gadget.c 93.0 KB
Newer Older
1
/**
2 3
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
4 5 6 7 8 9 10 11 12 13 14
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
15
 */
16 17 18 19 20 21 22 23

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/debugfs.h>
24
#include <linux/mutex.h>
25 26 27
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
28
#include <linux/slab.h>
29
#include <linux/clk.h>
30
#include <linux/regulator/consumer.h>
31
#include <linux/of_platform.h>
32
#include <linux/phy/phy.h>
33 34 35

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
36
#include <linux/usb/phy.h>
37
#include <linux/platform_data/s3c-hsotg.h>
38

39
#include "core.h"
40
#include "hw.h"
41 42 43 44 45 46 47 48 49 50 51 52

/* conversion functions */
static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
{
	return container_of(req, struct s3c_hsotg_req, req);
}

static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
{
	return container_of(ep, struct s3c_hsotg_ep, ep);
}

53
static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
54
{
55
	return container_of(gadget, struct dwc2_hsotg, gadget);
56 57 58 59 60 61 62 63 64 65 66 67
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) | val, ptr);
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) & ~val, ptr);
}

68 69 70 71 72 73 74 75 76
static inline struct s3c_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
						u32 ep_index, u32 dir_in)
{
	if (dir_in)
		return hsotg->eps_in[ep_index];
	else
		return hsotg->eps_out[ep_index];
}

77
/* forward declaration of functions */
78
static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg);
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
97
 * g_using_dma is set depending on dts flag.
98
 */
99
static inline bool using_dma(struct dwc2_hsotg *hsotg)
100
{
101
	return hsotg->g_using_dma;
102 103 104 105 106 107 108
}

/**
 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
109
static void s3c_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
110
{
111
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
112 113 114 115 116 117
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
118
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
119 120 121 122 123 124 125 126
	}
}

/**
 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
127
static void s3c_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
128
{
129
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
130 131 132 133 134
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
135
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
136 137 138 139 140 141 142 143 144 145 146 147
}

/**
 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
148
static void s3c_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
149 150 151 152 153 154 155 156 157 158 159
				 unsigned int ep, unsigned int dir_in,
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
160
	daint = readl(hsotg->regs + DAINTMSK);
161 162 163 164
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
165
	writel(daint, hsotg->regs + DAINTMSK);
166 167 168 169 170 171 172
	local_irq_restore(flags);
}

/**
 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
 * @hsotg: The device instance.
 */
173
static void s3c_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
174
{
175 176 177
	unsigned int ep;
	unsigned int addr;
	unsigned int size;
178
	int timeout;
179 180
	u32 val;

181
	/* set FIFO sizes to 2048/1024 */
182

183
	writel(2048, hsotg->regs + GRXFSIZ);
184 185
	writel((2048 << FIFOSIZE_STARTADDR_SHIFT) |
		(1024 << FIFOSIZE_DEPTH_SHIFT), hsotg->regs + GNPTXFSIZ);
186

187 188
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
189 190
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
191 192
	 * known values.
	 */
193 194 195 196

	/* start at the end of the GNPTXFSIZ, rounded up */
	addr = 2048 + 1024;

197
	/*
198 199 200 201 202
	 * Because we have not enough memory to have each TX FIFO of size at
	 * least 3072 bytes (the maximum single packet size), we create four
	 * FIFOs of lenght 1024, and four of length 3072 bytes, and assing
	 * them to endpoints dynamically according to maxpacket size value of
	 * given endpoint.
203
	 */
204

205 206 207 208 209 210 211 212 213 214 215 216 217 218
	/* 256*4=1024 bytes FIFO length */
	size = 256;
	for (ep = 1; ep <= 4; ep++) {
		val = addr;
		val |= size << FIFOSIZE_DEPTH_SHIFT;
		WARN_ONCE(addr + size > hsotg->fifo_mem,
			  "insufficient fifo memory");
		addr += size;

		writel(val, hsotg->regs + DPTXFSIZN(ep));
	}
	/* 768*4=3072 bytes FIFO length */
	size = 768;
	for (ep = 5; ep <= 8; ep++) {
219
		val = addr;
220
		val |= size << FIFOSIZE_DEPTH_SHIFT;
221 222
		WARN_ONCE(addr + size > hsotg->fifo_mem,
			  "insufficient fifo memory");
223 224
		addr += size;

225
		writel(val, hsotg->regs + DPTXFSIZN(ep));
226
	}
227

228 229 230 231
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
232

233 234
	writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
235 236 237 238

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
239
		val = readl(hsotg->regs + GRSTCTL);
240

241
		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
242 243 244 245 246 247 248 249 250 251 252 253
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
254 255 256 257 258 259 260 261
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
262 263
static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
						      gfp_t flags)
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
{
	struct s3c_hsotg_req *req;

	req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
{
	return hs_ep->periodic;
}

/**
 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
 * of a request to ensure the buffer is ready for access by the caller.
296
 */
297
static void s3c_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
298 299 300 301 302 303 304 305 306
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	struct usb_request *req = &hs_req->req;

	/* ignore this if we're not moving any data */
	if (hs_req->req.length == 0)
		return;

307
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
}

/**
 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
325
 */
326
static int s3c_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
327 328 329 330
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	bool periodic = is_ep_periodic(hs_ep);
331
	u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
332 333 334 335 336
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;
337
	int max_transfer;
338 339 340 341 342 343 344

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

345
	if (periodic && !hsotg->dedicated_fifos) {
346
		u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
347 348 349
		int size_left;
		int size_done;

350 351 352 353
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
354

355
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
356

357 358
		/*
		 * if shared fifo, we cannot write anything until the
359 360 361
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
362
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
363 364 365
			return -ENOSPC;
		}

366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
383
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
384 385
			return -ENOSPC;
		}
386
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
387
		can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
388 389 390

		can_write &= 0xffff;
		can_write *= 4;
391
	} else {
392
		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
393 394 395 396
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

397
			s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
398 399 400
			return -ENOSPC;
		}

401
		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
402
		can_write *= 4;	/* fifo size is in 32bit quantities. */
403 404
	}

405 406 407 408
	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
		 __func__, gnptxsts, can_write, to_write, max_transfer);
409

410 411
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
412 413 414
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
415
	if (can_write > 512 && !periodic)
416 417
		can_write = 512;

418 419
	/*
	 * limit the write to one max-packet size worth of data, but allow
420
	 * the transfer to return that it did not run out of fifo space
421 422
	 * doing it.
	 */
423 424
	if (to_write > max_transfer) {
		to_write = max_transfer;
425

426 427 428
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
			s3c_hsotg_en_gsint(hsotg,
429 430
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
431 432
	}

433 434 435 436
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
437
		pkt_round = to_write % max_transfer;
438

439 440
		/*
		 * Round the write down to an
441 442 443 444 445 446 447 448 449
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

450 451 452 453
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
454

455 456 457
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
			s3c_hsotg_en_gsint(hsotg,
458 459
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
		 to_write, hs_req->req.length, can_write, buf_pos);

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

477
	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
{
	int index = hs_ep->index;
	unsigned maxsize;
	unsigned maxpkt;

	if (index != 0) {
496 497
		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
498
	} else {
499
		maxsize = 64+64;
500
		if (hs_ep->dir_in)
501
			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
502
		else
503 504 505 506 507 508 509
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

510 511 512 513
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

/**
 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
531
static void s3c_hsotg_start_req(struct dwc2_hsotg *hsotg,
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req,
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
	unsigned length;
	unsigned packets;
	unsigned maxreq;

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

560 561
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
562 563 564 565 566

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
		__func__, readl(hsotg->regs + epctrl_reg), index,
		hs_ep->dir_in ? "in" : "out");

567 568 569
	/* If endpoint is stalled, we will restart request later */
	ctrl = readl(hsotg->regs + epctrl_reg);

570
	if (ctrl & DXEPCTL_STALL) {
571 572 573 574
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

575
	length = ureq->length - ureq->actual;
576 577
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
578 579
	if (0)
		dev_dbg(hsotg->dev,
580
			"REQ buf %p len %d dma %pad noi=%d zp=%d snok=%d\n",
581
			ureq->buf, length, &ureq->dma,
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
			ureq->no_interrupt, ureq->zero, ureq->short_not_ok);

	maxreq = get_ep_limit(hs_ep);
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

603 604 605 606 607
	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
		return;
	}

608
	if (dir_in && index != 0)
609
		if (hs_ep->isochronous)
610
			epsize = DXEPTSIZ_MC(packets);
611
		else
612
			epsize = DXEPTSIZ_MC(1);
613 614 615 616
	else
		epsize = 0;

	if (index != 0 && ureq->zero) {
617 618 619 620
		/*
		 * test for the packets being exactly right for the
		 * transfer
		 */
621 622 623 624 625

		if (length == (packets * hs_ep->ep.maxpacket))
			packets++;
	}

626 627
	epsize |= DXEPTSIZ_PKTCNT(packets);
	epsize |= DXEPTSIZ_XFERSIZE(length);
628 629 630 631 632 633 634 635 636 637

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

	/* write size / packets */
	writel(epsize, hsotg->regs + epsize_reg);

638
	if (using_dma(hsotg) && !continuing) {
639 640
		unsigned int dma_reg;

641 642 643 644
		/*
		 * write DMA address to control register, buffer already
		 * synced by s3c_hsotg_ep_queue().
		 */
645

646
		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
647 648
		writel(ureq->dma, hsotg->regs + dma_reg);

649
		dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
650
			__func__, &ureq->dma, dma_reg);
651 652
	}

653 654
	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
655 656 657 658 659 660 661

	dev_dbg(hsotg->dev, "setup req:%d\n", hsotg->setup);

	/* For Setup request do not clear NAK */
	if (hsotg->setup && index == 0)
		hsotg->setup = 0;
	else
662
		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
663

664 665 666 667

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

668 669
	/*
	 * set these, it seems that DMA support increments past the end
670
	 * of the packet buffer so we need to calculate the length from
671 672
	 * this information.
	 */
673 674 675 676 677 678 679 680 681 682
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

		s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

683 684 685 686
	/*
	 * clear the INTknTXFEmpMsk when we start request, more as a aide
	 * to debugging to see what is going on.
	 */
687
	if (dir_in)
688
		writel(DIEPMSK_INTKNTXFEMPMSK,
689
		       hsotg->regs + DIEPINT(index));
690

691 692 693 694
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
695 696

	/* check ep is enabled */
697
	if (!(readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
698
		dev_warn(hsotg->dev,
699
			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
700 701
			 index, readl(hsotg->regs + epctrl_reg));

702
	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
703
		__func__, readl(hsotg->regs + epctrl_reg));
704 705 706

	/* enable ep interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
707 708 709 710 711 712 713 714 715 716 717 718 719
}

/**
 * s3c_hsotg_map_dma - map the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
720
 */
721
static int s3c_hsotg_map_dma(struct dwc2_hsotg *hsotg,
722 723 724 725
			     struct s3c_hsotg_ep *hs_ep,
			     struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
726
	int ret;
727 728 729 730 731

	/* if the length is zero, ignore the DMA data */
	if (hs_req->req.length == 0)
		return 0;

732 733 734
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
750
	struct dwc2_hsotg *hs = hs_ep->parent;
751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777
	bool first;

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
		int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
		if (ret)
			return ret;
	}

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

	if (first)
		s3c_hsotg_start_req(hs, hs_ep, hs_req, false);

	return 0;
}

778 779 780 781
static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
782
	struct dwc2_hsotg *hs = hs_ep->parent;
783 784 785 786 787 788 789 790 791 792
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
				      struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);

	kfree(hs_req);
}

/**
 * s3c_hsotg_complete_oursetup - setup completion callback
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
					struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
813
	struct dwc2_hsotg *hsotg = hs_ep->parent;
814 815 816 817 818 819 820 821 822 823 824 825 826

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

	s3c_hsotg_ep_free_request(ep, req);
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
827
 */
828
static struct s3c_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
829 830
					   u32 windex)
{
831
	struct s3c_hsotg_ep *ep;
832 833 834 835 836 837
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

838
	if (idx > hsotg->num_of_eps)
839 840
		return NULL;

841 842
	ep = index_to_ep(hsotg, idx, dir);

843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

/**
 * s3c_hsotg_send_reply - send reply to control request
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
859
static int s3c_hsotg_send_reply(struct dwc2_hsotg *hsotg,
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899
				struct s3c_hsotg_ep *ep,
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

	req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
	req->zero = 1; /* always do zero-length final transfer */
	req->complete = s3c_hsotg_complete_oursetup;

	if (length)
		memcpy(req->buf, buff, length);
	else
		ep->sent_zlp = 1;

	ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
 * s3c_hsotg_process_req_status - process request GET_STATUS
 * @hsotg: The device state
 * @ctrl: USB control request
 */
900
static int s3c_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
901 902
					struct usb_ctrlrequest *ctrl)
{
903
	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951
	struct s3c_hsotg_ep *ep;
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
		reply = cpu_to_le16(0); /* bit 0 => self powered,
					 * bit 1 => remote wakeup */
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

	ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);

952 953 954 955 956 957 958 959 960 961 962 963 964 965
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
{
	if (list_empty(&hs_ep->queue))
		return NULL;

	return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
}

966 967 968 969 970
/**
 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
 * @hsotg: The device state
 * @ctrl: USB control request
 */
971
static int s3c_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
972 973
					 struct usb_ctrlrequest *ctrl)
{
974
	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
975 976
	struct s3c_hsotg_req *hs_req;
	bool restart;
977 978
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
	struct s3c_hsotg_ep *ep;
979
	int ret;
980
	bool halted;
981 982 983 984 985 986 987 988 989 990 991 992 993 994

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

	if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
				__func__, le16_to_cpu(ctrl->wIndex));
			return -ENOENT;
		}

		switch (le16_to_cpu(ctrl->wValue)) {
		case USB_ENDPOINT_HALT:
995 996
			halted = ep->halted;

997
			s3c_hsotg_ep_sethalt(&ep->ep, set);
998 999 1000 1001 1002 1003 1004

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
1005

1006 1007 1008 1009 1010 1011
			/*
			 * we have to complete all requests for ep if it was
			 * halted, and the halt was cleared by CLEAR_FEATURE
			 */

			if (!set && halted) {
1012 1013 1014 1015 1016 1017 1018 1019
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
1020 1021
					usb_gadget_giveback_request(&ep->ep,
								    &hs_req->req);
1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032
				}

				/* If we have pending request, then start it */
				restart = !list_empty(&ep->queue);
				if (restart) {
					hs_req = get_ep_head(ep);
					s3c_hsotg_start_req(hsotg, ep,
							    hs_req, false);
				}
			}

1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
			break;

		default:
			return -ENOENT;
		}
	} else
		return -ENOENT;  /* currently only deal with endpoint */

	return 1;
}

1044
static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1045

1046 1047 1048 1049 1050 1051
/**
 * s3c_hsotg_stall_ep0 - stall ep0
 * @hsotg: The device state
 *
 * Set stall for ep0 as response for setup request.
 */
1052
static void s3c_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1053
{
1054
	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
	u32 reg;
	u32 ctrl;

	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;

	/*
	 * DxEPCTL_Stall will be cleared by EP once it has
	 * taken effect, so no need to clear later.
	 */

	ctrl = readl(hsotg->regs + reg);
1067 1068
	ctrl |= DXEPCTL_STALL;
	ctrl |= DXEPCTL_CNAK;
1069 1070 1071
	writel(ctrl, hsotg->regs + reg);

	dev_dbg(hsotg->dev,
1072
		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1073 1074 1075 1076 1077 1078 1079 1080 1081
		ctrl, reg, readl(hsotg->regs + reg));

	 /*
	  * complete won't be called, so we enqueue
	  * setup request here
	  */
	 s3c_hsotg_enqueue_setup(hsotg);
}

1082 1083 1084 1085 1086 1087 1088 1089 1090
/**
 * s3c_hsotg_process_control - process a control request
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
1091
static void s3c_hsotg_process_control(struct dwc2_hsotg *hsotg,
1092 1093
				      struct usb_ctrlrequest *ctrl)
{
1094
	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
1095 1096 1097 1098 1099 1100 1101 1102 1103
	int ret = 0;
	u32 dcfg;

	ep0->sent_zlp = 0;

	dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
		 ctrl->bRequest, ctrl->bRequestType,
		 ctrl->wValue, ctrl->wLength);

1104 1105 1106 1107
	/*
	 * record the direction of the request, for later use when enquing
	 * packets onto EP0.
	 */
1108 1109 1110 1111

	ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
	dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);

1112 1113 1114 1115
	/*
	 * if we've no data with this request, then the last part of the
	 * transaction is going to implicitly be IN.
	 */
1116 1117 1118 1119 1120 1121
	if (ctrl->wLength == 0)
		ep0->dir_in = 1;

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1122
			dcfg = readl(hsotg->regs + DCFG);
1123
			dcfg &= ~DCFG_DEVADDR_MASK;
P
Paul Zimmerman 已提交
1124 1125
			dcfg |= (le16_to_cpu(ctrl->wValue) <<
				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1126
			writel(dcfg, hsotg->regs + DCFG);
1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			return;

		case USB_REQ_GET_STATUS:
			ret = s3c_hsotg_process_req_status(hsotg, ctrl);
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
			ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
1147
		spin_unlock(&hsotg->lock);
1148
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1149
		spin_lock(&hsotg->lock);
1150 1151 1152 1153
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1154 1155
	/*
	 * the request is either unhandlable, or is not formatted correctly
1156 1157 1158
	 * so respond with a STALL for the status stage to indicate failure.
	 */

1159 1160
	if (ret < 0)
		s3c_hsotg_stall_ep0(hsotg);
1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
}

/**
 * s3c_hsotg_complete_setup - completion of a setup transfer
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
static void s3c_hsotg_complete_setup(struct usb_ep *ep,
				     struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1175
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1176 1177 1178 1179 1180 1181

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

1182
	spin_lock(&hsotg->lock);
1183 1184 1185 1186
	if (req->actual == 0)
		s3c_hsotg_enqueue_setup(hsotg);
	else
		s3c_hsotg_process_control(hsotg, req->buf);
1187
	spin_unlock(&hsotg->lock);
1188 1189 1190 1191 1192 1193 1194 1195 1196
}

/**
 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
1197
static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214
{
	struct usb_request *req = hsotg->ctrl_req;
	struct s3c_hsotg_req *hs_req = our_req(req);
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
	req->complete = s3c_hsotg_complete_setup;

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

1215
	hsotg->eps_out[0]->dir_in = 0;
1216

1217
	ret = s3c_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1218 1219
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1220 1221 1222 1223
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238
	}
}

/**
 * s3c_hsotg_complete_request - complete a request given to us
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1239
 */
1240
static void s3c_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
				       struct s3c_hsotg_ep *hs_ep,
				       struct s3c_hsotg_req *hs_req,
				       int result)
{
	bool restart;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1255 1256 1257 1258
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

	if (using_dma(hsotg))
		s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1269 1270 1271 1272
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1273 1274

	if (hs_req->req.complete) {
1275
		spin_unlock(&hsotg->lock);
1276
		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1277
		spin_lock(&hsotg->lock);
1278 1279
	}

1280 1281
	/*
	 * Look to see if there is anything else to do. Note, the completion
1282
	 * of the previous request may have caused a new request to be started
1283 1284
	 * so be careful when doing this.
	 */
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304

	if (!hs_ep->req && result >= 0) {
		restart = !list_empty(&hs_ep->queue);
		if (restart) {
			hs_req = get_ep_head(hs_ep);
			s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		}
	}
}

/**
 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
1305
static void s3c_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
1306
{
1307
	struct s3c_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
1308
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1309
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1310 1311 1312 1313
	int to_read;
	int max_req;
	int read_ptr;

1314

1315
	if (!hs_req) {
1316
		u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
1317 1318
		int ptr;

1319
		dev_dbg(hsotg->dev,
1320
			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
			(void)readl(fifo);

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

1334 1335 1336
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

1337
	if (to_read > max_req) {
1338 1339
		/*
		 * more data appeared than we where willing
1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

1351 1352 1353 1354
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
1355
	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
}

/**
 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
 * @hsotg: The device instance
 * @req: The request currently on this endpoint
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
1367
 * currently believed that we do not need to wait for any space in
1368 1369
 * the TxFIFO.
 */
1370
static void s3c_hsotg_send_zlp(struct dwc2_hsotg *hsotg,
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
			       struct s3c_hsotg_req *req)
{
	u32 ctrl;

	if (!req) {
		dev_warn(hsotg->dev, "%s: no request?\n", __func__);
		return;
	}

	if (req->req.length == 0) {
1381
		hsotg->eps_out[0]->sent_zlp = 1;
1382 1383 1384 1385
		s3c_hsotg_enqueue_setup(hsotg);
		return;
	}

1386 1387 1388
	/* eps_out[0] is used in both directions */
	hsotg->eps_out[0]->dir_in = 1;
	hsotg->eps_out[0]->sent_zlp = 1;
1389 1390 1391 1392

	dev_dbg(hsotg->dev, "sending zero-length packet\n");

	/* issue a zero-sized packet to terminate this */
1393 1394
	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
	       DXEPTSIZ_XFERSIZE(0), hsotg->regs + DIEPTSIZ(0));
1395

1396
	ctrl = readl(hsotg->regs + DIEPCTL0);
1397 1398 1399
	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
1400
	writel(ctrl, hsotg->regs + DIEPCTL0);
1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411
}

/**
 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 * @was_setup: Set if processing a SetupDone event.
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
1412
 */
1413
static void s3c_hsotg_handle_outdone(struct dwc2_hsotg *hsotg,
1414 1415
				     int epnum, bool was_setup)
{
1416
	u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
1417
	struct s3c_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
1418 1419
	struct s3c_hsotg_req *hs_req = hs_ep->req;
	struct usb_request *req = &hs_req->req;
1420
	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

	if (using_dma(hsotg)) {
		unsigned size_done;

1431 1432
		/*
		 * Calculate the size of the transfer by checking how much
1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

1446 1447 1448 1449
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
		return;
1450 1451 1452 1453 1454 1455
	} else if (epnum == 0) {
		/*
		 * After was_setup = 1 =>
		 * set CNAK for non Setup requests
		 */
		hsotg->setup = was_setup ? 0 : 1;
1456 1457
	}

1458 1459 1460 1461
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

1462 1463 1464 1465
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
1466 1467 1468
	}

	if (epnum == 0) {
1469 1470 1471 1472
		/*
		 * Condition req->complete != s3c_hsotg_complete_setup says:
		 * send ZLP when we have an asynchronous request from gadget
		 */
1473 1474 1475 1476
		if (!was_setup && req->complete != s3c_hsotg_complete_setup)
			s3c_hsotg_send_zlp(hsotg, hs_req);
	}

1477
	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1478 1479 1480 1481 1482 1483 1484
}

/**
 * s3c_hsotg_read_frameno - read current frame number
 * @hsotg: The device instance
 *
 * Return the current frame number
1485
 */
1486
static u32 s3c_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
1487 1488 1489
{
	u32 dsts;

1490 1491 1492
	dsts = readl(hsotg->regs + DSTS);
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;
1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504

	return dsts;
}

/**
 * s3c_hsotg_handle_rx - RX FIFO has data
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
1505
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1506 1507 1508 1509 1510 1511 1512
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
1513
static void s3c_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
1514
{
1515
	u32 grxstsr = readl(hsotg->regs + GRXSTSP);
1516 1517 1518 1519
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

1520 1521
	epnum = grxstsr & GRXSTS_EPNUM_MASK;
	status = grxstsr & GRXSTS_PKTSTS_MASK;
1522

1523 1524
	size = grxstsr & GRXSTS_BYTECNT_MASK;
	size >>= GRXSTS_BYTECNT_SHIFT;
1525 1526 1527 1528 1529

	if (1)
		dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
			__func__, grxstsr, size, epnum);

1530 1531 1532
	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
	case GRXSTS_PKTSTS_GLOBALOUTNAK:
		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1533 1534
		break;

1535
	case GRXSTS_PKTSTS_OUTDONE:
1536 1537 1538 1539 1540 1541 1542
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg));

		if (!using_dma(hsotg))
			s3c_hsotg_handle_outdone(hsotg, epnum, false);
		break;

1543
	case GRXSTS_PKTSTS_SETUPDONE:
1544 1545 1546
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1547
			readl(hsotg->regs + DOEPCTL(0)));
1548 1549 1550 1551

		s3c_hsotg_handle_outdone(hsotg, epnum, true);
		break;

1552
	case GRXSTS_PKTSTS_OUTRX:
1553 1554 1555
		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

1556
	case GRXSTS_PKTSTS_SETUPRX:
1557 1558 1559
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1560
			readl(hsotg->regs + DOEPCTL(0)));
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576

		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

		s3c_hsotg_dump(hsotg);
		break;
	}
}

/**
 * s3c_hsotg_ep0_mps - turn max packet size into register setting
 * @mps: The maximum packet size in bytes.
1577
 */
1578 1579 1580 1581
static u32 s3c_hsotg_ep0_mps(unsigned int mps)
{
	switch (mps) {
	case 64:
1582
		return D0EPCTL_MPS_64;
1583
	case 32:
1584
		return D0EPCTL_MPS_32;
1585
	case 16:
1586
		return D0EPCTL_MPS_16;
1587
	case 8:
1588
		return D0EPCTL_MPS_8;
1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
1605
static void s3c_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
1606
			unsigned int ep, unsigned int mps, unsigned int dir_in)
1607
{
1608
	struct s3c_hsotg_ep *hs_ep;
1609 1610
	void __iomem *regs = hsotg->regs;
	u32 mpsval;
1611
	u32 mcval;
1612 1613
	u32 reg;

1614 1615 1616 1617
	hs_ep = index_to_ep(hsotg, ep, dir_in);
	if (!hs_ep)
		return;

1618 1619 1620 1621 1622
	if (ep == 0) {
		/* EP0 is a special case */
		mpsval = s3c_hsotg_ep0_mps(mps);
		if (mpsval > 3)
			goto bad_mps;
1623
		hs_ep->ep.maxpacket = mps;
1624
		hs_ep->mc = 1;
1625
	} else {
1626
		mpsval = mps & DXEPCTL_MPS_MASK;
1627
		if (mpsval > 1024)
1628
			goto bad_mps;
1629 1630 1631 1632
		mcval = ((mps >> 11) & 0x3) + 1;
		hs_ep->mc = mcval;
		if (mcval > 3)
			goto bad_mps;
1633
		hs_ep->ep.maxpacket = mpsval;
1634 1635
	}

1636 1637 1638 1639 1640 1641
	if (dir_in) {
		reg = readl(regs + DIEPCTL(ep));
		reg &= ~DXEPCTL_MPS_MASK;
		reg |= mpsval;
		writel(reg, regs + DIEPCTL(ep));
	} else {
1642
		reg = readl(regs + DOEPCTL(ep));
1643
		reg &= ~DXEPCTL_MPS_MASK;
1644
		reg |= mpsval;
1645
		writel(reg, regs + DOEPCTL(ep));
1646
	}
1647 1648 1649 1650 1651 1652 1653

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

1654 1655 1656 1657 1658
/**
 * s3c_hsotg_txfifo_flush - flush Tx FIFO
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
1659
static void s3c_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
1660 1661 1662 1663
{
	int timeout;
	int val;

1664
	writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
1665
		hsotg->regs + GRSTCTL);
1666 1667 1668 1669 1670

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
1671
		val = readl(hsotg->regs + GRSTCTL);
1672

1673
		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1674 1675 1676 1677 1678 1679
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
1680
			break;
1681 1682 1683 1684 1685
		}

		udelay(1);
	}
}
1686 1687 1688 1689 1690 1691 1692 1693 1694

/**
 * s3c_hsotg_trytx - check to see if anything needs transmitting
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
1695
static int s3c_hsotg_trytx(struct dwc2_hsotg *hsotg,
1696 1697 1698 1699
			   struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;

1700 1701 1702 1703 1704 1705 1706 1707
	if (!hs_ep->dir_in || !hs_req) {
		/**
		 * if request is not enqueued, we disable interrupts
		 * for endpoints, excepting ep0
		 */
		if (hs_ep->index != 0)
			s3c_hsotg_ctrl_epint(hsotg, hs_ep->index,
					     hs_ep->dir_in, 0);
1708
		return 0;
1709
	}
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
		return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

	return 0;
}

/**
 * s3c_hsotg_complete_in - complete IN transfer
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
1728
static void s3c_hsotg_complete_in(struct dwc2_hsotg *hsotg,
1729 1730 1731
				  struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1732
	u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1733 1734 1735 1736 1737 1738 1739
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

1740
	/* Finish ZLP handling for IN EP0 transactions */
1741
	if (hsotg->eps_out[0]->sent_zlp) {
1742
		dev_dbg(hsotg->dev, "zlp packet received\n");
1743
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1744 1745 1746
		return;
	}

1747 1748
	/*
	 * Calculate the size of the transfer by checking how much is left
1749 1750 1751 1752 1753 1754 1755 1756
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */

1757
	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1758 1759 1760 1761 1762 1763 1764 1765 1766

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

	/*
	 * Check if dealing with Maximum Packet Size(MPS) IN transfer at EP0
	 * When sent data is a multiple MPS size (e.g. 64B ,128B ,192B
	 * ,256B ... ), after last MPS sized packet send IN ZLP packet to
	 * inform the host that no more data is available.
	 * The state of req.zero member is checked to be sure that the value to
	 * send is smaller than wValue expected from host.
	 * Check req.length to NOT send another ZLP when the current one is
	 * under completion (the one for which this completion has been called).
	 */
	if (hs_req->req.length && hs_ep->index == 0 && hs_req->req.zero &&
	    hs_req->req.length == hs_req->req.actual &&
	    !(hs_req->req.length % hs_ep->ep.maxpacket)) {

		dev_dbg(hsotg->dev, "ep0 zlp IN packet sent\n");
		s3c_hsotg_send_zlp(hsotg, hs_req);
1786

1787 1788
		return;
	}
1789 1790 1791 1792 1793

	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
	} else
1794
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1795 1796 1797 1798 1799 1800 1801 1802 1803
}

/**
 * s3c_hsotg_epint - handle an in/out endpoint interrupt
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
1804
 */
1805
static void s3c_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
1806 1807
			    int dir_in)
{
1808
	struct s3c_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
1809 1810 1811
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1812
	u32 ints;
1813
	u32 ctrl;
1814 1815

	ints = readl(hsotg->regs + epint_reg);
1816
	ctrl = readl(hsotg->regs + epctl_reg);
1817

1818 1819 1820
	/* Clear endpoint interrupts */
	writel(ints, hsotg->regs + epint_reg);

1821 1822 1823 1824 1825 1826
	if (!hs_ep) {
		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
					__func__, idx, dir_in ? "in" : "out");
		return;
	}

1827 1828 1829
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

1830 1831 1832 1833
	/* Don't process XferCompl interrupt if it is a setup packet */
	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
		ints &= ~DXEPINT_XFERCOMPL;

1834
	if (ints & DXEPINT_XFERCOMPL) {
1835
		if (hs_ep->isochronous && hs_ep->interval == 1) {
1836 1837
			if (ctrl & DXEPCTL_EOFRNUM)
				ctrl |= DXEPCTL_SETEVENFR;
1838
			else
1839
				ctrl |= DXEPCTL_SETODDFR;
1840 1841 1842
			writel(ctrl, hsotg->regs + epctl_reg);
		}

1843
		dev_dbg(hsotg->dev,
1844
			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1845 1846 1847
			__func__, readl(hsotg->regs + epctl_reg),
			readl(hsotg->regs + epsiz_reg));

1848 1849 1850 1851
		/*
		 * we get OutDone from the FIFO, so we only need to look
		 * at completing IN requests here
		 */
1852 1853 1854
		if (dir_in) {
			s3c_hsotg_complete_in(hsotg, hs_ep);

1855
			if (idx == 0 && !hs_ep->req)
1856 1857
				s3c_hsotg_enqueue_setup(hsotg);
		} else if (using_dma(hsotg)) {
1858 1859 1860 1861
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
1862 1863 1864 1865 1866

			s3c_hsotg_handle_outdone(hsotg, idx, false);
		}
	}

1867
	if (ints & DXEPINT_EPDISBLD) {
1868 1869
		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

1870 1871 1872
		if (dir_in) {
			int epctl = readl(hsotg->regs + epctl_reg);

1873
			s3c_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
1874

1875 1876
			if ((epctl & DXEPCTL_STALL) &&
				(epctl & DXEPCTL_EPTYPE_BULK)) {
1877
				int dctl = readl(hsotg->regs + DCTL);
1878

1879
				dctl |= DCTL_CGNPINNAK;
1880
				writel(dctl, hsotg->regs + DCTL);
1881 1882 1883 1884
			}
		}
	}

1885
	if (ints & DXEPINT_AHBERR)
1886 1887
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

1888
	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
1889 1890 1891
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
1892 1893
			/*
			 * this is the notification we've received a
1894 1895
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
1896 1897
			 * the setup here.
			 */
1898 1899 1900 1901 1902 1903 1904 1905

			if (dir_in)
				WARN_ON_ONCE(1);
			else
				s3c_hsotg_handle_outdone(hsotg, 0, true);
		}
	}

1906
	if (ints & DXEPINT_BACK2BACKSETUP)
1907 1908
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

1909
	if (dir_in && !hs_ep->isochronous) {
1910
		/* not sure if this is important, but we'll clear it anyway */
1911
		if (ints & DIEPMSK_INTKNTXFEMPMSK) {
1912 1913 1914 1915 1916
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
1917
		if (ints & DIEPMSK_INTKNEPMISMSK) {
1918 1919 1920
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
1921 1922 1923

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
1924
		    ints & DIEPMSK_TXFIFOEMPTY) {
1925 1926
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
1927 1928
			if (!using_dma(hsotg))
				s3c_hsotg_trytx(hsotg, hs_ep);
1929
		}
1930 1931 1932 1933 1934 1935 1936 1937 1938
	}
}

/**
 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
1939
 */
1940
static void s3c_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
1941
{
1942
	u32 dsts = readl(hsotg->regs + DSTS);
1943
	int ep0_mps = 0, ep_mps = 8;
1944

1945 1946
	/*
	 * This should signal the finish of the enumeration phase
1947
	 * of the USB handshaking, so we should now know what rate
1948 1949
	 * we connected at.
	 */
1950 1951 1952

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

1953 1954
	/*
	 * note, since we're limited by the size of transfer on EP0, and
1955
	 * it seems IN transfers must be a even number of packets we do
1956 1957
	 * not advertise a 64byte MPS on EP0.
	 */
1958 1959

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
1960 1961 1962
	switch (dsts & DSTS_ENUMSPD_MASK) {
	case DSTS_ENUMSPD_FS:
	case DSTS_ENUMSPD_FS48:
1963 1964
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
1965
		ep_mps = 1023;
1966 1967
		break;

1968
	case DSTS_ENUMSPD_HS:
1969 1970
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
1971
		ep_mps = 1024;
1972 1973
		break;

1974
	case DSTS_ENUMSPD_LS:
1975
		hsotg->gadget.speed = USB_SPEED_LOW;
1976 1977
		/*
		 * note, we don't actually support LS in this driver at the
1978 1979 1980 1981 1982
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
1983 1984
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
1985

1986 1987 1988 1989
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
1990 1991 1992

	if (ep0_mps) {
		int i;
1993 1994 1995 1996 1997 1998 1999 2000 2001
		/* Initialize ep0 for both in and out directions */
		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 1);
		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0);
		for (i = 1; i < hsotg->num_of_eps; i++) {
			if (hsotg->eps_in[i])
				s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 1);
			if (hsotg->eps_out[i])
				s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 0);
		}
2002 2003 2004 2005 2006 2007 2008
	}

	/* ensure after enumeration our EP0 is active */

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2009 2010
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
2022
static void kill_all_requests(struct dwc2_hsotg *hsotg,
2023
			      struct s3c_hsotg_ep *ep,
2024
			      int result)
2025 2026
{
	struct s3c_hsotg_req *req, *treq;
2027
	unsigned size;
2028

2029
	ep->req = NULL;
2030

2031
	list_for_each_entry_safe(req, treq, &ep->queue, queue)
2032 2033
		s3c_hsotg_complete_request(hsotg, ep, req,
					   result);
2034

2035 2036 2037 2038 2039
	if (!hsotg->dedicated_fifos)
		return;
	size = (readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4;
	if (size < ep->fifo_size)
		s3c_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2040 2041 2042
}

/**
2043
 * s3c_hsotg_disconnect - disconnect service
2044 2045
 * @hsotg: The device state.
 *
2046 2047 2048
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
2049
 */
2050
void s3c_hsotg_disconnect(struct dwc2_hsotg *hsotg)
2051 2052 2053
{
	unsigned ep;

2054 2055 2056 2057
	if (!hsotg->connected)
		return;

	hsotg->connected = 0;
2058 2059 2060 2061 2062 2063 2064 2065 2066

	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
			kill_all_requests(hsotg, hsotg->eps_in[ep],
								-ESHUTDOWN);
		if (hsotg->eps_out[ep])
			kill_all_requests(hsotg, hsotg->eps_out[ep],
								-ESHUTDOWN);
	}
2067 2068 2069

	call_gadget(hsotg, disconnect);
}
2070
EXPORT_SYMBOL_GPL(s3c_hsotg_disconnect);
2071 2072 2073 2074 2075 2076

/**
 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
2077
static void s3c_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
2078 2079 2080 2081 2082
{
	struct s3c_hsotg_ep *ep;
	int epno, ret;

	/* look through for any more data to transmit */
2083
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2084 2085 2086 2087
		ep = index_to_ep(hsotg, epno, 1);

		if (!ep)
			continue;
2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

		ret = s3c_hsotg_trytx(hsotg, ep);
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
2103 2104 2105
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
			GINTSTS_PTXFEMP |  \
			GINTSTS_RXFLVL)
2106

2107 2108 2109 2110 2111
/**
 * s3c_hsotg_corereset - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
2112
 */
2113
static int s3c_hsotg_corereset(struct dwc2_hsotg *hsotg)
2114 2115 2116 2117 2118 2119 2120
{
	int timeout;
	u32 grstctl;

	dev_dbg(hsotg->dev, "resetting core\n");

	/* issue soft reset */
2121
	writel(GRSTCTL_CSFTRST, hsotg->regs + GRSTCTL);
2122

2123
	timeout = 10000;
2124
	do {
2125
		grstctl = readl(hsotg->regs + GRSTCTL);
2126
	} while ((grstctl & GRSTCTL_CSFTRST) && timeout-- > 0);
2127

2128
	if (grstctl & GRSTCTL_CSFTRST) {
2129 2130 2131 2132
		dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
		return -EINVAL;
	}

2133
	timeout = 10000;
2134 2135

	while (1) {
2136
		u32 grstctl = readl(hsotg->regs + GRSTCTL);
2137 2138 2139 2140 2141 2142 2143 2144

		if (timeout-- < 0) {
			dev_info(hsotg->dev,
				 "%s: reset failed, GRSTCTL=%08x\n",
				 __func__, grstctl);
			return -ETIMEDOUT;
		}

2145
		if (!(grstctl & GRSTCTL_AHBIDLE))
2146 2147 2148 2149 2150 2151 2152 2153 2154
			continue;

		break;		/* reset done */
	}

	dev_dbg(hsotg->dev, "reset successful\n");
	return 0;
}

2155 2156 2157 2158 2159 2160
/**
 * s3c_hsotg_core_init - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
2161
void s3c_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg)
2162 2163 2164 2165 2166 2167 2168 2169 2170
{
	s3c_hsotg_corereset(hsotg);

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2171
	writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
2172
	       (0x5 << 10), hsotg->regs + GUSBCFG);
2173 2174 2175

	s3c_hsotg_init_fifo(hsotg);

2176
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2177

2178
	writel(1 << 18 | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2179 2180

	/* Clear any pending OTG interrupts */
2181
	writel(0xffffffff, hsotg->regs + GOTGINT);
2182 2183

	/* Clear any pending interrupts */
2184
	writel(0xffffffff, hsotg->regs + GINTSTS);
2185

2186 2187 2188 2189 2190 2191
	writel(GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
		GINTSTS_CONIDSTSCHNG | GINTSTS_USBRST |
		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
		GINTSTS_USBSUSP | GINTSTS_WKUPINT,
		hsotg->regs + GINTMSK);
2192 2193

	if (using_dma(hsotg))
2194
		writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
2195
		       (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
2196
		       hsotg->regs + GAHBCFG);
2197
	else
2198 2199 2200
		writel(((hsotg->dedicated_fifos) ? (GAHBCFG_NP_TXF_EMP_LVL |
						    GAHBCFG_P_TXF_EMP_LVL) : 0) |
		       GAHBCFG_GLBL_INTR_EN,
2201
		       hsotg->regs + GAHBCFG);
2202 2203

	/*
2204 2205 2206
	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
	 * when we have no data to transfer. Otherwise we get being flooded by
	 * interrupts.
2207 2208
	 */

2209 2210
	writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
2211 2212 2213 2214
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		DIEPMSK_INTKNEPMISMSK,
		hsotg->regs + DIEPMSK);
2215 2216 2217 2218 2219

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
	 * DMA mode we may need this.
	 */
2220 2221 2222 2223 2224
	writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
				    DIEPMSK_TIMEOUTMSK) : 0) |
		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
		DOEPMSK_SETUPMSK,
		hsotg->regs + DOEPMSK);
2225

2226
	writel(0, hsotg->regs + DAINTMSK);
2227 2228

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2229 2230
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2231 2232

	/* enable in and out endpoint interrupts */
2233
	s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2234 2235 2236 2237 2238 2239 2240

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
2241
		s3c_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2242 2243 2244 2245 2246

	/* Enable interrupts for EP0 in and out */
	s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);

2247
	__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2248
	udelay(10);  /* see openiboot */
2249
	__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2250

2251
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
2252 2253

	/*
2254
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2255 2256 2257 2258
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
2259 2260
	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2261

2262
	writel(s3c_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2263 2264
	       DXEPCTL_CNAK | DXEPCTL_EPENA |
	       DXEPCTL_USBACTEP,
2265
	       hsotg->regs + DOEPCTL0);
2266 2267

	/* enable, but don't activate EP0in */
2268
	writel(s3c_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2269
	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2270 2271 2272 2273

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2274 2275
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2276 2277

	/* clear global NAKs */
2278
	writel(DCTL_CGOUTNAK | DCTL_CGNPINNAK | DCTL_SFTDISCON,
2279
	       hsotg->regs + DCTL);
2280 2281 2282 2283

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

2284
	hsotg->last_rst = jiffies;
2285 2286
}

2287
static void s3c_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
2288 2289 2290 2291
{
	/* set the soft-disconnect bit */
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
}
2292

2293
void s3c_hsotg_core_connect(struct dwc2_hsotg *hsotg)
2294
{
2295
	/* remove the soft-disconnect and let's go */
2296
	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2297 2298
}

2299 2300 2301 2302 2303 2304 2305
/**
 * s3c_hsotg_irq - handle device interrupt
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
{
2306
	struct dwc2_hsotg *hsotg = pw;
2307 2308 2309 2310
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

2311
	spin_lock(&hsotg->lock);
2312
irq_retry:
2313 2314
	gintsts = readl(hsotg->regs + GINTSTS);
	gintmsk = readl(hsotg->regs + GINTMSK);
2315 2316 2317 2318 2319 2320

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

2321 2322
	if (gintsts & GINTSTS_ENUMDONE) {
		writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2323 2324

		s3c_hsotg_irq_enumdone(hsotg);
2325
		hsotg->connected = 1;
2326 2327
	}

2328
	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2329
		u32 daint = readl(hsotg->regs + DAINT);
2330 2331
		u32 daintmsk = readl(hsotg->regs + DAINTMSK);
		u32 daint_out, daint_in;
2332 2333
		int ep;

2334
		daint &= daintmsk;
2335 2336
		daint_out = daint >> DAINT_OUTEP_SHIFT;
		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2337

2338 2339
		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

2340 2341
		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
						ep++, daint_out >>= 1) {
2342 2343 2344 2345
			if (daint_out & 1)
				s3c_hsotg_epint(hsotg, ep, 0);
		}

2346 2347
		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
						ep++, daint_in >>= 1) {
2348 2349 2350 2351 2352
			if (daint_in & 1)
				s3c_hsotg_epint(hsotg, ep, 1);
		}
	}

2353
	if (gintsts & GINTSTS_USBRST) {
2354

2355
		u32 usb_status = readl(hsotg->regs + GOTGCTL);
2356

2357
		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
2358
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2359
			readl(hsotg->regs + GNPTXSTS));
2360

2361
		writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
2362

2363
		if (usb_status & GOTGCTL_BSESVLD) {
2364 2365
			if (time_after(jiffies, hsotg->last_rst +
				       msecs_to_jiffies(200))) {
2366

2367
				kill_all_requests(hsotg, hsotg->eps_out[0],
2368
							  -ECONNRESET);
2369

2370 2371
				s3c_hsotg_core_init_disconnected(hsotg);
				s3c_hsotg_core_connect(hsotg);
2372 2373
			}
		}
2374 2375 2376 2377
	}

	/* check both FIFOs */

2378
	if (gintsts & GINTSTS_NPTXFEMP) {
2379 2380
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

2381 2382
		/*
		 * Disable the interrupt to stop it happening again
2383
		 * unless one of these endpoint routines decides that
2384 2385
		 * it needs re-enabling
		 */
2386

2387
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
2388 2389 2390
		s3c_hsotg_irq_fifoempty(hsotg, false);
	}

2391
	if (gintsts & GINTSTS_PTXFEMP) {
2392 2393
		dev_dbg(hsotg->dev, "PTxFEmp\n");

2394
		/* See note in GINTSTS_NPTxFEmp */
2395

2396
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
2397 2398 2399
		s3c_hsotg_irq_fifoempty(hsotg, true);
	}

2400
	if (gintsts & GINTSTS_RXFLVL) {
2401 2402
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2403
		 * we need to retry s3c_hsotg_handle_rx if this is still
2404 2405
		 * set.
		 */
2406 2407 2408 2409

		s3c_hsotg_handle_rx(hsotg);
	}

2410
	if (gintsts & GINTSTS_ERLYSUSP) {
2411
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2412
		writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2413 2414
	}

2415 2416
	/*
	 * these next two seem to crop-up occasionally causing the core
2417
	 * to shutdown the USB transfer, so try clearing them and logging
2418 2419
	 * the occurrence.
	 */
2420

2421
	if (gintsts & GINTSTS_GOUTNAKEFF) {
2422 2423
		dev_info(hsotg->dev, "GOUTNakEff triggered\n");

2424
		writel(DCTL_CGOUTNAK, hsotg->regs + DCTL);
2425 2426

		s3c_hsotg_dump(hsotg);
2427 2428
	}

2429
	if (gintsts & GINTSTS_GINNAKEFF) {
2430 2431
		dev_info(hsotg->dev, "GINNakEff triggered\n");

2432
		writel(DCTL_CGNPINNAK, hsotg->regs + DCTL);
2433 2434

		s3c_hsotg_dump(hsotg);
2435 2436
	}

2437 2438 2439 2440
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
2441 2442 2443 2444

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
			goto irq_retry;

2445 2446
	spin_unlock(&hsotg->lock);

2447 2448 2449 2450 2451 2452 2453 2454 2455
	return IRQ_HANDLED;
}

/**
 * s3c_hsotg_ep_enable - enable the given endpoint
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
2456
 */
2457 2458 2459 2460
static int s3c_hsotg_ep_enable(struct usb_ep *ep,
			       const struct usb_endpoint_descriptor *desc)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2461
	struct dwc2_hsotg *hsotg = hs_ep->parent;
2462 2463 2464 2465 2466 2467
	unsigned long flags;
	int index = hs_ep->index;
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
	int dir_in;
2468
	int i, val, size;
2469
	int ret = 0;
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
	WARN_ON(index == 0);

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

2485
	mps = usb_endpoint_maxp(desc);
2486 2487 2488

	/* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */

2489
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2490 2491 2492 2493 2494
	epctrl = readl(hsotg->regs + epctrl_reg);

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

2495
	spin_lock_irqsave(&hsotg->lock, flags);
2496

2497 2498
	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
	epctrl |= DXEPCTL_MPS(mps);
2499

2500 2501 2502 2503
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
2504
	epctrl |= DXEPCTL_USBACTEP;
2505

2506 2507
	/*
	 * set the NAK status on the endpoint, otherwise we might try and
2508 2509 2510 2511 2512
	 * do something with data that we've yet got a request to process
	 * since the RXFIFO will take data for an endpoint even if the
	 * size register hasn't been set.
	 */

2513
	epctrl |= DXEPCTL_SNAK;
2514 2515

	/* update the endpoint state */
2516
	s3c_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, dir_in);
2517 2518

	/* default, set to non-periodic */
2519
	hs_ep->isochronous = 0;
2520
	hs_ep->periodic = 0;
2521
	hs_ep->halted = 0;
2522
	hs_ep->interval = desc->bInterval;
2523

2524 2525 2526
	if (hs_ep->interval > 1 && hs_ep->mc > 1)
		dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");

2527 2528
	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
2529 2530
		epctrl |= DXEPCTL_EPTYPE_ISO;
		epctrl |= DXEPCTL_SETEVENFR;
2531 2532 2533 2534
		hs_ep->isochronous = 1;
		if (dir_in)
			hs_ep->periodic = 1;
		break;
2535 2536

	case USB_ENDPOINT_XFER_BULK:
2537
		epctrl |= DXEPCTL_EPTYPE_BULK;
2538 2539 2540
		break;

	case USB_ENDPOINT_XFER_INT:
2541
		if (dir_in)
2542 2543
			hs_ep->periodic = 1;

2544
		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2545 2546 2547
		break;

	case USB_ENDPOINT_XFER_CONTROL:
2548
		epctrl |= DXEPCTL_EPTYPE_CONTROL;
2549 2550 2551
		break;
	}

2552 2553
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
2554 2555
	 * a unique tx-fifo even if it is non-periodic.
	 */
2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571
	if (dir_in && hsotg->dedicated_fifos) {
		size = hs_ep->ep.maxpacket*hs_ep->mc;
		for (i = 1; i <= 8; ++i) {
			if (hsotg->fifo_map & (1<<i))
				continue;
			val = readl(hsotg->regs + DPTXFSIZN(i));
			val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
			if (val < size)
				continue;
			hsotg->fifo_map |= 1<<i;

			epctrl |= DXEPCTL_TXFNUM(i);
			hs_ep->fifo_index = i;
			hs_ep->fifo_size = val;
			break;
		}
2572 2573 2574 2575
		if (i == 8) {
			ret = -ENOMEM;
			goto error;
		}
2576
	}
2577

2578 2579
	/* for non control endpoints, set PID to D0 */
	if (index)
2580
		epctrl |= DXEPCTL_SETD0PID;
2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

	writel(epctrl, hsotg->regs + epctrl_reg);
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
		__func__, readl(hsotg->regs + epctrl_reg));

	/* enable the endpoint interrupt */
	s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);

2592
error:
2593
	spin_unlock_irqrestore(&hsotg->lock, flags);
2594
	return ret;
2595 2596
}

2597 2598 2599 2600
/**
 * s3c_hsotg_ep_disable - disable given endpoint
 * @ep: The endpoint to disable.
 */
2601 2602 2603
static int s3c_hsotg_ep_disable(struct usb_ep *ep)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2604
	struct dwc2_hsotg *hsotg = hs_ep->parent;
2605 2606 2607 2608 2609 2610
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

2611
	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2612

2613
	if (ep == &hsotg->eps_out[0]->ep) {
2614 2615 2616 2617
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

2618
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2619

2620
	spin_lock_irqsave(&hsotg->lock, flags);
2621
	/* terminate all requests with shutdown */
2622
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
2623

2624 2625 2626
	hsotg->fifo_map &= ~(1<<hs_ep->fifo_index);
	hs_ep->fifo_index = 0;
	hs_ep->fifo_size = 0;
2627 2628

	ctrl = readl(hsotg->regs + epctrl_reg);
2629 2630 2631
	ctrl &= ~DXEPCTL_EPENA;
	ctrl &= ~DXEPCTL_USBACTEP;
	ctrl |= DXEPCTL_SNAK;
2632 2633 2634 2635 2636 2637 2638

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

	/* disable endpoint interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);

2639
	spin_unlock_irqrestore(&hsotg->lock, flags);
2640 2641 2642 2643 2644 2645 2646
	return 0;
}

/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
2647
 */
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659
static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
{
	struct s3c_hsotg_req *req, *treq;

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

2660 2661 2662 2663 2664
/**
 * s3c_hsotg_ep_dequeue - dequeue given endpoint
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
2665 2666 2667 2668
static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2669
	struct dwc2_hsotg *hs = hs_ep->parent;
2670 2671
	unsigned long flags;

2672
	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2673

2674
	spin_lock_irqsave(&hs->lock, flags);
2675 2676

	if (!on_list(hs_ep, hs_req)) {
2677
		spin_unlock_irqrestore(&hs->lock, flags);
2678 2679 2680 2681
		return -EINVAL;
	}

	s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2682
	spin_unlock_irqrestore(&hs->lock, flags);
2683 2684 2685 2686

	return 0;
}

2687 2688 2689 2690 2691
/**
 * s3c_hsotg_ep_sethalt - set halt on a given endpoint
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
2692 2693 2694
static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2695
	struct dwc2_hsotg *hs = hs_ep->parent;
2696 2697 2698
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
2699
	u32 xfertype;
2700 2701 2702

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

2703 2704 2705 2706 2707 2708 2709 2710 2711
	if (index == 0) {
		if (value)
			s3c_hsotg_stall_ep0(hs);
		else
			dev_warn(hs->dev,
				 "%s: can't clear halt on ep0\n", __func__);
		return 0;
	}

2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
	if (hs_ep->dir_in) {
		epreg = DIEPCTL(index);
		epctl = readl(hs->regs + epreg);

		if (value) {
			epctl |= DXEPCTL_STALL + DXEPCTL_SNAK;
			if (epctl & DXEPCTL_EPENA)
				epctl |= DXEPCTL_EPDIS;
		} else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
		writel(epctl, hs->regs + epreg);
2728
	} else {
2729

2730 2731
		epreg = DOEPCTL(index);
		epctl = readl(hs->regs + epreg);
2732

2733 2734 2735 2736 2737 2738 2739 2740 2741 2742
		if (value)
			epctl |= DXEPCTL_STALL;
		else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
		writel(epctl, hs->regs + epreg);
2743
	}
2744

2745 2746
	hs_ep->halted = value;

2747 2748 2749
	return 0;
}

2750 2751 2752 2753 2754 2755 2756 2757
/**
 * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2758
	struct dwc2_hsotg *hs = hs_ep->parent;
2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_sethalt(ep, value);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

2769 2770 2771 2772 2773
static struct usb_ep_ops s3c_hsotg_ep_ops = {
	.enable		= s3c_hsotg_ep_enable,
	.disable	= s3c_hsotg_ep_disable,
	.alloc_request	= s3c_hsotg_ep_alloc_request,
	.free_request	= s3c_hsotg_ep_free_request,
2774
	.queue		= s3c_hsotg_ep_queue_lock,
2775
	.dequeue	= s3c_hsotg_ep_dequeue,
2776
	.set_halt	= s3c_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
2777
	/* note, don't believe we have any call for the fifo routines */
2778 2779
};

2780 2781
/**
 * s3c_hsotg_phy_enable - enable platform phy dev
2782
 * @hsotg: The driver state
2783 2784 2785 2786
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
2787
static void s3c_hsotg_phy_enable(struct dwc2_hsotg *hsotg)
2788 2789 2790 2791
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

	dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
2792

2793
	if (hsotg->uphy)
2794
		usb_phy_init(hsotg->uphy);
2795
	else if (hsotg->plat && hsotg->plat->phy_init)
2796
		hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
2797 2798 2799 2800
	else {
		phy_init(hsotg->phy);
		phy_power_on(hsotg->phy);
	}
2801 2802 2803 2804
}

/**
 * s3c_hsotg_phy_disable - disable platform phy dev
2805
 * @hsotg: The driver state
2806 2807 2808 2809
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
2810
static void s3c_hsotg_phy_disable(struct dwc2_hsotg *hsotg)
2811 2812 2813
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

2814
	if (hsotg->uphy)
2815
		usb_phy_shutdown(hsotg->uphy);
2816
	else if (hsotg->plat && hsotg->plat->phy_exit)
2817
		hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
2818 2819 2820 2821
	else {
		phy_power_off(hsotg->phy);
		phy_exit(hsotg->phy);
	}
2822 2823
}

2824 2825 2826 2827
/**
 * s3c_hsotg_init - initalize the usb core
 * @hsotg: The driver state
 */
2828
static void s3c_hsotg_init(struct dwc2_hsotg *hsotg)
2829 2830 2831
{
	/* unmask subset of endpoint interrupts */

2832 2833 2834
	writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
		hsotg->regs + DIEPMSK);
2835

2836 2837 2838
	writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
		DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
		hsotg->regs + DOEPMSK);
2839

2840
	writel(0, hsotg->regs + DAINTMSK);
2841 2842

	/* Be in disconnected state until gadget is registered */
2843
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2844 2845 2846

	if (0) {
		/* post global nak until we're ready */
2847
		writel(DCTL_SGNPINNAK | DCTL_SGOUTNAK,
2848
		       hsotg->regs + DCTL);
2849 2850 2851 2852 2853
	}

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2854 2855
		readl(hsotg->regs + GRXFSIZ),
		readl(hsotg->regs + GNPTXFSIZ));
2856 2857 2858 2859

	s3c_hsotg_init_fifo(hsotg);

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2860
	writel(GUSBCFG_PHYIF16 | GUSBCFG_TOUTCAL(7) | (0x5 << 10),
2861
	       hsotg->regs + GUSBCFG);
2862

2863 2864
	if (using_dma(hsotg))
		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
2865 2866
}

2867 2868 2869 2870 2871 2872 2873 2874
/**
 * s3c_hsotg_udc_start - prepare the udc for work
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
2875 2876
static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
			   struct usb_gadget_driver *driver)
2877
{
2878
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
2879
	unsigned long flags;
2880 2881 2882
	int ret;

	if (!hsotg) {
2883
		pr_err("%s: called with no device\n", __func__);
2884 2885 2886 2887 2888 2889 2890 2891
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

2892
	if (driver->max_speed < USB_SPEED_FULL)
2893 2894
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

2895
	if (!driver->setup) {
2896 2897 2898 2899
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

2900
	mutex_lock(&hsotg->init_mutex);
2901 2902 2903 2904
	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
2905
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
2906 2907
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

2908 2909
	clk_enable(hsotg->clk);

2910 2911
	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
2912
	if (ret) {
2913
		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
2914 2915 2916
		goto err;
	}

2917
	s3c_hsotg_phy_enable(hsotg);
2918 2919
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
2920

2921 2922 2923
	spin_lock_irqsave(&hsotg->lock, flags);
	s3c_hsotg_init(hsotg);
	s3c_hsotg_core_init_disconnected(hsotg);
2924
	hsotg->enabled = 0;
2925 2926
	spin_unlock_irqrestore(&hsotg->lock, flags);

2927
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
2928

2929 2930
	mutex_unlock(&hsotg->init_mutex);

2931 2932 2933
	return 0;

err:
2934
	mutex_unlock(&hsotg->init_mutex);
2935 2936 2937 2938
	hsotg->driver = NULL;
	return ret;
}

2939 2940 2941 2942 2943 2944 2945
/**
 * s3c_hsotg_udc_stop - stop the udc
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
2946
static int s3c_hsotg_udc_stop(struct usb_gadget *gadget)
2947
{
2948
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
2949
	unsigned long flags = 0;
2950 2951 2952 2953 2954
	int ep;

	if (!hsotg)
		return -ENODEV;

2955 2956
	mutex_lock(&hsotg->init_mutex);

2957
	/* all endpoints should be shutdown */
2958 2959 2960 2961 2962 2963
	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
			s3c_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
		if (hsotg->eps_out[ep])
			s3c_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
	}
2964

2965 2966
	spin_lock_irqsave(&hsotg->lock, flags);

2967
	hsotg->driver = NULL;
2968
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2969
	hsotg->enabled = 0;
2970

2971 2972
	spin_unlock_irqrestore(&hsotg->lock, flags);

2973 2974
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, NULL);
2975 2976
	s3c_hsotg_phy_disable(hsotg);

2977
	regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
2978

2979 2980
	clk_disable(hsotg->clk);

2981 2982
	mutex_unlock(&hsotg->init_mutex);

2983 2984 2985
	return 0;
}

2986 2987 2988 2989 2990 2991
/**
 * s3c_hsotg_gadget_getframe - read the frame number
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
2992 2993 2994 2995 2996
static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
{
	return s3c_hsotg_read_frameno(to_hsotg(gadget));
}

2997 2998 2999 3000 3001 3002 3003 3004 3005
/**
 * s3c_hsotg_pullup - connect/disconnect the USB PHY
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
{
3006
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3007 3008
	unsigned long flags = 0;

3009
	dev_dbg(hsotg->dev, "%s: is_on: %d\n", __func__, is_on);
3010

3011
	mutex_lock(&hsotg->init_mutex);
3012 3013
	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
3014
		clk_enable(hsotg->clk);
3015
		hsotg->enabled = 1;
3016
		s3c_hsotg_core_connect(hsotg);
3017
	} else {
3018
		s3c_hsotg_core_disconnect(hsotg);
3019
		hsotg->enabled = 0;
3020
		clk_disable(hsotg->clk);
3021 3022 3023 3024
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);
3025
	mutex_unlock(&hsotg->init_mutex);
3026 3027 3028 3029

	return 0;
}

3030
static const struct usb_gadget_ops s3c_hsotg_gadget_ops = {
3031
	.get_frame	= s3c_hsotg_gadget_getframe,
3032 3033
	.udc_start		= s3c_hsotg_udc_start,
	.udc_stop		= s3c_hsotg_udc_stop,
3034
	.pullup                 = s3c_hsotg_pullup,
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046
};

/**
 * s3c_hsotg_initep - initialise a single endpoint
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
3047
static void s3c_hsotg_initep(struct dwc2_hsotg *hsotg,
3048
				       struct s3c_hsotg_ep *hs_ep,
3049 3050
				       int epnum,
				       bool dir_in)
3051 3052 3053 3054 3055
{
	char *dir;

	if (epnum == 0)
		dir = "";
3056
	else if (dir_in)
3057
		dir = "in";
3058 3059
	else
		dir = "out";
3060

3061
	hs_ep->dir_in = dir_in;
3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
3075
	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3076 3077
	hs_ep->ep.ops = &s3c_hsotg_ep_ops;

3078 3079
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
3080 3081 3082 3083
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
3084
		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3085 3086 3087 3088
		if (dir_in)
			writel(next, hsotg->regs + DIEPCTL(epnum));
		else
			writel(next, hsotg->regs + DOEPCTL(epnum));
3089 3090 3091
	}
}

3092 3093 3094 3095 3096 3097
/**
 * s3c_hsotg_hw_cfg - read HW configuration registers
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
3098
static int s3c_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
3099
{
3100 3101 3102 3103
	u32 cfg;
	u32 ep_type;
	u32 i;

3104
	/* check hardware configuration */
3105

3106 3107 3108 3109
	cfg = readl(hsotg->regs + GHWCFG2);
	hsotg->num_of_eps = (cfg >> 10) & 0xF;
	/* Add ep0 */
	hsotg->num_of_eps++;
3110

3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct s3c_hsotg_ep),
								GFP_KERNEL);
	if (!hsotg->eps_in[0])
		return -ENOMEM;
	/* Same s3c_hsotg_ep is used in both directions for ep0 */
	hsotg->eps_out[0] = hsotg->eps_in[0];

	cfg = readl(hsotg->regs + GHWCFG1);
	for (i = 1; i < hsotg->num_of_eps; i++, cfg >>= 2) {
		ep_type = cfg & 3;
		/* Direction in or both */
		if (!(ep_type & 2)) {
			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
				sizeof(struct s3c_hsotg_ep), GFP_KERNEL);
			if (!hsotg->eps_in[i])
				return -ENOMEM;
		}
		/* Direction out or both */
		if (!(ep_type & 1)) {
			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
				sizeof(struct s3c_hsotg_ep), GFP_KERNEL);
			if (!hsotg->eps_out[i])
				return -ENOMEM;
		}
	}

	cfg = readl(hsotg->regs + GHWCFG3);
	hsotg->fifo_mem = (cfg >> 16);
3139

3140 3141
	cfg = readl(hsotg->regs + GHWCFG4);
	hsotg->dedicated_fifos = (cfg >> 25) & 1;
3142

3143 3144 3145 3146
	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
		 hsotg->num_of_eps,
		 hsotg->dedicated_fifos ? "dedicated" : "shared",
		 hsotg->fifo_mem);
3147
	return 0;
3148 3149
}

3150 3151 3152 3153
/**
 * s3c_hsotg_dump - dump state of the udc
 * @param: The device state
 */
3154
static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg)
3155
{
M
Mark Brown 已提交
3156
#ifdef DEBUG
3157 3158 3159 3160 3161 3162
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3163 3164
		 readl(regs + DCFG), readl(regs + DCTL),
		 readl(regs + DIEPMSK));
3165 3166

	dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
3167
		 readl(regs + GAHBCFG), readl(regs + 0x44));
3168 3169

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3170
		 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
3171 3172 3173 3174

	/* show periodic fifo settings */

	for (idx = 1; idx <= 15; idx++) {
3175
		val = readl(regs + DPTXFSIZN(idx));
3176
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3177 3178
			 val >> FIFOSIZE_DEPTH_SHIFT,
			 val & FIFOSIZE_STARTADDR_MASK);
3179 3180 3181 3182 3183
	}

	for (idx = 0; idx < 15; idx++) {
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3184 3185 3186
			 readl(regs + DIEPCTL(idx)),
			 readl(regs + DIEPTSIZ(idx)),
			 readl(regs + DIEPDMA(idx)));
3187

3188
		val = readl(regs + DOEPCTL(idx));
3189 3190
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3191 3192 3193
			 idx, readl(regs + DOEPCTL(idx)),
			 readl(regs + DOEPTSIZ(idx)),
			 readl(regs + DOEPDMA(idx)));
3194 3195 3196 3197

	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3198
		 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
3199
#endif
3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212
}

/**
 * state_show - debugfs: show overall driver and device state.
 * @seq: The seq file to write to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the overall state of the hardware and
 * some general information about each of the endpoints available
 * to the system.
 */
static int state_show(struct seq_file *seq, void *v)
{
3213
	struct dwc2_hsotg *hsotg = seq->private;
3214 3215 3216 3217
	void __iomem *regs = hsotg->regs;
	int idx;

	seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3218 3219 3220
		 readl(regs + DCFG),
		 readl(regs + DCTL),
		 readl(regs + DSTS));
3221 3222

	seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3223
		   readl(regs + DIEPMSK), readl(regs + DOEPMSK));
3224 3225

	seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3226 3227
		   readl(regs + GINTMSK),
		   readl(regs + GINTSTS));
3228 3229

	seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3230 3231
		   readl(regs + DAINTMSK),
		   readl(regs + DAINT));
3232 3233

	seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3234 3235
		   readl(regs + GNPTXSTS),
		   readl(regs + GRXSTSR));
3236

3237
	seq_puts(seq, "\nEndpoint status:\n");
3238 3239 3240 3241

	for (idx = 0; idx < 15; idx++) {
		u32 in, out;

3242 3243
		in = readl(regs + DIEPCTL(idx));
		out = readl(regs + DOEPCTL(idx));
3244 3245 3246 3247

		seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
			   idx, in, out);

3248 3249
		in = readl(regs + DIEPTSIZ(idx));
		out = readl(regs + DOEPTSIZ(idx));
3250 3251 3252 3253

		seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
			   in, out);

3254
		seq_puts(seq, "\n");
3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
	}

	return 0;
}

static int state_open(struct inode *inode, struct file *file)
{
	return single_open(file, state_show, inode->i_private);
}

static const struct file_operations state_fops = {
	.owner		= THIS_MODULE,
	.open		= state_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * fifo_show - debugfs: show the fifo information
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * Show the FIFO information for the overall fifo and all the
 * periodic transmission FIFOs.
3280
 */
3281 3282
static int fifo_show(struct seq_file *seq, void *v)
{
3283
	struct dwc2_hsotg *hsotg = seq->private;
3284 3285 3286 3287
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

3288
	seq_puts(seq, "Non-periodic FIFOs:\n");
3289
	seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ));
3290

3291
	val = readl(regs + GNPTXFSIZ);
3292
	seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3293 3294
		   val >> FIFOSIZE_DEPTH_SHIFT,
		   val & FIFOSIZE_DEPTH_MASK);
3295

3296
	seq_puts(seq, "\nPeriodic TXFIFOs:\n");
3297 3298

	for (idx = 1; idx <= 15; idx++) {
3299
		val = readl(regs + DPTXFSIZN(idx));
3300 3301

		seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3302 3303
			   val >> FIFOSIZE_DEPTH_SHIFT,
			   val & FIFOSIZE_STARTADDR_MASK);
3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334
	}

	return 0;
}

static int fifo_open(struct inode *inode, struct file *file)
{
	return single_open(file, fifo_show, inode->i_private);
}

static const struct file_operations fifo_fops = {
	.owner		= THIS_MODULE,
	.open		= fifo_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};


static const char *decode_direction(int is_in)
{
	return is_in ? "in" : "out";
}

/**
 * ep_show - debugfs: show the state of an endpoint.
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the state of the given endpoint (one is
 * registered for each available).
3335
 */
3336 3337 3338
static int ep_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg_ep *ep = seq->private;
3339
	struct dwc2_hsotg *hsotg = ep->parent;
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351
	struct s3c_hsotg_req *req;
	void __iomem *regs = hsotg->regs;
	int index = ep->index;
	int show_limit = 15;
	unsigned long flags;

	seq_printf(seq, "Endpoint index %d, named %s,  dir %s:\n",
		   ep->index, ep->ep.name, decode_direction(ep->dir_in));

	/* first show the register state */

	seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3352 3353
		   readl(regs + DIEPCTL(index)),
		   readl(regs + DOEPCTL(index)));
3354 3355

	seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3356 3357
		   readl(regs + DIEPDMA(index)),
		   readl(regs + DOEPDMA(index)));
3358 3359

	seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3360 3361
		   readl(regs + DIEPINT(index)),
		   readl(regs + DOEPINT(index)));
3362 3363

	seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3364 3365
		   readl(regs + DIEPTSIZ(index)),
		   readl(regs + DOEPTSIZ(index)));
3366

3367
	seq_puts(seq, "\n");
3368 3369 3370 3371 3372 3373
	seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
	seq_printf(seq, "total_data=%ld\n", ep->total_data);

	seq_printf(seq, "request list (%p,%p):\n",
		   ep->queue.next, ep->queue.prev);

3374
	spin_lock_irqsave(&hsotg->lock, flags);
3375 3376 3377

	list_for_each_entry(req, &ep->queue, queue) {
		if (--show_limit < 0) {
3378
			seq_puts(seq, "not showing more requests...\n");
3379 3380 3381 3382 3383 3384 3385 3386 3387 3388
			break;
		}

		seq_printf(seq, "%c req %p: %d bytes @%p, ",
			   req == ep->req ? '*' : ' ',
			   req, req->req.length, req->req.buf);
		seq_printf(seq, "%d done, res %d\n",
			   req->req.actual, req->req.status);
	}

3389
	spin_unlock_irqrestore(&hsotg->lock, flags);
3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414

	return 0;
}

static int ep_open(struct inode *inode, struct file *file)
{
	return single_open(file, ep_show, inode->i_private);
}

static const struct file_operations ep_fops = {
	.owner		= THIS_MODULE,
	.open		= ep_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * s3c_hsotg_create_debug - create debugfs directory and files
 * @hsotg: The driver state
 *
 * Create the debugfs files to allow the user to get information
 * about the state of the system. The directory name is created
 * with the same name as the device itself, in case we end up
 * with multiple blocks in future systems.
3415
 */
3416
static void s3c_hsotg_create_debug(struct dwc2_hsotg *hsotg)
3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441
{
	struct dentry *root;
	unsigned epidx;

	root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
	hsotg->debug_root = root;
	if (IS_ERR(root)) {
		dev_err(hsotg->dev, "cannot create debug root\n");
		return;
	}

	/* create general state file */

	hsotg->debug_file = debugfs_create_file("state", 0444, root,
						hsotg, &state_fops);

	if (IS_ERR(hsotg->debug_file))
		dev_err(hsotg->dev, "%s: failed to create state\n", __func__);

	hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
						hsotg, &fifo_fops);

	if (IS_ERR(hsotg->debug_fifo))
		dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);

3442
	/* Create one file for each out endpoint */
3443
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3444
		struct s3c_hsotg_ep *ep;
3445

3446 3447 3448 3449
		ep = hsotg->eps_out[epidx];
		if (ep) {
			ep->debugfs = debugfs_create_file(ep->name, 0444,
							  root, ep, &ep_fops);
3450

3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468
			if (IS_ERR(ep->debugfs))
				dev_err(hsotg->dev, "failed to create %s debug file\n",
					ep->name);
		}
	}
	/* Create one file for each in endpoint. EP0 is handled with out eps */
	for (epidx = 1; epidx < hsotg->num_of_eps; epidx++) {
		struct s3c_hsotg_ep *ep;

		ep = hsotg->eps_in[epidx];
		if (ep) {
			ep->debugfs = debugfs_create_file(ep->name, 0444,
							  root, ep, &ep_fops);

			if (IS_ERR(ep->debugfs))
				dev_err(hsotg->dev, "failed to create %s debug file\n",
					ep->name);
		}
3469 3470 3471 3472 3473 3474 3475 3476
	}
}

/**
 * s3c_hsotg_delete_debug - cleanup debugfs entries
 * @hsotg: The driver state
 *
 * Cleanup (remove) the debugfs files for use on module exit.
3477
 */
3478
static void s3c_hsotg_delete_debug(struct dwc2_hsotg *hsotg)
3479 3480 3481
{
	unsigned epidx;

3482
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3483 3484 3485 3486
		if (hsotg->eps_in[epidx])
			debugfs_remove(hsotg->eps_in[epidx]->debugfs);
		if (hsotg->eps_out[epidx])
			debugfs_remove(hsotg->eps_out[epidx]->debugfs);
3487 3488 3489 3490 3491 3492 3493
	}

	debugfs_remove(hsotg->debug_file);
	debugfs_remove(hsotg->debug_fifo);
	debugfs_remove(hsotg->debug_root);
}

3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505
#ifdef CONFIG_OF
static void s3c_hsotg_of_probe(struct dwc2_hsotg *hsotg)
{
	struct device_node *np = hsotg->dev->of_node;

	/* Enable dma if requested in device tree */
	hsotg->g_using_dma = of_property_read_bool(np, "g-use-dma");
}
#else
static inline void s3c_hsotg_of_probe(struct dwc2_hsotg *hsotg) { }
#endif

3506
/**
3507 3508 3509
 * dwc2_gadget_init - init function for gadget
 * @dwc2: The data structure for the DWC2 driver.
 * @irq: The IRQ number for the controller.
3510
 */
3511
int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
3512
{
3513 3514
	struct device *dev = hsotg->dev;
	struct s3c_hsotg_plat *plat = dev->platform_data;
3515 3516
	int epnum;
	int ret;
3517
	int i;
3518

3519 3520 3521
	/* Set default UTMI width */
	hsotg->phyif = GUSBCFG_PHYIF16;

3522 3523
	s3c_hsotg_of_probe(hsotg);

3524
	/*
3525 3526
	 * If platform probe couldn't find a generic PHY or an old style
	 * USB PHY, fall back to pdata
3527
	 */
3528 3529 3530 3531 3532 3533 3534 3535 3536
	if (IS_ERR_OR_NULL(hsotg->phy) && IS_ERR_OR_NULL(hsotg->uphy)) {
		plat = dev_get_platdata(dev);
		if (!plat) {
			dev_err(dev,
			"no platform data or transceiver defined\n");
			return -EPROBE_DEFER;
		}
		hsotg->plat = plat;
	} else if (hsotg->phy) {
3537 3538 3539 3540
		/*
		 * If using the generic PHY framework, check if the PHY bus
		 * width is 8-bit and set the phyif appropriately.
		 */
3541
		if (phy_get_bus_width(hsotg->phy) == 8)
3542 3543
			hsotg->phyif = GUSBCFG_PHYIF8;
	}
3544

3545
	hsotg->clk = devm_clk_get(dev, "otg");
3546
	if (IS_ERR(hsotg->clk)) {
3547
		hsotg->clk = NULL;
3548
		dev_dbg(dev, "cannot get otg clock\n");
3549 3550
	}

3551
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3552 3553 3554 3555 3556
	hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
	hsotg->gadget.name = dev_name(dev);

	/* reset the system */

3557 3558 3559 3560 3561 3562
	ret = clk_prepare_enable(hsotg->clk);
	if (ret) {
		dev_err(dev, "failed to enable otg clk\n");
		goto err_clk;
	}

3563

3564 3565 3566 3567 3568
	/* regulators */

	for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
		hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];

3569
	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3570 3571 3572
				 hsotg->supplies);
	if (ret) {
		dev_err(dev, "failed to request supplies: %d\n", ret);
3573
		goto err_clk;
3574 3575 3576 3577 3578 3579
	}

	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);

	if (ret) {
3580
		dev_err(dev, "failed to enable supplies: %d\n", ret);
3581
		goto err_clk;
3582 3583
	}

3584 3585
	/* usb phy enable */
	s3c_hsotg_phy_enable(hsotg);
3586 3587

	s3c_hsotg_corereset(hsotg);
3588 3589 3590 3591 3592 3593
	ret = s3c_hsotg_hw_cfg(hsotg);
	if (ret) {
		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
		goto err_clk;
	}

3594
	s3c_hsotg_init(hsotg);
3595

3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611
	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
	if (!hsotg->ctrl_buff) {
		dev_err(dev, "failed to allocate ctrl request buff\n");
		ret = -ENOMEM;
		goto err_supplies;
	}

	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
	if (!hsotg->ep0_buff) {
		dev_err(dev, "failed to allocate ctrl reply buff\n");
		ret = -ENOMEM;
		goto err_supplies;
	}

3612 3613
	ret = devm_request_irq(hsotg->dev, irq, s3c_hsotg_irq, IRQF_SHARED,
				dev_name(hsotg->dev), hsotg);
3614 3615 3616 3617 3618
	if (ret < 0) {
		s3c_hsotg_phy_disable(hsotg);
		clk_disable_unprepare(hsotg->clk);
		regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
				       hsotg->supplies);
3619
		dev_err(dev, "cannot claim IRQ for gadget\n");
3620
		goto err_supplies;
3621 3622
	}

3623 3624 3625 3626
	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
3627
		ret = -EINVAL;
3628 3629 3630 3631 3632 3633
		goto err_supplies;
	}

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3634
	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
3635 3636 3637

	/* allocate EP0 request */

3638
	hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
3639 3640 3641
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
3642
		ret = -ENOMEM;
3643
		goto err_supplies;
3644
	}
3645 3646

	/* initialise the endpoints now the core has been initialised */
3647 3648 3649 3650 3651 3652 3653 3654
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
		if (hsotg->eps_in[epnum])
			s3c_hsotg_initep(hsotg, hsotg->eps_in[epnum],
								epnum, 1);
		if (hsotg->eps_out[epnum])
			s3c_hsotg_initep(hsotg, hsotg->eps_out[epnum],
								epnum, 0);
	}
3655

3656
	/* disable power and clock */
3657
	s3c_hsotg_phy_disable(hsotg);
3658 3659 3660 3661

	ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
	if (ret) {
3662
		dev_err(dev, "failed to disable supplies: %d\n", ret);
3663
		goto err_supplies;
3664 3665
	}

3666
	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
3667
	if (ret)
3668
		goto err_supplies;
3669

3670 3671 3672 3673 3674 3675
	s3c_hsotg_create_debug(hsotg);

	s3c_hsotg_dump(hsotg);

	return 0;

3676
err_supplies:
3677
	s3c_hsotg_phy_disable(hsotg);
3678
err_clk:
3679
	clk_disable_unprepare(hsotg->clk);
3680

3681 3682
	return ret;
}
3683
EXPORT_SYMBOL_GPL(dwc2_gadget_init);
3684

3685 3686 3687 3688
/**
 * s3c_hsotg_remove - remove function for hsotg driver
 * @pdev: The platform information for the driver
 */
3689
int s3c_hsotg_remove(struct dwc2_hsotg *hsotg)
3690
{
3691
	usb_del_gadget_udc(&hsotg->gadget);
3692
	s3c_hsotg_delete_debug(hsotg);
3693
	clk_disable_unprepare(hsotg->clk);
3694

3695 3696
	return 0;
}
3697
EXPORT_SYMBOL_GPL(s3c_hsotg_remove);
3698

3699
int s3c_hsotg_suspend(struct dwc2_hsotg *hsotg)
3700 3701 3702 3703
{
	unsigned long flags;
	int ret = 0;

3704 3705
	mutex_lock(&hsotg->init_mutex);

3706 3707 3708
	if (hsotg->driver) {
		int ep;

3709 3710 3711
		dev_info(hsotg->dev, "suspending usb gadget %s\n",
			 hsotg->driver->driver.name);

3712 3713 3714 3715 3716 3717
		spin_lock_irqsave(&hsotg->lock, flags);
		if (hsotg->enabled)
			s3c_hsotg_core_disconnect(hsotg);
		s3c_hsotg_disconnect(hsotg);
		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
		spin_unlock_irqrestore(&hsotg->lock, flags);
3718

3719
		s3c_hsotg_phy_disable(hsotg);
3720

3721 3722 3723 3724 3725 3726
		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
			if (hsotg->eps_in[ep])
				s3c_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
			if (hsotg->eps_out[ep])
				s3c_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
		}
3727 3728 3729

		ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
					     hsotg->supplies);
3730
		clk_disable(hsotg->clk);
3731 3732
	}

3733 3734
	mutex_unlock(&hsotg->init_mutex);

3735 3736
	return ret;
}
3737
EXPORT_SYMBOL_GPL(s3c_hsotg_suspend);
3738

3739
int s3c_hsotg_resume(struct dwc2_hsotg *hsotg)
3740 3741 3742 3743
{
	unsigned long flags;
	int ret = 0;

3744 3745
	mutex_lock(&hsotg->init_mutex);

3746 3747 3748
	if (hsotg->driver) {
		dev_info(hsotg->dev, "resuming usb gadget %s\n",
			 hsotg->driver->driver.name);
3749 3750

		clk_enable(hsotg->clk);
3751
		ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3752
					    hsotg->supplies);
3753

3754
		s3c_hsotg_phy_enable(hsotg);
3755

3756 3757 3758 3759 3760 3761
		spin_lock_irqsave(&hsotg->lock, flags);
		s3c_hsotg_core_init_disconnected(hsotg);
		if (hsotg->enabled)
			s3c_hsotg_core_connect(hsotg);
		spin_unlock_irqrestore(&hsotg->lock, flags);
	}
3762
	mutex_unlock(&hsotg->init_mutex);
3763 3764 3765

	return ret;
}
3766
EXPORT_SYMBOL_GPL(s3c_hsotg_resume);