gadget.c 124.6 KB
Newer Older
1
/**
2 3
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
4 5 6 7 8 9 10 11 12 13 14
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
15
 */
16 17 18 19 20 21 22

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
23
#include <linux/mutex.h>
24 25 26
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
27
#include <linux/slab.h>
28
#include <linux/of_platform.h>
29 30 31

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
32
#include <linux/usb/phy.h>
33

34
#include "core.h"
35
#include "hw.h"
36 37

/* conversion functions */
38
static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
39
{
40
	return container_of(req, struct dwc2_hsotg_req, req);
41 42
}

43
static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
44
{
45
	return container_of(ep, struct dwc2_hsotg_ep, ep);
46 47
}

48
static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
49
{
50
	return container_of(gadget, struct dwc2_hsotg, gadget);
51 52 53 54
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
55
	dwc2_writel(dwc2_readl(ptr) | val, ptr);
56 57 58 59
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
60
	dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
61 62
}

63
static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
64 65 66 67 68 69 70 71
						u32 ep_index, u32 dir_in)
{
	if (dir_in)
		return hsotg->eps_in[ep_index];
	else
		return hsotg->eps_out[ep_index];
}

72
/* forward declaration of functions */
73
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
92
 * g_using_dma is set depending on dts flag.
93
 */
94
static inline bool using_dma(struct dwc2_hsotg *hsotg)
95
{
96
	return hsotg->params.g_dma;
97 98
}

99 100 101 102 103 104 105 106 107 108 109
/*
 * using_desc_dma - return the descriptor DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using descriptor DMA.
 */
static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
{
	return hsotg->params.g_dma_desc;
}

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
/**
 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
 * @hs_ep: The endpoint
 * @increment: The value to increment by
 *
 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
 */
static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
{
	hs_ep->target_frame += hs_ep->interval;
	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
		hs_ep->frame_overrun = 1;
		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
	} else {
		hs_ep->frame_overrun = 0;
	}
}

129
/**
130
 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
131 132 133
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
134
static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
135
{
136
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
137 138 139 140 141 142
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
143
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
144 145 146 147
	}
}

/**
148
 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
149 150 151
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
152
static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
153
{
154
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
155 156 157 158 159
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
160
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
161 162 163
}

/**
164
 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
165 166 167 168 169 170 171 172
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
173
static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
174
				  unsigned int ep, unsigned int dir_in,
175 176 177 178 179 180 181 182 183 184
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
185
	daint = dwc2_readl(hsotg->regs + DAINTMSK);
186 187 188 189
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
190
	dwc2_writel(daint, hsotg->regs + DAINTMSK);
191 192 193 194
	local_irq_restore(flags);
}

/**
195
 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
196 197
 * @hsotg: The device instance.
 */
198
static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
199
{
200
	unsigned int ep;
201
	unsigned int addr;
202
	int timeout;
203
	u32 val;
204
	u32 *txfsz = hsotg->params.g_tx_fifo_size;
205

206 207 208 209
	/* Reset fifo map if not correctly cleared during previous session */
	WARN_ON(hsotg->fifo_map);
	hsotg->fifo_map = 0;

210
	/* set RX/NPTX FIFO sizes */
211 212 213 214
	dwc2_writel(hsotg->params.g_rx_fifo_size, hsotg->regs + GRXFSIZ);
	dwc2_writel((hsotg->params.g_rx_fifo_size << FIFOSIZE_STARTADDR_SHIFT) |
		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
		    hsotg->regs + GNPTXFSIZ);
215

216 217
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
218 219
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
220 221
	 * known values.
	 */
222 223

	/* start at the end of the GNPTXFSIZ, rounded up */
224
	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
225

226
	/*
227
	 * Configure fifos sizes from provided configuration and assign
228 229
	 * them to endpoints dynamically according to maxpacket size value of
	 * given endpoint.
230
	 */
231
	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
232
		if (!txfsz[ep])
233 234
			continue;
		val = addr;
235 236
		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
237
			  "insufficient fifo memory");
238
		addr += txfsz[ep];
239

240
		dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
241
		val = dwc2_readl(hsotg->regs + DPTXFSIZN(ep));
242
	}
243

244 245 246 247
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
248

249
	dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
250
	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
251 252 253 254

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
255
		val = dwc2_readl(hsotg->regs + GRSTCTL);
256

257
		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
258 259 260 261 262 263
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
264
			break;
265 266 267 268 269 270
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
271 272 273 274 275 276 277 278
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
279
static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
280
						       gfp_t flags)
281
{
282
	struct dwc2_hsotg_req *req;
283

284
	req = kzalloc(sizeof(struct dwc2_hsotg_req), flags);
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
300
static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
301 302 303 304 305
{
	return hs_ep->periodic;
}

/**
306
 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
307 308 309 310
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
311
 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
312
 * of a request to ensure the buffer is ready for access by the caller.
313
 */
314
static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
315
				 struct dwc2_hsotg_ep *hs_ep,
316
				struct dwc2_hsotg_req *hs_req)
317 318
{
	struct usb_request *req = &hs_req->req;
319

320
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
321 322
}

323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
/*
 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
 * for Control endpoint
 * @hsotg: The device state.
 *
 * This function will allocate 4 descriptor chains for EP 0: 2 for
 * Setup stage, per one for IN and OUT data/status transactions.
 */
static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
{
	hsotg->setup_desc[0] =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->setup_desc_dma[0],
				    GFP_KERNEL);
	if (!hsotg->setup_desc[0])
		goto fail;

	hsotg->setup_desc[1] =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->setup_desc_dma[1],
				    GFP_KERNEL);
	if (!hsotg->setup_desc[1])
		goto fail;

	hsotg->ctrl_in_desc =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->ctrl_in_desc_dma,
				    GFP_KERNEL);
	if (!hsotg->ctrl_in_desc)
		goto fail;

	hsotg->ctrl_out_desc =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->ctrl_out_desc_dma,
				    GFP_KERNEL);
	if (!hsotg->ctrl_out_desc)
		goto fail;

	return 0;

fail:
	return -ENOMEM;
}

371
/**
372
 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
373 374 375 376 377 378 379 380 381 382 383 384 385
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
386
 */
387
static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
388
				 struct dwc2_hsotg_ep *hs_ep,
389
				struct dwc2_hsotg_req *hs_req)
390 391
{
	bool periodic = is_ep_periodic(hs_ep);
392
	u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
393 394 395 396 397
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;
398
	int max_transfer;
399 400 401 402 403 404 405

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

406
	if (periodic && !hsotg->dedicated_fifos) {
407
		u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
408 409 410
		int size_left;
		int size_done;

411 412 413 414
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
415

416
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
417

418 419
		/*
		 * if shared fifo, we cannot write anything until the
420 421 422
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
423
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
424 425 426
			return -ENOSPC;
		}

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
444
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
445 446
			return -ENOSPC;
		}
447
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
448 449
		can_write = dwc2_readl(hsotg->regs +
				DTXFSTS(hs_ep->fifo_index));
450 451 452

		can_write &= 0xffff;
		can_write *= 4;
453
	} else {
454
		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
455 456 457 458
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

459
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
460 461 462
			return -ENOSPC;
		}

463
		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
464
		can_write *= 4;	/* fifo size is in 32bit quantities. */
465 466
	}

467 468 469
	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
470
		__func__, gnptxsts, can_write, to_write, max_transfer);
471

472 473
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
474 475 476
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
477
	if (can_write > 512 && !periodic)
478 479
		can_write = 512;

480 481
	/*
	 * limit the write to one max-packet size worth of data, but allow
482
	 * the transfer to return that it did not run out of fifo space
483 484
	 * doing it.
	 */
485 486
	if (to_write > max_transfer) {
		to_write = max_transfer;
487

488 489
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
490
			dwc2_hsotg_en_gsint(hsotg,
491
					    periodic ? GINTSTS_PTXFEMP :
492
					   GINTSTS_NPTXFEMP);
493 494
	}

495 496 497 498
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
499
		pkt_round = to_write % max_transfer;
500

501 502
		/*
		 * Round the write down to an
503 504 505 506 507 508 509 510 511
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

512 513 514 515
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
516

517 518
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
519
			dwc2_hsotg_en_gsint(hsotg,
520
					    periodic ? GINTSTS_PTXFEMP :
521
					   GINTSTS_NPTXFEMP);
522 523 524
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
525
		to_write, hs_req->req.length, can_write, buf_pos);
526 527 528 529 530 531 532 533 534 535 536 537 538

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

539
	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
540 541 542 543 544 545 546 547 548 549 550

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
551
static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
552 553
{
	int index = hs_ep->index;
554 555
	unsigned int maxsize;
	unsigned int maxpkt;
556 557

	if (index != 0) {
558 559
		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
560
	} else {
561
		maxsize = 64 + 64;
562
		if (hs_ep->dir_in)
563
			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
564
		else
565 566 567 568 569 570 571
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

572 573 574 575
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
576 577 578 579 580 581 582

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

583
/**
584 585 586 587 588
 * dwc2_hsotg_read_frameno - read current frame number
 * @hsotg: The device instance
 *
 * Return the current frame number
 */
589 590 591 592 593 594 595 596 597 598 599
static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
{
	u32 dsts;

	dsts = dwc2_readl(hsotg->regs + DSTS);
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;

	return dsts;
}

600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
/**
 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
 * DMA descriptor chain prepared for specific endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * depending on its descriptor chain capacity so that transfers that
 * are too long can be split.
 */
static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
{
	int is_isoc = hs_ep->isochronous;
	unsigned int maxsize;

	if (is_isoc)
		maxsize = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
					   DEV_DMA_ISOC_RX_NBYTES_LIMIT;
	else
		maxsize = DEV_DMA_NBYTES_LIMIT;

	/* Above size of one descriptor was chosen, multiple it */
	maxsize *= MAX_DMA_DESC_NUM_GENERIC;

	return maxsize;
}

626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
/*
 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
 * @hs_ep: The endpoint
 * @mask: RX/TX bytes mask to be defined
 *
 * Returns maximum data payload for one descriptor after analyzing endpoint
 * characteristics.
 * DMA descriptor transfer bytes limit depends on EP type:
 * Control out - MPS,
 * Isochronous - descriptor rx/tx bytes bitfield limit,
 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
 * have concatenations from various descriptors within one packet.
 *
 * Selects corresponding mask for RX/TX bytes as well.
 */
static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
{
	u32 mps = hs_ep->ep.maxpacket;
	int dir_in = hs_ep->dir_in;
	u32 desc_size = 0;

	if (!hs_ep->index && !dir_in) {
		desc_size = mps;
		*mask = DEV_DMA_NBYTES_MASK;
	} else if (hs_ep->isochronous) {
		if (dir_in) {
			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
		} else {
			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
		}
	} else {
		desc_size = DEV_DMA_NBYTES_LIMIT;
		*mask = DEV_DMA_NBYTES_MASK;

		/* Round down desc_size to be mps multiple */
		desc_size -= desc_size % mps;
	}

	return desc_size;
}

/*
 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
 * @hs_ep: The endpoint
 * @dma_buff: DMA address to use
 * @len: Length of the transfer
 *
 * This function will iterate over descriptor chain and fill its entries
 * with corresponding information based on transfer data.
 */
static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
						 dma_addr_t dma_buff,
						 unsigned int len)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	struct dwc2_dma_desc *desc = hs_ep->desc_list;
	u32 mps = hs_ep->ep.maxpacket;
	u32 maxsize = 0;
	u32 offset = 0;
	u32 mask = 0;
	int i;

	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);

	hs_ep->desc_count = (len / maxsize) +
				((len % maxsize) ? 1 : 0);
	if (len == 0)
		hs_ep->desc_count = 1;

	for (i = 0; i < hs_ep->desc_count; ++i) {
		desc->status = 0;
		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
				 << DEV_DMA_BUFF_STS_SHIFT);

		if (len > maxsize) {
			if (!hs_ep->index && !dir_in)
				desc->status |= (DEV_DMA_L | DEV_DMA_IOC);

			desc->status |= (maxsize <<
						DEV_DMA_NBYTES_SHIFT & mask);
			desc->buf = dma_buff + offset;

			len -= maxsize;
			offset += maxsize;
		} else {
			desc->status |= (DEV_DMA_L | DEV_DMA_IOC);

			if (dir_in)
				desc->status |= (len % mps) ? DEV_DMA_SHORT :
					((hs_ep->send_zlp) ? DEV_DMA_SHORT : 0);
			if (len > maxsize)
				dev_err(hsotg->dev, "wrong len %d\n", len);

			desc->status |=
				len << DEV_DMA_NBYTES_SHIFT & mask;
			desc->buf = dma_buff + offset;
		}

		desc->status &= ~DEV_DMA_BUFF_STS_MASK;
		desc->status |= (DEV_DMA_BUFF_STS_HREADY
				 << DEV_DMA_BUFF_STS_SHIFT);
		desc++;
	}
}

734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
/*
 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
 * @hs_ep: The isochronous endpoint.
 * @dma_buff: usb requests dma buffer.
 * @len: usb request transfer length.
 *
 * Finds out index of first free entry either in the bottom or up half of
 * descriptor chain depend on which is under SW control and not processed
 * by HW. Then fills that descriptor with the data of the arrived usb request,
 * frame info, sets Last and IOC bits increments next_desc. If filled
 * descriptor is not the first one, removes L bit from the previous descriptor
 * status.
 */
static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
				      dma_addr_t dma_buff, unsigned int len)
{
	struct dwc2_dma_desc *desc;
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	u32 index;
	u32 maxsize = 0;
	u32 mask = 0;

	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
	if (len > maxsize) {
		dev_err(hsotg->dev, "wrong len %d\n", len);
		return -EINVAL;
	}

	/*
	 * If SW has already filled half of chain, then return and wait for
	 * the other chain to be processed by HW.
	 */
	if (hs_ep->next_desc == MAX_DMA_DESC_NUM_GENERIC / 2)
		return -EBUSY;

	/* Increment frame number by interval for IN */
	if (hs_ep->dir_in)
		dwc2_gadget_incr_frame_num(hs_ep);

	index = (MAX_DMA_DESC_NUM_GENERIC / 2) * hs_ep->isoc_chain_num +
		 hs_ep->next_desc;

	/* Sanity check of calculated index */
	if ((hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC) ||
	    (!hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC / 2)) {
		dev_err(hsotg->dev, "wrong index %d for iso chain\n", index);
		return -EINVAL;
	}

	desc = &hs_ep->desc_list[index];

	/* Clear L bit of previous desc if more than one entries in the chain */
	if (hs_ep->next_desc)
		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;

	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);

	desc->status = 0;
	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);

	desc->buf = dma_buff;
	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));

	if (hs_ep->dir_in) {
		desc->status |= ((hs_ep->mc << DEV_DMA_ISOC_PID_SHIFT) &
				 DEV_DMA_ISOC_PID_MASK) |
				((len % hs_ep->ep.maxpacket) ?
				 DEV_DMA_SHORT : 0) |
				((hs_ep->target_frame <<
				  DEV_DMA_ISOC_FRNUM_SHIFT) &
				 DEV_DMA_ISOC_FRNUM_MASK);
	}

	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);

	/* Update index of last configured entry in the chain */
	hs_ep->next_desc++;

	return 0;
}

/*
 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
 * @hs_ep: The isochronous endpoint.
 *
 * Prepare first descriptor chain for isochronous endpoints. Afterwards
 * write DMA address to HW and enable the endpoint.
 *
 * Switch between descriptor chains via isoc_chain_num to give SW opportunity
 * to prepare second descriptor chain while first one is being processed by HW.
 */
static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	struct dwc2_hsotg_req *hs_req, *treq;
	int index = hs_ep->index;
	int ret;
	u32 dma_reg;
	u32 depctl;
	u32 ctrl;

	if (list_empty(&hs_ep->queue)) {
		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
		return;
	}

	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
		ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
						 hs_req->req.length);
		if (ret) {
			dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
			break;
		}
	}

	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);

	/* write descriptor chain address to control register */
	dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);

	ctrl = dwc2_readl(hsotg->regs + depctl);
	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
	dwc2_writel(ctrl, hsotg->regs + depctl);

	/* Switch ISOC descriptor chain number being processed by SW*/
	hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
	hs_ep->next_desc = 0;
}

867
/**
868
 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
869 870 871 872 873 874 875 876
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
877
static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
878
				 struct dwc2_hsotg_ep *hs_ep,
879
				struct dwc2_hsotg_req *hs_req,
880 881 882 883 884 885 886 887 888
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
889 890 891
	unsigned int length;
	unsigned int packets;
	unsigned int maxreq;
892
	unsigned int dma_reg;
893 894 895 896 897 898 899 900 901 902 903 904 905 906

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

907
	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
908 909
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
910 911

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
912
		__func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
913 914
		hs_ep->dir_in ? "in" : "out");

915
	/* If endpoint is stalled, we will restart request later */
916
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
917

918
	if (index && ctrl & DXEPCTL_STALL) {
919 920 921 922
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

923
	length = ureq->length - ureq->actual;
924 925
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
926

927 928 929 930 931
	if (!using_desc_dma(hsotg))
		maxreq = get_ep_limit(hs_ep);
	else
		maxreq = dwc2_gadget_get_chain_limit(hs_ep);

932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

950 951 952 953 954
	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
		return;
	}

955
	if (dir_in && index != 0)
956
		if (hs_ep->isochronous)
957
			epsize = DXEPTSIZ_MC(packets);
958
		else
959
			epsize = DXEPTSIZ_MC(1);
960 961 962
	else
		epsize = 0;

963 964 965 966 967 968 969
	/*
	 * zero length packet should be programmed on its own and should not
	 * be counted in DIEPTSIZ.PktCnt with other packets.
	 */
	if (dir_in && ureq->zero && !continuing) {
		/* Test if zlp is actually required. */
		if ((ureq->length >= hs_ep->ep.maxpacket) &&
970
		    !(ureq->length % hs_ep->ep.maxpacket))
971
			hs_ep->send_zlp = 1;
972 973
	}

974 975
	epsize |= DXEPTSIZ_PKTCNT(packets);
	epsize |= DXEPTSIZ_XFERSIZE(length);
976 977 978 979 980 981 982

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

983 984 985 986 987 988 989 990 991 992 993
	if (using_desc_dma(hsotg)) {
		u32 offset = 0;
		u32 mps = hs_ep->ep.maxpacket;

		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
		if (!dir_in) {
			if (!index)
				length = mps;
			else if (length % mps)
				length += (mps - (length % mps));
		}
994

995
		/*
996 997 998
		 * If more data to send, adjust DMA for EP0 out data stage.
		 * ureq->dma stays unchanged, hence increment it by already
		 * passed passed data count before starting new transaction.
999
		 */
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
		if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
		    continuing)
			offset = ureq->actual;

		/* Fill DDMA chain entries */
		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
						     length);

		/* write descriptor chain address to control register */
		dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
1010

1011 1012 1013 1014 1015 1016
		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
	} else {
		/* write size / packets */
		dwc2_writel(epsize, hsotg->regs + epsize_reg);

1017
		if (using_dma(hsotg) && !continuing && (length != 0)) {
1018 1019 1020 1021
			/*
			 * write DMA address to control register, buffer
			 * already synced by dwc2_hsotg_ep_queue().
			 */
1022

1023 1024 1025 1026 1027
			dwc2_writel(ureq->dma, hsotg->regs + dma_reg);

			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
				__func__, &ureq->dma, dma_reg);
		}
1028 1029
	}

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
	if (hs_ep->isochronous && hs_ep->interval == 1) {
		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
		dwc2_gadget_incr_frame_num(hs_ep);

		if (hs_ep->target_frame & 0x1)
			ctrl |= DXEPCTL_SETODDFR;
		else
			ctrl |= DXEPCTL_SETEVENFR;
	}

1040
	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
1041

1042
	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1043 1044

	/* For Setup request do not clear NAK */
1045
	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1046
		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1047

1048
	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1049
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
1050

1051 1052
	/*
	 * set these, it seems that DMA support increments past the end
1053
	 * of the packet buffer so we need to calculate the length from
1054 1055
	 * this information.
	 */
1056 1057 1058 1059 1060 1061 1062
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

1063
		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1064 1065
	}

1066 1067 1068 1069
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
1070 1071

	/* check ep is enabled */
1072
	if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
1073
		dev_dbg(hsotg->dev,
1074
			"ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1075
			 index, dwc2_readl(hsotg->regs + epctrl_reg));
1076

1077
	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1078
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
1079 1080

	/* enable ep interrupts */
1081
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1082 1083 1084
}

/**
1085
 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1086 1087 1088 1089 1090 1091 1092 1093 1094
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
1095
 */
1096
static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1097
			      struct dwc2_hsotg_ep *hs_ep,
1098 1099
			     struct usb_request *req)
{
1100
	int ret;
1101

1102 1103 1104
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

1115
static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1116
						 struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
{
	void *req_buf = hs_req->req.buf;

	/* If dma is not being used or buffer is aligned */
	if (!using_dma(hsotg) || !((long)req_buf & 3))
		return 0;

	WARN_ON(hs_req->saved_req_buf);

	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1127
		hs_ep->ep.name, req_buf, hs_req->req.length);
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145

	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
	if (!hs_req->req.buf) {
		hs_req->req.buf = req_buf;
		dev_err(hsotg->dev,
			"%s: unable to allocate memory for bounce buffer\n",
			__func__);
		return -ENOMEM;
	}

	/* Save actual buffer */
	hs_req->saved_req_buf = req_buf;

	if (hs_ep->dir_in)
		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
	return 0;
}

1146
static void dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1147
						     struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
{
	/* If dma is not being used or buffer was aligned */
	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
		return;

	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);

	/* Copy data from bounce buffer on successful out transfer */
	if (!hs_ep->dir_in && !hs_req->req.status)
		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1159
		       hs_req->req.actual);
1160 1161 1162 1163 1164 1165 1166 1167

	/* Free bounce buffer */
	kfree(hs_req->req.buf);

	hs_req->req.buf = hs_req->saved_req_buf;
	hs_req->saved_req_buf = NULL;
}

1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
/**
 * dwc2_gadget_target_frame_elapsed - Checks target frame
 * @hs_ep: The driver endpoint to check
 *
 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
 * corresponding transfer.
 */
static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	u32 target_frame = hs_ep->target_frame;
	u32 current_frame = dwc2_hsotg_read_frameno(hsotg);
	bool frame_overrun = hs_ep->frame_overrun;

	if (!frame_overrun && current_frame >= target_frame)
		return true;

	if (frame_overrun && current_frame >= target_frame &&
	    ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
		return true;

	return false;
}

1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
/*
 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
 * @hsotg: The driver state
 * @hs_ep: the ep descriptor chain is for
 *
 * Called to update EP0 structure's pointers depend on stage of
 * control transfer.
 */
static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
					  struct dwc2_hsotg_ep *hs_ep)
{
	switch (hsotg->ep0_state) {
	case DWC2_EP0_SETUP:
	case DWC2_EP0_STATUS_OUT:
		hs_ep->desc_list = hsotg->setup_desc[0];
		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
		break;
	case DWC2_EP0_DATA_IN:
	case DWC2_EP0_STATUS_IN:
		hs_ep->desc_list = hsotg->ctrl_in_desc;
		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
		break;
	case DWC2_EP0_DATA_OUT:
		hs_ep->desc_list = hsotg->ctrl_out_desc;
		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
		break;
	default:
		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
			hsotg->ep0_state);
		return -EINVAL;
	}

	return 0;
}

1227
static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1228
			       gfp_t gfp_flags)
1229
{
1230 1231
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1232
	struct dwc2_hsotg *hs = hs_ep->parent;
1233
	bool first;
1234
	int ret;
1235 1236 1237 1238 1239

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

1240 1241 1242
	/* Prevent new request submission when controller is suspended */
	if (hs->lx_state == DWC2_L2) {
		dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
1243
			__func__);
1244 1245 1246
		return -EAGAIN;
	}

1247 1248 1249 1250 1251
	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

1252
	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1253 1254 1255
	if (ret)
		return ret;

1256 1257
	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
1258
		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1259 1260 1261
		if (ret)
			return ret;
	}
1262 1263 1264 1265 1266 1267
	/* If using descriptor DMA configure EP0 descriptor chain pointers */
	if (using_desc_dma(hs) && !hs_ep->index) {
		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
		if (ret)
			return ret;
	}
1268 1269 1270 1271

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287
	/*
	 * Handle DDMA isochronous transfers separately - just add new entry
	 * to the half of descriptor chain that is not processed by HW.
	 * Transfer will be started once SW gets either one of NAK or
	 * OutTknEpDis interrupts.
	 */
	if (using_desc_dma(hs) && hs_ep->isochronous &&
	    hs_ep->target_frame != TARGET_FRAME_INITIAL) {
		ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
						 hs_req->req.length);
		if (ret)
			dev_dbg(hs->dev, "%s: ISO desc chain full\n", __func__);

		return 0;
	}

1288 1289 1290 1291 1292 1293 1294 1295
	if (first) {
		if (!hs_ep->isochronous) {
			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
			return 0;
		}

		while (dwc2_gadget_target_frame_elapsed(hs_ep))
			dwc2_gadget_incr_frame_num(hs_ep);
1296

1297 1298 1299
		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
	}
1300 1301 1302
	return 0;
}

1303
static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1304
				    gfp_t gfp_flags)
1305
{
1306
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1307
	struct dwc2_hsotg *hs = hs_ep->parent;
1308 1309 1310 1311
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
1312
	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1313 1314 1315 1316 1317
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

1318
static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1319
				       struct usb_request *req)
1320
{
1321
	struct dwc2_hsotg_req *hs_req = our_req(req);
1322 1323 1324 1325 1326

	kfree(hs_req);
}

/**
1327
 * dwc2_hsotg_complete_oursetup - setup completion callback
1328 1329 1330 1331 1332 1333
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
1334
static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1335
					 struct usb_request *req)
1336
{
1337
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1338
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1339 1340 1341

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

1342
	dwc2_hsotg_ep_free_request(ep, req);
1343 1344 1345 1346 1347 1348 1349 1350 1351
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
1352
 */
1353
static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1354
					    u32 windex)
1355
{
1356
	struct dwc2_hsotg_ep *ep;
1357 1358 1359 1360 1361 1362
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

1363
	if (idx > hsotg->num_of_eps)
1364 1365
		return NULL;

1366 1367
	ep = index_to_ep(hsotg, idx, dir);

1368 1369 1370 1371 1372 1373
	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

1374
/**
1375
 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1376 1377 1378 1379
 * @hsotg: The driver state.
 * @testmode: requested usb test mode
 * Enable usb Test Mode requested by the Host.
 */
1380
int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1381
{
1382
	int dctl = dwc2_readl(hsotg->regs + DCTL);
1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395

	dctl &= ~DCTL_TSTCTL_MASK;
	switch (testmode) {
	case TEST_J:
	case TEST_K:
	case TEST_SE0_NAK:
	case TEST_PACKET:
	case TEST_FORCE_EN:
		dctl |= testmode << DCTL_TSTCTL_SHIFT;
		break;
	default:
		return -EINVAL;
	}
1396
	dwc2_writel(dctl, hsotg->regs + DCTL);
1397 1398 1399
	return 0;
}

1400
/**
1401
 * dwc2_hsotg_send_reply - send reply to control request
1402 1403 1404 1405 1406 1407 1408 1409
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
1410
static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1411
				 struct dwc2_hsotg_ep *ep,
1412 1413 1414 1415 1416 1417 1418 1419
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

1420
	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1421 1422 1423 1424 1425 1426 1427 1428
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
1429 1430 1431 1432 1433
	/*
	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
	 * STATUS stage.
	 */
	req->zero = 0;
1434
	req->complete = dwc2_hsotg_complete_oursetup;
1435 1436 1437 1438

	if (length)
		memcpy(req->buf, buff, length);

1439
	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1440 1441 1442 1443 1444 1445 1446 1447 1448
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
1449
 * dwc2_hsotg_process_req_status - process request GET_STATUS
1450 1451 1452
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1453
static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1454
					 struct usb_ctrlrequest *ctrl)
1455
{
1456 1457
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_ep *ep;
1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
1470 1471 1472 1473 1474
		/*
		 * bit 0 => self powered
		 * bit 1 => remote wakeup
		 */
		reply = cpu_to_le16(0);
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

1497
	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1498 1499 1500 1501 1502 1503 1504 1505
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

1506
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1507

1508 1509 1510 1511 1512 1513
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
1514
static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1515
{
1516 1517
	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
					queue);
1518 1519
}

1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
/**
 * dwc2_gadget_start_next_request - Starts next request from ep queue
 * @hs_ep: Endpoint structure
 *
 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
 * in its handler. Hence we need to unmask it here to be able to do
 * resynchronization.
 */
static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
{
	u32 mask;
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	struct dwc2_hsotg_req *hs_req;
	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;

	if (!list_empty(&hs_ep->queue)) {
		hs_req = get_ep_head(hs_ep);
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		return;
	}
	if (!hs_ep->isochronous)
		return;

	if (dir_in) {
		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
			__func__);
	} else {
		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
			__func__);
		mask = dwc2_readl(hsotg->regs + epmsk_reg);
		mask |= DOEPMSK_OUTTKNEPDISMSK;
		dwc2_writel(mask, hsotg->regs + epmsk_reg);
	}
}

1556
/**
1557
 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1558 1559 1560
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1561
static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1562
					  struct usb_ctrlrequest *ctrl)
1563
{
1564 1565
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_req *hs_req;
1566
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1567
	struct dwc2_hsotg_ep *ep;
1568
	int ret;
1569
	bool halted;
1570 1571 1572
	u32 recip;
	u32 wValue;
	u32 wIndex;
1573 1574 1575 1576

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
	wValue = le16_to_cpu(ctrl->wValue);
	wIndex = le16_to_cpu(ctrl->wIndex);
	recip = ctrl->bRequestType & USB_RECIP_MASK;

	switch (recip) {
	case USB_RECIP_DEVICE:
		switch (wValue) {
		case USB_DEVICE_TEST_MODE:
			if ((wIndex & 0xff) != 0)
				return -EINVAL;
			if (!set)
				return -EINVAL;

			hsotg->test_mode = wIndex >> 8;
1591
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
			break;
		default:
			return -ENOENT;
		}
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, wIndex);
1605 1606
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1607
				__func__, wIndex);
1608 1609 1610
			return -ENOENT;
		}

1611
		switch (wValue) {
1612
		case USB_ENDPOINT_HALT:
1613 1614
			halted = ep->halted;

1615
			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1616

1617
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1618 1619 1620 1621 1622
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
1623

1624 1625 1626 1627 1628 1629
			/*
			 * we have to complete all requests for ep if it was
			 * halted, and the halt was cleared by CLEAR_FEATURE
			 */

			if (!set && halted) {
1630 1631 1632 1633 1634 1635 1636 1637
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
1638 1639 1640 1641 1642 1643
					if (hs_req->req.complete) {
						spin_unlock(&hsotg->lock);
						usb_gadget_giveback_request(
							&ep->ep, &hs_req->req);
						spin_lock(&hsotg->lock);
					}
1644 1645 1646
				}

				/* If we have pending request, then start it */
1647
				if (!ep->req) {
1648
					dwc2_gadget_start_next_request(ep);
1649 1650 1651
				}
			}

1652 1653 1654 1655 1656
			break;

		default:
			return -ENOENT;
		}
1657 1658 1659 1660
		break;
	default:
		return -ENOENT;
	}
1661 1662 1663
	return 1;
}

1664
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1665

1666
/**
1667
 * dwc2_hsotg_stall_ep0 - stall ep0
1668 1669 1670 1671
 * @hsotg: The device state
 *
 * Set stall for ep0 as response for setup request.
 */
1672
static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1673
{
1674
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
	u32 reg;
	u32 ctrl;

	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;

	/*
	 * DxEPCTL_Stall will be cleared by EP once it has
	 * taken effect, so no need to clear later.
	 */

1686
	ctrl = dwc2_readl(hsotg->regs + reg);
1687 1688
	ctrl |= DXEPCTL_STALL;
	ctrl |= DXEPCTL_CNAK;
1689
	dwc2_writel(ctrl, hsotg->regs + reg);
1690 1691

	dev_dbg(hsotg->dev,
1692
		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1693
		ctrl, reg, dwc2_readl(hsotg->regs + reg));
1694 1695 1696 1697 1698

	 /*
	  * complete won't be called, so we enqueue
	  * setup request here
	  */
1699
	 dwc2_hsotg_enqueue_setup(hsotg);
1700 1701
}

1702
/**
1703
 * dwc2_hsotg_process_control - process a control request
1704 1705 1706 1707 1708 1709 1710
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
1711
static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1712
				       struct usb_ctrlrequest *ctrl)
1713
{
1714
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1715 1716 1717
	int ret = 0;
	u32 dcfg;

1718 1719 1720 1721
	dev_dbg(hsotg->dev,
		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
		ctrl->wIndex, ctrl->wLength);
1722

1723 1724 1725 1726
	if (ctrl->wLength == 0) {
		ep0->dir_in = 1;
		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
	} else if (ctrl->bRequestType & USB_DIR_IN) {
1727
		ep0->dir_in = 1;
1728 1729 1730 1731 1732
		hsotg->ep0_state = DWC2_EP0_DATA_IN;
	} else {
		ep0->dir_in = 0;
		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
	}
1733 1734 1735 1736

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1737
			hsotg->connected = 1;
1738
			dcfg = dwc2_readl(hsotg->regs + DCFG);
1739
			dcfg &= ~DCFG_DEVADDR_MASK;
P
Paul Zimmerman 已提交
1740 1741
			dcfg |= (le16_to_cpu(ctrl->wValue) <<
				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1742
			dwc2_writel(dcfg, hsotg->regs + DCFG);
1743 1744 1745

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

1746
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1747 1748 1749
			return;

		case USB_REQ_GET_STATUS:
1750
			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1751 1752 1753 1754
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
1755
			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1756 1757 1758 1759 1760 1761 1762
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
1763
		spin_unlock(&hsotg->lock);
1764
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1765
		spin_lock(&hsotg->lock);
1766 1767 1768 1769
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1770 1771
	/*
	 * the request is either unhandlable, or is not formatted correctly
1772 1773 1774
	 * so respond with a STALL for the status stage to indicate failure.
	 */

1775
	if (ret < 0)
1776
		dwc2_hsotg_stall_ep0(hsotg);
1777 1778 1779
}

/**
1780
 * dwc2_hsotg_complete_setup - completion of a setup transfer
1781 1782 1783 1784 1785 1786
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
1787
static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1788
				      struct usb_request *req)
1789
{
1790
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1791
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1792 1793 1794 1795 1796 1797

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

1798
	spin_lock(&hsotg->lock);
1799
	if (req->actual == 0)
1800
		dwc2_hsotg_enqueue_setup(hsotg);
1801
	else
1802
		dwc2_hsotg_process_control(hsotg, req->buf);
1803
	spin_unlock(&hsotg->lock);
1804 1805 1806
}

/**
1807
 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1808 1809 1810 1811 1812
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
1813
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1814 1815
{
	struct usb_request *req = hsotg->ctrl_req;
1816
	struct dwc2_hsotg_req *hs_req = our_req(req);
1817 1818 1819 1820 1821 1822 1823
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
1824
	req->complete = dwc2_hsotg_complete_setup;
1825 1826 1827 1828 1829 1830

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

1831
	hsotg->eps_out[0]->dir_in = 0;
1832
	hsotg->eps_out[0]->send_zlp = 0;
1833
	hsotg->ep0_state = DWC2_EP0_SETUP;
1834

1835
	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1836 1837
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1838 1839 1840 1841
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1842 1843 1844
	}
}

1845
static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
1846
				   struct dwc2_hsotg_ep *hs_ep)
1847 1848 1849 1850 1851 1852
{
	u32 ctrl;
	u8 index = hs_ep->index;
	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);

1853 1854
	if (hs_ep->dir_in)
		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1855
			index);
1856 1857
	else
		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1858 1859 1860 1861
			index);
	if (using_desc_dma(hsotg)) {
		/* Not specific buffer needed for ep0 ZLP */
		dma_addr_t dma = hs_ep->desc_list_dma;
1862

1863 1864 1865 1866 1867 1868 1869
		dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
	} else {
		dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
			    DXEPTSIZ_XFERSIZE(0), hsotg->regs +
			    epsiz_reg);
	}
1870

1871
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1872 1873 1874
	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
1875
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1876 1877
}

1878
/**
1879
 * dwc2_hsotg_complete_request - complete a request given to us
1880 1881 1882 1883 1884 1885 1886 1887 1888 1889
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1890
 */
1891
static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1892
					struct dwc2_hsotg_ep *hs_ep,
1893
				       struct dwc2_hsotg_req *hs_req,
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
				       int result)
{
	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1904 1905 1906 1907
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1908 1909 1910 1911

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

1912 1913 1914
	if (using_dma(hsotg))
		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1915
	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1916

1917 1918 1919
	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

1920 1921 1922 1923
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1924 1925

	if (hs_req->req.complete) {
1926
		spin_unlock(&hsotg->lock);
1927
		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1928
		spin_lock(&hsotg->lock);
1929 1930
	}

1931 1932 1933 1934
	/* In DDMA don't need to proceed to starting of next ISOC request */
	if (using_desc_dma(hsotg) && hs_ep->isochronous)
		return;

1935 1936
	/*
	 * Look to see if there is anything else to do. Note, the completion
1937
	 * of the previous request may have caused a new request to be started
1938 1939
	 * so be careful when doing this.
	 */
1940 1941

	if (!hs_ep->req && result >= 0) {
1942
		dwc2_gadget_start_next_request(hs_ep);
1943 1944 1945
	}
}

1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
/*
 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
 * @hs_ep: The endpoint the request was on.
 *
 * Get first request from the ep queue, determine descriptor on which complete
 * happened. SW based on isoc_chain_num discovers which half of the descriptor
 * chain is currently in use by HW, adjusts dma_address and calculates index
 * of completed descriptor based on the value of DEPDMA register. Update actual
 * length of request, giveback to gadget.
 */
static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	struct dwc2_hsotg_req *hs_req;
	struct usb_request *ureq;
	int index;
	dma_addr_t dma_addr;
	u32 dma_reg;
	u32 depdma;
	u32 desc_sts;
	u32 mask;

	hs_req = get_ep_head(hs_ep);
	if (!hs_req) {
		dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
		return;
	}
	ureq = &hs_req->req;

	dma_addr = hs_ep->desc_list_dma;

	/*
	 * If lower half of  descriptor chain is currently use by SW,
	 * that means higher half is being processed by HW, so shift
	 * DMA address to higher half of descriptor chain.
	 */
	if (!hs_ep->isoc_chain_num)
		dma_addr += sizeof(struct dwc2_dma_desc) *
			    (MAX_DMA_DESC_NUM_GENERIC / 2);

	dma_reg = hs_ep->dir_in ? DIEPDMA(hs_ep->index) : DOEPDMA(hs_ep->index);
	depdma = dwc2_readl(hsotg->regs + dma_reg);

	index = (depdma - dma_addr) / sizeof(struct dwc2_dma_desc) - 1;
	desc_sts = hs_ep->desc_list[index].status;

	mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
	       DEV_DMA_ISOC_RX_NBYTES_MASK;
	ureq->actual = ureq->length -
		       ((desc_sts & mask) >> DEV_DMA_ISOC_NBYTES_SHIFT);

1997 1998 1999 2000
	/* Adjust actual length for ISOC Out if length is not align of 4 */
	if (!hs_ep->dir_in && ureq->length & 0x3)
		ureq->actual += 4 - (ureq->length & 0x3);

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
}

/*
 * dwc2_gadget_start_next_isoc_ddma - start next isoc request, if any.
 * @hs_ep: The isochronous endpoint to be re-enabled.
 *
 * If ep has been disabled due to last descriptor servicing (IN endpoint) or
 * BNA (OUT endpoint) check the status of other half of descriptor chain that
 * was under SW control till HW was busy and restart the endpoint if needed.
 */
static void dwc2_gadget_start_next_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	u32 depctl;
	u32 dma_reg;
	u32 ctrl;
	u32 dma_addr = hs_ep->desc_list_dma;
	unsigned char index = hs_ep->index;

	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);

	ctrl = dwc2_readl(hsotg->regs + depctl);

	/*
	 * EP was disabled if HW has processed last descriptor or BNA was set.
	 * So restart ep if SW has prepared new descriptor chain in ep_queue
	 * routine while HW was busy.
	 */
	if (!(ctrl & DXEPCTL_EPENA)) {
		if (!hs_ep->next_desc) {
			dev_dbg(hsotg->dev, "%s: No more ISOC requests\n",
				__func__);
			return;
		}

		dma_addr += sizeof(struct dwc2_dma_desc) *
			    (MAX_DMA_DESC_NUM_GENERIC / 2) *
			    hs_ep->isoc_chain_num;
		dwc2_writel(dma_addr, hsotg->regs + dma_reg);

		ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
		dwc2_writel(ctrl, hsotg->regs + depctl);

		/* Switch ISOC descriptor chain number being processed by SW*/
		hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
		hs_ep->next_desc = 0;

		dev_dbg(hsotg->dev, "%s: Restarted isochronous endpoint\n",
			__func__);
	}
}

2055
/**
2056
 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2057 2058 2059 2060 2061 2062 2063 2064
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
2065
static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2066
{
2067 2068
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2069
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
2070 2071 2072 2073 2074
	int to_read;
	int max_req;
	int read_ptr;

	if (!hs_req) {
2075
		u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
2076 2077
		int ptr;

2078
		dev_dbg(hsotg->dev,
2079
			"%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2080 2081 2082 2083
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
2084
			(void)dwc2_readl(fifo);
2085 2086 2087 2088 2089 2090 2091 2092

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

2093 2094 2095
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

2096
	if (to_read > max_req) {
2097 2098
		/*
		 * more data appeared than we where willing
2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

2110 2111 2112 2113
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
2114
	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
2115 2116 2117
}

/**
2118
 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2119
 * @hsotg: The device instance
2120
 * @dir_in: If IN zlp
2121 2122 2123 2124 2125
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
2126
 * currently believed that we do not need to wait for any space in
2127 2128
 * the TxFIFO.
 */
2129
static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2130
{
2131
	/* eps_out[0] is used in both directions */
2132 2133
	hsotg->eps_out[0]->dir_in = dir_in;
	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2134

2135
	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2136 2137
}

2138
static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2139
					    u32 epctl_reg)
2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
{
	u32 ctrl;

	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
	if (ctrl & DXEPCTL_EOFRNUM)
		ctrl |= DXEPCTL_SETEVENFR;
	else
		ctrl |= DXEPCTL_SETODDFR;
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
}

2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180
/*
 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
 * @hs_ep - The endpoint on which transfer went
 *
 * Iterate over endpoints descriptor chain and get info on bytes remained
 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
 */
static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	unsigned int bytes_rem = 0;
	struct dwc2_dma_desc *desc = hs_ep->desc_list;
	int i;
	u32 status;

	if (!desc)
		return -EINVAL;

	for (i = 0; i < hs_ep->desc_count; ++i) {
		status = desc->status;
		bytes_rem += status & DEV_DMA_NBYTES_MASK;

		if (status & DEV_DMA_STS_MASK)
			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
				i, status & DEV_DMA_STS_MASK);
	}

	return bytes_rem;
}

2181
/**
2182
 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2183 2184 2185 2186 2187 2188
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
2189
 */
2190
static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2191
{
2192
	u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
2193 2194
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2195
	struct usb_request *req = &hs_req->req;
2196
	unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2197 2198 2199 2200 2201 2202 2203
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

2204 2205
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
2206 2207
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
		dwc2_hsotg_enqueue_setup(hsotg);
2208 2209 2210
		return;
	}

2211 2212 2213
	if (using_desc_dma(hsotg))
		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);

2214
	if (using_dma(hsotg)) {
2215
		unsigned int size_done;
2216

2217 2218
		/*
		 * Calculate the size of the transfer by checking how much
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

2232 2233
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
2234
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2235 2236 2237
		return;
	}

2238 2239 2240 2241
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

2242 2243 2244 2245
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
2246 2247
	}

2248 2249 2250
	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
	if (!using_desc_dma(hsotg) && epnum == 0 &&
	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2251
		/* Move to STATUS IN */
2252
		dwc2_hsotg_ep0_zlp(hsotg, true);
2253
		return;
2254 2255
	}

2256 2257 2258 2259 2260 2261 2262
	/*
	 * Slave mode OUT transfers do not go through XferComplete so
	 * adjust the ISOC parity here.
	 */
	if (!using_dma(hsotg)) {
		if (hs_ep->isochronous && hs_ep->interval == 1)
			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2263 2264
		else if (hs_ep->isochronous && hs_ep->interval > 1)
			dwc2_gadget_incr_frame_num(hs_ep);
2265 2266
	}

2267
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2268 2269 2270
}

/**
2271
 * dwc2_hsotg_handle_rx - RX FIFO has data
2272 2273 2274 2275 2276 2277
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
2278
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2279 2280 2281 2282 2283 2284 2285
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
2286
static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2287
{
2288
	u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
2289 2290 2291 2292
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

2293 2294
	epnum = grxstsr & GRXSTS_EPNUM_MASK;
	status = grxstsr & GRXSTS_PKTSTS_MASK;
2295

2296 2297
	size = grxstsr & GRXSTS_BYTECNT_MASK;
	size >>= GRXSTS_BYTECNT_SHIFT;
2298

2299
	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2300
		__func__, grxstsr, size, epnum);
2301

2302 2303 2304
	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
	case GRXSTS_PKTSTS_GLOBALOUTNAK:
		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2305 2306
		break;

2307
	case GRXSTS_PKTSTS_OUTDONE:
2308
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2309
			dwc2_hsotg_read_frameno(hsotg));
2310 2311

		if (!using_dma(hsotg))
2312
			dwc2_hsotg_handle_outdone(hsotg, epnum);
2313 2314
		break;

2315
	case GRXSTS_PKTSTS_SETUPDONE:
2316 2317
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2318
			dwc2_hsotg_read_frameno(hsotg),
2319
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2320
		/*
2321
		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2322 2323 2324 2325
		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
		 */
		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2326
			dwc2_hsotg_handle_outdone(hsotg, epnum);
2327 2328
		break;

2329
	case GRXSTS_PKTSTS_OUTRX:
2330
		dwc2_hsotg_rx_data(hsotg, epnum, size);
2331 2332
		break;

2333
	case GRXSTS_PKTSTS_SETUPRX:
2334 2335
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2336
			dwc2_hsotg_read_frameno(hsotg),
2337
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2338

2339 2340
		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);

2341
		dwc2_hsotg_rx_data(hsotg, epnum, size);
2342 2343 2344 2345 2346 2347
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

2348
		dwc2_hsotg_dump(hsotg);
2349 2350 2351 2352 2353
		break;
	}
}

/**
2354
 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2355
 * @mps: The maximum packet size in bytes.
2356
 */
2357
static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2358 2359 2360
{
	switch (mps) {
	case 64:
2361
		return D0EPCTL_MPS_64;
2362
	case 32:
2363
		return D0EPCTL_MPS_32;
2364
	case 16:
2365
		return D0EPCTL_MPS_16;
2366
	case 8:
2367
		return D0EPCTL_MPS_8;
2368 2369 2370 2371 2372 2373 2374 2375
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
2376
 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2377 2378 2379
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
2380
 * @mc: The multicount value
2381 2382 2383 2384
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
2385
static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2386 2387
					unsigned int ep, unsigned int mps,
					unsigned int mc, unsigned int dir_in)
2388
{
2389
	struct dwc2_hsotg_ep *hs_ep;
2390 2391 2392
	void __iomem *regs = hsotg->regs;
	u32 reg;

2393 2394 2395 2396
	hs_ep = index_to_ep(hsotg, ep, dir_in);
	if (!hs_ep)
		return;

2397
	if (ep == 0) {
2398 2399
		u32 mps_bytes = mps;

2400
		/* EP0 is a special case */
2401 2402
		mps = dwc2_hsotg_ep0_mps(mps_bytes);
		if (mps > 3)
2403
			goto bad_mps;
2404
		hs_ep->ep.maxpacket = mps_bytes;
2405
		hs_ep->mc = 1;
2406
	} else {
2407
		if (mps > 1024)
2408
			goto bad_mps;
2409 2410
		hs_ep->mc = mc;
		if (mc > 3)
2411
			goto bad_mps;
2412
		hs_ep->ep.maxpacket = mps;
2413 2414
	}

2415
	if (dir_in) {
2416
		reg = dwc2_readl(regs + DIEPCTL(ep));
2417
		reg &= ~DXEPCTL_MPS_MASK;
2418
		reg |= mps;
2419
		dwc2_writel(reg, regs + DIEPCTL(ep));
2420
	} else {
2421
		reg = dwc2_readl(regs + DOEPCTL(ep));
2422
		reg &= ~DXEPCTL_MPS_MASK;
2423
		reg |= mps;
2424
		dwc2_writel(reg, regs + DOEPCTL(ep));
2425
	}
2426 2427 2428 2429 2430 2431 2432

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

2433
/**
2434
 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2435 2436 2437
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
2438
static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2439 2440 2441 2442
{
	int timeout;
	int val;

2443 2444
	dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
		    hsotg->regs + GRSTCTL);
2445 2446 2447 2448 2449

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
2450
		val = dwc2_readl(hsotg->regs + GRSTCTL);
2451

2452
		if ((val & (GRSTCTL_TXFFLSH)) == 0)
2453 2454 2455 2456 2457 2458
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
2459
			break;
2460 2461 2462 2463 2464
		}

		udelay(1);
	}
}
2465 2466

/**
2467
 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2468 2469 2470 2471 2472 2473
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
2474
static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2475
			    struct dwc2_hsotg_ep *hs_ep)
2476
{
2477
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2478

2479 2480 2481 2482 2483 2484
	if (!hs_ep->dir_in || !hs_req) {
		/**
		 * if request is not enqueued, we disable interrupts
		 * for endpoints, excepting ep0
		 */
		if (hs_ep->index != 0)
2485
			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2486
					      hs_ep->dir_in, 0);
2487
		return 0;
2488
	}
2489 2490 2491 2492

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
2493
		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2494 2495 2496 2497 2498 2499
	}

	return 0;
}

/**
2500
 * dwc2_hsotg_complete_in - complete IN transfer
2501 2502 2503 2504 2505 2506
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
2507
static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2508
				   struct dwc2_hsotg_ep *hs_ep)
2509
{
2510
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2511
	u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
2512 2513 2514 2515 2516 2517 2518
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

2519
	/* Finish ZLP handling for IN EP0 transactions */
2520 2521
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
		dev_dbg(hsotg->dev, "zlp packet sent\n");
2522 2523 2524 2525 2526 2527 2528

		/*
		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
		 * changed to IN. Change back to complete OUT transfer request
		 */
		hs_ep->dir_in = 0;

2529
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2530 2531 2532
		if (hsotg->test_mode) {
			int ret;

2533
			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2534 2535
			if (ret < 0) {
				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2536
					hsotg->test_mode);
2537
				dwc2_hsotg_stall_ep0(hsotg);
2538 2539 2540
				return;
			}
		}
2541
		dwc2_hsotg_enqueue_setup(hsotg);
2542 2543 2544
		return;
	}

2545 2546
	/*
	 * Calculate the size of the transfer by checking how much is left
2547 2548 2549 2550 2551 2552 2553
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */
2554 2555 2556 2557 2558 2559 2560 2561
	if (using_desc_dma(hsotg)) {
		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
		if (size_left < 0)
			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
				size_left);
	} else {
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
	}
2562 2563 2564 2565 2566 2567 2568 2569 2570

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
2571 2572 2573
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

2574 2575
	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2576
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2577 2578 2579
		return;
	}

2580
	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
2581
	if (hs_ep->send_zlp) {
2582
		dwc2_hsotg_program_zlp(hsotg, hs_ep);
2583
		hs_ep->send_zlp = 0;
2584 2585 2586 2587
		/* transfer will be completed on next complete interrupt */
		return;
	}

2588 2589
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
		/* Move to STATUS OUT */
2590
		dwc2_hsotg_ep0_zlp(hsotg, false);
2591 2592 2593
		return;
	}

2594
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2595 2596
}

2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624
/**
 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
 * @hsotg: The device state.
 * @idx: Index of ep.
 * @dir_in: Endpoint direction 1-in 0-out.
 *
 * Reads for endpoint with given index and direction, by masking
 * epint_reg with coresponding mask.
 */
static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
					  unsigned int idx, int dir_in)
{
	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 ints;
	u32 mask;
	u32 diepempmsk;

	mask = dwc2_readl(hsotg->regs + epmsk_reg);
	diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK);
	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
	mask |= DXEPINT_SETUP_RCVD;

	ints = dwc2_readl(hsotg->regs + epint_reg);
	ints &= mask;
	return ints;
}

2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692
/**
 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
 * @hs_ep: The endpoint on which interrupt is asserted.
 *
 * This interrupt indicates that the endpoint has been disabled per the
 * application's request.
 *
 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
 * in case of ISOC completes current request.
 *
 * For ISOC-OUT endpoints completes expired requests. If there is remaining
 * request starts it.
 */
static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	struct dwc2_hsotg_req *hs_req;
	unsigned char idx = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	int dctl = dwc2_readl(hsotg->regs + DCTL);

	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

	if (dir_in) {
		int epctl = dwc2_readl(hsotg->regs + epctl_reg);

		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);

		if (hs_ep->isochronous) {
			dwc2_hsotg_complete_in(hsotg, hs_ep);
			return;
		}

		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
			int dctl = dwc2_readl(hsotg->regs + DCTL);

			dctl |= DCTL_CGNPINNAK;
			dwc2_writel(dctl, hsotg->regs + DCTL);
		}
		return;
	}

	if (dctl & DCTL_GOUTNAKSTS) {
		dctl |= DCTL_CGOUTNAK;
		dwc2_writel(dctl, hsotg->regs + DCTL);
	}

	if (!hs_ep->isochronous)
		return;

	if (list_empty(&hs_ep->queue)) {
		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
			__func__, hs_ep);
		return;
	}

	do {
		hs_req = get_ep_head(hs_ep);
		if (hs_req)
			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
						    -ENODATA);
		dwc2_gadget_incr_frame_num(hs_ep);
	} while (dwc2_gadget_target_frame_elapsed(hs_ep));

	dwc2_gadget_start_next_request(hs_ep);
}

2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708
/**
 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
 * @hs_ep: The endpoint on which interrupt is asserted.
 *
 * This is starting point for ISOC-OUT transfer, synchronization done with
 * first out token received from host while corresponding EP is disabled.
 *
 * Device does not know initial frame in which out token will come. For this
 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
 * getting this interrupt SW starts calculation for next transfer frame.
 */
static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
{
	struct dwc2_hsotg *hsotg = ep->parent;
	int dir_in = ep->dir_in;
	u32 doepmsk;
2709
	u32 tmp;
2710 2711 2712 2713

	if (dir_in || !ep->isochronous)
		return;

2714 2715 2716 2717 2718 2719
	/*
	 * Store frame in which irq was asserted here, as
	 * it can change while completing request below.
	 */
	tmp = dwc2_hsotg_read_frameno(hsotg);

2720 2721
	dwc2_hsotg_complete_request(hsotg, ep, get_ep_head(ep), -ENODATA);

2722 2723 2724 2725 2726 2727 2728 2729 2730
	if (using_desc_dma(hsotg)) {
		if (ep->target_frame == TARGET_FRAME_INITIAL) {
			/* Start first ISO Out */
			ep->target_frame = tmp;
			dwc2_gadget_start_isoc_ddma(ep);
		}
		return;
	}

2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
	if (ep->interval > 1 &&
	    ep->target_frame == TARGET_FRAME_INITIAL) {
		u32 dsts;
		u32 ctrl;

		dsts = dwc2_readl(hsotg->regs + DSTS);
		ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
		dwc2_gadget_incr_frame_num(ep);

		ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index));
		if (ep->target_frame & 0x1)
			ctrl |= DXEPCTL_SETODDFR;
		else
			ctrl |= DXEPCTL_SETEVENFR;

		dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index));
	}

	dwc2_gadget_start_next_request(ep);
	doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
	doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
	dwc2_writel(doepmsk, hsotg->regs + DOEPMSK);
}

/**
2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
 * dwc2_gadget_handle_nak - handle NAK interrupt
 * @hs_ep: The endpoint on which interrupt is asserted.
 *
 * This is starting point for ISOC-IN transfer, synchronization done with
 * first IN token received from host while corresponding EP is disabled.
 *
 * Device does not know when first one token will arrive from host. On first
 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
 * sent in response to that as there was no data in FIFO. SW is basing on this
 * interrupt to obtain frame in which token has come and then based on the
 * interval calculates next frame for transfer.
 */
2769 2770 2771 2772 2773 2774 2775 2776 2777 2778
static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;

	if (!dir_in || !hs_ep->isochronous)
		return;

	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2779 2780 2781 2782 2783 2784

		if (using_desc_dma(hsotg)) {
			dwc2_gadget_start_isoc_ddma(hs_ep);
			return;
		}

2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802
		if (hs_ep->interval > 1) {
			u32 ctrl = dwc2_readl(hsotg->regs +
					      DIEPCTL(hs_ep->index));
			if (hs_ep->target_frame & 0x1)
				ctrl |= DXEPCTL_SETODDFR;
			else
				ctrl |= DXEPCTL_SETEVENFR;

			dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index));
		}

		dwc2_hsotg_complete_request(hsotg, hs_ep,
					    get_ep_head(hs_ep), 0);
	}

	dwc2_gadget_incr_frame_num(hs_ep);
}

2803
/**
2804
 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2805 2806 2807 2808 2809
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
2810
 */
2811
static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2812
			     int dir_in)
2813
{
2814
	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2815 2816 2817
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2818
	u32 ints;
2819
	u32 ctrl;
2820

2821
	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2822
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2823

2824
	/* Clear endpoint interrupts */
2825
	dwc2_writel(ints, hsotg->regs + epint_reg);
2826

2827 2828
	if (!hs_ep) {
		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
2829
			__func__, idx, dir_in ? "in" : "out");
2830 2831 2832
		return;
	}

2833 2834 2835
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

2836 2837 2838 2839
	/* Don't process XferCompl interrupt if it is a setup packet */
	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
		ints &= ~DXEPINT_XFERCOMPL;

2840 2841 2842 2843 2844 2845 2846 2847 2848 2849
	/*
	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
	 * stage and xfercomplete was generated without SETUP phase done
	 * interrupt. SW should parse received setup packet only after host's
	 * exit from setup phase of control transfer.
	 */
	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
		ints &= ~DXEPINT_XFERCOMPL;

2850
	if (ints & DXEPINT_XFERCOMPL) {
2851
		dev_dbg(hsotg->dev,
2852
			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2853 2854
			__func__, dwc2_readl(hsotg->regs + epctl_reg),
			dwc2_readl(hsotg->regs + epsiz_reg));
2855

2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866
		/* In DDMA handle isochronous requests separately */
		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
			dwc2_gadget_complete_isoc_request_ddma(hs_ep);
			/* Try to start next isoc request */
			dwc2_gadget_start_next_isoc_ddma(hs_ep);
		} else if (dir_in) {
			/*
			 * We get OutDone from the FIFO, so we only
			 * need to look at completing IN requests here
			 * if operating slave mode
			 */
2867 2868 2869
			if (hs_ep->isochronous && hs_ep->interval > 1)
				dwc2_gadget_incr_frame_num(hs_ep);

2870
			dwc2_hsotg_complete_in(hsotg, hs_ep);
2871 2872
			if (ints & DXEPINT_NAKINTRPT)
				ints &= ~DXEPINT_NAKINTRPT;
2873

2874
			if (idx == 0 && !hs_ep->req)
2875
				dwc2_hsotg_enqueue_setup(hsotg);
2876
		} else if (using_dma(hsotg)) {
2877 2878 2879 2880
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
2881 2882
			if (hs_ep->isochronous && hs_ep->interval > 1)
				dwc2_gadget_incr_frame_num(hs_ep);
2883

2884
			dwc2_hsotg_handle_outdone(hsotg, idx);
2885 2886 2887
		}
	}

2888 2889
	if (ints & DXEPINT_EPDISBLD)
		dwc2_gadget_handle_ep_disabled(hs_ep);
2890

2891 2892 2893 2894 2895 2896
	if (ints & DXEPINT_OUTTKNEPDIS)
		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);

	if (ints & DXEPINT_NAKINTRPT)
		dwc2_gadget_handle_nak(hs_ep);

2897
	if (ints & DXEPINT_AHBERR)
2898 2899
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

2900
	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2901 2902 2903
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
2904 2905
			/*
			 * this is the notification we've received a
2906 2907
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
2908 2909
			 * the setup here.
			 */
2910 2911 2912 2913

			if (dir_in)
				WARN_ON_ONCE(1);
			else
2914
				dwc2_hsotg_handle_outdone(hsotg, 0);
2915 2916 2917
		}
	}

2918
	if (ints & DXEPINT_STSPHSERCVD) {
2919 2920
		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);

2921 2922 2923 2924 2925
		/* Move to STATUS IN for DDMA */
		if (using_desc_dma(hsotg))
			dwc2_hsotg_ep0_zlp(hsotg, true);
	}

2926
	if (ints & DXEPINT_BACK2BACKSETUP)
2927 2928
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941
	if (ints & DXEPINT_BNAINTR) {
		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);

		/*
		 * Try to start next isoc request, if any.
		 * Sometimes the endpoint remains enabled after BNA interrupt
		 * assertion, which is not expected, hence we can enter here
		 * couple of times.
		 */
		if (hs_ep->isochronous)
			dwc2_gadget_start_next_isoc_ddma(hs_ep);
	}

2942
	if (dir_in && !hs_ep->isochronous) {
2943
		/* not sure if this is important, but we'll clear it anyway */
2944
		if (ints & DXEPINT_INTKNTXFEMP) {
2945 2946 2947 2948 2949
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
2950
		if (ints & DXEPINT_INTKNEPMIS) {
2951 2952 2953
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
2954 2955 2956

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
2957
		    ints & DXEPINT_TXFEMP) {
2958 2959
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
2960
			if (!using_dma(hsotg))
2961
				dwc2_hsotg_trytx(hsotg, hs_ep);
2962
		}
2963 2964 2965 2966
	}
}

/**
2967
 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
2968 2969 2970 2971
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
2972
 */
2973
static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
2974
{
2975
	u32 dsts = dwc2_readl(hsotg->regs + DSTS);
2976
	int ep0_mps = 0, ep_mps = 8;
2977

2978 2979
	/*
	 * This should signal the finish of the enumeration phase
2980
	 * of the USB handshaking, so we should now know what rate
2981 2982
	 * we connected at.
	 */
2983 2984 2985

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

2986 2987
	/*
	 * note, since we're limited by the size of transfer on EP0, and
2988
	 * it seems IN transfers must be a even number of packets we do
2989 2990
	 * not advertise a 64byte MPS on EP0.
	 */
2991 2992

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
2993
	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
2994 2995
	case DSTS_ENUMSPD_FS:
	case DSTS_ENUMSPD_FS48:
2996 2997
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
2998
		ep_mps = 1023;
2999 3000
		break;

3001
	case DSTS_ENUMSPD_HS:
3002 3003
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
3004
		ep_mps = 1024;
3005 3006
		break;

3007
	case DSTS_ENUMSPD_LS:
3008
		hsotg->gadget.speed = USB_SPEED_LOW;
3009 3010
		ep0_mps = 8;
		ep_mps = 8;
3011 3012
		/*
		 * note, we don't actually support LS in this driver at the
3013 3014 3015 3016 3017
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
3018 3019
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
3020

3021 3022 3023 3024
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
3025 3026 3027

	if (ep0_mps) {
		int i;
3028
		/* Initialize ep0 for both in and out directions */
3029 3030
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3031 3032
		for (i = 1; i < hsotg->num_of_eps; i++) {
			if (hsotg->eps_in[i])
3033 3034
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
							    0, 1);
3035
			if (hsotg->eps_out[i])
3036 3037
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
							    0, 0);
3038
		}
3039 3040 3041 3042
	}

	/* ensure after enumeration our EP0 is active */

3043
	dwc2_hsotg_enqueue_setup(hsotg);
3044 3045

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3046 3047
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
3059
static void kill_all_requests(struct dwc2_hsotg *hsotg,
3060
			      struct dwc2_hsotg_ep *ep,
3061
			      int result)
3062
{
3063
	struct dwc2_hsotg_req *req, *treq;
3064
	unsigned int size;
3065

3066
	ep->req = NULL;
3067

3068
	list_for_each_entry_safe(req, treq, &ep->queue, queue)
3069
		dwc2_hsotg_complete_request(hsotg, ep, req,
3070
					    result);
3071

3072 3073
	if (!hsotg->dedicated_fifos)
		return;
3074
	size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3075
	if (size < ep->fifo_size)
3076
		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3077 3078 3079
}

/**
3080
 * dwc2_hsotg_disconnect - disconnect service
3081 3082
 * @hsotg: The device state.
 *
3083 3084 3085
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
3086
 */
3087
void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3088
{
3089
	unsigned int ep;
3090

3091 3092 3093 3094
	if (!hsotg->connected)
		return;

	hsotg->connected = 0;
3095
	hsotg->test_mode = 0;
3096 3097 3098 3099

	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
			kill_all_requests(hsotg, hsotg->eps_in[ep],
3100
					  -ESHUTDOWN);
3101 3102
		if (hsotg->eps_out[ep])
			kill_all_requests(hsotg, hsotg->eps_out[ep],
3103
					  -ESHUTDOWN);
3104
	}
3105 3106

	call_gadget(hsotg, disconnect);
3107
	hsotg->lx_state = DWC2_L3;
3108 3109 3110
}

/**
3111
 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3112 3113 3114
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
3115
static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3116
{
3117
	struct dwc2_hsotg_ep *ep;
3118 3119 3120
	int epno, ret;

	/* look through for any more data to transmit */
3121
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3122 3123 3124 3125
		ep = index_to_ep(hsotg, epno, 1);

		if (!ep)
			continue;
3126 3127 3128 3129 3130 3131 3132 3133

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

3134
		ret = dwc2_hsotg_trytx(hsotg, ep);
3135 3136 3137 3138 3139 3140
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
3141 3142 3143
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
			GINTSTS_PTXFEMP |  \
			GINTSTS_RXFLVL)
3144

3145
/**
3146
 * dwc2_hsotg_core_init - issue softreset to the core
3147 3148 3149 3150
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
3151
void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3152
				       bool is_usb_reset)
3153
{
3154
	u32 intmsk;
3155
	u32 val;
3156
	u32 usbcfg;
3157
	u32 dcfg = 0;
3158

3159 3160 3161
	/* Kill any ep0 requests as controller will be reinitialized */
	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);

3162
	if (!is_usb_reset)
3163
		if (dwc2_core_reset(hsotg))
3164
			return;
3165 3166 3167 3168 3169 3170

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

3171 3172 3173 3174 3175
	/* keep other bits untouched (so e.g. forced modes are not lost) */
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
		GUSBCFG_HNPCAP);

3176
	if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS &&
3177 3178
	    (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
	     hsotg->params.speed == DWC2_SPEED_PARAM_LOW)) {
3179 3180 3181 3182 3183 3184 3185 3186
		/* FS/LS Dedicated Transceiver Interface */
		usbcfg |= GUSBCFG_PHYSEL;
	} else {
		/* set the PLL on, remove the HNP/SRP and set the PHY */
		val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
		usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
			(val << GUSBCFG_USBTRDTIM_SHIFT);
	}
3187
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3188

3189
	dwc2_hsotg_init_fifo(hsotg);
3190

3191 3192
	if (!is_usb_reset)
		__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3193

3194
	dcfg |= DCFG_EPMISCNT(1);
3195 3196 3197 3198 3199 3200

	switch (hsotg->params.speed) {
	case DWC2_SPEED_PARAM_LOW:
		dcfg |= DCFG_DEVSPD_LS;
		break;
	case DWC2_SPEED_PARAM_FULL:
3201 3202 3203 3204
		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
			dcfg |= DCFG_DEVSPD_FS48;
		else
			dcfg |= DCFG_DEVSPD_FS;
3205 3206
		break;
	default:
3207 3208
		dcfg |= DCFG_DEVSPD_HS;
	}
3209

3210
	dwc2_writel(dcfg,  hsotg->regs + DCFG);
3211 3212

	/* Clear any pending OTG interrupts */
3213
	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
3214 3215

	/* Clear any pending interrupts */
3216
	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
3217
	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3218
		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3219 3220
		GINTSTS_USBRST | GINTSTS_RESETDET |
		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3221 3222 3223 3224
		GINTSTS_USBSUSP | GINTSTS_WKUPINT;

	if (!using_desc_dma(hsotg))
		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3225

3226
	if (hsotg->params.external_id_pin_ctl <= 0)
3227 3228 3229
		intmsk |= GINTSTS_CONIDSTSCHNG;

	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
3230

3231
	if (using_dma(hsotg)) {
3232 3233 3234
		dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
			    (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
			    hsotg->regs + GAHBCFG);
3235 3236 3237 3238 3239 3240

		/* Set DDMA mode support in the core if needed */
		if (using_desc_dma(hsotg))
			__orr32(hsotg->regs + DCFG, DCFG_DESCDMA_EN);

	} else {
3241 3242 3243 3244
		dwc2_writel(((hsotg->dedicated_fifos) ?
						(GAHBCFG_NP_TXF_EMP_LVL |
						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
			    GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
3245
	}
3246 3247

	/*
3248 3249 3250
	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
	 * when we have no data to transfer. Otherwise we get being flooded by
	 * interrupts.
3251 3252
	 */

3253
	dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3254
		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3255
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3256
		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3257
		hsotg->regs + DIEPMSK);
3258 3259 3260

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3261
	 * DMA mode we may need this and StsPhseRcvd.
3262
	 */
3263 3264
	dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
		DOEPMSK_STSPHSERCVDMSK) : 0) |
3265
		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3266
		DOEPMSK_SETUPMSK,
3267
		hsotg->regs + DOEPMSK);
3268

3269 3270 3271 3272
	/* Enable BNA interrupt for DDMA */
	if (using_desc_dma(hsotg))
		__orr32(hsotg->regs + DOEPMSK, DOEPMSK_BNAMSK);

3273
	dwc2_writel(0, hsotg->regs + DAINTMSK);
3274 3275

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3276 3277
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
3278 3279

	/* enable in and out endpoint interrupts */
3280
	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3281 3282 3283 3284 3285 3286 3287

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
3288
		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3289 3290

	/* Enable interrupts for EP0 in and out */
3291 3292
	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3293

3294 3295 3296 3297 3298
	if (!is_usb_reset) {
		__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
		udelay(10);  /* see openiboot */
		__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
	}
3299

3300
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
3301 3302

	/*
3303
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3304 3305 3306 3307
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
3308
	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3309
	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
3310

3311
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3312 3313
	       DXEPCTL_CNAK | DXEPCTL_EPENA |
	       DXEPCTL_USBACTEP,
3314
	       hsotg->regs + DOEPCTL0);
3315 3316

	/* enable, but don't activate EP0in */
3317
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3318
	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
3319

3320
	dwc2_hsotg_enqueue_setup(hsotg);
3321 3322

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3323 3324
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
3325 3326

	/* clear global NAKs */
3327 3328 3329 3330
	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
	if (!is_usb_reset)
		val |= DCTL_SFTDISCON;
	__orr32(hsotg->regs + DCTL, val);
3331 3332 3333 3334

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

3335
	hsotg->lx_state = DWC2_L0;
3336 3337
}

3338
static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3339 3340 3341 3342
{
	/* set the soft-disconnect bit */
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
}
3343

3344
void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3345
{
3346
	/* remove the soft-disconnect and let's go */
3347
	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3348 3349
}

3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428
/**
 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
 * @hsotg: The device state:
 *
 * This interrupt indicates one of the following conditions occurred while
 * transmitting an ISOC transaction.
 * - Corrupted IN Token for ISOC EP.
 * - Packet not complete in FIFO.
 *
 * The following actions will be taken:
 * - Determine the EP
 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
 */
static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
{
	struct dwc2_hsotg_ep *hs_ep;
	u32 epctrl;
	u32 idx;

	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");

	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
		hs_ep = hsotg->eps_in[idx];
		epctrl = dwc2_readl(hsotg->regs + DIEPCTL(idx));
		if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
			epctrl |= DXEPCTL_SNAK;
			epctrl |= DXEPCTL_EPDIS;
			dwc2_writel(epctrl, hsotg->regs + DIEPCTL(idx));
		}
	}

	/* Clear interrupt */
	dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
}

/**
 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
 * @hsotg: The device state:
 *
 * This interrupt indicates one of the following conditions occurred while
 * transmitting an ISOC transaction.
 * - Corrupted OUT Token for ISOC EP.
 * - Packet not complete in FIFO.
 *
 * The following actions will be taken:
 * - Determine the EP
 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
 */
static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
{
	u32 gintsts;
	u32 gintmsk;
	u32 epctrl;
	struct dwc2_hsotg_ep *hs_ep;
	int idx;

	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);

	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
		hs_ep = hsotg->eps_out[idx];
		epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
		if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
			/* Unmask GOUTNAKEFF interrupt */
			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
			gintmsk |= GINTSTS_GOUTNAKEFF;
			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);

			gintsts = dwc2_readl(hsotg->regs + GINTSTS);
			if (!(gintsts & GINTSTS_GOUTNAKEFF))
				__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
		}
	}

	/* Clear interrupt */
	dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
}

3429
/**
3430
 * dwc2_hsotg_irq - handle device interrupt
3431 3432 3433
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
3434
static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3435
{
3436
	struct dwc2_hsotg *hsotg = pw;
3437 3438 3439 3440
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

3441 3442 3443
	if (!dwc2_is_device_mode(hsotg))
		return IRQ_NONE;

3444
	spin_lock(&hsotg->lock);
3445
irq_retry:
3446 3447
	gintsts = dwc2_readl(hsotg->regs + GINTSTS);
	gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3448 3449 3450 3451 3452 3453

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
	if (gintsts & GINTSTS_RESETDET) {
		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);

		dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);

		/* This event must be used only if controller is suspended */
		if (hsotg->lx_state == DWC2_L2) {
			dwc2_exit_hibernation(hsotg, true);
			hsotg->lx_state = DWC2_L0;
		}
	}

	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
		u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
		u32 connected = hsotg->connected;

		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
			dwc2_readl(hsotg->regs + GNPTXSTS));

		dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);

		/* Report disconnection if it is not already done. */
		dwc2_hsotg_disconnect(hsotg);

		if (usb_status & GOTGCTL_BSESVLD && connected)
			dwc2_hsotg_core_init_disconnected(hsotg, true);
	}

3483
	if (gintsts & GINTSTS_ENUMDONE) {
3484
		dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
3485

3486
		dwc2_hsotg_irq_enumdone(hsotg);
3487 3488
	}

3489
	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3490 3491
		u32 daint = dwc2_readl(hsotg->regs + DAINT);
		u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3492
		u32 daint_out, daint_in;
3493 3494
		int ep;

3495
		daint &= daintmsk;
3496 3497
		daint_out = daint >> DAINT_OUTEP_SHIFT;
		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3498

3499 3500
		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

3501 3502
		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
						ep++, daint_out >>= 1) {
3503
			if (daint_out & 1)
3504
				dwc2_hsotg_epint(hsotg, ep, 0);
3505 3506
		}

3507 3508
		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
						ep++, daint_in >>= 1) {
3509
			if (daint_in & 1)
3510
				dwc2_hsotg_epint(hsotg, ep, 1);
3511 3512 3513 3514 3515
		}
	}

	/* check both FIFOs */

3516
	if (gintsts & GINTSTS_NPTXFEMP) {
3517 3518
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

3519 3520
		/*
		 * Disable the interrupt to stop it happening again
3521
		 * unless one of these endpoint routines decides that
3522 3523
		 * it needs re-enabling
		 */
3524

3525 3526
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, false);
3527 3528
	}

3529
	if (gintsts & GINTSTS_PTXFEMP) {
3530 3531
		dev_dbg(hsotg->dev, "PTxFEmp\n");

3532
		/* See note in GINTSTS_NPTxFEmp */
3533

3534 3535
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, true);
3536 3537
	}

3538
	if (gintsts & GINTSTS_RXFLVL) {
3539 3540
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3541
		 * we need to retry dwc2_hsotg_handle_rx if this is still
3542 3543
		 * set.
		 */
3544

3545
		dwc2_hsotg_handle_rx(hsotg);
3546 3547
	}

3548
	if (gintsts & GINTSTS_ERLYSUSP) {
3549
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3550
		dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
3551 3552
	}

3553 3554
	/*
	 * these next two seem to crop-up occasionally causing the core
3555
	 * to shutdown the USB transfer, so try clearing them and logging
3556 3557
	 * the occurrence.
	 */
3558

3559
	if (gintsts & GINTSTS_GOUTNAKEFF) {
3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580
		u8 idx;
		u32 epctrl;
		u32 gintmsk;
		struct dwc2_hsotg_ep *hs_ep;

		/* Mask this interrupt */
		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
		gintmsk &= ~GINTSTS_GOUTNAKEFF;
		dwc2_writel(gintmsk, hsotg->regs + GINTMSK);

		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
		for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
			hs_ep = hsotg->eps_out[idx];
			epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));

			if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
				epctrl |= DXEPCTL_SNAK;
				epctrl |= DXEPCTL_EPDIS;
				dwc2_writel(epctrl, hsotg->regs + DOEPCTL(idx));
			}
		}
3581

3582
		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3583 3584
	}

3585
	if (gintsts & GINTSTS_GINNAKEFF) {
3586 3587
		dev_info(hsotg->dev, "GINNakEff triggered\n");

3588
		__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3589

3590
		dwc2_hsotg_dump(hsotg);
3591 3592
	}

3593 3594
	if (gintsts & GINTSTS_INCOMPL_SOIN)
		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3595

3596 3597
	if (gintsts & GINTSTS_INCOMPL_SOOUT)
		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3598

3599 3600 3601 3602
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
3603 3604 3605 3606

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
			goto irq_retry;

3607 3608
	spin_unlock(&hsotg->lock);

3609 3610 3611
	return IRQ_HANDLED;
}

3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700
static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg,
				   u32 bit, u32 timeout)
{
	u32 i;

	for (i = 0; i < timeout; i++) {
		if (dwc2_readl(hs_otg->regs + reg) & bit)
			return 0;
		udelay(1);
	}

	return -ETIMEDOUT;
}

static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
				   struct dwc2_hsotg_ep *hs_ep)
{
	u32 epctrl_reg;
	u32 epint_reg;

	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
		DOEPCTL(hs_ep->index);
	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
		DOEPINT(hs_ep->index);

	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
		hs_ep->name);

	if (hs_ep->dir_in) {
		if (hsotg->dedicated_fifos || hs_ep->periodic) {
			__orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
			/* Wait for Nak effect */
			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
						    DXEPINT_INEPNAKEFF, 100))
				dev_warn(hsotg->dev,
					 "%s: timeout DIEPINT.NAKEFF\n",
					 __func__);
		} else {
			__orr32(hsotg->regs + DCTL, DCTL_SGNPINNAK);
			/* Wait for Nak effect */
			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
						    GINTSTS_GINNAKEFF, 100))
				dev_warn(hsotg->dev,
					 "%s: timeout GINTSTS.GINNAKEFF\n",
					 __func__);
		}
	} else {
		if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF))
			__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);

		/* Wait for global nak to take effect */
		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
					    GINTSTS_GOUTNAKEFF, 100))
			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
				 __func__);
	}

	/* Disable ep */
	__orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);

	/* Wait for ep to be disabled */
	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
		dev_warn(hsotg->dev,
			 "%s: timeout DOEPCTL.EPDisable\n", __func__);

	/* Clear EPDISBLD interrupt */
	__orr32(hsotg->regs + epint_reg, DXEPINT_EPDISBLD);

	if (hs_ep->dir_in) {
		unsigned short fifo_index;

		if (hsotg->dedicated_fifos || hs_ep->periodic)
			fifo_index = hs_ep->fifo_index;
		else
			fifo_index = 0;

		/* Flush TX FIFO */
		dwc2_flush_tx_fifo(hsotg, fifo_index);

		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
			__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);

	} else {
		/* Remove global NAKs */
		__orr32(hsotg->regs + DCTL, DCTL_CGOUTNAK);
	}
}

3701
/**
3702
 * dwc2_hsotg_ep_enable - enable the given endpoint
3703 3704 3705 3706
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
3707
 */
3708
static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3709
				const struct usb_endpoint_descriptor *desc)
3710
{
3711
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3712
	struct dwc2_hsotg *hsotg = hs_ep->parent;
3713
	unsigned long flags;
3714
	unsigned int index = hs_ep->index;
3715 3716 3717
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
3718
	u32 mc;
3719
	u32 mask;
3720 3721
	unsigned int dir_in;
	unsigned int i, val, size;
3722
	int ret = 0;
3723 3724 3725 3726 3727 3728 3729

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
3730 3731 3732 3733
	if (index == 0) {
		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
		return -EINVAL;
	}
3734 3735 3736 3737 3738 3739 3740

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

3741
	mps = usb_endpoint_maxp(desc);
3742
	mc = usb_endpoint_maxp_mult(desc);
3743

3744
	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3745

3746
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3747
	epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3748 3749 3750 3751

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

3752 3753 3754 3755 3756
	/* Allocate DMA descriptor chain for non-ctrl endpoints */
	if (using_desc_dma(hsotg)) {
		hs_ep->desc_list = dma_alloc_coherent(hsotg->dev,
			MAX_DMA_DESC_NUM_GENERIC *
			sizeof(struct dwc2_dma_desc),
3757
			&hs_ep->desc_list_dma, GFP_ATOMIC);
3758 3759 3760 3761 3762 3763
		if (!hs_ep->desc_list) {
			ret = -ENOMEM;
			goto error2;
		}
	}

3764
	spin_lock_irqsave(&hsotg->lock, flags);
3765

3766 3767
	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
	epctrl |= DXEPCTL_MPS(mps);
3768

3769 3770 3771 3772
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
3773
	epctrl |= DXEPCTL_USBACTEP;
3774 3775

	/* update the endpoint state */
3776
	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
3777 3778

	/* default, set to non-periodic */
3779
	hs_ep->isochronous = 0;
3780
	hs_ep->periodic = 0;
3781
	hs_ep->halted = 0;
3782
	hs_ep->interval = desc->bInterval;
3783

3784 3785
	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
3786 3787
		epctrl |= DXEPCTL_EPTYPE_ISO;
		epctrl |= DXEPCTL_SETEVENFR;
3788
		hs_ep->isochronous = 1;
3789
		hs_ep->interval = 1 << (desc->bInterval - 1);
3790
		hs_ep->target_frame = TARGET_FRAME_INITIAL;
3791 3792
		hs_ep->isoc_chain_num = 0;
		hs_ep->next_desc = 0;
3793
		if (dir_in) {
3794
			hs_ep->periodic = 1;
3795 3796 3797 3798 3799 3800 3801 3802
			mask = dwc2_readl(hsotg->regs + DIEPMSK);
			mask |= DIEPMSK_NAKMSK;
			dwc2_writel(mask, hsotg->regs + DIEPMSK);
		} else {
			mask = dwc2_readl(hsotg->regs + DOEPMSK);
			mask |= DOEPMSK_OUTTKNEPDISMSK;
			dwc2_writel(mask, hsotg->regs + DOEPMSK);
		}
3803
		break;
3804 3805

	case USB_ENDPOINT_XFER_BULK:
3806
		epctrl |= DXEPCTL_EPTYPE_BULK;
3807 3808 3809
		break;

	case USB_ENDPOINT_XFER_INT:
3810
		if (dir_in)
3811 3812
			hs_ep->periodic = 1;

3813 3814 3815
		if (hsotg->gadget.speed == USB_SPEED_HIGH)
			hs_ep->interval = 1 << (desc->bInterval - 1);

3816
		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
3817 3818 3819
		break;

	case USB_ENDPOINT_XFER_CONTROL:
3820
		epctrl |= DXEPCTL_EPTYPE_CONTROL;
3821 3822 3823
		break;
	}

3824 3825
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
3826 3827
	 * a unique tx-fifo even if it is non-periodic.
	 */
3828
	if (dir_in && hsotg->dedicated_fifos) {
3829 3830
		u32 fifo_index = 0;
		u32 fifo_size = UINT_MAX;
3831 3832

		size = hs_ep->ep.maxpacket * hs_ep->mc;
3833
		for (i = 1; i < hsotg->num_of_eps; ++i) {
3834
			if (hsotg->fifo_map & (1 << i))
3835
				continue;
3836
			val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
3837
			val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
3838 3839
			if (val < size)
				continue;
3840 3841 3842 3843 3844
			/* Search for smallest acceptable fifo */
			if (val < fifo_size) {
				fifo_size = val;
				fifo_index = i;
			}
3845
		}
3846
		if (!fifo_index) {
3847 3848
			dev_err(hsotg->dev,
				"%s: No suitable fifo found\n", __func__);
3849
			ret = -ENOMEM;
3850
			goto error1;
3851
		}
3852 3853 3854 3855
		hsotg->fifo_map |= 1 << fifo_index;
		epctrl |= DXEPCTL_TXFNUM(fifo_index);
		hs_ep->fifo_index = fifo_index;
		hs_ep->fifo_size = fifo_size;
3856
	}
3857

3858
	/* for non control endpoints, set PID to D0 */
3859
	if (index && !hs_ep->isochronous)
3860
		epctrl |= DXEPCTL_SETD0PID;
3861 3862 3863 3864

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

3865
	dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
3866
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
3867
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
3868 3869

	/* enable the endpoint interrupt */
3870
	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
3871

3872
error1:
3873
	spin_unlock_irqrestore(&hsotg->lock, flags);
3874 3875 3876 3877 3878 3879 3880 3881 3882

error2:
	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
		dma_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
			sizeof(struct dwc2_dma_desc),
			hs_ep->desc_list, hs_ep->desc_list_dma);
		hs_ep->desc_list = NULL;
	}

3883
	return ret;
3884 3885
}

3886
/**
3887
 * dwc2_hsotg_ep_disable - disable given endpoint
3888 3889
 * @ep: The endpoint to disable.
 */
3890
static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
3891
{
3892
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3893
	struct dwc2_hsotg *hsotg = hs_ep->parent;
3894 3895 3896 3897 3898 3899
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

3900
	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
3901

3902
	if (ep == &hsotg->eps_out[0]->ep) {
3903 3904 3905 3906
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

3907 3908 3909 3910 3911 3912 3913 3914
	/* Remove DMA memory allocated for non-control Endpoints */
	if (using_desc_dma(hsotg)) {
		dma_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
				  sizeof(struct dwc2_dma_desc),
				  hs_ep->desc_list, hs_ep->desc_list_dma);
		hs_ep->desc_list = NULL;
	}

3915
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3916

3917
	spin_lock_irqsave(&hsotg->lock, flags);
3918

3919
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3920 3921 3922 3923

	if (ctrl & DXEPCTL_EPENA)
		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);

3924 3925 3926
	ctrl &= ~DXEPCTL_EPENA;
	ctrl &= ~DXEPCTL_USBACTEP;
	ctrl |= DXEPCTL_SNAK;
3927 3928

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
3929
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
3930 3931

	/* disable endpoint interrupts */
3932
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
3933

3934 3935 3936
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);

3937 3938 3939 3940
	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
	hs_ep->fifo_index = 0;
	hs_ep->fifo_size = 0;

3941
	spin_unlock_irqrestore(&hsotg->lock, flags);
3942 3943 3944 3945 3946 3947 3948
	return 0;
}

/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
3949
 */
3950
static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
3951
{
3952
	struct dwc2_hsotg_req *req, *treq;
3953 3954 3955 3956 3957 3958 3959 3960 3961

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

3962
/**
3963
 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
3964 3965 3966
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
3967
static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
3968
{
3969 3970
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3971
	struct dwc2_hsotg *hs = hs_ep->parent;
3972 3973
	unsigned long flags;

3974
	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
3975

3976
	spin_lock_irqsave(&hs->lock, flags);
3977 3978

	if (!on_list(hs_ep, hs_req)) {
3979
		spin_unlock_irqrestore(&hs->lock, flags);
3980 3981 3982
		return -EINVAL;
	}

3983 3984 3985 3986
	/* Dequeue already started request */
	if (req == &hs_ep->req->req)
		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);

3987
	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
3988
	spin_unlock_irqrestore(&hs->lock, flags);
3989 3990 3991 3992

	return 0;
}

3993
/**
3994
 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
3995 3996
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
3997 3998 3999 4000 4001
 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
 *       the endpoint is busy processing requests.
 *
 * We need to stall the endpoint immediately if request comes from set_feature
 * protocol command handler.
4002
 */
4003
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4004
{
4005
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4006
	struct dwc2_hsotg *hs = hs_ep->parent;
4007 4008 4009
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
4010
	u32 xfertype;
4011 4012 4013

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

4014 4015
	if (index == 0) {
		if (value)
4016
			dwc2_hsotg_stall_ep0(hs);
4017 4018 4019 4020 4021 4022
		else
			dev_warn(hs->dev,
				 "%s: can't clear halt on ep0\n", __func__);
		return 0;
	}

4023 4024 4025 4026 4027
	if (hs_ep->isochronous) {
		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
		return -EINVAL;
	}

4028 4029 4030 4031 4032 4033
	if (!now && value && !list_empty(&hs_ep->queue)) {
		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
			ep->name);
		return -EAGAIN;
	}

4034 4035
	if (hs_ep->dir_in) {
		epreg = DIEPCTL(index);
4036
		epctl = dwc2_readl(hs->regs + epreg);
4037 4038

		if (value) {
4039
			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4040 4041 4042 4043 4044 4045
			if (epctl & DXEPCTL_EPENA)
				epctl |= DXEPCTL_EPDIS;
		} else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4046
			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4047 4048
					epctl |= DXEPCTL_SETD0PID;
		}
4049
		dwc2_writel(epctl, hs->regs + epreg);
4050
	} else {
4051
		epreg = DOEPCTL(index);
4052
		epctl = dwc2_readl(hs->regs + epreg);
4053

4054 4055 4056 4057 4058 4059
		if (value)
			epctl |= DXEPCTL_STALL;
		else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4060
			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4061 4062
					epctl |= DXEPCTL_SETD0PID;
		}
4063
		dwc2_writel(epctl, hs->regs + epreg);
4064
	}
4065

4066 4067
	hs_ep->halted = value;

4068 4069 4070
	return 0;
}

4071
/**
4072
 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4073 4074 4075
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
4076
static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4077
{
4078
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4079
	struct dwc2_hsotg *hs = hs_ep->parent;
4080 4081 4082 4083
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
4084
	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4085 4086 4087 4088 4089
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

4090 4091 4092 4093 4094 4095 4096 4097
static struct usb_ep_ops dwc2_hsotg_ep_ops = {
	.enable		= dwc2_hsotg_ep_enable,
	.disable	= dwc2_hsotg_ep_disable,
	.alloc_request	= dwc2_hsotg_ep_alloc_request,
	.free_request	= dwc2_hsotg_ep_free_request,
	.queue		= dwc2_hsotg_ep_queue_lock,
	.dequeue	= dwc2_hsotg_ep_dequeue,
	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
4098
	/* note, don't believe we have any call for the fifo routines */
4099 4100
};

4101
/**
4102
 * dwc2_hsotg_init - initialize the usb core
4103 4104
 * @hsotg: The driver state
 */
4105
static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4106
{
4107
	u32 trdtim;
4108
	u32 usbcfg;
4109 4110
	/* unmask subset of endpoint interrupts */

4111 4112 4113
	dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DIEPMSK);
4114

4115 4116 4117
	dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DOEPMSK);
4118

4119
	dwc2_writel(0, hsotg->regs + DAINTMSK);
4120 4121

	/* Be in disconnected state until gadget is registered */
4122
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
4123 4124 4125 4126

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4127 4128
		dwc2_readl(hsotg->regs + GRXFSIZ),
		dwc2_readl(hsotg->regs + GNPTXFSIZ));
4129

4130
	dwc2_hsotg_init_fifo(hsotg);
4131

4132 4133 4134 4135 4136
	/* keep other bits untouched (so e.g. forced modes are not lost) */
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
		GUSBCFG_HNPCAP);

4137
	/* set the PLL on, remove the HNP/SRP and set the PHY */
4138
	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
4139 4140 4141
	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
		(trdtim << GUSBCFG_USBTRDTIM_SHIFT);
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
4142

4143 4144
	if (using_dma(hsotg))
		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
4145 4146
}

4147
/**
4148
 * dwc2_hsotg_udc_start - prepare the udc for work
4149 4150 4151 4152 4153 4154
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
4155
static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4156
				struct usb_gadget_driver *driver)
4157
{
4158
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4159
	unsigned long flags;
4160 4161 4162
	int ret;

	if (!hsotg) {
4163
		pr_err("%s: called with no device\n", __func__);
4164 4165 4166 4167 4168 4169 4170 4171
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

4172
	if (driver->max_speed < USB_SPEED_FULL)
4173 4174
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

4175
	if (!driver->setup) {
4176 4177 4178 4179 4180 4181 4182 4183
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
4184
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4185 4186
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

4187 4188 4189 4190
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
		ret = dwc2_lowlevel_hw_enable(hsotg);
		if (ret)
			goto err;
4191 4192
	}

4193 4194
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4195

4196
	spin_lock_irqsave(&hsotg->lock, flags);
4197 4198 4199 4200 4201
	if (dwc2_hw_is_device(hsotg)) {
		dwc2_hsotg_init(hsotg);
		dwc2_hsotg_core_init_disconnected(hsotg, false);
	}

4202
	hsotg->enabled = 0;
4203 4204
	spin_unlock_irqrestore(&hsotg->lock, flags);

4205
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4206

4207 4208 4209 4210 4211 4212 4213
	return 0;

err:
	hsotg->driver = NULL;
	return ret;
}

4214
/**
4215
 * dwc2_hsotg_udc_stop - stop the udc
4216 4217 4218 4219 4220
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
4221
static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4222
{
4223
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4224
	unsigned long flags = 0;
4225 4226 4227 4228 4229 4230
	int ep;

	if (!hsotg)
		return -ENODEV;

	/* all endpoints should be shutdown */
4231 4232
	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
4233
			dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4234
		if (hsotg->eps_out[ep])
4235
			dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4236
	}
4237

4238 4239
	spin_lock_irqsave(&hsotg->lock, flags);

4240
	hsotg->driver = NULL;
4241
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4242
	hsotg->enabled = 0;
4243

4244 4245
	spin_unlock_irqrestore(&hsotg->lock, flags);

4246 4247
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, NULL);
4248

4249 4250
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		dwc2_lowlevel_hw_disable(hsotg);
4251 4252 4253 4254

	return 0;
}

4255
/**
4256
 * dwc2_hsotg_gadget_getframe - read the frame number
4257 4258 4259 4260
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
4261
static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4262
{
4263
	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4264 4265
}

4266
/**
4267
 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4268 4269 4270 4271 4272
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
4273
static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4274
{
4275
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4276 4277
	unsigned long flags = 0;

4278
	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4279
		hsotg->op_state);
4280 4281 4282 4283 4284 4285

	/* Don't modify pullup state while in host mode */
	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
		hsotg->enabled = is_on;
		return 0;
	}
4286 4287 4288

	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
4289
		hsotg->enabled = 1;
4290 4291
		dwc2_hsotg_core_init_disconnected(hsotg, false);
		dwc2_hsotg_core_connect(hsotg);
4292
	} else {
4293 4294
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
4295
		hsotg->enabled = 0;
4296 4297 4298 4299 4300 4301 4302 4303
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return 0;
}

4304
static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4305 4306 4307 4308 4309 4310 4311
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
	unsigned long flags;

	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
	spin_lock_irqsave(&hsotg->lock, flags);

4312 4313 4314 4315 4316 4317 4318
	/*
	 * If controller is hibernated, it must exit from hibernation
	 * before being initialized / de-initialized
	 */
	if (hsotg->lx_state == DWC2_L2)
		dwc2_exit_hibernation(hsotg, false);

4319
	if (is_active) {
4320
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4321

4322
		dwc2_hsotg_core_init_disconnected(hsotg, false);
4323
		if (hsotg->enabled)
4324
			dwc2_hsotg_core_connect(hsotg);
4325
	} else {
4326 4327
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
4328 4329 4330 4331 4332 4333
	}

	spin_unlock_irqrestore(&hsotg->lock, flags);
	return 0;
}

4334
/**
4335
 * dwc2_hsotg_vbus_draw - report bMaxPower field
4336 4337 4338 4339 4340
 * @gadget: The usb gadget state
 * @mA: Amount of current
 *
 * Report how much power the device may consume to the phy.
 */
4341
static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4342 4343 4344 4345 4346 4347 4348 4349
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);

	if (IS_ERR_OR_NULL(hsotg->uphy))
		return -ENOTSUPP;
	return usb_phy_set_power(hsotg->uphy, mA);
}

4350 4351 4352 4353 4354 4355 4356
static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
	.get_frame	= dwc2_hsotg_gadget_getframe,
	.udc_start		= dwc2_hsotg_udc_start,
	.udc_stop		= dwc2_hsotg_udc_stop,
	.pullup                 = dwc2_hsotg_pullup,
	.vbus_session		= dwc2_hsotg_vbus_session,
	.vbus_draw		= dwc2_hsotg_vbus_draw,
4357 4358 4359
};

/**
4360
 * dwc2_hsotg_initep - initialise a single endpoint
4361 4362 4363 4364 4365 4366 4367 4368
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
4369
static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4370
			      struct dwc2_hsotg_ep *hs_ep,
4371 4372
				       int epnum,
				       bool dir_in)
4373 4374 4375 4376 4377
{
	char *dir;

	if (epnum == 0)
		dir = "";
4378
	else if (dir_in)
4379
		dir = "in";
4380 4381
	else
		dir = "out";
4382

4383
	hs_ep->dir_in = dir_in;
4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396
	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
4397 4398 4399 4400 4401 4402

	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
	else
		usb_ep_set_maxpacket_limit(&hs_ep->ep,
					   epnum ? 1024 : EP0_MPS_LIMIT);
4403
	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4404

4405 4406 4407
	if (epnum == 0) {
		hs_ep->ep.caps.type_control = true;
	} else {
4408 4409 4410 4411
		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
			hs_ep->ep.caps.type_iso = true;
			hs_ep->ep.caps.type_bulk = true;
		}
4412 4413 4414 4415 4416 4417 4418 4419
		hs_ep->ep.caps.type_int = true;
	}

	if (dir_in)
		hs_ep->ep.caps.dir_in = true;
	else
		hs_ep->ep.caps.dir_out = true;

4420 4421
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
4422 4423 4424 4425
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
4426
		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4427

4428
		if (dir_in)
4429
			dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
4430
		else
4431
			dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
4432 4433 4434
	}
}

4435
/**
4436
 * dwc2_hsotg_hw_cfg - read HW configuration registers
4437 4438 4439 4440
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
4441
static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4442
{
4443 4444 4445 4446
	u32 cfg;
	u32 ep_type;
	u32 i;

4447
	/* check hardware configuration */
4448

4449 4450
	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;

4451 4452
	/* Add ep0 */
	hsotg->num_of_eps++;
4453

4454
	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct dwc2_hsotg_ep),
4455 4456 4457
								GFP_KERNEL);
	if (!hsotg->eps_in[0])
		return -ENOMEM;
4458
	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4459 4460
	hsotg->eps_out[0] = hsotg->eps_in[0];

4461
	cfg = hsotg->hw_params.dev_ep_dirs;
4462
	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4463 4464 4465 4466
		ep_type = cfg & 3;
		/* Direction in or both */
		if (!(ep_type & 2)) {
			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4467
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4468 4469 4470 4471 4472 4473
			if (!hsotg->eps_in[i])
				return -ENOMEM;
		}
		/* Direction out or both */
		if (!(ep_type & 1)) {
			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4474
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4475 4476 4477 4478 4479
			if (!hsotg->eps_out[i])
				return -ENOMEM;
		}
	}

4480 4481
	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4482

4483 4484 4485 4486
	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
		 hsotg->num_of_eps,
		 hsotg->dedicated_fifos ? "dedicated" : "shared",
		 hsotg->fifo_mem);
4487
	return 0;
4488 4489
}

4490
/**
4491
 * dwc2_hsotg_dump - dump state of the udc
4492 4493
 * @param: The device state
 */
4494
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4495
{
M
Mark Brown 已提交
4496
#ifdef DEBUG
4497 4498 4499 4500 4501 4502
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4503 4504
		 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
		 dwc2_readl(regs + DIEPMSK));
4505

4506
	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4507
		 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
4508 4509

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4510
		 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
4511 4512 4513

	/* show periodic fifo settings */

4514
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4515
		val = dwc2_readl(regs + DPTXFSIZN(idx));
4516
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4517 4518
			 val >> FIFOSIZE_DEPTH_SHIFT,
			 val & FIFOSIZE_STARTADDR_MASK);
4519 4520
	}

4521
	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4522 4523
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4524 4525 4526
			 dwc2_readl(regs + DIEPCTL(idx)),
			 dwc2_readl(regs + DIEPTSIZ(idx)),
			 dwc2_readl(regs + DIEPDMA(idx)));
4527

4528
		val = dwc2_readl(regs + DOEPCTL(idx));
4529 4530
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4531 4532 4533
			 idx, dwc2_readl(regs + DOEPCTL(idx)),
			 dwc2_readl(regs + DOEPTSIZ(idx)),
			 dwc2_readl(regs + DOEPDMA(idx)));
4534 4535 4536
	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4537
		 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
4538
#endif
4539 4540
}

4541
/**
4542 4543 4544
 * dwc2_gadget_init - init function for gadget
 * @dwc2: The data structure for the DWC2 driver.
 * @irq: The IRQ number for the controller.
4545
 */
4546
int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
4547
{
4548
	struct device *dev = hsotg->dev;
4549 4550
	int epnum;
	int ret;
4551

4552 4553
	/* Dump fifo information */
	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4554 4555
		hsotg->params.g_np_tx_fifo_size);
	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4556

4557
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
4558
	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4559
	hsotg->gadget.name = dev_name(dev);
4560 4561
	if (hsotg->dr_mode == USB_DR_MODE_OTG)
		hsotg->gadget.is_otg = 1;
4562 4563
	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4564

4565
	ret = dwc2_hsotg_hw_cfg(hsotg);
4566 4567
	if (ret) {
		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4568
		return ret;
4569 4570
	}

4571 4572
	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4573
	if (!hsotg->ctrl_buff)
4574
		return -ENOMEM;
4575 4576 4577

	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4578
	if (!hsotg->ep0_buff)
4579
		return -ENOMEM;
4580

4581 4582 4583 4584 4585 4586
	if (using_desc_dma(hsotg)) {
		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
		if (ret < 0)
			return ret;
	}

4587
	ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
4588
			       dev_name(hsotg->dev), hsotg);
4589
	if (ret < 0) {
4590
		dev_err(dev, "cannot claim IRQ for gadget\n");
4591
		return ret;
4592 4593
	}

4594 4595 4596 4597
	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
4598
		return -EINVAL;
4599 4600 4601 4602 4603
	}

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4604
	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4605 4606 4607

	/* allocate EP0 request */

4608
	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4609 4610 4611
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
4612
		return -ENOMEM;
4613
	}
4614 4615

	/* initialise the endpoints now the core has been initialised */
4616 4617
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
		if (hsotg->eps_in[epnum])
4618
			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4619
					  epnum, 1);
4620
		if (hsotg->eps_out[epnum])
4621
			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4622
					  epnum, 0);
4623
	}
4624

4625
	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
4626
	if (ret)
4627
		return ret;
4628

4629
	dwc2_hsotg_dump(hsotg);
4630 4631 4632 4633

	return 0;
}

4634
/**
4635
 * dwc2_hsotg_remove - remove function for hsotg driver
4636 4637
 * @pdev: The platform information for the driver
 */
4638
int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4639
{
4640
	usb_del_gadget_udc(&hsotg->gadget);
4641

4642 4643 4644
	return 0;
}

4645
int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4646 4647 4648
{
	unsigned long flags;

4649
	if (hsotg->lx_state != DWC2_L0)
4650
		return 0;
4651

4652 4653 4654
	if (hsotg->driver) {
		int ep;

4655 4656 4657
		dev_info(hsotg->dev, "suspending usb gadget %s\n",
			 hsotg->driver->driver.name);

4658 4659
		spin_lock_irqsave(&hsotg->lock, flags);
		if (hsotg->enabled)
4660 4661
			dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
4662 4663
		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
		spin_unlock_irqrestore(&hsotg->lock, flags);
4664

4665 4666
		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
			if (hsotg->eps_in[ep])
4667
				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4668
			if (hsotg->eps_out[ep])
4669
				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4670
		}
4671 4672
	}

4673
	return 0;
4674 4675
}

4676
int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4677 4678 4679
{
	unsigned long flags;

4680
	if (hsotg->lx_state == DWC2_L2)
4681
		return 0;
4682

4683 4684 4685
	if (hsotg->driver) {
		dev_info(hsotg->dev, "resuming usb gadget %s\n",
			 hsotg->driver->driver.name);
4686

4687
		spin_lock_irqsave(&hsotg->lock, flags);
4688
		dwc2_hsotg_core_init_disconnected(hsotg, false);
4689
		if (hsotg->enabled)
4690
			dwc2_hsotg_core_connect(hsotg);
4691 4692
		spin_unlock_irqrestore(&hsotg->lock, flags);
	}
4693

4694
	return 0;
4695
}
4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797

/**
 * dwc2_backup_device_registers() - Backup controller device registers.
 * When suspending usb bus, registers needs to be backuped
 * if controller power is disabled once suspended.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Backup dev regs */
	dr = &hsotg->dr_backup;

	dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
	dr->dctl = dwc2_readl(hsotg->regs + DCTL);
	dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
	dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
	dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Backup IN EPs */
		dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));

		/* Ensure DATA PID is correctly configured */
		if (dr->diepctl[i] & DXEPCTL_DPID)
			dr->diepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->diepctl[i] |= DXEPCTL_SETD0PID;

		dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
		dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));

		/* Backup OUT EPs */
		dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));

		/* Ensure DATA PID is correctly configured */
		if (dr->doepctl[i] & DXEPCTL_DPID)
			dr->doepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->doepctl[i] |= DXEPCTL_SETD0PID;

		dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
		dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
	}
	dr->valid = true;
	return 0;
}

/**
 * dwc2_restore_device_registers() - Restore controller device registers.
 * When resuming usb bus, device registers needs to be restored
 * if controller power were disabled.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	u32 dctl;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Restore dev regs */
	dr = &hsotg->dr_backup;
	if (!dr->valid) {
		dev_err(hsotg->dev, "%s: no device registers to restore\n",
			__func__);
		return -EINVAL;
	}
	dr->valid = false;

	dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
	dwc2_writel(dr->dctl, hsotg->regs + DCTL);
	dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
	dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
	dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Restore IN EPs */
		dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
		dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
		dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));

		/* Restore OUT EPs */
		dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
		dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
	}

	/* Set the Power-On Programming done bit */
	dctl = dwc2_readl(hsotg->regs + DCTL);
	dctl |= DCTL_PWRONPRGDONE;
	dwc2_writel(dctl, hsotg->regs + DCTL);

	return 0;
}