gadget.c 105.8 KB
Newer Older
1
/**
2 3
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
4 5 6 7 8 9 10 11 12 13 14
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
15
 */
16 17 18 19 20 21 22

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
23
#include <linux/mutex.h>
24 25 26
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
27
#include <linux/slab.h>
28
#include <linux/of_platform.h>
29 30 31

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
32
#include <linux/usb/phy.h>
33

34
#include "core.h"
35
#include "hw.h"
36 37

/* conversion functions */
38
static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
39
{
40
	return container_of(req, struct dwc2_hsotg_req, req);
41 42
}

43
static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
44
{
45
	return container_of(ep, struct dwc2_hsotg_ep, ep);
46 47
}

48
static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
49
{
50
	return container_of(gadget, struct dwc2_hsotg, gadget);
51 52 53 54
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
55
	dwc2_writel(dwc2_readl(ptr) | val, ptr);
56 57 58 59
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
60
	dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
61 62
}

63
static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
64 65 66 67 68 69 70 71
						u32 ep_index, u32 dir_in)
{
	if (dir_in)
		return hsotg->eps_in[ep_index];
	else
		return hsotg->eps_out[ep_index];
}

72
/* forward declaration of functions */
73
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
92
 * g_using_dma is set depending on dts flag.
93
 */
94
static inline bool using_dma(struct dwc2_hsotg *hsotg)
95
{
96
	return hsotg->g_using_dma;
97 98
}

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
/**
 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
 * @hs_ep: The endpoint
 * @increment: The value to increment by
 *
 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
 */
static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
{
	hs_ep->target_frame += hs_ep->interval;
	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
		hs_ep->frame_overrun = 1;
		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
	} else {
		hs_ep->frame_overrun = 0;
	}
}

118
/**
119
 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
120 121 122
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
123
static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
124
{
125
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
126 127 128 129 130 131
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
132
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
133 134 135 136
	}
}

/**
137
 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
138 139 140
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
141
static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
142
{
143
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
144 145 146 147 148
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
149
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
150 151 152
}

/**
153
 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
154 155 156 157 158 159 160 161
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
162
static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
163 164 165 166 167 168 169 170 171 172 173
				 unsigned int ep, unsigned int dir_in,
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
174
	daint = dwc2_readl(hsotg->regs + DAINTMSK);
175 176 177 178
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
179
	dwc2_writel(daint, hsotg->regs + DAINTMSK);
180 181 182 183
	local_irq_restore(flags);
}

/**
184
 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
185 186
 * @hsotg: The device instance.
 */
187
static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
188
{
189
	unsigned int ep;
190
	unsigned int addr;
191
	int timeout;
192 193
	u32 val;

194 195 196 197
	/* Reset fifo map if not correctly cleared during previous session */
	WARN_ON(hsotg->fifo_map);
	hsotg->fifo_map = 0;

198
	/* set RX/NPTX FIFO sizes */
199 200
	dwc2_writel(hsotg->g_rx_fifo_sz, hsotg->regs + GRXFSIZ);
	dwc2_writel((hsotg->g_rx_fifo_sz << FIFOSIZE_STARTADDR_SHIFT) |
201 202
		(hsotg->g_np_g_tx_fifo_sz << FIFOSIZE_DEPTH_SHIFT),
		hsotg->regs + GNPTXFSIZ);
203

204 205
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
206 207
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
208 209
	 * known values.
	 */
210 211

	/* start at the end of the GNPTXFSIZ, rounded up */
212
	addr = hsotg->g_rx_fifo_sz + hsotg->g_np_g_tx_fifo_sz;
213

214
	/*
215
	 * Configure fifos sizes from provided configuration and assign
216 217
	 * them to endpoints dynamically according to maxpacket size value of
	 * given endpoint.
218
	 */
219
	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
220 221 222 223 224 225 226
		if (!hsotg->g_tx_fifo_sz[ep])
			continue;
		val = addr;
		val |= hsotg->g_tx_fifo_sz[ep] << FIFOSIZE_DEPTH_SHIFT;
		WARN_ONCE(addr + hsotg->g_tx_fifo_sz[ep] > hsotg->fifo_mem,
			  "insufficient fifo memory");
		addr += hsotg->g_tx_fifo_sz[ep];
227

228
		dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
229
	}
230

231 232 233 234
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
235

236
	dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
237
	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
238 239 240 241

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
242
		val = dwc2_readl(hsotg->regs + GRSTCTL);
243

244
		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
245 246 247 248 249 250
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
251
			break;
252 253 254 255 256 257
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
258 259 260 261 262 263 264 265
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
266
static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
267
						      gfp_t flags)
268
{
269
	struct dwc2_hsotg_req *req;
270

271
	req = kzalloc(sizeof(struct dwc2_hsotg_req), flags);
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
287
static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
288 289 290 291 292
{
	return hs_ep->periodic;
}

/**
293
 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
294 295 296 297
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
298
 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
299
 * of a request to ensure the buffer is ready for access by the caller.
300
 */
301 302 303
static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req)
304 305 306 307 308 309 310
{
	struct usb_request *req = &hs_req->req;

	/* ignore this if we're not moving any data */
	if (hs_req->req.length == 0)
		return;

311
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
312 313 314
}

/**
315
 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
316 317 318 319 320 321 322 323 324 325 326 327 328
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
329
 */
330 331 332
static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req)
333 334
{
	bool periodic = is_ep_periodic(hs_ep);
335
	u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
336 337 338 339 340
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;
341
	int max_transfer;
342 343 344 345 346 347 348

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

349
	if (periodic && !hsotg->dedicated_fifos) {
350
		u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
351 352 353
		int size_left;
		int size_done;

354 355 356 357
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
358

359
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
360

361 362
		/*
		 * if shared fifo, we cannot write anything until the
363 364 365
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
366
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
367 368 369
			return -ENOSPC;
		}

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
387
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
388 389
			return -ENOSPC;
		}
390
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
391 392
		can_write = dwc2_readl(hsotg->regs +
				DTXFSTS(hs_ep->fifo_index));
393 394 395

		can_write &= 0xffff;
		can_write *= 4;
396
	} else {
397
		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
398 399 400 401
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

402
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
403 404 405
			return -ENOSPC;
		}

406
		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
407
		can_write *= 4;	/* fifo size is in 32bit quantities. */
408 409
	}

410 411 412 413
	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
		 __func__, gnptxsts, can_write, to_write, max_transfer);
414

415 416
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
417 418 419
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
420
	if (can_write > 512 && !periodic)
421 422
		can_write = 512;

423 424
	/*
	 * limit the write to one max-packet size worth of data, but allow
425
	 * the transfer to return that it did not run out of fifo space
426 427
	 * doing it.
	 */
428 429
	if (to_write > max_transfer) {
		to_write = max_transfer;
430

431 432
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
433
			dwc2_hsotg_en_gsint(hsotg,
434 435
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
436 437
	}

438 439 440 441
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
442
		pkt_round = to_write % max_transfer;
443

444 445
		/*
		 * Round the write down to an
446 447 448 449 450 451 452 453 454
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

455 456 457 458
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
459

460 461
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
462
			dwc2_hsotg_en_gsint(hsotg,
463 464
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
		 to_write, hs_req->req.length, can_write, buf_pos);

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

482
	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
483 484 485 486 487 488 489 490 491 492 493

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
494
static unsigned get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
495 496 497 498 499 500
{
	int index = hs_ep->index;
	unsigned maxsize;
	unsigned maxpkt;

	if (index != 0) {
501 502
		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
503
	} else {
504
		maxsize = 64+64;
505
		if (hs_ep->dir_in)
506
			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
507
		else
508 509 510 511 512 513 514
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

515 516 517 518
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
519 520 521 522 523 524 525

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
/**
* dwc2_hsotg_read_frameno - read current frame number
* @hsotg: The device instance
*
* Return the current frame number
*/
static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
{
	u32 dsts;

	dsts = dwc2_readl(hsotg->regs + DSTS);
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;

	return dsts;
}

543
/**
544
 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
545 546 547 548 549 550 551 552
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
553 554 555
static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req,
556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
	unsigned length;
	unsigned packets;
	unsigned maxreq;

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

582 583
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
584 585

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
586
		__func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
587 588
		hs_ep->dir_in ? "in" : "out");

589
	/* If endpoint is stalled, we will restart request later */
590
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
591

592
	if (index && ctrl & DXEPCTL_STALL) {
593 594 595 596
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

597
	length = ureq->length - ureq->actual;
598 599
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619

	maxreq = get_ep_limit(hs_ep);
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

620 621 622 623 624
	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
		return;
	}

625
	if (dir_in && index != 0)
626
		if (hs_ep->isochronous)
627
			epsize = DXEPTSIZ_MC(packets);
628
		else
629
			epsize = DXEPTSIZ_MC(1);
630 631 632
	else
		epsize = 0;

633 634 635 636 637 638 639 640
	/*
	 * zero length packet should be programmed on its own and should not
	 * be counted in DIEPTSIZ.PktCnt with other packets.
	 */
	if (dir_in && ureq->zero && !continuing) {
		/* Test if zlp is actually required. */
		if ((ureq->length >= hs_ep->ep.maxpacket) &&
					!(ureq->length % hs_ep->ep.maxpacket))
641
			hs_ep->send_zlp = 1;
642 643
	}

644 645
	epsize |= DXEPTSIZ_PKTCNT(packets);
	epsize |= DXEPTSIZ_XFERSIZE(length);
646 647 648 649 650 651 652 653

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

	/* write size / packets */
654
	dwc2_writel(epsize, hsotg->regs + epsize_reg);
655

656
	if (using_dma(hsotg) && !continuing) {
657 658
		unsigned int dma_reg;

659 660
		/*
		 * write DMA address to control register, buffer already
661
		 * synced by dwc2_hsotg_ep_queue().
662
		 */
663

664
		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
665
		dwc2_writel(ureq->dma, hsotg->regs + dma_reg);
666

667
		dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
668
			__func__, &ureq->dma, dma_reg);
669 670
	}

671 672 673 674 675 676 677 678 679 680
	if (hs_ep->isochronous && hs_ep->interval == 1) {
		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
		dwc2_gadget_incr_frame_num(hs_ep);

		if (hs_ep->target_frame & 0x1)
			ctrl |= DXEPCTL_SETODDFR;
		else
			ctrl |= DXEPCTL_SETEVENFR;
	}

681
	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
682

683
	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
684 685

	/* For Setup request do not clear NAK */
686
	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
687
		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
688

689
	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
690
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
691

692 693
	/*
	 * set these, it seems that DMA support increments past the end
694
	 * of the packet buffer so we need to calculate the length from
695 696
	 * this information.
	 */
697 698 699 700 701 702 703
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

704
		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
705 706
	}

707 708 709 710
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
711 712

	/* check ep is enabled */
713
	if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
714
		dev_dbg(hsotg->dev,
715
			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
716
			 index, dwc2_readl(hsotg->regs + epctrl_reg));
717

718
	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
719
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
720 721

	/* enable ep interrupts */
722
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
723 724 725
}

/**
726
 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
727 728 729 730 731 732 733 734 735
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
736
 */
737 738
static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
			     struct dwc2_hsotg_ep *hs_ep,
739 740
			     struct usb_request *req)
{
741
	struct dwc2_hsotg_req *hs_req = our_req(req);
742
	int ret;
743 744 745 746 747

	/* if the length is zero, ignore the DMA data */
	if (hs_req->req.length == 0)
		return 0;

748 749 750
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
751 752 753 754 755 756 757 758 759 760

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

761 762
static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
{
	void *req_buf = hs_req->req.buf;

	/* If dma is not being used or buffer is aligned */
	if (!using_dma(hsotg) || !((long)req_buf & 3))
		return 0;

	WARN_ON(hs_req->saved_req_buf);

	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
			hs_ep->ep.name, req_buf, hs_req->req.length);

	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
	if (!hs_req->req.buf) {
		hs_req->req.buf = req_buf;
		dev_err(hsotg->dev,
			"%s: unable to allocate memory for bounce buffer\n",
			__func__);
		return -ENOMEM;
	}

	/* Save actual buffer */
	hs_req->saved_req_buf = req_buf;

	if (hs_ep->dir_in)
		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
	return 0;
}

792 793
static void dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
{
	/* If dma is not being used or buffer was aligned */
	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
		return;

	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);

	/* Copy data from bounce buffer on successful out transfer */
	if (!hs_ep->dir_in && !hs_req->req.status)
		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
							hs_req->req.actual);

	/* Free bounce buffer */
	kfree(hs_req->req.buf);

	hs_req->req.buf = hs_req->saved_req_buf;
	hs_req->saved_req_buf = NULL;
}

814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
/**
 * dwc2_gadget_target_frame_elapsed - Checks target frame
 * @hs_ep: The driver endpoint to check
 *
 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
 * corresponding transfer.
 */
static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	u32 target_frame = hs_ep->target_frame;
	u32 current_frame = dwc2_hsotg_read_frameno(hsotg);
	bool frame_overrun = hs_ep->frame_overrun;

	if (!frame_overrun && current_frame >= target_frame)
		return true;

	if (frame_overrun && current_frame >= target_frame &&
	    ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
		return true;

	return false;
}

838
static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
839 840
			      gfp_t gfp_flags)
{
841 842
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
843
	struct dwc2_hsotg *hs = hs_ep->parent;
844
	bool first;
845
	int ret;
846 847 848 849 850

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

851 852 853 854 855 856 857
	/* Prevent new request submission when controller is suspended */
	if (hs->lx_state == DWC2_L2) {
		dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
				__func__);
		return -EAGAIN;
	}

858 859 860 861 862
	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

863
	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
864 865 866
	if (ret)
		return ret;

867 868
	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
869
		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
870 871 872 873 874 875 876
		if (ret)
			return ret;
	}

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

877 878 879 880 881 882 883 884
	if (first) {
		if (!hs_ep->isochronous) {
			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
			return 0;
		}

		while (dwc2_gadget_target_frame_elapsed(hs_ep))
			dwc2_gadget_incr_frame_num(hs_ep);
885

886 887 888
		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
	}
889 890 891
	return 0;
}

892
static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
893 894
			      gfp_t gfp_flags)
{
895
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
896
	struct dwc2_hsotg *hs = hs_ep->parent;
897 898 899 900
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
901
	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
902 903 904 905 906
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

907
static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
908 909
				      struct usb_request *req)
{
910
	struct dwc2_hsotg_req *hs_req = our_req(req);
911 912 913 914 915

	kfree(hs_req);
}

/**
916
 * dwc2_hsotg_complete_oursetup - setup completion callback
917 918 919 920 921 922
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
923
static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
924 925
					struct usb_request *req)
{
926
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
927
	struct dwc2_hsotg *hsotg = hs_ep->parent;
928 929 930

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

931
	dwc2_hsotg_ep_free_request(ep, req);
932 933 934 935 936 937 938 939 940
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
941
 */
942
static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
943 944
					   u32 windex)
{
945
	struct dwc2_hsotg_ep *ep;
946 947 948 949 950 951
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

952
	if (idx > hsotg->num_of_eps)
953 954
		return NULL;

955 956
	ep = index_to_ep(hsotg, idx, dir);

957 958 959 960 961 962
	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

963
/**
964
 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
965 966 967 968
 * @hsotg: The driver state.
 * @testmode: requested usb test mode
 * Enable usb Test Mode requested by the Host.
 */
969
int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
970
{
971
	int dctl = dwc2_readl(hsotg->regs + DCTL);
972 973 974 975 976 977 978 979 980 981 982 983 984

	dctl &= ~DCTL_TSTCTL_MASK;
	switch (testmode) {
	case TEST_J:
	case TEST_K:
	case TEST_SE0_NAK:
	case TEST_PACKET:
	case TEST_FORCE_EN:
		dctl |= testmode << DCTL_TSTCTL_SHIFT;
		break;
	default:
		return -EINVAL;
	}
985
	dwc2_writel(dctl, hsotg->regs + DCTL);
986 987 988
	return 0;
}

989
/**
990
 * dwc2_hsotg_send_reply - send reply to control request
991 992 993 994 995 996 997 998
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
999 1000
static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *ep,
1001 1002 1003 1004 1005 1006 1007 1008
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

1009
	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1010 1011 1012 1013 1014 1015 1016 1017
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
1018 1019 1020 1021 1022
	/*
	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
	 * STATUS stage.
	 */
	req->zero = 0;
1023
	req->complete = dwc2_hsotg_complete_oursetup;
1024 1025 1026 1027

	if (length)
		memcpy(req->buf, buff, length);

1028
	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1029 1030 1031 1032 1033 1034 1035 1036 1037
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
1038
 * dwc2_hsotg_process_req_status - process request GET_STATUS
1039 1040 1041
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1042
static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1043 1044
					struct usb_ctrlrequest *ctrl)
{
1045 1046
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_ep *ep;
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
		reply = cpu_to_le16(0); /* bit 0 => self powered,
					 * bit 1 => remote wakeup */
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

1083
	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1084 1085 1086 1087 1088 1089 1090 1091
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

1092
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1093

1094 1095 1096 1097 1098 1099
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
1100
static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1101
{
1102 1103
	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
					queue);
1104 1105
}

1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
/**
 * dwc2_gadget_start_next_request - Starts next request from ep queue
 * @hs_ep: Endpoint structure
 *
 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
 * in its handler. Hence we need to unmask it here to be able to do
 * resynchronization.
 */
static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
{
	u32 mask;
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	struct dwc2_hsotg_req *hs_req;
	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;

	if (!list_empty(&hs_ep->queue)) {
		hs_req = get_ep_head(hs_ep);
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		return;
	}
	if (!hs_ep->isochronous)
		return;

	if (dir_in) {
		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
			__func__);
	} else {
		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
			__func__);
		mask = dwc2_readl(hsotg->regs + epmsk_reg);
		mask |= DOEPMSK_OUTTKNEPDISMSK;
		dwc2_writel(mask, hsotg->regs + epmsk_reg);
	}
}

1142
/**
1143
 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1144 1145 1146
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1147
static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1148 1149
					 struct usb_ctrlrequest *ctrl)
{
1150 1151
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_req *hs_req;
1152
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1153
	struct dwc2_hsotg_ep *ep;
1154
	int ret;
1155
	bool halted;
1156 1157 1158
	u32 recip;
	u32 wValue;
	u32 wIndex;
1159 1160 1161 1162

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
	wValue = le16_to_cpu(ctrl->wValue);
	wIndex = le16_to_cpu(ctrl->wIndex);
	recip = ctrl->bRequestType & USB_RECIP_MASK;

	switch (recip) {
	case USB_RECIP_DEVICE:
		switch (wValue) {
		case USB_DEVICE_TEST_MODE:
			if ((wIndex & 0xff) != 0)
				return -EINVAL;
			if (!set)
				return -EINVAL;

			hsotg->test_mode = wIndex >> 8;
1177
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
			break;
		default:
			return -ENOENT;
		}
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, wIndex);
1191 1192
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1193
				__func__, wIndex);
1194 1195 1196
			return -ENOENT;
		}

1197
		switch (wValue) {
1198
		case USB_ENDPOINT_HALT:
1199 1200
			halted = ep->halted;

1201
			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1202

1203
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1204 1205 1206 1207 1208
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
1209

1210 1211 1212 1213 1214 1215
			/*
			 * we have to complete all requests for ep if it was
			 * halted, and the halt was cleared by CLEAR_FEATURE
			 */

			if (!set && halted) {
1216 1217 1218 1219 1220 1221 1222 1223
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
1224 1225 1226 1227 1228 1229
					if (hs_req->req.complete) {
						spin_unlock(&hsotg->lock);
						usb_gadget_giveback_request(
							&ep->ep, &hs_req->req);
						spin_lock(&hsotg->lock);
					}
1230 1231 1232
				}

				/* If we have pending request, then start it */
1233
				if (!ep->req) {
1234
					dwc2_gadget_start_next_request(ep);
1235 1236 1237
				}
			}

1238 1239 1240 1241 1242
			break;

		default:
			return -ENOENT;
		}
1243 1244 1245 1246
		break;
	default:
		return -ENOENT;
	}
1247 1248 1249
	return 1;
}

1250
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1251

1252
/**
1253
 * dwc2_hsotg_stall_ep0 - stall ep0
1254 1255 1256 1257
 * @hsotg: The device state
 *
 * Set stall for ep0 as response for setup request.
 */
1258
static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1259
{
1260
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271
	u32 reg;
	u32 ctrl;

	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;

	/*
	 * DxEPCTL_Stall will be cleared by EP once it has
	 * taken effect, so no need to clear later.
	 */

1272
	ctrl = dwc2_readl(hsotg->regs + reg);
1273 1274
	ctrl |= DXEPCTL_STALL;
	ctrl |= DXEPCTL_CNAK;
1275
	dwc2_writel(ctrl, hsotg->regs + reg);
1276 1277

	dev_dbg(hsotg->dev,
1278
		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1279
		ctrl, reg, dwc2_readl(hsotg->regs + reg));
1280 1281 1282 1283 1284

	 /*
	  * complete won't be called, so we enqueue
	  * setup request here
	  */
1285
	 dwc2_hsotg_enqueue_setup(hsotg);
1286 1287
}

1288
/**
1289
 * dwc2_hsotg_process_control - process a control request
1290 1291 1292 1293 1294 1295 1296
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
1297
static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1298 1299
				      struct usb_ctrlrequest *ctrl)
{
1300
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1301 1302 1303
	int ret = 0;
	u32 dcfg;

1304 1305 1306 1307
	dev_dbg(hsotg->dev,
		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
		ctrl->wIndex, ctrl->wLength);
1308

1309 1310 1311 1312
	if (ctrl->wLength == 0) {
		ep0->dir_in = 1;
		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
	} else if (ctrl->bRequestType & USB_DIR_IN) {
1313
		ep0->dir_in = 1;
1314 1315 1316 1317 1318
		hsotg->ep0_state = DWC2_EP0_DATA_IN;
	} else {
		ep0->dir_in = 0;
		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
	}
1319 1320 1321 1322

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1323
			hsotg->connected = 1;
1324
			dcfg = dwc2_readl(hsotg->regs + DCFG);
1325
			dcfg &= ~DCFG_DEVADDR_MASK;
P
Paul Zimmerman 已提交
1326 1327
			dcfg |= (le16_to_cpu(ctrl->wValue) <<
				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1328
			dwc2_writel(dcfg, hsotg->regs + DCFG);
1329 1330 1331

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

1332
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1333 1334 1335
			return;

		case USB_REQ_GET_STATUS:
1336
			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1337 1338 1339 1340
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
1341
			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1342 1343 1344 1345 1346 1347 1348
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
1349
		spin_unlock(&hsotg->lock);
1350
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1351
		spin_lock(&hsotg->lock);
1352 1353 1354 1355
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1356 1357
	/*
	 * the request is either unhandlable, or is not formatted correctly
1358 1359 1360
	 * so respond with a STALL for the status stage to indicate failure.
	 */

1361
	if (ret < 0)
1362
		dwc2_hsotg_stall_ep0(hsotg);
1363 1364 1365
}

/**
1366
 * dwc2_hsotg_complete_setup - completion of a setup transfer
1367 1368 1369 1370 1371 1372
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
1373
static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1374 1375
				     struct usb_request *req)
{
1376
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1377
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1378 1379 1380 1381 1382 1383

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

1384
	spin_lock(&hsotg->lock);
1385
	if (req->actual == 0)
1386
		dwc2_hsotg_enqueue_setup(hsotg);
1387
	else
1388
		dwc2_hsotg_process_control(hsotg, req->buf);
1389
	spin_unlock(&hsotg->lock);
1390 1391 1392
}

/**
1393
 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1394 1395 1396 1397 1398
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
1399
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1400 1401
{
	struct usb_request *req = hsotg->ctrl_req;
1402
	struct dwc2_hsotg_req *hs_req = our_req(req);
1403 1404 1405 1406 1407 1408 1409
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
1410
	req->complete = dwc2_hsotg_complete_setup;
1411 1412 1413 1414 1415 1416

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

1417
	hsotg->eps_out[0]->dir_in = 0;
1418
	hsotg->eps_out[0]->send_zlp = 0;
1419
	hsotg->ep0_state = DWC2_EP0_SETUP;
1420

1421
	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1422 1423
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1424 1425 1426 1427
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1428 1429 1430
	}
}

1431 1432
static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
					struct dwc2_hsotg_ep *hs_ep)
1433 1434 1435 1436 1437 1438
{
	u32 ctrl;
	u8 index = hs_ep->index;
	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);

1439 1440 1441 1442 1443 1444
	if (hs_ep->dir_in)
		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
									index);
	else
		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
									index);
1445

1446 1447 1448
	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
		    DXEPTSIZ_XFERSIZE(0), hsotg->regs +
		    epsiz_reg);
1449

1450
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1451 1452 1453
	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
1454
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1455 1456
}

1457
/**
1458
 * dwc2_hsotg_complete_request - complete a request given to us
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1469
 */
1470 1471 1472
static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
				       struct dwc2_hsotg_ep *hs_ep,
				       struct dwc2_hsotg_req *hs_req,
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483
				       int result)
{

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1484 1485 1486 1487
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1488 1489 1490 1491

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

1492 1493 1494
	if (using_dma(hsotg))
		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1495
	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1496

1497 1498 1499
	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

1500 1501 1502 1503
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1504 1505

	if (hs_req->req.complete) {
1506
		spin_unlock(&hsotg->lock);
1507
		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1508
		spin_lock(&hsotg->lock);
1509 1510
	}

1511 1512
	/*
	 * Look to see if there is anything else to do. Note, the completion
1513
	 * of the previous request may have caused a new request to be started
1514 1515
	 * so be careful when doing this.
	 */
1516 1517

	if (!hs_ep->req && result >= 0) {
1518
		dwc2_gadget_start_next_request(hs_ep);
1519 1520 1521 1522
	}
}

/**
1523
 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
1524 1525 1526 1527 1528 1529 1530 1531
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
1532
static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
1533
{
1534 1535
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1536
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1537 1538 1539 1540
	int to_read;
	int max_req;
	int read_ptr;

1541

1542
	if (!hs_req) {
1543
		u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
1544 1545
		int ptr;

1546
		dev_dbg(hsotg->dev,
1547
			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1548 1549 1550 1551
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
1552
			(void)dwc2_readl(fifo);
1553 1554 1555 1556 1557 1558 1559 1560

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

1561 1562 1563
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

1564
	if (to_read > max_req) {
1565 1566
		/*
		 * more data appeared than we where willing
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

1578 1579 1580 1581
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
1582
	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1583 1584 1585
}

/**
1586
 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
1587
 * @hsotg: The device instance
1588
 * @dir_in: If IN zlp
1589 1590 1591 1592 1593
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
1594
 * currently believed that we do not need to wait for any space in
1595 1596
 * the TxFIFO.
 */
1597
static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
1598
{
1599
	/* eps_out[0] is used in both directions */
1600 1601
	hsotg->eps_out[0]->dir_in = dir_in;
	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
1602

1603
	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
1604 1605
}

1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618
static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
			u32 epctl_reg)
{
	u32 ctrl;

	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
	if (ctrl & DXEPCTL_EOFRNUM)
		ctrl |= DXEPCTL_SETEVENFR;
	else
		ctrl |= DXEPCTL_SETODDFR;
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
}

1619
/**
1620
 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1621 1622 1623 1624 1625 1626
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
1627
 */
1628
static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
1629
{
1630
	u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
1631 1632
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1633
	struct usb_request *req = &hs_req->req;
1634
	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1635 1636 1637 1638 1639 1640 1641
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

1642 1643
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
1644 1645
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
		dwc2_hsotg_enqueue_setup(hsotg);
1646 1647 1648
		return;
	}

1649 1650 1651
	if (using_dma(hsotg)) {
		unsigned size_done;

1652 1653
		/*
		 * Calculate the size of the transfer by checking how much
1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

1667 1668
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
1669
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1670 1671 1672
		return;
	}

1673 1674 1675 1676
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

1677 1678 1679 1680
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
1681 1682
	}

1683 1684
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
		/* Move to STATUS IN */
1685
		dwc2_hsotg_ep0_zlp(hsotg, true);
1686
		return;
1687 1688
	}

1689 1690 1691 1692 1693 1694 1695
	/*
	 * Slave mode OUT transfers do not go through XferComplete so
	 * adjust the ISOC parity here.
	 */
	if (!using_dma(hsotg)) {
		if (hs_ep->isochronous && hs_ep->interval == 1)
			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
1696 1697
		else if (hs_ep->isochronous && hs_ep->interval > 1)
			dwc2_gadget_incr_frame_num(hs_ep);
1698 1699
	}

1700
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1701 1702 1703
}

/**
1704
 * dwc2_hsotg_handle_rx - RX FIFO has data
1705 1706 1707 1708 1709 1710
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
1711
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1712 1713 1714 1715 1716 1717 1718
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
1719
static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
1720
{
1721
	u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
1722 1723 1724 1725
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

1726 1727
	epnum = grxstsr & GRXSTS_EPNUM_MASK;
	status = grxstsr & GRXSTS_PKTSTS_MASK;
1728

1729 1730
	size = grxstsr & GRXSTS_BYTECNT_MASK;
	size >>= GRXSTS_BYTECNT_SHIFT;
1731

1732
	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1733 1734
			__func__, grxstsr, size, epnum);

1735 1736 1737
	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
	case GRXSTS_PKTSTS_GLOBALOUTNAK:
		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1738 1739
		break;

1740
	case GRXSTS_PKTSTS_OUTDONE:
1741
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1742
			dwc2_hsotg_read_frameno(hsotg));
1743 1744

		if (!using_dma(hsotg))
1745
			dwc2_hsotg_handle_outdone(hsotg, epnum);
1746 1747
		break;

1748
	case GRXSTS_PKTSTS_SETUPDONE:
1749 1750
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1751
			dwc2_hsotg_read_frameno(hsotg),
1752
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
1753
		/*
1754
		 * Call dwc2_hsotg_handle_outdone here if it was not called from
1755 1756 1757 1758
		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
		 */
		if (hsotg->ep0_state == DWC2_EP0_SETUP)
1759
			dwc2_hsotg_handle_outdone(hsotg, epnum);
1760 1761
		break;

1762
	case GRXSTS_PKTSTS_OUTRX:
1763
		dwc2_hsotg_rx_data(hsotg, epnum, size);
1764 1765
		break;

1766
	case GRXSTS_PKTSTS_SETUPRX:
1767 1768
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1769
			dwc2_hsotg_read_frameno(hsotg),
1770
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
1771

1772 1773
		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);

1774
		dwc2_hsotg_rx_data(hsotg, epnum, size);
1775 1776 1777 1778 1779 1780
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

1781
		dwc2_hsotg_dump(hsotg);
1782 1783 1784 1785 1786
		break;
	}
}

/**
1787
 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
1788
 * @mps: The maximum packet size in bytes.
1789
 */
1790
static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
1791 1792 1793
{
	switch (mps) {
	case 64:
1794
		return D0EPCTL_MPS_64;
1795
	case 32:
1796
		return D0EPCTL_MPS_32;
1797
	case 16:
1798
		return D0EPCTL_MPS_16;
1799
	case 8:
1800
		return D0EPCTL_MPS_8;
1801 1802 1803 1804 1805 1806 1807 1808
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
1809
 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1810 1811 1812 1813 1814 1815 1816
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
1817
static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
1818
			unsigned int ep, unsigned int mps, unsigned int dir_in)
1819
{
1820
	struct dwc2_hsotg_ep *hs_ep;
1821 1822
	void __iomem *regs = hsotg->regs;
	u32 mpsval;
1823
	u32 mcval;
1824 1825
	u32 reg;

1826 1827 1828 1829
	hs_ep = index_to_ep(hsotg, ep, dir_in);
	if (!hs_ep)
		return;

1830 1831
	if (ep == 0) {
		/* EP0 is a special case */
1832
		mpsval = dwc2_hsotg_ep0_mps(mps);
1833 1834
		if (mpsval > 3)
			goto bad_mps;
1835
		hs_ep->ep.maxpacket = mps;
1836
		hs_ep->mc = 1;
1837
	} else {
1838
		mpsval = mps & DXEPCTL_MPS_MASK;
1839
		if (mpsval > 1024)
1840
			goto bad_mps;
1841 1842 1843 1844
		mcval = ((mps >> 11) & 0x3) + 1;
		hs_ep->mc = mcval;
		if (mcval > 3)
			goto bad_mps;
1845
		hs_ep->ep.maxpacket = mpsval;
1846 1847
	}

1848
	if (dir_in) {
1849
		reg = dwc2_readl(regs + DIEPCTL(ep));
1850 1851
		reg &= ~DXEPCTL_MPS_MASK;
		reg |= mpsval;
1852
		dwc2_writel(reg, regs + DIEPCTL(ep));
1853
	} else {
1854
		reg = dwc2_readl(regs + DOEPCTL(ep));
1855
		reg &= ~DXEPCTL_MPS_MASK;
1856
		reg |= mpsval;
1857
		dwc2_writel(reg, regs + DOEPCTL(ep));
1858
	}
1859 1860 1861 1862 1863 1864 1865

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

1866
/**
1867
 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
1868 1869 1870
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
1871
static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
1872 1873 1874 1875
{
	int timeout;
	int val;

1876 1877
	dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
		    hsotg->regs + GRSTCTL);
1878 1879 1880 1881 1882

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
1883
		val = dwc2_readl(hsotg->regs + GRSTCTL);
1884

1885
		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1886 1887 1888 1889 1890 1891
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
1892
			break;
1893 1894 1895 1896 1897
		}

		udelay(1);
	}
}
1898 1899

/**
1900
 * dwc2_hsotg_trytx - check to see if anything needs transmitting
1901 1902 1903 1904 1905 1906
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
1907 1908
static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
			   struct dwc2_hsotg_ep *hs_ep)
1909
{
1910
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1911

1912 1913 1914 1915 1916 1917
	if (!hs_ep->dir_in || !hs_req) {
		/**
		 * if request is not enqueued, we disable interrupts
		 * for endpoints, excepting ep0
		 */
		if (hs_ep->index != 0)
1918
			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
1919
					     hs_ep->dir_in, 0);
1920
		return 0;
1921
	}
1922 1923 1924 1925

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
1926
		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1927 1928 1929 1930 1931 1932
	}

	return 0;
}

/**
1933
 * dwc2_hsotg_complete_in - complete IN transfer
1934 1935 1936 1937 1938 1939
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
1940 1941
static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
				  struct dwc2_hsotg_ep *hs_ep)
1942
{
1943
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1944
	u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1945 1946 1947 1948 1949 1950 1951
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

1952
	/* Finish ZLP handling for IN EP0 transactions */
1953 1954
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
		dev_dbg(hsotg->dev, "zlp packet sent\n");
1955
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1956 1957 1958
		if (hsotg->test_mode) {
			int ret;

1959
			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
1960 1961 1962
			if (ret < 0) {
				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
						hsotg->test_mode);
1963
				dwc2_hsotg_stall_ep0(hsotg);
1964 1965 1966
				return;
			}
		}
1967
		dwc2_hsotg_enqueue_setup(hsotg);
1968 1969 1970
		return;
	}

1971 1972
	/*
	 * Calculate the size of the transfer by checking how much is left
1973 1974 1975 1976 1977 1978 1979 1980
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */

1981
	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1982 1983 1984 1985 1986 1987 1988 1989 1990

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
1991 1992 1993
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

1994 1995
	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1996
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1997 1998 1999
		return;
	}

2000
	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
2001
	if (hs_ep->send_zlp) {
2002
		dwc2_hsotg_program_zlp(hsotg, hs_ep);
2003
		hs_ep->send_zlp = 0;
2004 2005 2006 2007
		/* transfer will be completed on next complete interrupt */
		return;
	}

2008 2009
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
		/* Move to STATUS OUT */
2010
		dwc2_hsotg_ep0_zlp(hsotg, false);
2011 2012 2013
		return;
	}

2014
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2015 2016
}

2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044
/**
 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
 * @hsotg: The device state.
 * @idx: Index of ep.
 * @dir_in: Endpoint direction 1-in 0-out.
 *
 * Reads for endpoint with given index and direction, by masking
 * epint_reg with coresponding mask.
 */
static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
					  unsigned int idx, int dir_in)
{
	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 ints;
	u32 mask;
	u32 diepempmsk;

	mask = dwc2_readl(hsotg->regs + epmsk_reg);
	diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK);
	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
	mask |= DXEPINT_SETUP_RCVD;

	ints = dwc2_readl(hsotg->regs + epint_reg);
	ints &= mask;
	return ints;
}

2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
/**
 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
 * @hs_ep: The endpoint on which interrupt is asserted.
 *
 * This interrupt indicates that the endpoint has been disabled per the
 * application's request.
 *
 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
 * in case of ISOC completes current request.
 *
 * For ISOC-OUT endpoints completes expired requests. If there is remaining
 * request starts it.
 */
static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	struct dwc2_hsotg_req *hs_req;
	unsigned char idx = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	int dctl = dwc2_readl(hsotg->regs + DCTL);

	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

	if (dir_in) {
		int epctl = dwc2_readl(hsotg->regs + epctl_reg);

		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);

		if (hs_ep->isochronous) {
			dwc2_hsotg_complete_in(hsotg, hs_ep);
			return;
		}

		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
			int dctl = dwc2_readl(hsotg->regs + DCTL);

			dctl |= DCTL_CGNPINNAK;
			dwc2_writel(dctl, hsotg->regs + DCTL);
		}
		return;
	}

	if (dctl & DCTL_GOUTNAKSTS) {
		dctl |= DCTL_CGOUTNAK;
		dwc2_writel(dctl, hsotg->regs + DCTL);
	}

	if (!hs_ep->isochronous)
		return;

	if (list_empty(&hs_ep->queue)) {
		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
			__func__, hs_ep);
		return;
	}

	do {
		hs_req = get_ep_head(hs_ep);
		if (hs_req)
			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
						    -ENODATA);
		dwc2_gadget_incr_frame_num(hs_ep);
	} while (dwc2_gadget_target_frame_elapsed(hs_ep));

	dwc2_gadget_start_next_request(hs_ep);
}

2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
/**
 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
 * @hs_ep: The endpoint on which interrupt is asserted.
 *
 * This is starting point for ISOC-OUT transfer, synchronization done with
 * first out token received from host while corresponding EP is disabled.
 *
 * Device does not know initial frame in which out token will come. For this
 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
 * getting this interrupt SW starts calculation for next transfer frame.
 */
static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
{
	struct dwc2_hsotg *hsotg = ep->parent;
	int dir_in = ep->dir_in;
	u32 doepmsk;

	if (dir_in || !ep->isochronous)
		return;

	dwc2_hsotg_complete_request(hsotg, ep, get_ep_head(ep), -ENODATA);

	if (ep->interval > 1 &&
	    ep->target_frame == TARGET_FRAME_INITIAL) {
		u32 dsts;
		u32 ctrl;

		dsts = dwc2_readl(hsotg->regs + DSTS);
		ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
		dwc2_gadget_incr_frame_num(ep);

		ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index));
		if (ep->target_frame & 0x1)
			ctrl |= DXEPCTL_SETODDFR;
		else
			ctrl |= DXEPCTL_SETEVENFR;

		dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index));
	}

	dwc2_gadget_start_next_request(ep);
	doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
	doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
	dwc2_writel(doepmsk, hsotg->regs + DOEPMSK);
}

/**
* dwc2_gadget_handle_nak - handle NAK interrupt
* @hs_ep: The endpoint on which interrupt is asserted.
*
* This is starting point for ISOC-IN transfer, synchronization done with
* first IN token received from host while corresponding EP is disabled.
*
* Device does not know when first one token will arrive from host. On first
* token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
* and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
* sent in response to that as there was no data in FIFO. SW is basing on this
* interrupt to obtain frame in which token has come and then based on the
* interval calculates next frame for transfer.
*/
static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;

	if (!dir_in || !hs_ep->isochronous)
		return;

	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
		if (hs_ep->interval > 1) {
			u32 ctrl = dwc2_readl(hsotg->regs +
					      DIEPCTL(hs_ep->index));
			if (hs_ep->target_frame & 0x1)
				ctrl |= DXEPCTL_SETODDFR;
			else
				ctrl |= DXEPCTL_SETEVENFR;

			dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index));
		}

		dwc2_hsotg_complete_request(hsotg, hs_ep,
					    get_ep_head(hs_ep), 0);
	}

	dwc2_gadget_incr_frame_num(hs_ep);
}

2201
/**
2202
 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2203 2204 2205 2206 2207
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
2208
 */
2209
static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2210 2211
			    int dir_in)
{
2212
	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2213 2214 2215
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2216
	u32 ints;
2217
	u32 ctrl;
2218

2219
	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2220
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2221

2222
	/* Clear endpoint interrupts */
2223
	dwc2_writel(ints, hsotg->regs + epint_reg);
2224

2225 2226 2227 2228 2229 2230
	if (!hs_ep) {
		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
					__func__, idx, dir_in ? "in" : "out");
		return;
	}

2231 2232 2233
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

2234 2235 2236 2237
	/* Don't process XferCompl interrupt if it is a setup packet */
	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
		ints &= ~DXEPINT_XFERCOMPL;

2238 2239
	if (ints & DXEPINT_STSPHSERCVD)
		dev_dbg(hsotg->dev, "%s: StsPhseRcvd asserted\n", __func__);
2240

2241
	if (ints & DXEPINT_XFERCOMPL) {
2242
		dev_dbg(hsotg->dev,
2243
			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2244 2245
			__func__, dwc2_readl(hsotg->regs + epctl_reg),
			dwc2_readl(hsotg->regs + epsiz_reg));
2246

2247 2248 2249 2250
		/*
		 * we get OutDone from the FIFO, so we only need to look
		 * at completing IN requests here
		 */
2251
		if (dir_in) {
2252 2253 2254
			if (hs_ep->isochronous && hs_ep->interval > 1)
				dwc2_gadget_incr_frame_num(hs_ep);

2255
			dwc2_hsotg_complete_in(hsotg, hs_ep);
2256 2257
			if (ints & DXEPINT_NAKINTRPT)
				ints &= ~DXEPINT_NAKINTRPT;
2258

2259
			if (idx == 0 && !hs_ep->req)
2260
				dwc2_hsotg_enqueue_setup(hsotg);
2261
		} else if (using_dma(hsotg)) {
2262 2263 2264 2265
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
2266 2267
			if (hs_ep->isochronous && hs_ep->interval > 1)
				dwc2_gadget_incr_frame_num(hs_ep);
2268

2269
			dwc2_hsotg_handle_outdone(hsotg, idx);
2270 2271 2272
		}
	}

2273 2274
	if (ints & DXEPINT_EPDISBLD)
		dwc2_gadget_handle_ep_disabled(hs_ep);
2275

2276 2277 2278 2279 2280 2281
	if (ints & DXEPINT_OUTTKNEPDIS)
		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);

	if (ints & DXEPINT_NAKINTRPT)
		dwc2_gadget_handle_nak(hs_ep);

2282
	if (ints & DXEPINT_AHBERR)
2283 2284
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

2285
	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2286 2287 2288
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
2289 2290
			/*
			 * this is the notification we've received a
2291 2292
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
2293 2294
			 * the setup here.
			 */
2295 2296 2297 2298

			if (dir_in)
				WARN_ON_ONCE(1);
			else
2299
				dwc2_hsotg_handle_outdone(hsotg, 0);
2300 2301 2302
		}
	}

2303
	if (ints & DXEPINT_BACK2BACKSETUP)
2304 2305
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

2306
	if (dir_in && !hs_ep->isochronous) {
2307
		/* not sure if this is important, but we'll clear it anyway */
2308
		if (ints & DXEPINT_INTKNTXFEMP) {
2309 2310 2311 2312 2313
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
2314
		if (ints & DXEPINT_INTKNEPMIS) {
2315 2316 2317
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
2318 2319 2320

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
2321
		    ints & DXEPINT_TXFEMP) {
2322 2323
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
2324
			if (!using_dma(hsotg))
2325
				dwc2_hsotg_trytx(hsotg, hs_ep);
2326
		}
2327 2328 2329 2330
	}
}

/**
2331
 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
2332 2333 2334 2335
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
2336
 */
2337
static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
2338
{
2339
	u32 dsts = dwc2_readl(hsotg->regs + DSTS);
2340
	int ep0_mps = 0, ep_mps = 8;
2341

2342 2343
	/*
	 * This should signal the finish of the enumeration phase
2344
	 * of the USB handshaking, so we should now know what rate
2345 2346
	 * we connected at.
	 */
2347 2348 2349

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

2350 2351
	/*
	 * note, since we're limited by the size of transfer on EP0, and
2352
	 * it seems IN transfers must be a even number of packets we do
2353 2354
	 * not advertise a 64byte MPS on EP0.
	 */
2355 2356

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
2357
	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
2358 2359
	case DSTS_ENUMSPD_FS:
	case DSTS_ENUMSPD_FS48:
2360 2361
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
2362
		ep_mps = 1023;
2363 2364
		break;

2365
	case DSTS_ENUMSPD_HS:
2366 2367
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
2368
		ep_mps = 1024;
2369 2370
		break;

2371
	case DSTS_ENUMSPD_LS:
2372
		hsotg->gadget.speed = USB_SPEED_LOW;
2373 2374
		/*
		 * note, we don't actually support LS in this driver at the
2375 2376 2377 2378 2379
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
2380 2381
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
2382

2383 2384 2385 2386
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
2387 2388 2389

	if (ep0_mps) {
		int i;
2390
		/* Initialize ep0 for both in and out directions */
2391 2392
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 1);
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0);
2393 2394
		for (i = 1; i < hsotg->num_of_eps; i++) {
			if (hsotg->eps_in[i])
2395
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 1);
2396
			if (hsotg->eps_out[i])
2397
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 0);
2398
		}
2399 2400 2401 2402
	}

	/* ensure after enumeration our EP0 is active */

2403
	dwc2_hsotg_enqueue_setup(hsotg);
2404 2405

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2406 2407
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
2419
static void kill_all_requests(struct dwc2_hsotg *hsotg,
2420
			      struct dwc2_hsotg_ep *ep,
2421
			      int result)
2422
{
2423
	struct dwc2_hsotg_req *req, *treq;
2424
	unsigned size;
2425

2426
	ep->req = NULL;
2427

2428
	list_for_each_entry_safe(req, treq, &ep->queue, queue)
2429
		dwc2_hsotg_complete_request(hsotg, ep, req,
2430
					   result);
2431

2432 2433
	if (!hsotg->dedicated_fifos)
		return;
2434
	size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
2435
	if (size < ep->fifo_size)
2436
		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2437 2438 2439
}

/**
2440
 * dwc2_hsotg_disconnect - disconnect service
2441 2442
 * @hsotg: The device state.
 *
2443 2444 2445
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
2446
 */
2447
void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
2448 2449 2450
{
	unsigned ep;

2451 2452 2453 2454
	if (!hsotg->connected)
		return;

	hsotg->connected = 0;
2455
	hsotg->test_mode = 0;
2456 2457 2458 2459 2460 2461 2462 2463 2464

	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
			kill_all_requests(hsotg, hsotg->eps_in[ep],
								-ESHUTDOWN);
		if (hsotg->eps_out[ep])
			kill_all_requests(hsotg, hsotg->eps_out[ep],
								-ESHUTDOWN);
	}
2465 2466

	call_gadget(hsotg, disconnect);
2467
	hsotg->lx_state = DWC2_L3;
2468 2469 2470
}

/**
2471
 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2472 2473 2474
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
2475
static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
2476
{
2477
	struct dwc2_hsotg_ep *ep;
2478 2479 2480
	int epno, ret;

	/* look through for any more data to transmit */
2481
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2482 2483 2484 2485
		ep = index_to_ep(hsotg, epno, 1);

		if (!ep)
			continue;
2486 2487 2488 2489 2490 2491 2492 2493

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

2494
		ret = dwc2_hsotg_trytx(hsotg, ep);
2495 2496 2497 2498 2499 2500
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
2501 2502 2503
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
			GINTSTS_PTXFEMP |  \
			GINTSTS_RXFLVL)
2504

2505
/**
2506
 * dwc2_hsotg_core_init - issue softreset to the core
2507 2508 2509 2510
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
2511
void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
2512
						bool is_usb_reset)
2513
{
2514
	u32 intmsk;
2515
	u32 val;
2516
	u32 usbcfg;
2517

2518 2519 2520
	/* Kill any ep0 requests as controller will be reinitialized */
	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);

2521
	if (!is_usb_reset)
2522
		if (dwc2_core_reset(hsotg))
2523
			return;
2524 2525 2526 2527 2528 2529

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

2530 2531 2532 2533 2534
	/* keep other bits untouched (so e.g. forced modes are not lost) */
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
		GUSBCFG_HNPCAP);

2535
	/* set the PLL on, remove the HNP/SRP and set the PHY */
2536
	val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
2537 2538 2539
	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
		(val << GUSBCFG_USBTRDTIM_SHIFT);
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
2540

2541
	dwc2_hsotg_init_fifo(hsotg);
2542

2543 2544
	if (!is_usb_reset)
		__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2545

2546
	dwc2_writel(DCFG_EPMISCNT(1) | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2547 2548

	/* Clear any pending OTG interrupts */
2549
	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
2550 2551

	/* Clear any pending interrupts */
2552
	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
2553
	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
2554
		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
2555 2556
		GINTSTS_USBRST | GINTSTS_RESETDET |
		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
2557 2558
		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
		GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
2559

2560
	if (hsotg->params.external_id_pin_ctl <= 0)
2561 2562 2563
		intmsk |= GINTSTS_CONIDSTSCHNG;

	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
2564 2565

	if (using_dma(hsotg))
2566 2567 2568
		dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
			    (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
			    hsotg->regs + GAHBCFG);
2569
	else
2570 2571 2572 2573
		dwc2_writel(((hsotg->dedicated_fifos) ?
						(GAHBCFG_NP_TXF_EMP_LVL |
						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
			    GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
2574 2575

	/*
2576 2577 2578
	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
	 * when we have no data to transfer. Otherwise we get being flooded by
	 * interrupts.
2579 2580
	 */

2581
	dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
2582
		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
2583
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
2584
		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
2585
		hsotg->regs + DIEPMSK);
2586 2587 2588 2589 2590

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
	 * DMA mode we may need this.
	 */
2591
	dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK) : 0) |
2592
		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
2593
		DOEPMSK_SETUPMSK | DOEPMSK_STSPHSERCVDMSK,
2594
		hsotg->regs + DOEPMSK);
2595

2596
	dwc2_writel(0, hsotg->regs + DAINTMSK);
2597 2598

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2599 2600
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
2601 2602

	/* enable in and out endpoint interrupts */
2603
	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2604 2605 2606 2607 2608 2609 2610

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
2611
		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2612 2613

	/* Enable interrupts for EP0 in and out */
2614 2615
	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2616

2617 2618 2619 2620 2621
	if (!is_usb_reset) {
		__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
		udelay(10);  /* see openiboot */
		__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
	}
2622

2623
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
2624 2625

	/*
2626
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2627 2628 2629 2630
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
2631
	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2632
	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2633

2634
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2635 2636
	       DXEPCTL_CNAK | DXEPCTL_EPENA |
	       DXEPCTL_USBACTEP,
2637
	       hsotg->regs + DOEPCTL0);
2638 2639

	/* enable, but don't activate EP0in */
2640
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2641
	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2642

2643
	dwc2_hsotg_enqueue_setup(hsotg);
2644 2645

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2646 2647
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
2648 2649

	/* clear global NAKs */
2650 2651 2652 2653
	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
	if (!is_usb_reset)
		val |= DCTL_SFTDISCON;
	__orr32(hsotg->regs + DCTL, val);
2654 2655 2656 2657

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

2658
	hsotg->lx_state = DWC2_L0;
2659 2660
}

2661
static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
2662 2663 2664 2665
{
	/* set the soft-disconnect bit */
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
}
2666

2667
void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
2668
{
2669
	/* remove the soft-disconnect and let's go */
2670
	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2671 2672
}

2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
/**
 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
 * @hsotg: The device state:
 *
 * This interrupt indicates one of the following conditions occurred while
 * transmitting an ISOC transaction.
 * - Corrupted IN Token for ISOC EP.
 * - Packet not complete in FIFO.
 *
 * The following actions will be taken:
 * - Determine the EP
 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
 */
static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
{
	struct dwc2_hsotg_ep *hs_ep;
	u32 epctrl;
	u32 idx;

	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");

	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
		hs_ep = hsotg->eps_in[idx];
		epctrl = dwc2_readl(hsotg->regs + DIEPCTL(idx));
		if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
			epctrl |= DXEPCTL_SNAK;
			epctrl |= DXEPCTL_EPDIS;
			dwc2_writel(epctrl, hsotg->regs + DIEPCTL(idx));
		}
	}

	/* Clear interrupt */
	dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
}

/**
 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
 * @hsotg: The device state:
 *
 * This interrupt indicates one of the following conditions occurred while
 * transmitting an ISOC transaction.
 * - Corrupted OUT Token for ISOC EP.
 * - Packet not complete in FIFO.
 *
 * The following actions will be taken:
 * - Determine the EP
 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
 */
static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
{
	u32 gintsts;
	u32 gintmsk;
	u32 epctrl;
	struct dwc2_hsotg_ep *hs_ep;
	int idx;

	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);

	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
		hs_ep = hsotg->eps_out[idx];
		epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
		if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
			/* Unmask GOUTNAKEFF interrupt */
			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
			gintmsk |= GINTSTS_GOUTNAKEFF;
			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);

			gintsts = dwc2_readl(hsotg->regs + GINTSTS);
			if (!(gintsts & GINTSTS_GOUTNAKEFF))
				__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
		}
	}

	/* Clear interrupt */
	dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
}

2752
/**
2753
 * dwc2_hsotg_irq - handle device interrupt
2754 2755 2756
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
2757
static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
2758
{
2759
	struct dwc2_hsotg *hsotg = pw;
2760 2761 2762 2763
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

2764 2765 2766
	if (!dwc2_is_device_mode(hsotg))
		return IRQ_NONE;

2767
	spin_lock(&hsotg->lock);
2768
irq_retry:
2769 2770
	gintsts = dwc2_readl(hsotg->regs + GINTSTS);
	gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
2771 2772 2773 2774 2775 2776

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
	if (gintsts & GINTSTS_RESETDET) {
		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);

		dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);

		/* This event must be used only if controller is suspended */
		if (hsotg->lx_state == DWC2_L2) {
			dwc2_exit_hibernation(hsotg, true);
			hsotg->lx_state = DWC2_L0;
		}
	}

	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {

		u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
		u32 connected = hsotg->connected;

		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
			dwc2_readl(hsotg->regs + GNPTXSTS));

		dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);

		/* Report disconnection if it is not already done. */
		dwc2_hsotg_disconnect(hsotg);

		if (usb_status & GOTGCTL_BSESVLD && connected)
			dwc2_hsotg_core_init_disconnected(hsotg, true);
	}

2807
	if (gintsts & GINTSTS_ENUMDONE) {
2808
		dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2809

2810
		dwc2_hsotg_irq_enumdone(hsotg);
2811 2812
	}

2813
	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2814 2815
		u32 daint = dwc2_readl(hsotg->regs + DAINT);
		u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
2816
		u32 daint_out, daint_in;
2817 2818
		int ep;

2819
		daint &= daintmsk;
2820 2821
		daint_out = daint >> DAINT_OUTEP_SHIFT;
		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2822

2823 2824
		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

2825 2826
		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
						ep++, daint_out >>= 1) {
2827
			if (daint_out & 1)
2828
				dwc2_hsotg_epint(hsotg, ep, 0);
2829 2830
		}

2831 2832
		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
						ep++, daint_in >>= 1) {
2833
			if (daint_in & 1)
2834
				dwc2_hsotg_epint(hsotg, ep, 1);
2835 2836 2837 2838 2839
		}
	}

	/* check both FIFOs */

2840
	if (gintsts & GINTSTS_NPTXFEMP) {
2841 2842
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

2843 2844
		/*
		 * Disable the interrupt to stop it happening again
2845
		 * unless one of these endpoint routines decides that
2846 2847
		 * it needs re-enabling
		 */
2848

2849 2850
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, false);
2851 2852
	}

2853
	if (gintsts & GINTSTS_PTXFEMP) {
2854 2855
		dev_dbg(hsotg->dev, "PTxFEmp\n");

2856
		/* See note in GINTSTS_NPTxFEmp */
2857

2858 2859
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, true);
2860 2861
	}

2862
	if (gintsts & GINTSTS_RXFLVL) {
2863 2864
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2865
		 * we need to retry dwc2_hsotg_handle_rx if this is still
2866 2867
		 * set.
		 */
2868

2869
		dwc2_hsotg_handle_rx(hsotg);
2870 2871
	}

2872
	if (gintsts & GINTSTS_ERLYSUSP) {
2873
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2874
		dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2875 2876
	}

2877 2878
	/*
	 * these next two seem to crop-up occasionally causing the core
2879
	 * to shutdown the USB transfer, so try clearing them and logging
2880 2881
	 * the occurrence.
	 */
2882

2883
	if (gintsts & GINTSTS_GOUTNAKEFF) {
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904
		u8 idx;
		u32 epctrl;
		u32 gintmsk;
		struct dwc2_hsotg_ep *hs_ep;

		/* Mask this interrupt */
		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
		gintmsk &= ~GINTSTS_GOUTNAKEFF;
		dwc2_writel(gintmsk, hsotg->regs + GINTMSK);

		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
		for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
			hs_ep = hsotg->eps_out[idx];
			epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));

			if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
				epctrl |= DXEPCTL_SNAK;
				epctrl |= DXEPCTL_EPDIS;
				dwc2_writel(epctrl, hsotg->regs + DOEPCTL(idx));
			}
		}
2905

2906
		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
2907 2908
	}

2909
	if (gintsts & GINTSTS_GINNAKEFF) {
2910 2911
		dev_info(hsotg->dev, "GINNakEff triggered\n");

2912
		__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
2913

2914
		dwc2_hsotg_dump(hsotg);
2915 2916
	}

2917 2918
	if (gintsts & GINTSTS_INCOMPL_SOIN)
		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
2919

2920 2921
	if (gintsts & GINTSTS_INCOMPL_SOOUT)
		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
2922

2923 2924 2925 2926
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
2927 2928 2929 2930

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
			goto irq_retry;

2931 2932
	spin_unlock(&hsotg->lock);

2933 2934 2935 2936
	return IRQ_HANDLED;
}

/**
2937
 * dwc2_hsotg_ep_enable - enable the given endpoint
2938 2939 2940 2941
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
2942
 */
2943
static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
2944 2945
			       const struct usb_endpoint_descriptor *desc)
{
2946
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2947
	struct dwc2_hsotg *hsotg = hs_ep->parent;
2948
	unsigned long flags;
2949
	unsigned int index = hs_ep->index;
2950 2951 2952
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
2953
	u32 mask;
2954 2955
	unsigned int dir_in;
	unsigned int i, val, size;
2956
	int ret = 0;
2957 2958 2959 2960 2961 2962 2963

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
2964 2965 2966 2967
	if (index == 0) {
		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
		return -EINVAL;
	}
2968 2969 2970 2971 2972 2973 2974

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

2975
	mps = usb_endpoint_maxp(desc);
2976

2977
	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
2978

2979
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2980
	epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
2981 2982 2983 2984

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

2985
	spin_lock_irqsave(&hsotg->lock, flags);
2986

2987 2988
	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
	epctrl |= DXEPCTL_MPS(mps);
2989

2990 2991 2992 2993
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
2994
	epctrl |= DXEPCTL_USBACTEP;
2995 2996

	/* update the endpoint state */
2997
	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, dir_in);
2998 2999

	/* default, set to non-periodic */
3000
	hs_ep->isochronous = 0;
3001
	hs_ep->periodic = 0;
3002
	hs_ep->halted = 0;
3003
	hs_ep->interval = desc->bInterval;
3004

3005 3006
	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
3007 3008
		epctrl |= DXEPCTL_EPTYPE_ISO;
		epctrl |= DXEPCTL_SETEVENFR;
3009
		hs_ep->isochronous = 1;
3010
		hs_ep->interval = 1 << (desc->bInterval - 1);
3011 3012
		hs_ep->target_frame = TARGET_FRAME_INITIAL;
		if (dir_in) {
3013
			hs_ep->periodic = 1;
3014 3015 3016 3017 3018 3019 3020 3021
			mask = dwc2_readl(hsotg->regs + DIEPMSK);
			mask |= DIEPMSK_NAKMSK;
			dwc2_writel(mask, hsotg->regs + DIEPMSK);
		} else {
			mask = dwc2_readl(hsotg->regs + DOEPMSK);
			mask |= DOEPMSK_OUTTKNEPDISMSK;
			dwc2_writel(mask, hsotg->regs + DOEPMSK);
		}
3022
		break;
3023 3024

	case USB_ENDPOINT_XFER_BULK:
3025
		epctrl |= DXEPCTL_EPTYPE_BULK;
3026 3027 3028
		break;

	case USB_ENDPOINT_XFER_INT:
3029
		if (dir_in)
3030 3031
			hs_ep->periodic = 1;

3032 3033 3034
		if (hsotg->gadget.speed == USB_SPEED_HIGH)
			hs_ep->interval = 1 << (desc->bInterval - 1);

3035
		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
3036 3037 3038
		break;

	case USB_ENDPOINT_XFER_CONTROL:
3039
		epctrl |= DXEPCTL_EPTYPE_CONTROL;
3040 3041 3042
		break;
	}

3043 3044
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
3045 3046
	 * a unique tx-fifo even if it is non-periodic.
	 */
3047
	if (dir_in && hsotg->dedicated_fifos) {
3048 3049
		u32 fifo_index = 0;
		u32 fifo_size = UINT_MAX;
3050
		size = hs_ep->ep.maxpacket*hs_ep->mc;
3051
		for (i = 1; i < hsotg->num_of_eps; ++i) {
3052 3053
			if (hsotg->fifo_map & (1<<i))
				continue;
3054
			val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
3055 3056 3057
			val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
			if (val < size)
				continue;
3058 3059 3060 3061 3062
			/* Search for smallest acceptable fifo */
			if (val < fifo_size) {
				fifo_size = val;
				fifo_index = i;
			}
3063
		}
3064
		if (!fifo_index) {
3065 3066
			dev_err(hsotg->dev,
				"%s: No suitable fifo found\n", __func__);
3067 3068 3069
			ret = -ENOMEM;
			goto error;
		}
3070 3071 3072 3073
		hsotg->fifo_map |= 1 << fifo_index;
		epctrl |= DXEPCTL_TXFNUM(fifo_index);
		hs_ep->fifo_index = fifo_index;
		hs_ep->fifo_size = fifo_size;
3074
	}
3075

3076
	/* for non control endpoints, set PID to D0 */
3077
	if (index && !hs_ep->isochronous)
3078
		epctrl |= DXEPCTL_SETD0PID;
3079 3080 3081 3082

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

3083
	dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
3084
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
3085
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
3086 3087

	/* enable the endpoint interrupt */
3088
	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
3089

3090
error:
3091
	spin_unlock_irqrestore(&hsotg->lock, flags);
3092
	return ret;
3093 3094
}

3095
/**
3096
 * dwc2_hsotg_ep_disable - disable given endpoint
3097 3098
 * @ep: The endpoint to disable.
 */
3099
static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
3100
{
3101
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3102
	struct dwc2_hsotg *hsotg = hs_ep->parent;
3103 3104 3105 3106 3107 3108
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

3109
	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
3110

3111
	if (ep == &hsotg->eps_out[0]->ep) {
3112 3113 3114 3115
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

3116
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3117

3118
	spin_lock_irqsave(&hsotg->lock, flags);
3119

3120
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3121 3122 3123
	ctrl &= ~DXEPCTL_EPENA;
	ctrl &= ~DXEPCTL_USBACTEP;
	ctrl |= DXEPCTL_SNAK;
3124 3125

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
3126
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
3127 3128

	/* disable endpoint interrupts */
3129
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
3130

3131 3132 3133
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);

3134 3135 3136 3137
	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
	hs_ep->fifo_index = 0;
	hs_ep->fifo_size = 0;

3138
	spin_unlock_irqrestore(&hsotg->lock, flags);
3139 3140 3141 3142 3143 3144 3145
	return 0;
}

/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
3146
 */
3147
static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
3148
{
3149
	struct dwc2_hsotg_req *req, *treq;
3150 3151 3152 3153 3154 3155 3156 3157 3158

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193
static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg,
							u32 bit, u32 timeout)
{
	u32 i;

	for (i = 0; i < timeout; i++) {
		if (dwc2_readl(hs_otg->regs + reg) & bit)
			return 0;
		udelay(1);
	}

	return -ETIMEDOUT;
}

static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
						struct dwc2_hsotg_ep *hs_ep)
{
	u32 epctrl_reg;
	u32 epint_reg;

	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
		DOEPCTL(hs_ep->index);
	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
		DOEPINT(hs_ep->index);

	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
			hs_ep->name);
	if (hs_ep->dir_in) {
		__orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
		/* Wait for Nak effect */
		if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
						DXEPINT_INEPNAKEFF, 100))
			dev_warn(hsotg->dev,
				"%s: timeout DIEPINT.NAKEFF\n", __func__);
	} else {
3194 3195
		if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF))
			__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3196 3197 3198

		/* Wait for global nak to take effect */
		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3199
						GINTSTS_GOUTNAKEFF, 100))
3200
			dev_warn(hsotg->dev,
3201
				"%s: timeout GINTSTS.GOUTNAKEFF\n", __func__);
3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225
	}

	/* Disable ep */
	__orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);

	/* Wait for ep to be disabled */
	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
		dev_warn(hsotg->dev,
			"%s: timeout DOEPCTL.EPDisable\n", __func__);

	if (hs_ep->dir_in) {
		if (hsotg->dedicated_fifos) {
			dwc2_writel(GRSTCTL_TXFNUM(hs_ep->fifo_index) |
				GRSTCTL_TXFFLSH, hsotg->regs + GRSTCTL);
			/* Wait for fifo flush */
			if (dwc2_hsotg_wait_bit_set(hsotg, GRSTCTL,
							GRSTCTL_TXFFLSH, 100))
				dev_warn(hsotg->dev,
					"%s: timeout flushing fifos\n",
					__func__);
		}
		/* TODO: Flush shared tx fifo */
	} else {
		/* Remove global NAKs */
3226
		__bic32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3227 3228 3229
	}
}

3230
/**
3231
 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
3232 3233 3234
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
3235
static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
3236
{
3237 3238
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3239
	struct dwc2_hsotg *hs = hs_ep->parent;
3240 3241
	unsigned long flags;

3242
	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
3243

3244
	spin_lock_irqsave(&hs->lock, flags);
3245 3246

	if (!on_list(hs_ep, hs_req)) {
3247
		spin_unlock_irqrestore(&hs->lock, flags);
3248 3249 3250
		return -EINVAL;
	}

3251 3252 3253 3254
	/* Dequeue already started request */
	if (req == &hs_ep->req->req)
		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);

3255
	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
3256
	spin_unlock_irqrestore(&hs->lock, flags);
3257 3258 3259 3260

	return 0;
}

3261
/**
3262
 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
3263 3264
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
3265 3266 3267 3268 3269
 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
 *       the endpoint is busy processing requests.
 *
 * We need to stall the endpoint immediately if request comes from set_feature
 * protocol command handler.
3270
 */
3271
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
3272
{
3273
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3274
	struct dwc2_hsotg *hs = hs_ep->parent;
3275 3276 3277
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
3278
	u32 xfertype;
3279 3280 3281

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

3282 3283
	if (index == 0) {
		if (value)
3284
			dwc2_hsotg_stall_ep0(hs);
3285 3286 3287 3288 3289 3290
		else
			dev_warn(hs->dev,
				 "%s: can't clear halt on ep0\n", __func__);
		return 0;
	}

3291 3292 3293 3294 3295
	if (hs_ep->isochronous) {
		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
		return -EINVAL;
	}

3296 3297 3298 3299 3300 3301
	if (!now && value && !list_empty(&hs_ep->queue)) {
		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
			ep->name);
		return -EAGAIN;
	}

3302 3303
	if (hs_ep->dir_in) {
		epreg = DIEPCTL(index);
3304
		epctl = dwc2_readl(hs->regs + epreg);
3305 3306

		if (value) {
3307
			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
3308 3309 3310 3311 3312 3313 3314 3315 3316
			if (epctl & DXEPCTL_EPENA)
				epctl |= DXEPCTL_EPDIS;
		} else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
3317
		dwc2_writel(epctl, hs->regs + epreg);
3318
	} else {
3319

3320
		epreg = DOEPCTL(index);
3321
		epctl = dwc2_readl(hs->regs + epreg);
3322

3323 3324 3325 3326 3327 3328 3329 3330 3331
		if (value)
			epctl |= DXEPCTL_STALL;
		else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
3332
		dwc2_writel(epctl, hs->regs + epreg);
3333
	}
3334

3335 3336
	hs_ep->halted = value;

3337 3338 3339
	return 0;
}

3340
/**
3341
 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
3342 3343 3344
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
3345
static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
3346
{
3347
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3348
	struct dwc2_hsotg *hs = hs_ep->parent;
3349 3350 3351 3352
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
3353
	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
3354 3355 3356 3357 3358
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

3359 3360 3361 3362 3363 3364 3365 3366
static struct usb_ep_ops dwc2_hsotg_ep_ops = {
	.enable		= dwc2_hsotg_ep_enable,
	.disable	= dwc2_hsotg_ep_disable,
	.alloc_request	= dwc2_hsotg_ep_alloc_request,
	.free_request	= dwc2_hsotg_ep_free_request,
	.queue		= dwc2_hsotg_ep_queue_lock,
	.dequeue	= dwc2_hsotg_ep_dequeue,
	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
3367
	/* note, don't believe we have any call for the fifo routines */
3368 3369
};

3370
/**
3371
 * dwc2_hsotg_init - initalize the usb core
3372 3373
 * @hsotg: The driver state
 */
3374
static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
3375
{
3376
	u32 trdtim;
3377
	u32 usbcfg;
3378 3379
	/* unmask subset of endpoint interrupts */

3380 3381 3382
	dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DIEPMSK);
3383

3384 3385 3386
	dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DOEPMSK);
3387

3388
	dwc2_writel(0, hsotg->regs + DAINTMSK);
3389 3390

	/* Be in disconnected state until gadget is registered */
3391
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3392 3393 3394 3395

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3396 3397
		dwc2_readl(hsotg->regs + GRXFSIZ),
		dwc2_readl(hsotg->regs + GNPTXFSIZ));
3398

3399
	dwc2_hsotg_init_fifo(hsotg);
3400

3401 3402 3403 3404 3405
	/* keep other bits untouched (so e.g. forced modes are not lost) */
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
		GUSBCFG_HNPCAP);

3406
	/* set the PLL on, remove the HNP/SRP and set the PHY */
3407
	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3408 3409 3410
	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
		(trdtim << GUSBCFG_USBTRDTIM_SHIFT);
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3411

3412 3413
	if (using_dma(hsotg))
		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
3414 3415
}

3416
/**
3417
 * dwc2_hsotg_udc_start - prepare the udc for work
3418 3419 3420 3421 3422 3423
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
3424
static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
3425
			   struct usb_gadget_driver *driver)
3426
{
3427
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3428
	unsigned long flags;
3429 3430 3431
	int ret;

	if (!hsotg) {
3432
		pr_err("%s: called with no device\n", __func__);
3433 3434 3435 3436 3437 3438 3439 3440
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

3441
	if (driver->max_speed < USB_SPEED_FULL)
3442 3443
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

3444
	if (!driver->setup) {
3445 3446 3447 3448 3449 3450 3451 3452
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
3453
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
3454 3455
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

3456 3457 3458 3459
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
		ret = dwc2_lowlevel_hw_enable(hsotg);
		if (ret)
			goto err;
3460 3461
	}

3462 3463
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
3464

3465
	spin_lock_irqsave(&hsotg->lock, flags);
3466 3467 3468 3469 3470
	if (dwc2_hw_is_device(hsotg)) {
		dwc2_hsotg_init(hsotg);
		dwc2_hsotg_core_init_disconnected(hsotg, false);
	}

3471
	hsotg->enabled = 0;
3472 3473
	spin_unlock_irqrestore(&hsotg->lock, flags);

3474
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
3475

3476 3477 3478 3479 3480 3481 3482
	return 0;

err:
	hsotg->driver = NULL;
	return ret;
}

3483
/**
3484
 * dwc2_hsotg_udc_stop - stop the udc
3485 3486 3487 3488 3489
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
3490
static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
3491
{
3492
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3493
	unsigned long flags = 0;
3494 3495 3496 3497 3498 3499
	int ep;

	if (!hsotg)
		return -ENODEV;

	/* all endpoints should be shutdown */
3500 3501
	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
3502
			dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3503
		if (hsotg->eps_out[ep])
3504
			dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3505
	}
3506

3507 3508
	spin_lock_irqsave(&hsotg->lock, flags);

3509
	hsotg->driver = NULL;
3510
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3511
	hsotg->enabled = 0;
3512

3513 3514
	spin_unlock_irqrestore(&hsotg->lock, flags);

3515 3516
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, NULL);
3517

3518 3519
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		dwc2_lowlevel_hw_disable(hsotg);
3520 3521 3522 3523

	return 0;
}

3524
/**
3525
 * dwc2_hsotg_gadget_getframe - read the frame number
3526 3527 3528 3529
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
3530
static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
3531
{
3532
	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
3533 3534
}

3535
/**
3536
 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
3537 3538 3539 3540 3541
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
3542
static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
3543
{
3544
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3545 3546
	unsigned long flags = 0;

3547 3548 3549 3550 3551 3552 3553 3554
	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
			hsotg->op_state);

	/* Don't modify pullup state while in host mode */
	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
		hsotg->enabled = is_on;
		return 0;
	}
3555 3556 3557

	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
3558
		hsotg->enabled = 1;
3559 3560
		dwc2_hsotg_core_init_disconnected(hsotg, false);
		dwc2_hsotg_core_connect(hsotg);
3561
	} else {
3562 3563
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
3564
		hsotg->enabled = 0;
3565 3566 3567 3568 3569 3570 3571 3572
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return 0;
}

3573
static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
3574 3575 3576 3577 3578 3579 3580
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
	unsigned long flags;

	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
	spin_lock_irqsave(&hsotg->lock, flags);

3581 3582 3583 3584 3585 3586 3587
	/*
	 * If controller is hibernated, it must exit from hibernation
	 * before being initialized / de-initialized
	 */
	if (hsotg->lx_state == DWC2_L2)
		dwc2_exit_hibernation(hsotg, false);

3588
	if (is_active) {
3589
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3590

3591
		dwc2_hsotg_core_init_disconnected(hsotg, false);
3592
		if (hsotg->enabled)
3593
			dwc2_hsotg_core_connect(hsotg);
3594
	} else {
3595 3596
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
3597 3598 3599 3600 3601 3602
	}

	spin_unlock_irqrestore(&hsotg->lock, flags);
	return 0;
}

3603
/**
3604
 * dwc2_hsotg_vbus_draw - report bMaxPower field
3605 3606 3607 3608 3609
 * @gadget: The usb gadget state
 * @mA: Amount of current
 *
 * Report how much power the device may consume to the phy.
 */
3610
static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned mA)
3611 3612 3613 3614 3615 3616 3617 3618
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);

	if (IS_ERR_OR_NULL(hsotg->uphy))
		return -ENOTSUPP;
	return usb_phy_set_power(hsotg->uphy, mA);
}

3619 3620 3621 3622 3623 3624 3625
static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
	.get_frame	= dwc2_hsotg_gadget_getframe,
	.udc_start		= dwc2_hsotg_udc_start,
	.udc_stop		= dwc2_hsotg_udc_stop,
	.pullup                 = dwc2_hsotg_pullup,
	.vbus_session		= dwc2_hsotg_vbus_session,
	.vbus_draw		= dwc2_hsotg_vbus_draw,
3626 3627 3628
};

/**
3629
 * dwc2_hsotg_initep - initialise a single endpoint
3630 3631 3632 3633 3634 3635 3636 3637
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
3638 3639
static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
				       struct dwc2_hsotg_ep *hs_ep,
3640 3641
				       int epnum,
				       bool dir_in)
3642 3643 3644 3645 3646
{
	char *dir;

	if (epnum == 0)
		dir = "";
3647
	else if (dir_in)
3648
		dir = "in";
3649 3650
	else
		dir = "out";
3651

3652
	hs_ep->dir_in = dir_in;
3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665
	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
3666
	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3667
	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
3668

3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681
	if (epnum == 0) {
		hs_ep->ep.caps.type_control = true;
	} else {
		hs_ep->ep.caps.type_iso = true;
		hs_ep->ep.caps.type_bulk = true;
		hs_ep->ep.caps.type_int = true;
	}

	if (dir_in)
		hs_ep->ep.caps.dir_in = true;
	else
		hs_ep->ep.caps.dir_out = true;

3682 3683
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
3684 3685 3686 3687
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
3688
		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3689
		if (dir_in)
3690
			dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
3691
		else
3692
			dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
3693 3694 3695
	}
}

3696
/**
3697
 * dwc2_hsotg_hw_cfg - read HW configuration registers
3698 3699 3700 3701
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
3702
static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
3703
{
3704 3705 3706 3707
	u32 cfg;
	u32 ep_type;
	u32 i;

3708
	/* check hardware configuration */
3709

3710 3711
	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;

3712 3713
	/* Add ep0 */
	hsotg->num_of_eps++;
3714

3715
	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct dwc2_hsotg_ep),
3716 3717 3718
								GFP_KERNEL);
	if (!hsotg->eps_in[0])
		return -ENOMEM;
3719
	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
3720 3721
	hsotg->eps_out[0] = hsotg->eps_in[0];

3722
	cfg = hsotg->hw_params.dev_ep_dirs;
3723
	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
3724 3725 3726 3727
		ep_type = cfg & 3;
		/* Direction in or both */
		if (!(ep_type & 2)) {
			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
3728
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
3729 3730 3731 3732 3733 3734
			if (!hsotg->eps_in[i])
				return -ENOMEM;
		}
		/* Direction out or both */
		if (!(ep_type & 1)) {
			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
3735
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
3736 3737 3738 3739 3740
			if (!hsotg->eps_out[i])
				return -ENOMEM;
		}
	}

3741 3742
	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
3743

3744 3745 3746 3747
	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
		 hsotg->num_of_eps,
		 hsotg->dedicated_fifos ? "dedicated" : "shared",
		 hsotg->fifo_mem);
3748
	return 0;
3749 3750
}

3751
/**
3752
 * dwc2_hsotg_dump - dump state of the udc
3753 3754
 * @param: The device state
 */
3755
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
3756
{
M
Mark Brown 已提交
3757
#ifdef DEBUG
3758 3759 3760 3761 3762 3763
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3764 3765
		 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
		 dwc2_readl(regs + DIEPMSK));
3766

3767
	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
3768
		 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
3769 3770

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3771
		 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
3772 3773 3774

	/* show periodic fifo settings */

3775
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3776
		val = dwc2_readl(regs + DPTXFSIZN(idx));
3777
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3778 3779
			 val >> FIFOSIZE_DEPTH_SHIFT,
			 val & FIFOSIZE_STARTADDR_MASK);
3780 3781
	}

3782
	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
3783 3784
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3785 3786 3787
			 dwc2_readl(regs + DIEPCTL(idx)),
			 dwc2_readl(regs + DIEPTSIZ(idx)),
			 dwc2_readl(regs + DIEPDMA(idx)));
3788

3789
		val = dwc2_readl(regs + DOEPCTL(idx));
3790 3791
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3792 3793 3794
			 idx, dwc2_readl(regs + DOEPCTL(idx)),
			 dwc2_readl(regs + DOEPTSIZ(idx)),
			 dwc2_readl(regs + DOEPDMA(idx)));
3795 3796 3797 3798

	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3799
		 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
3800
#endif
3801 3802
}

3803
#ifdef CONFIG_OF
3804
static void dwc2_hsotg_of_probe(struct dwc2_hsotg *hsotg)
3805 3806
{
	struct device_node *np = hsotg->dev->of_node;
3807 3808
	u32 len = 0;
	u32 i = 0;
3809 3810 3811

	/* Enable dma if requested in device tree */
	hsotg->g_using_dma = of_property_read_bool(np, "g-use-dma");
3812

3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836
	/*
	* Register TX periodic fifo size per endpoint.
	* EP0 is excluded since it has no fifo configuration.
	*/
	if (!of_find_property(np, "g-tx-fifo-size", &len))
		goto rx_fifo;

	len /= sizeof(u32);

	/* Read tx fifo sizes other than ep0 */
	if (of_property_read_u32_array(np, "g-tx-fifo-size",
						&hsotg->g_tx_fifo_sz[1], len))
		goto rx_fifo;

	/* Add ep0 */
	len++;

	/* Make remaining TX fifos unavailable */
	if (len < MAX_EPS_CHANNELS) {
		for (i = len; i < MAX_EPS_CHANNELS; i++)
			hsotg->g_tx_fifo_sz[i] = 0;
	}

rx_fifo:
3837 3838 3839 3840 3841 3842
	/* Register RX fifo size */
	of_property_read_u32(np, "g-rx-fifo-size", &hsotg->g_rx_fifo_sz);

	/* Register NPTX fifo size */
	of_property_read_u32(np, "g-np-tx-fifo-size",
						&hsotg->g_np_g_tx_fifo_sz);
3843 3844
}
#else
3845
static inline void dwc2_hsotg_of_probe(struct dwc2_hsotg *hsotg) { }
3846 3847
#endif

3848
/**
3849 3850 3851
 * dwc2_gadget_init - init function for gadget
 * @dwc2: The data structure for the DWC2 driver.
 * @irq: The IRQ number for the controller.
3852
 */
3853
int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
3854
{
3855
	struct device *dev = hsotg->dev;
3856 3857
	int epnum;
	int ret;
3858 3859
	int i;
	u32 p_tx_fifo[] = DWC2_G_P_LEGACY_TX_FIFO_SIZE;
3860

3861 3862 3863
	/* Initialize to legacy fifo configuration values */
	hsotg->g_rx_fifo_sz = 2048;
	hsotg->g_np_g_tx_fifo_sz = 1024;
3864
	memcpy(&hsotg->g_tx_fifo_sz[1], p_tx_fifo, sizeof(p_tx_fifo));
3865
	/* Device tree specific probe */
3866
	dwc2_hsotg_of_probe(hsotg);
3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877

	/* Check against largest possible value. */
	if (hsotg->g_np_g_tx_fifo_sz >
	    hsotg->hw_params.dev_nperio_tx_fifo_size) {
		dev_warn(dev, "Specified GNPTXFDEP=%d > %d\n",
			 hsotg->g_np_g_tx_fifo_sz,
			 hsotg->hw_params.dev_nperio_tx_fifo_size);
		hsotg->g_np_g_tx_fifo_sz =
			hsotg->hw_params.dev_nperio_tx_fifo_size;
	}

3878 3879 3880 3881
	/* Dump fifo information */
	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
						hsotg->g_np_g_tx_fifo_sz);
	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->g_rx_fifo_sz);
3882 3883 3884
	for (i = 0; i < MAX_EPS_CHANNELS; i++)
		dev_dbg(dev, "Periodic TXFIFO%2d size: %d\n", i,
						hsotg->g_tx_fifo_sz[i]);
3885

3886
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3887
	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
3888
	hsotg->gadget.name = dev_name(dev);
3889 3890
	if (hsotg->dr_mode == USB_DR_MODE_OTG)
		hsotg->gadget.is_otg = 1;
3891 3892
	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3893

3894
	ret = dwc2_hsotg_hw_cfg(hsotg);
3895 3896
	if (ret) {
		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
3897
		return ret;
3898 3899
	}

3900 3901
	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
3902
	if (!hsotg->ctrl_buff)
3903
		return -ENOMEM;
3904 3905 3906

	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
3907
	if (!hsotg->ep0_buff)
3908
		return -ENOMEM;
3909

3910
	ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
3911
				dev_name(hsotg->dev), hsotg);
3912
	if (ret < 0) {
3913
		dev_err(dev, "cannot claim IRQ for gadget\n");
3914
		return ret;
3915 3916
	}

3917 3918 3919 3920
	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
3921
		return -EINVAL;
3922 3923 3924 3925 3926
	}

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3927
	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
3928 3929 3930

	/* allocate EP0 request */

3931
	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
3932 3933 3934
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
3935
		return -ENOMEM;
3936
	}
3937 3938

	/* initialise the endpoints now the core has been initialised */
3939 3940
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
		if (hsotg->eps_in[epnum])
3941
			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
3942 3943
								epnum, 1);
		if (hsotg->eps_out[epnum])
3944
			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
3945 3946
								epnum, 0);
	}
3947

3948
	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
3949
	if (ret)
3950
		return ret;
3951

3952
	dwc2_hsotg_dump(hsotg);
3953 3954 3955 3956

	return 0;
}

3957
/**
3958
 * dwc2_hsotg_remove - remove function for hsotg driver
3959 3960
 * @pdev: The platform information for the driver
 */
3961
int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
3962
{
3963
	usb_del_gadget_udc(&hsotg->gadget);
3964

3965 3966 3967
	return 0;
}

3968
int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
3969 3970 3971
{
	unsigned long flags;

3972
	if (hsotg->lx_state != DWC2_L0)
3973
		return 0;
3974

3975 3976 3977
	if (hsotg->driver) {
		int ep;

3978 3979 3980
		dev_info(hsotg->dev, "suspending usb gadget %s\n",
			 hsotg->driver->driver.name);

3981 3982
		spin_lock_irqsave(&hsotg->lock, flags);
		if (hsotg->enabled)
3983 3984
			dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
3985 3986
		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
		spin_unlock_irqrestore(&hsotg->lock, flags);
3987

3988 3989
		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
			if (hsotg->eps_in[ep])
3990
				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3991
			if (hsotg->eps_out[ep])
3992
				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3993
		}
3994 3995
	}

3996
	return 0;
3997 3998
}

3999
int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4000 4001 4002
{
	unsigned long flags;

4003
	if (hsotg->lx_state == DWC2_L2)
4004
		return 0;
4005

4006 4007 4008
	if (hsotg->driver) {
		dev_info(hsotg->dev, "resuming usb gadget %s\n",
			 hsotg->driver->driver.name);
4009

4010
		spin_lock_irqsave(&hsotg->lock, flags);
4011
		dwc2_hsotg_core_init_disconnected(hsotg, false);
4012
		if (hsotg->enabled)
4013
			dwc2_hsotg_core_connect(hsotg);
4014 4015
		spin_unlock_irqrestore(&hsotg->lock, flags);
	}
4016

4017
	return 0;
4018
}
4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120

/**
 * dwc2_backup_device_registers() - Backup controller device registers.
 * When suspending usb bus, registers needs to be backuped
 * if controller power is disabled once suspended.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Backup dev regs */
	dr = &hsotg->dr_backup;

	dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
	dr->dctl = dwc2_readl(hsotg->regs + DCTL);
	dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
	dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
	dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Backup IN EPs */
		dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));

		/* Ensure DATA PID is correctly configured */
		if (dr->diepctl[i] & DXEPCTL_DPID)
			dr->diepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->diepctl[i] |= DXEPCTL_SETD0PID;

		dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
		dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));

		/* Backup OUT EPs */
		dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));

		/* Ensure DATA PID is correctly configured */
		if (dr->doepctl[i] & DXEPCTL_DPID)
			dr->doepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->doepctl[i] |= DXEPCTL_SETD0PID;

		dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
		dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
	}
	dr->valid = true;
	return 0;
}

/**
 * dwc2_restore_device_registers() - Restore controller device registers.
 * When resuming usb bus, device registers needs to be restored
 * if controller power were disabled.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	u32 dctl;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Restore dev regs */
	dr = &hsotg->dr_backup;
	if (!dr->valid) {
		dev_err(hsotg->dev, "%s: no device registers to restore\n",
			__func__);
		return -EINVAL;
	}
	dr->valid = false;

	dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
	dwc2_writel(dr->dctl, hsotg->regs + DCTL);
	dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
	dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
	dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Restore IN EPs */
		dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
		dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
		dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));

		/* Restore OUT EPs */
		dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
		dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
	}

	/* Set the Power-On Programming done bit */
	dctl = dwc2_readl(hsotg->regs + DCTL);
	dctl |= DCTL_PWRONPRGDONE;
	dwc2_writel(dctl, hsotg->regs + DCTL);

	return 0;
}