random.c 49.8 KB
Newer Older
1
// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
L
Linus Torvalds 已提交
2
/*
3
 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4
 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
 *
 * This driver produces cryptographically secure pseudorandom data. It is divided
 * into roughly six sections, each with a section header:
 *
 *   - Initialization and readiness waiting.
 *   - Fast key erasure RNG, the "crng".
 *   - Entropy accumulation and extraction routines.
 *   - Entropy collection routines.
 *   - Userspace reader/writer interfaces.
 *   - Sysctl interface.
 *
 * The high level overview is that there is one input pool, into which
 * various pieces of data are hashed. Some of that data is then "credited" as
 * having a certain number of bits of entropy. When enough bits of entropy are
 * available, the hash is finalized and handed as a key to a stream cipher that
 * expands it indefinitely for various consumers. This key is periodically
 * refreshed as the various entropy collectors, described below, add data to the
 * input pool and credit it. There is currently no Fortuna-like scheduler
 * involved, which can lead to malicious entropy sources causing a premature
 * reseed, and the entropy estimates are, at best, conservative guesses.
L
Linus Torvalds 已提交
26 27
 */

Y
Yangtao Li 已提交
28 29
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
30 31 32 33 34 35 36 37 38 39 40
#include <linux/utsname.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/fs.h>
C
Christoph Hellwig 已提交
41
#include <linux/blkdev.h>
L
Linus Torvalds 已提交
42
#include <linux/interrupt.h>
43
#include <linux/mm.h>
44
#include <linux/nodemask.h>
L
Linus Torvalds 已提交
45
#include <linux/spinlock.h>
46
#include <linux/kthread.h>
L
Linus Torvalds 已提交
47
#include <linux/percpu.h>
48
#include <linux/ptrace.h>
49
#include <linux/workqueue.h>
50
#include <linux/irq.h>
51
#include <linux/ratelimit.h>
52 53
#include <linux/syscalls.h>
#include <linux/completion.h>
54
#include <linux/uuid.h>
55
#include <linux/uaccess.h>
56
#include <crypto/chacha.h>
57
#include <crypto/blake2s.h>
L
Linus Torvalds 已提交
58 59
#include <asm/processor.h>
#include <asm/irq.h>
60
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
61 62
#include <asm/io.h>

63 64 65 66 67 68 69 70 71
/*********************************************************************
 *
 * Initialization and readiness waiting.
 *
 * Much of the RNG infrastructure is devoted to various dependencies
 * being able to wait until the RNG has collected enough entropy and
 * is ready for safe consumption.
 *
 *********************************************************************/
72

73 74 75 76 77
/*
 * crng_init =  0 --> Uninitialized
 *		1 --> Initialized
 *		2 --> Initialized from input_pool
 *
78
 * crng_init is protected by base_crng->lock, and only increases
79 80 81
 * its value (from 0->1->2).
 */
static int crng_init = 0;
T
Theodore Ts'o 已提交
82
#define crng_ready() (likely(crng_init > 1))
83 84 85
/* Various types of waiters for crng_init->2 transition. */
static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
static struct fasync_struct *fasync;
86 87
static DEFINE_SPINLOCK(random_ready_chain_lock);
static RAW_NOTIFIER_HEAD(random_ready_chain);
88

89
/* Control how we warn userspace. */
90 91 92 93 94 95
static struct ratelimit_state unseeded_warning =
	RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
static int ratelimit_disable __read_mostly;
module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");

96 97
/*
 * Returns whether or not the input pool has been seeded and thus guaranteed
98 99
 * to supply cryptographically secure random numbers. This applies to
 * get_random_bytes() and get_random_{u32,u64,int,long}().
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
 *
 * Returns: true if the input pool has been seeded.
 *          false if the input pool has not been seeded.
 */
bool rng_is_initialized(void)
{
	return crng_ready();
}
EXPORT_SYMBOL(rng_is_initialized);

/* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
static void try_to_generate_entropy(void);

/*
 * Wait for the input pool to be seeded and thus guaranteed to supply
115 116 117 118
 * cryptographically secure random numbers. This applies to
 * get_random_bytes() and get_random_{u32,u64,int,long}(). Using any
 * of these functions without first calling this function means that
 * the returned numbers might not be cryptographically secure.
119 120 121 122 123 124
 *
 * Returns: 0 if the input pool has been seeded.
 *          -ERESTARTSYS if the function was interrupted by a signal.
 */
int wait_for_random_bytes(void)
{
125
	while (!crng_ready()) {
126
		int ret;
127 128

		try_to_generate_entropy();
129 130 131
		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
		if (ret)
			return ret > 0 ? 0 : ret;
132
	}
133 134 135 136 137 138 139 140 141 142 143
	return 0;
}
EXPORT_SYMBOL(wait_for_random_bytes);

/*
 * Add a callback function that will be invoked when the input
 * pool is initialised.
 *
 * returns: 0 if callback is successfully added
 *	    -EALREADY if pool is already initialised (callback not called)
 */
144
int register_random_ready_notifier(struct notifier_block *nb)
145 146
{
	unsigned long flags;
147
	int ret = -EALREADY;
148 149

	if (crng_ready())
150
		return ret;
151

152 153 154 155 156
	spin_lock_irqsave(&random_ready_chain_lock, flags);
	if (!crng_ready())
		ret = raw_notifier_chain_register(&random_ready_chain, nb);
	spin_unlock_irqrestore(&random_ready_chain_lock, flags);
	return ret;
157 158 159 160 161
}

/*
 * Delete a previously registered readiness callback function.
 */
162
int unregister_random_ready_notifier(struct notifier_block *nb)
163 164
{
	unsigned long flags;
165
	int ret;
166

167 168 169 170
	spin_lock_irqsave(&random_ready_chain_lock, flags);
	ret = raw_notifier_chain_unregister(&random_ready_chain, nb);
	spin_unlock_irqrestore(&random_ready_chain_lock, flags);
	return ret;
171 172 173 174 175 176
}

static void process_random_ready_list(void)
{
	unsigned long flags;

177 178 179
	spin_lock_irqsave(&random_ready_chain_lock, flags);
	raw_notifier_call_chain(&random_ready_chain, 0, NULL);
	spin_unlock_irqrestore(&random_ready_chain_lock, flags);
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
}

#define warn_unseeded_randomness(previous) \
	_warn_unseeded_randomness(__func__, (void *)_RET_IP_, (previous))

static void _warn_unseeded_randomness(const char *func_name, void *caller, void **previous)
{
#ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
	const bool print_once = false;
#else
	static bool print_once __read_mostly;
#endif

	if (print_once || crng_ready() ||
	    (previous && (caller == READ_ONCE(*previous))))
		return;
	WRITE_ONCE(*previous, caller);
#ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
	print_once = true;
#endif
	if (__ratelimit(&unseeded_warning))
		printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n",
				func_name, caller, crng_init);
}


206
/*********************************************************************
L
Linus Torvalds 已提交
207
 *
208
 * Fast key erasure RNG, the "crng".
L
Linus Torvalds 已提交
209
 *
210 211 212
 * These functions expand entropy from the entropy extractor into
 * long streams for external consumption using the "fast key erasure"
 * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
213
 *
214 215 216 217 218 219 220 221 222
 * There are a few exported interfaces for use by other drivers:
 *
 *	void get_random_bytes(void *buf, size_t nbytes)
 *	u32 get_random_u32()
 *	u64 get_random_u64()
 *	unsigned int get_random_int()
 *	unsigned long get_random_long()
 *
 * These interfaces will return the requested number of random bytes
223 224 225 226
 * into the given buffer or as a return value. The returned numbers are
 * the same as those of getrandom(0). The integer family of functions may
 * be higher performance for one-off random integers, because they do a
 * bit of buffering and do not invoke reseeding.
227 228 229
 *
 *********************************************************************/

230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
enum {
	CRNG_RESEED_INTERVAL = 300 * HZ,
	CRNG_INIT_CNT_THRESH = 2 * CHACHA_KEY_SIZE
};

static struct {
	u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
	unsigned long birth;
	unsigned long generation;
	spinlock_t lock;
} base_crng = {
	.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
};

struct crng {
	u8 key[CHACHA_KEY_SIZE];
	unsigned long generation;
	local_lock_t lock;
};

static DEFINE_PER_CPU(struct crng, crngs) = {
	.generation = ULONG_MAX,
	.lock = INIT_LOCAL_LOCK(crngs.lock),
};
254

255
/* Used by crng_reseed() to extract a new seed from the input pool. */
256
static bool drain_entropy(void *buf, size_t nbytes, bool force);
257

258
/*
259
 * This extracts a new crng key from the input pool, but only if there is a
260 261
 * sufficient amount of entropy available or force is true, in order to
 * mitigate bruteforcing of newly added bits.
262
 */
263
static void crng_reseed(bool force)
264
{
265
	unsigned long flags;
266 267
	unsigned long next_gen;
	u8 key[CHACHA_KEY_SIZE];
268
	bool finalize_init = false;
269

270
	/* Only reseed if we can, to prevent brute forcing a small amount of new bits. */
271
	if (!drain_entropy(key, sizeof(key), force))
272
		return;
273

274 275 276 277 278 279 280 281 282 283 284 285 286
	/*
	 * We copy the new key into the base_crng, overwriting the old one,
	 * and update the generation counter. We avoid hitting ULONG_MAX,
	 * because the per-cpu crngs are initialized to ULONG_MAX, so this
	 * forces new CPUs that come online to always initialize.
	 */
	spin_lock_irqsave(&base_crng.lock, flags);
	memcpy(base_crng.key, key, sizeof(base_crng.key));
	next_gen = base_crng.generation + 1;
	if (next_gen == ULONG_MAX)
		++next_gen;
	WRITE_ONCE(base_crng.generation, next_gen);
	WRITE_ONCE(base_crng.birth, jiffies);
287
	if (!crng_ready()) {
288
		crng_init = 2;
289 290 291 292 293
		finalize_init = true;
	}
	spin_unlock_irqrestore(&base_crng.lock, flags);
	memzero_explicit(key, sizeof(key));
	if (finalize_init) {
294 295 296 297 298 299 300 301 302 303
		process_random_ready_list();
		wake_up_interruptible(&crng_init_wait);
		kill_fasync(&fasync, SIGIO, POLL_IN);
		pr_notice("crng init done\n");
		if (unseeded_warning.missed) {
			pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n",
				  unseeded_warning.missed);
			unseeded_warning.missed = 0;
		}
	}
304 305
}

306
/*
307 308 309 310 311
 * This generates a ChaCha block using the provided key, and then
 * immediately overwites that key with half the block. It returns
 * the resultant ChaCha state to the user, along with the second
 * half of the block containing 32 bytes of random data that may
 * be used; random_data_len may not be greater than 32.
312 313 314 315
 */
static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
				  u32 chacha_state[CHACHA_STATE_WORDS],
				  u8 *random_data, size_t random_data_len)
316
{
317
	u8 first_block[CHACHA_BLOCK_SIZE];
318

319 320 321 322 323 324 325 326 327 328
	BUG_ON(random_data_len > 32);

	chacha_init_consts(chacha_state);
	memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
	memset(&chacha_state[12], 0, sizeof(u32) * 4);
	chacha20_block(chacha_state, first_block);

	memcpy(key, first_block, CHACHA_KEY_SIZE);
	memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
	memzero_explicit(first_block, sizeof(first_block));
329 330
}

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
/*
 * Return whether the crng seed is considered to be sufficiently
 * old that a reseeding might be attempted. This happens if the last
 * reseeding was CRNG_RESEED_INTERVAL ago, or during early boot, at
 * an interval proportional to the uptime.
 */
static bool crng_has_old_seed(void)
{
	static bool early_boot = true;
	unsigned long interval = CRNG_RESEED_INTERVAL;

	if (unlikely(READ_ONCE(early_boot))) {
		time64_t uptime = ktime_get_seconds();
		if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
			WRITE_ONCE(early_boot, false);
		else
			interval = max_t(unsigned int, 5 * HZ,
					 (unsigned int)uptime / 2 * HZ);
	}
	return time_after(jiffies, READ_ONCE(base_crng.birth) + interval);
}

353
/*
354 355 356
 * This function returns a ChaCha state that you may use for generating
 * random data. It also returns up to 32 bytes on its own of random data
 * that may be used; random_data_len may not be greater than 32.
357
 */
358 359
static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
			    u8 *random_data, size_t random_data_len)
360
{
361
	unsigned long flags;
362
	struct crng *crng;
363

364 365 366 367 368 369
	BUG_ON(random_data_len > 32);

	/*
	 * For the fast path, we check whether we're ready, unlocked first, and
	 * then re-check once locked later. In the case where we're really not
	 * ready, we do fast key erasure with the base_crng directly, because
370
	 * this is what crng_pre_init_inject() mutates during early init.
371
	 */
372
	if (!crng_ready()) {
373 374 375 376 377 378 379 380 381 382
		bool ready;

		spin_lock_irqsave(&base_crng.lock, flags);
		ready = crng_ready();
		if (!ready)
			crng_fast_key_erasure(base_crng.key, chacha_state,
					      random_data, random_data_len);
		spin_unlock_irqrestore(&base_crng.lock, flags);
		if (!ready)
			return;
383
	}
384 385

	/*
386 387
	 * If the base_crng is old enough, we try to reseed, which in turn
	 * bumps the generation counter that we check below.
388
	 */
389
	if (unlikely(crng_has_old_seed()))
390
		crng_reseed(false);
391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417

	local_lock_irqsave(&crngs.lock, flags);
	crng = raw_cpu_ptr(&crngs);

	/*
	 * If our per-cpu crng is older than the base_crng, then it means
	 * somebody reseeded the base_crng. In that case, we do fast key
	 * erasure on the base_crng, and use its output as the new key
	 * for our per-cpu crng. This brings us up to date with base_crng.
	 */
	if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
		spin_lock(&base_crng.lock);
		crng_fast_key_erasure(base_crng.key, chacha_state,
				      crng->key, sizeof(crng->key));
		crng->generation = base_crng.generation;
		spin_unlock(&base_crng.lock);
	}

	/*
	 * Finally, when we've made it this far, our per-cpu crng has an up
	 * to date key, and we can do fast key erasure with it to produce
	 * some random data and a ChaCha state for the caller. All other
	 * branches of this function are "unlikely", so most of the time we
	 * should wind up here immediately.
	 */
	crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
	local_unlock_irqrestore(&crngs.lock, flags);
418 419
}

420
/*
421 422 423 424 425
 * This function is for crng_init == 0 only. It loads entropy directly
 * into the crng's key, without going through the input pool. It is,
 * generally speaking, not very safe, but we use this only at early
 * boot time when it's better to have something there rather than
 * nothing.
426
 *
427 428 429 430 431 432 433
 * If account is set, then the crng_init_cnt counter is incremented.
 * This shouldn't be set by functions like add_device_randomness(),
 * where we can't trust the buffer passed to it is guaranteed to be
 * unpredictable (so it might not have any entropy at all).
 *
 * Returns the number of bytes processed from input, which is bounded
 * by CRNG_INIT_CNT_THRESH if account is true.
434
 */
435
static size_t crng_pre_init_inject(const void *input, size_t len, bool account)
436 437
{
	static int crng_init_cnt = 0;
438
	struct blake2s_state hash;
439 440
	unsigned long flags;

441
	blake2s_init(&hash, sizeof(base_crng.key));
442

443
	spin_lock_irqsave(&base_crng.lock, flags);
444 445 446 447 448
	if (crng_init != 0) {
		spin_unlock_irqrestore(&base_crng.lock, flags);
		return 0;
	}

449 450
	if (account)
		len = min_t(size_t, len, CRNG_INIT_CNT_THRESH - crng_init_cnt);
451

452 453 454
	blake2s_update(&hash, base_crng.key, sizeof(base_crng.key));
	blake2s_update(&hash, input, len);
	blake2s_final(&hash, base_crng.key);
455

456 457 458 459 460 461 462
	if (account) {
		crng_init_cnt += len;
		if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
			++base_crng.generation;
			crng_init = 1;
		}
	}
463 464

	spin_unlock_irqrestore(&base_crng.lock, flags);
465 466 467 468 469

	if (crng_init == 1)
		pr_notice("fast init done\n");

	return len;
470 471 472
}

static void _get_random_bytes(void *buf, size_t nbytes)
473
{
474
	u32 chacha_state[CHACHA_STATE_WORDS];
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
	u8 tmp[CHACHA_BLOCK_SIZE];
	size_t len;

	if (!nbytes)
		return;

	len = min_t(size_t, 32, nbytes);
	crng_make_state(chacha_state, buf, len);
	nbytes -= len;
	buf += len;

	while (nbytes) {
		if (nbytes < CHACHA_BLOCK_SIZE) {
			chacha20_block(chacha_state, tmp);
			memcpy(buf, tmp, nbytes);
			memzero_explicit(tmp, sizeof(tmp));
			break;
		}

		chacha20_block(chacha_state, buf);
		if (unlikely(chacha_state[12] == 0))
			++chacha_state[13];
		nbytes -= CHACHA_BLOCK_SIZE;
		buf += CHACHA_BLOCK_SIZE;
	}

	memzero_explicit(chacha_state, sizeof(chacha_state));
}

/*
 * This function is the exported kernel interface.  It returns some
 * number of good random numbers, suitable for key generation, seeding
 * TCP sequence numbers, etc.  It does not rely on the hardware random
 * number generator.  For random bytes direct from the hardware RNG
 * (when available), use get_random_bytes_arch(). In order to ensure
 * that the randomness provided by this function is okay, the function
 * wait_for_random_bytes() should be called and return 0 at least once
 * at any point prior.
 */
void get_random_bytes(void *buf, size_t nbytes)
{
	static void *previous;

	warn_unseeded_randomness(&previous);
	_get_random_bytes(buf, nbytes);
}
EXPORT_SYMBOL(get_random_bytes);

static ssize_t get_random_bytes_user(void __user *buf, size_t nbytes)
{
	bool large_request = nbytes > 256;
	ssize_t ret = 0;
	size_t len;
	u32 chacha_state[CHACHA_STATE_WORDS];
	u8 output[CHACHA_BLOCK_SIZE];

	if (!nbytes)
		return 0;

	len = min_t(size_t, 32, nbytes);
	crng_make_state(chacha_state, output, len);

	if (copy_to_user(buf, output, len))
		return -EFAULT;
	nbytes -= len;
	buf += len;
	ret += len;

	while (nbytes) {
		if (large_request && need_resched()) {
			if (signal_pending(current))
				break;
			schedule();
		}

		chacha20_block(chacha_state, output);
		if (unlikely(chacha_state[12] == 0))
			++chacha_state[13];

		len = min_t(size_t, nbytes, CHACHA_BLOCK_SIZE);
		if (copy_to_user(buf, output, len)) {
			ret = -EFAULT;
			break;
		}

		nbytes -= len;
		buf += len;
		ret += len;
	}

	memzero_explicit(chacha_state, sizeof(chacha_state));
	memzero_explicit(output, sizeof(output));
	return ret;
}

/*
 * Batched entropy returns random integers. The quality of the random
 * number is good as /dev/urandom. In order to ensure that the randomness
 * provided by this function is okay, the function wait_for_random_bytes()
 * should be called and return 0 at least once at any point prior.
 */
struct batched_entropy {
	union {
		/*
		 * We make this 1.5x a ChaCha block, so that we get the
		 * remaining 32 bytes from fast key erasure, plus one full
		 * block from the detached ChaCha state. We can increase
		 * the size of this later if needed so long as we keep the
		 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE.
		 */
		u64 entropy_u64[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u64))];
		u32 entropy_u32[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(u32))];
	};
	local_lock_t lock;
	unsigned long generation;
	unsigned int position;
};


static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
	.lock = INIT_LOCAL_LOCK(batched_entropy_u64.lock),
	.position = UINT_MAX
};

u64 get_random_u64(void)
{
	u64 ret;
	unsigned long flags;
	struct batched_entropy *batch;
	static void *previous;
	unsigned long next_gen;

	warn_unseeded_randomness(&previous);

	local_lock_irqsave(&batched_entropy_u64.lock, flags);
	batch = raw_cpu_ptr(&batched_entropy_u64);

	next_gen = READ_ONCE(base_crng.generation);
	if (batch->position >= ARRAY_SIZE(batch->entropy_u64) ||
	    next_gen != batch->generation) {
		_get_random_bytes(batch->entropy_u64, sizeof(batch->entropy_u64));
		batch->position = 0;
		batch->generation = next_gen;
	}

	ret = batch->entropy_u64[batch->position];
	batch->entropy_u64[batch->position] = 0;
	++batch->position;
	local_unlock_irqrestore(&batched_entropy_u64.lock, flags);
	return ret;
}
EXPORT_SYMBOL(get_random_u64);

static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
	.lock = INIT_LOCAL_LOCK(batched_entropy_u32.lock),
	.position = UINT_MAX
};

u32 get_random_u32(void)
{
	u32 ret;
	unsigned long flags;
	struct batched_entropy *batch;
	static void *previous;
	unsigned long next_gen;

	warn_unseeded_randomness(&previous);

	local_lock_irqsave(&batched_entropy_u32.lock, flags);
	batch = raw_cpu_ptr(&batched_entropy_u32);

	next_gen = READ_ONCE(base_crng.generation);
	if (batch->position >= ARRAY_SIZE(batch->entropy_u32) ||
	    next_gen != batch->generation) {
		_get_random_bytes(batch->entropy_u32, sizeof(batch->entropy_u32));
		batch->position = 0;
		batch->generation = next_gen;
	}

	ret = batch->entropy_u32[batch->position];
	batch->entropy_u32[batch->position] = 0;
	++batch->position;
	local_unlock_irqrestore(&batched_entropy_u32.lock, flags);
	return ret;
}
EXPORT_SYMBOL(get_random_u32);

662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
#ifdef CONFIG_SMP
/*
 * This function is called when the CPU is coming up, with entry
 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
 */
int random_prepare_cpu(unsigned int cpu)
{
	/*
	 * When the cpu comes back online, immediately invalidate both
	 * the per-cpu crng and all batches, so that we serve fresh
	 * randomness.
	 */
	per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
	per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
	per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
	return 0;
}
#endif

681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
/**
 * randomize_page - Generate a random, page aligned address
 * @start:	The smallest acceptable address the caller will take.
 * @range:	The size of the area, starting at @start, within which the
 *		random address must fall.
 *
 * If @start + @range would overflow, @range is capped.
 *
 * NOTE: Historical use of randomize_range, which this replaces, presumed that
 * @start was already page aligned.  We now align it regardless.
 *
 * Return: A page aligned address within [start, start + range).  On error,
 * @start is returned.
 */
unsigned long randomize_page(unsigned long start, unsigned long range)
{
	if (!PAGE_ALIGNED(start)) {
		range -= PAGE_ALIGN(start) - start;
		start = PAGE_ALIGN(start);
	}

	if (start > ULONG_MAX - range)
		range = ULONG_MAX - start;

	range >>= PAGE_SHIFT;

	if (range == 0)
		return start;

	return start + (get_random_long() % range << PAGE_SHIFT);
}

/*
 * This function will use the architecture-specific hardware random
 * number generator if it is available. It is not recommended for
 * use. Use get_random_bytes() instead. It returns the number of
 * bytes filled in.
 */
size_t __must_check get_random_bytes_arch(void *buf, size_t nbytes)
{
	size_t left = nbytes;
	u8 *p = buf;

	while (left) {
		unsigned long v;
		size_t chunk = min_t(size_t, left, sizeof(unsigned long));

		if (!arch_get_random_long(&v))
			break;

		memcpy(p, &v, chunk);
		p += chunk;
		left -= chunk;
	}

	return nbytes - left;
}
EXPORT_SYMBOL(get_random_bytes_arch);

740 741 742 743 744 745 746 747 748 749 750 751 752 753 754

/**********************************************************************
 *
 * Entropy accumulation and extraction routines.
 *
 * Callers may add entropy via:
 *
 *     static void mix_pool_bytes(const void *in, size_t nbytes)
 *
 * After which, if added entropy should be credited:
 *
 *     static void credit_entropy_bits(size_t nbits)
 *
 * Finally, extract entropy via these two, with the latter one
 * setting the entropy count to zero and extracting only if there
755
 * is POOL_MIN_BITS entropy credited prior or force is true:
756 757
 *
 *     static void extract_entropy(void *buf, size_t nbytes)
758
 *     static bool drain_entropy(void *buf, size_t nbytes, bool force)
759 760 761
 *
 **********************************************************************/

762 763 764 765 766
enum {
	POOL_BITS = BLAKE2S_HASH_SIZE * 8,
	POOL_MIN_BITS = POOL_BITS /* No point in settling for less. */
};

767
/* For notifying userspace should write into /dev/random. */
768 769 770 771 772 773 774 775 776 777 778 779 780 781
static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);

static struct {
	struct blake2s_state hash;
	spinlock_t lock;
	unsigned int entropy_count;
} input_pool = {
	.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
		    BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
		    BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
	.hash.outlen = BLAKE2S_HASH_SIZE,
	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
};

782 783 784 785
static void _mix_pool_bytes(const void *in, size_t nbytes)
{
	blake2s_update(&input_pool.hash, in, nbytes);
}
786 787 788 789 790 791

/*
 * This function adds bytes into the entropy "pool".  It does not
 * update the entropy estimate.  The caller should call
 * credit_entropy_bits if this is appropriate.
 */
792
static void mix_pool_bytes(const void *in, size_t nbytes)
793
{
794 795 796 797 798
	unsigned long flags;

	spin_lock_irqsave(&input_pool.lock, flags);
	_mix_pool_bytes(in, nbytes);
	spin_unlock_irqrestore(&input_pool.lock, flags);
799 800
}

801 802 803 804 805 806 807 808 809 810 811 812 813 814
static void credit_entropy_bits(size_t nbits)
{
	unsigned int entropy_count, orig, add;

	if (!nbits)
		return;

	add = min_t(size_t, nbits, POOL_BITS);

	do {
		orig = READ_ONCE(input_pool.entropy_count);
		entropy_count = min_t(unsigned int, POOL_BITS, orig + add);
	} while (cmpxchg(&input_pool.entropy_count, orig, entropy_count) != orig);

815
	if (!crng_ready() && entropy_count >= POOL_MIN_BITS)
816
		crng_reseed(false);
817 818 819 820 821 822 823
}

/*
 * This is an HKDF-like construction for using the hashed collected entropy
 * as a PRF key, that's then expanded block-by-block.
 */
static void extract_entropy(void *buf, size_t nbytes)
824 825
{
	unsigned long flags;
826 827 828 829 830 831 832 833 834 835 836 837
	u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
	struct {
		unsigned long rdseed[32 / sizeof(long)];
		size_t counter;
	} block;
	size_t i;

	for (i = 0; i < ARRAY_SIZE(block.rdseed); ++i) {
		if (!arch_get_random_seed_long(&block.rdseed[i]) &&
		    !arch_get_random_long(&block.rdseed[i]))
			block.rdseed[i] = random_get_entropy();
	}
838 839

	spin_lock_irqsave(&input_pool.lock, flags);
840 841 842 843 844 845 846 847 848

	/* seed = HASHPRF(last_key, entropy_input) */
	blake2s_final(&input_pool.hash, seed);

	/* next_key = HASHPRF(seed, RDSEED || 0) */
	block.counter = 0;
	blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
	blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));

849
	spin_unlock_irqrestore(&input_pool.lock, flags);
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
	memzero_explicit(next_key, sizeof(next_key));

	while (nbytes) {
		i = min_t(size_t, nbytes, BLAKE2S_HASH_SIZE);
		/* output = HASHPRF(seed, RDSEED || ++counter) */
		++block.counter;
		blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
		nbytes -= i;
		buf += i;
	}

	memzero_explicit(seed, sizeof(seed));
	memzero_explicit(&block, sizeof(block));
}

/*
866 867 868
 * First we make sure we have POOL_MIN_BITS of entropy in the pool unless force
 * is true, and then we set the entropy count to zero (but don't actually touch
 * any data). Only then can we extract a new key with extract_entropy().
869
 */
870
static bool drain_entropy(void *buf, size_t nbytes, bool force)
871 872 873 874
{
	unsigned int entropy_count;
	do {
		entropy_count = READ_ONCE(input_pool.entropy_count);
875
		if (!force && entropy_count < POOL_MIN_BITS)
876 877 878 879 880 881
			return false;
	} while (cmpxchg(&input_pool.entropy_count, entropy_count, 0) != entropy_count);
	extract_entropy(buf, nbytes);
	wake_up_interruptible(&random_write_wait);
	kill_fasync(&fasync, SIGIO, POLL_OUT);
	return true;
882 883
}

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898

/**********************************************************************
 *
 * Entropy collection routines.
 *
 * The following exported functions are used for pushing entropy into
 * the above entropy accumulation routines:
 *
 *	void add_device_randomness(const void *buf, size_t size);
 *	void add_input_randomness(unsigned int type, unsigned int code,
 *	                          unsigned int value);
 *	void add_disk_randomness(struct gendisk *disk);
 *	void add_hwgenerator_randomness(const void *buffer, size_t count,
 *					size_t entropy);
 *	void add_bootloader_randomness(const void *buf, size_t size);
899
 *	void add_vmfork_randomness(const void *unique_vm_id, size_t size);
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930
 *	void add_interrupt_randomness(int irq);
 *
 * add_device_randomness() adds data to the input pool that
 * is likely to differ between two devices (or possibly even per boot).
 * This would be things like MAC addresses or serial numbers, or the
 * read-out of the RTC. This does *not* credit any actual entropy to
 * the pool, but it initializes the pool to different values for devices
 * that might otherwise be identical and have very little entropy
 * available to them (particularly common in the embedded world).
 *
 * add_input_randomness() uses the input layer interrupt timing, as well
 * as the event type information from the hardware.
 *
 * add_disk_randomness() uses what amounts to the seek time of block
 * layer request events, on a per-disk_devt basis, as input to the
 * entropy pool. Note that high-speed solid state drives with very low
 * seek times do not make for good sources of entropy, as their seek
 * times are usually fairly consistent.
 *
 * The above two routines try to estimate how many bits of entropy
 * to credit. They do this by keeping track of the first and second
 * order deltas of the event timings.
 *
 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
 * entropy as specified by the caller. If the entropy pool is full it will
 * block until more entropy is needed.
 *
 * add_bootloader_randomness() is the same as add_hwgenerator_randomness() or
 * add_device_randomness(), depending on whether or not the configuration
 * option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
 *
931 932 933 934
 * add_vmfork_randomness() adds a unique (but not necessarily secret) ID
 * representing the current instance of a VM to the pool, without crediting,
 * and then force-reseeds the crng so that it takes effect immediately.
 *
935 936 937 938 939 940 941 942 943 944 945 946 947
 * add_interrupt_randomness() uses the interrupt timing as random
 * inputs to the entropy pool. Using the cycle counters and the irq source
 * as inputs, it feeds the input pool roughly once a second or after 64
 * interrupts, crediting 1 bit of entropy for whichever comes first.
 *
 **********************************************************************/

static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
static int __init parse_trust_cpu(char *arg)
{
	return kstrtobool(arg, &trust_cpu);
}
early_param("random.trust_cpu", parse_trust_cpu);
948 949

/*
950 951 952 953 954
 * The first collection of entropy occurs at system boot while interrupts
 * are still turned off. Here we push in RDSEED, a timestamp, and utsname().
 * Depending on the above configuration knob, RDSEED may be considered
 * sufficient for initialization. Note that much earlier setup may already
 * have pushed entropy into the input pool by the time we get here.
955
 */
956
int __init rand_initialize(void)
957
{
958 959 960 961
	size_t i;
	ktime_t now = ktime_get_real();
	bool arch_init = true;
	unsigned long rv;
962

963 964 965 966 967 968
	for (i = 0; i < BLAKE2S_BLOCK_SIZE; i += sizeof(rv)) {
		if (!arch_get_random_seed_long_early(&rv) &&
		    !arch_get_random_long_early(&rv)) {
			rv = random_get_entropy();
			arch_init = false;
		}
969
		_mix_pool_bytes(&rv, sizeof(rv));
970
	}
971 972
	_mix_pool_bytes(&now, sizeof(now));
	_mix_pool_bytes(utsname(), sizeof(*(utsname())));
973

974 975
	extract_entropy(base_crng.key, sizeof(base_crng.key));
	++base_crng.generation;
976

977
	if (arch_init && trust_cpu && !crng_ready()) {
978 979 980
		crng_init = 2;
		pr_notice("crng init done (trusting CPU's manufacturer)\n");
	}
981

982
	if (ratelimit_disable)
983 984
		unseeded_warning.interval = 0;
	return 0;
985
}
986

987
/*
988 989
 * Add device- or boot-specific data to the input pool to help
 * initialize it.
990
 *
991 992 993
 * None of this adds any entropy; it is meant to avoid the problem of
 * the entropy pool having similar initial state across largely
 * identical devices.
994
 */
995
void add_device_randomness(const void *buf, size_t size)
996
{
997 998
	cycles_t cycles = random_get_entropy();
	unsigned long flags, now = jiffies;
999

1000
	if (crng_init == 0 && size)
1001
		crng_pre_init_inject(buf, size, false);
1002

1003
	spin_lock_irqsave(&input_pool.lock, flags);
1004 1005
	_mix_pool_bytes(&cycles, sizeof(cycles));
	_mix_pool_bytes(&now, sizeof(now));
1006
	_mix_pool_bytes(buf, size);
1007
	spin_unlock_irqrestore(&input_pool.lock, flags);
1008 1009 1010
}
EXPORT_SYMBOL(add_device_randomness);

1011 1012 1013 1014 1015 1016
/* There is one of these per entropy source */
struct timer_rand_state {
	unsigned long last_time;
	long last_delta, last_delta2;
};

L
Linus Torvalds 已提交
1017 1018 1019 1020 1021 1022 1023 1024 1025
/*
 * This function adds entropy to the entropy "pool" by using timing
 * delays.  It uses the timer_rand_state structure to make an estimate
 * of how many bits of entropy this call has added to the pool.
 *
 * The number "num" is also added to the pool - it should somehow describe
 * the type of event which just happened.  This is currently 0-255 for
 * keyboard scan codes, and 256 upwards for interrupts.
 */
1026
static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
L
Linus Torvalds 已提交
1027
{
1028 1029
	cycles_t cycles = random_get_entropy();
	unsigned long flags, now = jiffies;
L
Linus Torvalds 已提交
1030 1031
	long delta, delta2, delta3;

1032 1033 1034 1035 1036
	spin_lock_irqsave(&input_pool.lock, flags);
	_mix_pool_bytes(&cycles, sizeof(cycles));
	_mix_pool_bytes(&now, sizeof(now));
	_mix_pool_bytes(&num, sizeof(num));
	spin_unlock_irqrestore(&input_pool.lock, flags);
L
Linus Torvalds 已提交
1037 1038 1039 1040 1041 1042

	/*
	 * Calculate number of bits of randomness we probably added.
	 * We take into account the first, second and third-order deltas
	 * in order to make our estimate.
	 */
1043 1044
	delta = now - READ_ONCE(state->last_time);
	WRITE_ONCE(state->last_time, now);
1045

1046 1047
	delta2 = delta - READ_ONCE(state->last_delta);
	WRITE_ONCE(state->last_delta, delta);
1048

1049 1050
	delta3 = delta2 - READ_ONCE(state->last_delta2);
	WRITE_ONCE(state->last_delta2, delta2);
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061

	if (delta < 0)
		delta = -delta;
	if (delta2 < 0)
		delta2 = -delta2;
	if (delta3 < 0)
		delta3 = -delta3;
	if (delta > delta2)
		delta = delta2;
	if (delta > delta3)
		delta = delta3;
L
Linus Torvalds 已提交
1062

1063 1064 1065
	/*
	 * delta is now minimum absolute delta.
	 * Round down by 1 bit on general principles,
1066
	 * and limit entropy estimate to 12 bits.
1067
	 */
1068
	credit_entropy_bits(min_t(unsigned int, fls(delta >> 1), 11));
L
Linus Torvalds 已提交
1069 1070
}

1071
void add_input_randomness(unsigned int type, unsigned int code,
1072
			  unsigned int value)
L
Linus Torvalds 已提交
1073 1074
{
	static unsigned char last_value;
1075
	static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };
L
Linus Torvalds 已提交
1076

1077
	/* Ignore autorepeat and the like. */
L
Linus Torvalds 已提交
1078 1079 1080 1081 1082 1083 1084
	if (value == last_value)
		return;

	last_value = value;
	add_timer_randomness(&input_timer_state,
			     (type << 4) ^ code ^ (code >> 4) ^ value);
}
1085
EXPORT_SYMBOL_GPL(add_input_randomness);
L
Linus Torvalds 已提交
1086

1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121
#ifdef CONFIG_BLOCK
void add_disk_randomness(struct gendisk *disk)
{
	if (!disk || !disk->random)
		return;
	/* First major is 1, so we get >= 0x200 here. */
	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
}
EXPORT_SYMBOL_GPL(add_disk_randomness);

void rand_initialize_disk(struct gendisk *disk)
{
	struct timer_rand_state *state;

	/*
	 * If kzalloc returns null, we just won't use that entropy
	 * source.
	 */
	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
	if (state) {
		state->last_time = INITIAL_JIFFIES;
		disk->random = state;
	}
}
#endif

/*
 * Interface for in-kernel drivers of true hardware RNGs.
 * Those devices may produce endless random bits and will be throttled
 * when our pool is full.
 */
void add_hwgenerator_randomness(const void *buffer, size_t count,
				size_t entropy)
{
	if (unlikely(crng_init == 0)) {
1122
		size_t ret = crng_pre_init_inject(buffer, count, true);
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
		mix_pool_bytes(buffer, ret);
		count -= ret;
		buffer += ret;
		if (!count || crng_init == 0)
			return;
	}

	/*
	 * Throttle writing if we're above the trickle threshold.
	 * We'll be woken up again once below POOL_MIN_BITS, when
	 * the calling thread is about to terminate, or once
	 * CRNG_RESEED_INTERVAL has elapsed.
	 */
	wait_event_interruptible_timeout(random_write_wait,
			!system_wq || kthread_should_stop() ||
			input_pool.entropy_count < POOL_MIN_BITS,
			CRNG_RESEED_INTERVAL);
	mix_pool_bytes(buffer, count);
	credit_entropy_bits(entropy);
}
EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);

/*
 * Handle random seed passed by bootloader.
 * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
 * it would be regarded as device data.
 * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
 */
void add_bootloader_randomness(const void *buf, size_t size)
{
	if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER))
		add_hwgenerator_randomness(buf, size, size * 8);
	else
		add_device_randomness(buf, size);
}
EXPORT_SYMBOL_GPL(add_bootloader_randomness);

1160
#if IS_ENABLED(CONFIG_VMGENID)
1161 1162
static BLOCKING_NOTIFIER_HEAD(vmfork_chain);

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
/*
 * Handle a new unique VM ID, which is unique, not secret, so we
 * don't credit it, but we do immediately force a reseed after so
 * that it's used by the crng posthaste.
 */
void add_vmfork_randomness(const void *unique_vm_id, size_t size)
{
	add_device_randomness(unique_vm_id, size);
	if (crng_ready()) {
		crng_reseed(true);
		pr_notice("crng reseeded due to virtual machine fork\n");
	}
1175
	blocking_notifier_call_chain(&vmfork_chain, 0, NULL);
1176
}
1177
#if IS_MODULE(CONFIG_VMGENID)
1178
EXPORT_SYMBOL_GPL(add_vmfork_randomness);
1179
#endif
1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191

int register_random_vmfork_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_register(&vmfork_chain, nb);
}
EXPORT_SYMBOL_GPL(register_random_vmfork_notifier);

int unregister_random_vmfork_notifier(struct notifier_block *nb)
{
	return blocking_notifier_chain_unregister(&vmfork_chain, nb);
}
EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);
1192
#endif
1193

1194
struct fast_pool {
1195
	struct work_struct mix;
1196
	unsigned long pool[4];
1197
	unsigned long last;
1198
	unsigned int count;
1199 1200 1201
	u16 reg_idx;
};

1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
#ifdef CONFIG_64BIT
	/* SipHash constants */
	.pool = { 0x736f6d6570736575UL, 0x646f72616e646f6dUL,
		  0x6c7967656e657261UL, 0x7465646279746573UL }
#else
	/* HalfSipHash constants */
	.pool = { 0, 0, 0x6c796765U, 0x74656462U }
#endif
};

1213
/*
1214 1215 1216 1217
 * This is [Half]SipHash-1-x, starting from an empty key. Because
 * the key is fixed, it assumes that its inputs are non-malicious,
 * and therefore this has no security on its own. s represents the
 * 128 or 256-bit SipHash state, while v represents a 128-bit input.
1218
 */
1219
static void fast_mix(unsigned long s[4], const unsigned long *v)
1220
{
1221
	size_t i;
1222

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
	for (i = 0; i < 16 / sizeof(long); ++i) {
		s[3] ^= v[i];
#ifdef CONFIG_64BIT
		s[0] += s[1]; s[1] = rol64(s[1], 13); s[1] ^= s[0]; s[0] = rol64(s[0], 32);
		s[2] += s[3]; s[3] = rol64(s[3], 16); s[3] ^= s[2];
		s[0] += s[3]; s[3] = rol64(s[3], 21); s[3] ^= s[0];
		s[2] += s[1]; s[1] = rol64(s[1], 17); s[1] ^= s[2]; s[2] = rol64(s[2], 32);
#else
		s[0] += s[1]; s[1] = rol32(s[1],  5); s[1] ^= s[0]; s[0] = rol32(s[0], 16);
		s[2] += s[3]; s[3] = rol32(s[3],  8); s[3] ^= s[2];
		s[0] += s[3]; s[3] = rol32(s[3],  7); s[3] ^= s[0];
		s[2] += s[1]; s[1] = rol32(s[1], 13); s[1] ^= s[2]; s[2] = rol32(s[2], 16);
#endif
		s[0] ^= v[i];
	}
1238 1239
}

1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262
#ifdef CONFIG_SMP
/*
 * This function is called when the CPU has just come online, with
 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
 */
int random_online_cpu(unsigned int cpu)
{
	/*
	 * During CPU shutdown and before CPU onlining, add_interrupt_
	 * randomness() may schedule mix_interrupt_randomness(), and
	 * set the MIX_INFLIGHT flag. However, because the worker can
	 * be scheduled on a different CPU during this period, that
	 * flag will never be cleared. For that reason, we zero out
	 * the flag here, which runs just after workqueues are onlined
	 * for the CPU again. This also has the effect of setting the
	 * irq randomness count to zero so that new accumulated irqs
	 * are fresh.
	 */
	per_cpu_ptr(&irq_randomness, cpu)->count = 0;
	return 0;
}
#endif

1263
static unsigned long get_reg(struct fast_pool *f, struct pt_regs *regs)
1264
{
1265
	unsigned long *ptr = (unsigned long *)regs;
1266
	unsigned int idx;
1267 1268 1269

	if (regs == NULL)
		return 0;
1270
	idx = READ_ONCE(f->reg_idx);
1271
	if (idx >= sizeof(struct pt_regs) / sizeof(unsigned long))
1272 1273 1274
		idx = 0;
	ptr += idx++;
	WRITE_ONCE(f->reg_idx, idx);
1275
	return *ptr;
1276 1277
}

1278 1279 1280
static void mix_interrupt_randomness(struct work_struct *work)
{
	struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
1281 1282 1283 1284 1285 1286 1287 1288 1289
	/*
	 * The size of the copied stack pool is explicitly 16 bytes so that we
	 * tax mix_pool_byte()'s compression function the same amount on all
	 * platforms. This means on 64-bit we copy half the pool into this,
	 * while on 32-bit we copy all of it. The entropy is supposed to be
	 * sufficiently dispersed between bits that in the sponge-like
	 * half case, on average we don't wind up "losing" some.
	 */
	u8 pool[16];
1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301

	/* Check to see if we're running on the wrong CPU due to hotplug. */
	local_irq_disable();
	if (fast_pool != this_cpu_ptr(&irq_randomness)) {
		local_irq_enable();
		return;
	}

	/*
	 * Copy the pool to the stack so that the mixer always has a
	 * consistent view, before we reenable irqs again.
	 */
1302
	memcpy(pool, fast_pool->pool, sizeof(pool));
1303
	fast_pool->count = 0;
1304 1305 1306
	fast_pool->last = jiffies;
	local_irq_enable();

1307 1308 1309 1310 1311 1312 1313 1314
	if (unlikely(crng_init == 0)) {
		crng_pre_init_inject(pool, sizeof(pool), true);
		mix_pool_bytes(pool, sizeof(pool));
	} else {
		mix_pool_bytes(pool, sizeof(pool));
		credit_entropy_bits(1);
	}

1315 1316 1317
	memzero_explicit(pool, sizeof(pool));
}

1318
void add_interrupt_randomness(int irq)
L
Linus Torvalds 已提交
1319
{
1320
	enum { MIX_INFLIGHT = 1U << 31 };
1321 1322
	cycles_t cycles = random_get_entropy();
	unsigned long now = jiffies;
1323 1324
	struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
	struct pt_regs *regs = get_irq_regs();
1325
	unsigned int new_count;
1326 1327 1328 1329 1330
	union {
		u32 u32[4];
		u64 u64[2];
		unsigned long longs[16 / sizeof(long)];
	} irq_data;
1331

1332 1333
	if (cycles == 0)
		cycles = get_reg(fast_pool, regs);
1334

1335
	if (sizeof(cycles) == 8)
1336
		irq_data.u64[0] = cycles ^ rol64(now, 32) ^ irq;
1337
	else {
1338 1339
		irq_data.u32[0] = cycles ^ irq;
		irq_data.u32[1] = now;
1340 1341 1342
	}

	if (sizeof(unsigned long) == 8)
1343
		irq_data.u64[1] = regs ? instruction_pointer(regs) : _RET_IP_;
1344
	else {
1345 1346
		irq_data.u32[2] = regs ? instruction_pointer(regs) : _RET_IP_;
		irq_data.u32[3] = get_reg(fast_pool, regs);
1347 1348
	}

1349
	fast_mix(fast_pool->pool, irq_data.longs);
1350
	new_count = ++fast_pool->count;
1351

1352
	if (new_count & MIX_INFLIGHT)
L
Linus Torvalds 已提交
1353 1354
		return;

1355 1356
	if (new_count < 64 && (!time_after(now, fast_pool->last + HZ) ||
			       unlikely(crng_init == 0)))
1357
		return;
1358

1359 1360
	if (unlikely(!fast_pool->mix.func))
		INIT_WORK(&fast_pool->mix, mix_interrupt_randomness);
1361
	fast_pool->count |= MIX_INFLIGHT;
1362
	queue_work_on(raw_smp_processor_id(), system_highpri_wq, &fast_pool->mix);
L
Linus Torvalds 已提交
1363
}
1364
EXPORT_SYMBOL_GPL(add_interrupt_randomness);
L
Linus Torvalds 已提交
1365

1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
/*
 * Each time the timer fires, we expect that we got an unpredictable
 * jump in the cycle counter. Even if the timer is running on another
 * CPU, the timer activity will be touching the stack of the CPU that is
 * generating entropy..
 *
 * Note that we don't re-arm the timer in the timer itself - we are
 * happy to be scheduled away, since that just makes the load more
 * complex, but we do not want the timer to keep ticking unless the
 * entropy loop is running.
 *
 * So the re-arming always happens in the entropy loop itself.
 */
static void entropy_timer(struct timer_list *t)
{
1381
	credit_entropy_bits(1);
1382 1383 1384 1385 1386 1387 1388 1389 1390
}

/*
 * If we have an actual cycle counter, see if we can
 * generate enough entropy with timing noise
 */
static void try_to_generate_entropy(void)
{
	struct {
1391
		cycles_t cycles;
1392 1393 1394
		struct timer_list timer;
	} stack;

1395
	stack.cycles = random_get_entropy();
1396 1397

	/* Slow counter - or none. Don't even bother */
1398
	if (stack.cycles == random_get_entropy())
1399 1400 1401
		return;

	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1402
	while (!crng_ready() && !signal_pending(current)) {
1403
		if (!timer_pending(&stack.timer))
1404
			mod_timer(&stack.timer, jiffies + 1);
1405
		mix_pool_bytes(&stack.cycles, sizeof(stack.cycles));
1406
		schedule();
1407
		stack.cycles = random_get_entropy();
1408 1409 1410 1411
	}

	del_timer_sync(&stack.timer);
	destroy_timer_on_stack(&stack.timer);
1412
	mix_pool_bytes(&stack.cycles, sizeof(stack.cycles));
1413 1414
}

1415 1416 1417 1418 1419 1420 1421 1422

/**********************************************************************
 *
 * Userspace reader/writer interfaces.
 *
 * getrandom(2) is the primary modern interface into the RNG and should
 * be used in preference to anything else.
 *
1423 1424 1425
 * Reading from /dev/random and /dev/urandom both have the same effect
 * as calling getrandom(2) with flags=0. (In earlier versions, however,
 * they each had different semantics.)
1426 1427 1428 1429
 *
 * Writing to either /dev/random or /dev/urandom adds entropy to
 * the input pool but does not credit it.
 *
1430 1431 1432
 * Polling on /dev/random or /dev/urandom indicates when the RNG
 * is initialized, on the read side, and when it wants new entropy,
 * on the write side.
1433 1434 1435 1436 1437 1438 1439 1440 1441
 *
 * Both /dev/random and /dev/urandom have the same set of ioctls for
 * adding entropy, getting the entropy count, zeroing the count, and
 * reseeding the crng.
 *
 **********************************************************************/

SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count, unsigned int,
		flags)
L
Linus Torvalds 已提交
1442
{
1443 1444
	if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
		return -EINVAL;
1445

1446 1447 1448 1449 1450 1451
	/*
	 * Requesting insecure and blocking randomness at the same time makes
	 * no sense.
	 */
	if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
		return -EINVAL;
1452

1453 1454
	if (count > INT_MAX)
		count = INT_MAX;
L
Linus Torvalds 已提交
1455

1456 1457
	if (!(flags & GRND_INSECURE) && !crng_ready()) {
		int ret;
1458

1459 1460 1461 1462 1463 1464 1465
		if (flags & GRND_NONBLOCK)
			return -EAGAIN;
		ret = wait_for_random_bytes();
		if (unlikely(ret))
			return ret;
	}
	return get_random_bytes_user(buf, count);
1466 1467
}

1468
static __poll_t random_poll(struct file *file, poll_table *wait)
L
Linus Torvalds 已提交
1469
{
1470
	__poll_t mask;
L
Linus Torvalds 已提交
1471

1472
	poll_wait(file, &crng_init_wait, wait);
1473 1474
	poll_wait(file, &random_write_wait, wait);
	mask = 0;
1475
	if (crng_ready())
1476
		mask |= EPOLLIN | EPOLLRDNORM;
1477
	if (input_pool.entropy_count < POOL_MIN_BITS)
1478
		mask |= EPOLLOUT | EPOLLWRNORM;
L
Linus Torvalds 已提交
1479 1480 1481
	return mask;
}

1482
static int write_pool(const char __user *ubuf, size_t count)
L
Linus Torvalds 已提交
1483
{
1484
	size_t len;
1485
	int ret = 0;
1486
	u8 block[BLAKE2S_BLOCK_SIZE];
L
Linus Torvalds 已提交
1487

1488 1489
	while (count) {
		len = min(count, sizeof(block));
1490 1491 1492 1493
		if (copy_from_user(block, ubuf, len)) {
			ret = -EFAULT;
			goto out;
		}
1494 1495 1496
		count -= len;
		ubuf += len;
		mix_pool_bytes(block, len);
1497
		cond_resched();
L
Linus Torvalds 已提交
1498
	}
1499

1500 1501 1502
out:
	memzero_explicit(block, sizeof(block));
	return ret;
1503 1504
}

1505 1506
static ssize_t random_write(struct file *file, const char __user *buffer,
			    size_t count, loff_t *ppos)
1507
{
1508
	int ret;
1509

1510
	ret = write_pool(buffer, count);
1511 1512 1513 1514
	if (ret)
		return ret;

	return (ssize_t)count;
L
Linus Torvalds 已提交
1515 1516
}

1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
static ssize_t random_read(struct file *file, char __user *buf, size_t nbytes,
			   loff_t *ppos)
{
	int ret;

	ret = wait_for_random_bytes();
	if (ret != 0)
		return ret;
	return get_random_bytes_user(buf, nbytes);
}

M
Matt Mackall 已提交
1528
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
L
Linus Torvalds 已提交
1529 1530 1531 1532 1533 1534 1535
{
	int size, ent_count;
	int __user *p = (int __user *)arg;
	int retval;

	switch (cmd) {
	case RNDGETENTCNT:
1536
		/* Inherently racy, no point locking. */
1537
		if (put_user(input_pool.entropy_count, p))
L
Linus Torvalds 已提交
1538 1539 1540 1541 1542 1543 1544
			return -EFAULT;
		return 0;
	case RNDADDTOENTCNT:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p))
			return -EFAULT;
1545 1546 1547 1548
		if (ent_count < 0)
			return -EINVAL;
		credit_entropy_bits(ent_count);
		return 0;
L
Linus Torvalds 已提交
1549 1550 1551 1552 1553 1554 1555 1556 1557
	case RNDADDENTROPY:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p++))
			return -EFAULT;
		if (ent_count < 0)
			return -EINVAL;
		if (get_user(size, p++))
			return -EFAULT;
1558
		retval = write_pool((const char __user *)p, size);
L
Linus Torvalds 已提交
1559 1560
		if (retval < 0)
			return retval;
1561 1562
		credit_entropy_bits(ent_count);
		return 0;
L
Linus Torvalds 已提交
1563 1564
	case RNDZAPENTCNT:
	case RNDCLEARPOOL:
1565 1566 1567 1568
		/*
		 * Clear the entropy pool counters. We no longer clear
		 * the entropy pool, as that's silly.
		 */
L
Linus Torvalds 已提交
1569 1570
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
1571
		if (xchg(&input_pool.entropy_count, 0) >= POOL_MIN_BITS) {
1572 1573 1574
			wake_up_interruptible(&random_write_wait);
			kill_fasync(&fasync, SIGIO, POLL_OUT);
		}
L
Linus Torvalds 已提交
1575
		return 0;
1576 1577 1578
	case RNDRESEEDCRNG:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
1579
		if (!crng_ready())
1580
			return -ENODATA;
1581
		crng_reseed(false);
1582
		return 0;
L
Linus Torvalds 已提交
1583 1584 1585 1586 1587
	default:
		return -EINVAL;
	}
}

1588 1589 1590 1591 1592
static int random_fasync(int fd, struct file *filp, int on)
{
	return fasync_helper(fd, filp, on, &fasync);
}

1593
const struct file_operations random_fops = {
1594
	.read = random_read,
L
Linus Torvalds 已提交
1595
	.write = random_write,
1596
	.poll = random_poll,
M
Matt Mackall 已提交
1597
	.unlocked_ioctl = random_ioctl,
1598
	.compat_ioctl = compat_ptr_ioctl,
1599
	.fasync = random_fasync,
1600
	.llseek = noop_llseek,
L
Linus Torvalds 已提交
1601 1602
};

1603

L
Linus Torvalds 已提交
1604 1605
/********************************************************************
 *
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
 * Sysctl interface.
 *
 * These are partly unused legacy knobs with dummy values to not break
 * userspace and partly still useful things. They are usually accessible
 * in /proc/sys/kernel/random/ and are as follows:
 *
 * - boot_id - a UUID representing the current boot.
 *
 * - uuid - a random UUID, different each time the file is read.
 *
 * - poolsize - the number of bits of entropy that the input pool can
 *   hold, tied to the POOL_BITS constant.
 *
 * - entropy_avail - the number of bits of entropy currently in the
 *   input pool. Always <= poolsize.
 *
 * - write_wakeup_threshold - the amount of entropy in the input pool
 *   below which write polls to /dev/random will unblock, requesting
 *   more entropy, tied to the POOL_MIN_BITS constant. It is writable
 *   to avoid breaking old userspaces, but writing to it does not
 *   change any behavior of the RNG.
 *
1628
 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
1629 1630
 *   It is writable to avoid breaking old userspaces, but writing
 *   to it does not change any behavior of the RNG.
L
Linus Torvalds 已提交
1631 1632 1633 1634 1635 1636 1637
 *
 ********************************************************************/

#ifdef CONFIG_SYSCTL

#include <linux/sysctl.h>

1638
static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
1639
static int sysctl_random_write_wakeup_bits = POOL_MIN_BITS;
1640
static int sysctl_poolsize = POOL_BITS;
1641
static u8 sysctl_bootid[UUID_SIZE];
L
Linus Torvalds 已提交
1642 1643

/*
G
Greg Price 已提交
1644
 * This function is used to return both the bootid UUID, and random
1645
 * UUID. The difference is in whether table->data is NULL; if it is,
L
Linus Torvalds 已提交
1646 1647
 * then a new UUID is generated and returned to the user.
 */
1648 1649
static int proc_do_uuid(struct ctl_table *table, int write, void *buffer,
			size_t *lenp, loff_t *ppos)
L
Linus Torvalds 已提交
1650
{
1651 1652 1653 1654 1655 1656 1657 1658 1659
	u8 tmp_uuid[UUID_SIZE], *uuid;
	char uuid_string[UUID_STRING_LEN + 1];
	struct ctl_table fake_table = {
		.data = uuid_string,
		.maxlen = UUID_STRING_LEN
	};

	if (write)
		return -EPERM;
L
Linus Torvalds 已提交
1660 1661 1662 1663 1664

	uuid = table->data;
	if (!uuid) {
		uuid = tmp_uuid;
		generate_random_uuid(uuid);
1665 1666 1667 1668 1669 1670 1671 1672
	} else {
		static DEFINE_SPINLOCK(bootid_spinlock);

		spin_lock(&bootid_spinlock);
		if (!uuid[8])
			generate_random_uuid(uuid);
		spin_unlock(&bootid_spinlock);
	}
L
Linus Torvalds 已提交
1673

1674 1675
	snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
	return proc_dostring(&fake_table, 0, buffer, lenp, ppos);
L
Linus Torvalds 已提交
1676 1677
}

1678 1679 1680 1681 1682 1683 1684
/* The same as proc_dointvec, but writes don't change anything. */
static int proc_do_rointvec(struct ctl_table *table, int write, void *buffer,
			    size_t *lenp, loff_t *ppos)
{
	return write ? 0 : proc_dointvec(table, 0, buffer, lenp, ppos);
}

1685
static struct ctl_table random_table[] = {
L
Linus Torvalds 已提交
1686 1687 1688 1689 1690
	{
		.procname	= "poolsize",
		.data		= &sysctl_poolsize,
		.maxlen		= sizeof(int),
		.mode		= 0444,
1691
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1692 1693 1694
	},
	{
		.procname	= "entropy_avail",
1695
		.data		= &input_pool.entropy_count,
L
Linus Torvalds 已提交
1696 1697
		.maxlen		= sizeof(int),
		.mode		= 0444,
1698
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1699 1700 1701
	},
	{
		.procname	= "write_wakeup_threshold",
1702
		.data		= &sysctl_random_write_wakeup_bits,
L
Linus Torvalds 已提交
1703 1704
		.maxlen		= sizeof(int),
		.mode		= 0644,
1705
		.proc_handler	= proc_do_rointvec,
L
Linus Torvalds 已提交
1706
	},
1707 1708
	{
		.procname	= "urandom_min_reseed_secs",
1709
		.data		= &sysctl_random_min_urandom_seed,
1710 1711
		.maxlen		= sizeof(int),
		.mode		= 0644,
1712
		.proc_handler	= proc_do_rointvec,
1713
	},
L
Linus Torvalds 已提交
1714 1715 1716 1717
	{
		.procname	= "boot_id",
		.data		= &sysctl_bootid,
		.mode		= 0444,
1718
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1719 1720 1721 1722
	},
	{
		.procname	= "uuid",
		.mode		= 0444,
1723
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1724
	},
1725
	{ }
L
Linus Torvalds 已提交
1726
};
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737

/*
 * rand_initialize() is called before sysctl_init(),
 * so we cannot call register_sysctl_init() in rand_initialize()
 */
static int __init random_sysctls_init(void)
{
	register_sysctl_init("kernel/random", random_table);
	return 0;
}
device_initcall(random_sysctls_init);
1738
#endif