random.c 49.3 KB
Newer Older
1
// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
L
Linus Torvalds 已提交
2
/*
3
 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4
 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5 6 7 8 9 10 11 12 13 14 15 16 17
 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
 *
 * This driver produces cryptographically secure pseudorandom data. It is divided
 * into roughly six sections, each with a section header:
 *
 *   - Initialization and readiness waiting.
 *   - Fast key erasure RNG, the "crng".
 *   - Entropy accumulation and extraction routines.
 *   - Entropy collection routines.
 *   - Userspace reader/writer interfaces.
 *   - Sysctl interface.
 *
 * The high level overview is that there is one input pool, into which
18 19 20 21 22 23
 * various pieces of data are hashed. Prior to initialization, some of that
 * data is then "credited" as having a certain number of bits of entropy.
 * When enough bits of entropy are available, the hash is finalized and
 * handed as a key to a stream cipher that expands it indefinitely for
 * various consumers. This key is periodically refreshed as the various
 * entropy collectors, described below, add data to the input pool.
L
Linus Torvalds 已提交
24 25
 */

Y
Yangtao Li 已提交
26 27
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

L
Linus Torvalds 已提交
28 29 30 31 32 33 34 35 36 37 38
#include <linux/utsname.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/fcntl.h>
#include <linux/slab.h>
#include <linux/random.h>
#include <linux/poll.h>
#include <linux/init.h>
#include <linux/fs.h>
C
Christoph Hellwig 已提交
39
#include <linux/blkdev.h>
L
Linus Torvalds 已提交
40
#include <linux/interrupt.h>
41
#include <linux/mm.h>
42
#include <linux/nodemask.h>
L
Linus Torvalds 已提交
43
#include <linux/spinlock.h>
44
#include <linux/kthread.h>
L
Linus Torvalds 已提交
45
#include <linux/percpu.h>
46
#include <linux/ptrace.h>
47
#include <linux/workqueue.h>
48
#include <linux/irq.h>
49
#include <linux/ratelimit.h>
50 51
#include <linux/syscalls.h>
#include <linux/completion.h>
52
#include <linux/uuid.h>
53
#include <linux/uaccess.h>
54
#include <linux/suspend.h>
55
#include <linux/siphash.h>
56
#include <crypto/chacha.h>
57
#include <crypto/blake2s.h>
L
Linus Torvalds 已提交
58 59
#include <asm/processor.h>
#include <asm/irq.h>
60
#include <asm/irq_regs.h>
L
Linus Torvalds 已提交
61 62
#include <asm/io.h>

63 64 65 66 67 68 69 70 71
/*********************************************************************
 *
 * Initialization and readiness waiting.
 *
 * Much of the RNG infrastructure is devoted to various dependencies
 * being able to wait until the RNG has collected enough entropy and
 * is ready for safe consumption.
 *
 *********************************************************************/
72

73
/*
74
 * crng_init is protected by base_crng->lock, and only increases
75
 * its value (from empty->early->ready).
76
 */
77 78 79 80
static enum {
	CRNG_EMPTY = 0, /* Little to no entropy collected */
	CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */
	CRNG_READY = 2  /* Fully initialized with POOL_READY_BITS collected */
81 82 83
} crng_init __read_mostly = CRNG_EMPTY;
static DEFINE_STATIC_KEY_FALSE(crng_is_ready);
#define crng_ready() (static_branch_likely(&crng_is_ready) || crng_init >= CRNG_READY)
84
/* Various types of waiters for crng_init->CRNG_READY transition. */
85 86
static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
static struct fasync_struct *fasync;
87

88
/* Control how we warn userspace. */
89
static struct ratelimit_state urandom_warning =
90
	RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE);
91 92
static int ratelimit_disable __read_mostly =
	IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM);
93 94 95
module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");

96 97
/*
 * Returns whether or not the input pool has been seeded and thus guaranteed
98
 * to supply cryptographically secure random numbers. This applies to: the
99
 * /dev/urandom device, the get_random_bytes function, and the get_random_{u8,
100
 * u16,u32,u64,long} family of functions.
101 102 103 104 105 106 107 108 109 110
 *
 * Returns: true if the input pool has been seeded.
 *          false if the input pool has not been seeded.
 */
bool rng_is_initialized(void)
{
	return crng_ready();
}
EXPORT_SYMBOL(rng_is_initialized);

111
static void __cold crng_set_ready(struct work_struct *work)
112 113 114 115
{
	static_branch_enable(&crng_is_ready);
}

116 117 118 119 120
/* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
static void try_to_generate_entropy(void);

/*
 * Wait for the input pool to be seeded and thus guaranteed to supply
121
 * cryptographically secure random numbers. This applies to: the /dev/urandom
122
 * device, the get_random_bytes function, and the get_random_{u8,u16,u32,u64,
123
 * long} family of functions. Using any of these functions without first
124
 * calling this function forfeits the guarantee of security.
125 126 127 128 129 130
 *
 * Returns: 0 if the input pool has been seeded.
 *          -ERESTARTSYS if the function was interrupted by a signal.
 */
int wait_for_random_bytes(void)
{
131
	while (!crng_ready()) {
132
		int ret;
133 134

		try_to_generate_entropy();
135 136 137
		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
		if (ret)
			return ret > 0 ? 0 : ret;
138
	}
139 140 141 142
	return 0;
}
EXPORT_SYMBOL(wait_for_random_bytes);

143
#define warn_unseeded_randomness() \
144 145 146
	if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \
		printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \
				__func__, (void *)_RET_IP_, crng_init)
147 148


149
/*********************************************************************
L
Linus Torvalds 已提交
150
 *
151
 * Fast key erasure RNG, the "crng".
L
Linus Torvalds 已提交
152
 *
153 154 155
 * These functions expand entropy from the entropy extractor into
 * long streams for external consumption using the "fast key erasure"
 * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
156
 *
157 158
 * There are a few exported interfaces for use by other drivers:
 *
159
 *	void get_random_bytes(void *buf, size_t len)
160 161
 *	u8 get_random_u8()
 *	u16 get_random_u16()
162
 *	u32 get_random_u32()
163
 *	u32 get_random_u32_below(u32 ceil)
164 165
 *	u32 get_random_u32_above(u32 floor)
 *	u32 get_random_u32_inclusive(u32 floor, u32 ceil)
166 167 168 169
 *	u64 get_random_u64()
 *	unsigned long get_random_long()
 *
 * These interfaces will return the requested number of random bytes
170
 * into the given buffer or as a return value. This is equivalent to
171 172 173 174
 * a read from /dev/urandom. The u8, u16, u32, u64, long family of
 * functions may be higher performance for one-off random integers,
 * because they do a bit of buffering and do not invoke reseeding
 * until the buffer is emptied.
175 176 177
 *
 *********************************************************************/

178 179 180 181
enum {
	CRNG_RESEED_START_INTERVAL = HZ,
	CRNG_RESEED_INTERVAL = 60 * HZ
};
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201

static struct {
	u8 key[CHACHA_KEY_SIZE] __aligned(__alignof__(long));
	unsigned long birth;
	unsigned long generation;
	spinlock_t lock;
} base_crng = {
	.lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
};

struct crng {
	u8 key[CHACHA_KEY_SIZE];
	unsigned long generation;
	local_lock_t lock;
};

static DEFINE_PER_CPU(struct crng, crngs) = {
	.generation = ULONG_MAX,
	.lock = INIT_LOCAL_LOCK(crngs.lock),
};
202

203
/* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */
204
static void extract_entropy(void *buf, size_t len);
205

206 207
/* This extracts a new crng key from the input pool. */
static void crng_reseed(void)
208
{
209
	unsigned long flags;
210 211
	unsigned long next_gen;
	u8 key[CHACHA_KEY_SIZE];
212

213
	extract_entropy(key, sizeof(key));
214

215 216 217 218 219 220 221 222 223 224 225 226 227
	/*
	 * We copy the new key into the base_crng, overwriting the old one,
	 * and update the generation counter. We avoid hitting ULONG_MAX,
	 * because the per-cpu crngs are initialized to ULONG_MAX, so this
	 * forces new CPUs that come online to always initialize.
	 */
	spin_lock_irqsave(&base_crng.lock, flags);
	memcpy(base_crng.key, key, sizeof(base_crng.key));
	next_gen = base_crng.generation + 1;
	if (next_gen == ULONG_MAX)
		++next_gen;
	WRITE_ONCE(base_crng.generation, next_gen);
	WRITE_ONCE(base_crng.birth, jiffies);
228
	if (!static_branch_likely(&crng_is_ready))
229
		crng_init = CRNG_READY;
230 231
	spin_unlock_irqrestore(&base_crng.lock, flags);
	memzero_explicit(key, sizeof(key));
232 233
}

234
/*
235
 * This generates a ChaCha block using the provided key, and then
236
 * immediately overwrites that key with half the block. It returns
237 238 239
 * the resultant ChaCha state to the user, along with the second
 * half of the block containing 32 bytes of random data that may
 * be used; random_data_len may not be greater than 32.
240 241 242 243 244 245 246
 *
 * The returned ChaCha state contains within it a copy of the old
 * key value, at index 4, so the state should always be zeroed out
 * immediately after using in order to maintain forward secrecy.
 * If the state cannot be erased in a timely manner, then it is
 * safer to set the random_data parameter to &chacha_state[4] so
 * that this function overwrites it before returning.
247 248 249 250
 */
static void crng_fast_key_erasure(u8 key[CHACHA_KEY_SIZE],
				  u32 chacha_state[CHACHA_STATE_WORDS],
				  u8 *random_data, size_t random_data_len)
251
{
252
	u8 first_block[CHACHA_BLOCK_SIZE];
253

254 255 256 257 258 259 260 261
	BUG_ON(random_data_len > 32);

	chacha_init_consts(chacha_state);
	memcpy(&chacha_state[4], key, CHACHA_KEY_SIZE);
	memset(&chacha_state[12], 0, sizeof(u32) * 4);
	chacha20_block(chacha_state, first_block);

	memcpy(key, first_block, CHACHA_KEY_SIZE);
262
	memcpy(random_data, first_block + CHACHA_KEY_SIZE, random_data_len);
263
	memzero_explicit(first_block, sizeof(first_block));
264 265
}

266
/*
267 268
 * Return the interval until the next reseeding, which is normally
 * CRNG_RESEED_INTERVAL, but during early boot, it is at an interval
269
 * proportional to the uptime.
270
 */
271
static unsigned int crng_reseed_interval(void)
272 273 274 275 276 277 278 279
{
	static bool early_boot = true;

	if (unlikely(READ_ONCE(early_boot))) {
		time64_t uptime = ktime_get_seconds();
		if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
			WRITE_ONCE(early_boot, false);
		else
280 281
			return max_t(unsigned int, CRNG_RESEED_START_INTERVAL,
				     (unsigned int)uptime / 2 * HZ);
282
	}
283
	return CRNG_RESEED_INTERVAL;
284 285
}

286
/*
287 288 289
 * This function returns a ChaCha state that you may use for generating
 * random data. It also returns up to 32 bytes on its own of random data
 * that may be used; random_data_len may not be greater than 32.
290
 */
291 292
static void crng_make_state(u32 chacha_state[CHACHA_STATE_WORDS],
			    u8 *random_data, size_t random_data_len)
293
{
294
	unsigned long flags;
295
	struct crng *crng;
296

297 298 299 300 301
	BUG_ON(random_data_len > 32);

	/*
	 * For the fast path, we check whether we're ready, unlocked first, and
	 * then re-check once locked later. In the case where we're really not
302
	 * ready, we do fast key erasure with the base_crng directly, extracting
303
	 * when crng_init is CRNG_EMPTY.
304
	 */
305
	if (!crng_ready()) {
306 307 308 309
		bool ready;

		spin_lock_irqsave(&base_crng.lock, flags);
		ready = crng_ready();
310
		if (!ready) {
311
			if (crng_init == CRNG_EMPTY)
312
				extract_entropy(base_crng.key, sizeof(base_crng.key));
313 314
			crng_fast_key_erasure(base_crng.key, chacha_state,
					      random_data, random_data_len);
315
		}
316 317 318
		spin_unlock_irqrestore(&base_crng.lock, flags);
		if (!ready)
			return;
319
	}
320 321

	/*
322 323
	 * If the base_crng is old enough, we reseed, which in turn bumps the
	 * generation counter that we check below.
324
	 */
325
	if (unlikely(time_is_before_jiffies(READ_ONCE(base_crng.birth) + crng_reseed_interval())))
326
		crng_reseed();
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353

	local_lock_irqsave(&crngs.lock, flags);
	crng = raw_cpu_ptr(&crngs);

	/*
	 * If our per-cpu crng is older than the base_crng, then it means
	 * somebody reseeded the base_crng. In that case, we do fast key
	 * erasure on the base_crng, and use its output as the new key
	 * for our per-cpu crng. This brings us up to date with base_crng.
	 */
	if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
		spin_lock(&base_crng.lock);
		crng_fast_key_erasure(base_crng.key, chacha_state,
				      crng->key, sizeof(crng->key));
		crng->generation = base_crng.generation;
		spin_unlock(&base_crng.lock);
	}

	/*
	 * Finally, when we've made it this far, our per-cpu crng has an up
	 * to date key, and we can do fast key erasure with it to produce
	 * some random data and a ChaCha state for the caller. All other
	 * branches of this function are "unlikely", so most of the time we
	 * should wind up here immediately.
	 */
	crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
	local_unlock_irqrestore(&crngs.lock, flags);
354 355
}

356
static void _get_random_bytes(void *buf, size_t len)
357
{
358
	u32 chacha_state[CHACHA_STATE_WORDS];
359
	u8 tmp[CHACHA_BLOCK_SIZE];
360
	size_t first_block_len;
361

362
	if (!len)
363 364
		return;

365 366 367 368
	first_block_len = min_t(size_t, 32, len);
	crng_make_state(chacha_state, buf, first_block_len);
	len -= first_block_len;
	buf += first_block_len;
369

370 371
	while (len) {
		if (len < CHACHA_BLOCK_SIZE) {
372
			chacha20_block(chacha_state, tmp);
373
			memcpy(buf, tmp, len);
374 375 376 377 378 379 380
			memzero_explicit(tmp, sizeof(tmp));
			break;
		}

		chacha20_block(chacha_state, buf);
		if (unlikely(chacha_state[12] == 0))
			++chacha_state[13];
381
		len -= CHACHA_BLOCK_SIZE;
382 383 384 385 386 387 388
		buf += CHACHA_BLOCK_SIZE;
	}

	memzero_explicit(chacha_state, sizeof(chacha_state));
}

/*
389 390 391 392 393
 * This returns random bytes in arbitrary quantities. The quality of the
 * random bytes is good as /dev/urandom. In order to ensure that the
 * randomness provided by this function is okay, the function
 * wait_for_random_bytes() should be called and return 0 at least once
 * at any point prior.
394
 */
395
void get_random_bytes(void *buf, size_t len)
396
{
397
	warn_unseeded_randomness();
398
	_get_random_bytes(buf, len);
399 400 401
}
EXPORT_SYMBOL(get_random_bytes);

402
static ssize_t get_random_bytes_user(struct iov_iter *iter)
403 404
{
	u32 chacha_state[CHACHA_STATE_WORDS];
405 406
	u8 block[CHACHA_BLOCK_SIZE];
	size_t ret = 0, copied;
407

408
	if (unlikely(!iov_iter_count(iter)))
409 410
		return 0;

411 412
	/*
	 * Immediately overwrite the ChaCha key at index 4 with random
413
	 * bytes, in case userspace causes copy_to_iter() below to sleep
414 415 416 417 418 419 420 421
	 * forever, so that we still retain forward secrecy in that case.
	 */
	crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA_KEY_SIZE);
	/*
	 * However, if we're doing a read of len <= 32, we don't need to
	 * use chacha_state after, so we can simply return those bytes to
	 * the user directly.
	 */
422 423
	if (iov_iter_count(iter) <= CHACHA_KEY_SIZE) {
		ret = copy_to_iter(&chacha_state[4], CHACHA_KEY_SIZE, iter);
424 425
		goto out_zero_chacha;
	}
426

427
	for (;;) {
428
		chacha20_block(chacha_state, block);
429 430 431
		if (unlikely(chacha_state[12] == 0))
			++chacha_state[13];

432 433 434
		copied = copy_to_iter(block, sizeof(block), iter);
		ret += copied;
		if (!iov_iter_count(iter) || copied != sizeof(block))
435
			break;
436

437
		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
438
		if (ret % PAGE_SIZE == 0) {
439 440 441 442
			if (signal_pending(current))
				break;
			cond_resched();
		}
443
	}
444

445
	memzero_explicit(block, sizeof(block));
446 447
out_zero_chacha:
	memzero_explicit(chacha_state, sizeof(chacha_state));
448
	return ret ? ret : -EFAULT;
449 450 451 452 453 454 455 456 457
}

/*
 * Batched entropy returns random integers. The quality of the random
 * number is good as /dev/urandom. In order to ensure that the randomness
 * provided by this function is okay, the function wait_for_random_bytes()
 * should be called and return 0 at least once at any point prior.
 */

458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
#define DEFINE_BATCHED_ENTROPY(type)						\
struct batch_ ##type {								\
	/*									\
	 * We make this 1.5x a ChaCha block, so that we get the			\
	 * remaining 32 bytes from fast key erasure, plus one full		\
	 * block from the detached ChaCha state. We can increase		\
	 * the size of this later if needed so long as we keep the		\
	 * formula of (integer_blocks + 0.5) * CHACHA_BLOCK_SIZE.		\
	 */									\
	type entropy[CHACHA_BLOCK_SIZE * 3 / (2 * sizeof(type))];		\
	local_lock_t lock;							\
	unsigned long generation;						\
	unsigned int position;							\
};										\
										\
static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = {	\
	.lock = INIT_LOCAL_LOCK(batched_entropy_ ##type.lock),			\
	.position = UINT_MAX							\
};										\
										\
type get_random_ ##type(void)							\
{										\
	type ret;								\
	unsigned long flags;							\
	struct batch_ ##type *batch;						\
	unsigned long next_gen;							\
										\
	warn_unseeded_randomness();						\
										\
	if  (!crng_ready()) {							\
		_get_random_bytes(&ret, sizeof(ret));				\
		return ret;							\
	}									\
										\
	local_lock_irqsave(&batched_entropy_ ##type.lock, flags);		\
	batch = raw_cpu_ptr(&batched_entropy_##type);				\
										\
	next_gen = READ_ONCE(base_crng.generation);				\
	if (batch->position >= ARRAY_SIZE(batch->entropy) ||			\
	    next_gen != batch->generation) {					\
		_get_random_bytes(batch->entropy, sizeof(batch->entropy));	\
		batch->position = 0;						\
		batch->generation = next_gen;					\
	}									\
										\
	ret = batch->entropy[batch->position];					\
	batch->entropy[batch->position] = 0;					\
	++batch->position;							\
	local_unlock_irqrestore(&batched_entropy_ ##type.lock, flags);		\
	return ret;								\
}										\
EXPORT_SYMBOL(get_random_ ##type);

511
DEFINE_BATCHED_ENTROPY(u8)
512 513 514
DEFINE_BATCHED_ENTROPY(u16)
DEFINE_BATCHED_ENTROPY(u32)
DEFINE_BATCHED_ENTROPY(u64)
515

516 517 518 519 520 521 522 523 524 525 526
u32 __get_random_u32_below(u32 ceil)
{
	/*
	 * This is the slow path for variable ceil. It is still fast, most of
	 * the time, by doing traditional reciprocal multiplication and
	 * opportunistically comparing the lower half to ceil itself, before
	 * falling back to computing a larger bound, and then rejecting samples
	 * whose lower half would indicate a range indivisible by ceil. The use
	 * of `-ceil % ceil` is analogous to `2^32 % ceil`, but is computable
	 * in 32-bits.
	 */
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
	u32 rand = get_random_u32();
	u64 mult;

	/*
	 * This function is technically undefined for ceil == 0, and in fact
	 * for the non-underscored constant version in the header, we build bug
	 * on that. But for the non-constant case, it's convenient to have that
	 * evaluate to being a straight call to get_random_u32(), so that
	 * get_random_u32_inclusive() can work over its whole range without
	 * undefined behavior.
	 */
	if (unlikely(!ceil))
		return rand;

	mult = (u64)ceil * rand;
542 543 544 545 546 547 548 549 550
	if (unlikely((u32)mult < ceil)) {
		u32 bound = -ceil % ceil;
		while (unlikely((u32)mult < bound))
			mult = (u64)ceil * get_random_u32();
	}
	return mult >> 32;
}
EXPORT_SYMBOL(__get_random_u32_below);

551 552 553 554 555
#ifdef CONFIG_SMP
/*
 * This function is called when the CPU is coming up, with entry
 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
 */
556
int __cold random_prepare_cpu(unsigned int cpu)
557 558 559 560 561 562 563
{
	/*
	 * When the cpu comes back online, immediately invalidate both
	 * the per-cpu crng and all batches, so that we serve fresh
	 * randomness.
	 */
	per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
564 565
	per_cpu_ptr(&batched_entropy_u8, cpu)->position = UINT_MAX;
	per_cpu_ptr(&batched_entropy_u16, cpu)->position = UINT_MAX;
566 567 568 569 570 571
	per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
	per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
	return 0;
}
#endif

572 573 574 575 576 577 578

/**********************************************************************
 *
 * Entropy accumulation and extraction routines.
 *
 * Callers may add entropy via:
 *
579
 *     static void mix_pool_bytes(const void *buf, size_t len)
580 581 582
 *
 * After which, if added entropy should be credited:
 *
583
 *     static void credit_init_bits(size_t bits)
584
 *
585
 * Finally, extract entropy via:
586
 *
587
 *     static void extract_entropy(void *buf, size_t len)
588 589 590
 *
 **********************************************************************/

591 592
enum {
	POOL_BITS = BLAKE2S_HASH_SIZE * 8,
593 594
	POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */
	POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */
595 596 597 598 599
};

static struct {
	struct blake2s_state hash;
	spinlock_t lock;
600
	unsigned int init_bits;
601 602 603 604 605 606 607 608
} input_pool = {
	.hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
		    BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
		    BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
	.hash.outlen = BLAKE2S_HASH_SIZE,
	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
};

609
static void _mix_pool_bytes(const void *buf, size_t len)
610
{
611
	blake2s_update(&input_pool.hash, buf, len);
612
}
613 614

/*
615 616 617
 * This function adds bytes into the input pool. It does not
 * update the initialization bit counter; the caller should call
 * credit_init_bits if this is appropriate.
618
 */
619
static void mix_pool_bytes(const void *buf, size_t len)
620
{
621 622 623
	unsigned long flags;

	spin_lock_irqsave(&input_pool.lock, flags);
624
	_mix_pool_bytes(buf, len);
625
	spin_unlock_irqrestore(&input_pool.lock, flags);
626 627
}

628 629 630 631
/*
 * This is an HKDF-like construction for using the hashed collected entropy
 * as a PRF key, that's then expanded block-by-block.
 */
632
static void extract_entropy(void *buf, size_t len)
633 634
{
	unsigned long flags;
635 636 637 638 639
	u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
	struct {
		unsigned long rdseed[32 / sizeof(long)];
		size_t counter;
	} block;
640
	size_t i, longs;
641

642 643 644 645 646 647 648 649 650 651 652 653
	for (i = 0; i < ARRAY_SIZE(block.rdseed);) {
		longs = arch_get_random_seed_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
		if (longs) {
			i += longs;
			continue;
		}
		longs = arch_get_random_longs(&block.rdseed[i], ARRAY_SIZE(block.rdseed) - i);
		if (longs) {
			i += longs;
			continue;
		}
		block.rdseed[i++] = random_get_entropy();
654
	}
655 656

	spin_lock_irqsave(&input_pool.lock, flags);
657 658 659 660 661 662 663 664 665

	/* seed = HASHPRF(last_key, entropy_input) */
	blake2s_final(&input_pool.hash, seed);

	/* next_key = HASHPRF(seed, RDSEED || 0) */
	block.counter = 0;
	blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
	blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));

666
	spin_unlock_irqrestore(&input_pool.lock, flags);
667 668
	memzero_explicit(next_key, sizeof(next_key));

669 670
	while (len) {
		i = min_t(size_t, len, BLAKE2S_HASH_SIZE);
671 672 673
		/* output = HASHPRF(seed, RDSEED || ++counter) */
		++block.counter;
		blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
674
		len -= i;
675 676 677 678 679 680 681
		buf += i;
	}

	memzero_explicit(seed, sizeof(seed));
	memzero_explicit(&block, sizeof(block));
}

682 683 684
#define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits)

static void __cold _credit_init_bits(size_t bits)
685
{
686
	static struct execute_work set_ready;
687
	unsigned int new, orig, add;
688 689
	unsigned long flags;

690
	if (!bits)
691 692
		return;

693
	add = min_t(size_t, bits, POOL_BITS);
694

695
	orig = READ_ONCE(input_pool.init_bits);
696
	do {
697
		new = min_t(unsigned int, POOL_BITS, orig + add);
698
	} while (!try_cmpxchg(&input_pool.init_bits, &orig, new));
699

700 701
	if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) {
		crng_reseed(); /* Sets crng_init to CRNG_READY under base_crng.lock. */
702 703
		if (static_key_initialized)
			execute_in_process_context(crng_set_ready, &set_ready);
704 705 706
		wake_up_interruptible(&crng_init_wait);
		kill_fasync(&fasync, SIGIO, POLL_IN);
		pr_notice("crng init done\n");
707
		if (urandom_warning.missed)
708 709 710
			pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
				  urandom_warning.missed);
	} else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) {
711
		spin_lock_irqsave(&base_crng.lock, flags);
712
		/* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */
713
		if (crng_init == CRNG_EMPTY) {
714
			extract_entropy(base_crng.key, sizeof(base_crng.key));
715
			crng_init = CRNG_EARLY;
716 717 718 719 720
		}
		spin_unlock_irqrestore(&base_crng.lock, flags);
	}
}

721 722 723 724 725 726 727 728

/**********************************************************************
 *
 * Entropy collection routines.
 *
 * The following exported functions are used for pushing entropy into
 * the above entropy accumulation routines:
 *
729 730 731 732
 *	void add_device_randomness(const void *buf, size_t len);
 *	void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy);
 *	void add_bootloader_randomness(const void *buf, size_t len);
 *	void add_vmfork_randomness(const void *unique_vm_id, size_t len);
733
 *	void add_interrupt_randomness(int irq);
734
 *	void add_input_randomness(unsigned int type, unsigned int code, unsigned int value);
735
 *	void add_disk_randomness(struct gendisk *disk);
736 737 738 739 740 741 742 743 744 745 746 747 748
 *
 * add_device_randomness() adds data to the input pool that
 * is likely to differ between two devices (or possibly even per boot).
 * This would be things like MAC addresses or serial numbers, or the
 * read-out of the RTC. This does *not* credit any actual entropy to
 * the pool, but it initializes the pool to different values for devices
 * that might otherwise be identical and have very little entropy
 * available to them (particularly common in the embedded world).
 *
 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
 * entropy as specified by the caller. If the entropy pool is full it will
 * block until more entropy is needed.
 *
749 750
 * add_bootloader_randomness() is called by bootloader drivers, such as EFI
 * and device tree, and credits its input depending on whether or not the
751
 * command line option 'random.trust_bootloader'.
752
 *
753 754 755 756
 * add_vmfork_randomness() adds a unique (but not necessarily secret) ID
 * representing the current instance of a VM to the pool, without crediting,
 * and then force-reseeds the crng so that it takes effect immediately.
 *
757 758 759 760 761
 * add_interrupt_randomness() uses the interrupt timing as random
 * inputs to the entropy pool. Using the cycle counters and the irq source
 * as inputs, it feeds the input pool roughly once a second or after 64
 * interrupts, crediting 1 bit of entropy for whichever comes first.
 *
762 763 764 765 766 767 768 769 770 771 772 773 774
 * add_input_randomness() uses the input layer interrupt timing, as well
 * as the event type information from the hardware.
 *
 * add_disk_randomness() uses what amounts to the seek time of block
 * layer request events, on a per-disk_devt basis, as input to the
 * entropy pool. Note that high-speed solid state drives with very low
 * seek times do not make for good sources of entropy, as their seek
 * times are usually fairly consistent.
 *
 * The last two routines try to estimate how many bits of entropy
 * to credit. They do this by keeping track of the first and second
 * order deltas of the event timings.
 *
775 776
 **********************************************************************/

777 778
static bool trust_cpu __initdata = true;
static bool trust_bootloader __initdata = true;
779 780 781 782
static int __init parse_trust_cpu(char *arg)
{
	return kstrtobool(arg, &trust_cpu);
}
783 784 785 786
static int __init parse_trust_bootloader(char *arg)
{
	return kstrtobool(arg, &trust_bootloader);
}
787
early_param("random.trust_cpu", parse_trust_cpu);
788
early_param("random.trust_bootloader", parse_trust_bootloader);
789

790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
static int random_pm_notification(struct notifier_block *nb, unsigned long action, void *data)
{
	unsigned long flags, entropy = random_get_entropy();

	/*
	 * Encode a representation of how long the system has been suspended,
	 * in a way that is distinct from prior system suspends.
	 */
	ktime_t stamps[] = { ktime_get(), ktime_get_boottime(), ktime_get_real() };

	spin_lock_irqsave(&input_pool.lock, flags);
	_mix_pool_bytes(&action, sizeof(action));
	_mix_pool_bytes(stamps, sizeof(stamps));
	_mix_pool_bytes(&entropy, sizeof(entropy));
	spin_unlock_irqrestore(&input_pool.lock, flags);

	if (crng_ready() && (action == PM_RESTORE_PREPARE ||
807 808
	    (action == PM_POST_SUSPEND && !IS_ENABLED(CONFIG_PM_AUTOSLEEP) &&
	     !IS_ENABLED(CONFIG_PM_USERSPACE_AUTOSLEEP)))) {
809
		crng_reseed();
810 811 812 813 814 815 816
		pr_notice("crng reseeded on system resumption\n");
	}
	return 0;
}

static struct notifier_block pm_notifier = { .notifier_call = random_pm_notification };

817
/*
818 819
 * This is called extremely early, before time keeping functionality is
 * available, but arch randomness is. Interrupts are not yet enabled.
820
 */
821
void __init random_init_early(const char *command_line)
822
{
823
	unsigned long entropy[BLAKE2S_BLOCK_SIZE / sizeof(long)];
824
	size_t i, longs, arch_bits;
825

826 827 828 829 830
#if defined(LATENT_ENTROPY_PLUGIN)
	static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;
	_mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));
#endif

831
	for (i = 0, arch_bits = sizeof(entropy) * 8; i < ARRAY_SIZE(entropy);) {
832
		longs = arch_get_random_seed_longs(entropy, ARRAY_SIZE(entropy) - i);
833 834 835 836 837
		if (longs) {
			_mix_pool_bytes(entropy, sizeof(*entropy) * longs);
			i += longs;
			continue;
		}
838
		longs = arch_get_random_longs(entropy, ARRAY_SIZE(entropy) - i);
839 840 841 842
		if (longs) {
			_mix_pool_bytes(entropy, sizeof(*entropy) * longs);
			i += longs;
			continue;
843
		}
844 845
		arch_bits -= sizeof(*entropy) * 8;
		++i;
846
	}
847

848
	_mix_pool_bytes(init_utsname(), sizeof(*(init_utsname())));
849
	_mix_pool_bytes(command_line, strlen(command_line));
850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868

	/* Reseed if already seeded by earlier phases. */
	if (crng_ready())
		crng_reseed();
	else if (trust_cpu)
		_credit_init_bits(arch_bits);
}

/*
 * This is called a little bit after the prior function, and now there is
 * access to timestamps counters. Interrupts are not yet enabled.
 */
void __init random_init(void)
{
	unsigned long entropy = random_get_entropy();
	ktime_t now = ktime_get_real();

	_mix_pool_bytes(&now, sizeof(now));
	_mix_pool_bytes(&entropy, sizeof(entropy));
869
	add_latent_entropy();
870

871
	/*
872 873
	 * If we were initialized by the cpu or bootloader before jump labels
	 * are initialized, then we should enable the static branch here, where
874 875 876 877 878
	 * it's guaranteed that jump labels have been initialized.
	 */
	if (!static_branch_likely(&crng_is_ready) && crng_init >= CRNG_READY)
		crng_set_ready(NULL);

879
	/* Reseed if already seeded by earlier phases. */
880 881
	if (crng_ready())
		crng_reseed();
882

883 884
	WARN_ON(register_pm_notifier(&pm_notifier));

885 886
	WARN(!entropy, "Missing cycle counter and fallback timer; RNG "
		       "entropy collection will consequently suffer.");
887
}
888

889
/*
890 891
 * Add device- or boot-specific data to the input pool to help
 * initialize it.
892
 *
893 894 895
 * None of this adds any entropy; it is meant to avoid the problem of
 * the entropy pool having similar initial state across largely
 * identical devices.
896
 */
897
void add_device_randomness(const void *buf, size_t len)
898
{
899 900
	unsigned long entropy = random_get_entropy();
	unsigned long flags;
901

902
	spin_lock_irqsave(&input_pool.lock, flags);
903
	_mix_pool_bytes(&entropy, sizeof(entropy));
904
	_mix_pool_bytes(buf, len);
905
	spin_unlock_irqrestore(&input_pool.lock, flags);
906 907 908
}
EXPORT_SYMBOL(add_device_randomness);

909 910 911 912 913
/*
 * Interface for in-kernel drivers of true hardware RNGs.
 * Those devices may produce endless random bits and will be throttled
 * when our pool is full.
 */
914
void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy)
915
{
916
	mix_pool_bytes(buf, len);
917 918
	credit_init_bits(entropy);

919
	/*
920
	 * Throttle writing to once every reseed interval, unless we're not yet
921
	 * initialized or no entropy is credited.
922
	 */
923
	if (!kthread_should_stop() && (crng_ready() || !entropy))
924
		schedule_timeout_interruptible(crng_reseed_interval());
925 926 927 928
}
EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);

/*
929 930
 * Handle random seed passed by bootloader, and credit it depending
 * on the command line option 'random.trust_bootloader'.
931
 */
932
void __init add_bootloader_randomness(const void *buf, size_t len)
933
{
934
	mix_pool_bytes(buf, len);
935
	if (trust_bootloader)
936
		credit_init_bits(len * 8);
937 938
}

939
#if IS_ENABLED(CONFIG_VMGENID)
940 941
static BLOCKING_NOTIFIER_HEAD(vmfork_chain);

942 943 944 945 946
/*
 * Handle a new unique VM ID, which is unique, not secret, so we
 * don't credit it, but we do immediately force a reseed after so
 * that it's used by the crng posthaste.
 */
947
void __cold add_vmfork_randomness(const void *unique_vm_id, size_t len)
948
{
949
	add_device_randomness(unique_vm_id, len);
950
	if (crng_ready()) {
951
		crng_reseed();
952 953
		pr_notice("crng reseeded due to virtual machine fork\n");
	}
954
	blocking_notifier_call_chain(&vmfork_chain, 0, NULL);
955
}
956
#if IS_MODULE(CONFIG_VMGENID)
957
EXPORT_SYMBOL_GPL(add_vmfork_randomness);
958
#endif
959

960
int __cold register_random_vmfork_notifier(struct notifier_block *nb)
961 962 963 964 965
{
	return blocking_notifier_chain_register(&vmfork_chain, nb);
}
EXPORT_SYMBOL_GPL(register_random_vmfork_notifier);

966
int __cold unregister_random_vmfork_notifier(struct notifier_block *nb)
967 968 969 970
{
	return blocking_notifier_chain_unregister(&vmfork_chain, nb);
}
EXPORT_SYMBOL_GPL(unregister_random_vmfork_notifier);
971
#endif
972

973
struct fast_pool {
974
	unsigned long pool[4];
975
	unsigned long last;
976
	unsigned int count;
977
	struct timer_list mix;
978 979
};

980 981
static void mix_interrupt_randomness(struct timer_list *work);

982 983
static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
#ifdef CONFIG_64BIT
984
#define FASTMIX_PERM SIPHASH_PERMUTATION
985
	.pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 },
986
#else
987
#define FASTMIX_PERM HSIPHASH_PERMUTATION
988
	.pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 },
989
#endif
990
	.mix = __TIMER_INITIALIZER(mix_interrupt_randomness, 0)
991 992
};

993
/*
994 995 996
 * This is [Half]SipHash-1-x, starting from an empty key. Because
 * the key is fixed, it assumes that its inputs are non-malicious,
 * and therefore this has no security on its own. s represents the
997
 * four-word SipHash state, while v represents a two-word input.
998
 */
999
static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2)
1000
{
1001
	s[3] ^= v1;
1002
	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1003 1004
	s[0] ^= v1;
	s[3] ^= v2;
1005
	FASTMIX_PERM(s[0], s[1], s[2], s[3]);
1006
	s[0] ^= v2;
1007 1008
}

1009 1010 1011 1012 1013
#ifdef CONFIG_SMP
/*
 * This function is called when the CPU has just come online, with
 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
 */
1014
int __cold random_online_cpu(unsigned int cpu)
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
{
	/*
	 * During CPU shutdown and before CPU onlining, add_interrupt_
	 * randomness() may schedule mix_interrupt_randomness(), and
	 * set the MIX_INFLIGHT flag. However, because the worker can
	 * be scheduled on a different CPU during this period, that
	 * flag will never be cleared. For that reason, we zero out
	 * the flag here, which runs just after workqueues are onlined
	 * for the CPU again. This also has the effect of setting the
	 * irq randomness count to zero so that new accumulated irqs
	 * are fresh.
	 */
	per_cpu_ptr(&irq_randomness, cpu)->count = 0;
	return 0;
}
#endif

1032
static void mix_interrupt_randomness(struct timer_list *work)
1033 1034
{
	struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
1035
	/*
1036 1037 1038 1039 1040
	 * The size of the copied stack pool is explicitly 2 longs so that we
	 * only ever ingest half of the siphash output each time, retaining
	 * the other half as the next "key" that carries over. The entropy is
	 * supposed to be sufficiently dispersed between bits so on average
	 * we don't wind up "losing" some.
1041
	 */
1042
	unsigned long pool[2];
1043
	unsigned int count;
1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055

	/* Check to see if we're running on the wrong CPU due to hotplug. */
	local_irq_disable();
	if (fast_pool != this_cpu_ptr(&irq_randomness)) {
		local_irq_enable();
		return;
	}

	/*
	 * Copy the pool to the stack so that the mixer always has a
	 * consistent view, before we reenable irqs again.
	 */
1056
	memcpy(pool, fast_pool->pool, sizeof(pool));
1057
	count = fast_pool->count;
1058
	fast_pool->count = 0;
1059 1060 1061
	fast_pool->last = jiffies;
	local_irq_enable();

1062
	mix_pool_bytes(pool, sizeof(pool));
1063
	credit_init_bits(clamp_t(unsigned int, (count & U16_MAX) / 64, 1, sizeof(pool) * 8));
1064

1065 1066 1067
	memzero_explicit(pool, sizeof(pool));
}

1068
void add_interrupt_randomness(int irq)
L
Linus Torvalds 已提交
1069
{
1070
	enum { MIX_INFLIGHT = 1U << 31 };
1071
	unsigned long entropy = random_get_entropy();
1072 1073
	struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
	struct pt_regs *regs = get_irq_regs();
1074
	unsigned int new_count;
1075

1076 1077
	fast_mix(fast_pool->pool, entropy,
		 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq));
1078
	new_count = ++fast_pool->count;
1079

1080
	if (new_count & MIX_INFLIGHT)
L
Linus Torvalds 已提交
1081 1082
		return;

1083
	if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ))
1084
		return;
1085

1086
	fast_pool->count |= MIX_INFLIGHT;
1087 1088 1089 1090
	if (!timer_pending(&fast_pool->mix)) {
		fast_pool->mix.expires = jiffies;
		add_timer_on(&fast_pool->mix, raw_smp_processor_id());
	}
L
Linus Torvalds 已提交
1091
}
1092
EXPORT_SYMBOL_GPL(add_interrupt_randomness);
L
Linus Torvalds 已提交
1093

1094 1095 1096 1097 1098 1099 1100 1101
/* There is one of these per entropy source */
struct timer_rand_state {
	unsigned long last_time;
	long last_delta, last_delta2;
};

/*
 * This function adds entropy to the entropy "pool" by using timing
1102 1103 1104 1105
 * delays. It uses the timer_rand_state structure to make an estimate
 * of how many bits of entropy this call has added to the pool. The
 * value "num" is also added to the pool; it should somehow describe
 * the type of event that just happened.
1106 1107 1108 1109 1110
 */
static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
{
	unsigned long entropy = random_get_entropy(), now = jiffies, flags;
	long delta, delta2, delta3;
1111
	unsigned int bits;
1112

1113 1114 1115 1116 1117
	/*
	 * If we're in a hard IRQ, add_interrupt_randomness() will be called
	 * sometime after, so mix into the fast pool.
	 */
	if (in_hardirq()) {
1118
		fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num);
1119 1120 1121 1122 1123 1124
	} else {
		spin_lock_irqsave(&input_pool.lock, flags);
		_mix_pool_bytes(&entropy, sizeof(entropy));
		_mix_pool_bytes(&num, sizeof(num));
		spin_unlock_irqrestore(&input_pool.lock, flags);
	}
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154

	if (crng_ready())
		return;

	/*
	 * Calculate number of bits of randomness we probably added.
	 * We take into account the first, second and third-order deltas
	 * in order to make our estimate.
	 */
	delta = now - READ_ONCE(state->last_time);
	WRITE_ONCE(state->last_time, now);

	delta2 = delta - READ_ONCE(state->last_delta);
	WRITE_ONCE(state->last_delta, delta);

	delta3 = delta2 - READ_ONCE(state->last_delta2);
	WRITE_ONCE(state->last_delta2, delta2);

	if (delta < 0)
		delta = -delta;
	if (delta2 < 0)
		delta2 = -delta2;
	if (delta3 < 0)
		delta3 = -delta3;
	if (delta > delta2)
		delta = delta2;
	if (delta > delta3)
		delta = delta3;

	/*
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
	 * delta is now minimum absolute delta. Round down by 1 bit
	 * on general principles, and limit entropy estimate to 11 bits.
	 */
	bits = min(fls(delta >> 1), 11);

	/*
	 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness()
	 * will run after this, which uses a different crediting scheme of 1 bit
	 * per every 64 interrupts. In order to let that function do accounting
	 * close to the one in this function, we credit a full 64/64 bit per bit,
	 * and then subtract one to account for the extra one added.
1166
	 */
1167 1168 1169
	if (in_hardirq())
		this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1;
	else
1170
		_credit_init_bits(bits);
1171 1172
}

1173
void add_input_randomness(unsigned int type, unsigned int code, unsigned int value)
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
{
	static unsigned char last_value;
	static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };

	/* Ignore autorepeat and the like. */
	if (value == last_value)
		return;

	last_value = value;
	add_timer_randomness(&input_timer_state,
			     (type << 4) ^ code ^ (code >> 4) ^ value);
}
EXPORT_SYMBOL_GPL(add_input_randomness);

#ifdef CONFIG_BLOCK
void add_disk_randomness(struct gendisk *disk)
{
	if (!disk || !disk->random)
		return;
	/* First major is 1, so we get >= 0x200 here. */
	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
}
EXPORT_SYMBOL_GPL(add_disk_randomness);

1198
void __cold rand_initialize_disk(struct gendisk *disk)
1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
{
	struct timer_rand_state *state;

	/*
	 * If kzalloc returns null, we just won't use that entropy
	 * source.
	 */
	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
	if (state) {
		state->last_time = INITIAL_JIFFIES;
		disk->random = state;
	}
}
#endif

1214 1215 1216 1217 1218 1219
struct entropy_timer_state {
	unsigned long entropy;
	struct timer_list timer;
	unsigned int samples, samples_per_bit;
};

1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
/*
 * Each time the timer fires, we expect that we got an unpredictable
 * jump in the cycle counter. Even if the timer is running on another
 * CPU, the timer activity will be touching the stack of the CPU that is
 * generating entropy..
 *
 * Note that we don't re-arm the timer in the timer itself - we are
 * happy to be scheduled away, since that just makes the load more
 * complex, but we do not want the timer to keep ticking unless the
 * entropy loop is running.
 *
 * So the re-arming always happens in the entropy loop itself.
 */
1233
static void __cold entropy_timer(struct timer_list *timer)
1234
{
1235 1236 1237
	struct entropy_timer_state *state = container_of(timer, struct entropy_timer_state, timer);

	if (++state->samples == state->samples_per_bit) {
1238
		credit_init_bits(1);
1239 1240
		state->samples = 0;
	}
1241 1242 1243 1244 1245 1246
}

/*
 * If we have an actual cycle counter, see if we can
 * generate enough entropy with timing noise
 */
1247
static void __cold try_to_generate_entropy(void)
1248
{
1249
	enum { NUM_TRIAL_SAMPLES = 8192, MAX_SAMPLES_PER_BIT = HZ / 15 };
1250 1251 1252
	struct entropy_timer_state stack;
	unsigned int i, num_different = 0;
	unsigned long last = random_get_entropy();
1253

1254 1255 1256 1257 1258 1259 1260 1261
	for (i = 0; i < NUM_TRIAL_SAMPLES - 1; ++i) {
		stack.entropy = random_get_entropy();
		if (stack.entropy != last)
			++num_different;
		last = stack.entropy;
	}
	stack.samples_per_bit = DIV_ROUND_UP(NUM_TRIAL_SAMPLES, num_different + 1);
	if (stack.samples_per_bit > MAX_SAMPLES_PER_BIT)
1262 1263
		return;

1264
	stack.samples = 0;
1265
	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1266
	while (!crng_ready() && !signal_pending(current)) {
1267
		if (!timer_pending(&stack.timer))
1268
			mod_timer(&stack.timer, jiffies);
1269
		mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
1270
		schedule();
1271
		stack.entropy = random_get_entropy();
1272 1273 1274 1275
	}

	del_timer_sync(&stack.timer);
	destroy_timer_on_stack(&stack.timer);
1276
	mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
1277 1278
}

1279 1280 1281 1282 1283 1284 1285 1286

/**********************************************************************
 *
 * Userspace reader/writer interfaces.
 *
 * getrandom(2) is the primary modern interface into the RNG and should
 * be used in preference to anything else.
 *
1287 1288 1289 1290 1291 1292 1293 1294
 * Reading from /dev/random has the same functionality as calling
 * getrandom(2) with flags=0. In earlier versions, however, it had
 * vastly different semantics and should therefore be avoided, to
 * prevent backwards compatibility issues.
 *
 * Reading from /dev/urandom has the same functionality as calling
 * getrandom(2) with flags=GRND_INSECURE. Because it does not block
 * waiting for the RNG to be ready, it should not be used.
1295 1296 1297 1298
 *
 * Writing to either /dev/random or /dev/urandom adds entropy to
 * the input pool but does not credit it.
 *
1299 1300
 * Polling on /dev/random indicates when the RNG is initialized, on
 * the read side, and when it wants new entropy, on the write side.
1301 1302 1303 1304 1305 1306 1307
 *
 * Both /dev/random and /dev/urandom have the same set of ioctls for
 * adding entropy, getting the entropy count, zeroing the count, and
 * reseeding the crng.
 *
 **********************************************************************/

1308
SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags)
L
Linus Torvalds 已提交
1309
{
1310 1311 1312 1313
	struct iov_iter iter;
	struct iovec iov;
	int ret;

1314 1315
	if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
		return -EINVAL;
1316

1317 1318 1319 1320 1321 1322
	/*
	 * Requesting insecure and blocking randomness at the same time makes
	 * no sense.
	 */
	if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
		return -EINVAL;
1323

1324
	if (!crng_ready() && !(flags & GRND_INSECURE)) {
1325 1326 1327 1328 1329 1330
		if (flags & GRND_NONBLOCK)
			return -EAGAIN;
		ret = wait_for_random_bytes();
		if (unlikely(ret))
			return ret;
	}
1331 1332 1333 1334 1335

	ret = import_single_range(READ, ubuf, len, &iov, &iter);
	if (unlikely(ret))
		return ret;
	return get_random_bytes_user(&iter);
1336 1337
}

1338
static __poll_t random_poll(struct file *file, poll_table *wait)
L
Linus Torvalds 已提交
1339
{
1340
	poll_wait(file, &crng_init_wait, wait);
1341
	return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM;
L
Linus Torvalds 已提交
1342 1343
}

1344
static ssize_t write_pool_user(struct iov_iter *iter)
L
Linus Torvalds 已提交
1345
{
1346
	u8 block[BLAKE2S_BLOCK_SIZE];
1347 1348
	ssize_t ret = 0;
	size_t copied;
L
Linus Torvalds 已提交
1349

1350 1351 1352 1353 1354 1355 1356 1357 1358
	if (unlikely(!iov_iter_count(iter)))
		return 0;

	for (;;) {
		copied = copy_from_iter(block, sizeof(block), iter);
		ret += copied;
		mix_pool_bytes(block, copied);
		if (!iov_iter_count(iter) || copied != sizeof(block))
			break;
1359 1360 1361 1362 1363 1364 1365

		BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
		if (ret % PAGE_SIZE == 0) {
			if (signal_pending(current))
				break;
			cond_resched();
		}
L
Linus Torvalds 已提交
1366
	}
1367

1368
	memzero_explicit(block, sizeof(block));
1369
	return ret ? ret : -EFAULT;
1370 1371
}

1372
static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter)
1373
{
1374
	return write_pool_user(iter);
L
Linus Torvalds 已提交
1375 1376
}

1377
static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1378 1379 1380
{
	static int maxwarn = 10;

1381 1382 1383 1384 1385 1386 1387
	/*
	 * Opportunistically attempt to initialize the RNG on platforms that
	 * have fast cycle counters, but don't (for now) require it to succeed.
	 */
	if (!crng_ready())
		try_to_generate_entropy();

1388 1389 1390 1391 1392
	if (!crng_ready()) {
		if (!ratelimit_disable && maxwarn <= 0)
			++urandom_warning.missed;
		else if (ratelimit_disable || __ratelimit(&urandom_warning)) {
			--maxwarn;
1393 1394
			pr_notice("%s: uninitialized urandom read (%zu bytes read)\n",
				  current->comm, iov_iter_count(iter));
1395
		}
1396 1397
	}

1398
	return get_random_bytes_user(iter);
1399 1400
}

1401
static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1402 1403 1404
{
	int ret;

1405 1406 1407 1408 1409
	if (!crng_ready() &&
	    ((kiocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) ||
	     (kiocb->ki_filp->f_flags & O_NONBLOCK)))
		return -EAGAIN;

1410 1411 1412
	ret = wait_for_random_bytes();
	if (ret != 0)
		return ret;
1413
	return get_random_bytes_user(iter);
1414 1415
}

M
Matt Mackall 已提交
1416
static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
L
Linus Torvalds 已提交
1417 1418
{
	int __user *p = (int __user *)arg;
1419
	int ent_count;
L
Linus Torvalds 已提交
1420 1421 1422

	switch (cmd) {
	case RNDGETENTCNT:
1423
		/* Inherently racy, no point locking. */
1424
		if (put_user(input_pool.init_bits, p))
L
Linus Torvalds 已提交
1425 1426 1427 1428 1429 1430 1431
			return -EFAULT;
		return 0;
	case RNDADDTOENTCNT:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p))
			return -EFAULT;
1432 1433
		if (ent_count < 0)
			return -EINVAL;
1434
		credit_init_bits(ent_count);
1435
		return 0;
1436 1437 1438 1439 1440 1441
	case RNDADDENTROPY: {
		struct iov_iter iter;
		struct iovec iov;
		ssize_t ret;
		int len;

L
Linus Torvalds 已提交
1442 1443 1444 1445 1446 1447
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		if (get_user(ent_count, p++))
			return -EFAULT;
		if (ent_count < 0)
			return -EINVAL;
1448 1449 1450 1451 1452
		if (get_user(len, p++))
			return -EFAULT;
		ret = import_single_range(WRITE, p, len, &iov, &iter);
		if (unlikely(ret))
			return ret;
1453
		ret = write_pool_user(&iter);
1454 1455 1456 1457
		if (unlikely(ret < 0))
			return ret;
		/* Since we're crediting, enforce that it was all written into the pool. */
		if (unlikely(ret != len))
L
Linus Torvalds 已提交
1458
			return -EFAULT;
1459
		credit_init_bits(ent_count);
1460
		return 0;
1461
	}
L
Linus Torvalds 已提交
1462 1463
	case RNDZAPENTCNT:
	case RNDCLEARPOOL:
1464
		/* No longer has any effect. */
L
Linus Torvalds 已提交
1465 1466 1467
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
		return 0;
1468 1469 1470
	case RNDRESEEDCRNG:
		if (!capable(CAP_SYS_ADMIN))
			return -EPERM;
1471
		if (!crng_ready())
1472
			return -ENODATA;
1473
		crng_reseed();
1474
		return 0;
L
Linus Torvalds 已提交
1475 1476 1477 1478 1479
	default:
		return -EINVAL;
	}
}

1480 1481 1482 1483 1484
static int random_fasync(int fd, struct file *filp, int on)
{
	return fasync_helper(fd, filp, on, &fasync);
}

1485
const struct file_operations random_fops = {
1486
	.read_iter = random_read_iter,
1487
	.write_iter = random_write_iter,
1488
	.poll = random_poll,
M
Matt Mackall 已提交
1489
	.unlocked_ioctl = random_ioctl,
1490
	.compat_ioctl = compat_ptr_ioctl,
1491
	.fasync = random_fasync,
1492
	.llseek = noop_llseek,
1493 1494
	.splice_read = generic_file_splice_read,
	.splice_write = iter_file_splice_write,
L
Linus Torvalds 已提交
1495 1496
};

1497
const struct file_operations urandom_fops = {
1498
	.read_iter = urandom_read_iter,
1499
	.write_iter = random_write_iter,
1500 1501 1502 1503
	.unlocked_ioctl = random_ioctl,
	.compat_ioctl = compat_ptr_ioctl,
	.fasync = random_fasync,
	.llseek = noop_llseek,
1504 1505
	.splice_read = generic_file_splice_read,
	.splice_write = iter_file_splice_write,
1506 1507
};

1508

L
Linus Torvalds 已提交
1509 1510
/********************************************************************
 *
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
 * Sysctl interface.
 *
 * These are partly unused legacy knobs with dummy values to not break
 * userspace and partly still useful things. They are usually accessible
 * in /proc/sys/kernel/random/ and are as follows:
 *
 * - boot_id - a UUID representing the current boot.
 *
 * - uuid - a random UUID, different each time the file is read.
 *
 * - poolsize - the number of bits of entropy that the input pool can
 *   hold, tied to the POOL_BITS constant.
 *
 * - entropy_avail - the number of bits of entropy currently in the
 *   input pool. Always <= poolsize.
 *
 * - write_wakeup_threshold - the amount of entropy in the input pool
 *   below which write polls to /dev/random will unblock, requesting
1529
 *   more entropy, tied to the POOL_READY_BITS constant. It is writable
1530 1531 1532
 *   to avoid breaking old userspaces, but writing to it does not
 *   change any behavior of the RNG.
 *
1533
 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
1534 1535
 *   It is writable to avoid breaking old userspaces, but writing
 *   to it does not change any behavior of the RNG.
L
Linus Torvalds 已提交
1536 1537 1538 1539 1540 1541 1542
 *
 ********************************************************************/

#ifdef CONFIG_SYSCTL

#include <linux/sysctl.h>

1543
static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
1544
static int sysctl_random_write_wakeup_bits = POOL_READY_BITS;
1545
static int sysctl_poolsize = POOL_BITS;
1546
static u8 sysctl_bootid[UUID_SIZE];
L
Linus Torvalds 已提交
1547 1548

/*
G
Greg Price 已提交
1549
 * This function is used to return both the bootid UUID, and random
1550
 * UUID. The difference is in whether table->data is NULL; if it is,
L
Linus Torvalds 已提交
1551 1552
 * then a new UUID is generated and returned to the user.
 */
1553
static int proc_do_uuid(struct ctl_table *table, int write, void *buf,
1554
			size_t *lenp, loff_t *ppos)
L
Linus Torvalds 已提交
1555
{
1556 1557 1558 1559 1560 1561 1562 1563 1564
	u8 tmp_uuid[UUID_SIZE], *uuid;
	char uuid_string[UUID_STRING_LEN + 1];
	struct ctl_table fake_table = {
		.data = uuid_string,
		.maxlen = UUID_STRING_LEN
	};

	if (write)
		return -EPERM;
L
Linus Torvalds 已提交
1565 1566 1567 1568 1569

	uuid = table->data;
	if (!uuid) {
		uuid = tmp_uuid;
		generate_random_uuid(uuid);
1570 1571 1572 1573 1574 1575 1576 1577
	} else {
		static DEFINE_SPINLOCK(bootid_spinlock);

		spin_lock(&bootid_spinlock);
		if (!uuid[8])
			generate_random_uuid(uuid);
		spin_unlock(&bootid_spinlock);
	}
L
Linus Torvalds 已提交
1578

1579
	snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
1580
	return proc_dostring(&fake_table, 0, buf, lenp, ppos);
L
Linus Torvalds 已提交
1581 1582
}

1583
/* The same as proc_dointvec, but writes don't change anything. */
1584
static int proc_do_rointvec(struct ctl_table *table, int write, void *buf,
1585 1586
			    size_t *lenp, loff_t *ppos)
{
1587
	return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos);
1588 1589
}

1590
static struct ctl_table random_table[] = {
L
Linus Torvalds 已提交
1591 1592 1593 1594 1595
	{
		.procname	= "poolsize",
		.data		= &sysctl_poolsize,
		.maxlen		= sizeof(int),
		.mode		= 0444,
1596
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1597 1598 1599
	},
	{
		.procname	= "entropy_avail",
1600
		.data		= &input_pool.init_bits,
L
Linus Torvalds 已提交
1601 1602
		.maxlen		= sizeof(int),
		.mode		= 0444,
1603
		.proc_handler	= proc_dointvec,
L
Linus Torvalds 已提交
1604 1605 1606
	},
	{
		.procname	= "write_wakeup_threshold",
1607
		.data		= &sysctl_random_write_wakeup_bits,
L
Linus Torvalds 已提交
1608 1609
		.maxlen		= sizeof(int),
		.mode		= 0644,
1610
		.proc_handler	= proc_do_rointvec,
L
Linus Torvalds 已提交
1611
	},
1612 1613
	{
		.procname	= "urandom_min_reseed_secs",
1614
		.data		= &sysctl_random_min_urandom_seed,
1615 1616
		.maxlen		= sizeof(int),
		.mode		= 0644,
1617
		.proc_handler	= proc_do_rointvec,
1618
	},
L
Linus Torvalds 已提交
1619 1620 1621 1622
	{
		.procname	= "boot_id",
		.data		= &sysctl_bootid,
		.mode		= 0444,
1623
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1624 1625 1626 1627
	},
	{
		.procname	= "uuid",
		.mode		= 0444,
1628
		.proc_handler	= proc_do_uuid,
L
Linus Torvalds 已提交
1629
	},
1630
	{ }
L
Linus Torvalds 已提交
1631
};
1632 1633

/*
1634 1635
 * random_init() is called before sysctl_init(),
 * so we cannot call register_sysctl_init() in random_init()
1636 1637 1638 1639 1640 1641 1642
 */
static int __init random_sysctls_init(void)
{
	register_sysctl_init("kernel/random", random_table);
	return 0;
}
device_initcall(random_sysctls_init);
1643
#endif