hrtimer.c 46.4 KB
Newer Older
1 2 3
/*
 *  linux/kernel/hrtimer.c
 *
4
 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5
 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6
 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
 *
 *  High-resolution kernel timers
 *
 *  In contrast to the low-resolution timeout API implemented in
 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
 *  depending on system configuration and capabilities.
 *
 *  These timers are currently used for:
 *   - itimers
 *   - POSIX timers
 *   - nanosleep
 *   - precise in-kernel timing
 *
 *  Started by: Thomas Gleixner and Ingo Molnar
 *
 *  Credits:
 *	based on kernel/timer.c
 *
25 26 27 28 29 30
 *	Help, testing, suggestions, bugfixes, improvements were
 *	provided by:
 *
 *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
 *	et. al.
 *
31 32 33 34
 *  For licencing details see kernel-base/COPYING
 */

#include <linux/cpu.h>
35
#include <linux/export.h>
36 37 38 39
#include <linux/percpu.h>
#include <linux/hrtimer.h>
#include <linux/notifier.h>
#include <linux/syscalls.h>
40
#include <linux/kallsyms.h>
41
#include <linux/interrupt.h>
42
#include <linux/tick.h>
43 44
#include <linux/seq_file.h>
#include <linux/err.h>
45
#include <linux/debugobjects.h>
46
#include <linux/sched/signal.h>
47
#include <linux/sched/sysctl.h>
48
#include <linux/sched/rt.h>
49
#include <linux/sched/deadline.h>
50
#include <linux/sched/nohz.h>
51
#include <linux/sched/debug.h>
52
#include <linux/timer.h>
53
#include <linux/freezer.h>
54
#include <linux/compat.h>
55

56
#include <linux/uaccess.h>
57

58 59
#include <trace/events/timer.h>

60
#include "tick-internal.h"
61

62 63
/*
 * The timer bases:
64
 *
Z
Zhen Lei 已提交
65
 * There are more clockids than hrtimer bases. Thus, we index
66 67 68
 * into the timer bases by the hrtimer_base_type enum. When trying
 * to reach a base using a clockid, hrtimer_clockid_to_base()
 * is used to convert from clockid to the proper hrtimer_base_type.
69
 */
70
DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
71
{
72
	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
73
	.clock_base =
74
	{
75
		{
76 77
			.index = HRTIMER_BASE_MONOTONIC,
			.clockid = CLOCK_MONOTONIC,
78 79
			.get_time = &ktime_get,
		},
T
Thomas Gleixner 已提交
80 81 82 83 84
		{
			.index = HRTIMER_BASE_REALTIME,
			.clockid = CLOCK_REALTIME,
			.get_time = &ktime_get_real,
		},
85
		{
86 87
			.index = HRTIMER_BASE_BOOTTIME,
			.clockid = CLOCK_BOOTTIME,
88 89
			.get_time = &ktime_get_boottime,
		},
90 91 92 93 94
		{
			.index = HRTIMER_BASE_TAI,
			.clockid = CLOCK_TAI,
			.get_time = &ktime_get_clocktai,
		},
95
	}
96 97
};

98
static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
99 100 101
	/* Make sure we catch unsupported clockids */
	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,

102 103 104
	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
105
	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
106
};
107

108 109 110 111 112 113
/*
 * Functions and macros which are different for UP/SMP systems are kept in a
 * single place
 */
#ifdef CONFIG_SMP

114 115 116 117 118 119 120 121 122 123 124
/*
 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
 * such that hrtimer_callback_running() can unconditionally dereference
 * timer->base->cpu_base
 */
static struct hrtimer_cpu_base migration_cpu_base = {
	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
};

#define migration_base	migration_cpu_base.clock_base[0]

125 126 127 128 129 130 131 132 133
/*
 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 * means that all timers which are tied to this base via timer->base are
 * locked, and the base itself is locked too.
 *
 * So __run_timers/migrate_timers can safely modify all timers which could
 * be found on the lists/queues.
 *
 * When the timer's base is locked, and the timer removed from list, it is
134 135
 * possible to set timer->base = &migration_base and drop the lock: the timer
 * remains locked.
136
 */
137 138 139
static
struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
					     unsigned long *flags)
140
{
141
	struct hrtimer_clock_base *base;
142 143 144

	for (;;) {
		base = timer->base;
145
		if (likely(base != &migration_base)) {
146
			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
147 148 149
			if (likely(base == timer->base))
				return base;
			/* The timer has migrated to another CPU: */
150
			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
151 152 153 154 155
		}
		cpu_relax();
	}
}

156
/*
157 158 159 160 161
 * We do not migrate the timer when it is expiring before the next
 * event on the target cpu. When high resolution is enabled, we cannot
 * reprogram the target cpu hardware and we would cause it to fire
 * late. To keep it simple, we handle the high resolution enabled and
 * disabled case similar.
162 163 164 165 166 167 168 169 170
 *
 * Called with cpu_base->lock of target cpu held.
 */
static int
hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
{
	ktime_t expires;

	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
T
Thomas Gleixner 已提交
171
	return expires <= new_base->cpu_base->expires_next;
172 173
}

174 175 176 177
static inline
struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
					 int pinned)
{
178 179 180 181
#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
	if (static_branch_likely(&timers_migration_enabled) && !pinned)
		return &per_cpu(hrtimer_bases, get_nohz_timer_target());
#endif
182
	return base;
183 184
}

185
/*
186 187 188 189 190 191 192 193 194 195
 * We switch the timer base to a power-optimized selected CPU target,
 * if:
 *	- NO_HZ_COMMON is enabled
 *	- timer migration is enabled
 *	- the timer callback is not running
 *	- the timer is not the first expiring timer on the new target
 *
 * If one of the above requirements is not fulfilled we move the timer
 * to the current CPU or leave it on the previously assigned CPU if
 * the timer callback is currently running.
196
 */
197
static inline struct hrtimer_clock_base *
198 199
switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
		    int pinned)
200
{
201
	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
202
	struct hrtimer_clock_base *new_base;
203
	int basenum = base->index;
204

205 206
	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
	new_cpu_base = get_target_base(this_cpu_base, pinned);
207
again:
208
	new_base = &new_cpu_base->clock_base[basenum];
209 210 211

	if (base != new_base) {
		/*
212
		 * We are trying to move timer to new_base.
213 214 215 216 217 218 219
		 * However we can't change timer's base while it is running,
		 * so we keep it on the same CPU. No hassle vs. reprogramming
		 * the event source in the high resolution case. The softirq
		 * code will take care of this when the timer function has
		 * completed. There is no conflict as we hold the lock until
		 * the timer is enqueued.
		 */
220
		if (unlikely(hrtimer_callback_running(timer)))
221 222
			return base;

223 224
		/* See the comment in lock_hrtimer_base() */
		timer->base = &migration_base;
225 226
		raw_spin_unlock(&base->cpu_base->lock);
		raw_spin_lock(&new_base->cpu_base->lock);
227

228
		if (new_cpu_base != this_cpu_base &&
229
		    hrtimer_check_target(timer, new_base)) {
230 231
			raw_spin_unlock(&new_base->cpu_base->lock);
			raw_spin_lock(&base->cpu_base->lock);
232
			new_cpu_base = this_cpu_base;
233 234
			timer->base = base;
			goto again;
235
		}
236
		timer->base = new_base;
237
	} else {
238
		if (new_cpu_base != this_cpu_base &&
239
		    hrtimer_check_target(timer, new_base)) {
240
			new_cpu_base = this_cpu_base;
241 242
			goto again;
		}
243 244 245 246 247 248
	}
	return new_base;
}

#else /* CONFIG_SMP */

249
static inline struct hrtimer_clock_base *
250 251
lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
252
	struct hrtimer_clock_base *base = timer->base;
253

254
	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
255 256 257 258

	return base;
}

259
# define switch_hrtimer_base(t, b, p)	(b)
260 261 262 263 264 265 266 267 268 269 270

#endif	/* !CONFIG_SMP */

/*
 * Functions for the union type storage format of ktime_t which are
 * too large for inlining:
 */
#if BITS_PER_LONG < 64
/*
 * Divide a ktime value by a nanosecond value
 */
271
s64 __ktime_divns(const ktime_t kt, s64 div)
272 273
{
	int sft = 0;
274 275
	s64 dclc;
	u64 tmp;
276

277
	dclc = ktime_to_ns(kt);
278 279
	tmp = dclc < 0 ? -dclc : dclc;

280 281 282 283 284
	/* Make sure the divisor is less than 2^32: */
	while (div >> 32) {
		sft++;
		div >>= 1;
	}
285 286 287
	tmp >>= sft;
	do_div(tmp, (unsigned long) div);
	return dclc < 0 ? -tmp : tmp;
288
}
289
EXPORT_SYMBOL_GPL(__ktime_divns);
290 291
#endif /* BITS_PER_LONG >= 64 */

292 293 294 295 296
/*
 * Add two ktime values and do a safety check for overflow:
 */
ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
{
297
	ktime_t res = ktime_add_unsafe(lhs, rhs);
298 299 300 301 302

	/*
	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
	 * return to user space in a timespec:
	 */
T
Thomas Gleixner 已提交
303
	if (res < 0 || res < lhs || res < rhs)
304 305 306 307 308
		res = ktime_set(KTIME_SEC_MAX, 0);

	return res;
}

309 310
EXPORT_SYMBOL_GPL(ktime_add_safe);

311 312 313 314
#ifdef CONFIG_DEBUG_OBJECTS_TIMERS

static struct debug_obj_descr hrtimer_debug_descr;

315 316 317 318 319
static void *hrtimer_debug_hint(void *addr)
{
	return ((struct hrtimer *) addr)->function;
}

320 321 322 323
/*
 * fixup_init is called when:
 * - an active object is initialized
 */
324
static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
325 326 327 328 329 330 331
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_init(timer, &hrtimer_debug_descr);
332
		return true;
333
	default:
334
		return false;
335 336 337 338 339 340
	}
}

/*
 * fixup_activate is called when:
 * - an active object is activated
341
 * - an unknown non-static object is activated
342
 */
343
static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
344 345 346 347 348 349
{
	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		WARN_ON(1);

	default:
350
		return false;
351 352 353 354 355 356 357
	}
}

/*
 * fixup_free is called when:
 * - an active object is freed
 */
358
static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
359 360 361 362 363 364 365
{
	struct hrtimer *timer = addr;

	switch (state) {
	case ODEBUG_STATE_ACTIVE:
		hrtimer_cancel(timer);
		debug_object_free(timer, &hrtimer_debug_descr);
366
		return true;
367
	default:
368
		return false;
369 370 371 372 373
	}
}

static struct debug_obj_descr hrtimer_debug_descr = {
	.name		= "hrtimer",
374
	.debug_hint	= hrtimer_debug_hint,
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
	.fixup_init	= hrtimer_fixup_init,
	.fixup_activate	= hrtimer_fixup_activate,
	.fixup_free	= hrtimer_fixup_free,
};

static inline void debug_hrtimer_init(struct hrtimer *timer)
{
	debug_object_init(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_activate(struct hrtimer *timer)
{
	debug_object_activate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
{
	debug_object_deactivate(timer, &hrtimer_debug_descr);
}

static inline void debug_hrtimer_free(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}

static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode);

void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
{
	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
	__hrtimer_init(timer, clock_id, mode);
}
S
Stephen Hemminger 已提交
409
EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
410 411 412 413 414

void destroy_hrtimer_on_stack(struct hrtimer *timer)
{
	debug_object_free(timer, &hrtimer_debug_descr);
}
415
EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
416 417 418 419 420 421 422

#else
static inline void debug_hrtimer_init(struct hrtimer *timer) { }
static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
#endif

423 424 425 426 427 428 429 430
static inline void
debug_init(struct hrtimer *timer, clockid_t clockid,
	   enum hrtimer_mode mode)
{
	debug_hrtimer_init(timer);
	trace_hrtimer_init(timer, clockid, mode);
}

431 432
static inline void debug_activate(struct hrtimer *timer,
				  enum hrtimer_mode mode)
433 434
{
	debug_hrtimer_activate(timer);
435
	trace_hrtimer_start(timer, mode);
436 437 438 439 440 441 442 443
}

static inline void debug_deactivate(struct hrtimer *timer)
{
	debug_hrtimer_deactivate(timer);
	trace_hrtimer_cancel(timer);
}

444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460
static struct hrtimer_clock_base *
__next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
{
	unsigned int idx;

	if (!*active)
		return NULL;

	idx = __ffs(*active);
	*active &= ~(1U << idx);

	return &cpu_base->clock_base[idx];
}

#define for_each_active_base(base, cpu_base, active)	\
	while ((base = __next_base((cpu_base), &(active))))

461
#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
462 463 464 465 466 467 468 469
static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
					     struct hrtimer *timer)
{
#ifdef CONFIG_HIGH_RES_TIMERS
	cpu_base->next_timer = timer;
#endif
}

470
static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
471
{
472
	struct hrtimer_clock_base *base;
473
	unsigned int active = cpu_base->active_bases;
T
Thomas Gleixner 已提交
474
	ktime_t expires, expires_next = KTIME_MAX;
475

476
	hrtimer_update_next_timer(cpu_base, NULL);
477
	for_each_active_base(base, cpu_base, active) {
478 479 480
		struct timerqueue_node *next;
		struct hrtimer *timer;

481
		next = timerqueue_getnext(&base->active);
482 483
		timer = container_of(next, struct hrtimer, node);
		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
T
Thomas Gleixner 已提交
484
		if (expires < expires_next) {
485
			expires_next = expires;
486 487
			hrtimer_update_next_timer(cpu_base, timer);
		}
488 489 490 491 492 493
	}
	/*
	 * clock_was_set() might have changed base->offset of any of
	 * the clock bases so the result might be negative. Fix it up
	 * to prevent a false positive in clockevents_program_event().
	 */
T
Thomas Gleixner 已提交
494 495
	if (expires_next < 0)
		expires_next = 0;
496 497 498 499
	return expires_next;
}
#endif

500 501 502 503 504 505
static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
{
	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;

506 507
	return ktime_get_update_offsets_now(&base->clock_was_set_seq,
					    offs_real, offs_boot, offs_tai);
508 509
}

510 511 512 513 514 515 516 517 518 519 520 521 522 523
/*
 * Is the high resolution mode active ?
 */
static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
{
	return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
		cpu_base->hres_active : 0;
}

static inline int hrtimer_hres_active(void)
{
	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
}

524 525 526 527 528 529
/* High resolution timer related functions */
#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer enabled ?
 */
530
static bool hrtimer_hres_enabled __read_mostly  = true;
531 532
unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
EXPORT_SYMBOL_GPL(hrtimer_resolution);
533 534 535 536 537 538

/*
 * Enable / Disable high resolution mode
 */
static int __init setup_hrtimer_hres(char *str)
{
539
	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
}

__setup("highres=", setup_hrtimer_hres);

/*
 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 */
static inline int hrtimer_is_hres_enabled(void)
{
	return hrtimer_hres_enabled;
}

/*
 * Reprogram the event source with checking both queues for the
 * next event
 * Called with interrupts disabled and base->lock held
 */
557 558
static void
hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
559
{
560 561
	ktime_t expires_next;

562
	if (!__hrtimer_hres_active(cpu_base))
563 564 565
		return;

	expires_next = __hrtimer_get_next_event(cpu_base);
566

T
Thomas Gleixner 已提交
567
	if (skip_equal && expires_next == cpu_base->expires_next)
568 569
		return;

T
Thomas Gleixner 已提交
570
	cpu_base->expires_next = expires_next;
571

572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * leave the hang delay active in the hardware. We want the
	 * system to make progress. That also prevents the following
	 * scenario:
	 * T1 expires 50ms from now
	 * T2 expires 5s from now
	 *
	 * T1 is removed, so this code is called and would reprogram
	 * the hardware to 5s from now. Any hrtimer_start after that
	 * will not reprogram the hardware due to hang_detected being
	 * set. So we'd effectivly block all timers until the T2 event
	 * fires.
	 */
	if (cpu_base->hang_detected)
		return;

589
	tick_program_event(cpu_base->expires_next, 1);
590 591 592 593 594 595 596 597 598
}

/*
 * When a timer is enqueued and expires earlier than the already enqueued
 * timers, we have to check, whether it expires earlier than the timer for
 * which the clock event device was armed.
 *
 * Called with interrupts disabled and base->cpu_base.lock held
 */
599 600
static void hrtimer_reprogram(struct hrtimer *timer,
			      struct hrtimer_clock_base *base)
601
{
602
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
603
	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
604

605
	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
606

607
	/*
608 609
	 * If the timer is not on the current cpu, we cannot reprogram
	 * the other cpus clock event device.
610
	 */
611 612 613 614 615 616 617 618 619 620 621 622
	if (base->cpu_base != cpu_base)
		return;

	/*
	 * If the hrtimer interrupt is running, then it will
	 * reevaluate the clock bases and reprogram the clock event
	 * device. The callbacks are always executed in hard interrupt
	 * context so we don't need an extra check for a running
	 * callback.
	 */
	if (cpu_base->in_hrtirq)
		return;
623

624 625
	/*
	 * CLOCK_REALTIME timer might be requested with an absolute
626
	 * expiry time which is less than base->offset. Set it to 0.
627
	 */
T
Thomas Gleixner 已提交
628 629
	if (expires < 0)
		expires = 0;
630

T
Thomas Gleixner 已提交
631
	if (expires >= cpu_base->expires_next)
632
		return;
633

634
	/* Update the pointer to the next expiring timer */
635
	cpu_base->next_timer = timer;
636

637 638 639 640 641 642 643
	/*
	 * If a hang was detected in the last timer interrupt then we
	 * do not schedule a timer which is earlier than the expiry
	 * which we enforced in the hang detection. We want the system
	 * to make progress.
	 */
	if (cpu_base->hang_detected)
644
		return;
645 646

	/*
647 648
	 * Program the timer hardware. We enforce the expiry for
	 * events which are already in the past.
649
	 */
650 651
	cpu_base->expires_next = expires;
	tick_program_event(expires, 1);
652 653
}

654 655 656 657 658 659 660
/*
 * Retrigger next event is called after clock was set
 *
 * Called with interrupts disabled via on_each_cpu()
 */
static void retrigger_next_event(void *arg)
{
661
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
662

663
	if (!__hrtimer_hres_active(base))
664 665 666
		return;

	raw_spin_lock(&base->lock);
667
	hrtimer_update_base(base);
668 669 670
	hrtimer_force_reprogram(base, 0);
	raw_spin_unlock(&base->lock);
}
671

672 673 674
/*
 * Switch to high resolution mode
 */
675
static void hrtimer_switch_to_hres(void)
676
{
677
	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
678 679

	if (tick_init_highres()) {
I
Ingo Molnar 已提交
680
		printk(KERN_WARNING "Could not switch to high resolution "
681
				    "mode on CPU %d\n", base->cpu);
682
		return;
683 684
	}
	base->hres_active = 1;
685
	hrtimer_resolution = HIGH_RES_NSEC;
686 687 688 689 690 691

	tick_setup_sched_timer();
	/* "Retrigger" the interrupt to get things going */
	retrigger_next_event(NULL);
}

692 693 694 695 696 697 698
static void clock_was_set_work(struct work_struct *work)
{
	clock_was_set();
}

static DECLARE_WORK(hrtimer_work, clock_was_set_work);

699
/*
P
Pratyush Patel 已提交
700
 * Called from timekeeping and resume code to reprogram the hrtimer
701
 * interrupt device on all cpus.
702 703 704
 */
void clock_was_set_delayed(void)
{
705
	schedule_work(&hrtimer_work);
706 707
}

708 709 710
#else

static inline int hrtimer_is_hres_enabled(void) { return 0; }
711
static inline void hrtimer_switch_to_hres(void) { }
712 713
static inline void
hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
714 715
static inline int hrtimer_reprogram(struct hrtimer *timer,
				    struct hrtimer_clock_base *base)
716 717 718
{
	return 0;
}
719
static inline void retrigger_next_event(void *arg) { }
720 721 722

#endif /* CONFIG_HIGH_RES_TIMERS */

723 724 725 726 727 728 729 730 731 732 733 734 735
/*
 * Clock realtime was set
 *
 * Change the offset of the realtime clock vs. the monotonic
 * clock.
 *
 * We might have to reprogram the high resolution timer interrupt. On
 * SMP we call the architecture specific code to retrigger _all_ high
 * resolution timer interrupts. On UP we just disable interrupts and
 * call the high resolution interrupt code.
 */
void clock_was_set(void)
{
736
#ifdef CONFIG_HIGH_RES_TIMERS
737 738
	/* Retrigger the CPU local events everywhere */
	on_each_cpu(retrigger_next_event, NULL, 1);
739 740
#endif
	timerfd_clock_was_set();
741 742 743 744
}

/*
 * During resume we might have to reprogram the high resolution timer
745 746
 * interrupt on all online CPUs.  However, all other CPUs will be
 * stopped with IRQs interrupts disabled so the clock_was_set() call
747
 * must be deferred.
748 749 750
 */
void hrtimers_resume(void)
{
751
	lockdep_assert_irqs_disabled();
752
	/* Retrigger on the local CPU */
753
	retrigger_next_event(NULL);
754 755
	/* And schedule a retrigger for all others */
	clock_was_set_delayed();
756 757
}

758
/*
759
 * Counterpart to lock_hrtimer_base above:
760 761 762 763
 */
static inline
void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
{
764
	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
765 766 767 768 769
}

/**
 * hrtimer_forward - forward the timer expiry
 * @timer:	hrtimer to forward
770
 * @now:	forward past this time
771 772 773
 * @interval:	the interval to forward
 *
 * Forward the timer expiry so it will expire in the future.
J
Jonathan Corbet 已提交
774
 * Returns the number of overruns.
775 776 777 778 779 780 781 782
 *
 * Can be safely called from the callback function of @timer. If
 * called from other contexts @timer must neither be enqueued nor
 * running the callback and the caller needs to take care of
 * serialization.
 *
 * Note: This only updates the timer expiry value and does not requeue
 * the timer.
783
 */
D
Davide Libenzi 已提交
784
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
785
{
D
Davide Libenzi 已提交
786
	u64 orun = 1;
787
	ktime_t delta;
788

789
	delta = ktime_sub(now, hrtimer_get_expires(timer));
790

T
Thomas Gleixner 已提交
791
	if (delta < 0)
792 793
		return 0;

794 795 796
	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
		return 0;

T
Thomas Gleixner 已提交
797 798
	if (interval < hrtimer_resolution)
		interval = hrtimer_resolution;
799

T
Thomas Gleixner 已提交
800
	if (unlikely(delta >= interval)) {
801
		s64 incr = ktime_to_ns(interval);
802 803

		orun = ktime_divns(delta, incr);
804
		hrtimer_add_expires_ns(timer, incr * orun);
T
Thomas Gleixner 已提交
805
		if (hrtimer_get_expires_tv64(timer) > now)
806 807 808 809 810 811 812
			return orun;
		/*
		 * This (and the ktime_add() below) is the
		 * correction for exact:
		 */
		orun++;
	}
813
	hrtimer_add_expires(timer, interval);
814 815 816

	return orun;
}
S
Stas Sergeev 已提交
817
EXPORT_SYMBOL_GPL(hrtimer_forward);
818 819 820 821 822 823

/*
 * enqueue_hrtimer - internal function to (re)start a timer
 *
 * The timer is inserted in expiry order. Insertion into the
 * red black tree is O(log(n)). Must hold the base lock.
824 825
 *
 * Returns 1 when the new timer is the leftmost timer in the tree.
826
 */
827
static int enqueue_hrtimer(struct hrtimer *timer,
828 829
			   struct hrtimer_clock_base *base,
			   enum hrtimer_mode mode)
830
{
831
	debug_activate(timer, mode);
832

833
	base->cpu_base->active_bases |= 1 << base->index;
834

835
	timer->state = HRTIMER_STATE_ENQUEUED;
836

837
	return timerqueue_add(&base->active, &timer->node);
838
}
839 840 841 842 843

/*
 * __remove_hrtimer - internal function to remove a timer
 *
 * Caller must hold the base lock.
844 845 846 847 848
 *
 * High resolution timer mode reprograms the clock event device when the
 * timer is the one which expires next. The caller can disable this by setting
 * reprogram to zero. This is useful, when the context does a reprogramming
 * anyway (e.g. timer interrupt)
849
 */
850
static void __remove_hrtimer(struct hrtimer *timer,
851
			     struct hrtimer_clock_base *base,
852
			     u8 newstate, int reprogram)
853
{
854
	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
855
	u8 state = timer->state;
856

857 858 859
	timer->state = newstate;
	if (!(state & HRTIMER_STATE_ENQUEUED))
		return;
860

861
	if (!timerqueue_del(&base->active, &timer->node))
862
		cpu_base->active_bases &= ~(1 << base->index);
863 864

#ifdef CONFIG_HIGH_RES_TIMERS
865 866 867 868 869 870 871 872 873 874
	/*
	 * Note: If reprogram is false we do not update
	 * cpu_base->next_timer. This happens when we remove the first
	 * timer on a remote cpu. No harm as we never dereference
	 * cpu_base->next_timer. So the worst thing what can happen is
	 * an superflous call to hrtimer_force_reprogram() on the
	 * remote cpu later on if the same timer gets enqueued again.
	 */
	if (reprogram && timer == cpu_base->next_timer)
		hrtimer_force_reprogram(cpu_base, 1);
875
#endif
876 877 878 879 880 881
}

/*
 * remove hrtimer, called with base lock held
 */
static inline int
882
remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
883
{
884
	if (hrtimer_is_queued(timer)) {
885
		u8 state = timer->state;
886 887 888 889 890 891 892 893 894 895
		int reprogram;

		/*
		 * Remove the timer and force reprogramming when high
		 * resolution mode is active and the timer is on the current
		 * CPU. If we remove a timer on another CPU, reprogramming is
		 * skipped. The interrupt event on this CPU is fired and
		 * reprogramming happens in the interrupt handler. This is a
		 * rare case and less expensive than a smp call.
		 */
896
		debug_deactivate(timer);
897
		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
898

899 900 901
		if (!restart)
			state = HRTIMER_STATE_INACTIVE;

902
		__remove_hrtimer(timer, base, state, reprogram);
903 904 905 906 907
		return 1;
	}
	return 0;
}

908 909 910 911 912 913 914 915 916 917 918
static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
					    const enum hrtimer_mode mode)
{
#ifdef CONFIG_TIME_LOW_RES
	/*
	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
	 * granular time values. For relative timers we add hrtimer_resolution
	 * (i.e. one jiffie) to prevent short timeouts.
	 */
	timer->is_rel = mode & HRTIMER_MODE_REL;
	if (timer->is_rel)
T
Thomas Gleixner 已提交
919
		tim = ktime_add_safe(tim, hrtimer_resolution);
920 921 922 923
#endif
	return tim;
}

924
/**
925
 * hrtimer_start_range_ns - (re)start an hrtimer
926 927 928
 * @timer:	the timer to be added
 * @tim:	expiry time
 * @delta_ns:	"slack" range for the timer
929 930
 * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED)
931
 */
932
void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
933
			    u64 delta_ns, const enum hrtimer_mode mode)
934
{
935
	struct hrtimer_clock_base *base, *new_base;
936
	unsigned long flags;
937
	int leftmost;
938 939 940 941

	base = lock_hrtimer_base(timer, &flags);

	/* Remove an active timer from the queue: */
942
	remove_hrtimer(timer, base, true);
943

944
	if (mode & HRTIMER_MODE_REL)
945
		tim = ktime_add_safe(tim, base->get_time());
946 947

	tim = hrtimer_update_lowres(timer, tim, mode);
948

949
	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
950

951 952 953
	/* Switch the timer base, if necessary: */
	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);

954
	leftmost = enqueue_hrtimer(timer, new_base, mode);
955 956
	if (!leftmost)
		goto unlock;
957 958 959 960 961 962

	if (!hrtimer_is_hres_active(timer)) {
		/*
		 * Kick to reschedule the next tick to handle the new timer
		 * on dynticks target.
		 */
963
		if (is_timers_nohz_active())
964
			wake_up_nohz_cpu(new_base->cpu_base->cpu);
965 966
	} else {
		hrtimer_reprogram(timer, new_base);
967
	}
968
unlock:
969
	unlock_hrtimer_base(timer, &flags);
970
}
971 972
EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);

973 974 975 976 977 978 979
/**
 * hrtimer_try_to_cancel - try to deactivate a timer
 * @timer:	hrtimer to stop
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
980
 * -1 when the timer is currently executing the callback function and
981
 *    cannot be stopped
982 983 984
 */
int hrtimer_try_to_cancel(struct hrtimer *timer)
{
985
	struct hrtimer_clock_base *base;
986 987 988
	unsigned long flags;
	int ret = -1;

989 990 991 992 993 994 995 996 997
	/*
	 * Check lockless first. If the timer is not active (neither
	 * enqueued nor running the callback, nothing to do here.  The
	 * base lock does not serialize against a concurrent enqueue,
	 * so we can avoid taking it.
	 */
	if (!hrtimer_active(timer))
		return 0;

998 999
	base = lock_hrtimer_base(timer, &flags);

1000
	if (!hrtimer_callback_running(timer))
1001
		ret = remove_hrtimer(timer, base, false);
1002 1003 1004 1005 1006 1007

	unlock_hrtimer_base(timer, &flags);

	return ret;

}
1008
EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024

/**
 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 * @timer:	the timer to be cancelled
 *
 * Returns:
 *  0 when the timer was not active
 *  1 when the timer was active
 */
int hrtimer_cancel(struct hrtimer *timer)
{
	for (;;) {
		int ret = hrtimer_try_to_cancel(timer);

		if (ret >= 0)
			return ret;
1025
		cpu_relax();
1026 1027
	}
}
1028
EXPORT_SYMBOL_GPL(hrtimer_cancel);
1029 1030 1031 1032

/**
 * hrtimer_get_remaining - get remaining time for the timer
 * @timer:	the timer to read
1033
 * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1034
 */
1035
ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1036 1037 1038 1039
{
	unsigned long flags;
	ktime_t rem;

1040
	lock_hrtimer_base(timer, &flags);
1041 1042 1043 1044
	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
		rem = hrtimer_expires_remaining_adjusted(timer);
	else
		rem = hrtimer_expires_remaining(timer);
1045 1046 1047 1048
	unlock_hrtimer_base(timer, &flags);

	return rem;
}
1049
EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1050

1051
#ifdef CONFIG_NO_HZ_COMMON
1052 1053 1054
/**
 * hrtimer_get_next_event - get the time until next expiry event
 *
1055
 * Returns the next expiry time or KTIME_MAX if no timer is pending.
1056
 */
1057
u64 hrtimer_get_next_event(void)
1058
{
1059
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1060
	u64 expires = KTIME_MAX;
1061 1062
	unsigned long flags;

1063
	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1064

1065
	if (!__hrtimer_hres_active(cpu_base))
T
Thomas Gleixner 已提交
1066
		expires = __hrtimer_get_next_event(cpu_base);
1067

1068
	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1069

1070
	return expires;
1071 1072 1073
}
#endif

1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
static inline int hrtimer_clockid_to_base(clockid_t clock_id)
{
	if (likely(clock_id < MAX_CLOCKS)) {
		int base = hrtimer_clock_to_base_table[clock_id];

		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
			return base;
	}
	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
	return HRTIMER_BASE_MONOTONIC;
}

1086 1087
static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
			   enum hrtimer_mode mode)
1088
{
1089
	struct hrtimer_cpu_base *cpu_base;
1090
	int base;
1091

1092 1093
	memset(timer, 0, sizeof(struct hrtimer));

1094
	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1095

1096 1097 1098 1099 1100 1101
	/*
	 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
	 * clock modifications, so they needs to become CLOCK_MONOTONIC to
	 * ensure POSIX compliance.
	 */
	if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1102 1103
		clock_id = CLOCK_MONOTONIC;

1104 1105
	base = hrtimer_clockid_to_base(clock_id);
	timer->base = &cpu_base->clock_base[base];
1106
	timerqueue_init(&timer->node);
1107
}
1108 1109 1110 1111 1112

/**
 * hrtimer_init - initialize a timer to the given clock
 * @timer:	the timer to be initialized
 * @clock_id:	the clock to be used
1113 1114
 * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
 *		relative (HRTIMER_MODE_REL); pinned is not considered here!
1115 1116 1117 1118
 */
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
		  enum hrtimer_mode mode)
{
1119
	debug_init(timer, clock_id, mode);
1120 1121
	__hrtimer_init(timer, clock_id, mode);
}
1122
EXPORT_SYMBOL_GPL(hrtimer_init);
1123

1124 1125 1126 1127
/*
 * A timer is active, when it is enqueued into the rbtree or the
 * callback function is running or it's in the state of being migrated
 * to another cpu.
1128
 *
1129
 * It is important for this function to not return a false negative.
1130
 */
1131
bool hrtimer_active(const struct hrtimer *timer)
1132
{
1133
	struct hrtimer_clock_base *base;
1134
	unsigned int seq;
1135

1136
	do {
1137 1138
		base = READ_ONCE(timer->base);
		seq = raw_read_seqcount_begin(&base->seq);
1139

1140
		if (timer->state != HRTIMER_STATE_INACTIVE ||
1141
		    base->running == timer)
1142 1143
			return true;

1144 1145
	} while (read_seqcount_retry(&base->seq, seq) ||
		 base != READ_ONCE(timer->base));
1146 1147

	return false;
1148
}
1149
EXPORT_SYMBOL_GPL(hrtimer_active);
1150

1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
/*
 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
 * distinct sections:
 *
 *  - queued:	the timer is queued
 *  - callback:	the timer is being ran
 *  - post:	the timer is inactive or (re)queued
 *
 * On the read side we ensure we observe timer->state and cpu_base->running
 * from the same section, if anything changed while we looked at it, we retry.
 * This includes timer->base changing because sequence numbers alone are
 * insufficient for that.
 *
 * The sequence numbers are required because otherwise we could still observe
 * a false negative if the read side got smeared over multiple consequtive
 * __run_hrtimer() invocations.
 */

1169 1170 1171
static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
			  struct hrtimer_clock_base *base,
			  struct hrtimer *timer, ktime_t *now)
1172 1173 1174 1175
{
	enum hrtimer_restart (*fn)(struct hrtimer *);
	int restart;

1176
	lockdep_assert_held(&cpu_base->lock);
1177

1178
	debug_deactivate(timer);
1179
	base->running = timer;
1180 1181 1182 1183 1184

	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
1185
	 * hrtimer_active() cannot observe base->running == NULL &&
1186 1187
	 * timer->state == INACTIVE.
	 */
1188
	raw_write_seqcount_barrier(&base->seq);
1189 1190

	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1191
	fn = timer->function;
1192

1193 1194 1195 1196 1197 1198 1199 1200
	/*
	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
	 * timer is restarted with a period then it becomes an absolute
	 * timer. If its not restarted it does not matter.
	 */
	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
		timer->is_rel = false;

1201
	/*
1202 1203 1204
	 * The timer is marked as running in the CPU base, so it is
	 * protected against migration to a different CPU even if the lock
	 * is dropped.
1205
	 */
1206
	raw_spin_unlock(&cpu_base->lock);
1207
	trace_hrtimer_expire_entry(timer, now);
1208
	restart = fn(timer);
1209
	trace_hrtimer_expire_exit(timer);
1210
	raw_spin_lock(&cpu_base->lock);
1211 1212

	/*
1213
	 * Note: We clear the running state after enqueue_hrtimer and
P
Pratyush Patel 已提交
1214
	 * we do not reprogram the event hardware. Happens either in
T
Thomas Gleixner 已提交
1215
	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1216 1217 1218 1219
	 *
	 * Note: Because we dropped the cpu_base->lock above,
	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
	 * for us already.
1220
	 */
1221 1222
	if (restart != HRTIMER_NORESTART &&
	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1223
		enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1224

1225 1226 1227 1228
	/*
	 * Separate the ->running assignment from the ->state assignment.
	 *
	 * As with a regular write barrier, this ensures the read side in
1229
	 * hrtimer_active() cannot observe base->running.timer == NULL &&
1230 1231
	 * timer->state == INACTIVE.
	 */
1232
	raw_write_seqcount_barrier(&base->seq);
1233

1234 1235
	WARN_ON_ONCE(base->running != timer);
	base->running = NULL;
1236 1237
}

1238
static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1239
{
1240
	struct hrtimer_clock_base *base;
1241
	unsigned int active = cpu_base->active_bases;
1242

1243
	for_each_active_base(base, cpu_base, active) {
1244
		struct timerqueue_node *node;
1245 1246
		ktime_t basenow;

1247 1248
		basenow = ktime_add(now, base->offset);

1249
		while ((node = timerqueue_getnext(&base->active))) {
1250 1251
			struct hrtimer *timer;

1252
			timer = container_of(node, struct hrtimer, node);
1253

1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265
			/*
			 * The immediate goal for using the softexpires is
			 * minimizing wakeups, not running timers at the
			 * earliest interrupt after their soft expiration.
			 * This allows us to avoid using a Priority Search
			 * Tree, which can answer a stabbing querry for
			 * overlapping intervals and instead use the simple
			 * BST we already have.
			 * We don't add extra wakeups by delaying timers that
			 * are right-of a not yet expired timer, because that
			 * timer will have to trigger a wakeup anyway.
			 */
T
Thomas Gleixner 已提交
1266
			if (basenow < hrtimer_get_softexpires_tv64(timer))
1267 1268
				break;

1269
			__run_hrtimer(cpu_base, base, timer, &basenow);
1270 1271
		}
	}
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
}

#ifdef CONFIG_HIGH_RES_TIMERS

/*
 * High resolution timer interrupt
 * Called with interrupts disabled
 */
void hrtimer_interrupt(struct clock_event_device *dev)
{
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
	ktime_t expires_next, now, entry_time, delta;
	int retries = 0;

	BUG_ON(!cpu_base->hres_active);
	cpu_base->nr_events++;
T
Thomas Gleixner 已提交
1288
	dev->next_event = KTIME_MAX;
1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300

	raw_spin_lock(&cpu_base->lock);
	entry_time = now = hrtimer_update_base(cpu_base);
retry:
	cpu_base->in_hrtirq = 1;
	/*
	 * We set expires_next to KTIME_MAX here with cpu_base->lock
	 * held to prevent that a timer is enqueued in our queue via
	 * the migration code. This does not affect enqueueing of
	 * timers which run their callback and need to be requeued on
	 * this CPU.
	 */
T
Thomas Gleixner 已提交
1301
	cpu_base->expires_next = KTIME_MAX;
1302 1303 1304

	__hrtimer_run_queues(cpu_base, now);

1305 1306
	/* Reevaluate the clock bases for the next expiry */
	expires_next = __hrtimer_get_next_event(cpu_base);
1307 1308 1309 1310
	/*
	 * Store the new expiry value so the migration code can verify
	 * against it.
	 */
1311
	cpu_base->expires_next = expires_next;
1312
	cpu_base->in_hrtirq = 0;
1313
	raw_spin_unlock(&cpu_base->lock);
1314 1315

	/* Reprogramming necessary ? */
1316
	if (!tick_program_event(expires_next, 0)) {
1317 1318
		cpu_base->hang_detected = 0;
		return;
1319
	}
1320 1321 1322 1323 1324 1325 1326 1327 1328 1329

	/*
	 * The next timer was already expired due to:
	 * - tracing
	 * - long lasting callbacks
	 * - being scheduled away when running in a VM
	 *
	 * We need to prevent that we loop forever in the hrtimer
	 * interrupt routine. We give it 3 attempts to avoid
	 * overreacting on some spurious event.
1330 1331 1332
	 *
	 * Acquire base lock for updating the offsets and retrieving
	 * the current time.
1333
	 */
1334
	raw_spin_lock(&cpu_base->lock);
1335
	now = hrtimer_update_base(cpu_base);
1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
	cpu_base->nr_retries++;
	if (++retries < 3)
		goto retry;
	/*
	 * Give the system a chance to do something else than looping
	 * here. We stored the entry time, so we know exactly how long
	 * we spent here. We schedule the next event this amount of
	 * time away.
	 */
	cpu_base->nr_hangs++;
	cpu_base->hang_detected = 1;
1347
	raw_spin_unlock(&cpu_base->lock);
1348
	delta = ktime_sub(now, entry_time);
T
Thomas Gleixner 已提交
1349 1350
	if ((unsigned int)delta > cpu_base->max_hang_time)
		cpu_base->max_hang_time = (unsigned int) delta;
1351 1352 1353 1354
	/*
	 * Limit it to a sensible value as we enforce a longer
	 * delay. Give the CPU at least 100ms to catch up.
	 */
T
Thomas Gleixner 已提交
1355
	if (delta > 100 * NSEC_PER_MSEC)
1356 1357 1358 1359 1360 1361
		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
	else
		expires_next = ktime_add(now, delta);
	tick_program_event(expires_next, 1);
	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
		    ktime_to_ns(delta));
1362 1363
}

1364
/* called with interrupts disabled */
1365
static inline void __hrtimer_peek_ahead_timers(void)
1366 1367 1368 1369 1370 1371
{
	struct tick_device *td;

	if (!hrtimer_hres_active())
		return;

1372
	td = this_cpu_ptr(&tick_cpu_device);
1373 1374 1375 1376
	if (td && td->evtdev)
		hrtimer_interrupt(td->evtdev);
}

1377 1378 1379 1380 1381
#else /* CONFIG_HIGH_RES_TIMERS */

static inline void __hrtimer_peek_ahead_timers(void) { }

#endif	/* !CONFIG_HIGH_RES_TIMERS */
1382

1383
/*
1384
 * Called from run_local_timers in hardirq context every jiffy
1385
 */
1386
void hrtimer_run_queues(void)
1387
{
1388
	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1389
	ktime_t now;
1390

1391
	if (__hrtimer_hres_active(cpu_base))
1392
		return;
1393

1394
	/*
1395 1396 1397 1398 1399
	 * This _is_ ugly: We have to check periodically, whether we
	 * can switch to highres and / or nohz mode. The clocksource
	 * switch happens with xtime_lock held. Notification from
	 * there only sets the check bit in the tick_oneshot code,
	 * otherwise we might deadlock vs. xtime_lock.
1400
	 */
1401
	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1402
		hrtimer_switch_to_hres();
1403
		return;
1404
	}
1405

1406 1407 1408 1409
	raw_spin_lock(&cpu_base->lock);
	now = hrtimer_update_base(cpu_base);
	__hrtimer_run_queues(cpu_base, now);
	raw_spin_unlock(&cpu_base->lock);
1410 1411
}

1412 1413 1414
/*
 * Sleep related functions:
 */
1415
static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427
{
	struct hrtimer_sleeper *t =
		container_of(timer, struct hrtimer_sleeper, timer);
	struct task_struct *task = t->task;

	t->task = NULL;
	if (task)
		wake_up_process(task);

	return HRTIMER_NORESTART;
}

1428
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1429 1430 1431 1432
{
	sl->timer.function = hrtimer_wakeup;
	sl->task = task;
}
S
Stephen Hemminger 已提交
1433
EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1434

1435
int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1436 1437 1438 1439
{
	switch(restart->nanosleep.type) {
#ifdef CONFIG_COMPAT
	case TT_COMPAT:
1440
		if (compat_put_timespec64(ts, restart->nanosleep.compat_rmtp))
1441 1442 1443 1444
			return -EFAULT;
		break;
#endif
	case TT_NATIVE:
1445
		if (put_timespec64(ts, restart->nanosleep.rmtp))
1446 1447 1448 1449 1450 1451 1452 1453
			return -EFAULT;
		break;
	default:
		BUG();
	}
	return -ERESTART_RESTARTBLOCK;
}

1454
static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1455
{
1456 1457
	struct restart_block *restart;

1458
	hrtimer_init_sleeper(t, current);
1459

1460 1461
	do {
		set_current_state(TASK_INTERRUPTIBLE);
1462
		hrtimer_start_expires(&t->timer, mode);
1463

1464
		if (likely(t->task))
1465
			freezable_schedule();
1466

1467
		hrtimer_cancel(&t->timer);
1468
		mode = HRTIMER_MODE_ABS;
1469 1470

	} while (t->task && !signal_pending(current));
1471

1472 1473
	__set_current_state(TASK_RUNNING);

1474
	if (!t->task)
1475 1476
		return 0;

1477 1478
	restart = &current->restart_block;
	if (restart->nanosleep.type != TT_NONE) {
1479
		ktime_t rem = hrtimer_expires_remaining(&t->timer);
1480
		struct timespec64 rmt;
1481

1482 1483
		if (rem <= 0)
			return 0;
1484
		rmt = ktime_to_timespec64(rem);
1485

1486
		return nanosleep_copyout(restart, &rmt);
1487 1488
	}
	return -ERESTART_RESTARTBLOCK;
1489 1490
}

A
Al Viro 已提交
1491
static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1492
{
1493
	struct hrtimer_sleeper t;
1494
	int ret;
1495

1496
	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1497
				HRTIMER_MODE_ABS);
1498
	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1499

1500
	ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1501 1502
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1503 1504
}

1505
long hrtimer_nanosleep(const struct timespec64 *rqtp,
1506 1507
		       const enum hrtimer_mode mode, const clockid_t clockid)
{
1508
	struct restart_block *restart;
1509
	struct hrtimer_sleeper t;
1510
	int ret = 0;
1511
	u64 slack;
1512 1513

	slack = current->timer_slack_ns;
1514
	if (dl_task(current) || rt_task(current))
1515
		slack = 0;
1516

1517
	hrtimer_init_on_stack(&t.timer, clockid, mode);
1518
	hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
1519 1520
	ret = do_nanosleep(&t, mode);
	if (ret != -ERESTART_RESTARTBLOCK)
1521
		goto out;
1522

1523
	/* Absolute timers do not update the rmtp value and restart: */
1524 1525 1526 1527
	if (mode == HRTIMER_MODE_ABS) {
		ret = -ERESTARTNOHAND;
		goto out;
	}
1528

1529
	restart = &current->restart_block;
1530
	restart->fn = hrtimer_nanosleep_restart;
1531
	restart->nanosleep.clockid = t.timer.base->clockid;
1532
	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1533 1534 1535
out:
	destroy_hrtimer_on_stack(&t.timer);
	return ret;
1536 1537
}

1538 1539
SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
		struct timespec __user *, rmtp)
1540
{
1541
	struct timespec64 tu;
1542

1543
	if (get_timespec64(&tu, rqtp))
1544 1545
		return -EFAULT;

1546
	if (!timespec64_valid(&tu))
1547 1548
		return -EINVAL;

1549
	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1550
	current->restart_block.nanosleep.rmtp = rmtp;
1551
	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1552 1553
}

1554 1555 1556 1557 1558
#ifdef CONFIG_COMPAT

COMPAT_SYSCALL_DEFINE2(nanosleep, struct compat_timespec __user *, rqtp,
		       struct compat_timespec __user *, rmtp)
{
1559
	struct timespec64 tu;
1560

1561
	if (compat_get_timespec64(&tu, rqtp))
1562 1563
		return -EFAULT;

1564
	if (!timespec64_valid(&tu))
1565 1566 1567 1568
		return -EINVAL;

	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
	current->restart_block.nanosleep.compat_rmtp = rmtp;
1569
	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1570 1571 1572
}
#endif

1573 1574 1575
/*
 * Functions related to boot-time initialization:
 */
1576
int hrtimers_prepare_cpu(unsigned int cpu)
1577
{
1578
	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1579 1580
	int i;

1581
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1582
		cpu_base->clock_base[i].cpu_base = cpu_base;
1583 1584
		timerqueue_init_head(&cpu_base->clock_base[i].active);
	}
1585

1586
	cpu_base->cpu = cpu;
1587
	cpu_base->hres_active = 0;
1588
	cpu_base->expires_next = KTIME_MAX;
1589
	return 0;
1590 1591 1592 1593
}

#ifdef CONFIG_HOTPLUG_CPU

1594
static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1595
				struct hrtimer_clock_base *new_base)
1596 1597
{
	struct hrtimer *timer;
1598
	struct timerqueue_node *node;
1599

1600 1601
	while ((node = timerqueue_getnext(&old_base->active))) {
		timer = container_of(node, struct hrtimer, node);
1602
		BUG_ON(hrtimer_callback_running(timer));
1603
		debug_deactivate(timer);
T
Thomas Gleixner 已提交
1604 1605

		/*
1606
		 * Mark it as ENQUEUED not INACTIVE otherwise the
T
Thomas Gleixner 已提交
1607 1608 1609
		 * timer could be seen as !active and just vanish away
		 * under us on another CPU
		 */
1610
		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1611
		timer->base = new_base;
1612
		/*
T
Thomas Gleixner 已提交
1613 1614 1615 1616 1617 1618
		 * Enqueue the timers on the new cpu. This does not
		 * reprogram the event device in case the timer
		 * expires before the earliest on this CPU, but we run
		 * hrtimer_interrupt after we migrated everything to
		 * sort out already expired timers and reprogram the
		 * event device.
1619
		 */
1620
		enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
1621 1622 1623
	}
}

1624
int hrtimers_dead_cpu(unsigned int scpu)
1625
{
1626
	struct hrtimer_cpu_base *old_base, *new_base;
1627
	int i;
1628

1629 1630
	BUG_ON(cpu_online(scpu));
	tick_cancel_sched_timer(scpu);
1631 1632 1633

	local_irq_disable();
	old_base = &per_cpu(hrtimer_bases, scpu);
1634
	new_base = this_cpu_ptr(&hrtimer_bases);
1635 1636 1637 1638
	/*
	 * The caller is globally serialized and nobody else
	 * takes two locks at once, deadlock is not possible.
	 */
1639 1640
	raw_spin_lock(&new_base->lock);
	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1641

1642
	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1643
		migrate_hrtimer_list(&old_base->clock_base[i],
1644
				     &new_base->clock_base[i]);
1645 1646
	}

1647 1648
	raw_spin_unlock(&old_base->lock);
	raw_spin_unlock(&new_base->lock);
1649

1650 1651 1652
	/* Check, if we got expired work to do */
	__hrtimer_peek_ahead_timers();
	local_irq_enable();
1653
	return 0;
1654
}
1655

1656 1657 1658 1659
#endif /* CONFIG_HOTPLUG_CPU */

void __init hrtimers_init(void)
{
1660
	hrtimers_prepare_cpu(smp_processor_id());
1661 1662
}

1663
/**
1664
 * schedule_hrtimeout_range_clock - sleep until timeout
1665
 * @expires:	timeout value (ktime_t)
1666
 * @delta:	slack in expires timeout (ktime_t)
1667 1668
 * @mode:	timer mode
 * @clock_id:	timer clock to be used
1669
 */
1670
int __sched
1671
schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1672
			       const enum hrtimer_mode mode, clockid_t clock_id)
1673 1674 1675 1676 1677 1678 1679
{
	struct hrtimer_sleeper t;

	/*
	 * Optimize when a zero timeout value is given. It does not
	 * matter whether this is an absolute or a relative time.
	 */
T
Thomas Gleixner 已提交
1680
	if (expires && *expires == 0) {
1681 1682 1683 1684 1685
		__set_current_state(TASK_RUNNING);
		return 0;
	}

	/*
N
Namhyung Kim 已提交
1686
	 * A NULL parameter means "infinite"
1687 1688 1689 1690 1691 1692
	 */
	if (!expires) {
		schedule();
		return -EINTR;
	}

1693
	hrtimer_init_on_stack(&t.timer, clock_id, mode);
1694
	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1695 1696 1697

	hrtimer_init_sleeper(&t, current);

1698
	hrtimer_start_expires(&t.timer, mode);
1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709

	if (likely(t.task))
		schedule();

	hrtimer_cancel(&t.timer);
	destroy_hrtimer_on_stack(&t.timer);

	__set_current_state(TASK_RUNNING);

	return !t.task ? 0 : -EINTR;
}
1710 1711 1712 1713 1714

/**
 * schedule_hrtimeout_range - sleep until timeout
 * @expires:	timeout value (ktime_t)
 * @delta:	slack in expires timeout (ktime_t)
1715
 * @mode:	timer mode
1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * The @delta argument gives the kernel the freedom to schedule the
 * actual wakeup to a time that is both power and performance friendly.
 * The kernel give the normal best effort behavior for "@expires+@delta",
 * but may decide to fire the timer earlier, but no earlier than @expires.
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1729 1730
 * pass before the routine returns unless the current task is explicitly
 * woken up, (e.g. by wake_up_process()).
1731 1732
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1733 1734
 * delivered to the current task or the current task is explicitly woken
 * up.
1735 1736 1737 1738
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
1739 1740 1741
 * Returns 0 when the timer has expired. If the task was woken before the
 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
 * by an explicit wakeup, it returns -EINTR.
1742
 */
1743
int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1744 1745 1746 1747 1748
				     const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range_clock(expires, delta, mode,
					      CLOCK_MONOTONIC);
}
1749 1750 1751 1752 1753
EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);

/**
 * schedule_hrtimeout - sleep until timeout
 * @expires:	timeout value (ktime_t)
1754
 * @mode:	timer mode
1755 1756 1757 1758 1759 1760 1761 1762
 *
 * Make the current task sleep until the given expiry time has
 * elapsed. The routine will return immediately unless
 * the current task state has been set (see set_current_state()).
 *
 * You can set the task state as follows -
 *
 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1763 1764
 * pass before the routine returns unless the current task is explicitly
 * woken up, (e.g. by wake_up_process()).
1765 1766
 *
 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1767 1768
 * delivered to the current task or the current task is explicitly woken
 * up.
1769 1770 1771 1772
 *
 * The current task state is guaranteed to be TASK_RUNNING when this
 * routine returns.
 *
1773 1774 1775
 * Returns 0 when the timer has expired. If the task was woken before the
 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
 * by an explicit wakeup, it returns -EINTR.
1776 1777 1778 1779 1780 1781
 */
int __sched schedule_hrtimeout(ktime_t *expires,
			       const enum hrtimer_mode mode)
{
	return schedule_hrtimeout_range(expires, 0, mode);
}
1782
EXPORT_SYMBOL_GPL(schedule_hrtimeout);