gadget.c 122.8 KB
Newer Older
1
/**
2 3
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
4 5 6 7 8 9 10 11 12 13 14
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
15
 */
16 17 18 19 20 21 22

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
23
#include <linux/mutex.h>
24 25 26
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
27
#include <linux/slab.h>
28
#include <linux/of_platform.h>
29 30 31

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
32
#include <linux/usb/phy.h>
33

34
#include "core.h"
35
#include "hw.h"
36 37

/* conversion functions */
38
static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
39
{
40
	return container_of(req, struct dwc2_hsotg_req, req);
41 42
}

43
static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
44
{
45
	return container_of(ep, struct dwc2_hsotg_ep, ep);
46 47
}

48
static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
49
{
50
	return container_of(gadget, struct dwc2_hsotg, gadget);
51 52 53 54
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
55
	dwc2_writel(dwc2_readl(ptr) | val, ptr);
56 57 58 59
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
60
	dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
61 62
}

63
static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
64 65 66 67 68 69 70 71
						u32 ep_index, u32 dir_in)
{
	if (dir_in)
		return hsotg->eps_in[ep_index];
	else
		return hsotg->eps_out[ep_index];
}

72
/* forward declaration of functions */
73
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
92
 * g_using_dma is set depending on dts flag.
93
 */
94
static inline bool using_dma(struct dwc2_hsotg *hsotg)
95
{
96
	return hsotg->params.g_dma;
97 98
}

99 100 101 102 103 104 105 106 107 108 109
/*
 * using_desc_dma - return the descriptor DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using descriptor DMA.
 */
static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
{
	return hsotg->params.g_dma_desc;
}

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
/**
 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
 * @hs_ep: The endpoint
 * @increment: The value to increment by
 *
 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
 */
static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
{
	hs_ep->target_frame += hs_ep->interval;
	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
		hs_ep->frame_overrun = 1;
		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
	} else {
		hs_ep->frame_overrun = 0;
	}
}

129
/**
130
 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
131 132 133
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
134
static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
135
{
136
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
137 138 139 140 141 142
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
143
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
144 145 146 147
	}
}

/**
148
 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
149 150 151
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
152
static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
153
{
154
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
155 156 157 158 159
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
160
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
161 162 163
}

/**
164
 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
165 166 167 168 169 170 171 172
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
173
static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
174 175 176 177 178 179 180 181 182 183 184
				 unsigned int ep, unsigned int dir_in,
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
185
	daint = dwc2_readl(hsotg->regs + DAINTMSK);
186 187 188 189
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
190
	dwc2_writel(daint, hsotg->regs + DAINTMSK);
191 192 193 194
	local_irq_restore(flags);
}

/**
195
 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
196 197
 * @hsotg: The device instance.
 */
198
static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
199
{
200
	unsigned int ep;
201
	unsigned int addr;
202
	int timeout;
203
	u32 val;
204
	u32 *txfsz = hsotg->params.g_tx_fifo_size;
205

206 207 208 209
	/* Reset fifo map if not correctly cleared during previous session */
	WARN_ON(hsotg->fifo_map);
	hsotg->fifo_map = 0;

210
	/* set RX/NPTX FIFO sizes */
211 212 213 214
	dwc2_writel(hsotg->params.g_rx_fifo_size, hsotg->regs + GRXFSIZ);
	dwc2_writel((hsotg->params.g_rx_fifo_size << FIFOSIZE_STARTADDR_SHIFT) |
		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
		    hsotg->regs + GNPTXFSIZ);
215

216 217
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
218 219
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
220 221
	 * known values.
	 */
222 223

	/* start at the end of the GNPTXFSIZ, rounded up */
224
	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
225

226
	/*
227
	 * Configure fifos sizes from provided configuration and assign
228 229
	 * them to endpoints dynamically according to maxpacket size value of
	 * given endpoint.
230
	 */
231
	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
232
		if (!txfsz[ep])
233 234
			continue;
		val = addr;
235 236
		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
237
			  "insufficient fifo memory");
238
		addr += txfsz[ep];
239

240
		dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
241
		val = dwc2_readl(hsotg->regs + DPTXFSIZN(ep));
242
	}
243

244 245 246 247
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
248

249
	dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
250
	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
251 252 253 254

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
255
		val = dwc2_readl(hsotg->regs + GRSTCTL);
256

257
		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
258 259 260 261 262 263
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
264
			break;
265 266 267 268 269 270
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
271 272 273 274 275 276 277 278
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
279
static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
280
						      gfp_t flags)
281
{
282
	struct dwc2_hsotg_req *req;
283

284
	req = kzalloc(sizeof(struct dwc2_hsotg_req), flags);
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
300
static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
301 302 303 304 305
{
	return hs_ep->periodic;
}

/**
306
 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
307 308 309 310
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
311
 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
312
 * of a request to ensure the buffer is ready for access by the caller.
313
 */
314 315 316
static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req)
317 318 319 320 321 322 323
{
	struct usb_request *req = &hs_req->req;

	/* ignore this if we're not moving any data */
	if (hs_req->req.length == 0)
		return;

324
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
325 326
}

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
/*
 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
 * for Control endpoint
 * @hsotg: The device state.
 *
 * This function will allocate 4 descriptor chains for EP 0: 2 for
 * Setup stage, per one for IN and OUT data/status transactions.
 */
static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
{
	hsotg->setup_desc[0] =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->setup_desc_dma[0],
				    GFP_KERNEL);
	if (!hsotg->setup_desc[0])
		goto fail;

	hsotg->setup_desc[1] =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->setup_desc_dma[1],
				    GFP_KERNEL);
	if (!hsotg->setup_desc[1])
		goto fail;

	hsotg->ctrl_in_desc =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->ctrl_in_desc_dma,
				    GFP_KERNEL);
	if (!hsotg->ctrl_in_desc)
		goto fail;

	hsotg->ctrl_out_desc =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->ctrl_out_desc_dma,
				    GFP_KERNEL);
	if (!hsotg->ctrl_out_desc)
		goto fail;

	return 0;

fail:
	return -ENOMEM;
}

375
/**
376
 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
377 378 379 380 381 382 383 384 385 386 387 388 389
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
390
 */
391 392 393
static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req)
394 395
{
	bool periodic = is_ep_periodic(hs_ep);
396
	u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
397 398 399 400 401
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;
402
	int max_transfer;
403 404 405 406 407 408 409

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

410
	if (periodic && !hsotg->dedicated_fifos) {
411
		u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
412 413 414
		int size_left;
		int size_done;

415 416 417 418
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
419

420
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
421

422 423
		/*
		 * if shared fifo, we cannot write anything until the
424 425 426
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
427
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
428 429 430
			return -ENOSPC;
		}

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
448
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
449 450
			return -ENOSPC;
		}
451
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
452 453
		can_write = dwc2_readl(hsotg->regs +
				DTXFSTS(hs_ep->fifo_index));
454 455 456

		can_write &= 0xffff;
		can_write *= 4;
457
	} else {
458
		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
459 460 461 462
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

463
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
464 465 466
			return -ENOSPC;
		}

467
		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
468
		can_write *= 4;	/* fifo size is in 32bit quantities. */
469 470
	}

471 472 473 474
	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
		 __func__, gnptxsts, can_write, to_write, max_transfer);
475

476 477
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
478 479 480
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
481
	if (can_write > 512 && !periodic)
482 483
		can_write = 512;

484 485
	/*
	 * limit the write to one max-packet size worth of data, but allow
486
	 * the transfer to return that it did not run out of fifo space
487 488
	 * doing it.
	 */
489 490
	if (to_write > max_transfer) {
		to_write = max_transfer;
491

492 493
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
494
			dwc2_hsotg_en_gsint(hsotg,
495 496
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
497 498
	}

499 500 501 502
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
503
		pkt_round = to_write % max_transfer;
504

505 506
		/*
		 * Round the write down to an
507 508 509 510 511 512 513 514 515
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

516 517 518 519
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
520

521 522
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
523
			dwc2_hsotg_en_gsint(hsotg,
524 525
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
		 to_write, hs_req->req.length, can_write, buf_pos);

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

543
	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
544 545 546 547 548 549 550 551 552 553 554

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
555
static unsigned get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
556 557 558 559 560 561
{
	int index = hs_ep->index;
	unsigned maxsize;
	unsigned maxpkt;

	if (index != 0) {
562 563
		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
564
	} else {
565
		maxsize = 64+64;
566
		if (hs_ep->dir_in)
567
			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
568
		else
569 570 571 572 573 574 575
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

576 577 578 579
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
580 581 582 583 584 585 586

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
/**
* dwc2_hsotg_read_frameno - read current frame number
* @hsotg: The device instance
*
* Return the current frame number
*/
static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
{
	u32 dsts;

	dsts = dwc2_readl(hsotg->regs + DSTS);
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;

	return dsts;
}

604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
/**
 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
 * DMA descriptor chain prepared for specific endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * depending on its descriptor chain capacity so that transfers that
 * are too long can be split.
 */
static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
{
	int is_isoc = hs_ep->isochronous;
	unsigned int maxsize;

	if (is_isoc)
		maxsize = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
					   DEV_DMA_ISOC_RX_NBYTES_LIMIT;
	else
		maxsize = DEV_DMA_NBYTES_LIMIT;

	/* Above size of one descriptor was chosen, multiple it */
	maxsize *= MAX_DMA_DESC_NUM_GENERIC;

	return maxsize;
}

630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737
/*
 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
 * @hs_ep: The endpoint
 * @mask: RX/TX bytes mask to be defined
 *
 * Returns maximum data payload for one descriptor after analyzing endpoint
 * characteristics.
 * DMA descriptor transfer bytes limit depends on EP type:
 * Control out - MPS,
 * Isochronous - descriptor rx/tx bytes bitfield limit,
 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
 * have concatenations from various descriptors within one packet.
 *
 * Selects corresponding mask for RX/TX bytes as well.
 */
static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
{
	u32 mps = hs_ep->ep.maxpacket;
	int dir_in = hs_ep->dir_in;
	u32 desc_size = 0;

	if (!hs_ep->index && !dir_in) {
		desc_size = mps;
		*mask = DEV_DMA_NBYTES_MASK;
	} else if (hs_ep->isochronous) {
		if (dir_in) {
			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
		} else {
			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
		}
	} else {
		desc_size = DEV_DMA_NBYTES_LIMIT;
		*mask = DEV_DMA_NBYTES_MASK;

		/* Round down desc_size to be mps multiple */
		desc_size -= desc_size % mps;
	}

	return desc_size;
}

/*
 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
 * @hs_ep: The endpoint
 * @dma_buff: DMA address to use
 * @len: Length of the transfer
 *
 * This function will iterate over descriptor chain and fill its entries
 * with corresponding information based on transfer data.
 */
static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
						 dma_addr_t dma_buff,
						 unsigned int len)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	struct dwc2_dma_desc *desc = hs_ep->desc_list;
	u32 mps = hs_ep->ep.maxpacket;
	u32 maxsize = 0;
	u32 offset = 0;
	u32 mask = 0;
	int i;

	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);

	hs_ep->desc_count = (len / maxsize) +
				((len % maxsize) ? 1 : 0);
	if (len == 0)
		hs_ep->desc_count = 1;

	for (i = 0; i < hs_ep->desc_count; ++i) {
		desc->status = 0;
		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
				 << DEV_DMA_BUFF_STS_SHIFT);

		if (len > maxsize) {
			if (!hs_ep->index && !dir_in)
				desc->status |= (DEV_DMA_L | DEV_DMA_IOC);

			desc->status |= (maxsize <<
						DEV_DMA_NBYTES_SHIFT & mask);
			desc->buf = dma_buff + offset;

			len -= maxsize;
			offset += maxsize;
		} else {
			desc->status |= (DEV_DMA_L | DEV_DMA_IOC);

			if (dir_in)
				desc->status |= (len % mps) ? DEV_DMA_SHORT :
					((hs_ep->send_zlp) ? DEV_DMA_SHORT : 0);
			if (len > maxsize)
				dev_err(hsotg->dev, "wrong len %d\n", len);

			desc->status |=
				len << DEV_DMA_NBYTES_SHIFT & mask;
			desc->buf = dma_buff + offset;
		}

		desc->status &= ~DEV_DMA_BUFF_STS_MASK;
		desc->status |= (DEV_DMA_BUFF_STS_HREADY
				 << DEV_DMA_BUFF_STS_SHIFT);
		desc++;
	}
}

738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
/*
 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
 * @hs_ep: The isochronous endpoint.
 * @dma_buff: usb requests dma buffer.
 * @len: usb request transfer length.
 *
 * Finds out index of first free entry either in the bottom or up half of
 * descriptor chain depend on which is under SW control and not processed
 * by HW. Then fills that descriptor with the data of the arrived usb request,
 * frame info, sets Last and IOC bits increments next_desc. If filled
 * descriptor is not the first one, removes L bit from the previous descriptor
 * status.
 */
static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
				      dma_addr_t dma_buff, unsigned int len)
{
	struct dwc2_dma_desc *desc;
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	u32 index;
	u32 maxsize = 0;
	u32 mask = 0;

	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
	if (len > maxsize) {
		dev_err(hsotg->dev, "wrong len %d\n", len);
		return -EINVAL;
	}

	/*
	 * If SW has already filled half of chain, then return and wait for
	 * the other chain to be processed by HW.
	 */
	if (hs_ep->next_desc == MAX_DMA_DESC_NUM_GENERIC / 2)
		return -EBUSY;

	/* Increment frame number by interval for IN */
	if (hs_ep->dir_in)
		dwc2_gadget_incr_frame_num(hs_ep);

	index = (MAX_DMA_DESC_NUM_GENERIC / 2) * hs_ep->isoc_chain_num +
		 hs_ep->next_desc;

	/* Sanity check of calculated index */
	if ((hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC) ||
	    (!hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC / 2)) {
		dev_err(hsotg->dev, "wrong index %d for iso chain\n", index);
		return -EINVAL;
	}

	desc = &hs_ep->desc_list[index];

	/* Clear L bit of previous desc if more than one entries in the chain */
	if (hs_ep->next_desc)
		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;

	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);

	desc->status = 0;
	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);

	desc->buf = dma_buff;
	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));

	if (hs_ep->dir_in) {
		desc->status |= ((hs_ep->mc << DEV_DMA_ISOC_PID_SHIFT) &
				 DEV_DMA_ISOC_PID_MASK) |
				((len % hs_ep->ep.maxpacket) ?
				 DEV_DMA_SHORT : 0) |
				((hs_ep->target_frame <<
				  DEV_DMA_ISOC_FRNUM_SHIFT) &
				 DEV_DMA_ISOC_FRNUM_MASK);
	}

	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);

	/* Update index of last configured entry in the chain */
	hs_ep->next_desc++;

	return 0;
}

/*
 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
 * @hs_ep: The isochronous endpoint.
 *
 * Prepare first descriptor chain for isochronous endpoints. Afterwards
 * write DMA address to HW and enable the endpoint.
 *
 * Switch between descriptor chains via isoc_chain_num to give SW opportunity
 * to prepare second descriptor chain while first one is being processed by HW.
 */
static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	struct dwc2_hsotg_req *hs_req, *treq;
	int index = hs_ep->index;
	int ret;
	u32 dma_reg;
	u32 depctl;
	u32 ctrl;

	if (list_empty(&hs_ep->queue)) {
		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
		return;
	}

	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
		ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
						 hs_req->req.length);
		if (ret) {
			dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
			break;
		}
	}

	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);

	/* write descriptor chain address to control register */
	dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);

	ctrl = dwc2_readl(hsotg->regs + depctl);
	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
	dwc2_writel(ctrl, hsotg->regs + depctl);

	/* Switch ISOC descriptor chain number being processed by SW*/
	hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
	hs_ep->next_desc = 0;
}

871
/**
872
 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
873 874 875 876 877 878 879 880
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
881 882 883
static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req,
884 885 886 887 888 889 890 891 892 893 894 895
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
	unsigned length;
	unsigned packets;
	unsigned maxreq;
896
	unsigned int dma_reg;
897 898 899 900 901 902 903 904 905 906 907 908 909 910

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

911
	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
912 913
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
914 915

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
916
		__func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
917 918
		hs_ep->dir_in ? "in" : "out");

919
	/* If endpoint is stalled, we will restart request later */
920
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
921

922
	if (index && ctrl & DXEPCTL_STALL) {
923 924 925 926
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

927
	length = ureq->length - ureq->actual;
928 929
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
930

931 932 933 934 935
	if (!using_desc_dma(hsotg))
		maxreq = get_ep_limit(hs_ep);
	else
		maxreq = dwc2_gadget_get_chain_limit(hs_ep);

936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

954 955 956 957 958
	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
		return;
	}

959
	if (dir_in && index != 0)
960
		if (hs_ep->isochronous)
961
			epsize = DXEPTSIZ_MC(packets);
962
		else
963
			epsize = DXEPTSIZ_MC(1);
964 965 966
	else
		epsize = 0;

967 968 969 970 971 972 973 974
	/*
	 * zero length packet should be programmed on its own and should not
	 * be counted in DIEPTSIZ.PktCnt with other packets.
	 */
	if (dir_in && ureq->zero && !continuing) {
		/* Test if zlp is actually required. */
		if ((ureq->length >= hs_ep->ep.maxpacket) &&
					!(ureq->length % hs_ep->ep.maxpacket))
975
			hs_ep->send_zlp = 1;
976 977
	}

978 979
	epsize |= DXEPTSIZ_PKTCNT(packets);
	epsize |= DXEPTSIZ_XFERSIZE(length);
980 981 982 983 984 985 986

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

987 988 989 990 991 992 993 994 995 996 997
	if (using_desc_dma(hsotg)) {
		u32 offset = 0;
		u32 mps = hs_ep->ep.maxpacket;

		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
		if (!dir_in) {
			if (!index)
				length = mps;
			else if (length % mps)
				length += (mps - (length % mps));
		}
998

999
		/*
1000 1001 1002
		 * If more data to send, adjust DMA for EP0 out data stage.
		 * ureq->dma stays unchanged, hence increment it by already
		 * passed passed data count before starting new transaction.
1003
		 */
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
		if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
		    continuing)
			offset = ureq->actual;

		/* Fill DDMA chain entries */
		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
						     length);

		/* write descriptor chain address to control register */
		dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
1014

1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
	} else {
		/* write size / packets */
		dwc2_writel(epsize, hsotg->regs + epsize_reg);

		if (using_dma(hsotg) && !continuing) {
			/*
			 * write DMA address to control register, buffer
			 * already synced by dwc2_hsotg_ep_queue().
			 */
1026

1027 1028 1029 1030 1031
			dwc2_writel(ureq->dma, hsotg->regs + dma_reg);

			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
				__func__, &ureq->dma, dma_reg);
		}
1032 1033
	}

1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
	if (hs_ep->isochronous && hs_ep->interval == 1) {
		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
		dwc2_gadget_incr_frame_num(hs_ep);

		if (hs_ep->target_frame & 0x1)
			ctrl |= DXEPCTL_SETODDFR;
		else
			ctrl |= DXEPCTL_SETEVENFR;
	}

1044
	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
1045

1046
	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1047 1048

	/* For Setup request do not clear NAK */
1049
	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1050
		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1051

1052
	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1053
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
1054

1055 1056
	/*
	 * set these, it seems that DMA support increments past the end
1057
	 * of the packet buffer so we need to calculate the length from
1058 1059
	 * this information.
	 */
1060 1061 1062 1063 1064 1065 1066
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

1067
		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1068 1069
	}

1070 1071 1072 1073
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
1074 1075

	/* check ep is enabled */
1076
	if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
1077
		dev_dbg(hsotg->dev,
1078
			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1079
			 index, dwc2_readl(hsotg->regs + epctrl_reg));
1080

1081
	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1082
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
1083 1084

	/* enable ep interrupts */
1085
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1086 1087 1088
}

/**
1089
 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1090 1091 1092 1093 1094 1095 1096 1097 1098
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
1099
 */
1100 1101
static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
			     struct dwc2_hsotg_ep *hs_ep,
1102 1103
			     struct usb_request *req)
{
1104
	struct dwc2_hsotg_req *hs_req = our_req(req);
1105
	int ret;
1106 1107 1108 1109 1110

	/* if the length is zero, ignore the DMA data */
	if (hs_req->req.length == 0)
		return 0;

1111 1112 1113
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
1114 1115 1116 1117 1118 1119 1120 1121 1122 1123

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

1124 1125
static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154
{
	void *req_buf = hs_req->req.buf;

	/* If dma is not being used or buffer is aligned */
	if (!using_dma(hsotg) || !((long)req_buf & 3))
		return 0;

	WARN_ON(hs_req->saved_req_buf);

	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
			hs_ep->ep.name, req_buf, hs_req->req.length);

	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
	if (!hs_req->req.buf) {
		hs_req->req.buf = req_buf;
		dev_err(hsotg->dev,
			"%s: unable to allocate memory for bounce buffer\n",
			__func__);
		return -ENOMEM;
	}

	/* Save actual buffer */
	hs_req->saved_req_buf = req_buf;

	if (hs_ep->dir_in)
		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
	return 0;
}

1155 1156
static void dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
{
	/* If dma is not being used or buffer was aligned */
	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
		return;

	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);

	/* Copy data from bounce buffer on successful out transfer */
	if (!hs_ep->dir_in && !hs_req->req.status)
		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
							hs_req->req.actual);

	/* Free bounce buffer */
	kfree(hs_req->req.buf);

	hs_req->req.buf = hs_req->saved_req_buf;
	hs_req->saved_req_buf = NULL;
}

1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
/**
 * dwc2_gadget_target_frame_elapsed - Checks target frame
 * @hs_ep: The driver endpoint to check
 *
 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
 * corresponding transfer.
 */
static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	u32 target_frame = hs_ep->target_frame;
	u32 current_frame = dwc2_hsotg_read_frameno(hsotg);
	bool frame_overrun = hs_ep->frame_overrun;

	if (!frame_overrun && current_frame >= target_frame)
		return true;

	if (frame_overrun && current_frame >= target_frame &&
	    ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
		return true;

	return false;
}

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235
/*
 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
 * @hsotg: The driver state
 * @hs_ep: the ep descriptor chain is for
 *
 * Called to update EP0 structure's pointers depend on stage of
 * control transfer.
 */
static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
					  struct dwc2_hsotg_ep *hs_ep)
{
	switch (hsotg->ep0_state) {
	case DWC2_EP0_SETUP:
	case DWC2_EP0_STATUS_OUT:
		hs_ep->desc_list = hsotg->setup_desc[0];
		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
		break;
	case DWC2_EP0_DATA_IN:
	case DWC2_EP0_STATUS_IN:
		hs_ep->desc_list = hsotg->ctrl_in_desc;
		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
		break;
	case DWC2_EP0_DATA_OUT:
		hs_ep->desc_list = hsotg->ctrl_out_desc;
		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
		break;
	default:
		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
			hsotg->ep0_state);
		return -EINVAL;
	}

	return 0;
}

1236
static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1237 1238
			      gfp_t gfp_flags)
{
1239 1240
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1241
	struct dwc2_hsotg *hs = hs_ep->parent;
1242
	bool first;
1243
	int ret;
1244 1245 1246 1247 1248

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

1249 1250 1251 1252 1253 1254 1255
	/* Prevent new request submission when controller is suspended */
	if (hs->lx_state == DWC2_L2) {
		dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
				__func__);
		return -EAGAIN;
	}

1256 1257 1258 1259 1260
	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

1261
	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1262 1263 1264
	if (ret)
		return ret;

1265 1266
	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
1267
		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1268 1269 1270
		if (ret)
			return ret;
	}
1271 1272 1273 1274 1275 1276
	/* If using descriptor DMA configure EP0 descriptor chain pointers */
	if (using_desc_dma(hs) && !hs_ep->index) {
		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
		if (ret)
			return ret;
	}
1277 1278 1279 1280

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
	/*
	 * Handle DDMA isochronous transfers separately - just add new entry
	 * to the half of descriptor chain that is not processed by HW.
	 * Transfer will be started once SW gets either one of NAK or
	 * OutTknEpDis interrupts.
	 */
	if (using_desc_dma(hs) && hs_ep->isochronous &&
	    hs_ep->target_frame != TARGET_FRAME_INITIAL) {
		ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
						 hs_req->req.length);
		if (ret)
			dev_dbg(hs->dev, "%s: ISO desc chain full\n", __func__);

		return 0;
	}

1297 1298 1299 1300 1301 1302 1303 1304
	if (first) {
		if (!hs_ep->isochronous) {
			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
			return 0;
		}

		while (dwc2_gadget_target_frame_elapsed(hs_ep))
			dwc2_gadget_incr_frame_num(hs_ep);
1305

1306 1307 1308
		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
	}
1309 1310 1311
	return 0;
}

1312
static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1313 1314
			      gfp_t gfp_flags)
{
1315
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1316
	struct dwc2_hsotg *hs = hs_ep->parent;
1317 1318 1319 1320
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
1321
	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1322 1323 1324 1325 1326
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

1327
static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1328 1329
				      struct usb_request *req)
{
1330
	struct dwc2_hsotg_req *hs_req = our_req(req);
1331 1332 1333 1334 1335

	kfree(hs_req);
}

/**
1336
 * dwc2_hsotg_complete_oursetup - setup completion callback
1337 1338 1339 1340 1341 1342
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
1343
static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1344 1345
					struct usb_request *req)
{
1346
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1347
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1348 1349 1350

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

1351
	dwc2_hsotg_ep_free_request(ep, req);
1352 1353 1354 1355 1356 1357 1358 1359 1360
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
1361
 */
1362
static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1363 1364
					   u32 windex)
{
1365
	struct dwc2_hsotg_ep *ep;
1366 1367 1368 1369 1370 1371
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

1372
	if (idx > hsotg->num_of_eps)
1373 1374
		return NULL;

1375 1376
	ep = index_to_ep(hsotg, idx, dir);

1377 1378 1379 1380 1381 1382
	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

1383
/**
1384
 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1385 1386 1387 1388
 * @hsotg: The driver state.
 * @testmode: requested usb test mode
 * Enable usb Test Mode requested by the Host.
 */
1389
int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1390
{
1391
	int dctl = dwc2_readl(hsotg->regs + DCTL);
1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404

	dctl &= ~DCTL_TSTCTL_MASK;
	switch (testmode) {
	case TEST_J:
	case TEST_K:
	case TEST_SE0_NAK:
	case TEST_PACKET:
	case TEST_FORCE_EN:
		dctl |= testmode << DCTL_TSTCTL_SHIFT;
		break;
	default:
		return -EINVAL;
	}
1405
	dwc2_writel(dctl, hsotg->regs + DCTL);
1406 1407 1408
	return 0;
}

1409
/**
1410
 * dwc2_hsotg_send_reply - send reply to control request
1411 1412 1413 1414 1415 1416 1417 1418
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
1419 1420
static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *ep,
1421 1422 1423 1424 1425 1426 1427 1428
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

1429
	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1430 1431 1432 1433 1434 1435 1436 1437
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
1438 1439 1440 1441 1442
	/*
	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
	 * STATUS stage.
	 */
	req->zero = 0;
1443
	req->complete = dwc2_hsotg_complete_oursetup;
1444 1445 1446 1447

	if (length)
		memcpy(req->buf, buff, length);

1448
	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1449 1450 1451 1452 1453 1454 1455 1456 1457
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
1458
 * dwc2_hsotg_process_req_status - process request GET_STATUS
1459 1460 1461
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1462
static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1463 1464
					struct usb_ctrlrequest *ctrl)
{
1465 1466
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_ep *ep;
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
		reply = cpu_to_le16(0); /* bit 0 => self powered,
					 * bit 1 => remote wakeup */
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

1503
	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1504 1505 1506 1507 1508 1509 1510 1511
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

1512
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1513

1514 1515 1516 1517 1518 1519
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
1520
static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1521
{
1522 1523
	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
					queue);
1524 1525
}

1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
/**
 * dwc2_gadget_start_next_request - Starts next request from ep queue
 * @hs_ep: Endpoint structure
 *
 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
 * in its handler. Hence we need to unmask it here to be able to do
 * resynchronization.
 */
static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
{
	u32 mask;
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	struct dwc2_hsotg_req *hs_req;
	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;

	if (!list_empty(&hs_ep->queue)) {
		hs_req = get_ep_head(hs_ep);
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		return;
	}
	if (!hs_ep->isochronous)
		return;

	if (dir_in) {
		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
			__func__);
	} else {
		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
			__func__);
		mask = dwc2_readl(hsotg->regs + epmsk_reg);
		mask |= DOEPMSK_OUTTKNEPDISMSK;
		dwc2_writel(mask, hsotg->regs + epmsk_reg);
	}
}

1562
/**
1563
 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1564 1565 1566
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1567
static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1568 1569
					 struct usb_ctrlrequest *ctrl)
{
1570 1571
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_req *hs_req;
1572
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1573
	struct dwc2_hsotg_ep *ep;
1574
	int ret;
1575
	bool halted;
1576 1577 1578
	u32 recip;
	u32 wValue;
	u32 wIndex;
1579 1580 1581 1582

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
	wValue = le16_to_cpu(ctrl->wValue);
	wIndex = le16_to_cpu(ctrl->wIndex);
	recip = ctrl->bRequestType & USB_RECIP_MASK;

	switch (recip) {
	case USB_RECIP_DEVICE:
		switch (wValue) {
		case USB_DEVICE_TEST_MODE:
			if ((wIndex & 0xff) != 0)
				return -EINVAL;
			if (!set)
				return -EINVAL;

			hsotg->test_mode = wIndex >> 8;
1597
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
			break;
		default:
			return -ENOENT;
		}
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, wIndex);
1611 1612
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1613
				__func__, wIndex);
1614 1615 1616
			return -ENOENT;
		}

1617
		switch (wValue) {
1618
		case USB_ENDPOINT_HALT:
1619 1620
			halted = ep->halted;

1621
			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1622

1623
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1624 1625 1626 1627 1628
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
1629

1630 1631 1632 1633 1634 1635
			/*
			 * we have to complete all requests for ep if it was
			 * halted, and the halt was cleared by CLEAR_FEATURE
			 */

			if (!set && halted) {
1636 1637 1638 1639 1640 1641 1642 1643
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
1644 1645 1646 1647 1648 1649
					if (hs_req->req.complete) {
						spin_unlock(&hsotg->lock);
						usb_gadget_giveback_request(
							&ep->ep, &hs_req->req);
						spin_lock(&hsotg->lock);
					}
1650 1651 1652
				}

				/* If we have pending request, then start it */
1653
				if (!ep->req) {
1654
					dwc2_gadget_start_next_request(ep);
1655 1656 1657
				}
			}

1658 1659 1660 1661 1662
			break;

		default:
			return -ENOENT;
		}
1663 1664 1665 1666
		break;
	default:
		return -ENOENT;
	}
1667 1668 1669
	return 1;
}

1670
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1671

1672
/**
1673
 * dwc2_hsotg_stall_ep0 - stall ep0
1674 1675 1676 1677
 * @hsotg: The device state
 *
 * Set stall for ep0 as response for setup request.
 */
1678
static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1679
{
1680
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
	u32 reg;
	u32 ctrl;

	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;

	/*
	 * DxEPCTL_Stall will be cleared by EP once it has
	 * taken effect, so no need to clear later.
	 */

1692
	ctrl = dwc2_readl(hsotg->regs + reg);
1693 1694
	ctrl |= DXEPCTL_STALL;
	ctrl |= DXEPCTL_CNAK;
1695
	dwc2_writel(ctrl, hsotg->regs + reg);
1696 1697

	dev_dbg(hsotg->dev,
1698
		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1699
		ctrl, reg, dwc2_readl(hsotg->regs + reg));
1700 1701 1702 1703 1704

	 /*
	  * complete won't be called, so we enqueue
	  * setup request here
	  */
1705
	 dwc2_hsotg_enqueue_setup(hsotg);
1706 1707
}

1708
/**
1709
 * dwc2_hsotg_process_control - process a control request
1710 1711 1712 1713 1714 1715 1716
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
1717
static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1718 1719
				      struct usb_ctrlrequest *ctrl)
{
1720
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1721 1722 1723
	int ret = 0;
	u32 dcfg;

1724 1725 1726 1727
	dev_dbg(hsotg->dev,
		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
		ctrl->wIndex, ctrl->wLength);
1728

1729 1730 1731 1732
	if (ctrl->wLength == 0) {
		ep0->dir_in = 1;
		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
	} else if (ctrl->bRequestType & USB_DIR_IN) {
1733
		ep0->dir_in = 1;
1734 1735 1736 1737 1738
		hsotg->ep0_state = DWC2_EP0_DATA_IN;
	} else {
		ep0->dir_in = 0;
		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
	}
1739 1740 1741 1742

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1743
			hsotg->connected = 1;
1744
			dcfg = dwc2_readl(hsotg->regs + DCFG);
1745
			dcfg &= ~DCFG_DEVADDR_MASK;
P
Paul Zimmerman 已提交
1746 1747
			dcfg |= (le16_to_cpu(ctrl->wValue) <<
				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1748
			dwc2_writel(dcfg, hsotg->regs + DCFG);
1749 1750 1751

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

1752
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1753 1754 1755
			return;

		case USB_REQ_GET_STATUS:
1756
			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1757 1758 1759 1760
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
1761
			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1762 1763 1764 1765 1766 1767 1768
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
1769
		spin_unlock(&hsotg->lock);
1770
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1771
		spin_lock(&hsotg->lock);
1772 1773 1774 1775
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1776 1777
	/*
	 * the request is either unhandlable, or is not formatted correctly
1778 1779 1780
	 * so respond with a STALL for the status stage to indicate failure.
	 */

1781
	if (ret < 0)
1782
		dwc2_hsotg_stall_ep0(hsotg);
1783 1784 1785
}

/**
1786
 * dwc2_hsotg_complete_setup - completion of a setup transfer
1787 1788 1789 1790 1791 1792
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
1793
static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1794 1795
				     struct usb_request *req)
{
1796
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1797
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1798 1799 1800 1801 1802 1803

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

1804
	spin_lock(&hsotg->lock);
1805
	if (req->actual == 0)
1806
		dwc2_hsotg_enqueue_setup(hsotg);
1807
	else
1808
		dwc2_hsotg_process_control(hsotg, req->buf);
1809
	spin_unlock(&hsotg->lock);
1810 1811 1812
}

/**
1813
 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1814 1815 1816 1817 1818
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
1819
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1820 1821
{
	struct usb_request *req = hsotg->ctrl_req;
1822
	struct dwc2_hsotg_req *hs_req = our_req(req);
1823 1824 1825 1826 1827 1828 1829
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
1830
	req->complete = dwc2_hsotg_complete_setup;
1831 1832 1833 1834 1835 1836

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

1837
	hsotg->eps_out[0]->dir_in = 0;
1838
	hsotg->eps_out[0]->send_zlp = 0;
1839
	hsotg->ep0_state = DWC2_EP0_SETUP;
1840

1841
	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1842 1843
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1844 1845 1846 1847
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1848 1849 1850
	}
}

1851 1852
static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
					struct dwc2_hsotg_ep *hs_ep)
1853 1854 1855 1856 1857 1858
{
	u32 ctrl;
	u8 index = hs_ep->index;
	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);

1859 1860
	if (hs_ep->dir_in)
		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1861
			index);
1862 1863
	else
		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1864 1865 1866 1867
			index);
	if (using_desc_dma(hsotg)) {
		/* Not specific buffer needed for ep0 ZLP */
		dma_addr_t dma = hs_ep->desc_list_dma;
1868

1869 1870 1871 1872 1873 1874 1875
		dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
	} else {
		dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
			    DXEPTSIZ_XFERSIZE(0), hsotg->regs +
			    epsiz_reg);
	}
1876

1877
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1878 1879 1880
	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
1881
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1882 1883
}

1884
/**
1885
 * dwc2_hsotg_complete_request - complete a request given to us
1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1896
 */
1897 1898 1899
static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
				       struct dwc2_hsotg_ep *hs_ep,
				       struct dwc2_hsotg_req *hs_req,
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
				       int result)
{

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1911 1912 1913 1914
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1915 1916 1917 1918

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

1919 1920 1921
	if (using_dma(hsotg))
		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1922
	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1923

1924 1925 1926
	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

1927 1928 1929 1930
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1931 1932

	if (hs_req->req.complete) {
1933
		spin_unlock(&hsotg->lock);
1934
		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1935
		spin_lock(&hsotg->lock);
1936 1937
	}

1938 1939 1940 1941
	/* In DDMA don't need to proceed to starting of next ISOC request */
	if (using_desc_dma(hsotg) && hs_ep->isochronous)
		return;

1942 1943
	/*
	 * Look to see if there is anything else to do. Note, the completion
1944
	 * of the previous request may have caused a new request to be started
1945 1946
	 * so be careful when doing this.
	 */
1947 1948

	if (!hs_ep->req && result >= 0) {
1949
		dwc2_gadget_start_next_request(hs_ep);
1950 1951 1952
	}
}

1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057
/*
 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
 * @hs_ep: The endpoint the request was on.
 *
 * Get first request from the ep queue, determine descriptor on which complete
 * happened. SW based on isoc_chain_num discovers which half of the descriptor
 * chain is currently in use by HW, adjusts dma_address and calculates index
 * of completed descriptor based on the value of DEPDMA register. Update actual
 * length of request, giveback to gadget.
 */
static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	struct dwc2_hsotg_req *hs_req;
	struct usb_request *ureq;
	int index;
	dma_addr_t dma_addr;
	u32 dma_reg;
	u32 depdma;
	u32 desc_sts;
	u32 mask;

	hs_req = get_ep_head(hs_ep);
	if (!hs_req) {
		dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
		return;
	}
	ureq = &hs_req->req;

	dma_addr = hs_ep->desc_list_dma;

	/*
	 * If lower half of  descriptor chain is currently use by SW,
	 * that means higher half is being processed by HW, so shift
	 * DMA address to higher half of descriptor chain.
	 */
	if (!hs_ep->isoc_chain_num)
		dma_addr += sizeof(struct dwc2_dma_desc) *
			    (MAX_DMA_DESC_NUM_GENERIC / 2);

	dma_reg = hs_ep->dir_in ? DIEPDMA(hs_ep->index) : DOEPDMA(hs_ep->index);
	depdma = dwc2_readl(hsotg->regs + dma_reg);

	index = (depdma - dma_addr) / sizeof(struct dwc2_dma_desc) - 1;
	desc_sts = hs_ep->desc_list[index].status;

	mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
	       DEV_DMA_ISOC_RX_NBYTES_MASK;
	ureq->actual = ureq->length -
		       ((desc_sts & mask) >> DEV_DMA_ISOC_NBYTES_SHIFT);

	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
}

/*
 * dwc2_gadget_start_next_isoc_ddma - start next isoc request, if any.
 * @hs_ep: The isochronous endpoint to be re-enabled.
 *
 * If ep has been disabled due to last descriptor servicing (IN endpoint) or
 * BNA (OUT endpoint) check the status of other half of descriptor chain that
 * was under SW control till HW was busy and restart the endpoint if needed.
 */
static void dwc2_gadget_start_next_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	u32 depctl;
	u32 dma_reg;
	u32 ctrl;
	u32 dma_addr = hs_ep->desc_list_dma;
	unsigned char index = hs_ep->index;

	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);

	ctrl = dwc2_readl(hsotg->regs + depctl);

	/*
	 * EP was disabled if HW has processed last descriptor or BNA was set.
	 * So restart ep if SW has prepared new descriptor chain in ep_queue
	 * routine while HW was busy.
	 */
	if (!(ctrl & DXEPCTL_EPENA)) {
		if (!hs_ep->next_desc) {
			dev_dbg(hsotg->dev, "%s: No more ISOC requests\n",
				__func__);
			return;
		}

		dma_addr += sizeof(struct dwc2_dma_desc) *
			    (MAX_DMA_DESC_NUM_GENERIC / 2) *
			    hs_ep->isoc_chain_num;
		dwc2_writel(dma_addr, hsotg->regs + dma_reg);

		ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
		dwc2_writel(ctrl, hsotg->regs + depctl);

		/* Switch ISOC descriptor chain number being processed by SW*/
		hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
		hs_ep->next_desc = 0;

		dev_dbg(hsotg->dev, "%s: Restarted isochronous endpoint\n",
			__func__);
	}
}

2058
/**
2059
 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2060 2061 2062 2063 2064 2065 2066 2067
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
2068
static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2069
{
2070 2071
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2072
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
2073 2074 2075 2076
	int to_read;
	int max_req;
	int read_ptr;

2077

2078
	if (!hs_req) {
2079
		u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
2080 2081
		int ptr;

2082
		dev_dbg(hsotg->dev,
2083
			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2084 2085 2086 2087
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
2088
			(void)dwc2_readl(fifo);
2089 2090 2091 2092 2093 2094 2095 2096

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

2097 2098 2099
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

2100
	if (to_read > max_req) {
2101 2102
		/*
		 * more data appeared than we where willing
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

2114 2115 2116 2117
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
2118
	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
2119 2120 2121
}

/**
2122
 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2123
 * @hsotg: The device instance
2124
 * @dir_in: If IN zlp
2125 2126 2127 2128 2129
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
2130
 * currently believed that we do not need to wait for any space in
2131 2132
 * the TxFIFO.
 */
2133
static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2134
{
2135
	/* eps_out[0] is used in both directions */
2136 2137
	hsotg->eps_out[0]->dir_in = dir_in;
	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2138

2139
	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2140 2141
}

2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
			u32 epctl_reg)
{
	u32 ctrl;

	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
	if (ctrl & DXEPCTL_EOFRNUM)
		ctrl |= DXEPCTL_SETEVENFR;
	else
		ctrl |= DXEPCTL_SETODDFR;
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
}

2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
/*
 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
 * @hs_ep - The endpoint on which transfer went
 *
 * Iterate over endpoints descriptor chain and get info on bytes remained
 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
 */
static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	unsigned int bytes_rem = 0;
	struct dwc2_dma_desc *desc = hs_ep->desc_list;
	int i;
	u32 status;

	if (!desc)
		return -EINVAL;

	for (i = 0; i < hs_ep->desc_count; ++i) {
		status = desc->status;
		bytes_rem += status & DEV_DMA_NBYTES_MASK;

		if (status & DEV_DMA_STS_MASK)
			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
				i, status & DEV_DMA_STS_MASK);
	}

	return bytes_rem;
}

2185
/**
2186
 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2187 2188 2189 2190 2191 2192
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
2193
 */
2194
static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2195
{
2196
	u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
2197 2198
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2199
	struct usb_request *req = &hs_req->req;
2200
	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2201 2202 2203 2204 2205 2206 2207
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

2208 2209
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
2210 2211
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
		dwc2_hsotg_enqueue_setup(hsotg);
2212 2213 2214
		return;
	}

2215 2216 2217
	if (using_desc_dma(hsotg))
		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);

2218 2219 2220
	if (using_dma(hsotg)) {
		unsigned size_done;

2221 2222
		/*
		 * Calculate the size of the transfer by checking how much
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

2236 2237
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
2238
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2239 2240 2241
		return;
	}

2242 2243 2244 2245
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

2246 2247 2248 2249
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
2250 2251
	}

2252 2253 2254
	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
	if (!using_desc_dma(hsotg) && epnum == 0 &&
	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2255
		/* Move to STATUS IN */
2256
		dwc2_hsotg_ep0_zlp(hsotg, true);
2257
		return;
2258 2259
	}

2260 2261 2262 2263 2264 2265 2266
	/*
	 * Slave mode OUT transfers do not go through XferComplete so
	 * adjust the ISOC parity here.
	 */
	if (!using_dma(hsotg)) {
		if (hs_ep->isochronous && hs_ep->interval == 1)
			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2267 2268
		else if (hs_ep->isochronous && hs_ep->interval > 1)
			dwc2_gadget_incr_frame_num(hs_ep);
2269 2270
	}

2271
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2272 2273 2274
}

/**
2275
 * dwc2_hsotg_handle_rx - RX FIFO has data
2276 2277 2278 2279 2280 2281
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
2282
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2283 2284 2285 2286 2287 2288 2289
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
2290
static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2291
{
2292
	u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
2293 2294 2295 2296
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

2297 2298
	epnum = grxstsr & GRXSTS_EPNUM_MASK;
	status = grxstsr & GRXSTS_PKTSTS_MASK;
2299

2300 2301
	size = grxstsr & GRXSTS_BYTECNT_MASK;
	size >>= GRXSTS_BYTECNT_SHIFT;
2302

2303
	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2304 2305
			__func__, grxstsr, size, epnum);

2306 2307 2308
	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
	case GRXSTS_PKTSTS_GLOBALOUTNAK:
		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2309 2310
		break;

2311
	case GRXSTS_PKTSTS_OUTDONE:
2312
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2313
			dwc2_hsotg_read_frameno(hsotg));
2314 2315

		if (!using_dma(hsotg))
2316
			dwc2_hsotg_handle_outdone(hsotg, epnum);
2317 2318
		break;

2319
	case GRXSTS_PKTSTS_SETUPDONE:
2320 2321
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2322
			dwc2_hsotg_read_frameno(hsotg),
2323
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2324
		/*
2325
		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2326 2327 2328 2329
		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
		 */
		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2330
			dwc2_hsotg_handle_outdone(hsotg, epnum);
2331 2332
		break;

2333
	case GRXSTS_PKTSTS_OUTRX:
2334
		dwc2_hsotg_rx_data(hsotg, epnum, size);
2335 2336
		break;

2337
	case GRXSTS_PKTSTS_SETUPRX:
2338 2339
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2340
			dwc2_hsotg_read_frameno(hsotg),
2341
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2342

2343 2344
		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);

2345
		dwc2_hsotg_rx_data(hsotg, epnum, size);
2346 2347 2348 2349 2350 2351
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

2352
		dwc2_hsotg_dump(hsotg);
2353 2354 2355 2356 2357
		break;
	}
}

/**
2358
 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2359
 * @mps: The maximum packet size in bytes.
2360
 */
2361
static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2362 2363 2364
{
	switch (mps) {
	case 64:
2365
		return D0EPCTL_MPS_64;
2366
	case 32:
2367
		return D0EPCTL_MPS_32;
2368
	case 16:
2369
		return D0EPCTL_MPS_16;
2370
	case 8:
2371
		return D0EPCTL_MPS_8;
2372 2373 2374 2375 2376 2377 2378 2379
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
2380
 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2381 2382 2383
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
2384
 * @mc: The multicount value
2385 2386 2387 2388
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
2389
static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2390 2391
					unsigned int ep, unsigned int mps,
					unsigned int mc, unsigned int dir_in)
2392
{
2393
	struct dwc2_hsotg_ep *hs_ep;
2394 2395 2396
	void __iomem *regs = hsotg->regs;
	u32 reg;

2397 2398 2399 2400
	hs_ep = index_to_ep(hsotg, ep, dir_in);
	if (!hs_ep)
		return;

2401
	if (ep == 0) {
2402 2403
		u32 mps_bytes = mps;

2404
		/* EP0 is a special case */
2405 2406
		mps = dwc2_hsotg_ep0_mps(mps_bytes);
		if (mps > 3)
2407
			goto bad_mps;
2408
		hs_ep->ep.maxpacket = mps_bytes;
2409
		hs_ep->mc = 1;
2410
	} else {
2411
		if (mps > 1024)
2412
			goto bad_mps;
2413 2414
		hs_ep->mc = mc;
		if (mc > 3)
2415
			goto bad_mps;
2416
		hs_ep->ep.maxpacket = mps;
2417 2418
	}

2419
	if (dir_in) {
2420
		reg = dwc2_readl(regs + DIEPCTL(ep));
2421
		reg &= ~DXEPCTL_MPS_MASK;
2422
		reg |= mps;
2423
		dwc2_writel(reg, regs + DIEPCTL(ep));
2424
	} else {
2425
		reg = dwc2_readl(regs + DOEPCTL(ep));
2426
		reg &= ~DXEPCTL_MPS_MASK;
2427
		reg |= mps;
2428
		dwc2_writel(reg, regs + DOEPCTL(ep));
2429
	}
2430 2431 2432 2433 2434 2435 2436

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

2437
/**
2438
 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2439 2440 2441
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
2442
static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2443 2444 2445 2446
{
	int timeout;
	int val;

2447 2448
	dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
		    hsotg->regs + GRSTCTL);
2449 2450 2451 2452 2453

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
2454
		val = dwc2_readl(hsotg->regs + GRSTCTL);
2455

2456
		if ((val & (GRSTCTL_TXFFLSH)) == 0)
2457 2458 2459 2460 2461 2462
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
2463
			break;
2464 2465 2466 2467 2468
		}

		udelay(1);
	}
}
2469 2470

/**
2471
 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2472 2473 2474 2475 2476 2477
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
2478 2479
static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
			   struct dwc2_hsotg_ep *hs_ep)
2480
{
2481
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2482

2483 2484 2485 2486 2487 2488
	if (!hs_ep->dir_in || !hs_req) {
		/**
		 * if request is not enqueued, we disable interrupts
		 * for endpoints, excepting ep0
		 */
		if (hs_ep->index != 0)
2489
			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2490
					     hs_ep->dir_in, 0);
2491
		return 0;
2492
	}
2493 2494 2495 2496

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
2497
		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2498 2499 2500 2501 2502 2503
	}

	return 0;
}

/**
2504
 * dwc2_hsotg_complete_in - complete IN transfer
2505 2506 2507 2508 2509 2510
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
2511 2512
static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
				  struct dwc2_hsotg_ep *hs_ep)
2513
{
2514
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2515
	u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
2516 2517 2518 2519 2520 2521 2522
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

2523
	/* Finish ZLP handling for IN EP0 transactions */
2524 2525
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
		dev_dbg(hsotg->dev, "zlp packet sent\n");
2526
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2527 2528 2529
		if (hsotg->test_mode) {
			int ret;

2530
			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2531 2532 2533
			if (ret < 0) {
				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
						hsotg->test_mode);
2534
				dwc2_hsotg_stall_ep0(hsotg);
2535 2536 2537
				return;
			}
		}
2538
		dwc2_hsotg_enqueue_setup(hsotg);
2539 2540 2541
		return;
	}

2542 2543
	/*
	 * Calculate the size of the transfer by checking how much is left
2544 2545 2546 2547 2548 2549 2550
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */
2551 2552 2553 2554 2555 2556 2557 2558
	if (using_desc_dma(hsotg)) {
		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
		if (size_left < 0)
			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
				size_left);
	} else {
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
	}
2559 2560 2561 2562 2563 2564 2565 2566 2567

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
2568 2569 2570
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

2571 2572
	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2573
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2574 2575 2576
		return;
	}

2577
	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
2578
	if (hs_ep->send_zlp) {
2579
		dwc2_hsotg_program_zlp(hsotg, hs_ep);
2580
		hs_ep->send_zlp = 0;
2581 2582 2583 2584
		/* transfer will be completed on next complete interrupt */
		return;
	}

2585 2586
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
		/* Move to STATUS OUT */
2587
		dwc2_hsotg_ep0_zlp(hsotg, false);
2588 2589 2590
		return;
	}

2591
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2592 2593
}

2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621
/**
 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
 * @hsotg: The device state.
 * @idx: Index of ep.
 * @dir_in: Endpoint direction 1-in 0-out.
 *
 * Reads for endpoint with given index and direction, by masking
 * epint_reg with coresponding mask.
 */
static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
					  unsigned int idx, int dir_in)
{
	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 ints;
	u32 mask;
	u32 diepempmsk;

	mask = dwc2_readl(hsotg->regs + epmsk_reg);
	diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK);
	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
	mask |= DXEPINT_SETUP_RCVD;

	ints = dwc2_readl(hsotg->regs + epint_reg);
	ints &= mask;
	return ints;
}

2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
/**
 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
 * @hs_ep: The endpoint on which interrupt is asserted.
 *
 * This interrupt indicates that the endpoint has been disabled per the
 * application's request.
 *
 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
 * in case of ISOC completes current request.
 *
 * For ISOC-OUT endpoints completes expired requests. If there is remaining
 * request starts it.
 */
static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	struct dwc2_hsotg_req *hs_req;
	unsigned char idx = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	int dctl = dwc2_readl(hsotg->regs + DCTL);

	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

	if (dir_in) {
		int epctl = dwc2_readl(hsotg->regs + epctl_reg);

		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);

		if (hs_ep->isochronous) {
			dwc2_hsotg_complete_in(hsotg, hs_ep);
			return;
		}

		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
			int dctl = dwc2_readl(hsotg->regs + DCTL);

			dctl |= DCTL_CGNPINNAK;
			dwc2_writel(dctl, hsotg->regs + DCTL);
		}
		return;
	}

	if (dctl & DCTL_GOUTNAKSTS) {
		dctl |= DCTL_CGOUTNAK;
		dwc2_writel(dctl, hsotg->regs + DCTL);
	}

	if (!hs_ep->isochronous)
		return;

	if (list_empty(&hs_ep->queue)) {
		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
			__func__, hs_ep);
		return;
	}

	do {
		hs_req = get_ep_head(hs_ep);
		if (hs_req)
			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
						    -ENODATA);
		dwc2_gadget_incr_frame_num(hs_ep);
	} while (dwc2_gadget_target_frame_elapsed(hs_ep));

	dwc2_gadget_start_next_request(hs_ep);
}

2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
/**
 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
 * @hs_ep: The endpoint on which interrupt is asserted.
 *
 * This is starting point for ISOC-OUT transfer, synchronization done with
 * first out token received from host while corresponding EP is disabled.
 *
 * Device does not know initial frame in which out token will come. For this
 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
 * getting this interrupt SW starts calculation for next transfer frame.
 */
static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
{
	struct dwc2_hsotg *hsotg = ep->parent;
	int dir_in = ep->dir_in;
	u32 doepmsk;
2706
	u32 tmp;
2707 2708 2709 2710

	if (dir_in || !ep->isochronous)
		return;

2711 2712 2713 2714 2715 2716
	/*
	 * Store frame in which irq was asserted here, as
	 * it can change while completing request below.
	 */
	tmp = dwc2_hsotg_read_frameno(hsotg);

2717 2718
	dwc2_hsotg_complete_request(hsotg, ep, get_ep_head(ep), -ENODATA);

2719 2720 2721 2722 2723 2724 2725 2726 2727
	if (using_desc_dma(hsotg)) {
		if (ep->target_frame == TARGET_FRAME_INITIAL) {
			/* Start first ISO Out */
			ep->target_frame = tmp;
			dwc2_gadget_start_isoc_ddma(ep);
		}
		return;
	}

2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775
	if (ep->interval > 1 &&
	    ep->target_frame == TARGET_FRAME_INITIAL) {
		u32 dsts;
		u32 ctrl;

		dsts = dwc2_readl(hsotg->regs + DSTS);
		ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
		dwc2_gadget_incr_frame_num(ep);

		ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index));
		if (ep->target_frame & 0x1)
			ctrl |= DXEPCTL_SETODDFR;
		else
			ctrl |= DXEPCTL_SETEVENFR;

		dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index));
	}

	dwc2_gadget_start_next_request(ep);
	doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
	doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
	dwc2_writel(doepmsk, hsotg->regs + DOEPMSK);
}

/**
* dwc2_gadget_handle_nak - handle NAK interrupt
* @hs_ep: The endpoint on which interrupt is asserted.
*
* This is starting point for ISOC-IN transfer, synchronization done with
* first IN token received from host while corresponding EP is disabled.
*
* Device does not know when first one token will arrive from host. On first
* token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
* and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
* sent in response to that as there was no data in FIFO. SW is basing on this
* interrupt to obtain frame in which token has come and then based on the
* interval calculates next frame for transfer.
*/
static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;

	if (!dir_in || !hs_ep->isochronous)
		return;

	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2776 2777 2778 2779 2780 2781

		if (using_desc_dma(hsotg)) {
			dwc2_gadget_start_isoc_ddma(hs_ep);
			return;
		}

2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
		if (hs_ep->interval > 1) {
			u32 ctrl = dwc2_readl(hsotg->regs +
					      DIEPCTL(hs_ep->index));
			if (hs_ep->target_frame & 0x1)
				ctrl |= DXEPCTL_SETODDFR;
			else
				ctrl |= DXEPCTL_SETEVENFR;

			dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index));
		}

		dwc2_hsotg_complete_request(hsotg, hs_ep,
					    get_ep_head(hs_ep), 0);
	}

	dwc2_gadget_incr_frame_num(hs_ep);
}

2800
/**
2801
 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2802 2803 2804 2805 2806
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
2807
 */
2808
static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2809 2810
			    int dir_in)
{
2811
	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2812 2813 2814
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2815
	u32 ints;
2816
	u32 ctrl;
2817

2818
	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2819
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2820

2821
	/* Clear endpoint interrupts */
2822
	dwc2_writel(ints, hsotg->regs + epint_reg);
2823

2824 2825 2826 2827 2828 2829
	if (!hs_ep) {
		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
					__func__, idx, dir_in ? "in" : "out");
		return;
	}

2830 2831 2832
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

2833 2834 2835 2836
	/* Don't process XferCompl interrupt if it is a setup packet */
	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
		ints &= ~DXEPINT_XFERCOMPL;

2837
	if (ints & DXEPINT_XFERCOMPL) {
2838
		dev_dbg(hsotg->dev,
2839
			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2840 2841
			__func__, dwc2_readl(hsotg->regs + epctl_reg),
			dwc2_readl(hsotg->regs + epsiz_reg));
2842

2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
		/* In DDMA handle isochronous requests separately */
		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
			dwc2_gadget_complete_isoc_request_ddma(hs_ep);
			/* Try to start next isoc request */
			dwc2_gadget_start_next_isoc_ddma(hs_ep);
		} else if (dir_in) {
			/*
			 * We get OutDone from the FIFO, so we only
			 * need to look at completing IN requests here
			 * if operating slave mode
			 */
2854 2855 2856
			if (hs_ep->isochronous && hs_ep->interval > 1)
				dwc2_gadget_incr_frame_num(hs_ep);

2857
			dwc2_hsotg_complete_in(hsotg, hs_ep);
2858 2859
			if (ints & DXEPINT_NAKINTRPT)
				ints &= ~DXEPINT_NAKINTRPT;
2860

2861
			if (idx == 0 && !hs_ep->req)
2862
				dwc2_hsotg_enqueue_setup(hsotg);
2863
		} else if (using_dma(hsotg)) {
2864 2865 2866 2867
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
2868 2869
			if (hs_ep->isochronous && hs_ep->interval > 1)
				dwc2_gadget_incr_frame_num(hs_ep);
2870

2871
			dwc2_hsotg_handle_outdone(hsotg, idx);
2872 2873 2874
		}
	}

2875 2876
	if (ints & DXEPINT_EPDISBLD)
		dwc2_gadget_handle_ep_disabled(hs_ep);
2877

2878 2879 2880 2881 2882 2883
	if (ints & DXEPINT_OUTTKNEPDIS)
		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);

	if (ints & DXEPINT_NAKINTRPT)
		dwc2_gadget_handle_nak(hs_ep);

2884
	if (ints & DXEPINT_AHBERR)
2885 2886
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

2887
	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2888 2889 2890
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
2891 2892
			/*
			 * this is the notification we've received a
2893 2894
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
2895 2896
			 * the setup here.
			 */
2897 2898 2899 2900

			if (dir_in)
				WARN_ON_ONCE(1);
			else
2901
				dwc2_hsotg_handle_outdone(hsotg, 0);
2902 2903 2904
		}
	}

2905
	if (ints & DXEPINT_STSPHSERCVD) {
2906 2907
		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);

2908 2909 2910 2911 2912
		/* Move to STATUS IN for DDMA */
		if (using_desc_dma(hsotg))
			dwc2_hsotg_ep0_zlp(hsotg, true);
	}

2913
	if (ints & DXEPINT_BACK2BACKSETUP)
2914 2915
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
	if (ints & DXEPINT_BNAINTR) {
		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);

		/*
		 * Try to start next isoc request, if any.
		 * Sometimes the endpoint remains enabled after BNA interrupt
		 * assertion, which is not expected, hence we can enter here
		 * couple of times.
		 */
		if (hs_ep->isochronous)
			dwc2_gadget_start_next_isoc_ddma(hs_ep);
	}

2929
	if (dir_in && !hs_ep->isochronous) {
2930
		/* not sure if this is important, but we'll clear it anyway */
2931
		if (ints & DXEPINT_INTKNTXFEMP) {
2932 2933 2934 2935 2936
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
2937
		if (ints & DXEPINT_INTKNEPMIS) {
2938 2939 2940
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
2941 2942 2943

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
2944
		    ints & DXEPINT_TXFEMP) {
2945 2946
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
2947
			if (!using_dma(hsotg))
2948
				dwc2_hsotg_trytx(hsotg, hs_ep);
2949
		}
2950 2951 2952 2953
	}
}

/**
2954
 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
2955 2956 2957 2958
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
2959
 */
2960
static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
2961
{
2962
	u32 dsts = dwc2_readl(hsotg->regs + DSTS);
2963
	int ep0_mps = 0, ep_mps = 8;
2964

2965 2966
	/*
	 * This should signal the finish of the enumeration phase
2967
	 * of the USB handshaking, so we should now know what rate
2968 2969
	 * we connected at.
	 */
2970 2971 2972

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

2973 2974
	/*
	 * note, since we're limited by the size of transfer on EP0, and
2975
	 * it seems IN transfers must be a even number of packets we do
2976 2977
	 * not advertise a 64byte MPS on EP0.
	 */
2978 2979

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
2980
	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
2981 2982
	case DSTS_ENUMSPD_FS:
	case DSTS_ENUMSPD_FS48:
2983 2984
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
2985
		ep_mps = 1023;
2986 2987
		break;

2988
	case DSTS_ENUMSPD_HS:
2989 2990
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
2991
		ep_mps = 1024;
2992 2993
		break;

2994
	case DSTS_ENUMSPD_LS:
2995
		hsotg->gadget.speed = USB_SPEED_LOW;
2996 2997
		/*
		 * note, we don't actually support LS in this driver at the
2998 2999 3000 3001 3002
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
3003 3004
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
3005

3006 3007 3008 3009
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
3010 3011 3012

	if (ep0_mps) {
		int i;
3013
		/* Initialize ep0 for both in and out directions */
3014 3015
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3016 3017
		for (i = 1; i < hsotg->num_of_eps; i++) {
			if (hsotg->eps_in[i])
3018 3019
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
							    0, 1);
3020
			if (hsotg->eps_out[i])
3021 3022
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
							    0, 0);
3023
		}
3024 3025 3026 3027
	}

	/* ensure after enumeration our EP0 is active */

3028
	dwc2_hsotg_enqueue_setup(hsotg);
3029 3030

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3031 3032
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
3044
static void kill_all_requests(struct dwc2_hsotg *hsotg,
3045
			      struct dwc2_hsotg_ep *ep,
3046
			      int result)
3047
{
3048
	struct dwc2_hsotg_req *req, *treq;
3049
	unsigned size;
3050

3051
	ep->req = NULL;
3052

3053
	list_for_each_entry_safe(req, treq, &ep->queue, queue)
3054
		dwc2_hsotg_complete_request(hsotg, ep, req,
3055
					   result);
3056

3057 3058
	if (!hsotg->dedicated_fifos)
		return;
3059
	size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3060
	if (size < ep->fifo_size)
3061
		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3062 3063 3064
}

/**
3065
 * dwc2_hsotg_disconnect - disconnect service
3066 3067
 * @hsotg: The device state.
 *
3068 3069 3070
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
3071
 */
3072
void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3073 3074 3075
{
	unsigned ep;

3076 3077 3078 3079
	if (!hsotg->connected)
		return;

	hsotg->connected = 0;
3080
	hsotg->test_mode = 0;
3081 3082 3083 3084 3085 3086 3087 3088 3089

	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
			kill_all_requests(hsotg, hsotg->eps_in[ep],
								-ESHUTDOWN);
		if (hsotg->eps_out[ep])
			kill_all_requests(hsotg, hsotg->eps_out[ep],
								-ESHUTDOWN);
	}
3090 3091

	call_gadget(hsotg, disconnect);
3092
	hsotg->lx_state = DWC2_L3;
3093 3094 3095
}

/**
3096
 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3097 3098 3099
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
3100
static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3101
{
3102
	struct dwc2_hsotg_ep *ep;
3103 3104 3105
	int epno, ret;

	/* look through for any more data to transmit */
3106
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3107 3108 3109 3110
		ep = index_to_ep(hsotg, epno, 1);

		if (!ep)
			continue;
3111 3112 3113 3114 3115 3116 3117 3118

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

3119
		ret = dwc2_hsotg_trytx(hsotg, ep);
3120 3121 3122 3123 3124 3125
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
3126 3127 3128
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
			GINTSTS_PTXFEMP |  \
			GINTSTS_RXFLVL)
3129

3130
/**
3131
 * dwc2_hsotg_core_init - issue softreset to the core
3132 3133 3134 3135
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
3136
void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3137
						bool is_usb_reset)
3138
{
3139
	u32 intmsk;
3140
	u32 val;
3141
	u32 usbcfg;
3142

3143 3144 3145
	/* Kill any ep0 requests as controller will be reinitialized */
	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);

3146
	if (!is_usb_reset)
3147
		if (dwc2_core_reset(hsotg))
3148
			return;
3149 3150 3151 3152 3153 3154

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

3155 3156 3157 3158 3159
	/* keep other bits untouched (so e.g. forced modes are not lost) */
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
		GUSBCFG_HNPCAP);

3160
	/* set the PLL on, remove the HNP/SRP and set the PHY */
3161
	val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3162 3163 3164
	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
		(val << GUSBCFG_USBTRDTIM_SHIFT);
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3165

3166
	dwc2_hsotg_init_fifo(hsotg);
3167

3168 3169
	if (!is_usb_reset)
		__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3170

3171
	dwc2_writel(DCFG_EPMISCNT(1) | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
3172 3173

	/* Clear any pending OTG interrupts */
3174
	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
3175 3176

	/* Clear any pending interrupts */
3177
	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
3178
	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3179
		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3180 3181
		GINTSTS_USBRST | GINTSTS_RESETDET |
		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3182 3183 3184 3185
		GINTSTS_USBSUSP | GINTSTS_WKUPINT;

	if (!using_desc_dma(hsotg))
		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3186

3187
	if (hsotg->params.external_id_pin_ctl <= 0)
3188 3189 3190
		intmsk |= GINTSTS_CONIDSTSCHNG;

	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
3191

3192
	if (using_dma(hsotg)) {
3193 3194 3195
		dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
			    (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
			    hsotg->regs + GAHBCFG);
3196 3197 3198 3199 3200 3201

		/* Set DDMA mode support in the core if needed */
		if (using_desc_dma(hsotg))
			__orr32(hsotg->regs + DCFG, DCFG_DESCDMA_EN);

	} else {
3202 3203 3204 3205
		dwc2_writel(((hsotg->dedicated_fifos) ?
						(GAHBCFG_NP_TXF_EMP_LVL |
						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
			    GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
3206
	}
3207 3208

	/*
3209 3210 3211
	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
	 * when we have no data to transfer. Otherwise we get being flooded by
	 * interrupts.
3212 3213
	 */

3214
	dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3215
		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3216
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3217
		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3218
		hsotg->regs + DIEPMSK);
3219 3220 3221

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3222
	 * DMA mode we may need this and StsPhseRcvd.
3223
	 */
3224 3225
	dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
		DOEPMSK_STSPHSERCVDMSK) : 0) |
3226
		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3227
		DOEPMSK_SETUPMSK,
3228
		hsotg->regs + DOEPMSK);
3229

3230 3231 3232 3233
	/* Enable BNA interrupt for DDMA */
	if (using_desc_dma(hsotg))
		__orr32(hsotg->regs + DOEPMSK, DOEPMSK_BNAMSK);

3234
	dwc2_writel(0, hsotg->regs + DAINTMSK);
3235 3236

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3237 3238
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
3239 3240

	/* enable in and out endpoint interrupts */
3241
	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3242 3243 3244 3245 3246 3247 3248

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
3249
		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3250 3251

	/* Enable interrupts for EP0 in and out */
3252 3253
	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3254

3255 3256 3257 3258 3259
	if (!is_usb_reset) {
		__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
		udelay(10);  /* see openiboot */
		__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
	}
3260

3261
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
3262 3263

	/*
3264
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3265 3266 3267 3268
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
3269
	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3270
	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
3271

3272
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3273 3274
	       DXEPCTL_CNAK | DXEPCTL_EPENA |
	       DXEPCTL_USBACTEP,
3275
	       hsotg->regs + DOEPCTL0);
3276 3277

	/* enable, but don't activate EP0in */
3278
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3279
	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
3280

3281
	dwc2_hsotg_enqueue_setup(hsotg);
3282 3283

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3284 3285
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
3286 3287

	/* clear global NAKs */
3288 3289 3290 3291
	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
	if (!is_usb_reset)
		val |= DCTL_SFTDISCON;
	__orr32(hsotg->regs + DCTL, val);
3292 3293 3294 3295

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

3296
	hsotg->lx_state = DWC2_L0;
3297 3298
}

3299
static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3300 3301 3302 3303
{
	/* set the soft-disconnect bit */
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
}
3304

3305
void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3306
{
3307
	/* remove the soft-disconnect and let's go */
3308
	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3309 3310
}

3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389
/**
 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
 * @hsotg: The device state:
 *
 * This interrupt indicates one of the following conditions occurred while
 * transmitting an ISOC transaction.
 * - Corrupted IN Token for ISOC EP.
 * - Packet not complete in FIFO.
 *
 * The following actions will be taken:
 * - Determine the EP
 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
 */
static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
{
	struct dwc2_hsotg_ep *hs_ep;
	u32 epctrl;
	u32 idx;

	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");

	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
		hs_ep = hsotg->eps_in[idx];
		epctrl = dwc2_readl(hsotg->regs + DIEPCTL(idx));
		if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
			epctrl |= DXEPCTL_SNAK;
			epctrl |= DXEPCTL_EPDIS;
			dwc2_writel(epctrl, hsotg->regs + DIEPCTL(idx));
		}
	}

	/* Clear interrupt */
	dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
}

/**
 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
 * @hsotg: The device state:
 *
 * This interrupt indicates one of the following conditions occurred while
 * transmitting an ISOC transaction.
 * - Corrupted OUT Token for ISOC EP.
 * - Packet not complete in FIFO.
 *
 * The following actions will be taken:
 * - Determine the EP
 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
 */
static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
{
	u32 gintsts;
	u32 gintmsk;
	u32 epctrl;
	struct dwc2_hsotg_ep *hs_ep;
	int idx;

	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);

	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
		hs_ep = hsotg->eps_out[idx];
		epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
		if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
			/* Unmask GOUTNAKEFF interrupt */
			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
			gintmsk |= GINTSTS_GOUTNAKEFF;
			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);

			gintsts = dwc2_readl(hsotg->regs + GINTSTS);
			if (!(gintsts & GINTSTS_GOUTNAKEFF))
				__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
		}
	}

	/* Clear interrupt */
	dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
}

3390
/**
3391
 * dwc2_hsotg_irq - handle device interrupt
3392 3393 3394
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
3395
static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3396
{
3397
	struct dwc2_hsotg *hsotg = pw;
3398 3399 3400 3401
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

3402 3403 3404
	if (!dwc2_is_device_mode(hsotg))
		return IRQ_NONE;

3405
	spin_lock(&hsotg->lock);
3406
irq_retry:
3407 3408
	gintsts = dwc2_readl(hsotg->regs + GINTSTS);
	gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3409 3410 3411 3412 3413 3414

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444
	if (gintsts & GINTSTS_RESETDET) {
		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);

		dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);

		/* This event must be used only if controller is suspended */
		if (hsotg->lx_state == DWC2_L2) {
			dwc2_exit_hibernation(hsotg, true);
			hsotg->lx_state = DWC2_L0;
		}
	}

	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {

		u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
		u32 connected = hsotg->connected;

		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
			dwc2_readl(hsotg->regs + GNPTXSTS));

		dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);

		/* Report disconnection if it is not already done. */
		dwc2_hsotg_disconnect(hsotg);

		if (usb_status & GOTGCTL_BSESVLD && connected)
			dwc2_hsotg_core_init_disconnected(hsotg, true);
	}

3445
	if (gintsts & GINTSTS_ENUMDONE) {
3446
		dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
3447

3448
		dwc2_hsotg_irq_enumdone(hsotg);
3449 3450
	}

3451
	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3452 3453
		u32 daint = dwc2_readl(hsotg->regs + DAINT);
		u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3454
		u32 daint_out, daint_in;
3455 3456
		int ep;

3457
		daint &= daintmsk;
3458 3459
		daint_out = daint >> DAINT_OUTEP_SHIFT;
		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3460

3461 3462
		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

3463 3464
		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
						ep++, daint_out >>= 1) {
3465
			if (daint_out & 1)
3466
				dwc2_hsotg_epint(hsotg, ep, 0);
3467 3468
		}

3469 3470
		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
						ep++, daint_in >>= 1) {
3471
			if (daint_in & 1)
3472
				dwc2_hsotg_epint(hsotg, ep, 1);
3473 3474 3475 3476 3477
		}
	}

	/* check both FIFOs */

3478
	if (gintsts & GINTSTS_NPTXFEMP) {
3479 3480
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

3481 3482
		/*
		 * Disable the interrupt to stop it happening again
3483
		 * unless one of these endpoint routines decides that
3484 3485
		 * it needs re-enabling
		 */
3486

3487 3488
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, false);
3489 3490
	}

3491
	if (gintsts & GINTSTS_PTXFEMP) {
3492 3493
		dev_dbg(hsotg->dev, "PTxFEmp\n");

3494
		/* See note in GINTSTS_NPTxFEmp */
3495

3496 3497
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, true);
3498 3499
	}

3500
	if (gintsts & GINTSTS_RXFLVL) {
3501 3502
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3503
		 * we need to retry dwc2_hsotg_handle_rx if this is still
3504 3505
		 * set.
		 */
3506

3507
		dwc2_hsotg_handle_rx(hsotg);
3508 3509
	}

3510
	if (gintsts & GINTSTS_ERLYSUSP) {
3511
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3512
		dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
3513 3514
	}

3515 3516
	/*
	 * these next two seem to crop-up occasionally causing the core
3517
	 * to shutdown the USB transfer, so try clearing them and logging
3518 3519
	 * the occurrence.
	 */
3520

3521
	if (gintsts & GINTSTS_GOUTNAKEFF) {
3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542
		u8 idx;
		u32 epctrl;
		u32 gintmsk;
		struct dwc2_hsotg_ep *hs_ep;

		/* Mask this interrupt */
		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
		gintmsk &= ~GINTSTS_GOUTNAKEFF;
		dwc2_writel(gintmsk, hsotg->regs + GINTMSK);

		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
		for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
			hs_ep = hsotg->eps_out[idx];
			epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));

			if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
				epctrl |= DXEPCTL_SNAK;
				epctrl |= DXEPCTL_EPDIS;
				dwc2_writel(epctrl, hsotg->regs + DOEPCTL(idx));
			}
		}
3543

3544
		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3545 3546
	}

3547
	if (gintsts & GINTSTS_GINNAKEFF) {
3548 3549
		dev_info(hsotg->dev, "GINNakEff triggered\n");

3550
		__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3551

3552
		dwc2_hsotg_dump(hsotg);
3553 3554
	}

3555 3556
	if (gintsts & GINTSTS_INCOMPL_SOIN)
		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3557

3558 3559
	if (gintsts & GINTSTS_INCOMPL_SOOUT)
		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3560

3561 3562 3563 3564
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
3565 3566 3567 3568

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
			goto irq_retry;

3569 3570
	spin_unlock(&hsotg->lock);

3571 3572 3573 3574
	return IRQ_HANDLED;
}

/**
3575
 * dwc2_hsotg_ep_enable - enable the given endpoint
3576 3577 3578 3579
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
3580
 */
3581
static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3582 3583
			       const struct usb_endpoint_descriptor *desc)
{
3584
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3585
	struct dwc2_hsotg *hsotg = hs_ep->parent;
3586
	unsigned long flags;
3587
	unsigned int index = hs_ep->index;
3588 3589 3590
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
3591
	u32 mc;
3592
	u32 mask;
3593 3594
	unsigned int dir_in;
	unsigned int i, val, size;
3595
	int ret = 0;
3596 3597 3598 3599 3600 3601 3602

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
3603 3604 3605 3606
	if (index == 0) {
		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
		return -EINVAL;
	}
3607 3608 3609 3610 3611 3612 3613

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

3614
	mps = usb_endpoint_maxp(desc);
3615
	mc = usb_endpoint_maxp_mult(desc);
3616

3617
	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3618

3619
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3620
	epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3621 3622 3623 3624

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636
	/* Allocate DMA descriptor chain for non-ctrl endpoints */
	if (using_desc_dma(hsotg)) {
		hs_ep->desc_list = dma_alloc_coherent(hsotg->dev,
			MAX_DMA_DESC_NUM_GENERIC *
			sizeof(struct dwc2_dma_desc),
			&hs_ep->desc_list_dma, GFP_KERNEL);
		if (!hs_ep->desc_list) {
			ret = -ENOMEM;
			goto error2;
		}
	}

3637
	spin_lock_irqsave(&hsotg->lock, flags);
3638

3639 3640
	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
	epctrl |= DXEPCTL_MPS(mps);
3641

3642 3643 3644 3645
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
3646
	epctrl |= DXEPCTL_USBACTEP;
3647 3648

	/* update the endpoint state */
3649
	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
3650 3651

	/* default, set to non-periodic */
3652
	hs_ep->isochronous = 0;
3653
	hs_ep->periodic = 0;
3654
	hs_ep->halted = 0;
3655
	hs_ep->interval = desc->bInterval;
3656

3657 3658
	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
3659 3660
		epctrl |= DXEPCTL_EPTYPE_ISO;
		epctrl |= DXEPCTL_SETEVENFR;
3661
		hs_ep->isochronous = 1;
3662
		hs_ep->interval = 1 << (desc->bInterval - 1);
3663
		hs_ep->target_frame = TARGET_FRAME_INITIAL;
3664 3665
		hs_ep->isoc_chain_num = 0;
		hs_ep->next_desc = 0;
3666
		if (dir_in) {
3667
			hs_ep->periodic = 1;
3668 3669 3670 3671 3672 3673 3674 3675
			mask = dwc2_readl(hsotg->regs + DIEPMSK);
			mask |= DIEPMSK_NAKMSK;
			dwc2_writel(mask, hsotg->regs + DIEPMSK);
		} else {
			mask = dwc2_readl(hsotg->regs + DOEPMSK);
			mask |= DOEPMSK_OUTTKNEPDISMSK;
			dwc2_writel(mask, hsotg->regs + DOEPMSK);
		}
3676
		break;
3677 3678

	case USB_ENDPOINT_XFER_BULK:
3679
		epctrl |= DXEPCTL_EPTYPE_BULK;
3680 3681 3682
		break;

	case USB_ENDPOINT_XFER_INT:
3683
		if (dir_in)
3684 3685
			hs_ep->periodic = 1;

3686 3687 3688
		if (hsotg->gadget.speed == USB_SPEED_HIGH)
			hs_ep->interval = 1 << (desc->bInterval - 1);

3689
		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
3690 3691 3692
		break;

	case USB_ENDPOINT_XFER_CONTROL:
3693
		epctrl |= DXEPCTL_EPTYPE_CONTROL;
3694 3695 3696
		break;
	}

3697 3698
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
3699 3700
	 * a unique tx-fifo even if it is non-periodic.
	 */
3701
	if (dir_in && hsotg->dedicated_fifos) {
3702 3703
		u32 fifo_index = 0;
		u32 fifo_size = UINT_MAX;
3704
		size = hs_ep->ep.maxpacket*hs_ep->mc;
3705
		for (i = 1; i < hsotg->num_of_eps; ++i) {
3706 3707
			if (hsotg->fifo_map & (1<<i))
				continue;
3708
			val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
3709 3710 3711
			val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
			if (val < size)
				continue;
3712 3713 3714 3715 3716
			/* Search for smallest acceptable fifo */
			if (val < fifo_size) {
				fifo_size = val;
				fifo_index = i;
			}
3717
		}
3718
		if (!fifo_index) {
3719 3720
			dev_err(hsotg->dev,
				"%s: No suitable fifo found\n", __func__);
3721
			ret = -ENOMEM;
3722
			goto error1;
3723
		}
3724 3725 3726 3727
		hsotg->fifo_map |= 1 << fifo_index;
		epctrl |= DXEPCTL_TXFNUM(fifo_index);
		hs_ep->fifo_index = fifo_index;
		hs_ep->fifo_size = fifo_size;
3728
	}
3729

3730
	/* for non control endpoints, set PID to D0 */
3731
	if (index && !hs_ep->isochronous)
3732
		epctrl |= DXEPCTL_SETD0PID;
3733 3734 3735 3736

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

3737
	dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
3738
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
3739
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
3740 3741

	/* enable the endpoint interrupt */
3742
	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
3743

3744
error1:
3745
	spin_unlock_irqrestore(&hsotg->lock, flags);
3746 3747 3748 3749 3750 3751 3752 3753 3754

error2:
	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
		dma_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
			sizeof(struct dwc2_dma_desc),
			hs_ep->desc_list, hs_ep->desc_list_dma);
		hs_ep->desc_list = NULL;
	}

3755
	return ret;
3756 3757
}

3758
/**
3759
 * dwc2_hsotg_ep_disable - disable given endpoint
3760 3761
 * @ep: The endpoint to disable.
 */
3762
static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
3763
{
3764
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3765
	struct dwc2_hsotg *hsotg = hs_ep->parent;
3766 3767 3768 3769 3770 3771
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

3772
	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
3773

3774
	if (ep == &hsotg->eps_out[0]->ep) {
3775 3776 3777 3778
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

3779 3780 3781 3782 3783 3784 3785 3786
	/* Remove DMA memory allocated for non-control Endpoints */
	if (using_desc_dma(hsotg)) {
		dma_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
				  sizeof(struct dwc2_dma_desc),
				  hs_ep->desc_list, hs_ep->desc_list_dma);
		hs_ep->desc_list = NULL;
	}

3787
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3788

3789
	spin_lock_irqsave(&hsotg->lock, flags);
3790

3791
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3792 3793 3794
	ctrl &= ~DXEPCTL_EPENA;
	ctrl &= ~DXEPCTL_USBACTEP;
	ctrl |= DXEPCTL_SNAK;
3795 3796

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
3797
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
3798 3799

	/* disable endpoint interrupts */
3800
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
3801

3802 3803 3804
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);

3805 3806 3807 3808
	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
	hs_ep->fifo_index = 0;
	hs_ep->fifo_size = 0;

3809
	spin_unlock_irqrestore(&hsotg->lock, flags);
3810 3811 3812 3813 3814 3815 3816
	return 0;
}

/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
3817
 */
3818
static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
3819
{
3820
	struct dwc2_hsotg_req *req, *treq;
3821 3822 3823 3824 3825 3826 3827 3828 3829

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864
static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg,
							u32 bit, u32 timeout)
{
	u32 i;

	for (i = 0; i < timeout; i++) {
		if (dwc2_readl(hs_otg->regs + reg) & bit)
			return 0;
		udelay(1);
	}

	return -ETIMEDOUT;
}

static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
						struct dwc2_hsotg_ep *hs_ep)
{
	u32 epctrl_reg;
	u32 epint_reg;

	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
		DOEPCTL(hs_ep->index);
	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
		DOEPINT(hs_ep->index);

	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
			hs_ep->name);
	if (hs_ep->dir_in) {
		__orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
		/* Wait for Nak effect */
		if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
						DXEPINT_INEPNAKEFF, 100))
			dev_warn(hsotg->dev,
				"%s: timeout DIEPINT.NAKEFF\n", __func__);
	} else {
3865 3866
		if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF))
			__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3867 3868 3869

		/* Wait for global nak to take effect */
		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3870
						GINTSTS_GOUTNAKEFF, 100))
3871
			dev_warn(hsotg->dev,
3872
				"%s: timeout GINTSTS.GOUTNAKEFF\n", __func__);
3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896
	}

	/* Disable ep */
	__orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);

	/* Wait for ep to be disabled */
	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
		dev_warn(hsotg->dev,
			"%s: timeout DOEPCTL.EPDisable\n", __func__);

	if (hs_ep->dir_in) {
		if (hsotg->dedicated_fifos) {
			dwc2_writel(GRSTCTL_TXFNUM(hs_ep->fifo_index) |
				GRSTCTL_TXFFLSH, hsotg->regs + GRSTCTL);
			/* Wait for fifo flush */
			if (dwc2_hsotg_wait_bit_set(hsotg, GRSTCTL,
							GRSTCTL_TXFFLSH, 100))
				dev_warn(hsotg->dev,
					"%s: timeout flushing fifos\n",
					__func__);
		}
		/* TODO: Flush shared tx fifo */
	} else {
		/* Remove global NAKs */
3897
		__bic32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3898 3899 3900
	}
}

3901
/**
3902
 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
3903 3904 3905
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
3906
static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
3907
{
3908 3909
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3910
	struct dwc2_hsotg *hs = hs_ep->parent;
3911 3912
	unsigned long flags;

3913
	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
3914

3915
	spin_lock_irqsave(&hs->lock, flags);
3916 3917

	if (!on_list(hs_ep, hs_req)) {
3918
		spin_unlock_irqrestore(&hs->lock, flags);
3919 3920 3921
		return -EINVAL;
	}

3922 3923 3924 3925
	/* Dequeue already started request */
	if (req == &hs_ep->req->req)
		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);

3926
	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
3927
	spin_unlock_irqrestore(&hs->lock, flags);
3928 3929 3930 3931

	return 0;
}

3932
/**
3933
 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
3934 3935
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
3936 3937 3938 3939 3940
 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
 *       the endpoint is busy processing requests.
 *
 * We need to stall the endpoint immediately if request comes from set_feature
 * protocol command handler.
3941
 */
3942
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
3943
{
3944
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3945
	struct dwc2_hsotg *hs = hs_ep->parent;
3946 3947 3948
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
3949
	u32 xfertype;
3950 3951 3952

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

3953 3954
	if (index == 0) {
		if (value)
3955
			dwc2_hsotg_stall_ep0(hs);
3956 3957 3958 3959 3960 3961
		else
			dev_warn(hs->dev,
				 "%s: can't clear halt on ep0\n", __func__);
		return 0;
	}

3962 3963 3964 3965 3966
	if (hs_ep->isochronous) {
		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
		return -EINVAL;
	}

3967 3968 3969 3970 3971 3972
	if (!now && value && !list_empty(&hs_ep->queue)) {
		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
			ep->name);
		return -EAGAIN;
	}

3973 3974
	if (hs_ep->dir_in) {
		epreg = DIEPCTL(index);
3975
		epctl = dwc2_readl(hs->regs + epreg);
3976 3977

		if (value) {
3978
			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
3979 3980 3981 3982 3983 3984 3985 3986 3987
			if (epctl & DXEPCTL_EPENA)
				epctl |= DXEPCTL_EPDIS;
		} else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
3988
		dwc2_writel(epctl, hs->regs + epreg);
3989
	} else {
3990

3991
		epreg = DOEPCTL(index);
3992
		epctl = dwc2_readl(hs->regs + epreg);
3993

3994 3995 3996 3997 3998 3999 4000 4001 4002
		if (value)
			epctl |= DXEPCTL_STALL;
		else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
4003
		dwc2_writel(epctl, hs->regs + epreg);
4004
	}
4005

4006 4007
	hs_ep->halted = value;

4008 4009 4010
	return 0;
}

4011
/**
4012
 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4013 4014 4015
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
4016
static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4017
{
4018
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4019
	struct dwc2_hsotg *hs = hs_ep->parent;
4020 4021 4022 4023
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
4024
	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4025 4026 4027 4028 4029
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

4030 4031 4032 4033 4034 4035 4036 4037
static struct usb_ep_ops dwc2_hsotg_ep_ops = {
	.enable		= dwc2_hsotg_ep_enable,
	.disable	= dwc2_hsotg_ep_disable,
	.alloc_request	= dwc2_hsotg_ep_alloc_request,
	.free_request	= dwc2_hsotg_ep_free_request,
	.queue		= dwc2_hsotg_ep_queue_lock,
	.dequeue	= dwc2_hsotg_ep_dequeue,
	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
4038
	/* note, don't believe we have any call for the fifo routines */
4039 4040
};

4041
/**
4042
 * dwc2_hsotg_init - initalize the usb core
4043 4044
 * @hsotg: The driver state
 */
4045
static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4046
{
4047
	u32 trdtim;
4048
	u32 usbcfg;
4049 4050
	/* unmask subset of endpoint interrupts */

4051 4052 4053
	dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DIEPMSK);
4054

4055 4056 4057
	dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DOEPMSK);
4058

4059
	dwc2_writel(0, hsotg->regs + DAINTMSK);
4060 4061

	/* Be in disconnected state until gadget is registered */
4062
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
4063 4064 4065 4066

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4067 4068
		dwc2_readl(hsotg->regs + GRXFSIZ),
		dwc2_readl(hsotg->regs + GNPTXFSIZ));
4069

4070
	dwc2_hsotg_init_fifo(hsotg);
4071

4072 4073 4074 4075 4076
	/* keep other bits untouched (so e.g. forced modes are not lost) */
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
		GUSBCFG_HNPCAP);

4077
	/* set the PLL on, remove the HNP/SRP and set the PHY */
4078
	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
4079 4080 4081
	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
		(trdtim << GUSBCFG_USBTRDTIM_SHIFT);
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
4082

4083 4084
	if (using_dma(hsotg))
		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
4085 4086
}

4087
/**
4088
 * dwc2_hsotg_udc_start - prepare the udc for work
4089 4090 4091 4092 4093 4094
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
4095
static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4096
			   struct usb_gadget_driver *driver)
4097
{
4098
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4099
	unsigned long flags;
4100 4101 4102
	int ret;

	if (!hsotg) {
4103
		pr_err("%s: called with no device\n", __func__);
4104 4105 4106 4107 4108 4109 4110 4111
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

4112
	if (driver->max_speed < USB_SPEED_FULL)
4113 4114
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

4115
	if (!driver->setup) {
4116 4117 4118 4119 4120 4121 4122 4123
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
4124
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4125 4126
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

4127 4128 4129 4130
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
		ret = dwc2_lowlevel_hw_enable(hsotg);
		if (ret)
			goto err;
4131 4132
	}

4133 4134
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4135

4136
	spin_lock_irqsave(&hsotg->lock, flags);
4137 4138 4139 4140 4141
	if (dwc2_hw_is_device(hsotg)) {
		dwc2_hsotg_init(hsotg);
		dwc2_hsotg_core_init_disconnected(hsotg, false);
	}

4142
	hsotg->enabled = 0;
4143 4144
	spin_unlock_irqrestore(&hsotg->lock, flags);

4145
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4146

4147 4148 4149 4150 4151 4152 4153
	return 0;

err:
	hsotg->driver = NULL;
	return ret;
}

4154
/**
4155
 * dwc2_hsotg_udc_stop - stop the udc
4156 4157 4158 4159 4160
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
4161
static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4162
{
4163
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4164
	unsigned long flags = 0;
4165 4166 4167 4168 4169 4170
	int ep;

	if (!hsotg)
		return -ENODEV;

	/* all endpoints should be shutdown */
4171 4172
	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
4173
			dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4174
		if (hsotg->eps_out[ep])
4175
			dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4176
	}
4177

4178 4179
	spin_lock_irqsave(&hsotg->lock, flags);

4180
	hsotg->driver = NULL;
4181
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4182
	hsotg->enabled = 0;
4183

4184 4185
	spin_unlock_irqrestore(&hsotg->lock, flags);

4186 4187
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, NULL);
4188

4189 4190
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		dwc2_lowlevel_hw_disable(hsotg);
4191 4192 4193 4194

	return 0;
}

4195
/**
4196
 * dwc2_hsotg_gadget_getframe - read the frame number
4197 4198 4199 4200
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
4201
static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4202
{
4203
	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4204 4205
}

4206
/**
4207
 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4208 4209 4210 4211 4212
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
4213
static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4214
{
4215
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4216 4217
	unsigned long flags = 0;

4218 4219 4220 4221 4222 4223 4224 4225
	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
			hsotg->op_state);

	/* Don't modify pullup state while in host mode */
	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
		hsotg->enabled = is_on;
		return 0;
	}
4226 4227 4228

	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
4229
		hsotg->enabled = 1;
4230 4231
		dwc2_hsotg_core_init_disconnected(hsotg, false);
		dwc2_hsotg_core_connect(hsotg);
4232
	} else {
4233 4234
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
4235
		hsotg->enabled = 0;
4236 4237 4238 4239 4240 4241 4242 4243
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return 0;
}

4244
static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4245 4246 4247 4248 4249 4250 4251
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
	unsigned long flags;

	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
	spin_lock_irqsave(&hsotg->lock, flags);

4252 4253 4254 4255 4256 4257 4258
	/*
	 * If controller is hibernated, it must exit from hibernation
	 * before being initialized / de-initialized
	 */
	if (hsotg->lx_state == DWC2_L2)
		dwc2_exit_hibernation(hsotg, false);

4259
	if (is_active) {
4260
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4261

4262
		dwc2_hsotg_core_init_disconnected(hsotg, false);
4263
		if (hsotg->enabled)
4264
			dwc2_hsotg_core_connect(hsotg);
4265
	} else {
4266 4267
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
4268 4269 4270 4271 4272 4273
	}

	spin_unlock_irqrestore(&hsotg->lock, flags);
	return 0;
}

4274
/**
4275
 * dwc2_hsotg_vbus_draw - report bMaxPower field
4276 4277 4278 4279 4280
 * @gadget: The usb gadget state
 * @mA: Amount of current
 *
 * Report how much power the device may consume to the phy.
 */
4281
static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned mA)
4282 4283 4284 4285 4286 4287 4288 4289
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);

	if (IS_ERR_OR_NULL(hsotg->uphy))
		return -ENOTSUPP;
	return usb_phy_set_power(hsotg->uphy, mA);
}

4290 4291 4292 4293 4294 4295 4296
static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
	.get_frame	= dwc2_hsotg_gadget_getframe,
	.udc_start		= dwc2_hsotg_udc_start,
	.udc_stop		= dwc2_hsotg_udc_stop,
	.pullup                 = dwc2_hsotg_pullup,
	.vbus_session		= dwc2_hsotg_vbus_session,
	.vbus_draw		= dwc2_hsotg_vbus_draw,
4297 4298 4299
};

/**
4300
 * dwc2_hsotg_initep - initialise a single endpoint
4301 4302 4303 4304 4305 4306 4307 4308
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
4309 4310
static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
				       struct dwc2_hsotg_ep *hs_ep,
4311 4312
				       int epnum,
				       bool dir_in)
4313 4314 4315 4316 4317
{
	char *dir;

	if (epnum == 0)
		dir = "";
4318
	else if (dir_in)
4319
		dir = "in";
4320 4321
	else
		dir = "out";
4322

4323
	hs_ep->dir_in = dir_in;
4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336
	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
4337
	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
4338
	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4339

4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352
	if (epnum == 0) {
		hs_ep->ep.caps.type_control = true;
	} else {
		hs_ep->ep.caps.type_iso = true;
		hs_ep->ep.caps.type_bulk = true;
		hs_ep->ep.caps.type_int = true;
	}

	if (dir_in)
		hs_ep->ep.caps.dir_in = true;
	else
		hs_ep->ep.caps.dir_out = true;

4353 4354
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
4355 4356 4357 4358
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
4359
		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4360
		if (dir_in)
4361
			dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
4362
		else
4363
			dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
4364 4365 4366
	}
}

4367
/**
4368
 * dwc2_hsotg_hw_cfg - read HW configuration registers
4369 4370 4371 4372
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
4373
static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4374
{
4375 4376 4377 4378
	u32 cfg;
	u32 ep_type;
	u32 i;

4379
	/* check hardware configuration */
4380

4381 4382
	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;

4383 4384
	/* Add ep0 */
	hsotg->num_of_eps++;
4385

4386
	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct dwc2_hsotg_ep),
4387 4388 4389
								GFP_KERNEL);
	if (!hsotg->eps_in[0])
		return -ENOMEM;
4390
	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4391 4392
	hsotg->eps_out[0] = hsotg->eps_in[0];

4393
	cfg = hsotg->hw_params.dev_ep_dirs;
4394
	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4395 4396 4397 4398
		ep_type = cfg & 3;
		/* Direction in or both */
		if (!(ep_type & 2)) {
			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4399
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4400 4401 4402 4403 4404 4405
			if (!hsotg->eps_in[i])
				return -ENOMEM;
		}
		/* Direction out or both */
		if (!(ep_type & 1)) {
			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4406
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4407 4408 4409 4410 4411
			if (!hsotg->eps_out[i])
				return -ENOMEM;
		}
	}

4412 4413
	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4414

4415 4416 4417 4418
	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
		 hsotg->num_of_eps,
		 hsotg->dedicated_fifos ? "dedicated" : "shared",
		 hsotg->fifo_mem);
4419
	return 0;
4420 4421
}

4422
/**
4423
 * dwc2_hsotg_dump - dump state of the udc
4424 4425
 * @param: The device state
 */
4426
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4427
{
M
Mark Brown 已提交
4428
#ifdef DEBUG
4429 4430 4431 4432 4433 4434
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4435 4436
		 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
		 dwc2_readl(regs + DIEPMSK));
4437

4438
	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4439
		 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
4440 4441

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4442
		 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
4443 4444 4445

	/* show periodic fifo settings */

4446
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4447
		val = dwc2_readl(regs + DPTXFSIZN(idx));
4448
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4449 4450
			 val >> FIFOSIZE_DEPTH_SHIFT,
			 val & FIFOSIZE_STARTADDR_MASK);
4451 4452
	}

4453
	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4454 4455
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4456 4457 4458
			 dwc2_readl(regs + DIEPCTL(idx)),
			 dwc2_readl(regs + DIEPTSIZ(idx)),
			 dwc2_readl(regs + DIEPDMA(idx)));
4459

4460
		val = dwc2_readl(regs + DOEPCTL(idx));
4461 4462
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4463 4464 4465
			 idx, dwc2_readl(regs + DOEPCTL(idx)),
			 dwc2_readl(regs + DOEPTSIZ(idx)),
			 dwc2_readl(regs + DOEPDMA(idx)));
4466 4467 4468 4469

	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4470
		 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
4471
#endif
4472 4473
}

4474
/**
4475 4476 4477
 * dwc2_gadget_init - init function for gadget
 * @dwc2: The data structure for the DWC2 driver.
 * @irq: The IRQ number for the controller.
4478
 */
4479
int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
4480
{
4481
	struct device *dev = hsotg->dev;
4482 4483
	int epnum;
	int ret;
4484

4485 4486
	/* Dump fifo information */
	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4487 4488
		hsotg->params.g_np_tx_fifo_size);
	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4489

4490
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
4491
	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4492
	hsotg->gadget.name = dev_name(dev);
4493 4494
	if (hsotg->dr_mode == USB_DR_MODE_OTG)
		hsotg->gadget.is_otg = 1;
4495 4496
	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4497

4498
	ret = dwc2_hsotg_hw_cfg(hsotg);
4499 4500
	if (ret) {
		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4501
		return ret;
4502 4503
	}

4504 4505
	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4506
	if (!hsotg->ctrl_buff)
4507
		return -ENOMEM;
4508 4509 4510

	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4511
	if (!hsotg->ep0_buff)
4512
		return -ENOMEM;
4513

4514 4515 4516 4517 4518 4519
	if (using_desc_dma(hsotg)) {
		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
		if (ret < 0)
			return ret;
	}

4520
	ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
4521
				dev_name(hsotg->dev), hsotg);
4522
	if (ret < 0) {
4523
		dev_err(dev, "cannot claim IRQ for gadget\n");
4524
		return ret;
4525 4526
	}

4527 4528 4529 4530
	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
4531
		return -EINVAL;
4532 4533 4534 4535 4536
	}

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4537
	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4538 4539 4540

	/* allocate EP0 request */

4541
	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4542 4543 4544
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
4545
		return -ENOMEM;
4546
	}
4547 4548

	/* initialise the endpoints now the core has been initialised */
4549 4550
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
		if (hsotg->eps_in[epnum])
4551
			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4552 4553
								epnum, 1);
		if (hsotg->eps_out[epnum])
4554
			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4555 4556
								epnum, 0);
	}
4557

4558
	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
4559
	if (ret)
4560
		return ret;
4561

4562
	dwc2_hsotg_dump(hsotg);
4563 4564 4565 4566

	return 0;
}

4567
/**
4568
 * dwc2_hsotg_remove - remove function for hsotg driver
4569 4570
 * @pdev: The platform information for the driver
 */
4571
int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4572
{
4573
	usb_del_gadget_udc(&hsotg->gadget);
4574

4575 4576 4577
	return 0;
}

4578
int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4579 4580 4581
{
	unsigned long flags;

4582
	if (hsotg->lx_state != DWC2_L0)
4583
		return 0;
4584

4585 4586 4587
	if (hsotg->driver) {
		int ep;

4588 4589 4590
		dev_info(hsotg->dev, "suspending usb gadget %s\n",
			 hsotg->driver->driver.name);

4591 4592
		spin_lock_irqsave(&hsotg->lock, flags);
		if (hsotg->enabled)
4593 4594
			dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
4595 4596
		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
		spin_unlock_irqrestore(&hsotg->lock, flags);
4597

4598 4599
		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
			if (hsotg->eps_in[ep])
4600
				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4601
			if (hsotg->eps_out[ep])
4602
				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4603
		}
4604 4605
	}

4606
	return 0;
4607 4608
}

4609
int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4610 4611 4612
{
	unsigned long flags;

4613
	if (hsotg->lx_state == DWC2_L2)
4614
		return 0;
4615

4616 4617 4618
	if (hsotg->driver) {
		dev_info(hsotg->dev, "resuming usb gadget %s\n",
			 hsotg->driver->driver.name);
4619

4620
		spin_lock_irqsave(&hsotg->lock, flags);
4621
		dwc2_hsotg_core_init_disconnected(hsotg, false);
4622
		if (hsotg->enabled)
4623
			dwc2_hsotg_core_connect(hsotg);
4624 4625
		spin_unlock_irqrestore(&hsotg->lock, flags);
	}
4626

4627
	return 0;
4628
}
4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730

/**
 * dwc2_backup_device_registers() - Backup controller device registers.
 * When suspending usb bus, registers needs to be backuped
 * if controller power is disabled once suspended.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Backup dev regs */
	dr = &hsotg->dr_backup;

	dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
	dr->dctl = dwc2_readl(hsotg->regs + DCTL);
	dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
	dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
	dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Backup IN EPs */
		dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));

		/* Ensure DATA PID is correctly configured */
		if (dr->diepctl[i] & DXEPCTL_DPID)
			dr->diepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->diepctl[i] |= DXEPCTL_SETD0PID;

		dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
		dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));

		/* Backup OUT EPs */
		dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));

		/* Ensure DATA PID is correctly configured */
		if (dr->doepctl[i] & DXEPCTL_DPID)
			dr->doepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->doepctl[i] |= DXEPCTL_SETD0PID;

		dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
		dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
	}
	dr->valid = true;
	return 0;
}

/**
 * dwc2_restore_device_registers() - Restore controller device registers.
 * When resuming usb bus, device registers needs to be restored
 * if controller power were disabled.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	u32 dctl;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Restore dev regs */
	dr = &hsotg->dr_backup;
	if (!dr->valid) {
		dev_err(hsotg->dev, "%s: no device registers to restore\n",
			__func__);
		return -EINVAL;
	}
	dr->valid = false;

	dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
	dwc2_writel(dr->dctl, hsotg->regs + DCTL);
	dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
	dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
	dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Restore IN EPs */
		dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
		dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
		dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));

		/* Restore OUT EPs */
		dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
		dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
	}

	/* Set the Power-On Programming done bit */
	dctl = dwc2_readl(hsotg->regs + DCTL);
	dctl |= DCTL_PWRONPRGDONE;
	dwc2_writel(dctl, hsotg->regs + DCTL);

	return 0;
}