely(ret))
			return ret;
1471
		ret = write_pool_user(&iter);
1472 1473 1474 1475
		if (unlikely(ret < 0))
			return ret;
		/* Since we're crediting, enforce that it was all written into the pool. */
		if (unlikely(ret != len))
L
Linus Torvalds 已提交
1476
			return -EFAULT;
1477
		credit_init_bits(ent_count);
1478
		return 0;
1479
	}
L
Linus Torvalds 已提交
1480 1481
	case RNDZAPENTCNT:
	case RNDCLEARPOOL:
1482
		/* No longer has any effect. */
L
Linus Torvalds 已提交
1483 1484 1485
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		return 0;
1486 1487 1488
	case RNDRESEEDCRNG:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
1489
		if (!crng_ready())
1490
			return -ENODATA;
1491
		crng_reseed(NULL);
1492
		return 0;
L
Linus Torvalds 已提交
1493 1494 1495 1496 1497
	default:
		return -EINVAL;
	}
}

1498 1499 1500 1501 1502
static int random_fasync(int fd, struct file *filp, int on)
{
	return fasync_helper(fd, filp, on, &fasync);
}

1503
const struct file_operations random_fops = {
1504
	.read_iter = random_read_iter,
1505
	.write_iter = random_write_iter,
1506
	.poll = random_poll,
M
Matt Mackall 已提交
1507
	.unlocked_ioctl = random_ioctl,
1508
	.compat_ioctl = compat_ptr_ioctl,
1509
	.fasync = random_fasync,
1510
	.llseek = noop_llseek,
1511 1512
	.splice_read = generic_file_splice_read,
	.splice_write = iter_file_splice_write,
L
Linus Torvalds 已提交
1513 1514
};

1515
const struct file_operations urandom_fops = {
1516
	.read_iter = urandom_read_iter,
1517
	.write_iter = random_write_iter,
1518 1519 1520 1521
	.unlocked_ioctl = random_ioctl,
	.compat_ioctl = compat_ptr_ioctl,
	.fasync = random_fasync,
	.llseek = noop_llseek,
1522 1523
	.splice_read = generic_file_splice_read,
	.splice_write = iter_file_splice_write,
1524 1525
};

1526

L
Linus Torvalds 已提交
1527 1528
/********************************************************************
 *
1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
 * Sysctl interface.
 *
 * These are partly unused legacy knobs with dummy values to not break
 * userspace and partly still useful things. They are usually accessible
 * in /proc/sys/kernel/random/ and are as follows:
 *
 * - boot_id - a UUID representing the current boot.
 *
 * - uuid - a random UUID, different each time the file is read.
 *
 * - poolsize - the number of bits of entropy that the input pool can
 *   hold, tied to the POOL_BITS constant.
 *
 * - entropy_avail - the number of bits of entropy currently in the
 *   input pool. Always <= poolsize.
 *
 * - write_wakeup_threshold - the amount of entropy in the input pool
 *   below which write polls to /dev/random will unblock, requesting
1547
 *   more entropy, tied to the POOL_READY_BITS constant. It is writable
1548 1549 1550
 *   to avoid breaking old userspaces, but writing to it does not
 *   change any behavior of the RNG.
 *
1551
 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
1552 1553
 *   It is writable to avoid breaking old userspaces, but writing
 *   to it does not change any behavior of the RNG.
L
Linus Torvalds 已提交
1554 1555 1556 1557 1558 1559 1560
 *
 ********************************************************************/

#ifdef CONFIG_SYSCTL

#include <linux/sysctl.h>

1561
static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
1562
static int sysctl_random_write_wakeup_bits = POOL_READY_BITS;
1563
static int sysctl_poolsize = POOL_BITS;
1564
static u8 sysctl_bootid[UUID_SIZE];
L
Linus Torvalds 已提交
1565 1566

/*
G
Greg Price 已提交
1567
 * This function is used to return both the bootid UUID, and random
1568
 * UUID. The difference is in whether table->data is NULL; if it is,
L
Linus Torvalds 已提交
1569 1570
 * then a new UUID is generated and returned to the user.
 */
1571
static int proc_do_uuid(struct ctl_table *table, int write, void *buf,
1572
			size_t *lenp, loff_t *ppos)
L
Linus Torvalds 已提交
1573
{
1574 1575 1576 1577 1578 1579 1580 1581 1582
	u8 tmp_uuid[UUID_SIZE], *uuid;
	char uuid_string[UUID_STRING_LEN + 1];
	struct ctl_table fake_table = {
		.data = uuid_string,
		.maxlen = UUID_STRING_LEN
	};

	if (write)
		return -EPERM;
L
Linus Torvalds 已提交
1583 1584 1585 1586 1587

	uuid = table->data;
	if (!uuid) {
		uuid = tmp_uuid;
		generate_random_uuid(uuid);
1588 1589 1590 1591 1592 1593 1594 1595
	} else {
		static DEFINE_SPINLOCK(bootid_spinlock);

		spin_lock(&bootid_spinlock);
		if (!uuid[8])
			generate_random_uuid(uuid);
		spin_unlock(&bootid_spinlock);
	}
L
Linus Torvalds 已提交
1596

1597
	snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
1598
	return proc_dostring(&fake_table, 0, buf, lenp, ppos);
L
Linus Torvalds 已提交
1599 1600
}

1601
/* The same as proc_dointvec, but writes don't change anything. */
1602
static int proc_do_rointvec(struct ctl_table *table, int write, void *buf,
1603 1604
			    size_t *lenp, loff_t *ppos)
{
1605
	return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos);
1606 1607
}

1608
static struct ctl_table random_table[] = {
L
Linus Torvalds 已提交
1609 1610 1611 1612 1613
	{
		.procname	= "poolsize",
		.data		= &sysctl_poolsize,
		.maxlen		= sizeof(int),
		.mode		= 0444,
1614
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1615 1616 1617
	},
	{
		.procname	= "entropy_avail",
1618
		.data		= &input_pool.init_bits,
L
Linus Torvalds 已提交
1619 1620
		.maxlen		= sizeof(int),
		.mode		= 0444,
1621
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1622 1623 1624
	},
	{
		.procname	= "write_wakeup_threshold",
1625
		.data		= &sysctl_random_write_wakeup_bits,
L
Linus Torvalds 已提交
1626 1627
		.maxlen		= sizeof(int),
		.mode		= 0644,
1628
		.proc_handler	= proc_do_rointvec,
L
Linus Torvalds 已提交
1629
	},
1630 1631
	{
		.procname	= "urandom_min_reseed_secs",
1632
		.data		= &sysctl_random_min_urandom_seed,
1633 1634
		.maxlen		= sizeof(int),
		.mode		= 0644,
1635
		.proc_handler	= proc_do_rointvec,
1636
	},
L
Linus Torvalds 已提交
1637 1638 1639 1640
	{
		.procname	= "boot_id",
		.data		= &sysctl_bootid,
		.mode		= 0444,
1641
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1642 1643 1644 1645
	},
	{
		.procname	= "uuid",
		.mode		= 0444,
1646
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1647
	},
1648
	{ }
L
Linus Torvalds 已提交
1649
};
1650 1651

/*
1652 1653
 * random_init() is called before sysctl_init(),
 * so we cannot call register_sysctl_init() in random_init()
1654 1655 1656 1657 1658 1659 1660
 */
static int __init random_sysctls_init(void)
{
	register_sysctl_init("kernel/random", random_table);
	return 0;
}
device_initcall(random_sysctls_init);
1661
#endif