random.c 48.1 KB
Newer Older
1
// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
L
Linus Torvalds 已提交
2
/*
3
 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4
 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5 6 7 8 9 10 11 12 13 14 15 16 17
 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
 *
 * This driver produces cryptographically secure pseudorandom data. It is divided
 * into roughly six sections, each with a section header:
 *
 *   - Initialization and readiness waiting.
 *   - Fast key erasure RNG, the "crng".
 *   - Entropy accumulation and extraction routines.
 *   - Entropy collection routines.
 *   - Userspace reader/writer interfaces.
 *   - Sysctl interface.
 *
 * The high level overview is that there is one input pool, into which
18 19 20 21 22 23
 * various pieces of data are hashed. Prior to initialization, some of that
 * data is then "credited" as having a certain number of bits of entropy.
 * When enough bits of entropy are available, the hash is finalized and
 * handed as a key to a stream cipher that expands it indefinitely for
 * various consumers. This key is periodically refreshed as the various
 * entropy collectors, described below, add data to the input pool.
L
Linus Torvalds 已提交
24 25
 */

Y
Yangtao Li 已提交
26 27
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37 38
#include <linux/utsname.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/fs.h>
C
Christoph Hellwig 已提交
39
#include <linux/blkdev.h>
L
Linus Torvalds 已提交
40
#include <linux/interrupt.h>
41
#include <linux/mm.h>
42
#include <linux/nodemask.h>
L
Linus Torvalds 已提交
43
#include <linux/spinlock.h>
44
#include <linux/kthread.h>
L
Linus Torvalds 已提交
45
#include <linux/percpu.h>
46
#include <linux/ptrace.h>
47
#include <linux/workqueue.h>
48
#include <linux/irq.h>
49
#include <linux/ratelimit.h>
50 51
#include <linux/syscalls.h>
#include <linux/completion.h>
52
#include <linux/uuid.h>
53
#include <linux/uaccess.h>
54
#include <linux/suspend.h>
55
#include <linux/siphash.h>
56
#include <crypto/chacha.h>
57
#include <crypto/blake2s.h>
L
Linus Torvalds 已提交
58 59
#include <asm/processor.h>
#include <asm/irq.h>
60
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
61 62
#include <asm/io.h>

63 64 65 66 67 68 69 70 71
/*********************************************************************
 *
 * Initialization and readiness waiting.
 *
 * Much of the RNG infrastructure is devoted to various dependencies
 * being able to wait until the RNG has collected enough entropy and
 * is ready for safe consumption.
 *
 *********************************************************************/
72

73
/*
74
 * crng_init is protected by base_crng->lock, and only increases
75
 * its value (from empty->early->ready).
76
 */
77 78 79 80
static enum {
	CRNG_EMPTY = 0, /* Little to no entropy collected */
	CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */
	CRNG_READY = 2  /* Fully initialized with POOL_READY_BITS collected */
81 82 83
} crng_init __read_mostly = CRNG_EMPTY;
static DEFINE_STATIC_KEY_FALSE(crng_is_ready);
#define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY)
84
/* Various types of waiters for crng_init->CRNG_READY transition. */
85 86
static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
static struct fasync_struct *fasync;
87

88
/* Control how we warn userspace. */
89
static struct ratelimit_state urandom_warning =
90
	RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE);
91 92
static int ratelimit_disable __read_mostly =
	IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM);
93 94 95
module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");

96 97
/*
 * Returns whether or not the input pool has been seeded and thus guaranteed
98
 * to supply cryptographically secure random numbers. This applies to: the
99 100
 * /dev/urandom device, the get_random_bytes function, and the get_random_{u8,
 * u16,u32,u64,int,long} family of functions.
101 102 103 104 105 106 107 108 109 110
 *
 * Returns: true if the input pool has been seeded.
 *          false if the input pool has not been seeded.
 */
bool rng_is_initialized(void)
{
	return crng_ready();
}
EXPORT_SYMBOL(rng_is_initialized);

111
static void __cold crng_set_ready(struct work_struct *work)
112 113 114 115
{
	static_branch_enable(&crng_is_ready);
}

116 117 118 119 120
/* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
static void try_to_generate_entropy(void);

/*
 * Wait for the input pool to be seeded and thus guaranteed to supply
121
 * cryptographically secure random numbers. This applies to: the /dev/urandom
122 123 124
 * device, the get_random_bytes function, and the get_random_{u8,u16,u32,u64,
 * int,long} family of functions. Using any of these functions without first
 * calling this function forfeits the guarantee of security.
125 126 127 128 129 130
 *
 * Returns: 0 if the input pool has been seeded.
 *          -ERESTARTSYS if the function was interrupted by a signal.
 */
int wait_for_random_bytes(void)
{
131
	while (!crng_ready()) {
132
		int ret;
133 134

		try_to_generate_entropy();
135 136 137
		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
		if (ret)
			return ret > 0 ? 0 : ret;
138
	}
139 140 141 142
	return 0;
}
EXPORT_SYMBOL(wait_for_random_bytes);

143
#define warn_unseeded_randomness() \
144 145 146
	if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \
		printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \
				__func__, (void *)_RET_IP_, crng_init)
147 148


149
/*********************************************************************
L
Linus Torvalds 已提交
150
 *
151
 * Fast key erasure RNG, the "crng".
L
Linus Torvalds 已提交
152
 *
153 154 155
 * These functions expand entropy from the entropy extractor into
 * long streams for external consumption using the "fast key erasure"
 * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
156
 *
157 158
 * There are a few exported interfaces for use by other drivers:
 *
159
 *	void get_random_bytes(void *buf, size_t len)
160 161
 *	u8 get_random_u8()
 *	u16 get_random_u16()
162 163 164 165 166 167
 *	u32 get_random_u32()
 *	u64 get_random_u64()
 *	unsigned int get_random_int()
 *	unsigned long get_random_long()
 *
 * These interfaces will return the requested number of random bytes
168
 * into the given buffer or as a return value. This is equivalent to
169 170 171 172
 * a read from /dev/urandom. The u8, u16, u32, u64, int, and long
 * family of functions may be higher performance for one-off random
 * integers, because they do a bit of buffering and do not invoke
 * reseeding until the buffer is emptied.
173 174 175
 *
 *********************************************************************/

176 177 178 179
enum {
	CRNG_RESEED_START_INTERVAL = HZ,
	CRNG_RESEED_INTERVAL = 60 * HZ
};
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199

static struct {
	u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
	unsigned long birth;
	unsigned long generation;
	spinlock_t lock;
} base_crng = {
	.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
};

struct crng {
	u8 key[CHACHA_KEY_SIZE];
	unsigned long generation;
	local_lock_t lock;
};

static DEFINE_PER_CPU(struct crng, crngs) = {
	.generation = ULONG_MAX,
	.lock = INIT_LOCAL_LOCK(crngs.lock),
};
200

201
/* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */
202
static void extract_entropy(void *buf, size_t len);
203

204 205
/* This extracts a new crng key from the input pool. */
static void crng_reseed(void)
206
{
207
	unsigned long flags;
208 209
	unsigned long next_gen;
	u8 key[CHACHA_KEY_SIZE];
210

211
	extract_entropy(key, sizeof(key));
212

213 214 215 216 217 218 219 220 221 222 223 224 225
	/*
	 * We copy the new key into the base_crng, overwriting the old one,
	 * and update the generation counter. We avoid hitting ULONG_MAX,
	 * because the per-cpu crngs are initialized to ULONG_MAX, so this
	 * forces new CPUs that come online to always initialize.
	 */
	spin_lock_irqsave(&base_crng.lock, flags);
	memcpy(base_crng.key, key, sizeof(base_crng.key));
	next_gen = base_crng.generation + 1;
	if (next_gen == ULONG_MAX)
		++next_gen;
	WRITE_ONCE(base_crng.generation, next_gen);
	WRITE_ONCE(base_crng.birth, jiffies);
226
	if (!static_branch_likely(&crng_is_ready))
227
		crng_init = CRNG_READY;
228 229
	spin_unlock_irqrestore(&base_crng.lock, flags);
	memzero_explicit(key, sizeof(key));
230 231
}

232
/*
233
 * This generates a ChaCha block using the provided key, and then
234
 * immediately overwrites that key with half the block. It returns
235 236 237
 * the resultant ChaCha state to the user, along with the second
 * half of the block containing 32 bytes of random data that may
 * be used; random_data_len may not be greater than 32.
238 239 240 241 242 243 244
 *
 * The returned ChaCha state contains within it a copy of the old
 * key value, at index 4, so the state should always be zeroed out
 * immediately after using in order to maintain forward secrecy.
 * If the state cannot be erased in a timely manner, then it is
 * safer to set the random_data parameter to &chacha_state[4] so
 * that this function overwrites it before returning.
245 246 247 248
 */
static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
				  u32 chacha_state[CHACHA_STATE_WORDS],
				  u8 *random_data, size_t random_data_len)
249
{
250
	u8 first_block[CHACHA_BLOCK_SIZE];
251

252 253 254 255 256 257 258 259
	BUG_ON(random_data_len > 32);

	chacha_init_consts(chacha_state);
	memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
	memset(&chacha_state[12], 0, sizeof(u32) * 4);
	chacha20_block(chacha_state, first_block);

	memcpy(key, first_block, CHACHA_KEY_SIZE);
260
	memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
261
	memzero_explicit(first_block, sizeof(first_block));
262 263
}

264
/*
265 266
 * Return the interval until the next reseeding, which is normally
 * CRNG_RESEED_INTERVAL, but during early boot, it is at an interval
267
 * proportional to the uptime.
268
 */
269
static unsigned int crng_reseed_interval(void)
270 271 272 273 274 275 276 277
{
	static bool early_boot = true;

	if (unlikely(READ_ONCE(early_boot))) {
		time64_t uptime = ktime_get_seconds();
		if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
			WRITE_ONCE(early_boot, false);
		else
278 279
			return max_t(unsigned int, CRNG_RESEED_START_INTERVAL,
				     (unsigned int)uptime / 2 * HZ);
280
	}
281
	return CRNG_RESEED_INTERVAL;
282 283
}

284
/*
285 286 287
 * This function returns a ChaCha state that you may use for generating
 * random data. It also returns up to 32 bytes on its own of random data
 * that may be used; random_data_len may not be greater than 32.
288
 */
289 290
static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
			    u8 *random_data, size_t random_data_len)
291
{
292
	unsigned long flags;
293
	struct crng *crng;
294

295 296 297 298 299
	BUG_ON(random_data_len > 32);

	/*
	 * For the fast path, we check whether we're ready, unlocked first, and
	 * then re-check once locked later. In the case where we're really not
300
	 * ready, we do fast key erasure with the base_crng directly, extracting
301
	 * when crng_init is CRNG_EMPTY.
302
	 */
303
	if (!crng_ready()) {
304 305 306 307
		bool ready;

		spin_lock_irqsave(&base_crng.lock, flags);
		ready = crng_ready();
308
		if (!ready) {
309
			if (crng_init == CRNG_EMPTY)
310
				extract_entropy(base_crng.key, sizeof(base_crng.key));
311 312
			crng_fast_key_erasure(base_crng.key, chacha_state,
					      random_data, random_data_len);
313
		}
314 315 316
		spin_unlock_irqrestore(&base_crng.lock, flags);
		if (!ready)
			return;
317
	}
318 319

	/*
320 321
	 * If the base_crng is old enough, we reseed, which in turn bumps the
	 * generation counter that we check below.
322
	 */
323
	if (unlikely(time_is_before_jiffies(READ_ONCE(base_crng.birth) + crng_reseed_interval())))
324
		crng_reseed();
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351

	local_lock_irqsave(&crngs.lock, flags);
	crng = raw_cpu_ptr(&crngs);

	/*
	 * If our per-cpu crng is older than the base_crng, then it means
	 * somebody reseeded the base_crng. In that case, we do fast key
	 * erasure on the base_crng, and use its output as the new key
	 * for our per-cpu crng. This brings us up to date with base_crng.
	 */
	if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
		spin_lock(&base_crng.lock);
		crng_fast_key_erasure(base_crng.key, chacha_state,
				      crng->key, sizeof(crng->key));
		crng->generation = base_crng.generation;
		spin_unlock(&base_crng.lock);
	}

	/*
	 * Finally, when we've made it this far, our per-cpu crng has an up
	 * to date key, and we can do fast key erasure with it to produce
	 * some random data and a ChaCha state for the caller. All other
	 * branches of this function are "unlikely", so most of the time we
	 * should wind up here immediately.
	 */
	crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
	local_unlock_irqrestore(&crngs.lock, flags);
352 353
}

354
static void _get_random_bytes(void *buf, size_t len)
355
{
356
	u32 chacha_state[CHACHA_STATE_WORDS];
357
	u8 tmp[CHACHA_BLOCK_SIZE];
358
	size_t first_block_len;
359

360
	if (!len)
361 362
		return;

363 364 365 366
	first_block_len = min_t(size_t, 32, len);
	crng_make_state(chacha_state, buf, first_block_len);
	len -= first_block_len;
	buf += first_block_len;
367

368 369
	while (len) {
		if (len < CHACHA_BLOCK_SIZE) {
370
			chacha20_block(chacha_state, tmp);
371
			memcpy(buf, tmp, len);
372 373 374 375 376 377 378
			memzero_explicit(tmp, sizeof(tmp));
			break;
		}

		chacha20_block(chacha_state, buf);
		if (unlikely(chacha_state[12] == 0))
			++chacha_state[13];
379
		len -= CHACHA_BLOCK_SIZE;
380 381 382 383 384 385 386
		buf += CHACHA_BLOCK_SIZE;
	}

	memzero_explicit(chacha_state, sizeof(chacha_state));
}

/*
387 388 389 390 391
 * This function is the exported kernel interface. It returns some number of
 * good random numbers, suitable for key generation, seeding TCP sequence
 * numbers, etc. In order to ensure that the randomness returned by this
 * function is okay, the function wait_for_random_bytes() should be called and
 * return 0 at least once at any point prior.
392
 */
393
void get_random_bytes(void *buf, size_t len)
394
{
395
	warn_unseeded_randomness();
396
	_get_random_bytes(buf, len);
397 398 399
}
EXPORT_SYMBOL(get_random_bytes);

400
static ssize_t get_random_bytes_user(struct iov_iter *iter)
401 402
{
	u32 chacha_state[CHACHA_STATE_WORDS];
403 404
	u8 block[CHACHA_BLOCK_SIZE];
	size_t ret = 0, copied;
405

406
	if (unlikely(!iov_iter_count(iter)))
407 408
		return 0;

409 410
	/*
	 * Immediately overwrite the ChaCha key at index 4 with random
411
	 * bytes, in case userspace causes copy_to_iter() below to sleep
412 413 414 415 416 417 418 419
	 * forever, so that we still retain forward secrecy in that case.
	 */
	crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE);
	/*
	 * However, if we're doing a read of len <= 32, we don't need to
	 * use chacha_state after, so we can simply return those bytes to
	 * the user directly.
	 */
420 421
	if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) {
		ret = copy_to_iter(&chacha_state[4], CHACHA_KEY_SIZE, iter);
422 423
		goto out_zero_chacha;
	}
424

425
	for (;;) {
426
		chacha20_block(chacha_state, block);
427 428 429
		if (unlikely(chacha_state[12] == 0))
			++chacha_state[13];

430 431 432
		copied = copy_to_iter(block, sizeof(block), iter);
		ret += copied;
		if (!iov_iter_count(iter) || copied != sizeof(block))
433
			break;
434

435
		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
436
		if (ret % PAGE_SIZE == 0) {
437 438 439 440
			if (signal_pending(current))
				break;
			cond_resched();
		}
441
	}
442

443
	memzero_explicit(block, sizeof(block));
444 445
out_zero_chacha:
	memzero_explicit(chacha_state, sizeof(chacha_state));
446
	return ret ? ret : -EFAULT;
447 448 449 450 451 452 453 454 455
}

/*
 * Batched entropy returns random integers. The quality of the random
 * number is good as /dev/urandom. In order to ensure that the randomness
 * provided by this function is okay, the function wait_for_random_bytes()
 * should be called and return 0 at least once at any point prior.
 */

456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508
#define DEFINE_BATCHED_ENTROPY(type)						\
struct batch_ ##type {								\
	/*									\
	 * We make this 1.5x a ChaCha block, so that we get the			\
	 * remaining 32 bytes from fast key erasure, plus one full		\
	 * block from the detached ChaCha state. We can increase		\
	 * the size of this later if needed so long as we keep the		\
	 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE.		\
	 */									\
	type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))];		\
	local_lock_t lock;							\
	unsigned long generation;						\
	unsigned int position;							\
};										\
										\
static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = {	\
	.lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock),			\
	.position = UINT_MAX							\
};										\
										\
type get_random_ ##type(void)							\
{										\
	type ret;								\
	unsigned long flags;							\
	struct batch_ ##type *batch;						\
	unsigned long next_gen;							\
										\
	warn_unseeded_randomness();						\
										\
	if  (!crng_ready()) {							\
		_get_random_bytes(&ret, sizeof(ret));				\
		return ret;							\
	}									\
										\
	local_lock_irqsave(&batched_entropy_ ##type.lock, flags);		\
	batch = raw_cpu_ptr(&batched_entropy_##type);				\
										\
	next_gen = READ_ONCE(base_crng.generation);				\
	if (batch->position >= ARRAY_SIZE(batch->entropy) ||			\
	    next_gen != batch->generation) {					\
		_get_random_bytes(batch->entropy, sizeof(batch->entropy));	\
		batch->position = 0;						\
		batch->generation = next_gen;					\
	}									\
										\
	ret = batch->entropy[batch->position];					\
	batch->entropy[batch->position] = 0;					\
	++batch->position;							\
	local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags);		\
	return ret;								\
}										\
EXPORT_SYMBOL(get_random_ ##type);

509
DEFINE_BATCHED_ENTROPY(u8)
510 511 512
DEFINE_BATCHED_ENTROPY(u16)
DEFINE_BATCHED_ENTROPY(u32)
DEFINE_BATCHED_ENTROPY(u64)
513

514 515 516 517 518
#ifdef CONFIG_SMP
/*
 * This function is called when the CPU is coming up, with entry
 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
 */
519
int __cold random_prepare_cpu(unsigned int cpu)
520 521 522 523 524 525 526
{
	/*
	 * When the cpu comes back online, immediately invalidate both
	 * the per-cpu crng and all batches, so that we serve fresh
	 * randomness.
	 */
	per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
527 528
	per_cpu_ptr(&batched_entropy_u8, cpu)->position = UINT_MAX;
	per_cpu_ptr(&batched_entropy_u16, cpu)->position = UINT_MAX;
529 530 531 532 533 534
	per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
	per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
	return 0;
}
#endif

535 536 537 538 539 540 541

/**********************************************************************
 *
 * Entropy accumulation and extraction routines.
 *
 * Callers may add entropy via:
 *
542
 *     static void mix_pool_bytes(const void *buf, size_t len)
543 544 545
 *
 * After which, if added entropy should be credited:
 *
546
 *     static void credit_init_bits(size_t bits)
547
 *
548
 * Finally, extract entropy via:
549
 *
550
 *     static void extract_entropy(void *buf, size_t len)
551 552 553
 *
 **********************************************************************/

554 555
enum {
	POOL_BITS = BLAKE2S_HASH_SIZE * 8,
556 557
	POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */
	POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */
558 559 560 561 562
};

static struct {
	struct blake2s_state hash;
	spinlock_t lock;
563
	unsigned int init_bits;
564 565 566 567 568 569 570 571
} input_pool = {
	.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
		    BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
		    BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
	.hash.outlen = BLAKE2S_HASH_SIZE,
	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
};

572
static void _mix_pool_bytes(const void *buf, size_t len)
573
{
574
	blake2s_update(&input_pool.hash, buf, len);
575
}
576 577

/*
578 579 580
 * This function adds bytes into the input pool. It does not
 * update the initialization bit counter; the caller should call
 * credit_init_bits if this is appropriate.
581
 */
582
static void mix_pool_bytes(const void *buf, size_t len)
583
{
584 585 586
	unsigned long flags;

	spin_lock_irqsave(&input_pool.lock, flags);
587
	_mix_pool_bytes(buf, len);
588
	spin_unlock_irqrestore(&input_pool.lock, flags);
589 590
}

591 592 593 594
/*
 * This is an HKDF-like construction for using the hashed collected entropy
 * as a PRF key, that's then expanded block-by-block.
 */
595
static void extract_entropy(void *buf, size_t len)
596 597
{
	unsigned long flags;
598 599 600 601 602
	u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
	struct {
		unsigned long rdseed[32 / sizeof(long)];
		size_t counter;
	} block;
603
	size_t i, longs;
604

605 606 607 608 609 610 611 612 613 614 615 616
	for (i = 0; i < ARRAY_SIZE(block.rdseed);) {
		longs = arch_get_random_seed_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
		if (longs) {
			i += longs;
			continue;
		}
		longs = arch_get_random_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
		if (longs) {
			i += longs;
			continue;
		}
		block.rdseed[i++] = random_get_entropy();
617
	}
618 619

	spin_lock_irqsave(&input_pool.lock, flags);
620 621 622 623 624 625 626 627 628

	/* seed = HASHPRF(last_key, entropy_input) */
	blake2s_final(&input_pool.hash, seed);

	/* next_key = HASHPRF(seed, RDSEED || 0) */
	block.counter = 0;
	blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
	blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));

629
	spin_unlock_irqrestore(&input_pool.lock, flags);
630 631
	memzero_explicit(next_key, sizeof(next_key));

632 633
	while (len) {
		i = min_t(size_t, len, BLAKE2S_HASH_SIZE);
634 635 636
		/* output = HASHPRF(seed, RDSEED || ++counter) */
		++block.counter;
		blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
637
		len -= i;
638 639 640 641 642 643 644
		buf += i;
	}

	memzero_explicit(seed, sizeof(seed));
	memzero_explicit(&block, sizeof(block));
}

645 646 647
#define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits)

static void __cold _credit_init_bits(size_t bits)
648
{
649
	static struct execute_work set_ready;
650
	unsigned int new, orig, add;
651 652
	unsigned long flags;

653
	if (!bits)
654 655
		return;

656
	add = min_t(size_t, bits, POOL_BITS);
657

658
	orig = READ_ONCE(input_pool.init_bits);
659
	do {
660
		new = min_t(unsigned int, POOL_BITS, orig + add);
661
	} while (!try_cmpxchg(&input_pool.init_bits, &orig, new));
662

663 664
	if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) {
		crng_reseed(); /* Sets crng_init to CRNG_READY under base_crng.lock. */
665 666
		if (static_key_initialized)
			execute_in_process_context(crng_set_ready, &set_ready);
667 668 669
		wake_up_interruptible(&crng_init_wait);
		kill_fasync(&fasync, SIGIO, POLL_IN);
		pr_notice("crng init done\n");
670
		if (urandom_warning.missed)
671 672 673
			pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
				  urandom_warning.missed);
	} else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) {
674
		spin_lock_irqsave(&base_crng.lock, flags);
675
		/* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */
676
		if (crng_init == CRNG_EMPTY) {
677
			extract_entropy(base_crng.key, sizeof(base_crng.key));
678
			crng_init = CRNG_EARLY;
679 680 681 682 683
		}
		spin_unlock_irqrestore(&base_crng.lock, flags);
	}
}

684 685 686 687 688 689 690 691

/**********************************************************************
 *
 * Entropy collection routines.
 *
 * The following exported functions are used for pushing entropy into
 * the above entropy accumulation routines:
 *
692 693 694 695
 *	void add_device_randomness(const void *buf, size_t len);
 *	void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy);
 *	void add_bootloader_randomness(const void *buf, size_t len);
 *	void add_vmfork_randomness(const void *unique_vm_id, size_t len);
696
 *	void add_interrupt_randomness(int irq);
697
 *	void add_input_randomness(unsigned int type, unsigned int code, unsigned int value);
698
 *	void add_disk_randomness(struct gendisk *disk);
699 700 701 702 703 704 705 706 707 708 709 710 711
 *
 * add_device_randomness() adds data to the input pool that
 * is likely to differ between two devices (or possibly even per boot).
 * This would be things like MAC addresses or serial numbers, or the
 * read-out of the RTC. This does *not* credit any actual entropy to
 * the pool, but it initializes the pool to different values for devices
 * that might otherwise be identical and have very little entropy
 * available to them (particularly common in the embedded world).
 *
 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
 * entropy as specified by the caller. If the entropy pool is full it will
 * block until more entropy is needed.
 *
712 713 714
 * add_bootloader_randomness() is called by bootloader drivers, such as EFI
 * and device tree, and credits its input depending on whether or not the
 * configuration option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
715
 *
716 717 718 719
 * add_vmfork_randomness() adds a unique (but not necessarily secret) ID
 * representing the current instance of a VM to the pool, without crediting,
 * and then force-reseeds the crng so that it takes effect immediately.
 *
720 721 722 723 724
 * add_interrupt_randomness() uses the interrupt timing as random
 * inputs to the entropy pool. Using the cycle counters and the irq source
 * as inputs, it feeds the input pool roughly once a second or after 64
 * interrupts, crediting 1 bit of entropy for whichever comes first.
 *
725 726 727 728 729 730 731 732 733 734 735 736 737
 * add_input_randomness() uses the input layer interrupt timing, as well
 * as the event type information from the hardware.
 *
 * add_disk_randomness() uses what amounts to the seek time of block
 * layer request events, on a per-disk_devt basis, as input to the
 * entropy pool. Note that high-speed solid state drives with very low
 * seek times do not make for good sources of entropy, as their seek
 * times are usually fairly consistent.
 *
 * The last two routines try to estimate how many bits of entropy
 * to credit. They do this by keeping track of the first and second
 * order deltas of the event timings.
 *
738 739
 **********************************************************************/

740 741
static bool trust_cpu __initdata = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
static bool trust_bootloader __initdata = IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER);
742 743 744 745
static int __init parse_trust_cpu(char *arg)
{
	return kstrtobool(arg, &trust_cpu);
}
746 747 748 749
static int __init parse_trust_bootloader(char *arg)
{
	return kstrtobool(arg, &trust_bootloader);
}
750
early_param("random.trust_cpu", parse_trust_cpu);
751
early_param("random.trust_bootloader", parse_trust_bootloader);
752

753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data)
{
	unsigned long flags, entropy = random_get_entropy();

	/*
	 * Encode a representation of how long the system has been suspended,
	 * in a way that is distinct from prior system suspends.
	 */
	ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() };

	spin_lock_irqsave(&input_pool.lock, flags);
	_mix_pool_bytes(&action, sizeof(action));
	_mix_pool_bytes(stamps, sizeof(stamps));
	_mix_pool_bytes(&entropy, sizeof(entropy));
	spin_unlock_irqrestore(&input_pool.lock, flags);

	if (crng_ready() && (action == PM_RESTORE_PREPARE ||
770 771
	    (action == PM_POST_SUSPEND && !IS_ENABLED(CONFIG_PM_AUTOSLEEP) &&
	     !IS_ENABLED(CONFIG_PM_USERSPACE_AUTOSLEEP)))) {
772
		crng_reseed();
773 774 775 776 777 778 779
		pr_notice("crng reseeded on system resumption\n");
	}
	return 0;
}

static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification };

780
/*
781 782
 * This is called extremely early, before time keeping functionality is
 * available, but arch randomness is. Interrupts are not yet enabled.
783
 */
784
void __init random_init_early(const char *command_line)
785
{
786
	unsigned long entropy[BLAKE2S_BLOCK_SIZE / sizeof(long)];
787
	size_t i, longs, arch_bits;
788

789 790 791 792 793
#if defined(LATENT_ENTROPY_PLUGIN)
	static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;
	_mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));
#endif

794 795 796 797 798 799 800 801 802 803 804 805
	for (i = 0, arch_bits = sizeof(entropy) * 8; i < ARRAY_SIZE(entropy);) {
		longs = arch_get_random_seed_longs(entropy, ARRAY_SIZE(entropy) - i);
		if (longs) {
			_mix_pool_bytes(entropy, sizeof(*entropy) * longs);
			i += longs;
			continue;
		}
		longs = arch_get_random_longs(entropy, ARRAY_SIZE(entropy) - i);
		if (longs) {
			_mix_pool_bytes(entropy, sizeof(*entropy) * longs);
			i += longs;
			continue;
806
		}
807 808
		arch_bits -= sizeof(*entropy) * 8;
		++i;
809
	}
810

811
	_mix_pool_bytes(init_utsname(), sizeof(*(init_utsname())));
812
	_mix_pool_bytes(command_line, strlen(command_line));
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831

	/* Reseed if already seeded by earlier phases. */
	if (crng_ready())
		crng_reseed();
	else if (trust_cpu)
		_credit_init_bits(arch_bits);
}

/*
 * This is called a little bit after the prior function, and now there is
 * access to timestamps counters. Interrupts are not yet enabled.
 */
void __init random_init(void)
{
	unsigned long entropy = random_get_entropy();
	ktime_t now = ktime_get_real();

	_mix_pool_bytes(&now, sizeof(now));
	_mix_pool_bytes(&entropy, sizeof(entropy));
832
	add_latent_entropy();
833

834
	/*
835 836
	 * If we were initialized by the cpu or bootloader before jump labels
	 * are initialized, then we should enable the static branch here, where
837 838 839 840 841
	 * it's guaranteed that jump labels have been initialized.
	 */
	if (!static_branch_likely(&crng_is_ready) && crng_init >= CRNG_READY)
		crng_set_ready(NULL);

842
	/* Reseed if already seeded by earlier phases. */
843 844
	if (crng_ready())
		crng_reseed();
845

846 847
	WARN_ON(register_pm_notifier(&pm_notifier));

848 849
	WARN(!entropy, "Missing cycle counter and fallback timer; RNG "
		       "entropy collection will consequently suffer.");
850
}
851

852
/*
853 854
 * Add device- or boot-specific data to the input pool to help
 * initialize it.
855
 *
856 857 858
 * None of this adds any entropy; it is meant to avoid the problem of
 * the entropy pool having similar initial state across largely
 * identical devices.
859
 */
860
void add_device_randomness(const void *buf, size_t len)
861
{
862 863
	unsigned long entropy = random_get_entropy();
	unsigned long flags;
864

865
	spin_lock_irqsave(&input_pool.lock, flags);
866
	_mix_pool_bytes(&entropy, sizeof(entropy));
867
	_mix_pool_bytes(buf, len);
868
	spin_unlock_irqrestore(&input_pool.lock, flags);
869 870 871
}
EXPORT_SYMBOL(add_device_randomness);

872 873 874 875 876
/*
 * Interface for in-kernel drivers of true hardware RNGs.
 * Those devices may produce endless random bits and will be throttled
 * when our pool is full.
 */
877
void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy)
878
{
879
	mix_pool_bytes(buf, len);
880 881
	credit_init_bits(entropy);

882
	/*
883
	 * Throttle writing to once every reseed interval, unless we're not yet
884
	 * initialized or no entropy is credited.
885
	 */
886
	if (!kthread_should_stop() && (crng_ready() || !entropy))
887
		schedule_timeout_interruptible(crng_reseed_interval());
888 889 890 891
}
EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);

/*
892 893
 * Handle random seed passed by bootloader, and credit it if
 * CONFIG_RANDOM_TRUST_BOOTLOADER is set.
894
 */
895
void __init add_bootloader_randomness(const void *buf, size_t len)
896
{
897
	mix_pool_bytes(buf, len);
898
	if (trust_bootloader)
899
		credit_init_bits(len * 8);
900 901
}

902
#if IS_ENABLED(CONFIG_VMGENID)
903 904
static BLOCKING_NOTIFIER_HEAD(vmfork_chain);

905 906 907 908 909
/*
 * Handle a new unique VM ID, which is unique, not secret, so we
 * don't credit it, but we do immediately force a reseed after so
 * that it's used by the crng posthaste.
 */
910
void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len)
911
{
912
	add_device_randomness(unique_vm_id, len);
913
	if (crng_ready()) {
914
		crng_reseed();
915 916
		pr_notice("crng reseeded due to virtual machine fork\n");
	}
917
	blocking_notifier_call_chain(&vmfork_chain, 0, NULL);
918
}
919
#if IS_MODULE(CONFIG_VMGENID)
920
EXPORT_SYMBOL_GPL(add_vmfork_randomness);
921
#endif
922

923
int __cold register_random_vmfork_notifier(struct notifier_block *nb)
924 925 926 927 928
{
	return blocking_notifier_chain_register(&vmfork_chain, nb);
}
EXPORT_SYMBOL_GPL(register_random_vmfork_notifier);

929
int __cold unregister_random_vmfork_notifier(struct notifier_block *nb)
930 931 932 933
{
	return blocking_notifier_chain_unregister(&vmfork_chain, nb);
}
EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);
934
#endif
935

936
struct fast_pool {
937
	unsigned long pool[4];
938
	unsigned long last;
939
	unsigned int count;
940
	struct timer_list mix;
941 942
};

943 944
static void mix_interrupt_randomness(struct timer_list *work);

945 946
static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
#ifdef CONFIG_64BIT
947
#define FASTMIX_PERM SIPHASH_PERMUTATION
948
	.pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 },
949
#else
950
#define FASTMIX_PERM HSIPHASH_PERMUTATION
951
	.pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 },
952
#endif
953
	.mix = __TIMER_INITIALIZER(mix_interrupt_randomness, 0)
954 955
};

956
/*
957 958 959
 * This is [Half]SipHash-1-x, starting from an empty key. Because
 * the key is fixed, it assumes that its inputs are non-malicious,
 * and therefore this has no security on its own. s represents the
960
 * four-word SipHash state, while v represents a two-word input.
961
 */
962
static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2)
963
{
964
	s[3] ^= v1;
965
	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
966 967
	s[0] ^= v1;
	s[3] ^= v2;
968
	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
969
	s[0] ^= v2;
970 971
}

972 973 974 975 976
#ifdef CONFIG_SMP
/*
 * This function is called when the CPU has just come online, with
 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
 */
977
int __cold random_online_cpu(unsigned int cpu)
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
{
	/*
	 * During CPU shutdown and before CPU onlining, add_interrupt_
	 * randomness() may schedule mix_interrupt_randomness(), and
	 * set the MIX_INFLIGHT flag. However, because the worker can
	 * be scheduled on a different CPU during this period, that
	 * flag will never be cleared. For that reason, we zero out
	 * the flag here, which runs just after workqueues are onlined
	 * for the CPU again. This also has the effect of setting the
	 * irq randomness count to zero so that new accumulated irqs
	 * are fresh.
	 */
	per_cpu_ptr(&irq_randomness, cpu)->count = 0;
	return 0;
}
#endif

995
static void mix_interrupt_randomness(struct timer_list *work)
996 997
{
	struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
998
	/*
999 1000 1001 1002 1003
	 * The size of the copied stack pool is explicitly 2 longs so that we
	 * only ever ingest half of the siphash output each time, retaining
	 * the other half as the next "key" that carries over. The entropy is
	 * supposed to be sufficiently dispersed between bits so on average
	 * we don't wind up "losing" some.
1004
	 */
1005
	unsigned long pool[2];
1006
	unsigned int count;
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018

	/* Check to see if we're running on the wrong CPU due to hotplug. */
	local_irq_disable();
	if (fast_pool != this_cpu_ptr(&irq_randomness)) {
		local_irq_enable();
		return;
	}

	/*
	 * Copy the pool to the stack so that the mixer always has a
	 * consistent view, before we reenable irqs again.
	 */
1019
	memcpy(pool, fast_pool->pool, sizeof(pool));
1020
	count = fast_pool->count;
1021
	fast_pool->count = 0;
1022 1023 1024
	fast_pool->last = jiffies;
	local_irq_enable();

1025
	mix_pool_bytes(pool, sizeof(pool));
1026
	credit_init_bits(clamp_t(unsigned int, (count & U16_MAX) / 64, 1, sizeof(pool) * 8));
1027

1028 1029 1030
	memzero_explicit(pool, sizeof(pool));
}

1031
void add_interrupt_randomness(int irq)
L
Linus Torvalds 已提交
1032
{
1033
	enum { MIX_INFLIGHT = 1U << 31 };
1034
	unsigned long entropy = random_get_entropy();
1035 1036
	struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
	struct pt_regs *regs = get_irq_regs();
1037
	unsigned int new_count;
1038

1039 1040
	fast_mix(fast_pool->pool, entropy,
		 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq));
1041
	new_count = ++fast_pool->count;
1042

1043
	if (new_count & MIX_INFLIGHT)
L
Linus Torvalds 已提交
1044 1045
		return;

1046
	if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ))
1047
		return;
1048

1049
	fast_pool->count |= MIX_INFLIGHT;
1050 1051 1052 1053
	if (!timer_pending(&fast_pool->mix)) {
		fast_pool->mix.expires = jiffies;
		add_timer_on(&fast_pool->mix, raw_smp_processor_id());
	}
L
Linus Torvalds 已提交
1054
}
1055
EXPORT_SYMBOL_GPL(add_interrupt_randomness);
L
Linus Torvalds 已提交
1056

1057 1058 1059 1060 1061 1062 1063 1064
/* There is one of these per entropy source */
struct timer_rand_state {
	unsigned long last_time;
	long last_delta, last_delta2;
};

/*
 * This function adds entropy to the entropy "pool" by using timing
1065 1066 1067 1068
 * delays. It uses the timer_rand_state structure to make an estimate
 * of how many bits of entropy this call has added to the pool. The
 * value "num" is also added to the pool; it should somehow describe
 * the type of event that just happened.
1069 1070 1071 1072 1073
 */
static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
{
	unsigned long entropy = random_get_entropy(), now = jiffies, flags;
	long delta, delta2, delta3;
1074
	unsigned int bits;
1075

1076 1077 1078 1079 1080
	/*
	 * If we're in a hard IRQ, add_interrupt_randomness() will be called
	 * sometime after, so mix into the fast pool.
	 */
	if (in_hardirq()) {
1081
		fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num);
1082 1083 1084 1085 1086 1087
	} else {
		spin_lock_irqsave(&input_pool.lock, flags);
		_mix_pool_bytes(&entropy, sizeof(entropy));
		_mix_pool_bytes(&num, sizeof(num));
		spin_unlock_irqrestore(&input_pool.lock, flags);
	}
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117

	if (crng_ready())
		return;

	/*
	 * Calculate number of bits of randomness we probably added.
	 * We take into account the first, second and third-order deltas
	 * in order to make our estimate.
	 */
	delta = now - READ_ONCE(state->last_time);
	WRITE_ONCE(state->last_time, now);

	delta2 = delta - READ_ONCE(state->last_delta);
	WRITE_ONCE(state->last_delta, delta);

	delta3 = delta2 - READ_ONCE(state->last_delta2);
	WRITE_ONCE(state->last_delta2, delta2);

	if (delta < 0)
		delta = -delta;
	if (delta2 < 0)
		delta2 = -delta2;
	if (delta3 < 0)
		delta3 = -delta3;
	if (delta > delta2)
		delta = delta2;
	if (delta > delta3)
		delta = delta3;

	/*
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
	 * delta is now minimum absolute delta. Round down by 1 bit
	 * on general principles, and limit entropy estimate to 11 bits.
	 */
	bits = min(fls(delta >> 1), 11);

	/*
	 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness()
	 * will run after this, which uses a different crediting scheme of 1 bit
	 * per every 64 interrupts. In order to let that function do accounting
	 * close to the one in this function, we credit a full 64/64 bit per bit,
	 * and then subtract one to account for the extra one added.
1129
	 */
1130 1131 1132
	if (in_hardirq())
		this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1;
	else
1133
		_credit_init_bits(bits);
1134 1135
}

1136
void add_input_randomness(unsigned int type, unsigned int code, unsigned int value)
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160
{
	static unsigned char last_value;
	static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };

	/* Ignore autorepeat and the like. */
	if (value == last_value)
		return;

	last_value = value;
	add_timer_randomness(&input_timer_state,
			     (type << 4) ^ code ^ (code >> 4) ^ value);
}
EXPORT_SYMBOL_GPL(add_input_randomness);

#ifdef CONFIG_BLOCK
void add_disk_randomness(struct gendisk *disk)
{
	if (!disk || !disk->random)
		return;
	/* First major is 1, so we get >= 0x200 here. */
	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
}
EXPORT_SYMBOL_GPL(add_disk_randomness);

1161
void __cold rand_initialize_disk(struct gendisk *disk)
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
{
	struct timer_rand_state *state;

	/*
	 * If kzalloc returns null, we just won't use that entropy
	 * source.
	 */
	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
	if (state) {
		state->last_time = INITIAL_JIFFIES;
		disk->random = state;
	}
}
#endif

1177 1178 1179 1180 1181 1182
struct entropy_timer_state {
	unsigned long entropy;
	struct timer_list timer;
	unsigned int samples, samples_per_bit;
};

1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
/*
 * Each time the timer fires, we expect that we got an unpredictable
 * jump in the cycle counter. Even if the timer is running on another
 * CPU, the timer activity will be touching the stack of the CPU that is
 * generating entropy..
 *
 * Note that we don't re-arm the timer in the timer itself - we are
 * happy to be scheduled away, since that just makes the load more
 * complex, but we do not want the timer to keep ticking unless the
 * entropy loop is running.
 *
 * So the re-arming always happens in the entropy loop itself.
 */
1196
static void __cold entropy_timer(struct timer_list *timer)
1197
{
1198 1199 1200
	struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer);

	if (++state->samples == state->samples_per_bit) {
1201
		credit_init_bits(1);
1202 1203
		state->samples = 0;
	}
1204 1205 1206 1207 1208 1209
}

/*
 * If we have an actual cycle counter, see if we can
 * generate enough entropy with timing noise
 */
1210
static void __cold try_to_generate_entropy(void)
1211
{
1212
	enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = HZ / 15 };
1213 1214 1215
	struct entropy_timer_state stack;
	unsigned int i, num_different = 0;
	unsigned long last = random_get_entropy();
1216

1217 1218 1219 1220 1221 1222 1223 1224
	for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) {
		stack.entropy = random_get_entropy();
		if (stack.entropy != last)
			++num_different;
		last = stack.entropy;
	}
	stack.samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1);
	if (stack.samples_per_bit > MAX_SAMPLES_PER_BIT)
1225 1226
		return;

1227
	stack.samples = 0;
1228
	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1229
	while (!crng_ready() && !signal_pending(current)) {
1230
		if (!timer_pending(&stack.timer))
1231
			mod_timer(&stack.timer, jiffies);
1232
		mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
1233
		schedule();
1234
		stack.entropy = random_get_entropy();
1235 1236 1237 1238
	}

	del_timer_sync(&stack.timer);
	destroy_timer_on_stack(&stack.timer);
1239
	mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
1240 1241
}

1242 1243 1244 1245 1246 1247 1248 1249

/**********************************************************************
 *
 * Userspace reader/writer interfaces.
 *
 * getrandom(2) is the primary modern interface into the RNG and should
 * be used in preference to anything else.
 *
1250 1251 1252 1253 1254 1255 1256 1257
 * Reading from /dev/random has the same functionality as calling
 * getrandom(2) with flags=0. In earlier versions, however, it had
 * vastly different semantics and should therefore be avoided, to
 * prevent backwards compatibility issues.
 *
 * Reading from /dev/urandom has the same functionality as calling
 * getrandom(2) with flags=GRND_INSECURE. Because it does not block
 * waiting for the RNG to be ready, it should not be used.
1258 1259 1260 1261
 *
 * Writing to either /dev/random or /dev/urandom adds entropy to
 * the input pool but does not credit it.
 *
1262 1263
 * Polling on /dev/random indicates when the RNG is initialized, on
 * the read side, and when it wants new entropy, on the write side.
1264 1265 1266 1267 1268 1269 1270
 *
 * Both /dev/random and /dev/urandom have the same set of ioctls for
 * adding entropy, getting the entropy count, zeroing the count, and
 * reseeding the crng.
 *
 **********************************************************************/

1271
SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags)
L
Linus Torvalds 已提交
1272
{
1273 1274 1275 1276
	struct iov_iter iter;
	struct iovec iov;
	int ret;

1277 1278
	if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
		return -EINVAL;
1279

1280 1281 1282 1283 1284 1285
	/*
	 * Requesting insecure and blocking randomness at the same time makes
	 * no sense.
	 */
	if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
		return -EINVAL;
1286

1287
	if (!crng_ready() && !(flags & GRND_INSECURE)) {
1288 1289 1290 1291 1292 1293
		if (flags & GRND_NONBLOCK)
			return -EAGAIN;
		ret = wait_for_random_bytes();
		if (unlikely(ret))
			return ret;
	}
1294 1295 1296 1297 1298

	ret = import_single_range(READ, ubuf, len, &iov, &iter);
	if (unlikely(ret))
		return ret;
	return get_random_bytes_user(&iter);
1299 1300
}

1301
static __poll_t random_poll(struct file *file, poll_table *wait)
L
Linus Torvalds 已提交
1302
{
1303
	poll_wait(file, &crng_init_wait, wait);
1304
	return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM;
L
Linus Torvalds 已提交
1305 1306
}

1307
static ssize_t write_pool_user(struct iov_iter *iter)
L
Linus Torvalds 已提交
1308
{
1309
	u8 block[BLAKE2S_BLOCK_SIZE];
1310 1311
	ssize_t ret = 0;
	size_t copied;
L
Linus Torvalds 已提交
1312

1313 1314 1315 1316 1317 1318 1319 1320 1321
	if (unlikely(!iov_iter_count(iter)))
		return 0;

	for (;;) {
		copied = copy_from_iter(block, sizeof(block), iter);
		ret += copied;
		mix_pool_bytes(block, copied);
		if (!iov_iter_count(iter) || copied != sizeof(block))
			break;
1322 1323 1324 1325 1326 1327 1328

		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
		if (ret % PAGE_SIZE == 0) {
			if (signal_pending(current))
				break;
			cond_resched();
		}
L
Linus Torvalds 已提交
1329
	}
1330

1331
	memzero_explicit(block, sizeof(block));
1332
	return ret ? ret : -EFAULT;
1333 1334
}

1335
static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter)
1336
{
1337
	return write_pool_user(iter);
L
Linus Torvalds 已提交
1338 1339
}

1340
static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1341 1342 1343
{
	static int maxwarn = 10;

1344 1345 1346 1347 1348 1349 1350
	/*
	 * Opportunistically attempt to initialize the RNG on platforms that
	 * have fast cycle counters, but don't (for now) require it to succeed.
	 */
	if (!crng_ready())
		try_to_generate_entropy();

1351 1352 1353 1354 1355
	if (!crng_ready()) {
		if (!ratelimit_disable && maxwarn <= 0)
			++urandom_warning.missed;
		else if (ratelimit_disable || __ratelimit(&urandom_warning)) {
			--maxwarn;
1356 1357
			pr_notice("%s: uninitialized urandom read (%zu bytes read)\n",
				  current->comm, iov_iter_count(iter));
1358
		}
1359 1360
	}

1361
	return get_random_bytes_user(iter);
1362 1363
}

1364
static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1365 1366 1367
{
	int ret;

1368 1369 1370 1371 1372
	if (!crng_ready() &&
	    ((kiocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) ||
	     (kiocb->ki_filp->f_flags & O_NONBLOCK)))
		return -EAGAIN;

1373 1374 1375
	ret = wait_for_random_bytes();
	if (ret != 0)
		return ret;
1376
	return get_random_bytes_user(iter);
1377 1378
}

M
Matt Mackall 已提交
1379
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
L
Linus Torvalds 已提交
1380 1381
{
	int __user *p = (int __user *)arg;
1382
	int ent_count;
L
Linus Torvalds 已提交
1383 1384 1385

	switch (cmd) {
	case RNDGETENTCNT:
1386
		/* Inherently racy, no point locking. */
1387
		if (put_user(input_pool.init_bits, p))
L
Linus Torvalds 已提交
1388 1389 1390 1391 1392 1393 1394
			return -EFAULT;
		return 0;
	case RNDADDTOENTCNT:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p))
			return -EFAULT;
1395 1396
		if (ent_count < 0)
			return -EINVAL;
1397
		credit_init_bits(ent_count);
1398
		return 0;
1399 1400 1401 1402 1403 1404
	case RNDADDENTROPY: {
		struct iov_iter iter;
		struct iovec iov;
		ssize_t ret;
		int len;

L
Linus Torvalds 已提交
1405 1406 1407 1408 1409 1410
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p++))
			return -EFAULT;
		if (ent_count < 0)
			return -EINVAL;
1411 1412 1413 1414 1415
		if (get_user(len, p++))
			return -EFAULT;
		ret = import_single_range(WRITE, p, len, &iov, &iter);
		if (unlikely(ret))
			return ret;
1416
		ret = write_pool_user(&iter);
1417 1418 1419 1420
		if (unlikely(ret < 0))
			return ret;
		/* Since we're crediting, enforce that it was all written into the pool. */
		if (unlikely(ret != len))
L
Linus Torvalds 已提交
1421
			return -EFAULT;
1422
		credit_init_bits(ent_count);
1423
		return 0;
1424
	}
L
Linus Torvalds 已提交
1425 1426
	case RNDZAPENTCNT:
	case RNDCLEARPOOL:
1427
		/* No longer has any effect. */
L
Linus Torvalds 已提交
1428 1429 1430
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		return 0;
1431 1432 1433
	case RNDRESEEDCRNG:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
1434
		if (!crng_ready())
1435
			return -ENODATA;
1436
		crng_reseed();
1437
		return 0;
L
Linus Torvalds 已提交
1438 1439 1440 1441 1442
	default:
		return -EINVAL;
	}
}

1443 1444 1445 1446 1447
static int random_fasync(int fd, struct file *filp, int on)
{
	return fasync_helper(fd, filp, on, &fasync);
}

1448
const struct file_operations random_fops = {
1449
	.read_iter = random_read_iter,
1450
	.write_iter = random_write_iter,
1451
	.poll = random_poll,
M
Matt Mackall 已提交
1452
	.unlocked_ioctl = random_ioctl,
1453
	.compat_ioctl = compat_ptr_ioctl,
1454
	.fasync = random_fasync,
1455
	.llseek = noop_llseek,
1456 1457
	.splice_read = generic_file_splice_read,
	.splice_write = iter_file_splice_write,
L
Linus Torvalds 已提交
1458 1459
};

1460
const struct file_operations urandom_fops = {
1461
	.read_iter = urandom_read_iter,
1462
	.write_iter = random_write_iter,
1463 1464 1465 1466
	.unlocked_ioctl = random_ioctl,
	.compat_ioctl = compat_ptr_ioctl,
	.fasync = random_fasync,
	.llseek = noop_llseek,
1467 1468
	.splice_read = generic_file_splice_read,
	.splice_write = iter_file_splice_write,
1469 1470
};

1471

L
Linus Torvalds 已提交
1472 1473
/********************************************************************
 *
1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
 * Sysctl interface.
 *
 * These are partly unused legacy knobs with dummy values to not break
 * userspace and partly still useful things. They are usually accessible
 * in /proc/sys/kernel/random/ and are as follows:
 *
 * - boot_id - a UUID representing the current boot.
 *
 * - uuid - a random UUID, different each time the file is read.
 *
 * - poolsize - the number of bits of entropy that the input pool can
 *   hold, tied to the POOL_BITS constant.
 *
 * - entropy_avail - the number of bits of entropy currently in the
 *   input pool. Always <= poolsize.
 *
 * - write_wakeup_threshold - the amount of entropy in the input pool
 *   below which write polls to /dev/random will unblock, requesting
1492
 *   more entropy, tied to the POOL_READY_BITS constant. It is writable
1493 1494 1495
 *   to avoid breaking old userspaces, but writing to it does not
 *   change any behavior of the RNG.
 *
1496
 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
1497 1498
 *   It is writable to avoid breaking old userspaces, but writing
 *   to it does not change any behavior of the RNG.
L
Linus Torvalds 已提交
1499 1500 1501 1502 1503 1504 1505
 *
 ********************************************************************/

#ifdef CONFIG_SYSCTL

#include <linux/sysctl.h>

1506
static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
1507
static int sysctl_random_write_wakeup_bits = POOL_READY_BITS;
1508
static int sysctl_poolsize = POOL_BITS;
1509
static u8 sysctl_bootid[UUID_SIZE];
L
Linus Torvalds 已提交
1510 1511

/*
G
Greg Price 已提交
1512
 * This function is used to return both the bootid UUID, and random
1513
 * UUID. The difference is in whether table->data is NULL; if it is,
L
Linus Torvalds 已提交
1514 1515
 * then a new UUID is generated and returned to the user.
 */
1516
static int proc_do_uuid(struct ctl_table *table, int write, void *buf,
1517
			size_t *lenp, loff_t *ppos)
L
Linus Torvalds 已提交
1518
{
1519 1520 1521 1522 1523 1524 1525 1526 1527
	u8 tmp_uuid[UUID_SIZE], *uuid;
	char uuid_string[UUID_STRING_LEN + 1];
	struct ctl_table fake_table = {
		.data = uuid_string,
		.maxlen = UUID_STRING_LEN
	};

	if (write)
		return -EPERM;
L
Linus Torvalds 已提交
1528 1529 1530 1531 1532

	uuid = table->data;
	if (!uuid) {
		uuid = tmp_uuid;
		generate_random_uuid(uuid);
1533 1534 1535 1536 1537 1538 1539 1540
	} else {
		static DEFINE_SPINLOCK(bootid_spinlock);

		spin_lock(&bootid_spinlock);
		if (!uuid[8])
			generate_random_uuid(uuid);
		spin_unlock(&bootid_spinlock);
	}
L
Linus Torvalds 已提交
1541

1542
	snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
1543
	return proc_dostring(&fake_table, 0, buf, lenp, ppos);
L
Linus Torvalds 已提交
1544 1545
}

1546
/* The same as proc_dointvec, but writes don't change anything. */
1547
static int proc_do_rointvec(struct ctl_table *table, int write, void *buf,
1548 1549
			    size_t *lenp, loff_t *ppos)
{
1550
	return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos);
1551 1552
}

1553
static struct ctl_table random_table[] = {
L
Linus Torvalds 已提交
1554 1555 1556 1557 1558
	{
		.procname	= "poolsize",
		.data		= &sysctl_poolsize,
		.maxlen		= sizeof(int),
		.mode		= 0444,
1559
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1560 1561 1562
	},
	{
		.procname	= "entropy_avail",
1563
		.data		= &input_pool.init_bits,
L
Linus Torvalds 已提交
1564 1565
		.maxlen		= sizeof(int),
		.mode		= 0444,
1566
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1567 1568 1569
	},
	{
		.procname	= "write_wakeup_threshold",
1570
		.data		= &sysctl_random_write_wakeup_bits,
L
Linus Torvalds 已提交
1571 1572
		.maxlen		= sizeof(int),
		.mode		= 0644,
1573
		.proc_handler	= proc_do_rointvec,
L
Linus Torvalds 已提交
1574
	},
1575 1576
	{
		.procname	= "urandom_min_reseed_secs",
1577
		.data		= &sysctl_random_min_urandom_seed,
1578 1579
		.maxlen		= sizeof(int),
		.mode		= 0644,
1580
		.proc_handler	= proc_do_rointvec,
1581
	},
L
Linus Torvalds 已提交
1582 1583 1584 1585
	{
		.procname	= "boot_id",
		.data		= &sysctl_bootid,
		.mode		= 0444,
1586
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1587 1588 1589 1590
	},
	{
		.procname	= "uuid",
		.mode		= 0444,
1591
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1592
	},
1593
	{ }
L
Linus Torvalds 已提交
1594
};
1595 1596

/*
1597 1598
 * random_init() is called before sysctl_init(),
 * so we cannot call register_sysctl_init() in random_init()
1599 1600 1601 1602 1603 1604 1605
 */
static int __init random_sysctls_init(void)
{
	register_sysctl_init("kernel/random", random_table);
	return 0;
}
device_initcall(random_sysctls_init);
1606
#endif