gadget.c 105.6 KB
Newer Older
1
/**
2 3
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
4 5 6 7 8 9 10 11 12 13 14
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
15
 */
16 17 18 19 20 21 22

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
23
#include <linux/mutex.h>
24 25 26
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
27
#include <linux/slab.h>
28
#include <linux/of_platform.h>
29 30 31

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
32
#include <linux/usb/phy.h>
33

34
#include "core.h"
35
#include "hw.h"
36 37

/* conversion functions */
38
static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
39
{
40
	return container_of(req, struct dwc2_hsotg_req, req);
41 42
}

43
static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
44
{
45
	return container_of(ep, struct dwc2_hsotg_ep, ep);
46 47
}

48
static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
49
{
50
	return container_of(gadget, struct dwc2_hsotg, gadget);
51 52 53 54
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
55
	dwc2_writel(dwc2_readl(ptr) | val, ptr);
56 57 58 59
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
60
	dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
61 62
}

63
static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
64 65 66 67 68 69 70 71
						u32 ep_index, u32 dir_in)
{
	if (dir_in)
		return hsotg->eps_in[ep_index];
	else
		return hsotg->eps_out[ep_index];
}

72
/* forward declaration of functions */
73
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
92
 * g_using_dma is set depending on dts flag.
93
 */
94
static inline bool using_dma(struct dwc2_hsotg *hsotg)
95
{
96
	return hsotg->params.g_dma;
97 98
}

99 100 101 102 103 104 105 106 107 108 109
/*
 * using_desc_dma - return the descriptor DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using descriptor DMA.
 */
static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
{
	return hsotg->params.g_dma_desc;
}

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
/**
 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
 * @hs_ep: The endpoint
 * @increment: The value to increment by
 *
 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
 */
static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
{
	hs_ep->target_frame += hs_ep->interval;
	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
		hs_ep->frame_overrun = 1;
		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
	} else {
		hs_ep->frame_overrun = 0;
	}
}

129
/**
130
 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
131 132 133
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
134
static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
135
{
136
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
137 138 139 140 141 142
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
143
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
144 145 146 147
	}
}

/**
148
 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
149 150 151
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
152
static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
153
{
154
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
155 156 157 158 159
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
160
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
161 162 163
}

/**
164
 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
165 166 167 168 169 170 171 172
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
173
static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
174 175 176 177 178 179 180 181 182 183 184
				 unsigned int ep, unsigned int dir_in,
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
185
	daint = dwc2_readl(hsotg->regs + DAINTMSK);
186 187 188 189
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
190
	dwc2_writel(daint, hsotg->regs + DAINTMSK);
191 192 193 194
	local_irq_restore(flags);
}

/**
195
 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
196 197
 * @hsotg: The device instance.
 */
198
static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
199
{
200
	unsigned int ep;
201
	unsigned int addr;
202
	int timeout;
203
	u32 val;
204
	u32 *txfsz = hsotg->params.g_tx_fifo_size;
205

206 207 208 209
	/* Reset fifo map if not correctly cleared during previous session */
	WARN_ON(hsotg->fifo_map);
	hsotg->fifo_map = 0;

210
	/* set RX/NPTX FIFO sizes */
211 212 213 214
	dwc2_writel(hsotg->params.g_rx_fifo_size, hsotg->regs + GRXFSIZ);
	dwc2_writel((hsotg->params.g_rx_fifo_size << FIFOSIZE_STARTADDR_SHIFT) |
		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
		    hsotg->regs + GNPTXFSIZ);
215

216 217
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
218 219
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
220 221
	 * known values.
	 */
222 223

	/* start at the end of the GNPTXFSIZ, rounded up */
224
	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
225

226
	/*
227
	 * Configure fifos sizes from provided configuration and assign
228 229
	 * them to endpoints dynamically according to maxpacket size value of
	 * given endpoint.
230
	 */
231
	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
232
		if (!txfsz[ep])
233 234
			continue;
		val = addr;
235 236
		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
237
			  "insufficient fifo memory");
238
		addr += txfsz[ep];
239

240
		dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
241
		val = dwc2_readl(hsotg->regs + DPTXFSIZN(ep));
242
	}
243

244 245 246 247
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
248

249
	dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
250
	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
251 252 253 254

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
255
		val = dwc2_readl(hsotg->regs + GRSTCTL);
256

257
		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
258 259 260 261 262 263
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
264
			break;
265 266 267 268 269 270
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
271 272 273 274 275 276 277 278
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
279
static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
280
						      gfp_t flags)
281
{
282
	struct dwc2_hsotg_req *req;
283

284
	req = kzalloc(sizeof(struct dwc2_hsotg_req), flags);
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
300
static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
301 302 303 304 305
{
	return hs_ep->periodic;
}

/**
306
 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
307 308 309 310
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
311
 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
312
 * of a request to ensure the buffer is ready for access by the caller.
313
 */
314 315 316
static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req)
317 318 319 320 321 322 323
{
	struct usb_request *req = &hs_req->req;

	/* ignore this if we're not moving any data */
	if (hs_req->req.length == 0)
		return;

324
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
325 326
}

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
/*
 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
 * for Control endpoint
 * @hsotg: The device state.
 *
 * This function will allocate 4 descriptor chains for EP 0: 2 for
 * Setup stage, per one for IN and OUT data/status transactions.
 */
static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
{
	hsotg->setup_desc[0] =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->setup_desc_dma[0],
				    GFP_KERNEL);
	if (!hsotg->setup_desc[0])
		goto fail;

	hsotg->setup_desc[1] =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->setup_desc_dma[1],
				    GFP_KERNEL);
	if (!hsotg->setup_desc[1])
		goto fail;

	hsotg->ctrl_in_desc =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->ctrl_in_desc_dma,
				    GFP_KERNEL);
	if (!hsotg->ctrl_in_desc)
		goto fail;

	hsotg->ctrl_out_desc =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->ctrl_out_desc_dma,
				    GFP_KERNEL);
	if (!hsotg->ctrl_out_desc)
		goto fail;

	return 0;

fail:
	return -ENOMEM;
}

375
/**
376
 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
377 378 379 380 381 382 383 384 385 386 387 388 389
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
390
 */
391 392 393
static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req)
394 395
{
	bool periodic = is_ep_periodic(hs_ep);
396
	u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
397 398 399 400 401
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;
402
	int max_transfer;
403 404 405 406 407 408 409

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

410
	if (periodic && !hsotg->dedicated_fifos) {
411
		u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
412 413 414
		int size_left;
		int size_done;

415 416 417 418
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
419

420
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
421

422 423
		/*
		 * if shared fifo, we cannot write anything until the
424 425 426
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
427
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
428 429 430
			return -ENOSPC;
		}

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
448
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
449 450
			return -ENOSPC;
		}
451
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
452 453
		can_write = dwc2_readl(hsotg->regs +
				DTXFSTS(hs_ep->fifo_index));
454 455 456

		can_write &= 0xffff;
		can_write *= 4;
457
	} else {
458
		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
459 460 461 462
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

463
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
464 465 466
			return -ENOSPC;
		}

467
		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
468
		can_write *= 4;	/* fifo size is in 32bit quantities. */
469 470
	}

471 472 473 474
	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
		 __func__, gnptxsts, can_write, to_write, max_transfer);
475

476 477
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
478 479 480
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
481
	if (can_write > 512 && !periodic)
482 483
		can_write = 512;

484 485
	/*
	 * limit the write to one max-packet size worth of data, but allow
486
	 * the transfer to return that it did not run out of fifo space
487 488
	 * doing it.
	 */
489 490
	if (to_write > max_transfer) {
		to_write = max_transfer;
491

492 493
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
494
			dwc2_hsotg_en_gsint(hsotg,
495 496
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
497 498
	}

499 500 501 502
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
503
		pkt_round = to_write % max_transfer;
504

505 506
		/*
		 * Round the write down to an
507 508 509 510 511 512 513 514 515
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

516 517 518 519
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
520

521 522
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
523
			dwc2_hsotg_en_gsint(hsotg,
524 525
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
		 to_write, hs_req->req.length, can_write, buf_pos);

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

543
	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
544 545 546 547 548 549 550 551 552 553 554

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
555
static unsigned get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
556 557 558 559 560 561
{
	int index = hs_ep->index;
	unsigned maxsize;
	unsigned maxpkt;

	if (index != 0) {
562 563
		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
564
	} else {
565
		maxsize = 64+64;
566
		if (hs_ep->dir_in)
567
			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
568
		else
569 570 571 572 573 574 575
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

576 577 578 579
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
580 581 582 583 584 585 586

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
/**
* dwc2_hsotg_read_frameno - read current frame number
* @hsotg: The device instance
*
* Return the current frame number
*/
static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
{
	u32 dsts;

	dsts = dwc2_readl(hsotg->regs + DSTS);
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;

	return dsts;
}

604
/**
605
 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
606 607 608 609 610 611 612 613
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
614 615 616
static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req,
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
	unsigned length;
	unsigned packets;
	unsigned maxreq;

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

643 644
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
645 646

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
647
		__func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
648 649
		hs_ep->dir_in ? "in" : "out");

650
	/* If endpoint is stalled, we will restart request later */
651
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
652

653
	if (index && ctrl & DXEPCTL_STALL) {
654 655 656 657
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

658
	length = ureq->length - ureq->actual;
659 660
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680

	maxreq = get_ep_limit(hs_ep);
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

681 682 683 684 685
	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
		return;
	}

686
	if (dir_in && index != 0)
687
		if (hs_ep->isochronous)
688
			epsize = DXEPTSIZ_MC(packets);
689
		else
690
			epsize = DXEPTSIZ_MC(1);
691 692 693
	else
		epsize = 0;

694 695 696 697 698 699 700 701
	/*
	 * zero length packet should be programmed on its own and should not
	 * be counted in DIEPTSIZ.PktCnt with other packets.
	 */
	if (dir_in && ureq->zero && !continuing) {
		/* Test if zlp is actually required. */
		if ((ureq->length >= hs_ep->ep.maxpacket) &&
					!(ureq->length % hs_ep->ep.maxpacket))
702
			hs_ep->send_zlp = 1;
703 704
	}

705 706
	epsize |= DXEPTSIZ_PKTCNT(packets);
	epsize |= DXEPTSIZ_XFERSIZE(length);
707 708 709 710 711 712 713 714

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

	/* write size / packets */
715
	dwc2_writel(epsize, hsotg->regs + epsize_reg);
716

717
	if (using_dma(hsotg) && !continuing) {
718 719
		unsigned int dma_reg;

720 721
		/*
		 * write DMA address to control register, buffer already
722
		 * synced by dwc2_hsotg_ep_queue().
723
		 */
724

725
		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
726
		dwc2_writel(ureq->dma, hsotg->regs + dma_reg);
727

728
		dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
729
			__func__, &ureq->dma, dma_reg);
730 731
	}

732 733 734 735 736 737 738 739 740 741
	if (hs_ep->isochronous && hs_ep->interval == 1) {
		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
		dwc2_gadget_incr_frame_num(hs_ep);

		if (hs_ep->target_frame & 0x1)
			ctrl |= DXEPCTL_SETODDFR;
		else
			ctrl |= DXEPCTL_SETEVENFR;
	}

742
	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
743

744
	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
745 746

	/* For Setup request do not clear NAK */
747
	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
748
		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
749

750
	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
751
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
752

753 754
	/*
	 * set these, it seems that DMA support increments past the end
755
	 * of the packet buffer so we need to calculate the length from
756 757
	 * this information.
	 */
758 759 760 761 762 763 764
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

765
		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
766 767
	}

768 769 770 771
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
772 773

	/* check ep is enabled */
774
	if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
775
		dev_dbg(hsotg->dev,
776
			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
777
			 index, dwc2_readl(hsotg->regs + epctrl_reg));
778

779
	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
780
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
781 782

	/* enable ep interrupts */
783
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
784 785 786
}

/**
787
 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
788 789 790 791 792 793 794 795 796
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
797
 */
798 799
static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
			     struct dwc2_hsotg_ep *hs_ep,
800 801
			     struct usb_request *req)
{
802
	struct dwc2_hsotg_req *hs_req = our_req(req);
803
	int ret;
804 805 806 807 808

	/* if the length is zero, ignore the DMA data */
	if (hs_req->req.length == 0)
		return 0;

809 810 811
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
812 813 814 815 816 817 818 819 820 821

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

822 823
static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852
{
	void *req_buf = hs_req->req.buf;

	/* If dma is not being used or buffer is aligned */
	if (!using_dma(hsotg) || !((long)req_buf & 3))
		return 0;

	WARN_ON(hs_req->saved_req_buf);

	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
			hs_ep->ep.name, req_buf, hs_req->req.length);

	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
	if (!hs_req->req.buf) {
		hs_req->req.buf = req_buf;
		dev_err(hsotg->dev,
			"%s: unable to allocate memory for bounce buffer\n",
			__func__);
		return -ENOMEM;
	}

	/* Save actual buffer */
	hs_req->saved_req_buf = req_buf;

	if (hs_ep->dir_in)
		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
	return 0;
}

853 854
static void dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
{
	/* If dma is not being used or buffer was aligned */
	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
		return;

	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);

	/* Copy data from bounce buffer on successful out transfer */
	if (!hs_ep->dir_in && !hs_req->req.status)
		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
							hs_req->req.actual);

	/* Free bounce buffer */
	kfree(hs_req->req.buf);

	hs_req->req.buf = hs_req->saved_req_buf;
	hs_req->saved_req_buf = NULL;
}

875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
/**
 * dwc2_gadget_target_frame_elapsed - Checks target frame
 * @hs_ep: The driver endpoint to check
 *
 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
 * corresponding transfer.
 */
static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	u32 target_frame = hs_ep->target_frame;
	u32 current_frame = dwc2_hsotg_read_frameno(hsotg);
	bool frame_overrun = hs_ep->frame_overrun;

	if (!frame_overrun && current_frame >= target_frame)
		return true;

	if (frame_overrun && current_frame >= target_frame &&
	    ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
		return true;

	return false;
}

899
static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
900 901
			      gfp_t gfp_flags)
{
902 903
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
904
	struct dwc2_hsotg *hs = hs_ep->parent;
905
	bool first;
906
	int ret;
907 908 909 910 911

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

912 913 914 915 916 917 918
	/* Prevent new request submission when controller is suspended */
	if (hs->lx_state == DWC2_L2) {
		dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
				__func__);
		return -EAGAIN;
	}

919 920 921 922 923
	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

924
	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
925 926 927
	if (ret)
		return ret;

928 929
	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
930
		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
931 932 933 934 935 936 937
		if (ret)
			return ret;
	}

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

938 939 940 941 942 943 944 945
	if (first) {
		if (!hs_ep->isochronous) {
			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
			return 0;
		}

		while (dwc2_gadget_target_frame_elapsed(hs_ep))
			dwc2_gadget_incr_frame_num(hs_ep);
946

947 948 949
		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
	}
950 951 952
	return 0;
}

953
static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
954 955
			      gfp_t gfp_flags)
{
956
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
957
	struct dwc2_hsotg *hs = hs_ep->parent;
958 959 960 961
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
962
	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
963 964 965 966 967
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

968
static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
969 970
				      struct usb_request *req)
{
971
	struct dwc2_hsotg_req *hs_req = our_req(req);
972 973 974 975 976

	kfree(hs_req);
}

/**
977
 * dwc2_hsotg_complete_oursetup - setup completion callback
978 979 980 981 982 983
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
984
static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
985 986
					struct usb_request *req)
{
987
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
988
	struct dwc2_hsotg *hsotg = hs_ep->parent;
989 990 991

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

992
	dwc2_hsotg_ep_free_request(ep, req);
993 994 995 996 997 998 999 1000 1001
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
1002
 */
1003
static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1004 1005
					   u32 windex)
{
1006
	struct dwc2_hsotg_ep *ep;
1007 1008 1009 1010 1011 1012
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

1013
	if (idx > hsotg->num_of_eps)
1014 1015
		return NULL;

1016 1017
	ep = index_to_ep(hsotg, idx, dir);

1018 1019 1020 1021 1022 1023
	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

1024
/**
1025
 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1026 1027 1028 1029
 * @hsotg: The driver state.
 * @testmode: requested usb test mode
 * Enable usb Test Mode requested by the Host.
 */
1030
int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1031
{
1032
	int dctl = dwc2_readl(hsotg->regs + DCTL);
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045

	dctl &= ~DCTL_TSTCTL_MASK;
	switch (testmode) {
	case TEST_J:
	case TEST_K:
	case TEST_SE0_NAK:
	case TEST_PACKET:
	case TEST_FORCE_EN:
		dctl |= testmode << DCTL_TSTCTL_SHIFT;
		break;
	default:
		return -EINVAL;
	}
1046
	dwc2_writel(dctl, hsotg->regs + DCTL);
1047 1048 1049
	return 0;
}

1050
/**
1051
 * dwc2_hsotg_send_reply - send reply to control request
1052 1053 1054 1055 1056 1057 1058 1059
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
1060 1061
static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *ep,
1062 1063 1064 1065 1066 1067 1068 1069
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

1070
	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1071 1072 1073 1074 1075 1076 1077 1078
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
1079 1080 1081 1082 1083
	/*
	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
	 * STATUS stage.
	 */
	req->zero = 0;
1084
	req->complete = dwc2_hsotg_complete_oursetup;
1085 1086 1087 1088

	if (length)
		memcpy(req->buf, buff, length);

1089
	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1090 1091 1092 1093 1094 1095 1096 1097 1098
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
1099
 * dwc2_hsotg_process_req_status - process request GET_STATUS
1100 1101 1102
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1103
static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1104 1105
					struct usb_ctrlrequest *ctrl)
{
1106 1107
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_ep *ep;
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
		reply = cpu_to_le16(0); /* bit 0 => self powered,
					 * bit 1 => remote wakeup */
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

1144
	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1145 1146 1147 1148 1149 1150 1151 1152
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

1153
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1154

1155 1156 1157 1158 1159 1160
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
1161
static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1162
{
1163 1164
	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
					queue);
1165 1166
}

1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
/**
 * dwc2_gadget_start_next_request - Starts next request from ep queue
 * @hs_ep: Endpoint structure
 *
 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
 * in its handler. Hence we need to unmask it here to be able to do
 * resynchronization.
 */
static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
{
	u32 mask;
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	struct dwc2_hsotg_req *hs_req;
	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;

	if (!list_empty(&hs_ep->queue)) {
		hs_req = get_ep_head(hs_ep);
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		return;
	}
	if (!hs_ep->isochronous)
		return;

	if (dir_in) {
		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
			__func__);
	} else {
		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
			__func__);
		mask = dwc2_readl(hsotg->regs + epmsk_reg);
		mask |= DOEPMSK_OUTTKNEPDISMSK;
		dwc2_writel(mask, hsotg->regs + epmsk_reg);
	}
}

1203
/**
1204
 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1205 1206 1207
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1208
static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1209 1210
					 struct usb_ctrlrequest *ctrl)
{
1211 1212
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_req *hs_req;
1213
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1214
	struct dwc2_hsotg_ep *ep;
1215
	int ret;
1216
	bool halted;
1217 1218 1219
	u32 recip;
	u32 wValue;
	u32 wIndex;
1220 1221 1222 1223

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
	wValue = le16_to_cpu(ctrl->wValue);
	wIndex = le16_to_cpu(ctrl->wIndex);
	recip = ctrl->bRequestType & USB_RECIP_MASK;

	switch (recip) {
	case USB_RECIP_DEVICE:
		switch (wValue) {
		case USB_DEVICE_TEST_MODE:
			if ((wIndex & 0xff) != 0)
				return -EINVAL;
			if (!set)
				return -EINVAL;

			hsotg->test_mode = wIndex >> 8;
1238
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
			break;
		default:
			return -ENOENT;
		}
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, wIndex);
1252 1253
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1254
				__func__, wIndex);
1255 1256 1257
			return -ENOENT;
		}

1258
		switch (wValue) {
1259
		case USB_ENDPOINT_HALT:
1260 1261
			halted = ep->halted;

1262
			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1263

1264
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1265 1266 1267 1268 1269
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
1270

1271 1272 1273 1274 1275 1276
			/*
			 * we have to complete all requests for ep if it was
			 * halted, and the halt was cleared by CLEAR_FEATURE
			 */

			if (!set && halted) {
1277 1278 1279 1280 1281 1282 1283 1284
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
1285 1286 1287 1288 1289 1290
					if (hs_req->req.complete) {
						spin_unlock(&hsotg->lock);
						usb_gadget_giveback_request(
							&ep->ep, &hs_req->req);
						spin_lock(&hsotg->lock);
					}
1291 1292 1293
				}

				/* If we have pending request, then start it */
1294
				if (!ep->req) {
1295
					dwc2_gadget_start_next_request(ep);
1296 1297 1298
				}
			}

1299 1300 1301 1302 1303
			break;

		default:
			return -ENOENT;
		}
1304 1305 1306 1307
		break;
	default:
		return -ENOENT;
	}
1308 1309 1310
	return 1;
}

1311
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1312

1313
/**
1314
 * dwc2_hsotg_stall_ep0 - stall ep0
1315 1316 1317 1318
 * @hsotg: The device state
 *
 * Set stall for ep0 as response for setup request.
 */
1319
static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1320
{
1321
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
	u32 reg;
	u32 ctrl;

	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;

	/*
	 * DxEPCTL_Stall will be cleared by EP once it has
	 * taken effect, so no need to clear later.
	 */

1333
	ctrl = dwc2_readl(hsotg->regs + reg);
1334 1335
	ctrl |= DXEPCTL_STALL;
	ctrl |= DXEPCTL_CNAK;
1336
	dwc2_writel(ctrl, hsotg->regs + reg);
1337 1338

	dev_dbg(hsotg->dev,
1339
		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1340
		ctrl, reg, dwc2_readl(hsotg->regs + reg));
1341 1342 1343 1344 1345

	 /*
	  * complete won't be called, so we enqueue
	  * setup request here
	  */
1346
	 dwc2_hsotg_enqueue_setup(hsotg);
1347 1348
}

1349
/**
1350
 * dwc2_hsotg_process_control - process a control request
1351 1352 1353 1354 1355 1356 1357
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
1358
static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1359 1360
				      struct usb_ctrlrequest *ctrl)
{
1361
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1362 1363 1364
	int ret = 0;
	u32 dcfg;

1365 1366 1367 1368
	dev_dbg(hsotg->dev,
		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
		ctrl->wIndex, ctrl->wLength);
1369

1370 1371 1372 1373
	if (ctrl->wLength == 0) {
		ep0->dir_in = 1;
		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
	} else if (ctrl->bRequestType & USB_DIR_IN) {
1374
		ep0->dir_in = 1;
1375 1376 1377 1378 1379
		hsotg->ep0_state = DWC2_EP0_DATA_IN;
	} else {
		ep0->dir_in = 0;
		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
	}
1380 1381 1382 1383

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1384
			hsotg->connected = 1;
1385
			dcfg = dwc2_readl(hsotg->regs + DCFG);
1386
			dcfg &= ~DCFG_DEVADDR_MASK;
P
Paul Zimmerman 已提交
1387 1388
			dcfg |= (le16_to_cpu(ctrl->wValue) <<
				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1389
			dwc2_writel(dcfg, hsotg->regs + DCFG);
1390 1391 1392

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

1393
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1394 1395 1396
			return;

		case USB_REQ_GET_STATUS:
1397
			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1398 1399 1400 1401
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
1402
			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1403 1404 1405 1406 1407 1408 1409
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
1410
		spin_unlock(&hsotg->lock);
1411
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1412
		spin_lock(&hsotg->lock);
1413 1414 1415 1416
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1417 1418
	/*
	 * the request is either unhandlable, or is not formatted correctly
1419 1420 1421
	 * so respond with a STALL for the status stage to indicate failure.
	 */

1422
	if (ret < 0)
1423
		dwc2_hsotg_stall_ep0(hsotg);
1424 1425 1426
}

/**
1427
 * dwc2_hsotg_complete_setup - completion of a setup transfer
1428 1429 1430 1431 1432 1433
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
1434
static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1435 1436
				     struct usb_request *req)
{
1437
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1438
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1439 1440 1441 1442 1443 1444

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

1445
	spin_lock(&hsotg->lock);
1446
	if (req->actual == 0)
1447
		dwc2_hsotg_enqueue_setup(hsotg);
1448
	else
1449
		dwc2_hsotg_process_control(hsotg, req->buf);
1450
	spin_unlock(&hsotg->lock);
1451 1452 1453
}

/**
1454
 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1455 1456 1457 1458 1459
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
1460
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1461 1462
{
	struct usb_request *req = hsotg->ctrl_req;
1463
	struct dwc2_hsotg_req *hs_req = our_req(req);
1464 1465 1466 1467 1468 1469 1470
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
1471
	req->complete = dwc2_hsotg_complete_setup;
1472 1473 1474 1475 1476 1477

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

1478
	hsotg->eps_out[0]->dir_in = 0;
1479
	hsotg->eps_out[0]->send_zlp = 0;
1480
	hsotg->ep0_state = DWC2_EP0_SETUP;
1481

1482
	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1483 1484
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1485 1486 1487 1488
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1489 1490 1491
	}
}

1492 1493
static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
					struct dwc2_hsotg_ep *hs_ep)
1494 1495 1496 1497 1498 1499
{
	u32 ctrl;
	u8 index = hs_ep->index;
	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);

1500 1501 1502 1503 1504 1505
	if (hs_ep->dir_in)
		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
									index);
	else
		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
									index);
1506

1507 1508 1509
	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
		    DXEPTSIZ_XFERSIZE(0), hsotg->regs +
		    epsiz_reg);
1510

1511
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1512 1513 1514
	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
1515
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1516 1517
}

1518
/**
1519
 * dwc2_hsotg_complete_request - complete a request given to us
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1530
 */
1531 1532 1533
static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
				       struct dwc2_hsotg_ep *hs_ep,
				       struct dwc2_hsotg_req *hs_req,
1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544
				       int result)
{

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1545 1546 1547 1548
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1549 1550 1551 1552

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

1553 1554 1555
	if (using_dma(hsotg))
		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1556
	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1557

1558 1559 1560
	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

1561 1562 1563 1564
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1565 1566

	if (hs_req->req.complete) {
1567
		spin_unlock(&hsotg->lock);
1568
		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1569
		spin_lock(&hsotg->lock);
1570 1571
	}

1572 1573
	/*
	 * Look to see if there is anything else to do. Note, the completion
1574
	 * of the previous request may have caused a new request to be started
1575 1576
	 * so be careful when doing this.
	 */
1577 1578

	if (!hs_ep->req && result >= 0) {
1579
		dwc2_gadget_start_next_request(hs_ep);
1580 1581 1582 1583
	}
}

/**
1584
 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
1585 1586 1587 1588 1589 1590 1591 1592
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
1593
static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
1594
{
1595 1596
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1597
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1598 1599 1600 1601
	int to_read;
	int max_req;
	int read_ptr;

1602

1603
	if (!hs_req) {
1604
		u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
1605 1606
		int ptr;

1607
		dev_dbg(hsotg->dev,
1608
			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1609 1610 1611 1612
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
1613
			(void)dwc2_readl(fifo);
1614 1615 1616 1617 1618 1619 1620 1621

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

1622 1623 1624
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

1625
	if (to_read > max_req) {
1626 1627
		/*
		 * more data appeared than we where willing
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

1639 1640 1641 1642
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
1643
	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1644 1645 1646
}

/**
1647
 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
1648
 * @hsotg: The device instance
1649
 * @dir_in: If IN zlp
1650 1651 1652 1653 1654
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
1655
 * currently believed that we do not need to wait for any space in
1656 1657
 * the TxFIFO.
 */
1658
static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
1659
{
1660
	/* eps_out[0] is used in both directions */
1661 1662
	hsotg->eps_out[0]->dir_in = dir_in;
	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
1663

1664
	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
1665 1666
}

1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
			u32 epctl_reg)
{
	u32 ctrl;

	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
	if (ctrl & DXEPCTL_EOFRNUM)
		ctrl |= DXEPCTL_SETEVENFR;
	else
		ctrl |= DXEPCTL_SETODDFR;
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
}

1680
/**
1681
 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1682 1683 1684 1685 1686 1687
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
1688
 */
1689
static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
1690
{
1691
	u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
1692 1693
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1694
	struct usb_request *req = &hs_req->req;
1695
	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1696 1697 1698 1699 1700 1701 1702
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

1703 1704
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
1705 1706
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
		dwc2_hsotg_enqueue_setup(hsotg);
1707 1708 1709
		return;
	}

1710 1711 1712
	if (using_dma(hsotg)) {
		unsigned size_done;

1713 1714
		/*
		 * Calculate the size of the transfer by checking how much
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

1728 1729
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
1730
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1731 1732 1733
		return;
	}

1734 1735 1736 1737
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

1738 1739 1740 1741
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
1742 1743
	}

1744 1745
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
		/* Move to STATUS IN */
1746
		dwc2_hsotg_ep0_zlp(hsotg, true);
1747
		return;
1748 1749
	}

1750 1751 1752 1753 1754 1755 1756
	/*
	 * Slave mode OUT transfers do not go through XferComplete so
	 * adjust the ISOC parity here.
	 */
	if (!using_dma(hsotg)) {
		if (hs_ep->isochronous && hs_ep->interval == 1)
			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
1757 1758
		else if (hs_ep->isochronous && hs_ep->interval > 1)
			dwc2_gadget_incr_frame_num(hs_ep);
1759 1760
	}

1761
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1762 1763 1764
}

/**
1765
 * dwc2_hsotg_handle_rx - RX FIFO has data
1766 1767 1768 1769 1770 1771
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
1772
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1773 1774 1775 1776 1777 1778 1779
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
1780
static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
1781
{
1782
	u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
1783 1784 1785 1786
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

1787 1788
	epnum = grxstsr & GRXSTS_EPNUM_MASK;
	status = grxstsr & GRXSTS_PKTSTS_MASK;
1789

1790 1791
	size = grxstsr & GRXSTS_BYTECNT_MASK;
	size >>= GRXSTS_BYTECNT_SHIFT;
1792

1793
	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1794 1795
			__func__, grxstsr, size, epnum);

1796 1797 1798
	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
	case GRXSTS_PKTSTS_GLOBALOUTNAK:
		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1799 1800
		break;

1801
	case GRXSTS_PKTSTS_OUTDONE:
1802
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1803
			dwc2_hsotg_read_frameno(hsotg));
1804 1805

		if (!using_dma(hsotg))
1806
			dwc2_hsotg_handle_outdone(hsotg, epnum);
1807 1808
		break;

1809
	case GRXSTS_PKTSTS_SETUPDONE:
1810 1811
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1812
			dwc2_hsotg_read_frameno(hsotg),
1813
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
1814
		/*
1815
		 * Call dwc2_hsotg_handle_outdone here if it was not called from
1816 1817 1818 1819
		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
		 */
		if (hsotg->ep0_state == DWC2_EP0_SETUP)
1820
			dwc2_hsotg_handle_outdone(hsotg, epnum);
1821 1822
		break;

1823
	case GRXSTS_PKTSTS_OUTRX:
1824
		dwc2_hsotg_rx_data(hsotg, epnum, size);
1825 1826
		break;

1827
	case GRXSTS_PKTSTS_SETUPRX:
1828 1829
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1830
			dwc2_hsotg_read_frameno(hsotg),
1831
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
1832

1833 1834
		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);

1835
		dwc2_hsotg_rx_data(hsotg, epnum, size);
1836 1837 1838 1839 1840 1841
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

1842
		dwc2_hsotg_dump(hsotg);
1843 1844 1845 1846 1847
		break;
	}
}

/**
1848
 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
1849
 * @mps: The maximum packet size in bytes.
1850
 */
1851
static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
1852 1853 1854
{
	switch (mps) {
	case 64:
1855
		return D0EPCTL_MPS_64;
1856
	case 32:
1857
		return D0EPCTL_MPS_32;
1858
	case 16:
1859
		return D0EPCTL_MPS_16;
1860
	case 8:
1861
		return D0EPCTL_MPS_8;
1862 1863 1864 1865 1866 1867 1868 1869
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
1870
 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1871 1872 1873
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
1874
 * @mc: The multicount value
1875 1876 1877 1878
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
1879
static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
1880 1881
					unsigned int ep, unsigned int mps,
					unsigned int mc, unsigned int dir_in)
1882
{
1883
	struct dwc2_hsotg_ep *hs_ep;
1884 1885 1886
	void __iomem *regs = hsotg->regs;
	u32 reg;

1887 1888 1889 1890
	hs_ep = index_to_ep(hsotg, ep, dir_in);
	if (!hs_ep)
		return;

1891
	if (ep == 0) {
1892 1893
		u32 mps_bytes = mps;

1894
		/* EP0 is a special case */
1895 1896
		mps = dwc2_hsotg_ep0_mps(mps_bytes);
		if (mps > 3)
1897
			goto bad_mps;
1898
		hs_ep->ep.maxpacket = mps_bytes;
1899
		hs_ep->mc = 1;
1900
	} else {
1901
		if (mps > 1024)
1902
			goto bad_mps;
1903 1904
		hs_ep->mc = mc;
		if (mc > 3)
1905
			goto bad_mps;
1906
		hs_ep->ep.maxpacket = mps;
1907 1908
	}

1909
	if (dir_in) {
1910
		reg = dwc2_readl(regs + DIEPCTL(ep));
1911
		reg &= ~DXEPCTL_MPS_MASK;
1912
		reg |= mps;
1913
		dwc2_writel(reg, regs + DIEPCTL(ep));
1914
	} else {
1915
		reg = dwc2_readl(regs + DOEPCTL(ep));
1916
		reg &= ~DXEPCTL_MPS_MASK;
1917
		reg |= mps;
1918
		dwc2_writel(reg, regs + DOEPCTL(ep));
1919
	}
1920 1921 1922 1923 1924 1925 1926

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

1927
/**
1928
 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
1929 1930 1931
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
1932
static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
1933 1934 1935 1936
{
	int timeout;
	int val;

1937 1938
	dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
		    hsotg->regs + GRSTCTL);
1939 1940 1941 1942 1943

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
1944
		val = dwc2_readl(hsotg->regs + GRSTCTL);
1945

1946
		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1947 1948 1949 1950 1951 1952
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
1953
			break;
1954 1955 1956 1957 1958
		}

		udelay(1);
	}
}
1959 1960

/**
1961
 * dwc2_hsotg_trytx - check to see if anything needs transmitting
1962 1963 1964 1965 1966 1967
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
1968 1969
static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
			   struct dwc2_hsotg_ep *hs_ep)
1970
{
1971
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1972

1973 1974 1975 1976 1977 1978
	if (!hs_ep->dir_in || !hs_req) {
		/**
		 * if request is not enqueued, we disable interrupts
		 * for endpoints, excepting ep0
		 */
		if (hs_ep->index != 0)
1979
			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
1980
					     hs_ep->dir_in, 0);
1981
		return 0;
1982
	}
1983 1984 1985 1986

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
1987
		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1988 1989 1990 1991 1992 1993
	}

	return 0;
}

/**
1994
 * dwc2_hsotg_complete_in - complete IN transfer
1995 1996 1997 1998 1999 2000
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
2001 2002
static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
				  struct dwc2_hsotg_ep *hs_ep)
2003
{
2004
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2005
	u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
2006 2007 2008 2009 2010 2011 2012
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

2013
	/* Finish ZLP handling for IN EP0 transactions */
2014 2015
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
		dev_dbg(hsotg->dev, "zlp packet sent\n");
2016
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2017 2018 2019
		if (hsotg->test_mode) {
			int ret;

2020
			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2021 2022 2023
			if (ret < 0) {
				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
						hsotg->test_mode);
2024
				dwc2_hsotg_stall_ep0(hsotg);
2025 2026 2027
				return;
			}
		}
2028
		dwc2_hsotg_enqueue_setup(hsotg);
2029 2030 2031
		return;
	}

2032 2033
	/*
	 * Calculate the size of the transfer by checking how much is left
2034 2035 2036 2037 2038 2039 2040 2041
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */

2042
	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2043 2044 2045 2046 2047 2048 2049 2050 2051

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
2052 2053 2054
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

2055 2056
	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2057
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2058 2059 2060
		return;
	}

2061
	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
2062
	if (hs_ep->send_zlp) {
2063
		dwc2_hsotg_program_zlp(hsotg, hs_ep);
2064
		hs_ep->send_zlp = 0;
2065 2066 2067 2068
		/* transfer will be completed on next complete interrupt */
		return;
	}

2069 2070
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
		/* Move to STATUS OUT */
2071
		dwc2_hsotg_ep0_zlp(hsotg, false);
2072 2073 2074
		return;
	}

2075
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2076 2077
}

2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
/**
 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
 * @hsotg: The device state.
 * @idx: Index of ep.
 * @dir_in: Endpoint direction 1-in 0-out.
 *
 * Reads for endpoint with given index and direction, by masking
 * epint_reg with coresponding mask.
 */
static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
					  unsigned int idx, int dir_in)
{
	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 ints;
	u32 mask;
	u32 diepempmsk;

	mask = dwc2_readl(hsotg->regs + epmsk_reg);
	diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK);
	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
	mask |= DXEPINT_SETUP_RCVD;

	ints = dwc2_readl(hsotg->regs + epint_reg);
	ints &= mask;
	return ints;
}

2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173
/**
 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
 * @hs_ep: The endpoint on which interrupt is asserted.
 *
 * This interrupt indicates that the endpoint has been disabled per the
 * application's request.
 *
 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
 * in case of ISOC completes current request.
 *
 * For ISOC-OUT endpoints completes expired requests. If there is remaining
 * request starts it.
 */
static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	struct dwc2_hsotg_req *hs_req;
	unsigned char idx = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	int dctl = dwc2_readl(hsotg->regs + DCTL);

	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

	if (dir_in) {
		int epctl = dwc2_readl(hsotg->regs + epctl_reg);

		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);

		if (hs_ep->isochronous) {
			dwc2_hsotg_complete_in(hsotg, hs_ep);
			return;
		}

		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
			int dctl = dwc2_readl(hsotg->regs + DCTL);

			dctl |= DCTL_CGNPINNAK;
			dwc2_writel(dctl, hsotg->regs + DCTL);
		}
		return;
	}

	if (dctl & DCTL_GOUTNAKSTS) {
		dctl |= DCTL_CGOUTNAK;
		dwc2_writel(dctl, hsotg->regs + DCTL);
	}

	if (!hs_ep->isochronous)
		return;

	if (list_empty(&hs_ep->queue)) {
		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
			__func__, hs_ep);
		return;
	}

	do {
		hs_req = get_ep_head(hs_ep);
		if (hs_req)
			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
						    -ENODATA);
		dwc2_gadget_incr_frame_num(hs_ep);
	} while (dwc2_gadget_target_frame_elapsed(hs_ep));

	dwc2_gadget_start_next_request(hs_ep);
}

2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261
/**
 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
 * @hs_ep: The endpoint on which interrupt is asserted.
 *
 * This is starting point for ISOC-OUT transfer, synchronization done with
 * first out token received from host while corresponding EP is disabled.
 *
 * Device does not know initial frame in which out token will come. For this
 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
 * getting this interrupt SW starts calculation for next transfer frame.
 */
static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
{
	struct dwc2_hsotg *hsotg = ep->parent;
	int dir_in = ep->dir_in;
	u32 doepmsk;

	if (dir_in || !ep->isochronous)
		return;

	dwc2_hsotg_complete_request(hsotg, ep, get_ep_head(ep), -ENODATA);

	if (ep->interval > 1 &&
	    ep->target_frame == TARGET_FRAME_INITIAL) {
		u32 dsts;
		u32 ctrl;

		dsts = dwc2_readl(hsotg->regs + DSTS);
		ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
		dwc2_gadget_incr_frame_num(ep);

		ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index));
		if (ep->target_frame & 0x1)
			ctrl |= DXEPCTL_SETODDFR;
		else
			ctrl |= DXEPCTL_SETEVENFR;

		dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index));
	}

	dwc2_gadget_start_next_request(ep);
	doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
	doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
	dwc2_writel(doepmsk, hsotg->regs + DOEPMSK);
}

/**
* dwc2_gadget_handle_nak - handle NAK interrupt
* @hs_ep: The endpoint on which interrupt is asserted.
*
* This is starting point for ISOC-IN transfer, synchronization done with
* first IN token received from host while corresponding EP is disabled.
*
* Device does not know when first one token will arrive from host. On first
* token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
* and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
* sent in response to that as there was no data in FIFO. SW is basing on this
* interrupt to obtain frame in which token has come and then based on the
* interval calculates next frame for transfer.
*/
static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;

	if (!dir_in || !hs_ep->isochronous)
		return;

	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
		if (hs_ep->interval > 1) {
			u32 ctrl = dwc2_readl(hsotg->regs +
					      DIEPCTL(hs_ep->index));
			if (hs_ep->target_frame & 0x1)
				ctrl |= DXEPCTL_SETODDFR;
			else
				ctrl |= DXEPCTL_SETEVENFR;

			dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index));
		}

		dwc2_hsotg_complete_request(hsotg, hs_ep,
					    get_ep_head(hs_ep), 0);
	}

	dwc2_gadget_incr_frame_num(hs_ep);
}

2262
/**
2263
 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2264 2265 2266 2267 2268
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
2269
 */
2270
static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2271 2272
			    int dir_in)
{
2273
	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2274 2275 2276
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2277
	u32 ints;
2278
	u32 ctrl;
2279

2280
	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2281
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2282

2283
	/* Clear endpoint interrupts */
2284
	dwc2_writel(ints, hsotg->regs + epint_reg);
2285

2286 2287 2288 2289 2290 2291
	if (!hs_ep) {
		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
					__func__, idx, dir_in ? "in" : "out");
		return;
	}

2292 2293 2294
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

2295 2296 2297 2298
	/* Don't process XferCompl interrupt if it is a setup packet */
	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
		ints &= ~DXEPINT_XFERCOMPL;

2299 2300
	if (ints & DXEPINT_STSPHSERCVD)
		dev_dbg(hsotg->dev, "%s: StsPhseRcvd asserted\n", __func__);
2301

2302
	if (ints & DXEPINT_XFERCOMPL) {
2303
		dev_dbg(hsotg->dev,
2304
			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2305 2306
			__func__, dwc2_readl(hsotg->regs + epctl_reg),
			dwc2_readl(hsotg->regs + epsiz_reg));
2307

2308 2309 2310 2311
		/*
		 * we get OutDone from the FIFO, so we only need to look
		 * at completing IN requests here
		 */
2312
		if (dir_in) {
2313 2314 2315
			if (hs_ep->isochronous && hs_ep->interval > 1)
				dwc2_gadget_incr_frame_num(hs_ep);

2316
			dwc2_hsotg_complete_in(hsotg, hs_ep);
2317 2318
			if (ints & DXEPINT_NAKINTRPT)
				ints &= ~DXEPINT_NAKINTRPT;
2319

2320
			if (idx == 0 && !hs_ep->req)
2321
				dwc2_hsotg_enqueue_setup(hsotg);
2322
		} else if (using_dma(hsotg)) {
2323 2324 2325 2326
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
2327 2328
			if (hs_ep->isochronous && hs_ep->interval > 1)
				dwc2_gadget_incr_frame_num(hs_ep);
2329

2330
			dwc2_hsotg_handle_outdone(hsotg, idx);
2331 2332 2333
		}
	}

2334 2335
	if (ints & DXEPINT_EPDISBLD)
		dwc2_gadget_handle_ep_disabled(hs_ep);
2336

2337 2338 2339 2340 2341 2342
	if (ints & DXEPINT_OUTTKNEPDIS)
		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);

	if (ints & DXEPINT_NAKINTRPT)
		dwc2_gadget_handle_nak(hs_ep);

2343
	if (ints & DXEPINT_AHBERR)
2344 2345
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

2346
	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2347 2348 2349
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
2350 2351
			/*
			 * this is the notification we've received a
2352 2353
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
2354 2355
			 * the setup here.
			 */
2356 2357 2358 2359

			if (dir_in)
				WARN_ON_ONCE(1);
			else
2360
				dwc2_hsotg_handle_outdone(hsotg, 0);
2361 2362 2363
		}
	}

2364
	if (ints & DXEPINT_BACK2BACKSETUP)
2365 2366
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

2367
	if (dir_in && !hs_ep->isochronous) {
2368
		/* not sure if this is important, but we'll clear it anyway */
2369
		if (ints & DXEPINT_INTKNTXFEMP) {
2370 2371 2372 2373 2374
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
2375
		if (ints & DXEPINT_INTKNEPMIS) {
2376 2377 2378
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
2379 2380 2381

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
2382
		    ints & DXEPINT_TXFEMP) {
2383 2384
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
2385
			if (!using_dma(hsotg))
2386
				dwc2_hsotg_trytx(hsotg, hs_ep);
2387
		}
2388 2389 2390 2391
	}
}

/**
2392
 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
2393 2394 2395 2396
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
2397
 */
2398
static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
2399
{
2400
	u32 dsts = dwc2_readl(hsotg->regs + DSTS);
2401
	int ep0_mps = 0, ep_mps = 8;
2402

2403 2404
	/*
	 * This should signal the finish of the enumeration phase
2405
	 * of the USB handshaking, so we should now know what rate
2406 2407
	 * we connected at.
	 */
2408 2409 2410

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

2411 2412
	/*
	 * note, since we're limited by the size of transfer on EP0, and
2413
	 * it seems IN transfers must be a even number of packets we do
2414 2415
	 * not advertise a 64byte MPS on EP0.
	 */
2416 2417

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
2418
	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
2419 2420
	case DSTS_ENUMSPD_FS:
	case DSTS_ENUMSPD_FS48:
2421 2422
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
2423
		ep_mps = 1023;
2424 2425
		break;

2426
	case DSTS_ENUMSPD_HS:
2427 2428
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
2429
		ep_mps = 1024;
2430 2431
		break;

2432
	case DSTS_ENUMSPD_LS:
2433
		hsotg->gadget.speed = USB_SPEED_LOW;
2434 2435
		/*
		 * note, we don't actually support LS in this driver at the
2436 2437 2438 2439 2440
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
2441 2442
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
2443

2444 2445 2446 2447
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
2448 2449 2450

	if (ep0_mps) {
		int i;
2451
		/* Initialize ep0 for both in and out directions */
2452 2453
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
2454 2455
		for (i = 1; i < hsotg->num_of_eps; i++) {
			if (hsotg->eps_in[i])
2456 2457
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
							    0, 1);
2458
			if (hsotg->eps_out[i])
2459 2460
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
							    0, 0);
2461
		}
2462 2463 2464 2465
	}

	/* ensure after enumeration our EP0 is active */

2466
	dwc2_hsotg_enqueue_setup(hsotg);
2467 2468

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2469 2470
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
2482
static void kill_all_requests(struct dwc2_hsotg *hsotg,
2483
			      struct dwc2_hsotg_ep *ep,
2484
			      int result)
2485
{
2486
	struct dwc2_hsotg_req *req, *treq;
2487
	unsigned size;
2488

2489
	ep->req = NULL;
2490

2491
	list_for_each_entry_safe(req, treq, &ep->queue, queue)
2492
		dwc2_hsotg_complete_request(hsotg, ep, req,
2493
					   result);
2494

2495 2496
	if (!hsotg->dedicated_fifos)
		return;
2497
	size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
2498
	if (size < ep->fifo_size)
2499
		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2500 2501 2502
}

/**
2503
 * dwc2_hsotg_disconnect - disconnect service
2504 2505
 * @hsotg: The device state.
 *
2506 2507 2508
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
2509
 */
2510
void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
2511 2512 2513
{
	unsigned ep;

2514 2515 2516 2517
	if (!hsotg->connected)
		return;

	hsotg->connected = 0;
2518
	hsotg->test_mode = 0;
2519 2520 2521 2522 2523 2524 2525 2526 2527

	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
			kill_all_requests(hsotg, hsotg->eps_in[ep],
								-ESHUTDOWN);
		if (hsotg->eps_out[ep])
			kill_all_requests(hsotg, hsotg->eps_out[ep],
								-ESHUTDOWN);
	}
2528 2529

	call_gadget(hsotg, disconnect);
2530
	hsotg->lx_state = DWC2_L3;
2531 2532 2533
}

/**
2534
 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2535 2536 2537
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
2538
static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
2539
{
2540
	struct dwc2_hsotg_ep *ep;
2541 2542 2543
	int epno, ret;

	/* look through for any more data to transmit */
2544
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2545 2546 2547 2548
		ep = index_to_ep(hsotg, epno, 1);

		if (!ep)
			continue;
2549 2550 2551 2552 2553 2554 2555 2556

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

2557
		ret = dwc2_hsotg_trytx(hsotg, ep);
2558 2559 2560 2561 2562 2563
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
2564 2565 2566
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
			GINTSTS_PTXFEMP |  \
			GINTSTS_RXFLVL)
2567

2568
/**
2569
 * dwc2_hsotg_core_init - issue softreset to the core
2570 2571 2572 2573
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
2574
void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
2575
						bool is_usb_reset)
2576
{
2577
	u32 intmsk;
2578
	u32 val;
2579
	u32 usbcfg;
2580

2581 2582 2583
	/* Kill any ep0 requests as controller will be reinitialized */
	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);

2584
	if (!is_usb_reset)
2585
		if (dwc2_core_reset(hsotg))
2586
			return;
2587 2588 2589 2590 2591 2592

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

2593 2594 2595 2596 2597
	/* keep other bits untouched (so e.g. forced modes are not lost) */
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
		GUSBCFG_HNPCAP);

2598
	/* set the PLL on, remove the HNP/SRP and set the PHY */
2599
	val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
2600 2601 2602
	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
		(val << GUSBCFG_USBTRDTIM_SHIFT);
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
2603

2604
	dwc2_hsotg_init_fifo(hsotg);
2605

2606 2607
	if (!is_usb_reset)
		__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2608

2609
	dwc2_writel(DCFG_EPMISCNT(1) | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2610 2611

	/* Clear any pending OTG interrupts */
2612
	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
2613 2614

	/* Clear any pending interrupts */
2615
	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
2616
	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
2617
		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
2618 2619
		GINTSTS_USBRST | GINTSTS_RESETDET |
		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
2620 2621
		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
		GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
2622

2623
	if (hsotg->params.external_id_pin_ctl <= 0)
2624 2625 2626
		intmsk |= GINTSTS_CONIDSTSCHNG;

	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
2627 2628

	if (using_dma(hsotg))
2629 2630 2631
		dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
			    (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
			    hsotg->regs + GAHBCFG);
2632
	else
2633 2634 2635 2636
		dwc2_writel(((hsotg->dedicated_fifos) ?
						(GAHBCFG_NP_TXF_EMP_LVL |
						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
			    GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
2637 2638

	/*
2639 2640 2641
	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
	 * when we have no data to transfer. Otherwise we get being flooded by
	 * interrupts.
2642 2643
	 */

2644
	dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
2645
		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
2646
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
2647
		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
2648
		hsotg->regs + DIEPMSK);
2649 2650 2651 2652 2653

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
	 * DMA mode we may need this.
	 */
2654
	dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK) : 0) |
2655
		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
2656
		DOEPMSK_SETUPMSK | DOEPMSK_STSPHSERCVDMSK,
2657
		hsotg->regs + DOEPMSK);
2658

2659
	dwc2_writel(0, hsotg->regs + DAINTMSK);
2660 2661

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2662 2663
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
2664 2665

	/* enable in and out endpoint interrupts */
2666
	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2667 2668 2669 2670 2671 2672 2673

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
2674
		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2675 2676

	/* Enable interrupts for EP0 in and out */
2677 2678
	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2679

2680 2681 2682 2683 2684
	if (!is_usb_reset) {
		__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
		udelay(10);  /* see openiboot */
		__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
	}
2685

2686
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
2687 2688

	/*
2689
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2690 2691 2692 2693
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
2694
	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2695
	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2696

2697
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2698 2699
	       DXEPCTL_CNAK | DXEPCTL_EPENA |
	       DXEPCTL_USBACTEP,
2700
	       hsotg->regs + DOEPCTL0);
2701 2702

	/* enable, but don't activate EP0in */
2703
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2704
	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2705

2706
	dwc2_hsotg_enqueue_setup(hsotg);
2707 2708

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2709 2710
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
2711 2712

	/* clear global NAKs */
2713 2714 2715 2716
	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
	if (!is_usb_reset)
		val |= DCTL_SFTDISCON;
	__orr32(hsotg->regs + DCTL, val);
2717 2718 2719 2720

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

2721
	hsotg->lx_state = DWC2_L0;
2722 2723
}

2724
static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
2725 2726 2727 2728
{
	/* set the soft-disconnect bit */
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
}
2729

2730
void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
2731
{
2732
	/* remove the soft-disconnect and let's go */
2733
	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2734 2735
}

2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814
/**
 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
 * @hsotg: The device state:
 *
 * This interrupt indicates one of the following conditions occurred while
 * transmitting an ISOC transaction.
 * - Corrupted IN Token for ISOC EP.
 * - Packet not complete in FIFO.
 *
 * The following actions will be taken:
 * - Determine the EP
 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
 */
static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
{
	struct dwc2_hsotg_ep *hs_ep;
	u32 epctrl;
	u32 idx;

	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");

	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
		hs_ep = hsotg->eps_in[idx];
		epctrl = dwc2_readl(hsotg->regs + DIEPCTL(idx));
		if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
			epctrl |= DXEPCTL_SNAK;
			epctrl |= DXEPCTL_EPDIS;
			dwc2_writel(epctrl, hsotg->regs + DIEPCTL(idx));
		}
	}

	/* Clear interrupt */
	dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
}

/**
 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
 * @hsotg: The device state:
 *
 * This interrupt indicates one of the following conditions occurred while
 * transmitting an ISOC transaction.
 * - Corrupted OUT Token for ISOC EP.
 * - Packet not complete in FIFO.
 *
 * The following actions will be taken:
 * - Determine the EP
 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
 */
static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
{
	u32 gintsts;
	u32 gintmsk;
	u32 epctrl;
	struct dwc2_hsotg_ep *hs_ep;
	int idx;

	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);

	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
		hs_ep = hsotg->eps_out[idx];
		epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
		if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
			/* Unmask GOUTNAKEFF interrupt */
			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
			gintmsk |= GINTSTS_GOUTNAKEFF;
			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);

			gintsts = dwc2_readl(hsotg->regs + GINTSTS);
			if (!(gintsts & GINTSTS_GOUTNAKEFF))
				__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
		}
	}

	/* Clear interrupt */
	dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
}

2815
/**
2816
 * dwc2_hsotg_irq - handle device interrupt
2817 2818 2819
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
2820
static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
2821
{
2822
	struct dwc2_hsotg *hsotg = pw;
2823 2824 2825 2826
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

2827 2828 2829
	if (!dwc2_is_device_mode(hsotg))
		return IRQ_NONE;

2830
	spin_lock(&hsotg->lock);
2831
irq_retry:
2832 2833
	gintsts = dwc2_readl(hsotg->regs + GINTSTS);
	gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
2834 2835 2836 2837 2838 2839

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869
	if (gintsts & GINTSTS_RESETDET) {
		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);

		dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);

		/* This event must be used only if controller is suspended */
		if (hsotg->lx_state == DWC2_L2) {
			dwc2_exit_hibernation(hsotg, true);
			hsotg->lx_state = DWC2_L0;
		}
	}

	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {

		u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
		u32 connected = hsotg->connected;

		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
			dwc2_readl(hsotg->regs + GNPTXSTS));

		dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);

		/* Report disconnection if it is not already done. */
		dwc2_hsotg_disconnect(hsotg);

		if (usb_status & GOTGCTL_BSESVLD && connected)
			dwc2_hsotg_core_init_disconnected(hsotg, true);
	}

2870
	if (gintsts & GINTSTS_ENUMDONE) {
2871
		dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2872

2873
		dwc2_hsotg_irq_enumdone(hsotg);
2874 2875
	}

2876
	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2877 2878
		u32 daint = dwc2_readl(hsotg->regs + DAINT);
		u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
2879
		u32 daint_out, daint_in;
2880 2881
		int ep;

2882
		daint &= daintmsk;
2883 2884
		daint_out = daint >> DAINT_OUTEP_SHIFT;
		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2885

2886 2887
		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

2888 2889
		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
						ep++, daint_out >>= 1) {
2890
			if (daint_out & 1)
2891
				dwc2_hsotg_epint(hsotg, ep, 0);
2892 2893
		}

2894 2895
		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
						ep++, daint_in >>= 1) {
2896
			if (daint_in & 1)
2897
				dwc2_hsotg_epint(hsotg, ep, 1);
2898 2899 2900 2901 2902
		}
	}

	/* check both FIFOs */

2903
	if (gintsts & GINTSTS_NPTXFEMP) {
2904 2905
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

2906 2907
		/*
		 * Disable the interrupt to stop it happening again
2908
		 * unless one of these endpoint routines decides that
2909 2910
		 * it needs re-enabling
		 */
2911

2912 2913
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, false);
2914 2915
	}

2916
	if (gintsts & GINTSTS_PTXFEMP) {
2917 2918
		dev_dbg(hsotg->dev, "PTxFEmp\n");

2919
		/* See note in GINTSTS_NPTxFEmp */
2920

2921 2922
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, true);
2923 2924
	}

2925
	if (gintsts & GINTSTS_RXFLVL) {
2926 2927
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2928
		 * we need to retry dwc2_hsotg_handle_rx if this is still
2929 2930
		 * set.
		 */
2931

2932
		dwc2_hsotg_handle_rx(hsotg);
2933 2934
	}

2935
	if (gintsts & GINTSTS_ERLYSUSP) {
2936
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2937
		dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2938 2939
	}

2940 2941
	/*
	 * these next two seem to crop-up occasionally causing the core
2942
	 * to shutdown the USB transfer, so try clearing them and logging
2943 2944
	 * the occurrence.
	 */
2945

2946
	if (gintsts & GINTSTS_GOUTNAKEFF) {
2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967
		u8 idx;
		u32 epctrl;
		u32 gintmsk;
		struct dwc2_hsotg_ep *hs_ep;

		/* Mask this interrupt */
		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
		gintmsk &= ~GINTSTS_GOUTNAKEFF;
		dwc2_writel(gintmsk, hsotg->regs + GINTMSK);

		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
		for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
			hs_ep = hsotg->eps_out[idx];
			epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));

			if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
				epctrl |= DXEPCTL_SNAK;
				epctrl |= DXEPCTL_EPDIS;
				dwc2_writel(epctrl, hsotg->regs + DOEPCTL(idx));
			}
		}
2968

2969
		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
2970 2971
	}

2972
	if (gintsts & GINTSTS_GINNAKEFF) {
2973 2974
		dev_info(hsotg->dev, "GINNakEff triggered\n");

2975
		__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
2976

2977
		dwc2_hsotg_dump(hsotg);
2978 2979
	}

2980 2981
	if (gintsts & GINTSTS_INCOMPL_SOIN)
		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
2982

2983 2984
	if (gintsts & GINTSTS_INCOMPL_SOOUT)
		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
2985

2986 2987 2988 2989
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
2990 2991 2992 2993

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
			goto irq_retry;

2994 2995
	spin_unlock(&hsotg->lock);

2996 2997 2998 2999
	return IRQ_HANDLED;
}

/**
3000
 * dwc2_hsotg_ep_enable - enable the given endpoint
3001 3002 3003 3004
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
3005
 */
3006
static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3007 3008
			       const struct usb_endpoint_descriptor *desc)
{
3009
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3010
	struct dwc2_hsotg *hsotg = hs_ep->parent;
3011
	unsigned long flags;
3012
	unsigned int index = hs_ep->index;
3013 3014 3015
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
3016
	u32 mc;
3017
	u32 mask;
3018 3019
	unsigned int dir_in;
	unsigned int i, val, size;
3020
	int ret = 0;
3021 3022 3023 3024 3025 3026 3027

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
3028 3029 3030 3031
	if (index == 0) {
		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
		return -EINVAL;
	}
3032 3033 3034 3035 3036 3037 3038

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

3039
	mps = usb_endpoint_maxp(desc);
3040
	mc = usb_endpoint_maxp_mult(desc);
3041

3042
	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3043

3044
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3045
	epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3046 3047 3048 3049

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

3050
	spin_lock_irqsave(&hsotg->lock, flags);
3051

3052 3053
	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
	epctrl |= DXEPCTL_MPS(mps);
3054

3055 3056 3057 3058
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
3059
	epctrl |= DXEPCTL_USBACTEP;
3060 3061

	/* update the endpoint state */
3062
	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
3063 3064

	/* default, set to non-periodic */
3065
	hs_ep->isochronous = 0;
3066
	hs_ep->periodic = 0;
3067
	hs_ep->halted = 0;
3068
	hs_ep->interval = desc->bInterval;
3069

3070 3071
	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
3072 3073
		epctrl |= DXEPCTL_EPTYPE_ISO;
		epctrl |= DXEPCTL_SETEVENFR;
3074
		hs_ep->isochronous = 1;
3075
		hs_ep->interval = 1 << (desc->bInterval - 1);
3076 3077
		hs_ep->target_frame = TARGET_FRAME_INITIAL;
		if (dir_in) {
3078
			hs_ep->periodic = 1;
3079 3080 3081 3082 3083 3084 3085 3086
			mask = dwc2_readl(hsotg->regs + DIEPMSK);
			mask |= DIEPMSK_NAKMSK;
			dwc2_writel(mask, hsotg->regs + DIEPMSK);
		} else {
			mask = dwc2_readl(hsotg->regs + DOEPMSK);
			mask |= DOEPMSK_OUTTKNEPDISMSK;
			dwc2_writel(mask, hsotg->regs + DOEPMSK);
		}
3087
		break;
3088 3089

	case USB_ENDPOINT_XFER_BULK:
3090
		epctrl |= DXEPCTL_EPTYPE_BULK;
3091 3092 3093
		break;

	case USB_ENDPOINT_XFER_INT:
3094
		if (dir_in)
3095 3096
			hs_ep->periodic = 1;

3097 3098 3099
		if (hsotg->gadget.speed == USB_SPEED_HIGH)
			hs_ep->interval = 1 << (desc->bInterval - 1);

3100
		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
3101 3102 3103
		break;

	case USB_ENDPOINT_XFER_CONTROL:
3104
		epctrl |= DXEPCTL_EPTYPE_CONTROL;
3105 3106 3107
		break;
	}

3108 3109
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
3110 3111
	 * a unique tx-fifo even if it is non-periodic.
	 */
3112
	if (dir_in && hsotg->dedicated_fifos) {
3113 3114
		u32 fifo_index = 0;
		u32 fifo_size = UINT_MAX;
3115
		size = hs_ep->ep.maxpacket*hs_ep->mc;
3116
		for (i = 1; i < hsotg->num_of_eps; ++i) {
3117 3118
			if (hsotg->fifo_map & (1<<i))
				continue;
3119
			val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
3120 3121 3122
			val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
			if (val < size)
				continue;
3123 3124 3125 3126 3127
			/* Search for smallest acceptable fifo */
			if (val < fifo_size) {
				fifo_size = val;
				fifo_index = i;
			}
3128
		}
3129
		if (!fifo_index) {
3130 3131
			dev_err(hsotg->dev,
				"%s: No suitable fifo found\n", __func__);
3132 3133 3134
			ret = -ENOMEM;
			goto error;
		}
3135 3136 3137 3138
		hsotg->fifo_map |= 1 << fifo_index;
		epctrl |= DXEPCTL_TXFNUM(fifo_index);
		hs_ep->fifo_index = fifo_index;
		hs_ep->fifo_size = fifo_size;
3139
	}
3140

3141
	/* for non control endpoints, set PID to D0 */
3142
	if (index && !hs_ep->isochronous)
3143
		epctrl |= DXEPCTL_SETD0PID;
3144 3145 3146 3147

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

3148
	dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
3149
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
3150
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
3151 3152

	/* enable the endpoint interrupt */
3153
	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
3154

3155
error:
3156
	spin_unlock_irqrestore(&hsotg->lock, flags);
3157
	return ret;
3158 3159
}

3160
/**
3161
 * dwc2_hsotg_ep_disable - disable given endpoint
3162 3163
 * @ep: The endpoint to disable.
 */
3164
static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
3165
{
3166
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3167
	struct dwc2_hsotg *hsotg = hs_ep->parent;
3168 3169 3170 3171 3172 3173
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

3174
	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
3175

3176
	if (ep == &hsotg->eps_out[0]->ep) {
3177 3178 3179 3180
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

3181
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3182

3183
	spin_lock_irqsave(&hsotg->lock, flags);
3184

3185
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3186 3187 3188
	ctrl &= ~DXEPCTL_EPENA;
	ctrl &= ~DXEPCTL_USBACTEP;
	ctrl |= DXEPCTL_SNAK;
3189 3190

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
3191
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
3192 3193

	/* disable endpoint interrupts */
3194
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
3195

3196 3197 3198
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);

3199 3200 3201 3202
	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
	hs_ep->fifo_index = 0;
	hs_ep->fifo_size = 0;

3203
	spin_unlock_irqrestore(&hsotg->lock, flags);
3204 3205 3206 3207 3208 3209 3210
	return 0;
}

/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
3211
 */
3212
static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
3213
{
3214
	struct dwc2_hsotg_req *req, *treq;
3215 3216 3217 3218 3219 3220 3221 3222 3223

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg,
							u32 bit, u32 timeout)
{
	u32 i;

	for (i = 0; i < timeout; i++) {
		if (dwc2_readl(hs_otg->regs + reg) & bit)
			return 0;
		udelay(1);
	}

	return -ETIMEDOUT;
}

static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
						struct dwc2_hsotg_ep *hs_ep)
{
	u32 epctrl_reg;
	u32 epint_reg;

	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
		DOEPCTL(hs_ep->index);
	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
		DOEPINT(hs_ep->index);

	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
			hs_ep->name);
	if (hs_ep->dir_in) {
		__orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
		/* Wait for Nak effect */
		if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
						DXEPINT_INEPNAKEFF, 100))
			dev_warn(hsotg->dev,
				"%s: timeout DIEPINT.NAKEFF\n", __func__);
	} else {
3259 3260
		if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF))
			__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3261 3262 3263

		/* Wait for global nak to take effect */
		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3264
						GINTSTS_GOUTNAKEFF, 100))
3265
			dev_warn(hsotg->dev,
3266
				"%s: timeout GINTSTS.GOUTNAKEFF\n", __func__);
3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290
	}

	/* Disable ep */
	__orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);

	/* Wait for ep to be disabled */
	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
		dev_warn(hsotg->dev,
			"%s: timeout DOEPCTL.EPDisable\n", __func__);

	if (hs_ep->dir_in) {
		if (hsotg->dedicated_fifos) {
			dwc2_writel(GRSTCTL_TXFNUM(hs_ep->fifo_index) |
				GRSTCTL_TXFFLSH, hsotg->regs + GRSTCTL);
			/* Wait for fifo flush */
			if (dwc2_hsotg_wait_bit_set(hsotg, GRSTCTL,
							GRSTCTL_TXFFLSH, 100))
				dev_warn(hsotg->dev,
					"%s: timeout flushing fifos\n",
					__func__);
		}
		/* TODO: Flush shared tx fifo */
	} else {
		/* Remove global NAKs */
3291
		__bic32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3292 3293 3294
	}
}

3295
/**
3296
 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
3297 3298 3299
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
3300
static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
3301
{
3302 3303
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3304
	struct dwc2_hsotg *hs = hs_ep->parent;
3305 3306
	unsigned long flags;

3307
	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
3308

3309
	spin_lock_irqsave(&hs->lock, flags);
3310 3311

	if (!on_list(hs_ep, hs_req)) {
3312
		spin_unlock_irqrestore(&hs->lock, flags);
3313 3314 3315
		return -EINVAL;
	}

3316 3317 3318 3319
	/* Dequeue already started request */
	if (req == &hs_ep->req->req)
		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);

3320
	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
3321
	spin_unlock_irqrestore(&hs->lock, flags);
3322 3323 3324 3325

	return 0;
}

3326
/**
3327
 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
3328 3329
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
3330 3331 3332 3333 3334
 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
 *       the endpoint is busy processing requests.
 *
 * We need to stall the endpoint immediately if request comes from set_feature
 * protocol command handler.
3335
 */
3336
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
3337
{
3338
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3339
	struct dwc2_hsotg *hs = hs_ep->parent;
3340 3341 3342
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
3343
	u32 xfertype;
3344 3345 3346

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

3347 3348
	if (index == 0) {
		if (value)
3349
			dwc2_hsotg_stall_ep0(hs);
3350 3351 3352 3353 3354 3355
		else
			dev_warn(hs->dev,
				 "%s: can't clear halt on ep0\n", __func__);
		return 0;
	}

3356 3357 3358 3359 3360
	if (hs_ep->isochronous) {
		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
		return -EINVAL;
	}

3361 3362 3363 3364 3365 3366
	if (!now && value && !list_empty(&hs_ep->queue)) {
		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
			ep->name);
		return -EAGAIN;
	}

3367 3368
	if (hs_ep->dir_in) {
		epreg = DIEPCTL(index);
3369
		epctl = dwc2_readl(hs->regs + epreg);
3370 3371

		if (value) {
3372
			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
3373 3374 3375 3376 3377 3378 3379 3380 3381
			if (epctl & DXEPCTL_EPENA)
				epctl |= DXEPCTL_EPDIS;
		} else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
3382
		dwc2_writel(epctl, hs->regs + epreg);
3383
	} else {
3384

3385
		epreg = DOEPCTL(index);
3386
		epctl = dwc2_readl(hs->regs + epreg);
3387

3388 3389 3390 3391 3392 3393 3394 3395 3396
		if (value)
			epctl |= DXEPCTL_STALL;
		else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
3397
		dwc2_writel(epctl, hs->regs + epreg);
3398
	}
3399

3400 3401
	hs_ep->halted = value;

3402 3403 3404
	return 0;
}

3405
/**
3406
 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
3407 3408 3409
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
3410
static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
3411
{
3412
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3413
	struct dwc2_hsotg *hs = hs_ep->parent;
3414 3415 3416 3417
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
3418
	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
3419 3420 3421 3422 3423
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

3424 3425 3426 3427 3428 3429 3430 3431
static struct usb_ep_ops dwc2_hsotg_ep_ops = {
	.enable		= dwc2_hsotg_ep_enable,
	.disable	= dwc2_hsotg_ep_disable,
	.alloc_request	= dwc2_hsotg_ep_alloc_request,
	.free_request	= dwc2_hsotg_ep_free_request,
	.queue		= dwc2_hsotg_ep_queue_lock,
	.dequeue	= dwc2_hsotg_ep_dequeue,
	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
3432
	/* note, don't believe we have any call for the fifo routines */
3433 3434
};

3435
/**
3436
 * dwc2_hsotg_init - initalize the usb core
3437 3438
 * @hsotg: The driver state
 */
3439
static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
3440
{
3441
	u32 trdtim;
3442
	u32 usbcfg;
3443 3444
	/* unmask subset of endpoint interrupts */

3445 3446 3447
	dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DIEPMSK);
3448

3449 3450 3451
	dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DOEPMSK);
3452

3453
	dwc2_writel(0, hsotg->regs + DAINTMSK);
3454 3455

	/* Be in disconnected state until gadget is registered */
3456
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3457 3458 3459 3460

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3461 3462
		dwc2_readl(hsotg->regs + GRXFSIZ),
		dwc2_readl(hsotg->regs + GNPTXFSIZ));
3463

3464
	dwc2_hsotg_init_fifo(hsotg);
3465

3466 3467 3468 3469 3470
	/* keep other bits untouched (so e.g. forced modes are not lost) */
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
		GUSBCFG_HNPCAP);

3471
	/* set the PLL on, remove the HNP/SRP and set the PHY */
3472
	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3473 3474 3475
	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
		(trdtim << GUSBCFG_USBTRDTIM_SHIFT);
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3476

3477 3478
	if (using_dma(hsotg))
		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
3479 3480
}

3481
/**
3482
 * dwc2_hsotg_udc_start - prepare the udc for work
3483 3484 3485 3486 3487 3488
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
3489
static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
3490
			   struct usb_gadget_driver *driver)
3491
{
3492
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3493
	unsigned long flags;
3494 3495 3496
	int ret;

	if (!hsotg) {
3497
		pr_err("%s: called with no device\n", __func__);
3498 3499 3500 3501 3502 3503 3504 3505
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

3506
	if (driver->max_speed < USB_SPEED_FULL)
3507 3508
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

3509
	if (!driver->setup) {
3510 3511 3512 3513 3514 3515 3516 3517
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
3518
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
3519 3520
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

3521 3522 3523 3524
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
		ret = dwc2_lowlevel_hw_enable(hsotg);
		if (ret)
			goto err;
3525 3526
	}

3527 3528
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
3529

3530
	spin_lock_irqsave(&hsotg->lock, flags);
3531 3532 3533 3534 3535
	if (dwc2_hw_is_device(hsotg)) {
		dwc2_hsotg_init(hsotg);
		dwc2_hsotg_core_init_disconnected(hsotg, false);
	}

3536
	hsotg->enabled = 0;
3537 3538
	spin_unlock_irqrestore(&hsotg->lock, flags);

3539
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
3540

3541 3542 3543 3544 3545 3546 3547
	return 0;

err:
	hsotg->driver = NULL;
	return ret;
}

3548
/**
3549
 * dwc2_hsotg_udc_stop - stop the udc
3550 3551 3552 3553 3554
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
3555
static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
3556
{
3557
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3558
	unsigned long flags = 0;
3559 3560 3561 3562 3563 3564
	int ep;

	if (!hsotg)
		return -ENODEV;

	/* all endpoints should be shutdown */
3565 3566
	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
3567
			dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3568
		if (hsotg->eps_out[ep])
3569
			dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3570
	}
3571

3572 3573
	spin_lock_irqsave(&hsotg->lock, flags);

3574
	hsotg->driver = NULL;
3575
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3576
	hsotg->enabled = 0;
3577

3578 3579
	spin_unlock_irqrestore(&hsotg->lock, flags);

3580 3581
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, NULL);
3582

3583 3584
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		dwc2_lowlevel_hw_disable(hsotg);
3585 3586 3587 3588

	return 0;
}

3589
/**
3590
 * dwc2_hsotg_gadget_getframe - read the frame number
3591 3592 3593 3594
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
3595
static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
3596
{
3597
	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
3598 3599
}

3600
/**
3601
 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
3602 3603 3604 3605 3606
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
3607
static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
3608
{
3609
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3610 3611
	unsigned long flags = 0;

3612 3613 3614 3615 3616 3617 3618 3619
	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
			hsotg->op_state);

	/* Don't modify pullup state while in host mode */
	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
		hsotg->enabled = is_on;
		return 0;
	}
3620 3621 3622

	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
3623
		hsotg->enabled = 1;
3624 3625
		dwc2_hsotg_core_init_disconnected(hsotg, false);
		dwc2_hsotg_core_connect(hsotg);
3626
	} else {
3627 3628
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
3629
		hsotg->enabled = 0;
3630 3631 3632 3633 3634 3635 3636 3637
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return 0;
}

3638
static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
3639 3640 3641 3642 3643 3644 3645
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
	unsigned long flags;

	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
	spin_lock_irqsave(&hsotg->lock, flags);

3646 3647 3648 3649 3650 3651 3652
	/*
	 * If controller is hibernated, it must exit from hibernation
	 * before being initialized / de-initialized
	 */
	if (hsotg->lx_state == DWC2_L2)
		dwc2_exit_hibernation(hsotg, false);

3653
	if (is_active) {
3654
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3655

3656
		dwc2_hsotg_core_init_disconnected(hsotg, false);
3657
		if (hsotg->enabled)
3658
			dwc2_hsotg_core_connect(hsotg);
3659
	} else {
3660 3661
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
3662 3663 3664 3665 3666 3667
	}

	spin_unlock_irqrestore(&hsotg->lock, flags);
	return 0;
}

3668
/**
3669
 * dwc2_hsotg_vbus_draw - report bMaxPower field
3670 3671 3672 3673 3674
 * @gadget: The usb gadget state
 * @mA: Amount of current
 *
 * Report how much power the device may consume to the phy.
 */
3675
static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned mA)
3676 3677 3678 3679 3680 3681 3682 3683
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);

	if (IS_ERR_OR_NULL(hsotg->uphy))
		return -ENOTSUPP;
	return usb_phy_set_power(hsotg->uphy, mA);
}

3684 3685 3686 3687 3688 3689 3690
static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
	.get_frame	= dwc2_hsotg_gadget_getframe,
	.udc_start		= dwc2_hsotg_udc_start,
	.udc_stop		= dwc2_hsotg_udc_stop,
	.pullup                 = dwc2_hsotg_pullup,
	.vbus_session		= dwc2_hsotg_vbus_session,
	.vbus_draw		= dwc2_hsotg_vbus_draw,
3691 3692 3693
};

/**
3694
 * dwc2_hsotg_initep - initialise a single endpoint
3695 3696 3697 3698 3699 3700 3701 3702
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
3703 3704
static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
				       struct dwc2_hsotg_ep *hs_ep,
3705 3706
				       int epnum,
				       bool dir_in)
3707 3708 3709 3710 3711
{
	char *dir;

	if (epnum == 0)
		dir = "";
3712
	else if (dir_in)
3713
		dir = "in";
3714 3715
	else
		dir = "out";
3716

3717
	hs_ep->dir_in = dir_in;
3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730
	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
3731
	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3732
	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
3733

3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746
	if (epnum == 0) {
		hs_ep->ep.caps.type_control = true;
	} else {
		hs_ep->ep.caps.type_iso = true;
		hs_ep->ep.caps.type_bulk = true;
		hs_ep->ep.caps.type_int = true;
	}

	if (dir_in)
		hs_ep->ep.caps.dir_in = true;
	else
		hs_ep->ep.caps.dir_out = true;

3747 3748
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
3749 3750 3751 3752
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
3753
		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3754
		if (dir_in)
3755
			dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
3756
		else
3757
			dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
3758 3759 3760
	}
}

3761
/**
3762
 * dwc2_hsotg_hw_cfg - read HW configuration registers
3763 3764 3765 3766
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
3767
static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
3768
{
3769 3770 3771 3772
	u32 cfg;
	u32 ep_type;
	u32 i;

3773
	/* check hardware configuration */
3774

3775 3776
	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;

3777 3778
	/* Add ep0 */
	hsotg->num_of_eps++;
3779

3780
	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct dwc2_hsotg_ep),
3781 3782 3783
								GFP_KERNEL);
	if (!hsotg->eps_in[0])
		return -ENOMEM;
3784
	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
3785 3786
	hsotg->eps_out[0] = hsotg->eps_in[0];

3787
	cfg = hsotg->hw_params.dev_ep_dirs;
3788
	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
3789 3790 3791 3792
		ep_type = cfg & 3;
		/* Direction in or both */
		if (!(ep_type & 2)) {
			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
3793
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
3794 3795 3796 3797 3798 3799
			if (!hsotg->eps_in[i])
				return -ENOMEM;
		}
		/* Direction out or both */
		if (!(ep_type & 1)) {
			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
3800
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
3801 3802 3803 3804 3805
			if (!hsotg->eps_out[i])
				return -ENOMEM;
		}
	}

3806 3807
	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
3808

3809 3810 3811 3812
	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
		 hsotg->num_of_eps,
		 hsotg->dedicated_fifos ? "dedicated" : "shared",
		 hsotg->fifo_mem);
3813
	return 0;
3814 3815
}

3816
/**
3817
 * dwc2_hsotg_dump - dump state of the udc
3818 3819
 * @param: The device state
 */
3820
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
3821
{
M
Mark Brown 已提交
3822
#ifdef DEBUG
3823 3824 3825 3826 3827 3828
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3829 3830
		 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
		 dwc2_readl(regs + DIEPMSK));
3831

3832
	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
3833
		 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
3834 3835

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3836
		 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
3837 3838 3839

	/* show periodic fifo settings */

3840
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3841
		val = dwc2_readl(regs + DPTXFSIZN(idx));
3842
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3843 3844
			 val >> FIFOSIZE_DEPTH_SHIFT,
			 val & FIFOSIZE_STARTADDR_MASK);
3845 3846
	}

3847
	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
3848 3849
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3850 3851 3852
			 dwc2_readl(regs + DIEPCTL(idx)),
			 dwc2_readl(regs + DIEPTSIZ(idx)),
			 dwc2_readl(regs + DIEPDMA(idx)));
3853

3854
		val = dwc2_readl(regs + DOEPCTL(idx));
3855 3856
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3857 3858 3859
			 idx, dwc2_readl(regs + DOEPCTL(idx)),
			 dwc2_readl(regs + DOEPTSIZ(idx)),
			 dwc2_readl(regs + DOEPDMA(idx)));
3860 3861 3862 3863

	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3864
		 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
3865
#endif
3866 3867
}

3868
/**
3869 3870 3871
 * dwc2_gadget_init - init function for gadget
 * @dwc2: The data structure for the DWC2 driver.
 * @irq: The IRQ number for the controller.
3872
 */
3873
int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
3874
{
3875
	struct device *dev = hsotg->dev;
3876 3877
	int epnum;
	int ret;
3878

3879 3880
	/* Dump fifo information */
	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
3881 3882
		hsotg->params.g_np_tx_fifo_size);
	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
3883

3884
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3885
	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
3886
	hsotg->gadget.name = dev_name(dev);
3887 3888
	if (hsotg->dr_mode == USB_DR_MODE_OTG)
		hsotg->gadget.is_otg = 1;
3889 3890
	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3891

3892
	ret = dwc2_hsotg_hw_cfg(hsotg);
3893 3894
	if (ret) {
		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
3895
		return ret;
3896 3897
	}

3898 3899
	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
3900
	if (!hsotg->ctrl_buff)
3901
		return -ENOMEM;
3902 3903 3904

	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
3905
	if (!hsotg->ep0_buff)
3906
		return -ENOMEM;
3907

3908 3909 3910 3911 3912 3913
	if (using_desc_dma(hsotg)) {
		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
		if (ret < 0)
			return ret;
	}

3914
	ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
3915
				dev_name(hsotg->dev), hsotg);
3916
	if (ret < 0) {
3917
		dev_err(dev, "cannot claim IRQ for gadget\n");
3918
		return ret;
3919 3920
	}

3921 3922 3923 3924
	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
3925
		return -EINVAL;
3926 3927 3928 3929 3930
	}

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3931
	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
3932 3933 3934

	/* allocate EP0 request */

3935
	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
3936 3937 3938
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
3939
		return -ENOMEM;
3940
	}
3941 3942

	/* initialise the endpoints now the core has been initialised */
3943 3944
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
		if (hsotg->eps_in[epnum])
3945
			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
3946 3947
								epnum, 1);
		if (hsotg->eps_out[epnum])
3948
			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
3949 3950
								epnum, 0);
	}
3951

3952
	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
3953
	if (ret)
3954
		return ret;
3955

3956
	dwc2_hsotg_dump(hsotg);
3957 3958 3959 3960

	return 0;
}

3961
/**
3962
 * dwc2_hsotg_remove - remove function for hsotg driver
3963 3964
 * @pdev: The platform information for the driver
 */
3965
int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
3966
{
3967
	usb_del_gadget_udc(&hsotg->gadget);
3968

3969 3970 3971
	return 0;
}

3972
int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
3973 3974 3975
{
	unsigned long flags;

3976
	if (hsotg->lx_state != DWC2_L0)
3977
		return 0;
3978

3979 3980 3981
	if (hsotg->driver) {
		int ep;

3982 3983 3984
		dev_info(hsotg->dev, "suspending usb gadget %s\n",
			 hsotg->driver->driver.name);

3985 3986
		spin_lock_irqsave(&hsotg->lock, flags);
		if (hsotg->enabled)
3987 3988
			dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
3989 3990
		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
		spin_unlock_irqrestore(&hsotg->lock, flags);
3991

3992 3993
		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
			if (hsotg->eps_in[ep])
3994
				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3995
			if (hsotg->eps_out[ep])
3996
				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3997
		}
3998 3999
	}

4000
	return 0;
4001 4002
}

4003
int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4004 4005 4006
{
	unsigned long flags;

4007
	if (hsotg->lx_state == DWC2_L2)
4008
		return 0;
4009

4010 4011 4012
	if (hsotg->driver) {
		dev_info(hsotg->dev, "resuming usb gadget %s\n",
			 hsotg->driver->driver.name);
4013

4014
		spin_lock_irqsave(&hsotg->lock, flags);
4015
		dwc2_hsotg_core_init_disconnected(hsotg, false);
4016
		if (hsotg->enabled)
4017
			dwc2_hsotg_core_connect(hsotg);
4018 4019
		spin_unlock_irqrestore(&hsotg->lock, flags);
	}
4020

4021
	return 0;
4022
}
4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124

/**
 * dwc2_backup_device_registers() - Backup controller device registers.
 * When suspending usb bus, registers needs to be backuped
 * if controller power is disabled once suspended.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Backup dev regs */
	dr = &hsotg->dr_backup;

	dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
	dr->dctl = dwc2_readl(hsotg->regs + DCTL);
	dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
	dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
	dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Backup IN EPs */
		dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));

		/* Ensure DATA PID is correctly configured */
		if (dr->diepctl[i] & DXEPCTL_DPID)
			dr->diepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->diepctl[i] |= DXEPCTL_SETD0PID;

		dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
		dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));

		/* Backup OUT EPs */
		dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));

		/* Ensure DATA PID is correctly configured */
		if (dr->doepctl[i] & DXEPCTL_DPID)
			dr->doepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->doepctl[i] |= DXEPCTL_SETD0PID;

		dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
		dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
	}
	dr->valid = true;
	return 0;
}

/**
 * dwc2_restore_device_registers() - Restore controller device registers.
 * When resuming usb bus, device registers needs to be restored
 * if controller power were disabled.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	u32 dctl;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Restore dev regs */
	dr = &hsotg->dr_backup;
	if (!dr->valid) {
		dev_err(hsotg->dev, "%s: no device registers to restore\n",
			__func__);
		return -EINVAL;
	}
	dr->valid = false;

	dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
	dwc2_writel(dr->dctl, hsotg->regs + DCTL);
	dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
	dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
	dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Restore IN EPs */
		dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
		dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
		dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));

		/* Restore OUT EPs */
		dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
		dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
	}

	/* Set the Power-On Programming done bit */
	dctl = dwc2_readl(hsotg->regs + DCTL);
	dctl |= DCTL_PWRONPRGDONE;
	dwc2_writel(dctl, hsotg->regs + DCTL);

	return 0;
}