gadget.c 126.6 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
/**
3 4
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
5 6 7 8 9 10 11
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
12
 */
13 14 15 16 17 18 19

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
20
#include <linux/mutex.h>
21 22 23
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
24
#include <linux/slab.h>
25
#include <linux/of_platform.h>
26 27 28

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
29
#include <linux/usb/phy.h>
30

31
#include "core.h"
32
#include "hw.h"
33 34

/* conversion functions */
35
static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
36
{
37
	return container_of(req, struct dwc2_hsotg_req, req);
38 39
}

40
static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
41
{
42
	return container_of(ep, struct dwc2_hsotg_ep, ep);
43 44
}

45
static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
46
{
47
	return container_of(gadget, struct dwc2_hsotg, gadget);
48 49
}

50
static inline void dwc2_set_bit(void __iomem *ptr, u32 val)
51
{
52
	dwc2_writel(dwc2_readl(ptr) | val, ptr);
53 54
}

55
static inline void dwc2_clear_bit(void __iomem *ptr, u32 val)
56
{
57
	dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
58 59
}

60
static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
61 62 63 64 65 66 67 68
						u32 ep_index, u32 dir_in)
{
	if (dir_in)
		return hsotg->eps_in[ep_index];
	else
		return hsotg->eps_out[ep_index];
}

69
/* forward declaration of functions */
70
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
89
 * g_using_dma is set depending on dts flag.
90
 */
91
static inline bool using_dma(struct dwc2_hsotg *hsotg)
92
{
93
	return hsotg->params.g_dma;
94 95
}

96 97 98 99 100 101 102 103 104 105 106
/*
 * using_desc_dma - return the descriptor DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using descriptor DMA.
 */
static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
{
	return hsotg->params.g_dma_desc;
}

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
/**
 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
 * @hs_ep: The endpoint
 * @increment: The value to increment by
 *
 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
 */
static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
{
	hs_ep->target_frame += hs_ep->interval;
	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
		hs_ep->frame_overrun = 1;
		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
	} else {
		hs_ep->frame_overrun = 0;
	}
}

126
/**
127
 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
128 129 130
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
131
static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
132
{
133
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
134 135 136 137 138 139
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
140
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
141 142 143 144
	}
}

/**
145
 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
146 147 148
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
149
static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
150
{
151
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
152 153 154 155 156
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
157
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
158 159 160
}

/**
161
 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
162 163 164 165 166 167 168 169
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
170
static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
171
				  unsigned int ep, unsigned int dir_in,
172 173 174 175 176 177 178 179 180 181
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
182
	daint = dwc2_readl(hsotg->regs + DAINTMSK);
183 184 185 186
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
187
	dwc2_writel(daint, hsotg->regs + DAINTMSK);
188 189 190
	local_irq_restore(flags);
}

191 192 193 194 195 196 197
/**
 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
 */
int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
{
	if (hsotg->hw_params.en_multiple_tx_fifo)
		/* In dedicated FIFO mode we need count of IN EPs */
198
		return hsotg->hw_params.num_dev_in_eps;
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
	else
		/* In shared FIFO mode we need count of Periodic IN EPs */
		return hsotg->hw_params.num_dev_perio_in_ep;
}

/**
 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
 * device mode TX FIFOs
 */
int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
{
	int addr;
	int tx_addr_max;
	u32 np_tx_fifo_size;

	np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
				hsotg->params.g_np_tx_fifo_size);

	/* Get Endpoint Info Control block size in DWORDs. */
218
	tx_addr_max = hsotg->hw_params.total_fifo_size;
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

	addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
	if (tx_addr_max <= addr)
		return 0;

	return tx_addr_max - addr;
}

/**
 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
 * TX FIFOs
 */
int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
{
	int tx_fifo_count;
	int tx_fifo_depth;

	tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);

	tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);

	if (!tx_fifo_count)
		return tx_fifo_depth;
	else
		return tx_fifo_depth / tx_fifo_count;
}

246
/**
247
 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
248 249
 * @hsotg: The device instance.
 */
250
static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
251
{
252
	unsigned int ep;
253
	unsigned int addr;
254
	int timeout;
255

256
	u32 val;
257
	u32 *txfsz = hsotg->params.g_tx_fifo_size;
258

259 260 261 262
	/* Reset fifo map if not correctly cleared during previous session */
	WARN_ON(hsotg->fifo_map);
	hsotg->fifo_map = 0;

263
	/* set RX/NPTX FIFO sizes */
264 265 266 267
	dwc2_writel(hsotg->params.g_rx_fifo_size, hsotg->regs + GRXFSIZ);
	dwc2_writel((hsotg->params.g_rx_fifo_size << FIFOSIZE_STARTADDR_SHIFT) |
		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
		    hsotg->regs + GNPTXFSIZ);
268

269 270
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
271 272
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
273 274
	 * known values.
	 */
275 276

	/* start at the end of the GNPTXFSIZ, rounded up */
277
	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
278

279
	/*
280
	 * Configure fifos sizes from provided configuration and assign
281 282
	 * them to endpoints dynamically according to maxpacket size value of
	 * given endpoint.
283
	 */
284
	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
285
		if (!txfsz[ep])
286 287
			continue;
		val = addr;
288 289
		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
290
			  "insufficient fifo memory");
291
		addr += txfsz[ep];
292

293
		dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
294
		val = dwc2_readl(hsotg->regs + DPTXFSIZN(ep));
295
	}
296

297 298 299
	dwc2_writel(hsotg->hw_params.total_fifo_size |
		    addr << GDFIFOCFG_EPINFOBASE_SHIFT,
		    hsotg->regs + GDFIFOCFG);
300 301 302 303
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
304

305
	dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
306
	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
307 308 309 310

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
311
		val = dwc2_readl(hsotg->regs + GRSTCTL);
312

313
		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
314 315 316 317 318 319
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
320
			break;
321 322 323 324 325 326
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
327 328 329 330 331 332 333 334
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
335
static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
336
						       gfp_t flags)
337
{
338
	struct dwc2_hsotg_req *req;
339

J
John Youn 已提交
340
	req = kzalloc(sizeof(*req), flags);
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
356
static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
357 358 359 360 361
{
	return hs_ep->periodic;
}

/**
362
 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
363 364 365 366
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
367
 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
368
 * of a request to ensure the buffer is ready for access by the caller.
369
 */
370
static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
371
				 struct dwc2_hsotg_ep *hs_ep,
372
				struct dwc2_hsotg_req *hs_req)
373 374
{
	struct usb_request *req = &hs_req->req;
375

376
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
377 378
}

379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
/*
 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
 * for Control endpoint
 * @hsotg: The device state.
 *
 * This function will allocate 4 descriptor chains for EP 0: 2 for
 * Setup stage, per one for IN and OUT data/status transactions.
 */
static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
{
	hsotg->setup_desc[0] =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->setup_desc_dma[0],
				    GFP_KERNEL);
	if (!hsotg->setup_desc[0])
		goto fail;

	hsotg->setup_desc[1] =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->setup_desc_dma[1],
				    GFP_KERNEL);
	if (!hsotg->setup_desc[1])
		goto fail;

	hsotg->ctrl_in_desc =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->ctrl_in_desc_dma,
				    GFP_KERNEL);
	if (!hsotg->ctrl_in_desc)
		goto fail;

	hsotg->ctrl_out_desc =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->ctrl_out_desc_dma,
				    GFP_KERNEL);
	if (!hsotg->ctrl_out_desc)
		goto fail;

	return 0;

fail:
	return -ENOMEM;
}

427
/**
428
 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
429 430 431 432 433 434 435 436 437 438 439 440 441
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
442
 */
443
static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
444
				 struct dwc2_hsotg_ep *hs_ep,
445
				struct dwc2_hsotg_req *hs_req)
446 447
{
	bool periodic = is_ep_periodic(hs_ep);
448
	u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
449 450 451 452 453
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;
454
	int max_transfer;
455 456 457 458 459 460 461

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

462
	if (periodic && !hsotg->dedicated_fifos) {
463
		u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
464 465 466
		int size_left;
		int size_done;

467 468 469 470
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
471

472
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
473

474 475
		/*
		 * if shared fifo, we cannot write anything until the
476 477 478
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
479
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
480 481 482
			return -ENOSPC;
		}

483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
500
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
501 502
			return -ENOSPC;
		}
503
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
504 505
		can_write = dwc2_readl(hsotg->regs +
				DTXFSTS(hs_ep->fifo_index));
506 507 508

		can_write &= 0xffff;
		can_write *= 4;
509
	} else {
510
		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
511 512 513 514
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

515
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
516 517 518
			return -ENOSPC;
		}

519
		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
520
		can_write *= 4;	/* fifo size is in 32bit quantities. */
521 522
	}

523 524 525
	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
526
		__func__, gnptxsts, can_write, to_write, max_transfer);
527

528 529
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
530 531 532
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
533
	if (can_write > 512 && !periodic)
534 535
		can_write = 512;

536 537
	/*
	 * limit the write to one max-packet size worth of data, but allow
538
	 * the transfer to return that it did not run out of fifo space
539 540
	 * doing it.
	 */
541 542
	if (to_write > max_transfer) {
		to_write = max_transfer;
543

544 545
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
546
			dwc2_hsotg_en_gsint(hsotg,
547
					    periodic ? GINTSTS_PTXFEMP :
548
					   GINTSTS_NPTXFEMP);
549 550
	}

551 552 553 554
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
555
		pkt_round = to_write % max_transfer;
556

557 558
		/*
		 * Round the write down to an
559 560 561 562 563 564 565 566 567
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

568 569 570 571
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
572

573 574
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
575
			dwc2_hsotg_en_gsint(hsotg,
576
					    periodic ? GINTSTS_PTXFEMP :
577
					   GINTSTS_NPTXFEMP);
578 579 580
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
581
		to_write, hs_req->req.length, can_write, buf_pos);
582 583 584 585 586 587 588 589 590 591 592 593 594

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

595
	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
596 597 598 599 600 601 602 603 604 605 606

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
607
static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
608 609
{
	int index = hs_ep->index;
610 611
	unsigned int maxsize;
	unsigned int maxpkt;
612 613

	if (index != 0) {
614 615
		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
616
	} else {
617
		maxsize = 64 + 64;
618
		if (hs_ep->dir_in)
619
			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
620
		else
621 622 623 624 625 626 627
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

628 629 630 631
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
632 633 634 635 636 637 638

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

639
/**
640 641 642 643 644
 * dwc2_hsotg_read_frameno - read current frame number
 * @hsotg: The device instance
 *
 * Return the current frame number
 */
645 646 647 648 649 650 651 652 653 654 655
static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
{
	u32 dsts;

	dsts = dwc2_readl(hsotg->regs + DSTS);
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;

	return dsts;
}

656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
/**
 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
 * DMA descriptor chain prepared for specific endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * depending on its descriptor chain capacity so that transfers that
 * are too long can be split.
 */
static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
{
	int is_isoc = hs_ep->isochronous;
	unsigned int maxsize;

	if (is_isoc)
		maxsize = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
					   DEV_DMA_ISOC_RX_NBYTES_LIMIT;
	else
		maxsize = DEV_DMA_NBYTES_LIMIT;

	/* Above size of one descriptor was chosen, multiple it */
	maxsize *= MAX_DMA_DESC_NUM_GENERIC;

	return maxsize;
}

682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789
/*
 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
 * @hs_ep: The endpoint
 * @mask: RX/TX bytes mask to be defined
 *
 * Returns maximum data payload for one descriptor after analyzing endpoint
 * characteristics.
 * DMA descriptor transfer bytes limit depends on EP type:
 * Control out - MPS,
 * Isochronous - descriptor rx/tx bytes bitfield limit,
 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
 * have concatenations from various descriptors within one packet.
 *
 * Selects corresponding mask for RX/TX bytes as well.
 */
static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
{
	u32 mps = hs_ep->ep.maxpacket;
	int dir_in = hs_ep->dir_in;
	u32 desc_size = 0;

	if (!hs_ep->index && !dir_in) {
		desc_size = mps;
		*mask = DEV_DMA_NBYTES_MASK;
	} else if (hs_ep->isochronous) {
		if (dir_in) {
			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
		} else {
			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
		}
	} else {
		desc_size = DEV_DMA_NBYTES_LIMIT;
		*mask = DEV_DMA_NBYTES_MASK;

		/* Round down desc_size to be mps multiple */
		desc_size -= desc_size % mps;
	}

	return desc_size;
}

/*
 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
 * @hs_ep: The endpoint
 * @dma_buff: DMA address to use
 * @len: Length of the transfer
 *
 * This function will iterate over descriptor chain and fill its entries
 * with corresponding information based on transfer data.
 */
static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
						 dma_addr_t dma_buff,
						 unsigned int len)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	struct dwc2_dma_desc *desc = hs_ep->desc_list;
	u32 mps = hs_ep->ep.maxpacket;
	u32 maxsize = 0;
	u32 offset = 0;
	u32 mask = 0;
	int i;

	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);

	hs_ep->desc_count = (len / maxsize) +
				((len % maxsize) ? 1 : 0);
	if (len == 0)
		hs_ep->desc_count = 1;

	for (i = 0; i < hs_ep->desc_count; ++i) {
		desc->status = 0;
		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
				 << DEV_DMA_BUFF_STS_SHIFT);

		if (len > maxsize) {
			if (!hs_ep->index && !dir_in)
				desc->status |= (DEV_DMA_L | DEV_DMA_IOC);

			desc->status |= (maxsize <<
						DEV_DMA_NBYTES_SHIFT & mask);
			desc->buf = dma_buff + offset;

			len -= maxsize;
			offset += maxsize;
		} else {
			desc->status |= (DEV_DMA_L | DEV_DMA_IOC);

			if (dir_in)
				desc->status |= (len % mps) ? DEV_DMA_SHORT :
					((hs_ep->send_zlp) ? DEV_DMA_SHORT : 0);
			if (len > maxsize)
				dev_err(hsotg->dev, "wrong len %d\n", len);

			desc->status |=
				len << DEV_DMA_NBYTES_SHIFT & mask;
			desc->buf = dma_buff + offset;
		}

		desc->status &= ~DEV_DMA_BUFF_STS_MASK;
		desc->status |= (DEV_DMA_BUFF_STS_HREADY
				 << DEV_DMA_BUFF_STS_SHIFT);
		desc++;
	}
}

790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922
/*
 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
 * @hs_ep: The isochronous endpoint.
 * @dma_buff: usb requests dma buffer.
 * @len: usb request transfer length.
 *
 * Finds out index of first free entry either in the bottom or up half of
 * descriptor chain depend on which is under SW control and not processed
 * by HW. Then fills that descriptor with the data of the arrived usb request,
 * frame info, sets Last and IOC bits increments next_desc. If filled
 * descriptor is not the first one, removes L bit from the previous descriptor
 * status.
 */
static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
				      dma_addr_t dma_buff, unsigned int len)
{
	struct dwc2_dma_desc *desc;
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	u32 index;
	u32 maxsize = 0;
	u32 mask = 0;

	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
	if (len > maxsize) {
		dev_err(hsotg->dev, "wrong len %d\n", len);
		return -EINVAL;
	}

	/*
	 * If SW has already filled half of chain, then return and wait for
	 * the other chain to be processed by HW.
	 */
	if (hs_ep->next_desc == MAX_DMA_DESC_NUM_GENERIC / 2)
		return -EBUSY;

	/* Increment frame number by interval for IN */
	if (hs_ep->dir_in)
		dwc2_gadget_incr_frame_num(hs_ep);

	index = (MAX_DMA_DESC_NUM_GENERIC / 2) * hs_ep->isoc_chain_num +
		 hs_ep->next_desc;

	/* Sanity check of calculated index */
	if ((hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC) ||
	    (!hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC / 2)) {
		dev_err(hsotg->dev, "wrong index %d for iso chain\n", index);
		return -EINVAL;
	}

	desc = &hs_ep->desc_list[index];

	/* Clear L bit of previous desc if more than one entries in the chain */
	if (hs_ep->next_desc)
		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;

	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);

	desc->status = 0;
	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);

	desc->buf = dma_buff;
	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));

	if (hs_ep->dir_in) {
		desc->status |= ((hs_ep->mc << DEV_DMA_ISOC_PID_SHIFT) &
				 DEV_DMA_ISOC_PID_MASK) |
				((len % hs_ep->ep.maxpacket) ?
				 DEV_DMA_SHORT : 0) |
				((hs_ep->target_frame <<
				  DEV_DMA_ISOC_FRNUM_SHIFT) &
				 DEV_DMA_ISOC_FRNUM_MASK);
	}

	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);

	/* Update index of last configured entry in the chain */
	hs_ep->next_desc++;

	return 0;
}

/*
 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
 * @hs_ep: The isochronous endpoint.
 *
 * Prepare first descriptor chain for isochronous endpoints. Afterwards
 * write DMA address to HW and enable the endpoint.
 *
 * Switch between descriptor chains via isoc_chain_num to give SW opportunity
 * to prepare second descriptor chain while first one is being processed by HW.
 */
static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	struct dwc2_hsotg_req *hs_req, *treq;
	int index = hs_ep->index;
	int ret;
	u32 dma_reg;
	u32 depctl;
	u32 ctrl;

	if (list_empty(&hs_ep->queue)) {
		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
		return;
	}

	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
		ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
						 hs_req->req.length);
		if (ret) {
			dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
			break;
		}
	}

	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);

	/* write descriptor chain address to control register */
	dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);

	ctrl = dwc2_readl(hsotg->regs + depctl);
	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
	dwc2_writel(ctrl, hsotg->regs + depctl);

	/* Switch ISOC descriptor chain number being processed by SW*/
	hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
	hs_ep->next_desc = 0;
}

923
/**
924
 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
925 926 927 928 929 930 931 932
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
933
static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
934
				 struct dwc2_hsotg_ep *hs_ep,
935
				struct dwc2_hsotg_req *hs_req,
936 937 938 939 940 941 942 943 944
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
945 946 947
	unsigned int length;
	unsigned int packets;
	unsigned int maxreq;
948
	unsigned int dma_reg;
949 950 951 952 953 954 955 956 957 958 959 960 961 962

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

963
	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
964 965
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
966 967

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
968
		__func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
969 970
		hs_ep->dir_in ? "in" : "out");

971
	/* If endpoint is stalled, we will restart request later */
972
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
973

974
	if (index && ctrl & DXEPCTL_STALL) {
975 976 977 978
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

979
	length = ureq->length - ureq->actual;
980 981
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
982

983 984 985 986 987
	if (!using_desc_dma(hsotg))
		maxreq = get_ep_limit(hs_ep);
	else
		maxreq = dwc2_gadget_get_chain_limit(hs_ep);

988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

1006 1007 1008 1009 1010
	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
		return;
	}

1011
	if (dir_in && index != 0)
1012
		if (hs_ep->isochronous)
1013
			epsize = DXEPTSIZ_MC(packets);
1014
		else
1015
			epsize = DXEPTSIZ_MC(1);
1016 1017 1018
	else
		epsize = 0;

1019 1020 1021 1022 1023 1024 1025
	/*
	 * zero length packet should be programmed on its own and should not
	 * be counted in DIEPTSIZ.PktCnt with other packets.
	 */
	if (dir_in && ureq->zero && !continuing) {
		/* Test if zlp is actually required. */
		if ((ureq->length >= hs_ep->ep.maxpacket) &&
1026
		    !(ureq->length % hs_ep->ep.maxpacket))
1027
			hs_ep->send_zlp = 1;
1028 1029
	}

1030 1031
	epsize |= DXEPTSIZ_PKTCNT(packets);
	epsize |= DXEPTSIZ_XFERSIZE(length);
1032 1033 1034 1035 1036 1037 1038

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
	if (using_desc_dma(hsotg)) {
		u32 offset = 0;
		u32 mps = hs_ep->ep.maxpacket;

		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
		if (!dir_in) {
			if (!index)
				length = mps;
			else if (length % mps)
				length += (mps - (length % mps));
		}
1050

1051
		/*
1052 1053 1054
		 * If more data to send, adjust DMA for EP0 out data stage.
		 * ureq->dma stays unchanged, hence increment it by already
		 * passed passed data count before starting new transaction.
1055
		 */
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
		if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
		    continuing)
			offset = ureq->actual;

		/* Fill DDMA chain entries */
		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
						     length);

		/* write descriptor chain address to control register */
		dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
1066

1067 1068 1069 1070 1071 1072
		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
	} else {
		/* write size / packets */
		dwc2_writel(epsize, hsotg->regs + epsize_reg);

1073
		if (using_dma(hsotg) && !continuing && (length != 0)) {
1074 1075 1076 1077
			/*
			 * write DMA address to control register, buffer
			 * already synced by dwc2_hsotg_ep_queue().
			 */
1078

1079 1080 1081 1082 1083
			dwc2_writel(ureq->dma, hsotg->regs + dma_reg);

			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
				__func__, &ureq->dma, dma_reg);
		}
1084 1085
	}

1086 1087 1088 1089 1090 1091 1092 1093 1094 1095
	if (hs_ep->isochronous && hs_ep->interval == 1) {
		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
		dwc2_gadget_incr_frame_num(hs_ep);

		if (hs_ep->target_frame & 0x1)
			ctrl |= DXEPCTL_SETODDFR;
		else
			ctrl |= DXEPCTL_SETEVENFR;
	}

1096
	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
1097

1098
	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1099 1100

	/* For Setup request do not clear NAK */
1101
	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1102
		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1103

1104
	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1105
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
1106

1107 1108
	/*
	 * set these, it seems that DMA support increments past the end
1109
	 * of the packet buffer so we need to calculate the length from
1110 1111
	 * this information.
	 */
1112 1113 1114 1115 1116 1117 1118
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

1119
		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1120 1121
	}

1122 1123 1124 1125
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
1126 1127

	/* check ep is enabled */
1128
	if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
1129
		dev_dbg(hsotg->dev,
1130
			"ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1131
			 index, dwc2_readl(hsotg->regs + epctrl_reg));
1132

1133
	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1134
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
1135 1136

	/* enable ep interrupts */
1137
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1138 1139 1140
}

/**
1141
 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1142 1143 1144 1145 1146 1147 1148 1149 1150
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
1151
 */
1152
static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1153
			      struct dwc2_hsotg_ep *hs_ep,
1154 1155
			     struct usb_request *req)
{
1156
	int ret;
1157

1158 1159 1160
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

1171
static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1172 1173
						 struct dwc2_hsotg_ep *hs_ep,
						 struct dwc2_hsotg_req *hs_req)
1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
{
	void *req_buf = hs_req->req.buf;

	/* If dma is not being used or buffer is aligned */
	if (!using_dma(hsotg) || !((long)req_buf & 3))
		return 0;

	WARN_ON(hs_req->saved_req_buf);

	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1184
		hs_ep->ep.name, req_buf, hs_req->req.length);
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202

	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
	if (!hs_req->req.buf) {
		hs_req->req.buf = req_buf;
		dev_err(hsotg->dev,
			"%s: unable to allocate memory for bounce buffer\n",
			__func__);
		return -ENOMEM;
	}

	/* Save actual buffer */
	hs_req->saved_req_buf = req_buf;

	if (hs_ep->dir_in)
		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
	return 0;
}

1203 1204 1205 1206
static void
dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
					 struct dwc2_hsotg_ep *hs_ep,
					 struct dwc2_hsotg_req *hs_req)
1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
{
	/* If dma is not being used or buffer was aligned */
	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
		return;

	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);

	/* Copy data from bounce buffer on successful out transfer */
	if (!hs_ep->dir_in && !hs_req->req.status)
		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1218
		       hs_req->req.actual);
1219 1220 1221 1222 1223 1224 1225 1226

	/* Free bounce buffer */
	kfree(hs_req->req.buf);

	hs_req->req.buf = hs_req->saved_req_buf;
	hs_req->saved_req_buf = NULL;
}

1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
/**
 * dwc2_gadget_target_frame_elapsed - Checks target frame
 * @hs_ep: The driver endpoint to check
 *
 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
 * corresponding transfer.
 */
static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	u32 target_frame = hs_ep->target_frame;
	u32 current_frame = dwc2_hsotg_read_frameno(hsotg);
	bool frame_overrun = hs_ep->frame_overrun;

	if (!frame_overrun && current_frame >= target_frame)
		return true;

	if (frame_overrun && current_frame >= target_frame &&
	    ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
		return true;

	return false;
}

1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
/*
 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
 * @hsotg: The driver state
 * @hs_ep: the ep descriptor chain is for
 *
 * Called to update EP0 structure's pointers depend on stage of
 * control transfer.
 */
static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
					  struct dwc2_hsotg_ep *hs_ep)
{
	switch (hsotg->ep0_state) {
	case DWC2_EP0_SETUP:
	case DWC2_EP0_STATUS_OUT:
		hs_ep->desc_list = hsotg->setup_desc[0];
		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
		break;
	case DWC2_EP0_DATA_IN:
	case DWC2_EP0_STATUS_IN:
		hs_ep->desc_list = hsotg->ctrl_in_desc;
		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
		break;
	case DWC2_EP0_DATA_OUT:
		hs_ep->desc_list = hsotg->ctrl_out_desc;
		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
		break;
	default:
		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
			hsotg->ep0_state);
		return -EINVAL;
	}

	return 0;
}

1286
static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1287
			       gfp_t gfp_flags)
1288
{
1289 1290
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1291
	struct dwc2_hsotg *hs = hs_ep->parent;
1292
	bool first;
1293
	int ret;
1294 1295 1296 1297 1298

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

1299 1300 1301
	/* Prevent new request submission when controller is suspended */
	if (hs->lx_state == DWC2_L2) {
		dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
1302
			__func__);
1303 1304 1305
		return -EAGAIN;
	}

1306 1307 1308 1309 1310
	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

1311
	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1312 1313 1314
	if (ret)
		return ret;

1315 1316
	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
1317
		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1318 1319 1320
		if (ret)
			return ret;
	}
1321 1322 1323 1324 1325 1326
	/* If using descriptor DMA configure EP0 descriptor chain pointers */
	if (using_desc_dma(hs) && !hs_ep->index) {
		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
		if (ret)
			return ret;
	}
1327 1328 1329 1330

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
	/*
	 * Handle DDMA isochronous transfers separately - just add new entry
	 * to the half of descriptor chain that is not processed by HW.
	 * Transfer will be started once SW gets either one of NAK or
	 * OutTknEpDis interrupts.
	 */
	if (using_desc_dma(hs) && hs_ep->isochronous &&
	    hs_ep->target_frame != TARGET_FRAME_INITIAL) {
		ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
						 hs_req->req.length);
		if (ret)
			dev_dbg(hs->dev, "%s: ISO desc chain full\n", __func__);

		return 0;
	}

1347 1348 1349 1350 1351 1352 1353 1354
	if (first) {
		if (!hs_ep->isochronous) {
			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
			return 0;
		}

		while (dwc2_gadget_target_frame_elapsed(hs_ep))
			dwc2_gadget_incr_frame_num(hs_ep);
1355

1356 1357 1358
		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
	}
1359 1360 1361
	return 0;
}

1362
static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1363
				    gfp_t gfp_flags)
1364
{
1365
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1366
	struct dwc2_hsotg *hs = hs_ep->parent;
1367 1368 1369 1370
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
1371
	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1372 1373 1374 1375 1376
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

1377
static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1378
				       struct usb_request *req)
1379
{
1380
	struct dwc2_hsotg_req *hs_req = our_req(req);
1381 1382 1383 1384 1385

	kfree(hs_req);
}

/**
1386
 * dwc2_hsotg_complete_oursetup - setup completion callback
1387 1388 1389 1390 1391 1392
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
1393
static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1394
					 struct usb_request *req)
1395
{
1396
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1397
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1398 1399 1400

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

1401
	dwc2_hsotg_ep_free_request(ep, req);
1402 1403 1404 1405 1406 1407 1408 1409 1410
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
1411
 */
1412
static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1413
					    u32 windex)
1414
{
1415
	struct dwc2_hsotg_ep *ep;
1416 1417 1418 1419 1420 1421
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

1422
	if (idx > hsotg->num_of_eps)
1423 1424
		return NULL;

1425 1426
	ep = index_to_ep(hsotg, idx, dir);

1427 1428 1429 1430 1431 1432
	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

1433
/**
1434
 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1435 1436 1437 1438
 * @hsotg: The driver state.
 * @testmode: requested usb test mode
 * Enable usb Test Mode requested by the Host.
 */
1439
int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1440
{
1441
	int dctl = dwc2_readl(hsotg->regs + DCTL);
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454

	dctl &= ~DCTL_TSTCTL_MASK;
	switch (testmode) {
	case TEST_J:
	case TEST_K:
	case TEST_SE0_NAK:
	case TEST_PACKET:
	case TEST_FORCE_EN:
		dctl |= testmode << DCTL_TSTCTL_SHIFT;
		break;
	default:
		return -EINVAL;
	}
1455
	dwc2_writel(dctl, hsotg->regs + DCTL);
1456 1457 1458
	return 0;
}

1459
/**
1460
 * dwc2_hsotg_send_reply - send reply to control request
1461 1462 1463 1464 1465 1466 1467 1468
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
1469
static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1470
				 struct dwc2_hsotg_ep *ep,
1471 1472 1473 1474 1475 1476 1477 1478
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

1479
	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1480 1481 1482 1483 1484 1485 1486 1487
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
1488 1489 1490 1491 1492
	/*
	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
	 * STATUS stage.
	 */
	req->zero = 0;
1493
	req->complete = dwc2_hsotg_complete_oursetup;
1494 1495 1496 1497

	if (length)
		memcpy(req->buf, buff, length);

1498
	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1499 1500 1501 1502 1503 1504 1505 1506 1507
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
1508
 * dwc2_hsotg_process_req_status - process request GET_STATUS
1509 1510 1511
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1512
static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1513
					 struct usb_ctrlrequest *ctrl)
1514
{
1515 1516
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_ep *ep;
1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
1529 1530 1531 1532 1533
		/*
		 * bit 0 => self powered
		 * bit 1 => remote wakeup
		 */
		reply = cpu_to_le16(0);
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

1556
	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1557 1558 1559 1560 1561 1562 1563 1564
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

1565
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1566

1567 1568 1569 1570 1571 1572
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
1573
static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1574
{
1575 1576
	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
					queue);
1577 1578
}

1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
/**
 * dwc2_gadget_start_next_request - Starts next request from ep queue
 * @hs_ep: Endpoint structure
 *
 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
 * in its handler. Hence we need to unmask it here to be able to do
 * resynchronization.
 */
static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
{
	u32 mask;
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	struct dwc2_hsotg_req *hs_req;
	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;

	if (!list_empty(&hs_ep->queue)) {
		hs_req = get_ep_head(hs_ep);
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		return;
	}
	if (!hs_ep->isochronous)
		return;

	if (dir_in) {
		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
			__func__);
	} else {
		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
			__func__);
		mask = dwc2_readl(hsotg->regs + epmsk_reg);
		mask |= DOEPMSK_OUTTKNEPDISMSK;
		dwc2_writel(mask, hsotg->regs + epmsk_reg);
	}
}

1615
/**
1616
 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1617 1618 1619
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1620
static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1621
					  struct usb_ctrlrequest *ctrl)
1622
{
1623 1624
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_req *hs_req;
1625
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1626
	struct dwc2_hsotg_ep *ep;
1627
	int ret;
1628
	bool halted;
1629 1630 1631
	u32 recip;
	u32 wValue;
	u32 wIndex;
1632 1633 1634 1635

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
	wValue = le16_to_cpu(ctrl->wValue);
	wIndex = le16_to_cpu(ctrl->wIndex);
	recip = ctrl->bRequestType & USB_RECIP_MASK;

	switch (recip) {
	case USB_RECIP_DEVICE:
		switch (wValue) {
		case USB_DEVICE_TEST_MODE:
			if ((wIndex & 0xff) != 0)
				return -EINVAL;
			if (!set)
				return -EINVAL;

			hsotg->test_mode = wIndex >> 8;
1650
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
			break;
		default:
			return -ENOENT;
		}
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, wIndex);
1664 1665
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1666
				__func__, wIndex);
1667 1668 1669
			return -ENOENT;
		}

1670
		switch (wValue) {
1671
		case USB_ENDPOINT_HALT:
1672 1673
			halted = ep->halted;

1674
			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1675

1676
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1677 1678 1679 1680 1681
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
1682

1683 1684 1685 1686 1687 1688
			/*
			 * we have to complete all requests for ep if it was
			 * halted, and the halt was cleared by CLEAR_FEATURE
			 */

			if (!set && halted) {
1689 1690 1691 1692 1693 1694 1695 1696
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
1697 1698 1699 1700 1701 1702
					if (hs_req->req.complete) {
						spin_unlock(&hsotg->lock);
						usb_gadget_giveback_request(
							&ep->ep, &hs_req->req);
						spin_lock(&hsotg->lock);
					}
1703 1704 1705
				}

				/* If we have pending request, then start it */
J
John Youn 已提交
1706
				if (!ep->req)
1707
					dwc2_gadget_start_next_request(ep);
1708 1709
			}

1710 1711 1712 1713 1714
			break;

		default:
			return -ENOENT;
		}
1715 1716 1717 1718
		break;
	default:
		return -ENOENT;
	}
1719 1720 1721
	return 1;
}

1722
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1723

1724
/**
1725
 * dwc2_hsotg_stall_ep0 - stall ep0
1726 1727 1728 1729
 * @hsotg: The device state
 *
 * Set stall for ep0 as response for setup request.
 */
1730
static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1731
{
1732
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
	u32 reg;
	u32 ctrl;

	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;

	/*
	 * DxEPCTL_Stall will be cleared by EP once it has
	 * taken effect, so no need to clear later.
	 */

1744
	ctrl = dwc2_readl(hsotg->regs + reg);
1745 1746
	ctrl |= DXEPCTL_STALL;
	ctrl |= DXEPCTL_CNAK;
1747
	dwc2_writel(ctrl, hsotg->regs + reg);
1748 1749

	dev_dbg(hsotg->dev,
1750
		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1751
		ctrl, reg, dwc2_readl(hsotg->regs + reg));
1752 1753 1754 1755 1756

	 /*
	  * complete won't be called, so we enqueue
	  * setup request here
	  */
1757
	 dwc2_hsotg_enqueue_setup(hsotg);
1758 1759
}

1760
/**
1761
 * dwc2_hsotg_process_control - process a control request
1762 1763 1764 1765 1766 1767 1768
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
1769
static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1770
				       struct usb_ctrlrequest *ctrl)
1771
{
1772
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1773 1774 1775
	int ret = 0;
	u32 dcfg;

1776 1777 1778 1779
	dev_dbg(hsotg->dev,
		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
		ctrl->wIndex, ctrl->wLength);
1780

1781 1782 1783 1784
	if (ctrl->wLength == 0) {
		ep0->dir_in = 1;
		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
	} else if (ctrl->bRequestType & USB_DIR_IN) {
1785
		ep0->dir_in = 1;
1786 1787 1788 1789 1790
		hsotg->ep0_state = DWC2_EP0_DATA_IN;
	} else {
		ep0->dir_in = 0;
		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
	}
1791 1792 1793 1794

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1795
			hsotg->connected = 1;
1796
			dcfg = dwc2_readl(hsotg->regs + DCFG);
1797
			dcfg &= ~DCFG_DEVADDR_MASK;
P
Paul Zimmerman 已提交
1798 1799
			dcfg |= (le16_to_cpu(ctrl->wValue) <<
				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1800
			dwc2_writel(dcfg, hsotg->regs + DCFG);
1801 1802 1803

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

1804
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1805 1806 1807
			return;

		case USB_REQ_GET_STATUS:
1808
			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1809 1810 1811 1812
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
1813
			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1814 1815 1816 1817 1818 1819 1820
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
1821
		spin_unlock(&hsotg->lock);
1822
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1823
		spin_lock(&hsotg->lock);
1824 1825 1826 1827
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1828 1829
	/*
	 * the request is either unhandlable, or is not formatted correctly
1830 1831 1832
	 * so respond with a STALL for the status stage to indicate failure.
	 */

1833
	if (ret < 0)
1834
		dwc2_hsotg_stall_ep0(hsotg);
1835 1836 1837
}

/**
1838
 * dwc2_hsotg_complete_setup - completion of a setup transfer
1839 1840 1841 1842 1843 1844
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
1845
static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1846
				      struct usb_request *req)
1847
{
1848
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1849
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1850 1851 1852 1853 1854 1855

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

1856
	spin_lock(&hsotg->lock);
1857
	if (req->actual == 0)
1858
		dwc2_hsotg_enqueue_setup(hsotg);
1859
	else
1860
		dwc2_hsotg_process_control(hsotg, req->buf);
1861
	spin_unlock(&hsotg->lock);
1862 1863 1864
}

/**
1865
 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1866 1867 1868 1869 1870
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
1871
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1872 1873
{
	struct usb_request *req = hsotg->ctrl_req;
1874
	struct dwc2_hsotg_req *hs_req = our_req(req);
1875 1876 1877 1878 1879 1880 1881
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
1882
	req->complete = dwc2_hsotg_complete_setup;
1883 1884 1885 1886 1887 1888

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

1889
	hsotg->eps_out[0]->dir_in = 0;
1890
	hsotg->eps_out[0]->send_zlp = 0;
1891
	hsotg->ep0_state = DWC2_EP0_SETUP;
1892

1893
	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1894 1895
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1896 1897 1898 1899
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1900 1901 1902
	}
}

1903
static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
1904
				   struct dwc2_hsotg_ep *hs_ep)
1905 1906 1907 1908 1909 1910
{
	u32 ctrl;
	u8 index = hs_ep->index;
	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);

1911 1912
	if (hs_ep->dir_in)
		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1913
			index);
1914 1915
	else
		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1916 1917 1918 1919
			index);
	if (using_desc_dma(hsotg)) {
		/* Not specific buffer needed for ep0 ZLP */
		dma_addr_t dma = hs_ep->desc_list_dma;
1920

1921 1922 1923
		if (!index)
			dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);

1924 1925 1926 1927 1928 1929
		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
	} else {
		dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
			    DXEPTSIZ_XFERSIZE(0), hsotg->regs +
			    epsiz_reg);
	}
1930

1931
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1932 1933 1934
	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
1935
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1936 1937
}

1938
/**
1939
 * dwc2_hsotg_complete_request - complete a request given to us
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1950
 */
1951
static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1952
					struct dwc2_hsotg_ep *hs_ep,
1953
				       struct dwc2_hsotg_req *hs_req,
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
				       int result)
{
	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1964 1965 1966 1967
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1968 1969 1970 1971

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

1972 1973 1974
	if (using_dma(hsotg))
		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1975
	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1976

1977 1978 1979
	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

1980 1981 1982 1983
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1984 1985

	if (hs_req->req.complete) {
1986
		spin_unlock(&hsotg->lock);
1987
		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1988
		spin_lock(&hsotg->lock);
1989 1990
	}

1991 1992 1993 1994
	/* In DDMA don't need to proceed to starting of next ISOC request */
	if (using_desc_dma(hsotg) && hs_ep->isochronous)
		return;

1995 1996
	/*
	 * Look to see if there is anything else to do. Note, the completion
1997
	 * of the previous request may have caused a new request to be started
1998 1999
	 * so be careful when doing this.
	 */
2000

J
John Youn 已提交
2001
	if (!hs_ep->req && result >= 0)
2002
		dwc2_gadget_start_next_request(hs_ep);
2003 2004
}

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
/*
 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
 * @hs_ep: The endpoint the request was on.
 *
 * Get first request from the ep queue, determine descriptor on which complete
 * happened. SW based on isoc_chain_num discovers which half of the descriptor
 * chain is currently in use by HW, adjusts dma_address and calculates index
 * of completed descriptor based on the value of DEPDMA register. Update actual
 * length of request, giveback to gadget.
 */
static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	struct dwc2_hsotg_req *hs_req;
	struct usb_request *ureq;
	int index;
	dma_addr_t dma_addr;
	u32 dma_reg;
	u32 depdma;
	u32 desc_sts;
	u32 mask;

	hs_req = get_ep_head(hs_ep);
	if (!hs_req) {
		dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
		return;
	}
	ureq = &hs_req->req;

	dma_addr = hs_ep->desc_list_dma;

	/*
	 * If lower half of  descriptor chain is currently use by SW,
	 * that means higher half is being processed by HW, so shift
	 * DMA address to higher half of descriptor chain.
	 */
	if (!hs_ep->isoc_chain_num)
		dma_addr += sizeof(struct dwc2_dma_desc) *
			    (MAX_DMA_DESC_NUM_GENERIC / 2);

	dma_reg = hs_ep->dir_in ? DIEPDMA(hs_ep->index) : DOEPDMA(hs_ep->index);
	depdma = dwc2_readl(hsotg->regs + dma_reg);

	index = (depdma - dma_addr) / sizeof(struct dwc2_dma_desc) - 1;
	desc_sts = hs_ep->desc_list[index].status;

	mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
	       DEV_DMA_ISOC_RX_NBYTES_MASK;
	ureq->actual = ureq->length -
		       ((desc_sts & mask) >> DEV_DMA_ISOC_NBYTES_SHIFT);

2056 2057 2058 2059
	/* Adjust actual length for ISOC Out if length is not align of 4 */
	if (!hs_ep->dir_in && ureq->length & 0x3)
		ureq->actual += 4 - (ureq->length & 0x3);

2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
}

/*
 * dwc2_gadget_start_next_isoc_ddma - start next isoc request, if any.
 * @hs_ep: The isochronous endpoint to be re-enabled.
 *
 * If ep has been disabled due to last descriptor servicing (IN endpoint) or
 * BNA (OUT endpoint) check the status of other half of descriptor chain that
 * was under SW control till HW was busy and restart the endpoint if needed.
 */
static void dwc2_gadget_start_next_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	u32 depctl;
	u32 dma_reg;
	u32 ctrl;
	u32 dma_addr = hs_ep->desc_list_dma;
	unsigned char index = hs_ep->index;

	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);

	ctrl = dwc2_readl(hsotg->regs + depctl);

	/*
	 * EP was disabled if HW has processed last descriptor or BNA was set.
	 * So restart ep if SW has prepared new descriptor chain in ep_queue
	 * routine while HW was busy.
	 */
	if (!(ctrl & DXEPCTL_EPENA)) {
		if (!hs_ep->next_desc) {
			dev_dbg(hsotg->dev, "%s: No more ISOC requests\n",
				__func__);
			return;
		}

		dma_addr += sizeof(struct dwc2_dma_desc) *
			    (MAX_DMA_DESC_NUM_GENERIC / 2) *
			    hs_ep->isoc_chain_num;
		dwc2_writel(dma_addr, hsotg->regs + dma_reg);

		ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
		dwc2_writel(ctrl, hsotg->regs + depctl);

		/* Switch ISOC descriptor chain number being processed by SW*/
		hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
		hs_ep->next_desc = 0;

		dev_dbg(hsotg->dev, "%s: Restarted isochronous endpoint\n",
			__func__);
	}
}

2114
/**
2115
 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2116 2117 2118 2119 2120 2121 2122 2123
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
2124
static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2125
{
2126 2127
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2128
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
2129 2130 2131 2132 2133
	int to_read;
	int max_req;
	int read_ptr;

	if (!hs_req) {
2134
		u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
2135 2136
		int ptr;

2137
		dev_dbg(hsotg->dev,
2138
			"%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2139 2140 2141 2142
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
2143
			(void)dwc2_readl(fifo);
2144 2145 2146 2147 2148 2149 2150 2151

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

2152 2153 2154
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

2155
	if (to_read > max_req) {
2156 2157
		/*
		 * more data appeared than we where willing
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

2169 2170 2171 2172
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
2173
	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
2174 2175 2176
}

/**
2177
 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2178
 * @hsotg: The device instance
2179
 * @dir_in: If IN zlp
2180 2181 2182 2183 2184
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
2185
 * currently believed that we do not need to wait for any space in
2186 2187
 * the TxFIFO.
 */
2188
static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2189
{
2190
	/* eps_out[0] is used in both directions */
2191 2192
	hsotg->eps_out[0]->dir_in = dir_in;
	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2193

2194
	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2195 2196
}

2197
static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2198
					    u32 epctl_reg)
2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209
{
	u32 ctrl;

	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
	if (ctrl & DXEPCTL_EOFRNUM)
		ctrl |= DXEPCTL_SETEVENFR;
	else
		ctrl |= DXEPCTL_SETODDFR;
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
}

2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
/*
 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
 * @hs_ep - The endpoint on which transfer went
 *
 * Iterate over endpoints descriptor chain and get info on bytes remained
 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
 */
static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	unsigned int bytes_rem = 0;
	struct dwc2_dma_desc *desc = hs_ep->desc_list;
	int i;
	u32 status;

	if (!desc)
		return -EINVAL;

	for (i = 0; i < hs_ep->desc_count; ++i) {
		status = desc->status;
		bytes_rem += status & DEV_DMA_NBYTES_MASK;

		if (status & DEV_DMA_STS_MASK)
			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
				i, status & DEV_DMA_STS_MASK);
	}

	return bytes_rem;
}

2240
/**
2241
 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2242 2243 2244 2245 2246 2247
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
2248
 */
2249
static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2250
{
2251
	u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
2252 2253
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2254
	struct usb_request *req = &hs_req->req;
2255
	unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2256 2257 2258 2259 2260 2261 2262
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

2263 2264
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
2265 2266
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
		dwc2_hsotg_enqueue_setup(hsotg);
2267 2268 2269
		return;
	}

2270 2271 2272
	if (using_desc_dma(hsotg))
		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);

2273
	if (using_dma(hsotg)) {
2274
		unsigned int size_done;
2275

2276 2277
		/*
		 * Calculate the size of the transfer by checking how much
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

2291 2292
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
2293
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2294 2295 2296
		return;
	}

2297 2298 2299 2300
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

2301 2302 2303 2304
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
2305 2306
	}

2307 2308 2309
	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
	if (!using_desc_dma(hsotg) && epnum == 0 &&
	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2310
		/* Move to STATUS IN */
2311
		dwc2_hsotg_ep0_zlp(hsotg, true);
2312
		return;
2313 2314
	}

2315 2316 2317 2318 2319 2320 2321
	/*
	 * Slave mode OUT transfers do not go through XferComplete so
	 * adjust the ISOC parity here.
	 */
	if (!using_dma(hsotg)) {
		if (hs_ep->isochronous && hs_ep->interval == 1)
			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2322 2323
		else if (hs_ep->isochronous && hs_ep->interval > 1)
			dwc2_gadget_incr_frame_num(hs_ep);
2324 2325
	}

2326
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2327 2328 2329
}

/**
2330
 * dwc2_hsotg_handle_rx - RX FIFO has data
2331 2332 2333 2334 2335 2336
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
2337
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2338 2339 2340 2341 2342 2343 2344
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
2345
static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2346
{
2347
	u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
2348 2349 2350 2351
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

2352 2353
	epnum = grxstsr & GRXSTS_EPNUM_MASK;
	status = grxstsr & GRXSTS_PKTSTS_MASK;
2354

2355 2356
	size = grxstsr & GRXSTS_BYTECNT_MASK;
	size >>= GRXSTS_BYTECNT_SHIFT;
2357

2358
	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2359
		__func__, grxstsr, size, epnum);
2360

2361 2362 2363
	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
	case GRXSTS_PKTSTS_GLOBALOUTNAK:
		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2364 2365
		break;

2366
	case GRXSTS_PKTSTS_OUTDONE:
2367
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2368
			dwc2_hsotg_read_frameno(hsotg));
2369 2370

		if (!using_dma(hsotg))
2371
			dwc2_hsotg_handle_outdone(hsotg, epnum);
2372 2373
		break;

2374
	case GRXSTS_PKTSTS_SETUPDONE:
2375 2376
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2377
			dwc2_hsotg_read_frameno(hsotg),
2378
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2379
		/*
2380
		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2381 2382 2383 2384
		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
		 */
		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2385
			dwc2_hsotg_handle_outdone(hsotg, epnum);
2386 2387
		break;

2388
	case GRXSTS_PKTSTS_OUTRX:
2389
		dwc2_hsotg_rx_data(hsotg, epnum, size);
2390 2391
		break;

2392
	case GRXSTS_PKTSTS_SETUPRX:
2393 2394
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2395
			dwc2_hsotg_read_frameno(hsotg),
2396
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2397

2398 2399
		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);

2400
		dwc2_hsotg_rx_data(hsotg, epnum, size);
2401 2402 2403 2404 2405 2406
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

2407
		dwc2_hsotg_dump(hsotg);
2408 2409 2410 2411 2412
		break;
	}
}

/**
2413
 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2414
 * @mps: The maximum packet size in bytes.
2415
 */
2416
static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2417 2418 2419
{
	switch (mps) {
	case 64:
2420
		return D0EPCTL_MPS_64;
2421
	case 32:
2422
		return D0EPCTL_MPS_32;
2423
	case 16:
2424
		return D0EPCTL_MPS_16;
2425
	case 8:
2426
		return D0EPCTL_MPS_8;
2427 2428 2429 2430 2431 2432 2433 2434
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
2435
 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2436 2437 2438
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
2439
 * @mc: The multicount value
2440 2441 2442 2443
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
2444
static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2445 2446
					unsigned int ep, unsigned int mps,
					unsigned int mc, unsigned int dir_in)
2447
{
2448
	struct dwc2_hsotg_ep *hs_ep;
2449 2450 2451
	void __iomem *regs = hsotg->regs;
	u32 reg;

2452 2453 2454 2455
	hs_ep = index_to_ep(hsotg, ep, dir_in);
	if (!hs_ep)
		return;

2456
	if (ep == 0) {
2457 2458
		u32 mps_bytes = mps;

2459
		/* EP0 is a special case */
2460 2461
		mps = dwc2_hsotg_ep0_mps(mps_bytes);
		if (mps > 3)
2462
			goto bad_mps;
2463
		hs_ep->ep.maxpacket = mps_bytes;
2464
		hs_ep->mc = 1;
2465
	} else {
2466
		if (mps > 1024)
2467
			goto bad_mps;
2468 2469
		hs_ep->mc = mc;
		if (mc > 3)
2470
			goto bad_mps;
2471
		hs_ep->ep.maxpacket = mps;
2472 2473
	}

2474
	if (dir_in) {
2475
		reg = dwc2_readl(regs + DIEPCTL(ep));
2476
		reg &= ~DXEPCTL_MPS_MASK;
2477
		reg |= mps;
2478
		dwc2_writel(reg, regs + DIEPCTL(ep));
2479
	} else {
2480
		reg = dwc2_readl(regs + DOEPCTL(ep));
2481
		reg &= ~DXEPCTL_MPS_MASK;
2482
		reg |= mps;
2483
		dwc2_writel(reg, regs + DOEPCTL(ep));
2484
	}
2485 2486 2487 2488 2489 2490 2491

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

2492
/**
2493
 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2494 2495 2496
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
2497
static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2498
{
2499 2500
	dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
		    hsotg->regs + GRSTCTL);
2501 2502

	/* wait until the fifo is flushed */
2503 2504 2505
	if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100))
		dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
			 __func__);
2506
}
2507 2508

/**
2509
 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2510 2511 2512 2513 2514 2515
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
2516
static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2517
			    struct dwc2_hsotg_ep *hs_ep)
2518
{
2519
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2520

2521 2522 2523 2524 2525 2526
	if (!hs_ep->dir_in || !hs_req) {
		/**
		 * if request is not enqueued, we disable interrupts
		 * for endpoints, excepting ep0
		 */
		if (hs_ep->index != 0)
2527
			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2528
					      hs_ep->dir_in, 0);
2529
		return 0;
2530
	}
2531 2532 2533 2534

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
2535
		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2536 2537 2538 2539 2540 2541
	}

	return 0;
}

/**
2542
 * dwc2_hsotg_complete_in - complete IN transfer
2543 2544 2545 2546 2547 2548
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
2549
static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2550
				   struct dwc2_hsotg_ep *hs_ep)
2551
{
2552
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2553
	u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
2554 2555 2556 2557 2558 2559 2560
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

2561
	/* Finish ZLP handling for IN EP0 transactions */
2562 2563
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
		dev_dbg(hsotg->dev, "zlp packet sent\n");
2564 2565 2566 2567 2568 2569 2570

		/*
		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
		 * changed to IN. Change back to complete OUT transfer request
		 */
		hs_ep->dir_in = 0;

2571
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2572 2573 2574
		if (hsotg->test_mode) {
			int ret;

2575
			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2576 2577
			if (ret < 0) {
				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2578
					hsotg->test_mode);
2579
				dwc2_hsotg_stall_ep0(hsotg);
2580 2581 2582
				return;
			}
		}
2583
		dwc2_hsotg_enqueue_setup(hsotg);
2584 2585 2586
		return;
	}

2587 2588
	/*
	 * Calculate the size of the transfer by checking how much is left
2589 2590 2591 2592 2593 2594 2595
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */
2596 2597 2598 2599 2600 2601 2602 2603
	if (using_desc_dma(hsotg)) {
		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
		if (size_left < 0)
			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
				size_left);
	} else {
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
	}
2604 2605 2606 2607 2608 2609 2610 2611 2612

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
2613 2614 2615
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

2616 2617
	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2618
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2619 2620 2621
		return;
	}

2622
	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
2623
	if (hs_ep->send_zlp) {
2624
		dwc2_hsotg_program_zlp(hsotg, hs_ep);
2625
		hs_ep->send_zlp = 0;
2626 2627 2628 2629
		/* transfer will be completed on next complete interrupt */
		return;
	}

2630 2631
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
		/* Move to STATUS OUT */
2632
		dwc2_hsotg_ep0_zlp(hsotg, false);
2633 2634 2635
		return;
	}

2636
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2637 2638
}

2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666
/**
 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
 * @hsotg: The device state.
 * @idx: Index of ep.
 * @dir_in: Endpoint direction 1-in 0-out.
 *
 * Reads for endpoint with given index and direction, by masking
 * epint_reg with coresponding mask.
 */
static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
					  unsigned int idx, int dir_in)
{
	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 ints;
	u32 mask;
	u32 diepempmsk;

	mask = dwc2_readl(hsotg->regs + epmsk_reg);
	diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK);
	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
	mask |= DXEPINT_SETUP_RCVD;

	ints = dwc2_readl(hsotg->regs + epint_reg);
	ints &= mask;
	return ints;
}

2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
/**
 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
 * @hs_ep: The endpoint on which interrupt is asserted.
 *
 * This interrupt indicates that the endpoint has been disabled per the
 * application's request.
 *
 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
 * in case of ISOC completes current request.
 *
 * For ISOC-OUT endpoints completes expired requests. If there is remaining
 * request starts it.
 */
static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	struct dwc2_hsotg_req *hs_req;
	unsigned char idx = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	int dctl = dwc2_readl(hsotg->regs + DCTL);

	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

	if (dir_in) {
		int epctl = dwc2_readl(hsotg->regs + epctl_reg);

		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);

		if (hs_ep->isochronous) {
			dwc2_hsotg_complete_in(hsotg, hs_ep);
			return;
		}

		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
			int dctl = dwc2_readl(hsotg->regs + DCTL);

			dctl |= DCTL_CGNPINNAK;
			dwc2_writel(dctl, hsotg->regs + DCTL);
		}
		return;
	}

	if (dctl & DCTL_GOUTNAKSTS) {
		dctl |= DCTL_CGOUTNAK;
		dwc2_writel(dctl, hsotg->regs + DCTL);
	}

	if (!hs_ep->isochronous)
		return;

	if (list_empty(&hs_ep->queue)) {
		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
			__func__, hs_ep);
		return;
	}

	do {
		hs_req = get_ep_head(hs_ep);
		if (hs_req)
			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
						    -ENODATA);
		dwc2_gadget_incr_frame_num(hs_ep);
	} while (dwc2_gadget_target_frame_elapsed(hs_ep));

	dwc2_gadget_start_next_request(hs_ep);
}

2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750
/**
 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
 * @hs_ep: The endpoint on which interrupt is asserted.
 *
 * This is starting point for ISOC-OUT transfer, synchronization done with
 * first out token received from host while corresponding EP is disabled.
 *
 * Device does not know initial frame in which out token will come. For this
 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
 * getting this interrupt SW starts calculation for next transfer frame.
 */
static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
{
	struct dwc2_hsotg *hsotg = ep->parent;
	int dir_in = ep->dir_in;
	u32 doepmsk;
2751
	u32 tmp;
2752 2753 2754 2755

	if (dir_in || !ep->isochronous)
		return;

2756 2757 2758 2759 2760 2761
	/*
	 * Store frame in which irq was asserted here, as
	 * it can change while completing request below.
	 */
	tmp = dwc2_hsotg_read_frameno(hsotg);

2762 2763
	dwc2_hsotg_complete_request(hsotg, ep, get_ep_head(ep), -ENODATA);

2764 2765 2766 2767 2768 2769 2770 2771 2772
	if (using_desc_dma(hsotg)) {
		if (ep->target_frame == TARGET_FRAME_INITIAL) {
			/* Start first ISO Out */
			ep->target_frame = tmp;
			dwc2_gadget_start_isoc_ddma(ep);
		}
		return;
	}

2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797
	if (ep->interval > 1 &&
	    ep->target_frame == TARGET_FRAME_INITIAL) {
		u32 dsts;
		u32 ctrl;

		dsts = dwc2_readl(hsotg->regs + DSTS);
		ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
		dwc2_gadget_incr_frame_num(ep);

		ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index));
		if (ep->target_frame & 0x1)
			ctrl |= DXEPCTL_SETODDFR;
		else
			ctrl |= DXEPCTL_SETEVENFR;

		dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index));
	}

	dwc2_gadget_start_next_request(ep);
	doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
	doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
	dwc2_writel(doepmsk, hsotg->regs + DOEPMSK);
}

/**
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810
 * dwc2_gadget_handle_nak - handle NAK interrupt
 * @hs_ep: The endpoint on which interrupt is asserted.
 *
 * This is starting point for ISOC-IN transfer, synchronization done with
 * first IN token received from host while corresponding EP is disabled.
 *
 * Device does not know when first one token will arrive from host. On first
 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
 * sent in response to that as there was no data in FIFO. SW is basing on this
 * interrupt to obtain frame in which token has come and then based on the
 * interval calculates next frame for transfer.
 */
2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;

	if (!dir_in || !hs_ep->isochronous)
		return;

	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2821 2822 2823 2824 2825 2826

		if (using_desc_dma(hsotg)) {
			dwc2_gadget_start_isoc_ddma(hs_ep);
			return;
		}

2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
		if (hs_ep->interval > 1) {
			u32 ctrl = dwc2_readl(hsotg->regs +
					      DIEPCTL(hs_ep->index));
			if (hs_ep->target_frame & 0x1)
				ctrl |= DXEPCTL_SETODDFR;
			else
				ctrl |= DXEPCTL_SETEVENFR;

			dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index));
		}

		dwc2_hsotg_complete_request(hsotg, hs_ep,
					    get_ep_head(hs_ep), 0);
	}

	dwc2_gadget_incr_frame_num(hs_ep);
}

2845
/**
2846
 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2847 2848 2849 2850 2851
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
2852
 */
2853
static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2854
			     int dir_in)
2855
{
2856
	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2857 2858 2859
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2860
	u32 ints;
2861
	u32 ctrl;
2862

2863
	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2864
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2865

2866
	/* Clear endpoint interrupts */
2867
	dwc2_writel(ints, hsotg->regs + epint_reg);
2868

2869 2870
	if (!hs_ep) {
		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
2871
			__func__, idx, dir_in ? "in" : "out");
2872 2873 2874
		return;
	}

2875 2876 2877
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

2878 2879 2880 2881
	/* Don't process XferCompl interrupt if it is a setup packet */
	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
		ints &= ~DXEPINT_XFERCOMPL;

2882 2883 2884 2885 2886 2887 2888 2889 2890 2891
	/*
	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
	 * stage and xfercomplete was generated without SETUP phase done
	 * interrupt. SW should parse received setup packet only after host's
	 * exit from setup phase of control transfer.
	 */
	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
		ints &= ~DXEPINT_XFERCOMPL;

2892
	if (ints & DXEPINT_XFERCOMPL) {
2893
		dev_dbg(hsotg->dev,
2894
			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2895 2896
			__func__, dwc2_readl(hsotg->regs + epctl_reg),
			dwc2_readl(hsotg->regs + epsiz_reg));
2897

2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
		/* In DDMA handle isochronous requests separately */
		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
			dwc2_gadget_complete_isoc_request_ddma(hs_ep);
			/* Try to start next isoc request */
			dwc2_gadget_start_next_isoc_ddma(hs_ep);
		} else if (dir_in) {
			/*
			 * We get OutDone from the FIFO, so we only
			 * need to look at completing IN requests here
			 * if operating slave mode
			 */
2909 2910 2911
			if (hs_ep->isochronous && hs_ep->interval > 1)
				dwc2_gadget_incr_frame_num(hs_ep);

2912
			dwc2_hsotg_complete_in(hsotg, hs_ep);
2913 2914
			if (ints & DXEPINT_NAKINTRPT)
				ints &= ~DXEPINT_NAKINTRPT;
2915

2916
			if (idx == 0 && !hs_ep->req)
2917
				dwc2_hsotg_enqueue_setup(hsotg);
2918
		} else if (using_dma(hsotg)) {
2919 2920 2921 2922
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
2923 2924
			if (hs_ep->isochronous && hs_ep->interval > 1)
				dwc2_gadget_incr_frame_num(hs_ep);
2925

2926
			dwc2_hsotg_handle_outdone(hsotg, idx);
2927 2928 2929
		}
	}

2930 2931
	if (ints & DXEPINT_EPDISBLD)
		dwc2_gadget_handle_ep_disabled(hs_ep);
2932

2933 2934 2935 2936 2937 2938
	if (ints & DXEPINT_OUTTKNEPDIS)
		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);

	if (ints & DXEPINT_NAKINTRPT)
		dwc2_gadget_handle_nak(hs_ep);

2939
	if (ints & DXEPINT_AHBERR)
2940 2941
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

2942
	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2943 2944 2945
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
2946 2947
			/*
			 * this is the notification we've received a
2948 2949
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
2950 2951
			 * the setup here.
			 */
2952 2953 2954 2955

			if (dir_in)
				WARN_ON_ONCE(1);
			else
2956
				dwc2_hsotg_handle_outdone(hsotg, 0);
2957 2958 2959
		}
	}

2960
	if (ints & DXEPINT_STSPHSERCVD) {
2961 2962
		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);

2963 2964 2965 2966 2967 2968 2969
		/* Safety check EP0 state when STSPHSERCVD asserted */
		if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
			/* Move to STATUS IN for DDMA */
			if (using_desc_dma(hsotg))
				dwc2_hsotg_ep0_zlp(hsotg, true);
		}

2970 2971
	}

2972
	if (ints & DXEPINT_BACK2BACKSETUP)
2973 2974
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987
	if (ints & DXEPINT_BNAINTR) {
		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);

		/*
		 * Try to start next isoc request, if any.
		 * Sometimes the endpoint remains enabled after BNA interrupt
		 * assertion, which is not expected, hence we can enter here
		 * couple of times.
		 */
		if (hs_ep->isochronous)
			dwc2_gadget_start_next_isoc_ddma(hs_ep);
	}

2988
	if (dir_in && !hs_ep->isochronous) {
2989
		/* not sure if this is important, but we'll clear it anyway */
2990
		if (ints & DXEPINT_INTKNTXFEMP) {
2991 2992 2993 2994 2995
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
2996
		if (ints & DXEPINT_INTKNEPMIS) {
2997 2998 2999
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
3000 3001 3002

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
3003
		    ints & DXEPINT_TXFEMP) {
3004 3005
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
3006
			if (!using_dma(hsotg))
3007
				dwc2_hsotg_trytx(hsotg, hs_ep);
3008
		}
3009 3010 3011 3012
	}
}

/**
3013
 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3014 3015 3016 3017
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
3018
 */
3019
static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3020
{
3021
	u32 dsts = dwc2_readl(hsotg->regs + DSTS);
3022
	int ep0_mps = 0, ep_mps = 8;
3023

3024 3025
	/*
	 * This should signal the finish of the enumeration phase
3026
	 * of the USB handshaking, so we should now know what rate
3027 3028
	 * we connected at.
	 */
3029 3030 3031

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

3032 3033
	/*
	 * note, since we're limited by the size of transfer on EP0, and
3034
	 * it seems IN transfers must be a even number of packets we do
3035 3036
	 * not advertise a 64byte MPS on EP0.
	 */
3037 3038

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
3039
	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3040 3041
	case DSTS_ENUMSPD_FS:
	case DSTS_ENUMSPD_FS48:
3042 3043
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
3044
		ep_mps = 1023;
3045 3046
		break;

3047
	case DSTS_ENUMSPD_HS:
3048 3049
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
3050
		ep_mps = 1024;
3051 3052
		break;

3053
	case DSTS_ENUMSPD_LS:
3054
		hsotg->gadget.speed = USB_SPEED_LOW;
3055 3056
		ep0_mps = 8;
		ep_mps = 8;
3057 3058
		/*
		 * note, we don't actually support LS in this driver at the
3059 3060 3061 3062 3063
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
3064 3065
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
3066

3067 3068 3069 3070
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
3071 3072 3073

	if (ep0_mps) {
		int i;
3074
		/* Initialize ep0 for both in and out directions */
3075 3076
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3077 3078
		for (i = 1; i < hsotg->num_of_eps; i++) {
			if (hsotg->eps_in[i])
3079 3080
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
							    0, 1);
3081
			if (hsotg->eps_out[i])
3082 3083
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
							    0, 0);
3084
		}
3085 3086 3087 3088
	}

	/* ensure after enumeration our EP0 is active */

3089
	dwc2_hsotg_enqueue_setup(hsotg);
3090 3091

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3092 3093
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
3105
static void kill_all_requests(struct dwc2_hsotg *hsotg,
3106
			      struct dwc2_hsotg_ep *ep,
3107
			      int result)
3108
{
3109
	struct dwc2_hsotg_req *req, *treq;
3110
	unsigned int size;
3111

3112
	ep->req = NULL;
3113

3114
	list_for_each_entry_safe(req, treq, &ep->queue, queue)
3115
		dwc2_hsotg_complete_request(hsotg, ep, req,
3116
					    result);
3117

3118 3119
	if (!hsotg->dedicated_fifos)
		return;
3120
	size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3121
	if (size < ep->fifo_size)
3122
		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3123 3124 3125
}

/**
3126
 * dwc2_hsotg_disconnect - disconnect service
3127 3128
 * @hsotg: The device state.
 *
3129 3130 3131
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
3132
 */
3133
void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3134
{
3135
	unsigned int ep;
3136

3137 3138 3139 3140
	if (!hsotg->connected)
		return;

	hsotg->connected = 0;
3141
	hsotg->test_mode = 0;
3142 3143 3144 3145

	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
			kill_all_requests(hsotg, hsotg->eps_in[ep],
3146
					  -ESHUTDOWN);
3147 3148
		if (hsotg->eps_out[ep])
			kill_all_requests(hsotg, hsotg->eps_out[ep],
3149
					  -ESHUTDOWN);
3150
	}
3151 3152

	call_gadget(hsotg, disconnect);
3153
	hsotg->lx_state = DWC2_L3;
J
John Stultz 已提交
3154 3155

	usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3156 3157 3158
}

/**
3159
 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3160 3161 3162
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
3163
static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3164
{
3165
	struct dwc2_hsotg_ep *ep;
3166 3167 3168
	int epno, ret;

	/* look through for any more data to transmit */
3169
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3170 3171 3172 3173
		ep = index_to_ep(hsotg, epno, 1);

		if (!ep)
			continue;
3174 3175 3176 3177 3178 3179 3180 3181

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

3182
		ret = dwc2_hsotg_trytx(hsotg, ep);
3183 3184 3185 3186 3187 3188
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
3189 3190 3191
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
			GINTSTS_PTXFEMP |  \
			GINTSTS_RXFLVL)
3192

3193
/**
3194
 * dwc2_hsotg_core_init - issue softreset to the core
3195 3196 3197 3198
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
3199
void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3200
				       bool is_usb_reset)
3201
{
3202
	u32 intmsk;
3203
	u32 val;
3204
	u32 usbcfg;
3205
	u32 dcfg = 0;
3206

3207 3208 3209
	/* Kill any ep0 requests as controller will be reinitialized */
	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);

3210
	if (!is_usb_reset)
3211
		if (dwc2_core_reset(hsotg, true))
3212
			return;
3213 3214 3215 3216 3217 3218

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

3219 3220 3221
	/* keep other bits untouched (so e.g. forced modes are not lost) */
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
3222
		GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
3223

3224
	if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS &&
3225 3226
	    (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
	     hsotg->params.speed == DWC2_SPEED_PARAM_LOW)) {
3227 3228 3229 3230 3231 3232 3233 3234
		/* FS/LS Dedicated Transceiver Interface */
		usbcfg |= GUSBCFG_PHYSEL;
	} else {
		/* set the PLL on, remove the HNP/SRP and set the PHY */
		val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
		usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
			(val << GUSBCFG_USBTRDTIM_SHIFT);
	}
3235
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3236

3237
	dwc2_hsotg_init_fifo(hsotg);
3238

3239
	if (!is_usb_reset)
3240
		dwc2_set_bit(hsotg->regs + DCTL, DCTL_SFTDISCON);
3241

3242
	dcfg |= DCFG_EPMISCNT(1);
3243 3244 3245 3246 3247 3248

	switch (hsotg->params.speed) {
	case DWC2_SPEED_PARAM_LOW:
		dcfg |= DCFG_DEVSPD_LS;
		break;
	case DWC2_SPEED_PARAM_FULL:
3249 3250 3251 3252
		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
			dcfg |= DCFG_DEVSPD_FS48;
		else
			dcfg |= DCFG_DEVSPD_FS;
3253 3254
		break;
	default:
3255 3256
		dcfg |= DCFG_DEVSPD_HS;
	}
3257

3258
	dwc2_writel(dcfg,  hsotg->regs + DCFG);
3259 3260

	/* Clear any pending OTG interrupts */
3261
	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
3262 3263

	/* Clear any pending interrupts */
3264
	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
3265
	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3266
		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3267 3268
		GINTSTS_USBRST | GINTSTS_RESETDET |
		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3269 3270
		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
		GINTSTS_LPMTRANRCVD;
3271 3272 3273

	if (!using_desc_dma(hsotg))
		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3274

J
John Youn 已提交
3275
	if (!hsotg->params.external_id_pin_ctl)
3276 3277 3278
		intmsk |= GINTSTS_CONIDSTSCHNG;

	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
3279

3280
	if (using_dma(hsotg)) {
3281
		dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3282
			    hsotg->params.ahbcfg,
3283
			    hsotg->regs + GAHBCFG);
3284 3285 3286

		/* Set DDMA mode support in the core if needed */
		if (using_desc_dma(hsotg))
3287
			dwc2_set_bit(hsotg->regs + DCFG, DCFG_DESCDMA_EN);
3288 3289

	} else {
3290 3291 3292 3293
		dwc2_writel(((hsotg->dedicated_fifos) ?
						(GAHBCFG_NP_TXF_EMP_LVL |
						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
			    GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
3294
	}
3295 3296

	/*
3297 3298 3299
	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
	 * when we have no data to transfer. Otherwise we get being flooded by
	 * interrupts.
3300 3301
	 */

3302
	dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3303
		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3304
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3305
		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3306
		hsotg->regs + DIEPMSK);
3307 3308 3309

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3310
	 * DMA mode we may need this and StsPhseRcvd.
3311
	 */
3312 3313
	dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
		DOEPMSK_STSPHSERCVDMSK) : 0) |
3314
		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3315
		DOEPMSK_SETUPMSK,
3316
		hsotg->regs + DOEPMSK);
3317

3318 3319
	/* Enable BNA interrupt for DDMA */
	if (using_desc_dma(hsotg))
3320
		dwc2_set_bit(hsotg->regs + DOEPMSK, DOEPMSK_BNAMSK);
3321

3322
	dwc2_writel(0, hsotg->regs + DAINTMSK);
3323 3324

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3325 3326
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
3327 3328

	/* enable in and out endpoint interrupts */
3329
	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3330 3331 3332 3333 3334 3335 3336

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
3337
		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3338 3339

	/* Enable interrupts for EP0 in and out */
3340 3341
	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3342

3343
	if (!is_usb_reset) {
3344
		dwc2_set_bit(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
3345
		udelay(10);  /* see openiboot */
3346
		dwc2_clear_bit(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
3347
	}
3348

3349
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
3350 3351

	/*
3352
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3353 3354 3355 3356
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
3357
	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3358
	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
3359

3360
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3361 3362
	       DXEPCTL_CNAK | DXEPCTL_EPENA |
	       DXEPCTL_USBACTEP,
3363
	       hsotg->regs + DOEPCTL0);
3364 3365

	/* enable, but don't activate EP0in */
3366
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3367
	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
3368 3369

	/* clear global NAKs */
3370 3371 3372
	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
	if (!is_usb_reset)
		val |= DCTL_SFTDISCON;
3373
	dwc2_set_bit(hsotg->regs + DCTL, val);
3374 3375 3376 3377

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

3378
	hsotg->lx_state = DWC2_L0;
3379 3380 3381 3382 3383 3384

	dwc2_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
3385 3386
}

3387
static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3388 3389
{
	/* set the soft-disconnect bit */
3390
	dwc2_set_bit(hsotg->regs + DCTL, DCTL_SFTDISCON);
3391
}
3392

3393
void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3394
{
3395
	/* remove the soft-disconnect and let's go */
3396
	dwc2_clear_bit(hsotg->regs + DCTL, DCTL_SFTDISCON);
3397 3398
}

3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
/**
 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
 * @hsotg: The device state:
 *
 * This interrupt indicates one of the following conditions occurred while
 * transmitting an ISOC transaction.
 * - Corrupted IN Token for ISOC EP.
 * - Packet not complete in FIFO.
 *
 * The following actions will be taken:
 * - Determine the EP
 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
 */
static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
{
	struct dwc2_hsotg_ep *hs_ep;
	u32 epctrl;
3416
	u32 daintmsk;
3417 3418 3419 3420
	u32 idx;

	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");

3421 3422
	daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);

3423 3424
	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
		hs_ep = hsotg->eps_in[idx];
3425 3426 3427 3428
		/* Proceed only unmasked ISOC EPs */
		if (!hs_ep->isochronous || (BIT(idx) & ~daintmsk))
			continue;

3429
		epctrl = dwc2_readl(hsotg->regs + DIEPCTL(idx));
3430
		if ((epctrl & DXEPCTL_EPENA) &&
3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458
		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
			epctrl |= DXEPCTL_SNAK;
			epctrl |= DXEPCTL_EPDIS;
			dwc2_writel(epctrl, hsotg->regs + DIEPCTL(idx));
		}
	}

	/* Clear interrupt */
	dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
}

/**
 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
 * @hsotg: The device state:
 *
 * This interrupt indicates one of the following conditions occurred while
 * transmitting an ISOC transaction.
 * - Corrupted OUT Token for ISOC EP.
 * - Packet not complete in FIFO.
 *
 * The following actions will be taken:
 * - Determine the EP
 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
 */
static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
{
	u32 gintsts;
	u32 gintmsk;
3459
	u32 daintmsk;
3460 3461 3462 3463 3464 3465
	u32 epctrl;
	struct dwc2_hsotg_ep *hs_ep;
	int idx;

	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);

3466 3467 3468
	daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
	daintmsk >>= DAINT_OUTEP_SHIFT;

3469 3470
	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
		hs_ep = hsotg->eps_out[idx];
3471 3472 3473 3474
		/* Proceed only unmasked ISOC EPs */
		if (!hs_ep->isochronous || (BIT(idx) & ~daintmsk))
			continue;

3475
		epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
3476
		if ((epctrl & DXEPCTL_EPENA) &&
3477 3478 3479 3480 3481 3482 3483
		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
			/* Unmask GOUTNAKEFF interrupt */
			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
			gintmsk |= GINTSTS_GOUTNAKEFF;
			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);

			gintsts = dwc2_readl(hsotg->regs + GINTSTS);
3484
			if (!(gintsts & GINTSTS_GOUTNAKEFF)) {
3485
				dwc2_set_bit(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3486 3487
				break;
			}
3488 3489 3490 3491 3492 3493 3494
		}
	}

	/* Clear interrupt */
	dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
}

3495
/**
3496
 * dwc2_hsotg_irq - handle device interrupt
3497 3498 3499
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
3500
static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3501
{
3502
	struct dwc2_hsotg *hsotg = pw;
3503 3504 3505 3506
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

3507 3508 3509
	if (!dwc2_is_device_mode(hsotg))
		return IRQ_NONE;

3510
	spin_lock(&hsotg->lock);
3511
irq_retry:
3512 3513
	gintsts = dwc2_readl(hsotg->regs + GINTSTS);
	gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3514 3515 3516 3517 3518 3519

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544
	if (gintsts & GINTSTS_RESETDET) {
		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);

		dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);

		/* This event must be used only if controller is suspended */
		if (hsotg->lx_state == DWC2_L2) {
			dwc2_exit_hibernation(hsotg, true);
			hsotg->lx_state = DWC2_L0;
		}
	}

	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
		u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
		u32 connected = hsotg->connected;

		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
			dwc2_readl(hsotg->regs + GNPTXSTS));

		dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);

		/* Report disconnection if it is not already done. */
		dwc2_hsotg_disconnect(hsotg);

3545
		/* Reset device address to zero */
3546
		dwc2_clear_bit(hsotg->regs + DCFG, DCFG_DEVADDR_MASK);
3547

3548 3549 3550 3551
		if (usb_status & GOTGCTL_BSESVLD && connected)
			dwc2_hsotg_core_init_disconnected(hsotg, true);
	}

3552
	if (gintsts & GINTSTS_ENUMDONE) {
3553
		dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
3554

3555
		dwc2_hsotg_irq_enumdone(hsotg);
3556 3557
	}

3558
	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3559 3560
		u32 daint = dwc2_readl(hsotg->regs + DAINT);
		u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3561
		u32 daint_out, daint_in;
3562 3563
		int ep;

3564
		daint &= daintmsk;
3565 3566
		daint_out = daint >> DAINT_OUTEP_SHIFT;
		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3567

3568 3569
		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

3570 3571
		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
						ep++, daint_out >>= 1) {
3572
			if (daint_out & 1)
3573
				dwc2_hsotg_epint(hsotg, ep, 0);
3574 3575
		}

3576 3577
		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
						ep++, daint_in >>= 1) {
3578
			if (daint_in & 1)
3579
				dwc2_hsotg_epint(hsotg, ep, 1);
3580 3581 3582 3583 3584
		}
	}

	/* check both FIFOs */

3585
	if (gintsts & GINTSTS_NPTXFEMP) {
3586 3587
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

3588 3589
		/*
		 * Disable the interrupt to stop it happening again
3590
		 * unless one of these endpoint routines decides that
3591 3592
		 * it needs re-enabling
		 */
3593

3594 3595
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, false);
3596 3597
	}

3598
	if (gintsts & GINTSTS_PTXFEMP) {
3599 3600
		dev_dbg(hsotg->dev, "PTxFEmp\n");

3601
		/* See note in GINTSTS_NPTxFEmp */
3602

3603 3604
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, true);
3605 3606
	}

3607
	if (gintsts & GINTSTS_RXFLVL) {
3608 3609
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3610
		 * we need to retry dwc2_hsotg_handle_rx if this is still
3611 3612
		 * set.
		 */
3613

3614
		dwc2_hsotg_handle_rx(hsotg);
3615 3616
	}

3617
	if (gintsts & GINTSTS_ERLYSUSP) {
3618
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3619
		dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
3620 3621
	}

3622 3623
	/*
	 * these next two seem to crop-up occasionally causing the core
3624
	 * to shutdown the USB transfer, so try clearing them and logging
3625 3626
	 * the occurrence.
	 */
3627

3628
	if (gintsts & GINTSTS_GOUTNAKEFF) {
3629 3630 3631
		u8 idx;
		u32 epctrl;
		u32 gintmsk;
3632
		u32 daintmsk;
3633 3634
		struct dwc2_hsotg_ep *hs_ep;

3635 3636
		daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
		daintmsk >>= DAINT_OUTEP_SHIFT;
3637 3638 3639 3640 3641 3642 3643 3644
		/* Mask this interrupt */
		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
		gintmsk &= ~GINTSTS_GOUTNAKEFF;
		dwc2_writel(gintmsk, hsotg->regs + GINTMSK);

		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
		for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
			hs_ep = hsotg->eps_out[idx];
3645 3646 3647 3648
			/* Proceed only unmasked ISOC EPs */
			if (!hs_ep->isochronous || (BIT(idx) & ~daintmsk))
				continue;

3649 3650
			epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));

3651
			if (epctrl & DXEPCTL_EPENA) {
3652 3653 3654 3655 3656
				epctrl |= DXEPCTL_SNAK;
				epctrl |= DXEPCTL_EPDIS;
				dwc2_writel(epctrl, hsotg->regs + DOEPCTL(idx));
			}
		}
3657

3658
		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3659 3660
	}

3661
	if (gintsts & GINTSTS_GINNAKEFF) {
3662 3663
		dev_info(hsotg->dev, "GINNakEff triggered\n");

3664
		dwc2_set_bit(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3665

3666
		dwc2_hsotg_dump(hsotg);
3667 3668
	}

3669 3670
	if (gintsts & GINTSTS_INCOMPL_SOIN)
		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3671

3672 3673
	if (gintsts & GINTSTS_INCOMPL_SOOUT)
		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3674

3675 3676 3677 3678
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
3679 3680

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3681
		goto irq_retry;
3682

3683 3684
	spin_unlock(&hsotg->lock);

3685 3686 3687
	return IRQ_HANDLED;
}

3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703
static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
				   struct dwc2_hsotg_ep *hs_ep)
{
	u32 epctrl_reg;
	u32 epint_reg;

	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
		DOEPCTL(hs_ep->index);
	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
		DOEPINT(hs_ep->index);

	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
		hs_ep->name);

	if (hs_ep->dir_in) {
		if (hsotg->dedicated_fifos || hs_ep->periodic) {
3704
			dwc2_set_bit(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
3705 3706 3707 3708 3709 3710 3711
			/* Wait for Nak effect */
			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
						    DXEPINT_INEPNAKEFF, 100))
				dev_warn(hsotg->dev,
					 "%s: timeout DIEPINT.NAKEFF\n",
					 __func__);
		} else {
3712
			dwc2_set_bit(hsotg->regs + DCTL, DCTL_SGNPINNAK);
3713 3714 3715 3716 3717 3718 3719 3720 3721
			/* Wait for Nak effect */
			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
						    GINTSTS_GINNAKEFF, 100))
				dev_warn(hsotg->dev,
					 "%s: timeout GINTSTS.GINNAKEFF\n",
					 __func__);
		}
	} else {
		if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF))
3722
			dwc2_set_bit(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3723 3724 3725 3726 3727 3728 3729 3730 3731

		/* Wait for global nak to take effect */
		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
					    GINTSTS_GOUTNAKEFF, 100))
			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
				 __func__);
	}

	/* Disable ep */
3732
	dwc2_set_bit(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
3733 3734 3735 3736 3737 3738 3739

	/* Wait for ep to be disabled */
	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
		dev_warn(hsotg->dev,
			 "%s: timeout DOEPCTL.EPDisable\n", __func__);

	/* Clear EPDISBLD interrupt */
3740
	dwc2_set_bit(hsotg->regs + epint_reg, DXEPINT_EPDISBLD);
3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754

	if (hs_ep->dir_in) {
		unsigned short fifo_index;

		if (hsotg->dedicated_fifos || hs_ep->periodic)
			fifo_index = hs_ep->fifo_index;
		else
			fifo_index = 0;

		/* Flush TX FIFO */
		dwc2_flush_tx_fifo(hsotg, fifo_index);

		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3755
			dwc2_set_bit(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3756 3757 3758

	} else {
		/* Remove global NAKs */
3759
		dwc2_set_bit(hsotg->regs + DCTL, DCTL_CGOUTNAK);
3760 3761 3762
	}
}

3763
/**
3764
 * dwc2_hsotg_ep_enable - enable the given endpoint
3765 3766 3767 3768
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
3769
 */
3770
static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3771
				const struct usb_endpoint_descriptor *desc)
3772
{
3773
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3774
	struct dwc2_hsotg *hsotg = hs_ep->parent;
3775
	unsigned long flags;
3776
	unsigned int index = hs_ep->index;
3777 3778 3779
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
3780
	u32 mc;
3781
	u32 mask;
3782 3783
	unsigned int dir_in;
	unsigned int i, val, size;
3784
	int ret = 0;
3785 3786 3787 3788 3789 3790 3791

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
3792 3793 3794 3795
	if (index == 0) {
		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
		return -EINVAL;
	}
3796 3797 3798 3799 3800 3801 3802

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

3803
	mps = usb_endpoint_maxp(desc);
3804
	mc = usb_endpoint_maxp_mult(desc);
3805

3806
	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3807

3808
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3809
	epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3810 3811 3812 3813

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

3814
	/* Allocate DMA descriptor chain for non-ctrl endpoints */
3815 3816
	if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
		hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
3817 3818
			MAX_DMA_DESC_NUM_GENERIC *
			sizeof(struct dwc2_dma_desc),
3819
			&hs_ep->desc_list_dma, GFP_ATOMIC);
3820 3821 3822 3823 3824 3825
		if (!hs_ep->desc_list) {
			ret = -ENOMEM;
			goto error2;
		}
	}

3826
	spin_lock_irqsave(&hsotg->lock, flags);
3827

3828 3829
	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
	epctrl |= DXEPCTL_MPS(mps);
3830

3831 3832 3833 3834
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
3835
	epctrl |= DXEPCTL_USBACTEP;
3836 3837

	/* update the endpoint state */
3838
	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
3839 3840

	/* default, set to non-periodic */
3841
	hs_ep->isochronous = 0;
3842
	hs_ep->periodic = 0;
3843
	hs_ep->halted = 0;
3844
	hs_ep->interval = desc->bInterval;
3845

3846 3847
	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
3848 3849
		epctrl |= DXEPCTL_EPTYPE_ISO;
		epctrl |= DXEPCTL_SETEVENFR;
3850
		hs_ep->isochronous = 1;
3851
		hs_ep->interval = 1 << (desc->bInterval - 1);
3852
		hs_ep->target_frame = TARGET_FRAME_INITIAL;
3853 3854
		hs_ep->isoc_chain_num = 0;
		hs_ep->next_desc = 0;
3855
		if (dir_in) {
3856
			hs_ep->periodic = 1;
3857 3858 3859 3860 3861 3862 3863 3864
			mask = dwc2_readl(hsotg->regs + DIEPMSK);
			mask |= DIEPMSK_NAKMSK;
			dwc2_writel(mask, hsotg->regs + DIEPMSK);
		} else {
			mask = dwc2_readl(hsotg->regs + DOEPMSK);
			mask |= DOEPMSK_OUTTKNEPDISMSK;
			dwc2_writel(mask, hsotg->regs + DOEPMSK);
		}
3865
		break;
3866 3867

	case USB_ENDPOINT_XFER_BULK:
3868
		epctrl |= DXEPCTL_EPTYPE_BULK;
3869 3870 3871
		break;

	case USB_ENDPOINT_XFER_INT:
3872
		if (dir_in)
3873 3874
			hs_ep->periodic = 1;

3875 3876 3877
		if (hsotg->gadget.speed == USB_SPEED_HIGH)
			hs_ep->interval = 1 << (desc->bInterval - 1);

3878
		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
3879 3880 3881
		break;

	case USB_ENDPOINT_XFER_CONTROL:
3882
		epctrl |= DXEPCTL_EPTYPE_CONTROL;
3883 3884 3885
		break;
	}

3886 3887
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
3888 3889
	 * a unique tx-fifo even if it is non-periodic.
	 */
3890
	if (dir_in && hsotg->dedicated_fifos) {
3891 3892
		u32 fifo_index = 0;
		u32 fifo_size = UINT_MAX;
3893 3894

		size = hs_ep->ep.maxpacket * hs_ep->mc;
3895
		for (i = 1; i < hsotg->num_of_eps; ++i) {
3896
			if (hsotg->fifo_map & (1 << i))
3897
				continue;
3898
			val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
3899
			val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
3900 3901
			if (val < size)
				continue;
3902 3903 3904 3905 3906
			/* Search for smallest acceptable fifo */
			if (val < fifo_size) {
				fifo_size = val;
				fifo_index = i;
			}
3907
		}
3908
		if (!fifo_index) {
3909 3910
			dev_err(hsotg->dev,
				"%s: No suitable fifo found\n", __func__);
3911
			ret = -ENOMEM;
3912
			goto error1;
3913
		}
3914 3915 3916 3917
		hsotg->fifo_map |= 1 << fifo_index;
		epctrl |= DXEPCTL_TXFNUM(fifo_index);
		hs_ep->fifo_index = fifo_index;
		hs_ep->fifo_size = fifo_size;
3918
	}
3919

3920
	/* for non control endpoints, set PID to D0 */
3921
	if (index && !hs_ep->isochronous)
3922
		epctrl |= DXEPCTL_SETD0PID;
3923 3924 3925 3926

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

3927
	dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
3928
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
3929
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
3930 3931

	/* enable the endpoint interrupt */
3932
	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
3933

3934
error1:
3935
	spin_unlock_irqrestore(&hsotg->lock, flags);
3936 3937 3938

error2:
	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
3939
		dmam_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
3940 3941 3942 3943 3944
			sizeof(struct dwc2_dma_desc),
			hs_ep->desc_list, hs_ep->desc_list_dma);
		hs_ep->desc_list = NULL;
	}

3945
	return ret;
3946 3947
}

3948
/**
3949
 * dwc2_hsotg_ep_disable - disable given endpoint
3950 3951
 * @ep: The endpoint to disable.
 */
3952
static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
3953
{
3954
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3955
	struct dwc2_hsotg *hsotg = hs_ep->parent;
3956 3957 3958 3959 3960 3961
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

3962
	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
3963

3964
	if (ep == &hsotg->eps_out[0]->ep) {
3965 3966
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
3967 3968 3969 3970 3971
	}

	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
		dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
		return -EINVAL;
3972 3973
	}

3974
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3975

3976
	spin_lock_irqsave(&hsotg->lock, flags);
3977

3978
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3979 3980 3981 3982

	if (ctrl & DXEPCTL_EPENA)
		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);

3983 3984 3985
	ctrl &= ~DXEPCTL_EPENA;
	ctrl &= ~DXEPCTL_USBACTEP;
	ctrl |= DXEPCTL_SNAK;
3986 3987

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
3988
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
3989 3990

	/* disable endpoint interrupts */
3991
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
3992

3993 3994 3995
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);

3996 3997 3998 3999
	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
	hs_ep->fifo_index = 0;
	hs_ep->fifo_size = 0;

4000
	spin_unlock_irqrestore(&hsotg->lock, flags);
4001 4002 4003 4004 4005 4006 4007
	return 0;
}

/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
4008
 */
4009
static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4010
{
4011
	struct dwc2_hsotg_req *req, *treq;
4012 4013 4014 4015 4016 4017 4018 4019 4020

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

4021
/**
4022
 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4023 4024 4025
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
4026
static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4027
{
4028 4029
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4030
	struct dwc2_hsotg *hs = hs_ep->parent;
4031 4032
	unsigned long flags;

4033
	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4034

4035
	spin_lock_irqsave(&hs->lock, flags);
4036 4037

	if (!on_list(hs_ep, hs_req)) {
4038
		spin_unlock_irqrestore(&hs->lock, flags);
4039 4040 4041
		return -EINVAL;
	}

4042 4043 4044 4045
	/* Dequeue already started request */
	if (req == &hs_ep->req->req)
		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);

4046
	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4047
	spin_unlock_irqrestore(&hs->lock, flags);
4048 4049 4050 4051

	return 0;
}

4052
/**
4053
 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4054 4055
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
4056 4057 4058 4059 4060
 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
 *       the endpoint is busy processing requests.
 *
 * We need to stall the endpoint immediately if request comes from set_feature
 * protocol command handler.
4061
 */
4062
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4063
{
4064
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4065
	struct dwc2_hsotg *hs = hs_ep->parent;
4066 4067 4068
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
4069
	u32 xfertype;
4070 4071 4072

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

4073 4074
	if (index == 0) {
		if (value)
4075
			dwc2_hsotg_stall_ep0(hs);
4076 4077 4078 4079 4080 4081
		else
			dev_warn(hs->dev,
				 "%s: can't clear halt on ep0\n", __func__);
		return 0;
	}

4082 4083 4084 4085 4086
	if (hs_ep->isochronous) {
		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
		return -EINVAL;
	}

4087 4088 4089 4090 4091 4092
	if (!now && value && !list_empty(&hs_ep->queue)) {
		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
			ep->name);
		return -EAGAIN;
	}

4093 4094
	if (hs_ep->dir_in) {
		epreg = DIEPCTL(index);
4095
		epctl = dwc2_readl(hs->regs + epreg);
4096 4097

		if (value) {
4098
			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4099 4100 4101 4102 4103 4104
			if (epctl & DXEPCTL_EPENA)
				epctl |= DXEPCTL_EPDIS;
		} else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4105
			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4106
				epctl |= DXEPCTL_SETD0PID;
4107
		}
4108
		dwc2_writel(epctl, hs->regs + epreg);
4109
	} else {
4110
		epreg = DOEPCTL(index);
4111
		epctl = dwc2_readl(hs->regs + epreg);
4112

J
John Youn 已提交
4113
		if (value) {
4114
			epctl |= DXEPCTL_STALL;
J
John Youn 已提交
4115
		} else {
4116 4117 4118
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4119
			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4120
				epctl |= DXEPCTL_SETD0PID;
4121
		}
4122
		dwc2_writel(epctl, hs->regs + epreg);
4123
	}
4124

4125 4126
	hs_ep->halted = value;

4127 4128 4129
	return 0;
}

4130
/**
4131
 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4132 4133 4134
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
4135
static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4136
{
4137
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4138
	struct dwc2_hsotg *hs = hs_ep->parent;
4139 4140 4141 4142
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
4143
	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4144 4145 4146 4147 4148
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

4149
static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4150 4151 4152 4153 4154 4155 4156
	.enable		= dwc2_hsotg_ep_enable,
	.disable	= dwc2_hsotg_ep_disable,
	.alloc_request	= dwc2_hsotg_ep_alloc_request,
	.free_request	= dwc2_hsotg_ep_free_request,
	.queue		= dwc2_hsotg_ep_queue_lock,
	.dequeue	= dwc2_hsotg_ep_dequeue,
	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
4157
	/* note, don't believe we have any call for the fifo routines */
4158 4159
};

4160
/**
4161
 * dwc2_hsotg_init - initialize the usb core
4162 4163
 * @hsotg: The driver state
 */
4164
static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4165
{
4166
	u32 trdtim;
4167
	u32 usbcfg;
4168 4169
	/* unmask subset of endpoint interrupts */

4170 4171 4172
	dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DIEPMSK);
4173

4174 4175 4176
	dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DOEPMSK);
4177

4178
	dwc2_writel(0, hsotg->regs + DAINTMSK);
4179 4180

	/* Be in disconnected state until gadget is registered */
4181
	dwc2_set_bit(hsotg->regs + DCTL, DCTL_SFTDISCON);
4182 4183 4184 4185

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4186 4187
		dwc2_readl(hsotg->regs + GRXFSIZ),
		dwc2_readl(hsotg->regs + GNPTXFSIZ));
4188

4189
	dwc2_hsotg_init_fifo(hsotg);
4190

4191 4192 4193
	/* keep other bits untouched (so e.g. forced modes are not lost) */
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
4194
		GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
4195

4196
	/* set the PLL on, remove the HNP/SRP and set the PHY */
4197
	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
4198 4199 4200
	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
		(trdtim << GUSBCFG_USBTRDTIM_SHIFT);
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
4201

4202
	if (using_dma(hsotg))
4203
		dwc2_set_bit(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
4204 4205
}

4206
/**
4207
 * dwc2_hsotg_udc_start - prepare the udc for work
4208 4209 4210 4211 4212 4213
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
4214
static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4215
				struct usb_gadget_driver *driver)
4216
{
4217
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4218
	unsigned long flags;
4219 4220 4221
	int ret;

	if (!hsotg) {
4222
		pr_err("%s: called with no device\n", __func__);
4223 4224 4225 4226 4227 4228 4229 4230
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

4231
	if (driver->max_speed < USB_SPEED_FULL)
4232 4233
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

4234
	if (!driver->setup) {
4235 4236 4237 4238 4239 4240 4241 4242
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
4243
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4244 4245
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

4246 4247 4248 4249
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
		ret = dwc2_lowlevel_hw_enable(hsotg);
		if (ret)
			goto err;
4250 4251
	}

4252 4253
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4254

4255
	spin_lock_irqsave(&hsotg->lock, flags);
4256 4257 4258 4259 4260
	if (dwc2_hw_is_device(hsotg)) {
		dwc2_hsotg_init(hsotg);
		dwc2_hsotg_core_init_disconnected(hsotg, false);
	}

4261
	hsotg->enabled = 0;
4262 4263
	spin_unlock_irqrestore(&hsotg->lock, flags);

4264
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4265

4266 4267 4268 4269 4270 4271 4272
	return 0;

err:
	hsotg->driver = NULL;
	return ret;
}

4273
/**
4274
 * dwc2_hsotg_udc_stop - stop the udc
4275 4276 4277 4278 4279
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
4280
static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4281
{
4282
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4283
	unsigned long flags = 0;
4284 4285 4286 4287 4288 4289
	int ep;

	if (!hsotg)
		return -ENODEV;

	/* all endpoints should be shutdown */
4290 4291
	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
4292
			dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4293
		if (hsotg->eps_out[ep])
4294
			dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4295
	}
4296

4297 4298
	spin_lock_irqsave(&hsotg->lock, flags);

4299
	hsotg->driver = NULL;
4300
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4301
	hsotg->enabled = 0;
4302

4303 4304
	spin_unlock_irqrestore(&hsotg->lock, flags);

4305 4306
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, NULL);
4307

4308 4309
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		dwc2_lowlevel_hw_disable(hsotg);
4310 4311 4312 4313

	return 0;
}

4314
/**
4315
 * dwc2_hsotg_gadget_getframe - read the frame number
4316 4317 4318 4319
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
4320
static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4321
{
4322
	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4323 4324
}

4325
/**
4326
 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4327 4328 4329 4330 4331
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
4332
static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4333
{
4334
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4335 4336
	unsigned long flags = 0;

4337
	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4338
		hsotg->op_state);
4339 4340 4341 4342 4343 4344

	/* Don't modify pullup state while in host mode */
	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
		hsotg->enabled = is_on;
		return 0;
	}
4345 4346 4347

	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
4348
		hsotg->enabled = 1;
4349
		dwc2_hsotg_core_init_disconnected(hsotg, false);
4350 4351
		/* Enable ACG feature in device mode,if supported */
		dwc2_enable_acg(hsotg);
4352
		dwc2_hsotg_core_connect(hsotg);
4353
	} else {
4354 4355
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
4356
		hsotg->enabled = 0;
4357 4358 4359 4360 4361 4362 4363 4364
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return 0;
}

4365
static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4366 4367 4368 4369 4370 4371 4372
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
	unsigned long flags;

	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
	spin_lock_irqsave(&hsotg->lock, flags);

4373 4374 4375 4376 4377 4378 4379
	/*
	 * If controller is hibernated, it must exit from hibernation
	 * before being initialized / de-initialized
	 */
	if (hsotg->lx_state == DWC2_L2)
		dwc2_exit_hibernation(hsotg, false);

4380
	if (is_active) {
4381
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4382

4383
		dwc2_hsotg_core_init_disconnected(hsotg, false);
4384 4385 4386
		if (hsotg->enabled) {
			/* Enable ACG feature in device mode,if supported */
			dwc2_enable_acg(hsotg);
4387
			dwc2_hsotg_core_connect(hsotg);
4388
		}
4389
	} else {
4390 4391
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
4392 4393 4394 4395 4396 4397
	}

	spin_unlock_irqrestore(&hsotg->lock, flags);
	return 0;
}

4398
/**
4399
 * dwc2_hsotg_vbus_draw - report bMaxPower field
4400 4401 4402 4403 4404
 * @gadget: The usb gadget state
 * @mA: Amount of current
 *
 * Report how much power the device may consume to the phy.
 */
4405
static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4406 4407 4408 4409 4410 4411 4412 4413
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);

	if (IS_ERR_OR_NULL(hsotg->uphy))
		return -ENOTSUPP;
	return usb_phy_set_power(hsotg->uphy, mA);
}

4414 4415 4416 4417 4418 4419 4420
static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
	.get_frame	= dwc2_hsotg_gadget_getframe,
	.udc_start		= dwc2_hsotg_udc_start,
	.udc_stop		= dwc2_hsotg_udc_stop,
	.pullup                 = dwc2_hsotg_pullup,
	.vbus_session		= dwc2_hsotg_vbus_session,
	.vbus_draw		= dwc2_hsotg_vbus_draw,
4421 4422 4423
};

/**
4424
 * dwc2_hsotg_initep - initialise a single endpoint
4425 4426 4427 4428 4429 4430 4431 4432
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
4433
static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4434
			      struct dwc2_hsotg_ep *hs_ep,
4435 4436
				       int epnum,
				       bool dir_in)
4437 4438 4439 4440 4441
{
	char *dir;

	if (epnum == 0)
		dir = "";
4442
	else if (dir_in)
4443
		dir = "in";
4444 4445
	else
		dir = "out";
4446

4447
	hs_ep->dir_in = dir_in;
4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460
	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
4461 4462 4463 4464 4465 4466

	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
	else
		usb_ep_set_maxpacket_limit(&hs_ep->ep,
					   epnum ? 1024 : EP0_MPS_LIMIT);
4467
	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4468

4469 4470 4471
	if (epnum == 0) {
		hs_ep->ep.caps.type_control = true;
	} else {
4472 4473 4474 4475
		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
			hs_ep->ep.caps.type_iso = true;
			hs_ep->ep.caps.type_bulk = true;
		}
4476 4477 4478 4479 4480 4481 4482 4483
		hs_ep->ep.caps.type_int = true;
	}

	if (dir_in)
		hs_ep->ep.caps.dir_in = true;
	else
		hs_ep->ep.caps.dir_out = true;

4484 4485
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
4486 4487 4488 4489
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
4490
		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4491

4492
		if (dir_in)
4493
			dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
4494
		else
4495
			dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
4496 4497 4498
	}
}

4499
/**
4500
 * dwc2_hsotg_hw_cfg - read HW configuration registers
4501 4502 4503 4504
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
4505
static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4506
{
4507 4508 4509 4510
	u32 cfg;
	u32 ep_type;
	u32 i;

4511
	/* check hardware configuration */
4512

4513 4514
	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;

4515 4516
	/* Add ep0 */
	hsotg->num_of_eps++;
4517

4518 4519 4520
	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
					sizeof(struct dwc2_hsotg_ep),
					GFP_KERNEL);
4521 4522
	if (!hsotg->eps_in[0])
		return -ENOMEM;
4523
	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4524 4525
	hsotg->eps_out[0] = hsotg->eps_in[0];

4526
	cfg = hsotg->hw_params.dev_ep_dirs;
4527
	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4528 4529 4530 4531
		ep_type = cfg & 3;
		/* Direction in or both */
		if (!(ep_type & 2)) {
			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4532
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4533 4534 4535 4536 4537 4538
			if (!hsotg->eps_in[i])
				return -ENOMEM;
		}
		/* Direction out or both */
		if (!(ep_type & 1)) {
			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4539
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4540 4541 4542 4543 4544
			if (!hsotg->eps_out[i])
				return -ENOMEM;
		}
	}

4545 4546
	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4547

4548 4549 4550 4551
	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
		 hsotg->num_of_eps,
		 hsotg->dedicated_fifos ? "dedicated" : "shared",
		 hsotg->fifo_mem);
4552
	return 0;
4553 4554
}

4555
/**
4556
 * dwc2_hsotg_dump - dump state of the udc
4557 4558
 * @param: The device state
 */
4559
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4560
{
M
Mark Brown 已提交
4561
#ifdef DEBUG
4562 4563 4564 4565 4566 4567
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4568 4569
		 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
		 dwc2_readl(regs + DIEPMSK));
4570

4571
	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4572
		 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
4573 4574

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4575
		 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
4576 4577 4578

	/* show periodic fifo settings */

4579
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4580
		val = dwc2_readl(regs + DPTXFSIZN(idx));
4581
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4582 4583
			 val >> FIFOSIZE_DEPTH_SHIFT,
			 val & FIFOSIZE_STARTADDR_MASK);
4584 4585
	}

4586
	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4587 4588
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4589 4590 4591
			 dwc2_readl(regs + DIEPCTL(idx)),
			 dwc2_readl(regs + DIEPTSIZ(idx)),
			 dwc2_readl(regs + DIEPDMA(idx)));
4592

4593
		val = dwc2_readl(regs + DOEPCTL(idx));
4594 4595
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4596 4597 4598
			 idx, dwc2_readl(regs + DOEPCTL(idx)),
			 dwc2_readl(regs + DOEPTSIZ(idx)),
			 dwc2_readl(regs + DOEPDMA(idx)));
4599 4600 4601
	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4602
		 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
4603
#endif
4604 4605
}

4606
/**
4607 4608
 * dwc2_gadget_init - init function for gadget
 * @dwc2: The data structure for the DWC2 driver.
4609
 */
4610
int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
4611
{
4612
	struct device *dev = hsotg->dev;
4613 4614
	int epnum;
	int ret;
4615

4616 4617
	/* Dump fifo information */
	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4618 4619
		hsotg->params.g_np_tx_fifo_size);
	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4620

4621
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
4622
	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4623
	hsotg->gadget.name = dev_name(dev);
4624 4625
	if (hsotg->dr_mode == USB_DR_MODE_OTG)
		hsotg->gadget.is_otg = 1;
4626 4627
	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4628

4629
	ret = dwc2_hsotg_hw_cfg(hsotg);
4630 4631
	if (ret) {
		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4632
		return ret;
4633 4634
	}

4635 4636
	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4637
	if (!hsotg->ctrl_buff)
4638
		return -ENOMEM;
4639 4640 4641

	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4642
	if (!hsotg->ep0_buff)
4643
		return -ENOMEM;
4644

4645 4646 4647 4648 4649 4650
	if (using_desc_dma(hsotg)) {
		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
		if (ret < 0)
			return ret;
	}

4651 4652
	ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq,
			       IRQF_SHARED, dev_name(hsotg->dev), hsotg);
4653
	if (ret < 0) {
4654
		dev_err(dev, "cannot claim IRQ for gadget\n");
4655
		return ret;
4656 4657
	}

4658 4659 4660 4661
	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
4662
		return -EINVAL;
4663 4664 4665 4666 4667
	}

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4668
	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4669 4670 4671

	/* allocate EP0 request */

4672
	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4673 4674 4675
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
4676
		return -ENOMEM;
4677
	}
4678 4679

	/* initialise the endpoints now the core has been initialised */
4680 4681
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
		if (hsotg->eps_in[epnum])
4682
			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4683
					  epnum, 1);
4684
		if (hsotg->eps_out[epnum])
4685
			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4686
					  epnum, 0);
4687
	}
4688

4689
	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
4690
	if (ret)
4691
		return ret;
4692

4693
	dwc2_hsotg_dump(hsotg);
4694 4695 4696 4697

	return 0;
}

4698
/**
4699
 * dwc2_hsotg_remove - remove function for hsotg driver
4700 4701
 * @pdev: The platform information for the driver
 */
4702
int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4703
{
4704
	usb_del_gadget_udc(&hsotg->gadget);
4705

4706 4707 4708
	return 0;
}

4709
int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4710 4711 4712
{
	unsigned long flags;

4713
	if (hsotg->lx_state != DWC2_L0)
4714
		return 0;
4715

4716 4717 4718
	if (hsotg->driver) {
		int ep;

4719 4720 4721
		dev_info(hsotg->dev, "suspending usb gadget %s\n",
			 hsotg->driver->driver.name);

4722 4723
		spin_lock_irqsave(&hsotg->lock, flags);
		if (hsotg->enabled)
4724 4725
			dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
4726 4727
		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
		spin_unlock_irqrestore(&hsotg->lock, flags);
4728

4729 4730
		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
			if (hsotg->eps_in[ep])
4731
				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4732
			if (hsotg->eps_out[ep])
4733
				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4734
		}
4735 4736
	}

4737
	return 0;
4738 4739
}

4740
int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4741 4742 4743
{
	unsigned long flags;

4744
	if (hsotg->lx_state == DWC2_L2)
4745
		return 0;
4746

4747 4748 4749
	if (hsotg->driver) {
		dev_info(hsotg->dev, "resuming usb gadget %s\n",
			 hsotg->driver->driver.name);
4750

4751
		spin_lock_irqsave(&hsotg->lock, flags);
4752
		dwc2_hsotg_core_init_disconnected(hsotg, false);
4753 4754 4755
		if (hsotg->enabled) {
			/* Enable ACG feature in device mode,if supported */
			dwc2_enable_acg(hsotg);
4756
			dwc2_hsotg_core_connect(hsotg);
4757
		}
4758 4759
		spin_unlock_irqrestore(&hsotg->lock, flags);
	}
4760

4761
	return 0;
4762
}
4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864

/**
 * dwc2_backup_device_registers() - Backup controller device registers.
 * When suspending usb bus, registers needs to be backuped
 * if controller power is disabled once suspended.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Backup dev regs */
	dr = &hsotg->dr_backup;

	dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
	dr->dctl = dwc2_readl(hsotg->regs + DCTL);
	dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
	dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
	dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Backup IN EPs */
		dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));

		/* Ensure DATA PID is correctly configured */
		if (dr->diepctl[i] & DXEPCTL_DPID)
			dr->diepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->diepctl[i] |= DXEPCTL_SETD0PID;

		dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
		dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));

		/* Backup OUT EPs */
		dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));

		/* Ensure DATA PID is correctly configured */
		if (dr->doepctl[i] & DXEPCTL_DPID)
			dr->doepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->doepctl[i] |= DXEPCTL_SETD0PID;

		dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
		dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
	}
	dr->valid = true;
	return 0;
}

/**
 * dwc2_restore_device_registers() - Restore controller device registers.
 * When resuming usb bus, device registers needs to be restored
 * if controller power were disabled.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	u32 dctl;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Restore dev regs */
	dr = &hsotg->dr_backup;
	if (!dr->valid) {
		dev_err(hsotg->dev, "%s: no device registers to restore\n",
			__func__);
		return -EINVAL;
	}
	dr->valid = false;

	dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
	dwc2_writel(dr->dctl, hsotg->regs + DCTL);
	dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
	dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
	dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Restore IN EPs */
		dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
		dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
		dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));

		/* Restore OUT EPs */
		dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
		dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
	}

	/* Set the Power-On Programming done bit */
	dctl = dwc2_readl(hsotg->regs + DCTL);
	dctl |= DCTL_PWRONPRGDONE;
	dwc2_writel(dctl, hsotg->regs + DCTL);

	return 0;
}