gadget.c 93.9 KB
Newer Older
1
/**
2 3
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
4 5 6 7 8 9 10 11 12 13 14
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
15
 */
16 17 18 19 20 21 22

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
23
#include <linux/mutex.h>
24 25 26
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
27
#include <linux/slab.h>
28
#include <linux/of_platform.h>
29 30 31

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
32
#include <linux/usb/phy.h>
33

34
#include "core.h"
35
#include "hw.h"
36 37

/* conversion functions */
38
static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
39
{
40
	return container_of(req, struct dwc2_hsotg_req, req);
41 42
}

43
static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
44
{
45
	return container_of(ep, struct dwc2_hsotg_ep, ep);
46 47
}

48
static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
49
{
50
	return container_of(gadget, struct dwc2_hsotg, gadget);
51 52 53 54
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
55
	dwc2_writel(dwc2_readl(ptr) | val, ptr);
56 57 58 59
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
60
	dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
61 62
}

63
static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
64 65 66 67 68 69 70 71
						u32 ep_index, u32 dir_in)
{
	if (dir_in)
		return hsotg->eps_in[ep_index];
	else
		return hsotg->eps_out[ep_index];
}

72
/* forward declaration of functions */
73
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
92
 * g_using_dma is set depending on dts flag.
93
 */
94
static inline bool using_dma(struct dwc2_hsotg *hsotg)
95
{
96
	return hsotg->g_using_dma;
97 98 99
}

/**
100
 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
101 102 103
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
104
static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
105
{
106
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
107 108 109 110 111 112
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
113
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
114 115 116 117
	}
}

/**
118
 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
119 120 121
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
122
static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
123
{
124
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
125 126 127 128 129
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
130
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
131 132 133
}

/**
134
 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
135 136 137 138 139 140 141 142
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
143
static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
144 145 146 147 148 149 150 151 152 153 154
				 unsigned int ep, unsigned int dir_in,
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
155
	daint = dwc2_readl(hsotg->regs + DAINTMSK);
156 157 158 159
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
160
	dwc2_writel(daint, hsotg->regs + DAINTMSK);
161 162 163 164
	local_irq_restore(flags);
}

/**
165
 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
166 167
 * @hsotg: The device instance.
 */
168
static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
169
{
170 171
	unsigned int ep;
	unsigned int addr;
172
	int timeout;
173 174
	u32 val;

175 176 177 178
	/* Reset fifo map if not correctly cleared during previous session */
	WARN_ON(hsotg->fifo_map);
	hsotg->fifo_map = 0;

179
	/* set RX/NPTX FIFO sizes */
180 181
	dwc2_writel(hsotg->g_rx_fifo_sz, hsotg->regs + GRXFSIZ);
	dwc2_writel((hsotg->g_rx_fifo_sz << FIFOSIZE_STARTADDR_SHIFT) |
182 183
		(hsotg->g_np_g_tx_fifo_sz << FIFOSIZE_DEPTH_SHIFT),
		hsotg->regs + GNPTXFSIZ);
184

185 186
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
187 188
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
189 190
	 * known values.
	 */
191 192

	/* start at the end of the GNPTXFSIZ, rounded up */
193
	addr = hsotg->g_rx_fifo_sz + hsotg->g_np_g_tx_fifo_sz;
194

195
	/*
196
	 * Configure fifos sizes from provided configuration and assign
197 198
	 * them to endpoints dynamically according to maxpacket size value of
	 * given endpoint.
199
	 */
200 201 202
	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
		if (!hsotg->g_tx_fifo_sz[ep])
			continue;
203
		val = addr;
204 205
		val |= hsotg->g_tx_fifo_sz[ep] << FIFOSIZE_DEPTH_SHIFT;
		WARN_ONCE(addr + hsotg->g_tx_fifo_sz[ep] > hsotg->fifo_mem,
206
			  "insufficient fifo memory");
207
		addr += hsotg->g_tx_fifo_sz[ep];
208

209
		dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
210
	}
211

212 213 214 215
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
216

217
	dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
218
	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
219 220 221 222

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
223
		val = dwc2_readl(hsotg->regs + GRSTCTL);
224

225
		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
226 227 228 229 230 231
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
232
			break;
233 234 235 236 237 238
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
239 240 241 242 243 244 245 246
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
247
static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
248
						      gfp_t flags)
249
{
250
	struct dwc2_hsotg_req *req;
251

252
	req = kzalloc(sizeof(struct dwc2_hsotg_req), flags);
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
268
static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
269 270 271 272 273
{
	return hs_ep->periodic;
}

/**
274
 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
275 276 277 278
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
279
 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
280
 * of a request to ensure the buffer is ready for access by the caller.
281
 */
282 283 284
static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req)
285 286 287 288 289 290 291
{
	struct usb_request *req = &hs_req->req;

	/* ignore this if we're not moving any data */
	if (hs_req->req.length == 0)
		return;

292
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
293 294 295
}

/**
296
 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
297 298 299 300 301 302 303 304 305 306 307 308 309
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
310
 */
311 312 313
static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req)
314 315
{
	bool periodic = is_ep_periodic(hs_ep);
316
	u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
317 318 319 320 321
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;
322
	int max_transfer;
323 324 325 326 327 328 329

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

330
	if (periodic && !hsotg->dedicated_fifos) {
331
		u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
332 333 334
		int size_left;
		int size_done;

335 336 337 338
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
339

340
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
341

342 343
		/*
		 * if shared fifo, we cannot write anything until the
344 345 346
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
347
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
348 349 350
			return -ENOSPC;
		}

351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
368
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
369 370
			return -ENOSPC;
		}
371
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
372
		can_write = dwc2_readl(hsotg->regs + DTXFSTS(hs_ep->index));
373 374 375

		can_write &= 0xffff;
		can_write *= 4;
376
	} else {
377
		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
378 379 380 381
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

382
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
383 384 385
			return -ENOSPC;
		}

386
		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
387
		can_write *= 4;	/* fifo size is in 32bit quantities. */
388 389
	}

390 391 392 393
	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
		 __func__, gnptxsts, can_write, to_write, max_transfer);
394

395 396
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
397 398 399
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
400
	if (can_write > 512 && !periodic)
401 402
		can_write = 512;

403 404
	/*
	 * limit the write to one max-packet size worth of data, but allow
405
	 * the transfer to return that it did not run out of fifo space
406 407
	 * doing it.
	 */
408 409
	if (to_write > max_transfer) {
		to_write = max_transfer;
410

411 412
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
413
			dwc2_hsotg_en_gsint(hsotg,
414 415
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
416 417
	}

418 419 420 421
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
422
		pkt_round = to_write % max_transfer;
423

424 425
		/*
		 * Round the write down to an
426 427 428 429 430 431 432 433 434
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

435 436 437 438
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
439

440 441
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
442
			dwc2_hsotg_en_gsint(hsotg,
443 444
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
		 to_write, hs_req->req.length, can_write, buf_pos);

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

462
	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
463 464 465 466 467 468 469 470 471 472 473

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
474
static unsigned get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
475 476 477 478 479 480
{
	int index = hs_ep->index;
	unsigned maxsize;
	unsigned maxpkt;

	if (index != 0) {
481 482
		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
483
	} else {
484
		maxsize = 64+64;
485
		if (hs_ep->dir_in)
486
			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
487
		else
488 489 490 491 492 493 494
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

495 496 497 498
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
499 500 501 502 503 504 505 506

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

/**
507
 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
508 509 510 511 512 513 514 515
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
516 517 518
static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req,
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
	unsigned length;
	unsigned packets;
	unsigned maxreq;

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

545 546
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
547 548

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
549
		__func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
550 551
		hs_ep->dir_in ? "in" : "out");

552
	/* If endpoint is stalled, we will restart request later */
553
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
554

555
	if (index && ctrl & DXEPCTL_STALL) {
556 557 558 559
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

560
	length = ureq->length - ureq->actual;
561 562
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582

	maxreq = get_ep_limit(hs_ep);
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

583 584 585 586 587
	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
		return;
	}

588
	if (dir_in && index != 0)
589
		if (hs_ep->isochronous)
590
			epsize = DXEPTSIZ_MC(packets);
591
		else
592
			epsize = DXEPTSIZ_MC(1);
593 594 595
	else
		epsize = 0;

596 597 598 599 600 601 602 603
	/*
	 * zero length packet should be programmed on its own and should not
	 * be counted in DIEPTSIZ.PktCnt with other packets.
	 */
	if (dir_in && ureq->zero && !continuing) {
		/* Test if zlp is actually required. */
		if ((ureq->length >= hs_ep->ep.maxpacket) &&
					!(ureq->length % hs_ep->ep.maxpacket))
604
			hs_ep->send_zlp = 1;
605 606
	}

607 608
	epsize |= DXEPTSIZ_PKTCNT(packets);
	epsize |= DXEPTSIZ_XFERSIZE(length);
609 610 611 612 613 614 615 616

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

	/* write size / packets */
617
	dwc2_writel(epsize, hsotg->regs + epsize_reg);
618

619
	if (using_dma(hsotg) && !continuing) {
620 621
		unsigned int dma_reg;

622 623
		/*
		 * write DMA address to control register, buffer already
624
		 * synced by dwc2_hsotg_ep_queue().
625
		 */
626

627
		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
628
		dwc2_writel(ureq->dma, hsotg->regs + dma_reg);
629

630
		dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
631
			__func__, &ureq->dma, dma_reg);
632 633
	}

634 635
	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
636

637
	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
638 639

	/* For Setup request do not clear NAK */
640
	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
641
		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
642

643
	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
644
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
645

646 647
	/*
	 * set these, it seems that DMA support increments past the end
648
	 * of the packet buffer so we need to calculate the length from
649 650
	 * this information.
	 */
651 652 653 654 655 656 657
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

658
		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
659 660
	}

661 662 663 664
	/*
	 * clear the INTknTXFEmpMsk when we start request, more as a aide
	 * to debugging to see what is going on.
	 */
665
	if (dir_in)
666
		dwc2_writel(DIEPMSK_INTKNTXFEMPMSK,
667
		       hsotg->regs + DIEPINT(index));
668

669 670 671 672
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
673 674

	/* check ep is enabled */
675
	if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
676
		dev_dbg(hsotg->dev,
677
			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
678
			 index, dwc2_readl(hsotg->regs + epctrl_reg));
679

680
	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
681
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
682 683

	/* enable ep interrupts */
684
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
685 686 687
}

/**
688
 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
689 690 691 692 693 694 695 696 697
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
698
 */
699 700
static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
			     struct dwc2_hsotg_ep *hs_ep,
701 702
			     struct usb_request *req)
{
703
	struct dwc2_hsotg_req *hs_req = our_req(req);
704
	int ret;
705 706 707 708 709

	/* if the length is zero, ignore the DMA data */
	if (hs_req->req.length == 0)
		return 0;

710 711 712
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
713 714 715 716 717 718 719 720 721 722

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

723 724
static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
{
	void *req_buf = hs_req->req.buf;

	/* If dma is not being used or buffer is aligned */
	if (!using_dma(hsotg) || !((long)req_buf & 3))
		return 0;

	WARN_ON(hs_req->saved_req_buf);

	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
			hs_ep->ep.name, req_buf, hs_req->req.length);

	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
	if (!hs_req->req.buf) {
		hs_req->req.buf = req_buf;
		dev_err(hsotg->dev,
			"%s: unable to allocate memory for bounce buffer\n",
			__func__);
		return -ENOMEM;
	}

	/* Save actual buffer */
	hs_req->saved_req_buf = req_buf;

	if (hs_ep->dir_in)
		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
	return 0;
}

754 755
static void dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
{
	/* If dma is not being used or buffer was aligned */
	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
		return;

	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);

	/* Copy data from bounce buffer on successful out transfer */
	if (!hs_ep->dir_in && !hs_req->req.status)
		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
							hs_req->req.actual);

	/* Free bounce buffer */
	kfree(hs_req->req.buf);

	hs_req->req.buf = hs_req->saved_req_buf;
	hs_req->saved_req_buf = NULL;
}

776
static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
777 778
			      gfp_t gfp_flags)
{
779 780
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
781
	struct dwc2_hsotg *hs = hs_ep->parent;
782
	bool first;
783
	int ret;
784 785 786 787 788

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

789 790 791 792 793 794 795
	/* Prevent new request submission when controller is suspended */
	if (hs->lx_state == DWC2_L2) {
		dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
				__func__);
		return -EAGAIN;
	}

796 797 798 799 800
	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

801
	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
802 803 804
	if (ret)
		return ret;

805 806
	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
807
		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
808 809 810 811 812 813 814 815
		if (ret)
			return ret;
	}

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

	if (first)
816
		dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
817 818 819 820

	return 0;
}

821
static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
822 823
			      gfp_t gfp_flags)
{
824
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
825
	struct dwc2_hsotg *hs = hs_ep->parent;
826 827 828 829
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
830
	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
831 832 833 834 835
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

836
static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
837 838
				      struct usb_request *req)
{
839
	struct dwc2_hsotg_req *hs_req = our_req(req);
840 841 842 843 844

	kfree(hs_req);
}

/**
845
 * dwc2_hsotg_complete_oursetup - setup completion callback
846 847 848 849 850 851
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
852
static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
853 854
					struct usb_request *req)
{
855
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
856
	struct dwc2_hsotg *hsotg = hs_ep->parent;
857 858 859

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

860
	dwc2_hsotg_ep_free_request(ep, req);
861 862 863 864 865 866 867 868 869
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
870
 */
871
static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
872 873
					   u32 windex)
{
874
	struct dwc2_hsotg_ep *ep;
875 876 877 878 879 880
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

881
	if (idx > hsotg->num_of_eps)
882 883
		return NULL;

884 885
	ep = index_to_ep(hsotg, idx, dir);

886 887 888 889 890 891
	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

892
/**
893
 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
894 895 896 897
 * @hsotg: The driver state.
 * @testmode: requested usb test mode
 * Enable usb Test Mode requested by the Host.
 */
898
int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
899
{
900
	int dctl = dwc2_readl(hsotg->regs + DCTL);
901 902 903 904 905 906 907 908 909 910 911 912 913

	dctl &= ~DCTL_TSTCTL_MASK;
	switch (testmode) {
	case TEST_J:
	case TEST_K:
	case TEST_SE0_NAK:
	case TEST_PACKET:
	case TEST_FORCE_EN:
		dctl |= testmode << DCTL_TSTCTL_SHIFT;
		break;
	default:
		return -EINVAL;
	}
914
	dwc2_writel(dctl, hsotg->regs + DCTL);
915 916 917
	return 0;
}

918
/**
919
 * dwc2_hsotg_send_reply - send reply to control request
920 921 922 923 924 925 926 927
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
928 929
static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *ep,
930 931 932 933 934 935 936 937
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

938
	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
939 940 941 942 943 944 945 946
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
947 948 949 950 951
	/*
	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
	 * STATUS stage.
	 */
	req->zero = 0;
952
	req->complete = dwc2_hsotg_complete_oursetup;
953 954 955 956

	if (length)
		memcpy(req->buf, buff, length);

957
	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
958 959 960 961 962 963 964 965 966
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
967
 * dwc2_hsotg_process_req_status - process request GET_STATUS
968 969 970
 * @hsotg: The device state
 * @ctrl: USB control request
 */
971
static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
972 973
					struct usb_ctrlrequest *ctrl)
{
974 975
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_ep *ep;
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
		reply = cpu_to_le16(0); /* bit 0 => self powered,
					 * bit 1 => remote wakeup */
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

1012
	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1013 1014 1015 1016 1017 1018 1019 1020
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

1021
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value);
1022

1023 1024 1025 1026 1027 1028
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
1029
static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1030 1031 1032 1033
{
	if (list_empty(&hs_ep->queue))
		return NULL;

1034
	return list_first_entry(&hs_ep->queue, struct dwc2_hsotg_req, queue);
1035 1036
}

1037
/**
1038
 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1039 1040 1041
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1042
static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1043 1044
					 struct usb_ctrlrequest *ctrl)
{
1045 1046
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_req *hs_req;
1047
	bool restart;
1048
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1049
	struct dwc2_hsotg_ep *ep;
1050
	int ret;
1051
	bool halted;
1052 1053 1054
	u32 recip;
	u32 wValue;
	u32 wIndex;
1055 1056 1057 1058

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
	wValue = le16_to_cpu(ctrl->wValue);
	wIndex = le16_to_cpu(ctrl->wIndex);
	recip = ctrl->bRequestType & USB_RECIP_MASK;

	switch (recip) {
	case USB_RECIP_DEVICE:
		switch (wValue) {
		case USB_DEVICE_TEST_MODE:
			if ((wIndex & 0xff) != 0)
				return -EINVAL;
			if (!set)
				return -EINVAL;

			hsotg->test_mode = wIndex >> 8;
1073
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
			break;
		default:
			return -ENOENT;
		}
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, wIndex);
1087 1088
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1089
				__func__, wIndex);
1090 1091 1092
			return -ENOENT;
		}

1093
		switch (wValue) {
1094
		case USB_ENDPOINT_HALT:
1095 1096
			halted = ep->halted;

1097
			dwc2_hsotg_ep_sethalt(&ep->ep, set);
1098

1099
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1100 1101 1102 1103 1104
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
1105

1106 1107 1108 1109 1110 1111
			/*
			 * we have to complete all requests for ep if it was
			 * halted, and the halt was cleared by CLEAR_FEATURE
			 */

			if (!set && halted) {
1112 1113 1114 1115 1116 1117 1118 1119
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
1120 1121 1122 1123 1124 1125
					if (hs_req->req.complete) {
						spin_unlock(&hsotg->lock);
						usb_gadget_giveback_request(
							&ep->ep, &hs_req->req);
						spin_lock(&hsotg->lock);
					}
1126 1127 1128
				}

				/* If we have pending request, then start it */
1129 1130 1131 1132
				if (!ep->req) {
					restart = !list_empty(&ep->queue);
					if (restart) {
						hs_req = get_ep_head(ep);
1133
						dwc2_hsotg_start_req(hsotg, ep,
1134 1135
								hs_req, false);
					}
1136 1137 1138
				}
			}

1139 1140 1141 1142 1143
			break;

		default:
			return -ENOENT;
		}
1144 1145 1146 1147
		break;
	default:
		return -ENOENT;
	}
1148 1149 1150
	return 1;
}

1151
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1152

1153
/**
1154
 * dwc2_hsotg_stall_ep0 - stall ep0
1155 1156 1157 1158
 * @hsotg: The device state
 *
 * Set stall for ep0 as response for setup request.
 */
1159
static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1160
{
1161
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
	u32 reg;
	u32 ctrl;

	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;

	/*
	 * DxEPCTL_Stall will be cleared by EP once it has
	 * taken effect, so no need to clear later.
	 */

1173
	ctrl = dwc2_readl(hsotg->regs + reg);
1174 1175
	ctrl |= DXEPCTL_STALL;
	ctrl |= DXEPCTL_CNAK;
1176
	dwc2_writel(ctrl, hsotg->regs + reg);
1177 1178

	dev_dbg(hsotg->dev,
1179
		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1180
		ctrl, reg, dwc2_readl(hsotg->regs + reg));
1181 1182 1183 1184 1185

	 /*
	  * complete won't be called, so we enqueue
	  * setup request here
	  */
1186
	 dwc2_hsotg_enqueue_setup(hsotg);
1187 1188
}

1189
/**
1190
 * dwc2_hsotg_process_control - process a control request
1191 1192 1193 1194 1195 1196 1197
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
1198
static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1199 1200
				      struct usb_ctrlrequest *ctrl)
{
1201
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1202 1203 1204
	int ret = 0;
	u32 dcfg;

1205 1206 1207 1208
	dev_dbg(hsotg->dev,
		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
		ctrl->wIndex, ctrl->wLength);
1209

1210 1211 1212 1213
	if (ctrl->wLength == 0) {
		ep0->dir_in = 1;
		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
	} else if (ctrl->bRequestType & USB_DIR_IN) {
1214
		ep0->dir_in = 1;
1215 1216 1217 1218 1219
		hsotg->ep0_state = DWC2_EP0_DATA_IN;
	} else {
		ep0->dir_in = 0;
		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
	}
1220 1221 1222 1223

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1224
			hsotg->connected = 1;
1225
			dcfg = dwc2_readl(hsotg->regs + DCFG);
1226
			dcfg &= ~DCFG_DEVADDR_MASK;
P
Paul Zimmerman 已提交
1227 1228
			dcfg |= (le16_to_cpu(ctrl->wValue) <<
				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1229
			dwc2_writel(dcfg, hsotg->regs + DCFG);
1230 1231 1232

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

1233
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1234 1235 1236
			return;

		case USB_REQ_GET_STATUS:
1237
			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1238 1239 1240 1241
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
1242
			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1243 1244 1245 1246 1247 1248 1249
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
1250
		spin_unlock(&hsotg->lock);
1251
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1252
		spin_lock(&hsotg->lock);
1253 1254 1255 1256
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1257 1258
	/*
	 * the request is either unhandlable, or is not formatted correctly
1259 1260 1261
	 * so respond with a STALL for the status stage to indicate failure.
	 */

1262
	if (ret < 0)
1263
		dwc2_hsotg_stall_ep0(hsotg);
1264 1265 1266
}

/**
1267
 * dwc2_hsotg_complete_setup - completion of a setup transfer
1268 1269 1270 1271 1272 1273
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
1274
static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1275 1276
				     struct usb_request *req)
{
1277
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1278
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1279 1280 1281 1282 1283 1284

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

1285
	spin_lock(&hsotg->lock);
1286
	if (req->actual == 0)
1287
		dwc2_hsotg_enqueue_setup(hsotg);
1288
	else
1289
		dwc2_hsotg_process_control(hsotg, req->buf);
1290
	spin_unlock(&hsotg->lock);
1291 1292 1293
}

/**
1294
 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1295 1296 1297 1298 1299
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
1300
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1301 1302
{
	struct usb_request *req = hsotg->ctrl_req;
1303
	struct dwc2_hsotg_req *hs_req = our_req(req);
1304 1305 1306 1307 1308 1309 1310
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
1311
	req->complete = dwc2_hsotg_complete_setup;
1312 1313 1314 1315 1316 1317

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

1318
	hsotg->eps_out[0]->dir_in = 0;
1319
	hsotg->eps_out[0]->send_zlp = 0;
1320
	hsotg->ep0_state = DWC2_EP0_SETUP;
1321

1322
	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1323 1324
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1325 1326 1327 1328
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1329 1330 1331
	}
}

1332 1333
static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
					struct dwc2_hsotg_ep *hs_ep)
1334 1335 1336 1337 1338 1339
{
	u32 ctrl;
	u8 index = hs_ep->index;
	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);

1340 1341 1342 1343 1344 1345
	if (hs_ep->dir_in)
		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
									index);
	else
		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
									index);
1346

1347 1348 1349
	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
		    DXEPTSIZ_XFERSIZE(0), hsotg->regs +
		    epsiz_reg);
1350

1351
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1352 1353 1354
	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
1355
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1356 1357
}

1358
/**
1359
 * dwc2_hsotg_complete_request - complete a request given to us
1360 1361 1362 1363 1364 1365 1366 1367 1368 1369
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1370
 */
1371 1372 1373
static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
				       struct dwc2_hsotg_ep *hs_ep,
				       struct dwc2_hsotg_req *hs_req,
1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
				       int result)
{
	bool restart;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1386 1387 1388 1389
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1390 1391 1392 1393

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

1394 1395 1396
	if (using_dma(hsotg))
		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1397
	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1398

1399 1400 1401
	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

1402 1403 1404 1405
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1406 1407

	if (hs_req->req.complete) {
1408
		spin_unlock(&hsotg->lock);
1409
		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1410
		spin_lock(&hsotg->lock);
1411 1412
	}

1413 1414
	/*
	 * Look to see if there is anything else to do. Note, the completion
1415
	 * of the previous request may have caused a new request to be started
1416 1417
	 * so be careful when doing this.
	 */
1418 1419 1420 1421 1422

	if (!hs_ep->req && result >= 0) {
		restart = !list_empty(&hs_ep->queue);
		if (restart) {
			hs_req = get_ep_head(hs_ep);
1423
			dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1424 1425 1426 1427 1428
		}
	}
}

/**
1429
 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
1430 1431 1432 1433 1434 1435 1436 1437
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
1438
static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
1439
{
1440 1441
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1442
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1443 1444 1445 1446
	int to_read;
	int max_req;
	int read_ptr;

1447

1448
	if (!hs_req) {
1449
		u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
1450 1451
		int ptr;

1452
		dev_dbg(hsotg->dev,
1453
			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1454 1455 1456 1457
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
1458
			(void)dwc2_readl(fifo);
1459 1460 1461 1462 1463 1464 1465 1466

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

1467 1468 1469
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

1470
	if (to_read > max_req) {
1471 1472
		/*
		 * more data appeared than we where willing
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

1484 1485 1486 1487
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
1488
	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1489 1490 1491
}

/**
1492
 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
1493
 * @hsotg: The device instance
1494
 * @dir_in: If IN zlp
1495 1496 1497 1498 1499
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
1500
 * currently believed that we do not need to wait for any space in
1501 1502
 * the TxFIFO.
 */
1503
static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
1504
{
1505
	/* eps_out[0] is used in both directions */
1506 1507
	hsotg->eps_out[0]->dir_in = dir_in;
	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
1508

1509
	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
1510 1511
}

1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
			u32 epctl_reg)
{
	u32 ctrl;

	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
	if (ctrl & DXEPCTL_EOFRNUM)
		ctrl |= DXEPCTL_SETEVENFR;
	else
		ctrl |= DXEPCTL_SETODDFR;
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
}

1525
/**
1526
 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1527 1528 1529 1530 1531 1532
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
1533
 */
1534
static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
1535
{
1536
	u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
1537 1538
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1539
	struct usb_request *req = &hs_req->req;
1540
	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1541 1542 1543 1544 1545 1546 1547
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

1548 1549
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
1550 1551
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
		dwc2_hsotg_enqueue_setup(hsotg);
1552 1553 1554
		return;
	}

1555 1556 1557
	if (using_dma(hsotg)) {
		unsigned size_done;

1558 1559
		/*
		 * Calculate the size of the transfer by checking how much
1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

1573 1574
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
1575
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1576 1577 1578
		return;
	}

1579 1580 1581 1582
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

1583 1584 1585 1586
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
1587 1588
	}

1589 1590
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
		/* Move to STATUS IN */
1591
		dwc2_hsotg_ep0_zlp(hsotg, true);
1592
		return;
1593 1594
	}

1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
	/*
	 * Slave mode OUT transfers do not go through XferComplete so
	 * adjust the ISOC parity here.
	 */
	if (!using_dma(hsotg)) {
		hs_ep->has_correct_parity = 1;
		if (hs_ep->isochronous && hs_ep->interval == 1)
			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
	}

1605
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1606 1607 1608
}

/**
1609
 * dwc2_hsotg_read_frameno - read current frame number
1610 1611 1612
 * @hsotg: The device instance
 *
 * Return the current frame number
1613
 */
1614
static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
1615 1616 1617
{
	u32 dsts;

1618
	dsts = dwc2_readl(hsotg->regs + DSTS);
1619 1620
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;
1621 1622 1623 1624 1625

	return dsts;
}

/**
1626
 * dwc2_hsotg_handle_rx - RX FIFO has data
1627 1628 1629 1630 1631 1632
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
1633
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1634 1635 1636 1637 1638 1639 1640
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
1641
static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
1642
{
1643
	u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
1644 1645 1646 1647
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

1648 1649
	epnum = grxstsr & GRXSTS_EPNUM_MASK;
	status = grxstsr & GRXSTS_PKTSTS_MASK;
1650

1651 1652
	size = grxstsr & GRXSTS_BYTECNT_MASK;
	size >>= GRXSTS_BYTECNT_SHIFT;
1653

1654
	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1655 1656
			__func__, grxstsr, size, epnum);

1657 1658 1659
	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
	case GRXSTS_PKTSTS_GLOBALOUTNAK:
		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1660 1661
		break;

1662
	case GRXSTS_PKTSTS_OUTDONE:
1663
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1664
			dwc2_hsotg_read_frameno(hsotg));
1665 1666

		if (!using_dma(hsotg))
1667
			dwc2_hsotg_handle_outdone(hsotg, epnum);
1668 1669
		break;

1670
	case GRXSTS_PKTSTS_SETUPDONE:
1671 1672
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1673
			dwc2_hsotg_read_frameno(hsotg),
1674
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
1675
		/*
1676
		 * Call dwc2_hsotg_handle_outdone here if it was not called from
1677 1678 1679 1680
		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
		 */
		if (hsotg->ep0_state == DWC2_EP0_SETUP)
1681
			dwc2_hsotg_handle_outdone(hsotg, epnum);
1682 1683
		break;

1684
	case GRXSTS_PKTSTS_OUTRX:
1685
		dwc2_hsotg_rx_data(hsotg, epnum, size);
1686 1687
		break;

1688
	case GRXSTS_PKTSTS_SETUPRX:
1689 1690
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1691
			dwc2_hsotg_read_frameno(hsotg),
1692
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
1693

1694 1695
		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);

1696
		dwc2_hsotg_rx_data(hsotg, epnum, size);
1697 1698 1699 1700 1701 1702
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

1703
		dwc2_hsotg_dump(hsotg);
1704 1705 1706 1707 1708
		break;
	}
}

/**
1709
 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
1710
 * @mps: The maximum packet size in bytes.
1711
 */
1712
static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
1713 1714 1715
{
	switch (mps) {
	case 64:
1716
		return D0EPCTL_MPS_64;
1717
	case 32:
1718
		return D0EPCTL_MPS_32;
1719
	case 16:
1720
		return D0EPCTL_MPS_16;
1721
	case 8:
1722
		return D0EPCTL_MPS_8;
1723 1724 1725 1726 1727 1728 1729 1730
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
1731
 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1732 1733 1734 1735 1736 1737 1738
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
1739
static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
1740
			unsigned int ep, unsigned int mps, unsigned int dir_in)
1741
{
1742
	struct dwc2_hsotg_ep *hs_ep;
1743 1744
	void __iomem *regs = hsotg->regs;
	u32 mpsval;
1745
	u32 mcval;
1746 1747
	u32 reg;

1748 1749 1750 1751
	hs_ep = index_to_ep(hsotg, ep, dir_in);
	if (!hs_ep)
		return;

1752 1753
	if (ep == 0) {
		/* EP0 is a special case */
1754
		mpsval = dwc2_hsotg_ep0_mps(mps);
1755 1756
		if (mpsval > 3)
			goto bad_mps;
1757
		hs_ep->ep.maxpacket = mps;
1758
		hs_ep->mc = 1;
1759
	} else {
1760
		mpsval = mps & DXEPCTL_MPS_MASK;
1761
		if (mpsval > 1024)
1762
			goto bad_mps;
1763 1764 1765 1766
		mcval = ((mps >> 11) & 0x3) + 1;
		hs_ep->mc = mcval;
		if (mcval > 3)
			goto bad_mps;
1767
		hs_ep->ep.maxpacket = mpsval;
1768 1769
	}

1770
	if (dir_in) {
1771
		reg = dwc2_readl(regs + DIEPCTL(ep));
1772 1773
		reg &= ~DXEPCTL_MPS_MASK;
		reg |= mpsval;
1774
		dwc2_writel(reg, regs + DIEPCTL(ep));
1775
	} else {
1776
		reg = dwc2_readl(regs + DOEPCTL(ep));
1777
		reg &= ~DXEPCTL_MPS_MASK;
1778
		reg |= mpsval;
1779
		dwc2_writel(reg, regs + DOEPCTL(ep));
1780
	}
1781 1782 1783 1784 1785 1786 1787

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

1788
/**
1789
 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
1790 1791 1792
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
1793
static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
1794 1795 1796 1797
{
	int timeout;
	int val;

1798 1799
	dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
		    hsotg->regs + GRSTCTL);
1800 1801 1802 1803 1804

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
1805
		val = dwc2_readl(hsotg->regs + GRSTCTL);
1806

1807
		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1808 1809 1810 1811 1812 1813
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
1814
			break;
1815 1816 1817 1818 1819
		}

		udelay(1);
	}
}
1820 1821

/**
1822
 * dwc2_hsotg_trytx - check to see if anything needs transmitting
1823 1824 1825 1826 1827 1828
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
1829 1830
static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
			   struct dwc2_hsotg_ep *hs_ep)
1831
{
1832
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1833

1834 1835 1836 1837 1838 1839
	if (!hs_ep->dir_in || !hs_req) {
		/**
		 * if request is not enqueued, we disable interrupts
		 * for endpoints, excepting ep0
		 */
		if (hs_ep->index != 0)
1840
			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
1841
					     hs_ep->dir_in, 0);
1842
		return 0;
1843
	}
1844 1845 1846 1847

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
1848
		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1849 1850 1851 1852 1853 1854
	}

	return 0;
}

/**
1855
 * dwc2_hsotg_complete_in - complete IN transfer
1856 1857 1858 1859 1860 1861
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
1862 1863
static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
				  struct dwc2_hsotg_ep *hs_ep)
1864
{
1865
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1866
	u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1867 1868 1869 1870 1871 1872 1873
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

1874
	/* Finish ZLP handling for IN EP0 transactions */
1875 1876
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
		dev_dbg(hsotg->dev, "zlp packet sent\n");
1877
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1878 1879 1880
		if (hsotg->test_mode) {
			int ret;

1881
			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
1882 1883 1884
			if (ret < 0) {
				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
						hsotg->test_mode);
1885
				dwc2_hsotg_stall_ep0(hsotg);
1886 1887 1888
				return;
			}
		}
1889
		dwc2_hsotg_enqueue_setup(hsotg);
1890 1891 1892
		return;
	}

1893 1894
	/*
	 * Calculate the size of the transfer by checking how much is left
1895 1896 1897 1898 1899 1900 1901 1902
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */

1903
	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1904 1905 1906 1907 1908 1909 1910 1911 1912

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
1913 1914 1915
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

1916 1917
	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1918
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1919 1920 1921
		return;
	}

1922
	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
1923
	if (hs_ep->send_zlp) {
1924
		dwc2_hsotg_program_zlp(hsotg, hs_ep);
1925
		hs_ep->send_zlp = 0;
1926 1927 1928 1929
		/* transfer will be completed on next complete interrupt */
		return;
	}

1930 1931
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
		/* Move to STATUS OUT */
1932
		dwc2_hsotg_ep0_zlp(hsotg, false);
1933 1934 1935
		return;
	}

1936
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1937 1938 1939
}

/**
1940
 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
1941 1942 1943 1944 1945
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
1946
 */
1947
static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
1948 1949
			    int dir_in)
{
1950
	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
1951 1952 1953
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1954
	u32 ints;
1955
	u32 ctrl;
1956

1957 1958
	ints = dwc2_readl(hsotg->regs + epint_reg);
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1959

1960
	/* Clear endpoint interrupts */
1961
	dwc2_writel(ints, hsotg->regs + epint_reg);
1962

1963 1964 1965 1966 1967 1968
	if (!hs_ep) {
		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
					__func__, idx, dir_in ? "in" : "out");
		return;
	}

1969 1970 1971
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

1972 1973 1974 1975
	/* Don't process XferCompl interrupt if it is a setup packet */
	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
		ints &= ~DXEPINT_XFERCOMPL;

1976
	if (ints & DXEPINT_XFERCOMPL) {
1977 1978 1979
		hs_ep->has_correct_parity = 1;
		if (hs_ep->isochronous && hs_ep->interval == 1)
			dwc2_hsotg_change_ep_iso_parity(hsotg, epctl_reg);
1980

1981
		dev_dbg(hsotg->dev,
1982
			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1983 1984
			__func__, dwc2_readl(hsotg->regs + epctl_reg),
			dwc2_readl(hsotg->regs + epsiz_reg));
1985

1986 1987 1988 1989
		/*
		 * we get OutDone from the FIFO, so we only need to look
		 * at completing IN requests here
		 */
1990
		if (dir_in) {
1991
			dwc2_hsotg_complete_in(hsotg, hs_ep);
1992

1993
			if (idx == 0 && !hs_ep->req)
1994
				dwc2_hsotg_enqueue_setup(hsotg);
1995
		} else if (using_dma(hsotg)) {
1996 1997 1998 1999
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
2000

2001
			dwc2_hsotg_handle_outdone(hsotg, idx);
2002 2003 2004
		}
	}

2005
	if (ints & DXEPINT_EPDISBLD) {
2006 2007
		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

2008
		if (dir_in) {
2009
			int epctl = dwc2_readl(hsotg->regs + epctl_reg);
2010

2011
			dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2012

2013 2014
			if ((epctl & DXEPCTL_STALL) &&
				(epctl & DXEPCTL_EPTYPE_BULK)) {
2015
				int dctl = dwc2_readl(hsotg->regs + DCTL);
2016

2017
				dctl |= DCTL_CGNPINNAK;
2018
				dwc2_writel(dctl, hsotg->regs + DCTL);
2019 2020 2021 2022
			}
		}
	}

2023
	if (ints & DXEPINT_AHBERR)
2024 2025
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

2026
	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2027 2028 2029
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
2030 2031
			/*
			 * this is the notification we've received a
2032 2033
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
2034 2035
			 * the setup here.
			 */
2036 2037 2038 2039

			if (dir_in)
				WARN_ON_ONCE(1);
			else
2040
				dwc2_hsotg_handle_outdone(hsotg, 0);
2041 2042 2043
		}
	}

2044
	if (ints & DXEPINT_BACK2BACKSETUP)
2045 2046
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

2047
	if (dir_in && !hs_ep->isochronous) {
2048
		/* not sure if this is important, but we'll clear it anyway */
2049
		if (ints & DIEPMSK_INTKNTXFEMPMSK) {
2050 2051 2052 2053 2054
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
2055
		if (ints & DIEPMSK_INTKNEPMISMSK) {
2056 2057 2058
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
2059 2060 2061

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
2062
		    ints & DIEPMSK_TXFIFOEMPTY) {
2063 2064
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
2065
			if (!using_dma(hsotg))
2066
				dwc2_hsotg_trytx(hsotg, hs_ep);
2067
		}
2068 2069 2070 2071
	}
}

/**
2072
 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
2073 2074 2075 2076
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
2077
 */
2078
static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
2079
{
2080
	u32 dsts = dwc2_readl(hsotg->regs + DSTS);
2081
	int ep0_mps = 0, ep_mps = 8;
2082

2083 2084
	/*
	 * This should signal the finish of the enumeration phase
2085
	 * of the USB handshaking, so we should now know what rate
2086 2087
	 * we connected at.
	 */
2088 2089 2090

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

2091 2092
	/*
	 * note, since we're limited by the size of transfer on EP0, and
2093
	 * it seems IN transfers must be a even number of packets we do
2094 2095
	 * not advertise a 64byte MPS on EP0.
	 */
2096 2097

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
2098 2099 2100
	switch (dsts & DSTS_ENUMSPD_MASK) {
	case DSTS_ENUMSPD_FS:
	case DSTS_ENUMSPD_FS48:
2101 2102
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
2103
		ep_mps = 1023;
2104 2105
		break;

2106
	case DSTS_ENUMSPD_HS:
2107 2108
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
2109
		ep_mps = 1024;
2110 2111
		break;

2112
	case DSTS_ENUMSPD_LS:
2113
		hsotg->gadget.speed = USB_SPEED_LOW;
2114 2115
		/*
		 * note, we don't actually support LS in this driver at the
2116 2117 2118 2119 2120
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
2121 2122
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
2123

2124 2125 2126 2127
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
2128 2129 2130

	if (ep0_mps) {
		int i;
2131
		/* Initialize ep0 for both in and out directions */
2132 2133
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 1);
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0);
2134 2135
		for (i = 1; i < hsotg->num_of_eps; i++) {
			if (hsotg->eps_in[i])
2136
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 1);
2137
			if (hsotg->eps_out[i])
2138
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 0);
2139
		}
2140 2141 2142 2143
	}

	/* ensure after enumeration our EP0 is active */

2144
	dwc2_hsotg_enqueue_setup(hsotg);
2145 2146

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2147 2148
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
2160
static void kill_all_requests(struct dwc2_hsotg *hsotg,
2161
			      struct dwc2_hsotg_ep *ep,
2162
			      int result)
2163
{
2164
	struct dwc2_hsotg_req *req, *treq;
2165
	unsigned size;
2166

2167
	ep->req = NULL;
2168

2169
	list_for_each_entry_safe(req, treq, &ep->queue, queue)
2170
		dwc2_hsotg_complete_request(hsotg, ep, req,
2171
					   result);
2172

2173 2174
	if (!hsotg->dedicated_fifos)
		return;
2175
	size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4;
2176
	if (size < ep->fifo_size)
2177
		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2178 2179 2180
}

/**
2181
 * dwc2_hsotg_disconnect - disconnect service
2182 2183
 * @hsotg: The device state.
 *
2184 2185 2186
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
2187
 */
2188
void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
2189 2190 2191
{
	unsigned ep;

2192 2193 2194 2195
	if (!hsotg->connected)
		return;

	hsotg->connected = 0;
2196
	hsotg->test_mode = 0;
2197 2198 2199 2200 2201 2202 2203 2204 2205

	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
			kill_all_requests(hsotg, hsotg->eps_in[ep],
								-ESHUTDOWN);
		if (hsotg->eps_out[ep])
			kill_all_requests(hsotg, hsotg->eps_out[ep],
								-ESHUTDOWN);
	}
2206 2207

	call_gadget(hsotg, disconnect);
2208
	hsotg->lx_state = DWC2_L3;
2209 2210 2211
}

/**
2212
 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2213 2214 2215
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
2216
static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
2217
{
2218
	struct dwc2_hsotg_ep *ep;
2219 2220 2221
	int epno, ret;

	/* look through for any more data to transmit */
2222
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2223 2224 2225 2226
		ep = index_to_ep(hsotg, epno, 1);

		if (!ep)
			continue;
2227 2228 2229 2230 2231 2232 2233 2234

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

2235
		ret = dwc2_hsotg_trytx(hsotg, ep);
2236 2237 2238 2239 2240 2241
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
2242 2243 2244
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
			GINTSTS_PTXFEMP |  \
			GINTSTS_RXFLVL)
2245

2246
/**
2247
 * dwc2_hsotg_corereset - issue softreset to the core
2248 2249 2250
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
2251
 */
2252
static int dwc2_hsotg_corereset(struct dwc2_hsotg *hsotg)
2253 2254 2255 2256 2257 2258 2259
{
	int timeout;
	u32 grstctl;

	dev_dbg(hsotg->dev, "resetting core\n");

	/* issue soft reset */
2260
	dwc2_writel(GRSTCTL_CSFTRST, hsotg->regs + GRSTCTL);
2261

2262
	timeout = 10000;
2263
	do {
2264
		grstctl = dwc2_readl(hsotg->regs + GRSTCTL);
2265
	} while ((grstctl & GRSTCTL_CSFTRST) && timeout-- > 0);
2266

2267
	if (grstctl & GRSTCTL_CSFTRST) {
2268 2269 2270 2271
		dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
		return -EINVAL;
	}

2272
	timeout = 10000;
2273 2274

	while (1) {
2275
		u32 grstctl = dwc2_readl(hsotg->regs + GRSTCTL);
2276 2277 2278 2279 2280 2281 2282 2283

		if (timeout-- < 0) {
			dev_info(hsotg->dev,
				 "%s: reset failed, GRSTCTL=%08x\n",
				 __func__, grstctl);
			return -ETIMEDOUT;
		}

2284
		if (!(grstctl & GRSTCTL_AHBIDLE))
2285 2286 2287 2288 2289 2290 2291 2292 2293
			continue;

		break;		/* reset done */
	}

	dev_dbg(hsotg->dev, "reset successful\n");
	return 0;
}

2294
/**
2295
 * dwc2_hsotg_core_init - issue softreset to the core
2296 2297 2298 2299
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
2300
void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
2301
						bool is_usb_reset)
2302
{
2303
	u32 intmsk;
2304 2305
	u32 val;

2306 2307 2308
	/* Kill any ep0 requests as controller will be reinitialized */
	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);

2309
	if (!is_usb_reset)
2310 2311
		if (dwc2_hsotg_corereset(hsotg))
			return;
2312 2313 2314 2315 2316 2317 2318

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2319
	val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
2320
	dwc2_writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
2321
	       (val << GUSBCFG_USBTRDTIM_SHIFT), hsotg->regs + GUSBCFG);
2322

2323
	dwc2_hsotg_init_fifo(hsotg);
2324

2325 2326
	if (!is_usb_reset)
		__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2327

2328
	dwc2_writel(DCFG_EPMISCNT(1) | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2329 2330

	/* Clear any pending OTG interrupts */
2331
	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
2332 2333

	/* Clear any pending interrupts */
2334
	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
2335
	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
2336
		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
2337 2338
		GINTSTS_USBRST | GINTSTS_RESETDET |
		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
2339 2340
		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
		GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
2341 2342 2343 2344 2345

	if (hsotg->core_params->external_id_pin_ctl <= 0)
		intmsk |= GINTSTS_CONIDSTSCHNG;

	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
2346 2347

	if (using_dma(hsotg))
2348 2349 2350
		dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
			    (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
			    hsotg->regs + GAHBCFG);
2351
	else
2352 2353 2354 2355
		dwc2_writel(((hsotg->dedicated_fifos) ?
						(GAHBCFG_NP_TXF_EMP_LVL |
						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
			    GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
2356 2357

	/*
2358 2359 2360
	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
	 * when we have no data to transfer. Otherwise we get being flooded by
	 * interrupts.
2361 2362
	 */

2363
	dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
2364
		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
2365 2366 2367 2368
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		DIEPMSK_INTKNEPMISMSK,
		hsotg->regs + DIEPMSK);
2369 2370 2371 2372 2373

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
	 * DMA mode we may need this.
	 */
2374
	dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
2375 2376 2377 2378
				    DIEPMSK_TIMEOUTMSK) : 0) |
		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
		DOEPMSK_SETUPMSK,
		hsotg->regs + DOEPMSK);
2379

2380
	dwc2_writel(0, hsotg->regs + DAINTMSK);
2381 2382

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2383 2384
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
2385 2386

	/* enable in and out endpoint interrupts */
2387
	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2388 2389 2390 2391 2392 2393 2394

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
2395
		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2396 2397

	/* Enable interrupts for EP0 in and out */
2398 2399
	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2400

2401 2402 2403 2404 2405
	if (!is_usb_reset) {
		__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
		udelay(10);  /* see openiboot */
		__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
	}
2406

2407
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
2408 2409

	/*
2410
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2411 2412 2413 2414
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
2415
	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2416
	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2417

2418
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2419 2420
	       DXEPCTL_CNAK | DXEPCTL_EPENA |
	       DXEPCTL_USBACTEP,
2421
	       hsotg->regs + DOEPCTL0);
2422 2423

	/* enable, but don't activate EP0in */
2424
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2425
	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2426

2427
	dwc2_hsotg_enqueue_setup(hsotg);
2428 2429

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2430 2431
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
2432 2433

	/* clear global NAKs */
2434 2435 2436 2437
	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
	if (!is_usb_reset)
		val |= DCTL_SFTDISCON;
	__orr32(hsotg->regs + DCTL, val);
2438 2439 2440 2441

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

2442
	hsotg->lx_state = DWC2_L0;
2443 2444
}

2445
static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
2446 2447 2448 2449
{
	/* set the soft-disconnect bit */
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
}
2450

2451
void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
2452
{
2453
	/* remove the soft-disconnect and let's go */
2454
	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2455 2456
}

2457
/**
2458
 * dwc2_hsotg_irq - handle device interrupt
2459 2460 2461
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
2462
static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
2463
{
2464
	struct dwc2_hsotg *hsotg = pw;
2465 2466 2467 2468
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

2469
	spin_lock(&hsotg->lock);
2470
irq_retry:
2471 2472
	gintsts = dwc2_readl(hsotg->regs + GINTSTS);
	gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
2473 2474 2475 2476 2477 2478

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508
	if (gintsts & GINTSTS_RESETDET) {
		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);

		dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);

		/* This event must be used only if controller is suspended */
		if (hsotg->lx_state == DWC2_L2) {
			dwc2_exit_hibernation(hsotg, true);
			hsotg->lx_state = DWC2_L0;
		}
	}

	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {

		u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
		u32 connected = hsotg->connected;

		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
			dwc2_readl(hsotg->regs + GNPTXSTS));

		dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);

		/* Report disconnection if it is not already done. */
		dwc2_hsotg_disconnect(hsotg);

		if (usb_status & GOTGCTL_BSESVLD && connected)
			dwc2_hsotg_core_init_disconnected(hsotg, true);
	}

2509
	if (gintsts & GINTSTS_ENUMDONE) {
2510
		dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2511

2512
		dwc2_hsotg_irq_enumdone(hsotg);
2513 2514
	}

2515
	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2516 2517
		u32 daint = dwc2_readl(hsotg->regs + DAINT);
		u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
2518
		u32 daint_out, daint_in;
2519 2520
		int ep;

2521
		daint &= daintmsk;
2522 2523
		daint_out = daint >> DAINT_OUTEP_SHIFT;
		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2524

2525 2526
		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

2527 2528
		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
						ep++, daint_out >>= 1) {
2529
			if (daint_out & 1)
2530
				dwc2_hsotg_epint(hsotg, ep, 0);
2531 2532
		}

2533 2534
		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
						ep++, daint_in >>= 1) {
2535
			if (daint_in & 1)
2536
				dwc2_hsotg_epint(hsotg, ep, 1);
2537 2538 2539 2540 2541
		}
	}

	/* check both FIFOs */

2542
	if (gintsts & GINTSTS_NPTXFEMP) {
2543 2544
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

2545 2546
		/*
		 * Disable the interrupt to stop it happening again
2547
		 * unless one of these endpoint routines decides that
2548 2549
		 * it needs re-enabling
		 */
2550

2551 2552
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, false);
2553 2554
	}

2555
	if (gintsts & GINTSTS_PTXFEMP) {
2556 2557
		dev_dbg(hsotg->dev, "PTxFEmp\n");

2558
		/* See note in GINTSTS_NPTxFEmp */
2559

2560 2561
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, true);
2562 2563
	}

2564
	if (gintsts & GINTSTS_RXFLVL) {
2565 2566
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2567
		 * we need to retry dwc2_hsotg_handle_rx if this is still
2568 2569
		 * set.
		 */
2570

2571
		dwc2_hsotg_handle_rx(hsotg);
2572 2573
	}

2574
	if (gintsts & GINTSTS_ERLYSUSP) {
2575
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2576
		dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2577 2578
	}

2579 2580
	/*
	 * these next two seem to crop-up occasionally causing the core
2581
	 * to shutdown the USB transfer, so try clearing them and logging
2582 2583
	 * the occurrence.
	 */
2584

2585
	if (gintsts & GINTSTS_GOUTNAKEFF) {
2586 2587
		dev_info(hsotg->dev, "GOUTNakEff triggered\n");

2588
		__orr32(hsotg->regs + DCTL, DCTL_CGOUTNAK);
2589

2590
		dwc2_hsotg_dump(hsotg);
2591 2592
	}

2593
	if (gintsts & GINTSTS_GINNAKEFF) {
2594 2595
		dev_info(hsotg->dev, "GINNakEff triggered\n");

2596
		__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
2597

2598
		dwc2_hsotg_dump(hsotg);
2599 2600
	}

2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
	if (gintsts & GINTSTS_INCOMPL_SOIN) {
		u32 idx, epctl_reg;
		struct dwc2_hsotg_ep *hs_ep;

		dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOIN\n", __func__);
		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
			hs_ep = hsotg->eps_in[idx];

			if (!hs_ep->isochronous || hs_ep->has_correct_parity)
				continue;

			epctl_reg = DIEPCTL(idx);
			dwc2_hsotg_change_ep_iso_parity(hsotg, epctl_reg);
		}
		dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
	}

	if (gintsts & GINTSTS_INCOMPL_SOOUT) {
		u32 idx, epctl_reg;
		struct dwc2_hsotg_ep *hs_ep;

		dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
			hs_ep = hsotg->eps_out[idx];

			if (!hs_ep->isochronous || hs_ep->has_correct_parity)
				continue;

			epctl_reg = DOEPCTL(idx);
			dwc2_hsotg_change_ep_iso_parity(hsotg, epctl_reg);
		}
		dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
	}

2635 2636 2637 2638
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
2639 2640 2641 2642

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
			goto irq_retry;

2643 2644
	spin_unlock(&hsotg->lock);

2645 2646 2647 2648
	return IRQ_HANDLED;
}

/**
2649
 * dwc2_hsotg_ep_enable - enable the given endpoint
2650 2651 2652 2653
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
2654
 */
2655
static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
2656 2657
			       const struct usb_endpoint_descriptor *desc)
{
2658
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2659
	struct dwc2_hsotg *hsotg = hs_ep->parent;
2660
	unsigned long flags;
2661
	unsigned int index = hs_ep->index;
2662 2663 2664
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
2665 2666
	unsigned int dir_in;
	unsigned int i, val, size;
2667
	int ret = 0;
2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
	WARN_ON(index == 0);

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

2683
	mps = usb_endpoint_maxp(desc);
2684

2685
	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
2686

2687
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2688
	epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
2689 2690 2691 2692

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

2693
	spin_lock_irqsave(&hsotg->lock, flags);
2694

2695 2696
	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
	epctrl |= DXEPCTL_MPS(mps);
2697

2698 2699 2700 2701
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
2702
	epctrl |= DXEPCTL_USBACTEP;
2703

2704 2705
	/*
	 * set the NAK status on the endpoint, otherwise we might try and
2706 2707 2708 2709 2710
	 * do something with data that we've yet got a request to process
	 * since the RXFIFO will take data for an endpoint even if the
	 * size register hasn't been set.
	 */

2711
	epctrl |= DXEPCTL_SNAK;
2712 2713

	/* update the endpoint state */
2714
	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, dir_in);
2715 2716

	/* default, set to non-periodic */
2717
	hs_ep->isochronous = 0;
2718
	hs_ep->periodic = 0;
2719
	hs_ep->halted = 0;
2720
	hs_ep->interval = desc->bInterval;
2721
	hs_ep->has_correct_parity = 0;
2722

2723 2724 2725
	if (hs_ep->interval > 1 && hs_ep->mc > 1)
		dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");

2726 2727
	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
2728 2729
		epctrl |= DXEPCTL_EPTYPE_ISO;
		epctrl |= DXEPCTL_SETEVENFR;
2730 2731 2732 2733
		hs_ep->isochronous = 1;
		if (dir_in)
			hs_ep->periodic = 1;
		break;
2734 2735

	case USB_ENDPOINT_XFER_BULK:
2736
		epctrl |= DXEPCTL_EPTYPE_BULK;
2737 2738 2739
		break;

	case USB_ENDPOINT_XFER_INT:
2740
		if (dir_in)
2741 2742
			hs_ep->periodic = 1;

2743
		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2744 2745 2746
		break;

	case USB_ENDPOINT_XFER_CONTROL:
2747
		epctrl |= DXEPCTL_EPTYPE_CONTROL;
2748 2749 2750
		break;
	}

2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
	/* If fifo is already allocated for this ep */
	if (hs_ep->fifo_index) {
		size =  hs_ep->ep.maxpacket * hs_ep->mc;
		/* If bigger fifo is required deallocate current one */
		if (size > hs_ep->fifo_size) {
			hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
			hs_ep->fifo_index = 0;
			hs_ep->fifo_size = 0;
		}
	}

2762 2763
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
2764 2765
	 * a unique tx-fifo even if it is non-periodic.
	 */
2766
	if (dir_in && hsotg->dedicated_fifos && !hs_ep->fifo_index) {
2767 2768
		u32 fifo_index = 0;
		u32 fifo_size = UINT_MAX;
2769
		size = hs_ep->ep.maxpacket*hs_ep->mc;
2770
		for (i = 1; i < hsotg->num_of_eps; ++i) {
2771 2772
			if (hsotg->fifo_map & (1<<i))
				continue;
2773
			val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
2774 2775 2776
			val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
			if (val < size)
				continue;
2777 2778 2779 2780 2781
			/* Search for smallest acceptable fifo */
			if (val < fifo_size) {
				fifo_size = val;
				fifo_index = i;
			}
2782
		}
2783
		if (!fifo_index) {
2784 2785
			dev_err(hsotg->dev,
				"%s: No suitable fifo found\n", __func__);
2786 2787 2788
			ret = -ENOMEM;
			goto error;
		}
2789 2790 2791 2792
		hsotg->fifo_map |= 1 << fifo_index;
		epctrl |= DXEPCTL_TXFNUM(fifo_index);
		hs_ep->fifo_index = fifo_index;
		hs_ep->fifo_size = fifo_size;
2793
	}
2794

2795 2796
	/* for non control endpoints, set PID to D0 */
	if (index)
2797
		epctrl |= DXEPCTL_SETD0PID;
2798 2799 2800 2801

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

2802
	dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
2803
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2804
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
2805 2806

	/* enable the endpoint interrupt */
2807
	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2808

2809
error:
2810
	spin_unlock_irqrestore(&hsotg->lock, flags);
2811
	return ret;
2812 2813
}

2814
/**
2815
 * dwc2_hsotg_ep_disable - disable given endpoint
2816 2817
 * @ep: The endpoint to disable.
 */
2818
static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
2819
{
2820
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2821
	struct dwc2_hsotg *hsotg = hs_ep->parent;
2822 2823 2824 2825 2826 2827
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

2828
	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2829

2830
	if (ep == &hsotg->eps_out[0]->ep) {
2831 2832 2833 2834
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

2835
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2836

2837
	spin_lock_irqsave(&hsotg->lock, flags);
2838

2839 2840 2841
	hsotg->fifo_map &= ~(1<<hs_ep->fifo_index);
	hs_ep->fifo_index = 0;
	hs_ep->fifo_size = 0;
2842

2843
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
2844 2845 2846
	ctrl &= ~DXEPCTL_EPENA;
	ctrl &= ~DXEPCTL_USBACTEP;
	ctrl |= DXEPCTL_SNAK;
2847 2848

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2849
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
2850 2851

	/* disable endpoint interrupts */
2852
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2853

2854 2855 2856
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);

2857
	spin_unlock_irqrestore(&hsotg->lock, flags);
2858 2859 2860 2861 2862 2863 2864
	return 0;
}

/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
2865
 */
2866
static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
2867
{
2868
	struct dwc2_hsotg_req *req, *treq;
2869 2870 2871 2872 2873 2874 2875 2876 2877

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg,
							u32 bit, u32 timeout)
{
	u32 i;

	for (i = 0; i < timeout; i++) {
		if (dwc2_readl(hs_otg->regs + reg) & bit)
			return 0;
		udelay(1);
	}

	return -ETIMEDOUT;
}

static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
						struct dwc2_hsotg_ep *hs_ep)
{
	u32 epctrl_reg;
	u32 epint_reg;

	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
		DOEPCTL(hs_ep->index);
	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
		DOEPINT(hs_ep->index);

	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
			hs_ep->name);
	if (hs_ep->dir_in) {
		__orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
		/* Wait for Nak effect */
		if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
						DXEPINT_INEPNAKEFF, 100))
			dev_warn(hsotg->dev,
				"%s: timeout DIEPINT.NAKEFF\n", __func__);
	} else {
		/* Clear any pending nak effect interrupt */
2914
		dwc2_writel(GINTSTS_GOUTNAKEFF, hsotg->regs + GINTSTS);
2915

2916
		__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
2917 2918 2919

		/* Wait for global nak to take effect */
		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
2920
						GINTSTS_GOUTNAKEFF, 100))
2921
			dev_warn(hsotg->dev,
2922
				"%s: timeout GINTSTS.GOUTNAKEFF\n", __func__);
2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
	}

	/* Disable ep */
	__orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);

	/* Wait for ep to be disabled */
	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
		dev_warn(hsotg->dev,
			"%s: timeout DOEPCTL.EPDisable\n", __func__);

	if (hs_ep->dir_in) {
		if (hsotg->dedicated_fifos) {
			dwc2_writel(GRSTCTL_TXFNUM(hs_ep->fifo_index) |
				GRSTCTL_TXFFLSH, hsotg->regs + GRSTCTL);
			/* Wait for fifo flush */
			if (dwc2_hsotg_wait_bit_set(hsotg, GRSTCTL,
							GRSTCTL_TXFFLSH, 100))
				dev_warn(hsotg->dev,
					"%s: timeout flushing fifos\n",
					__func__);
		}
		/* TODO: Flush shared tx fifo */
	} else {
		/* Remove global NAKs */
2947
		__bic32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
2948 2949 2950
	}
}

2951
/**
2952
 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
2953 2954 2955
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
2956
static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2957
{
2958 2959
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2960
	struct dwc2_hsotg *hs = hs_ep->parent;
2961 2962
	unsigned long flags;

2963
	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2964

2965
	spin_lock_irqsave(&hs->lock, flags);
2966 2967

	if (!on_list(hs_ep, hs_req)) {
2968
		spin_unlock_irqrestore(&hs->lock, flags);
2969 2970 2971
		return -EINVAL;
	}

2972 2973 2974 2975
	/* Dequeue already started request */
	if (req == &hs_ep->req->req)
		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);

2976
	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2977
	spin_unlock_irqrestore(&hs->lock, flags);
2978 2979 2980 2981

	return 0;
}

2982
/**
2983
 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
2984 2985 2986
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
2987
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2988
{
2989
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2990
	struct dwc2_hsotg *hs = hs_ep->parent;
2991 2992 2993
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
2994
	u32 xfertype;
2995 2996 2997

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

2998 2999
	if (index == 0) {
		if (value)
3000
			dwc2_hsotg_stall_ep0(hs);
3001 3002 3003 3004 3005 3006
		else
			dev_warn(hs->dev,
				 "%s: can't clear halt on ep0\n", __func__);
		return 0;
	}

3007 3008
	if (hs_ep->dir_in) {
		epreg = DIEPCTL(index);
3009
		epctl = dwc2_readl(hs->regs + epreg);
3010 3011

		if (value) {
3012
			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
3013 3014 3015 3016 3017 3018 3019 3020 3021
			if (epctl & DXEPCTL_EPENA)
				epctl |= DXEPCTL_EPDIS;
		} else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
3022
		dwc2_writel(epctl, hs->regs + epreg);
3023
	} else {
3024

3025
		epreg = DOEPCTL(index);
3026
		epctl = dwc2_readl(hs->regs + epreg);
3027

3028 3029 3030 3031 3032 3033 3034 3035 3036
		if (value)
			epctl |= DXEPCTL_STALL;
		else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
3037
		dwc2_writel(epctl, hs->regs + epreg);
3038
	}
3039

3040 3041
	hs_ep->halted = value;

3042 3043 3044
	return 0;
}

3045
/**
3046
 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
3047 3048 3049
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
3050
static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
3051
{
3052
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3053
	struct dwc2_hsotg *hs = hs_ep->parent;
3054 3055 3056 3057
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
3058
	ret = dwc2_hsotg_ep_sethalt(ep, value);
3059 3060 3061 3062 3063
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

3064 3065 3066 3067 3068 3069 3070 3071
static struct usb_ep_ops dwc2_hsotg_ep_ops = {
	.enable		= dwc2_hsotg_ep_enable,
	.disable	= dwc2_hsotg_ep_disable,
	.alloc_request	= dwc2_hsotg_ep_alloc_request,
	.free_request	= dwc2_hsotg_ep_free_request,
	.queue		= dwc2_hsotg_ep_queue_lock,
	.dequeue	= dwc2_hsotg_ep_dequeue,
	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
3072
	/* note, don't believe we have any call for the fifo routines */
3073 3074
};

3075
/**
3076
 * dwc2_hsotg_init - initalize the usb core
3077 3078
 * @hsotg: The driver state
 */
3079
static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
3080
{
3081
	u32 trdtim;
3082 3083
	/* unmask subset of endpoint interrupts */

3084 3085 3086
	dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DIEPMSK);
3087

3088 3089 3090
	dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DOEPMSK);
3091

3092
	dwc2_writel(0, hsotg->regs + DAINTMSK);
3093 3094

	/* Be in disconnected state until gadget is registered */
3095
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3096 3097 3098 3099

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3100 3101
		dwc2_readl(hsotg->regs + GRXFSIZ),
		dwc2_readl(hsotg->regs + GNPTXFSIZ));
3102

3103
	dwc2_hsotg_init_fifo(hsotg);
3104 3105

	/* set the PLL on, remove the HNP/SRP and set the PHY */
3106
	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3107
	dwc2_writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
3108
		(trdtim << GUSBCFG_USBTRDTIM_SHIFT),
3109
		hsotg->regs + GUSBCFG);
3110

3111 3112
	if (using_dma(hsotg))
		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
3113 3114
}

3115
/**
3116
 * dwc2_hsotg_udc_start - prepare the udc for work
3117 3118 3119 3120 3121 3122
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
3123
static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
3124
			   struct usb_gadget_driver *driver)
3125
{
3126
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3127
	unsigned long flags;
3128 3129 3130
	int ret;

	if (!hsotg) {
3131
		pr_err("%s: called with no device\n", __func__);
3132 3133 3134 3135 3136 3137 3138 3139
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

3140
	if (driver->max_speed < USB_SPEED_FULL)
3141 3142
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

3143
	if (!driver->setup) {
3144 3145 3146 3147 3148 3149 3150 3151
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
3152
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
3153 3154
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

3155 3156 3157 3158
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
		ret = dwc2_lowlevel_hw_enable(hsotg);
		if (ret)
			goto err;
3159 3160
	}

3161 3162
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
3163

3164
	spin_lock_irqsave(&hsotg->lock, flags);
3165 3166
	dwc2_hsotg_init(hsotg);
	dwc2_hsotg_core_init_disconnected(hsotg, false);
3167
	hsotg->enabled = 0;
3168 3169
	spin_unlock_irqrestore(&hsotg->lock, flags);

3170
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
3171

3172 3173 3174 3175 3176 3177 3178
	return 0;

err:
	hsotg->driver = NULL;
	return ret;
}

3179
/**
3180
 * dwc2_hsotg_udc_stop - stop the udc
3181 3182 3183 3184 3185
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
3186
static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
3187
{
3188
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3189
	unsigned long flags = 0;
3190 3191 3192 3193 3194 3195
	int ep;

	if (!hsotg)
		return -ENODEV;

	/* all endpoints should be shutdown */
3196 3197
	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
3198
			dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3199
		if (hsotg->eps_out[ep])
3200
			dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3201
	}
3202

3203 3204
	spin_lock_irqsave(&hsotg->lock, flags);

3205
	hsotg->driver = NULL;
3206
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3207
	hsotg->enabled = 0;
3208

3209 3210
	spin_unlock_irqrestore(&hsotg->lock, flags);

3211 3212
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, NULL);
3213

3214 3215
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		dwc2_lowlevel_hw_disable(hsotg);
3216 3217 3218 3219

	return 0;
}

3220
/**
3221
 * dwc2_hsotg_gadget_getframe - read the frame number
3222 3223 3224 3225
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
3226
static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
3227
{
3228
	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
3229 3230
}

3231
/**
3232
 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
3233 3234 3235 3236 3237
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
3238
static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
3239
{
3240
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3241 3242
	unsigned long flags = 0;

3243 3244 3245 3246 3247 3248 3249 3250
	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
			hsotg->op_state);

	/* Don't modify pullup state while in host mode */
	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
		hsotg->enabled = is_on;
		return 0;
	}
3251 3252 3253

	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
3254
		hsotg->enabled = 1;
3255 3256
		dwc2_hsotg_core_init_disconnected(hsotg, false);
		dwc2_hsotg_core_connect(hsotg);
3257
	} else {
3258 3259
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
3260
		hsotg->enabled = 0;
3261 3262 3263 3264 3265 3266 3267 3268
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return 0;
}

3269
static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
3270 3271 3272 3273 3274 3275 3276
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
	unsigned long flags;

	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
	spin_lock_irqsave(&hsotg->lock, flags);

3277 3278 3279 3280 3281 3282 3283
	/*
	 * If controller is hibernated, it must exit from hibernation
	 * before being initialized / de-initialized
	 */
	if (hsotg->lx_state == DWC2_L2)
		dwc2_exit_hibernation(hsotg, false);

3284
	if (is_active) {
3285
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3286

3287
		dwc2_hsotg_core_init_disconnected(hsotg, false);
3288
		if (hsotg->enabled)
3289
			dwc2_hsotg_core_connect(hsotg);
3290
	} else {
3291 3292
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
3293 3294 3295 3296 3297 3298
	}

	spin_unlock_irqrestore(&hsotg->lock, flags);
	return 0;
}

3299
/**
3300
 * dwc2_hsotg_vbus_draw - report bMaxPower field
3301 3302 3303 3304 3305
 * @gadget: The usb gadget state
 * @mA: Amount of current
 *
 * Report how much power the device may consume to the phy.
 */
3306
static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned mA)
3307 3308 3309 3310 3311 3312 3313 3314
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);

	if (IS_ERR_OR_NULL(hsotg->uphy))
		return -ENOTSUPP;
	return usb_phy_set_power(hsotg->uphy, mA);
}

3315 3316 3317 3318 3319 3320 3321
static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
	.get_frame	= dwc2_hsotg_gadget_getframe,
	.udc_start		= dwc2_hsotg_udc_start,
	.udc_stop		= dwc2_hsotg_udc_stop,
	.pullup                 = dwc2_hsotg_pullup,
	.vbus_session		= dwc2_hsotg_vbus_session,
	.vbus_draw		= dwc2_hsotg_vbus_draw,
3322 3323 3324
};

/**
3325
 * dwc2_hsotg_initep - initialise a single endpoint
3326 3327 3328 3329 3330 3331 3332 3333
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
3334 3335
static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
				       struct dwc2_hsotg_ep *hs_ep,
3336 3337
				       int epnum,
				       bool dir_in)
3338 3339 3340 3341 3342
{
	char *dir;

	if (epnum == 0)
		dir = "";
3343
	else if (dir_in)
3344
		dir = "in";
3345 3346
	else
		dir = "out";
3347

3348
	hs_ep->dir_in = dir_in;
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
3362
	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3363
	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
3364

3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
	if (epnum == 0) {
		hs_ep->ep.caps.type_control = true;
	} else {
		hs_ep->ep.caps.type_iso = true;
		hs_ep->ep.caps.type_bulk = true;
		hs_ep->ep.caps.type_int = true;
	}

	if (dir_in)
		hs_ep->ep.caps.dir_in = true;
	else
		hs_ep->ep.caps.dir_out = true;

3378 3379
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
3380 3381 3382 3383
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
3384
		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3385
		if (dir_in)
3386
			dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
3387
		else
3388
			dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
3389 3390 3391
	}
}

3392
/**
3393
 * dwc2_hsotg_hw_cfg - read HW configuration registers
3394 3395 3396 3397
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
3398
static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
3399
{
3400 3401 3402 3403
	u32 cfg;
	u32 ep_type;
	u32 i;

3404
	/* check hardware configuration */
3405

3406
	cfg = dwc2_readl(hsotg->regs + GHWCFG2);
3407
	hsotg->num_of_eps = (cfg >> GHWCFG2_NUM_DEV_EP_SHIFT) & 0xF;
3408 3409
	/* Add ep0 */
	hsotg->num_of_eps++;
3410

3411
	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct dwc2_hsotg_ep),
3412 3413 3414
								GFP_KERNEL);
	if (!hsotg->eps_in[0])
		return -ENOMEM;
3415
	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
3416 3417
	hsotg->eps_out[0] = hsotg->eps_in[0];

3418
	cfg = dwc2_readl(hsotg->regs + GHWCFG1);
3419
	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
3420 3421 3422 3423
		ep_type = cfg & 3;
		/* Direction in or both */
		if (!(ep_type & 2)) {
			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
3424
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
3425 3426 3427 3428 3429 3430
			if (!hsotg->eps_in[i])
				return -ENOMEM;
		}
		/* Direction out or both */
		if (!(ep_type & 1)) {
			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
3431
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
3432 3433 3434 3435 3436
			if (!hsotg->eps_out[i])
				return -ENOMEM;
		}
	}

3437
	cfg = dwc2_readl(hsotg->regs + GHWCFG3);
3438
	hsotg->fifo_mem = (cfg >> GHWCFG3_DFIFO_DEPTH_SHIFT);
3439

3440
	cfg = dwc2_readl(hsotg->regs + GHWCFG4);
3441
	hsotg->dedicated_fifos = (cfg >> GHWCFG4_DED_FIFO_SHIFT) & 1;
3442

3443 3444 3445 3446
	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
		 hsotg->num_of_eps,
		 hsotg->dedicated_fifos ? "dedicated" : "shared",
		 hsotg->fifo_mem);
3447
	return 0;
3448 3449
}

3450
/**
3451
 * dwc2_hsotg_dump - dump state of the udc
3452 3453
 * @param: The device state
 */
3454
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
3455
{
M
Mark Brown 已提交
3456
#ifdef DEBUG
3457 3458 3459 3460 3461 3462
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3463 3464
		 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
		 dwc2_readl(regs + DIEPMSK));
3465

3466
	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
3467
		 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
3468 3469

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3470
		 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
3471 3472 3473

	/* show periodic fifo settings */

3474
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3475
		val = dwc2_readl(regs + DPTXFSIZN(idx));
3476
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3477 3478
			 val >> FIFOSIZE_DEPTH_SHIFT,
			 val & FIFOSIZE_STARTADDR_MASK);
3479 3480
	}

3481
	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
3482 3483
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3484 3485 3486
			 dwc2_readl(regs + DIEPCTL(idx)),
			 dwc2_readl(regs + DIEPTSIZ(idx)),
			 dwc2_readl(regs + DIEPDMA(idx)));
3487

3488
		val = dwc2_readl(regs + DOEPCTL(idx));
3489 3490
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3491 3492 3493
			 idx, dwc2_readl(regs + DOEPCTL(idx)),
			 dwc2_readl(regs + DOEPTSIZ(idx)),
			 dwc2_readl(regs + DOEPDMA(idx)));
3494 3495 3496 3497

	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3498
		 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
3499
#endif
3500 3501
}

3502
#ifdef CONFIG_OF
3503
static void dwc2_hsotg_of_probe(struct dwc2_hsotg *hsotg)
3504 3505
{
	struct device_node *np = hsotg->dev->of_node;
3506 3507
	u32 len = 0;
	u32 i = 0;
3508 3509 3510

	/* Enable dma if requested in device tree */
	hsotg->g_using_dma = of_property_read_bool(np, "g-use-dma");
3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541

	/*
	* Register TX periodic fifo size per endpoint.
	* EP0 is excluded since it has no fifo configuration.
	*/
	if (!of_find_property(np, "g-tx-fifo-size", &len))
		goto rx_fifo;

	len /= sizeof(u32);

	/* Read tx fifo sizes other than ep0 */
	if (of_property_read_u32_array(np, "g-tx-fifo-size",
						&hsotg->g_tx_fifo_sz[1], len))
		goto rx_fifo;

	/* Add ep0 */
	len++;

	/* Make remaining TX fifos unavailable */
	if (len < MAX_EPS_CHANNELS) {
		for (i = len; i < MAX_EPS_CHANNELS; i++)
			hsotg->g_tx_fifo_sz[i] = 0;
	}

rx_fifo:
	/* Register RX fifo size */
	of_property_read_u32(np, "g-rx-fifo-size", &hsotg->g_rx_fifo_sz);

	/* Register NPTX fifo size */
	of_property_read_u32(np, "g-np-tx-fifo-size",
						&hsotg->g_np_g_tx_fifo_sz);
3542 3543
}
#else
3544
static inline void dwc2_hsotg_of_probe(struct dwc2_hsotg *hsotg) { }
3545 3546
#endif

3547
/**
3548 3549 3550
 * dwc2_gadget_init - init function for gadget
 * @dwc2: The data structure for the DWC2 driver.
 * @irq: The IRQ number for the controller.
3551
 */
3552
int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
3553
{
3554
	struct device *dev = hsotg->dev;
3555 3556
	int epnum;
	int ret;
3557
	int i;
3558
	u32 p_tx_fifo[] = DWC2_G_P_LEGACY_TX_FIFO_SIZE;
3559

3560 3561 3562 3563 3564
	/* Initialize to legacy fifo configuration values */
	hsotg->g_rx_fifo_sz = 2048;
	hsotg->g_np_g_tx_fifo_sz = 1024;
	memcpy(&hsotg->g_tx_fifo_sz[1], p_tx_fifo, sizeof(p_tx_fifo));
	/* Device tree specific probe */
3565
	dwc2_hsotg_of_probe(hsotg);
3566 3567 3568 3569 3570 3571 3572
	/* Dump fifo information */
	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
						hsotg->g_np_g_tx_fifo_sz);
	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->g_rx_fifo_sz);
	for (i = 0; i < MAX_EPS_CHANNELS; i++)
		dev_dbg(dev, "Periodic TXFIFO%2d size: %d\n", i,
						hsotg->g_tx_fifo_sz[i]);
3573

3574
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3575
	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
3576
	hsotg->gadget.name = dev_name(dev);
3577 3578
	if (hsotg->dr_mode == USB_DR_MODE_OTG)
		hsotg->gadget.is_otg = 1;
3579 3580
	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3581

3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
	/*
	 * Force Device mode before initialization.
	 * This allows correctly configuring fifo for device mode.
	 */
	__bic32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEHOSTMODE);
	__orr32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEDEVMODE);

	/*
	 * According to Synopsys databook, this sleep is needed for the force
	 * device mode to take effect.
	 */
	msleep(25);

3595 3596
	dwc2_hsotg_corereset(hsotg);
	ret = dwc2_hsotg_hw_cfg(hsotg);
3597 3598
	if (ret) {
		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
3599
		return ret;
3600 3601
	}

3602
	dwc2_hsotg_init(hsotg);
3603

3604 3605 3606
	/* Switch back to default configuration */
	__bic32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEDEVMODE);

3607 3608 3609 3610
	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
	if (!hsotg->ctrl_buff) {
		dev_err(dev, "failed to allocate ctrl request buff\n");
3611
		return -ENOMEM;
3612 3613 3614 3615 3616 3617
	}

	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
	if (!hsotg->ep0_buff) {
		dev_err(dev, "failed to allocate ctrl reply buff\n");
3618
		return -ENOMEM;
3619 3620
	}

3621
	ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
3622
				dev_name(hsotg->dev), hsotg);
3623
	if (ret < 0) {
3624
		dev_err(dev, "cannot claim IRQ for gadget\n");
3625
		return ret;
3626 3627
	}

3628 3629 3630 3631
	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
3632
		return -EINVAL;
3633 3634 3635 3636 3637
	}

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3638
	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
3639 3640 3641

	/* allocate EP0 request */

3642
	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
3643 3644 3645
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
3646
		return -ENOMEM;
3647
	}
3648 3649

	/* initialise the endpoints now the core has been initialised */
3650 3651
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
		if (hsotg->eps_in[epnum])
3652
			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
3653 3654
								epnum, 1);
		if (hsotg->eps_out[epnum])
3655
			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
3656 3657
								epnum, 0);
	}
3658

3659
	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
3660
	if (ret)
3661
		return ret;
3662

3663
	dwc2_hsotg_dump(hsotg);
3664 3665 3666 3667

	return 0;
}

3668
/**
3669
 * dwc2_hsotg_remove - remove function for hsotg driver
3670 3671
 * @pdev: The platform information for the driver
 */
3672
int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
3673
{
3674
	usb_del_gadget_udc(&hsotg->gadget);
3675

3676 3677 3678
	return 0;
}

3679
int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
3680 3681 3682
{
	unsigned long flags;

3683
	if (hsotg->lx_state != DWC2_L0)
3684
		return 0;
3685

3686 3687 3688
	if (hsotg->driver) {
		int ep;

3689 3690 3691
		dev_info(hsotg->dev, "suspending usb gadget %s\n",
			 hsotg->driver->driver.name);

3692 3693
		spin_lock_irqsave(&hsotg->lock, flags);
		if (hsotg->enabled)
3694 3695
			dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
3696 3697
		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
		spin_unlock_irqrestore(&hsotg->lock, flags);
3698

3699 3700
		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
			if (hsotg->eps_in[ep])
3701
				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3702
			if (hsotg->eps_out[ep])
3703
				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3704
		}
3705 3706
	}

3707
	return 0;
3708 3709
}

3710
int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
3711 3712 3713
{
	unsigned long flags;

3714
	if (hsotg->lx_state == DWC2_L2)
3715
		return 0;
3716

3717 3718 3719
	if (hsotg->driver) {
		dev_info(hsotg->dev, "resuming usb gadget %s\n",
			 hsotg->driver->driver.name);
3720

3721
		spin_lock_irqsave(&hsotg->lock, flags);
3722
		dwc2_hsotg_core_init_disconnected(hsotg, false);
3723
		if (hsotg->enabled)
3724
			dwc2_hsotg_core_connect(hsotg);
3725 3726
		spin_unlock_irqrestore(&hsotg->lock, flags);
	}
3727

3728
	return 0;
3729
}