gadget.c 124.7 KB
Newer Older
1
/**
2 3
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
4 5 6 7 8 9 10 11 12 13 14
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
15
 */
16 17 18 19 20 21 22

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
23
#include <linux/mutex.h>
24 25 26
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
27
#include <linux/slab.h>
28
#include <linux/of_platform.h>
29 30 31

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
32
#include <linux/usb/phy.h>
33

34
#include "core.h"
35
#include "hw.h"
36 37

/* conversion functions */
38
static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
39
{
40
	return container_of(req, struct dwc2_hsotg_req, req);
41 42
}

43
static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
44
{
45
	return container_of(ep, struct dwc2_hsotg_ep, ep);
46 47
}

48
static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
49
{
50
	return container_of(gadget, struct dwc2_hsotg, gadget);
51 52 53 54
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
55
	dwc2_writel(dwc2_readl(ptr) | val, ptr);
56 57 58 59
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
60
	dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
61 62
}

63
static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
64 65 66 67 68 69 70 71
						u32 ep_index, u32 dir_in)
{
	if (dir_in)
		return hsotg->eps_in[ep_index];
	else
		return hsotg->eps_out[ep_index];
}

72
/* forward declaration of functions */
73
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
92
 * g_using_dma is set depending on dts flag.
93
 */
94
static inline bool using_dma(struct dwc2_hsotg *hsotg)
95
{
96
	return hsotg->params.g_dma;
97 98
}

99 100 101 102 103 104 105 106 107 108 109
/*
 * using_desc_dma - return the descriptor DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using descriptor DMA.
 */
static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
{
	return hsotg->params.g_dma_desc;
}

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
/**
 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
 * @hs_ep: The endpoint
 * @increment: The value to increment by
 *
 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
 */
static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
{
	hs_ep->target_frame += hs_ep->interval;
	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
		hs_ep->frame_overrun = 1;
		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
	} else {
		hs_ep->frame_overrun = 0;
	}
}

129
/**
130
 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
131 132 133
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
134
static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
135
{
136
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
137 138 139 140 141 142
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
143
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
144 145 146 147
	}
}

/**
148
 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
149 150 151
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
152
static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
153
{
154
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
155 156 157 158 159
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
160
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
161 162 163
}

/**
164
 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
165 166 167 168 169 170 171 172
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
173
static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
174
				  unsigned int ep, unsigned int dir_in,
175 176 177 178 179 180 181 182 183 184
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
185
	daint = dwc2_readl(hsotg->regs + DAINTMSK);
186 187 188 189
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
190
	dwc2_writel(daint, hsotg->regs + DAINTMSK);
191 192 193 194
	local_irq_restore(flags);
}

/**
195
 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
196 197
 * @hsotg: The device instance.
 */
198
static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
199
{
200
	unsigned int ep;
201
	unsigned int addr;
202
	int timeout;
203
	u32 val;
204
	u32 *txfsz = hsotg->params.g_tx_fifo_size;
205

206 207 208 209
	/* Reset fifo map if not correctly cleared during previous session */
	WARN_ON(hsotg->fifo_map);
	hsotg->fifo_map = 0;

210
	/* set RX/NPTX FIFO sizes */
211 212 213 214
	dwc2_writel(hsotg->params.g_rx_fifo_size, hsotg->regs + GRXFSIZ);
	dwc2_writel((hsotg->params.g_rx_fifo_size << FIFOSIZE_STARTADDR_SHIFT) |
		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
		    hsotg->regs + GNPTXFSIZ);
215

216 217
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
218 219
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
220 221
	 * known values.
	 */
222 223

	/* start at the end of the GNPTXFSIZ, rounded up */
224
	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
225

226
	/*
227
	 * Configure fifos sizes from provided configuration and assign
228 229
	 * them to endpoints dynamically according to maxpacket size value of
	 * given endpoint.
230
	 */
231
	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
232
		if (!txfsz[ep])
233 234
			continue;
		val = addr;
235 236
		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
237
			  "insufficient fifo memory");
238
		addr += txfsz[ep];
239

240
		dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
241
		val = dwc2_readl(hsotg->regs + DPTXFSIZN(ep));
242
	}
243

244 245 246
	dwc2_writel(hsotg->hw_params.total_fifo_size |
		    addr << GDFIFOCFG_EPINFOBASE_SHIFT,
		    hsotg->regs + GDFIFOCFG);
247 248 249 250
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
251

252
	dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
253
	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
254 255 256 257

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
258
		val = dwc2_readl(hsotg->regs + GRSTCTL);
259

260
		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
261 262 263 264 265 266
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
267
			break;
268 269 270 271 272 273
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
274 275 276 277 278 279 280 281
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
282
static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
283
						       gfp_t flags)
284
{
285
	struct dwc2_hsotg_req *req;
286

J
John Youn 已提交
287
	req = kzalloc(sizeof(*req), flags);
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
303
static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
304 305 306 307 308
{
	return hs_ep->periodic;
}

/**
309
 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
310 311 312 313
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
314
 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
315
 * of a request to ensure the buffer is ready for access by the caller.
316
 */
317
static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
318
				 struct dwc2_hsotg_ep *hs_ep,
319
				struct dwc2_hsotg_req *hs_req)
320 321
{
	struct usb_request *req = &hs_req->req;
322

323
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
324 325
}

326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
/*
 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
 * for Control endpoint
 * @hsotg: The device state.
 *
 * This function will allocate 4 descriptor chains for EP 0: 2 for
 * Setup stage, per one for IN and OUT data/status transactions.
 */
static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
{
	hsotg->setup_desc[0] =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->setup_desc_dma[0],
				    GFP_KERNEL);
	if (!hsotg->setup_desc[0])
		goto fail;

	hsotg->setup_desc[1] =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->setup_desc_dma[1],
				    GFP_KERNEL);
	if (!hsotg->setup_desc[1])
		goto fail;

	hsotg->ctrl_in_desc =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->ctrl_in_desc_dma,
				    GFP_KERNEL);
	if (!hsotg->ctrl_in_desc)
		goto fail;

	hsotg->ctrl_out_desc =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->ctrl_out_desc_dma,
				    GFP_KERNEL);
	if (!hsotg->ctrl_out_desc)
		goto fail;

	return 0;

fail:
	return -ENOMEM;
}

374
/**
375
 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
376 377 378 379 380 381 382 383 384 385 386 387 388
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
389
 */
390
static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
391
				 struct dwc2_hsotg_ep *hs_ep,
392
				struct dwc2_hsotg_req *hs_req)
393 394
{
	bool periodic = is_ep_periodic(hs_ep);
395
	u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
396 397 398 399 400
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;
401
	int max_transfer;
402 403 404 405 406 407 408

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

409
	if (periodic && !hsotg->dedicated_fifos) {
410
		u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
411 412 413
		int size_left;
		int size_done;

414 415 416 417
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
418

419
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
420

421 422
		/*
		 * if shared fifo, we cannot write anything until the
423 424 425
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
426
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
427 428 429
			return -ENOSPC;
		}

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
447
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
448 449
			return -ENOSPC;
		}
450
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
451 452
		can_write = dwc2_readl(hsotg->regs +
				DTXFSTS(hs_ep->fifo_index));
453 454 455

		can_write &= 0xffff;
		can_write *= 4;
456
	} else {
457
		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
458 459 460 461
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

462
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
463 464 465
			return -ENOSPC;
		}

466
		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
467
		can_write *= 4;	/* fifo size is in 32bit quantities. */
468 469
	}

470 471 472
	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
473
		__func__, gnptxsts, can_write, to_write, max_transfer);
474

475 476
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
477 478 479
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
480
	if (can_write > 512 && !periodic)
481 482
		can_write = 512;

483 484
	/*
	 * limit the write to one max-packet size worth of data, but allow
485
	 * the transfer to return that it did not run out of fifo space
486 487
	 * doing it.
	 */
488 489
	if (to_write > max_transfer) {
		to_write = max_transfer;
490

491 492
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
493
			dwc2_hsotg_en_gsint(hsotg,
494
					    periodic ? GINTSTS_PTXFEMP :
495
					   GINTSTS_NPTXFEMP);
496 497
	}

498 499 500 501
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
502
		pkt_round = to_write % max_transfer;
503

504 505
		/*
		 * Round the write down to an
506 507 508 509 510 511 512 513 514
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

515 516 517 518
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
519

520 521
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
522
			dwc2_hsotg_en_gsint(hsotg,
523
					    periodic ? GINTSTS_PTXFEMP :
524
					   GINTSTS_NPTXFEMP);
525 526 527
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
528
		to_write, hs_req->req.length, can_write, buf_pos);
529 530 531 532 533 534 535 536 537 538 539 540 541

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

542
	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
543 544 545 546 547 548 549 550 551 552 553

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
554
static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
555 556
{
	int index = hs_ep->index;
557 558
	unsigned int maxsize;
	unsigned int maxpkt;
559 560

	if (index != 0) {
561 562
		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
563
	} else {
564
		maxsize = 64 + 64;
565
		if (hs_ep->dir_in)
566
			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
567
		else
568 569 570 571 572 573 574
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

575 576 577 578
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
579 580 581 582 583 584 585

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

586
/**
587 588 589 590 591
 * dwc2_hsotg_read_frameno - read current frame number
 * @hsotg: The device instance
 *
 * Return the current frame number
 */
592 593 594 595 596 597 598 599 600 601 602
static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
{
	u32 dsts;

	dsts = dwc2_readl(hsotg->regs + DSTS);
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;

	return dsts;
}

603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
/**
 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
 * DMA descriptor chain prepared for specific endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * depending on its descriptor chain capacity so that transfers that
 * are too long can be split.
 */
static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
{
	int is_isoc = hs_ep->isochronous;
	unsigned int maxsize;

	if (is_isoc)
		maxsize = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
					   DEV_DMA_ISOC_RX_NBYTES_LIMIT;
	else
		maxsize = DEV_DMA_NBYTES_LIMIT;

	/* Above size of one descriptor was chosen, multiple it */
	maxsize *= MAX_DMA_DESC_NUM_GENERIC;

	return maxsize;
}

629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
/*
 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
 * @hs_ep: The endpoint
 * @mask: RX/TX bytes mask to be defined
 *
 * Returns maximum data payload for one descriptor after analyzing endpoint
 * characteristics.
 * DMA descriptor transfer bytes limit depends on EP type:
 * Control out - MPS,
 * Isochronous - descriptor rx/tx bytes bitfield limit,
 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
 * have concatenations from various descriptors within one packet.
 *
 * Selects corresponding mask for RX/TX bytes as well.
 */
static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
{
	u32 mps = hs_ep->ep.maxpacket;
	int dir_in = hs_ep->dir_in;
	u32 desc_size = 0;

	if (!hs_ep->index && !dir_in) {
		desc_size = mps;
		*mask = DEV_DMA_NBYTES_MASK;
	} else if (hs_ep->isochronous) {
		if (dir_in) {
			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
		} else {
			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
		}
	} else {
		desc_size = DEV_DMA_NBYTES_LIMIT;
		*mask = DEV_DMA_NBYTES_MASK;

		/* Round down desc_size to be mps multiple */
		desc_size -= desc_size % mps;
	}

	return desc_size;
}

/*
 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
 * @hs_ep: The endpoint
 * @dma_buff: DMA address to use
 * @len: Length of the transfer
 *
 * This function will iterate over descriptor chain and fill its entries
 * with corresponding information based on transfer data.
 */
static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
						 dma_addr_t dma_buff,
						 unsigned int len)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	struct dwc2_dma_desc *desc = hs_ep->desc_list;
	u32 mps = hs_ep->ep.maxpacket;
	u32 maxsize = 0;
	u32 offset = 0;
	u32 mask = 0;
	int i;

	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);

	hs_ep->desc_count = (len / maxsize) +
				((len % maxsize) ? 1 : 0);
	if (len == 0)
		hs_ep->desc_count = 1;

	for (i = 0; i < hs_ep->desc_count; ++i) {
		desc->status = 0;
		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
				 << DEV_DMA_BUFF_STS_SHIFT);

		if (len > maxsize) {
			if (!hs_ep->index && !dir_in)
				desc->status |= (DEV_DMA_L | DEV_DMA_IOC);

			desc->status |= (maxsize <<
						DEV_DMA_NBYTES_SHIFT & mask);
			desc->buf = dma_buff + offset;

			len -= maxsize;
			offset += maxsize;
		} else {
			desc->status |= (DEV_DMA_L | DEV_DMA_IOC);

			if (dir_in)
				desc->status |= (len % mps) ? DEV_DMA_SHORT :
					((hs_ep->send_zlp) ? DEV_DMA_SHORT : 0);
			if (len > maxsize)
				dev_err(hsotg->dev, "wrong len %d\n", len);

			desc->status |=
				len << DEV_DMA_NBYTES_SHIFT & mask;
			desc->buf = dma_buff + offset;
		}

		desc->status &= ~DEV_DMA_BUFF_STS_MASK;
		desc->status |= (DEV_DMA_BUFF_STS_HREADY
				 << DEV_DMA_BUFF_STS_SHIFT);
		desc++;
	}
}

737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
/*
 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
 * @hs_ep: The isochronous endpoint.
 * @dma_buff: usb requests dma buffer.
 * @len: usb request transfer length.
 *
 * Finds out index of first free entry either in the bottom or up half of
 * descriptor chain depend on which is under SW control and not processed
 * by HW. Then fills that descriptor with the data of the arrived usb request,
 * frame info, sets Last and IOC bits increments next_desc. If filled
 * descriptor is not the first one, removes L bit from the previous descriptor
 * status.
 */
static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
				      dma_addr_t dma_buff, unsigned int len)
{
	struct dwc2_dma_desc *desc;
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	u32 index;
	u32 maxsize = 0;
	u32 mask = 0;

	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
	if (len > maxsize) {
		dev_err(hsotg->dev, "wrong len %d\n", len);
		return -EINVAL;
	}

	/*
	 * If SW has already filled half of chain, then return and wait for
	 * the other chain to be processed by HW.
	 */
	if (hs_ep->next_desc == MAX_DMA_DESC_NUM_GENERIC / 2)
		return -EBUSY;

	/* Increment frame number by interval for IN */
	if (hs_ep->dir_in)
		dwc2_gadget_incr_frame_num(hs_ep);

	index = (MAX_DMA_DESC_NUM_GENERIC / 2) * hs_ep->isoc_chain_num +
		 hs_ep->next_desc;

	/* Sanity check of calculated index */
	if ((hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC) ||
	    (!hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC / 2)) {
		dev_err(hsotg->dev, "wrong index %d for iso chain\n", index);
		return -EINVAL;
	}

	desc = &hs_ep->desc_list[index];

	/* Clear L bit of previous desc if more than one entries in the chain */
	if (hs_ep->next_desc)
		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;

	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);

	desc->status = 0;
	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);

	desc->buf = dma_buff;
	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));

	if (hs_ep->dir_in) {
		desc->status |= ((hs_ep->mc << DEV_DMA_ISOC_PID_SHIFT) &
				 DEV_DMA_ISOC_PID_MASK) |
				((len % hs_ep->ep.maxpacket) ?
				 DEV_DMA_SHORT : 0) |
				((hs_ep->target_frame <<
				  DEV_DMA_ISOC_FRNUM_SHIFT) &
				 DEV_DMA_ISOC_FRNUM_MASK);
	}

	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);

	/* Update index of last configured entry in the chain */
	hs_ep->next_desc++;

	return 0;
}

/*
 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
 * @hs_ep: The isochronous endpoint.
 *
 * Prepare first descriptor chain for isochronous endpoints. Afterwards
 * write DMA address to HW and enable the endpoint.
 *
 * Switch between descriptor chains via isoc_chain_num to give SW opportunity
 * to prepare second descriptor chain while first one is being processed by HW.
 */
static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	struct dwc2_hsotg_req *hs_req, *treq;
	int index = hs_ep->index;
	int ret;
	u32 dma_reg;
	u32 depctl;
	u32 ctrl;

	if (list_empty(&hs_ep->queue)) {
		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
		return;
	}

	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
		ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
						 hs_req->req.length);
		if (ret) {
			dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
			break;
		}
	}

	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);

	/* write descriptor chain address to control register */
	dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);

	ctrl = dwc2_readl(hsotg->regs + depctl);
	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
	dwc2_writel(ctrl, hsotg->regs + depctl);

	/* Switch ISOC descriptor chain number being processed by SW*/
	hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
	hs_ep->next_desc = 0;
}

870
/**
871
 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
872 873 874 875 876 877 878 879
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
880
static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
881
				 struct dwc2_hsotg_ep *hs_ep,
882
				struct dwc2_hsotg_req *hs_req,
883 884 885 886 887 888 889 890 891
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
892 893 894
	unsigned int length;
	unsigned int packets;
	unsigned int maxreq;
895
	unsigned int dma_reg;
896 897 898 899 900 901 902 903 904 905 906 907 908 909

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

910
	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
911 912
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
913 914

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
915
		__func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
916 917
		hs_ep->dir_in ? "in" : "out");

918
	/* If endpoint is stalled, we will restart request later */
919
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
920

921
	if (index && ctrl & DXEPCTL_STALL) {
922 923 924 925
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

926
	length = ureq->length - ureq->actual;
927 928
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
929

930 931 932 933 934
	if (!using_desc_dma(hsotg))
		maxreq = get_ep_limit(hs_ep);
	else
		maxreq = dwc2_gadget_get_chain_limit(hs_ep);

935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

953 954 955 956 957
	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
		return;
	}

958
	if (dir_in && index != 0)
959
		if (hs_ep->isochronous)
960
			epsize = DXEPTSIZ_MC(packets);
961
		else
962
			epsize = DXEPTSIZ_MC(1);
963 964 965
	else
		epsize = 0;

966 967 968 969 970 971 972
	/*
	 * zero length packet should be programmed on its own and should not
	 * be counted in DIEPTSIZ.PktCnt with other packets.
	 */
	if (dir_in && ureq->zero && !continuing) {
		/* Test if zlp is actually required. */
		if ((ureq->length >= hs_ep->ep.maxpacket) &&
973
		    !(ureq->length % hs_ep->ep.maxpacket))
974
			hs_ep->send_zlp = 1;
975 976
	}

977 978
	epsize |= DXEPTSIZ_PKTCNT(packets);
	epsize |= DXEPTSIZ_XFERSIZE(length);
979 980 981 982 983 984 985

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

986 987 988 989 990 991 992 993 994 995 996
	if (using_desc_dma(hsotg)) {
		u32 offset = 0;
		u32 mps = hs_ep->ep.maxpacket;

		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
		if (!dir_in) {
			if (!index)
				length = mps;
			else if (length % mps)
				length += (mps - (length % mps));
		}
997

998
		/*
999 1000 1001
		 * If more data to send, adjust DMA for EP0 out data stage.
		 * ureq->dma stays unchanged, hence increment it by already
		 * passed passed data count before starting new transaction.
1002
		 */
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
		if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
		    continuing)
			offset = ureq->actual;

		/* Fill DDMA chain entries */
		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
						     length);

		/* write descriptor chain address to control register */
		dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
1013

1014 1015 1016 1017 1018 1019
		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
	} else {
		/* write size / packets */
		dwc2_writel(epsize, hsotg->regs + epsize_reg);

1020
		if (using_dma(hsotg) && !continuing && (length != 0)) {
1021 1022 1023 1024
			/*
			 * write DMA address to control register, buffer
			 * already synced by dwc2_hsotg_ep_queue().
			 */
1025

1026 1027 1028 1029 1030
			dwc2_writel(ureq->dma, hsotg->regs + dma_reg);

			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
				__func__, &ureq->dma, dma_reg);
		}
1031 1032
	}

1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
	if (hs_ep->isochronous && hs_ep->interval == 1) {
		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
		dwc2_gadget_incr_frame_num(hs_ep);

		if (hs_ep->target_frame & 0x1)
			ctrl |= DXEPCTL_SETODDFR;
		else
			ctrl |= DXEPCTL_SETEVENFR;
	}

1043
	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
1044

1045
	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1046 1047

	/* For Setup request do not clear NAK */
1048
	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1049
		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1050

1051
	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1052
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
1053

1054 1055
	/*
	 * set these, it seems that DMA support increments past the end
1056
	 * of the packet buffer so we need to calculate the length from
1057 1058
	 * this information.
	 */
1059 1060 1061 1062 1063 1064 1065
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

1066
		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1067 1068
	}

1069 1070 1071 1072
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
1073 1074

	/* check ep is enabled */
1075
	if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
1076
		dev_dbg(hsotg->dev,
1077
			"ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1078
			 index, dwc2_readl(hsotg->regs + epctrl_reg));
1079

1080
	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1081
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
1082 1083

	/* enable ep interrupts */
1084
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1085 1086 1087
}

/**
1088
 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1089 1090 1091 1092 1093 1094 1095 1096 1097
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
1098
 */
1099
static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1100
			      struct dwc2_hsotg_ep *hs_ep,
1101 1102
			     struct usb_request *req)
{
1103
	int ret;
1104

1105 1106 1107
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

1118
static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1119 1120
						 struct dwc2_hsotg_ep *hs_ep,
						 struct dwc2_hsotg_req *hs_req)
1121 1122 1123 1124 1125 1126 1127 1128 1129 1130
{
	void *req_buf = hs_req->req.buf;

	/* If dma is not being used or buffer is aligned */
	if (!using_dma(hsotg) || !((long)req_buf & 3))
		return 0;

	WARN_ON(hs_req->saved_req_buf);

	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1131
		hs_ep->ep.name, req_buf, hs_req->req.length);
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149

	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
	if (!hs_req->req.buf) {
		hs_req->req.buf = req_buf;
		dev_err(hsotg->dev,
			"%s: unable to allocate memory for bounce buffer\n",
			__func__);
		return -ENOMEM;
	}

	/* Save actual buffer */
	hs_req->saved_req_buf = req_buf;

	if (hs_ep->dir_in)
		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
	return 0;
}

1150 1151 1152 1153
static void
dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
					 struct dwc2_hsotg_ep *hs_ep,
					 struct dwc2_hsotg_req *hs_req)
1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
{
	/* If dma is not being used or buffer was aligned */
	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
		return;

	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);

	/* Copy data from bounce buffer on successful out transfer */
	if (!hs_ep->dir_in && !hs_req->req.status)
		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1165
		       hs_req->req.actual);
1166 1167 1168 1169 1170 1171 1172 1173

	/* Free bounce buffer */
	kfree(hs_req->req.buf);

	hs_req->req.buf = hs_req->saved_req_buf;
	hs_req->saved_req_buf = NULL;
}

1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
/**
 * dwc2_gadget_target_frame_elapsed - Checks target frame
 * @hs_ep: The driver endpoint to check
 *
 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
 * corresponding transfer.
 */
static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	u32 target_frame = hs_ep->target_frame;
	u32 current_frame = dwc2_hsotg_read_frameno(hsotg);
	bool frame_overrun = hs_ep->frame_overrun;

	if (!frame_overrun && current_frame >= target_frame)
		return true;

	if (frame_overrun && current_frame >= target_frame &&
	    ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
		return true;

	return false;
}

1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232
/*
 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
 * @hsotg: The driver state
 * @hs_ep: the ep descriptor chain is for
 *
 * Called to update EP0 structure's pointers depend on stage of
 * control transfer.
 */
static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
					  struct dwc2_hsotg_ep *hs_ep)
{
	switch (hsotg->ep0_state) {
	case DWC2_EP0_SETUP:
	case DWC2_EP0_STATUS_OUT:
		hs_ep->desc_list = hsotg->setup_desc[0];
		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
		break;
	case DWC2_EP0_DATA_IN:
	case DWC2_EP0_STATUS_IN:
		hs_ep->desc_list = hsotg->ctrl_in_desc;
		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
		break;
	case DWC2_EP0_DATA_OUT:
		hs_ep->desc_list = hsotg->ctrl_out_desc;
		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
		break;
	default:
		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
			hsotg->ep0_state);
		return -EINVAL;
	}

	return 0;
}

1233
static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1234
			       gfp_t gfp_flags)
1235
{
1236 1237
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1238
	struct dwc2_hsotg *hs = hs_ep->parent;
1239
	bool first;
1240
	int ret;
1241 1242 1243 1244 1245

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

1246 1247 1248
	/* Prevent new request submission when controller is suspended */
	if (hs->lx_state == DWC2_L2) {
		dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
1249
			__func__);
1250 1251 1252
		return -EAGAIN;
	}

1253 1254 1255 1256 1257
	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

1258
	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1259 1260 1261
	if (ret)
		return ret;

1262 1263
	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
1264
		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1265 1266 1267
		if (ret)
			return ret;
	}
1268 1269 1270 1271 1272 1273
	/* If using descriptor DMA configure EP0 descriptor chain pointers */
	if (using_desc_dma(hs) && !hs_ep->index) {
		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
		if (ret)
			return ret;
	}
1274 1275 1276 1277

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293
	/*
	 * Handle DDMA isochronous transfers separately - just add new entry
	 * to the half of descriptor chain that is not processed by HW.
	 * Transfer will be started once SW gets either one of NAK or
	 * OutTknEpDis interrupts.
	 */
	if (using_desc_dma(hs) && hs_ep->isochronous &&
	    hs_ep->target_frame != TARGET_FRAME_INITIAL) {
		ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
						 hs_req->req.length);
		if (ret)
			dev_dbg(hs->dev, "%s: ISO desc chain full\n", __func__);

		return 0;
	}

1294 1295 1296 1297 1298 1299 1300 1301
	if (first) {
		if (!hs_ep->isochronous) {
			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
			return 0;
		}

		while (dwc2_gadget_target_frame_elapsed(hs_ep))
			dwc2_gadget_incr_frame_num(hs_ep);
1302

1303 1304 1305
		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
	}
1306 1307 1308
	return 0;
}

1309
static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1310
				    gfp_t gfp_flags)
1311
{
1312
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1313
	struct dwc2_hsotg *hs = hs_ep->parent;
1314 1315 1316 1317
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
1318
	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1319 1320 1321 1322 1323
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

1324
static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1325
				       struct usb_request *req)
1326
{
1327
	struct dwc2_hsotg_req *hs_req = our_req(req);
1328 1329 1330 1331 1332

	kfree(hs_req);
}

/**
1333
 * dwc2_hsotg_complete_oursetup - setup completion callback
1334 1335 1336 1337 1338 1339
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
1340
static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1341
					 struct usb_request *req)
1342
{
1343
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1344
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1345 1346 1347

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

1348
	dwc2_hsotg_ep_free_request(ep, req);
1349 1350 1351 1352 1353 1354 1355 1356 1357
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
1358
 */
1359
static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1360
					    u32 windex)
1361
{
1362
	struct dwc2_hsotg_ep *ep;
1363 1364 1365 1366 1367 1368
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

1369
	if (idx > hsotg->num_of_eps)
1370 1371
		return NULL;

1372 1373
	ep = index_to_ep(hsotg, idx, dir);

1374 1375 1376 1377 1378 1379
	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

1380
/**
1381
 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1382 1383 1384 1385
 * @hsotg: The driver state.
 * @testmode: requested usb test mode
 * Enable usb Test Mode requested by the Host.
 */
1386
int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1387
{
1388
	int dctl = dwc2_readl(hsotg->regs + DCTL);
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401

	dctl &= ~DCTL_TSTCTL_MASK;
	switch (testmode) {
	case TEST_J:
	case TEST_K:
	case TEST_SE0_NAK:
	case TEST_PACKET:
	case TEST_FORCE_EN:
		dctl |= testmode << DCTL_TSTCTL_SHIFT;
		break;
	default:
		return -EINVAL;
	}
1402
	dwc2_writel(dctl, hsotg->regs + DCTL);
1403 1404 1405
	return 0;
}

1406
/**
1407
 * dwc2_hsotg_send_reply - send reply to control request
1408 1409 1410 1411 1412 1413 1414 1415
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
1416
static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1417
				 struct dwc2_hsotg_ep *ep,
1418 1419 1420 1421 1422 1423 1424 1425
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

1426
	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1427 1428 1429 1430 1431 1432 1433 1434
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
1435 1436 1437 1438 1439
	/*
	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
	 * STATUS stage.
	 */
	req->zero = 0;
1440
	req->complete = dwc2_hsotg_complete_oursetup;
1441 1442 1443 1444

	if (length)
		memcpy(req->buf, buff, length);

1445
	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1446 1447 1448 1449 1450 1451 1452 1453 1454
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
1455
 * dwc2_hsotg_process_req_status - process request GET_STATUS
1456 1457 1458
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1459
static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1460
					 struct usb_ctrlrequest *ctrl)
1461
{
1462 1463
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_ep *ep;
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
1476 1477 1478 1479 1480
		/*
		 * bit 0 => self powered
		 * bit 1 => remote wakeup
		 */
		reply = cpu_to_le16(0);
1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

1503
	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1504 1505 1506 1507 1508 1509 1510 1511
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

1512
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1513

1514 1515 1516 1517 1518 1519
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
1520
static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1521
{
1522 1523
	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
					queue);
1524 1525
}

1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
/**
 * dwc2_gadget_start_next_request - Starts next request from ep queue
 * @hs_ep: Endpoint structure
 *
 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
 * in its handler. Hence we need to unmask it here to be able to do
 * resynchronization.
 */
static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
{
	u32 mask;
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	struct dwc2_hsotg_req *hs_req;
	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;

	if (!list_empty(&hs_ep->queue)) {
		hs_req = get_ep_head(hs_ep);
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		return;
	}
	if (!hs_ep->isochronous)
		return;

	if (dir_in) {
		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
			__func__);
	} else {
		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
			__func__);
		mask = dwc2_readl(hsotg->regs + epmsk_reg);
		mask |= DOEPMSK_OUTTKNEPDISMSK;
		dwc2_writel(mask, hsotg->regs + epmsk_reg);
	}
}

1562
/**
1563
 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1564 1565 1566
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1567
static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1568
					  struct usb_ctrlrequest *ctrl)
1569
{
1570 1571
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_req *hs_req;
1572
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1573
	struct dwc2_hsotg_ep *ep;
1574
	int ret;
1575
	bool halted;
1576 1577 1578
	u32 recip;
	u32 wValue;
	u32 wIndex;
1579 1580 1581 1582

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596
	wValue = le16_to_cpu(ctrl->wValue);
	wIndex = le16_to_cpu(ctrl->wIndex);
	recip = ctrl->bRequestType & USB_RECIP_MASK;

	switch (recip) {
	case USB_RECIP_DEVICE:
		switch (wValue) {
		case USB_DEVICE_TEST_MODE:
			if ((wIndex & 0xff) != 0)
				return -EINVAL;
			if (!set)
				return -EINVAL;

			hsotg->test_mode = wIndex >> 8;
1597
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
			break;
		default:
			return -ENOENT;
		}
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, wIndex);
1611 1612
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1613
				__func__, wIndex);
1614 1615 1616
			return -ENOENT;
		}

1617
		switch (wValue) {
1618
		case USB_ENDPOINT_HALT:
1619 1620
			halted = ep->halted;

1621
			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1622

1623
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1624 1625 1626 1627 1628
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
1629

1630 1631 1632 1633 1634 1635
			/*
			 * we have to complete all requests for ep if it was
			 * halted, and the halt was cleared by CLEAR_FEATURE
			 */

			if (!set && halted) {
1636 1637 1638 1639 1640 1641 1642 1643
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
1644 1645 1646 1647 1648 1649
					if (hs_req->req.complete) {
						spin_unlock(&hsotg->lock);
						usb_gadget_giveback_request(
							&ep->ep, &hs_req->req);
						spin_lock(&hsotg->lock);
					}
1650 1651 1652
				}

				/* If we have pending request, then start it */
J
John Youn 已提交
1653
				if (!ep->req)
1654
					dwc2_gadget_start_next_request(ep);
1655 1656
			}

1657 1658 1659 1660 1661
			break;

		default:
			return -ENOENT;
		}
1662 1663 1664 1665
		break;
	default:
		return -ENOENT;
	}
1666 1667 1668
	return 1;
}

1669
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1670

1671
/**
1672
 * dwc2_hsotg_stall_ep0 - stall ep0
1673 1674 1675 1676
 * @hsotg: The device state
 *
 * Set stall for ep0 as response for setup request.
 */
1677
static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1678
{
1679
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690
	u32 reg;
	u32 ctrl;

	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;

	/*
	 * DxEPCTL_Stall will be cleared by EP once it has
	 * taken effect, so no need to clear later.
	 */

1691
	ctrl = dwc2_readl(hsotg->regs + reg);
1692 1693
	ctrl |= DXEPCTL_STALL;
	ctrl |= DXEPCTL_CNAK;
1694
	dwc2_writel(ctrl, hsotg->regs + reg);
1695 1696

	dev_dbg(hsotg->dev,
1697
		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1698
		ctrl, reg, dwc2_readl(hsotg->regs + reg));
1699 1700 1701 1702 1703

	 /*
	  * complete won't be called, so we enqueue
	  * setup request here
	  */
1704
	 dwc2_hsotg_enqueue_setup(hsotg);
1705 1706
}

1707
/**
1708
 * dwc2_hsotg_process_control - process a control request
1709 1710 1711 1712 1713 1714 1715
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
1716
static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1717
				       struct usb_ctrlrequest *ctrl)
1718
{
1719
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1720 1721 1722
	int ret = 0;
	u32 dcfg;

1723 1724 1725 1726
	dev_dbg(hsotg->dev,
		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
		ctrl->wIndex, ctrl->wLength);
1727

1728 1729 1730 1731
	if (ctrl->wLength == 0) {
		ep0->dir_in = 1;
		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
	} else if (ctrl->bRequestType & USB_DIR_IN) {
1732
		ep0->dir_in = 1;
1733 1734 1735 1736 1737
		hsotg->ep0_state = DWC2_EP0_DATA_IN;
	} else {
		ep0->dir_in = 0;
		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
	}
1738 1739 1740 1741

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1742
			hsotg->connected = 1;
1743
			dcfg = dwc2_readl(hsotg->regs + DCFG);
1744
			dcfg &= ~DCFG_DEVADDR_MASK;
P
Paul Zimmerman 已提交
1745 1746
			dcfg |= (le16_to_cpu(ctrl->wValue) <<
				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1747
			dwc2_writel(dcfg, hsotg->regs + DCFG);
1748 1749 1750

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

1751
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1752 1753 1754
			return;

		case USB_REQ_GET_STATUS:
1755
			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1756 1757 1758 1759
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
1760
			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1761 1762 1763 1764 1765 1766 1767
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
1768
		spin_unlock(&hsotg->lock);
1769
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1770
		spin_lock(&hsotg->lock);
1771 1772 1773 1774
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1775 1776
	/*
	 * the request is either unhandlable, or is not formatted correctly
1777 1778 1779
	 * so respond with a STALL for the status stage to indicate failure.
	 */

1780
	if (ret < 0)
1781
		dwc2_hsotg_stall_ep0(hsotg);
1782 1783 1784
}

/**
1785
 * dwc2_hsotg_complete_setup - completion of a setup transfer
1786 1787 1788 1789 1790 1791
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
1792
static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1793
				      struct usb_request *req)
1794
{
1795
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1796
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1797 1798 1799 1800 1801 1802

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

1803
	spin_lock(&hsotg->lock);
1804
	if (req->actual == 0)
1805
		dwc2_hsotg_enqueue_setup(hsotg);
1806
	else
1807
		dwc2_hsotg_process_control(hsotg, req->buf);
1808
	spin_unlock(&hsotg->lock);
1809 1810 1811
}

/**
1812
 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1813 1814 1815 1816 1817
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
1818
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1819 1820
{
	struct usb_request *req = hsotg->ctrl_req;
1821
	struct dwc2_hsotg_req *hs_req = our_req(req);
1822 1823 1824 1825 1826 1827 1828
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
1829
	req->complete = dwc2_hsotg_complete_setup;
1830 1831 1832 1833 1834 1835

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

1836
	hsotg->eps_out[0]->dir_in = 0;
1837
	hsotg->eps_out[0]->send_zlp = 0;
1838
	hsotg->ep0_state = DWC2_EP0_SETUP;
1839

1840
	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1841 1842
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1843 1844 1845 1846
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1847 1848 1849
	}
}

1850
static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
1851
				   struct dwc2_hsotg_ep *hs_ep)
1852 1853 1854 1855 1856 1857
{
	u32 ctrl;
	u8 index = hs_ep->index;
	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);

1858 1859
	if (hs_ep->dir_in)
		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1860
			index);
1861 1862
	else
		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1863 1864 1865 1866
			index);
	if (using_desc_dma(hsotg)) {
		/* Not specific buffer needed for ep0 ZLP */
		dma_addr_t dma = hs_ep->desc_list_dma;
1867

1868 1869 1870 1871 1872 1873 1874
		dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
	} else {
		dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
			    DXEPTSIZ_XFERSIZE(0), hsotg->regs +
			    epsiz_reg);
	}
1875

1876
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1877 1878 1879
	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
1880
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1881 1882
}

1883
/**
1884
 * dwc2_hsotg_complete_request - complete a request given to us
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1895
 */
1896
static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1897
					struct dwc2_hsotg_ep *hs_ep,
1898
				       struct dwc2_hsotg_req *hs_req,
1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
				       int result)
{
	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1909 1910 1911 1912
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1913 1914 1915 1916

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

1917 1918 1919
	if (using_dma(hsotg))
		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1920
	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1921

1922 1923 1924
	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

1925 1926 1927 1928
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1929 1930

	if (hs_req->req.complete) {
1931
		spin_unlock(&hsotg->lock);
1932
		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1933
		spin_lock(&hsotg->lock);
1934 1935
	}

1936 1937 1938 1939
	/* In DDMA don't need to proceed to starting of next ISOC request */
	if (using_desc_dma(hsotg) && hs_ep->isochronous)
		return;

1940 1941
	/*
	 * Look to see if there is anything else to do. Note, the completion
1942
	 * of the previous request may have caused a new request to be started
1943 1944
	 * so be careful when doing this.
	 */
1945

J
John Youn 已提交
1946
	if (!hs_ep->req && result >= 0)
1947
		dwc2_gadget_start_next_request(hs_ep);
1948 1949
}

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
/*
 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
 * @hs_ep: The endpoint the request was on.
 *
 * Get first request from the ep queue, determine descriptor on which complete
 * happened. SW based on isoc_chain_num discovers which half of the descriptor
 * chain is currently in use by HW, adjusts dma_address and calculates index
 * of completed descriptor based on the value of DEPDMA register. Update actual
 * length of request, giveback to gadget.
 */
static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	struct dwc2_hsotg_req *hs_req;
	struct usb_request *ureq;
	int index;
	dma_addr_t dma_addr;
	u32 dma_reg;
	u32 depdma;
	u32 desc_sts;
	u32 mask;

	hs_req = get_ep_head(hs_ep);
	if (!hs_req) {
		dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
		return;
	}
	ureq = &hs_req->req;

	dma_addr = hs_ep->desc_list_dma;

	/*
	 * If lower half of  descriptor chain is currently use by SW,
	 * that means higher half is being processed by HW, so shift
	 * DMA address to higher half of descriptor chain.
	 */
	if (!hs_ep->isoc_chain_num)
		dma_addr += sizeof(struct dwc2_dma_desc) *
			    (MAX_DMA_DESC_NUM_GENERIC / 2);

	dma_reg = hs_ep->dir_in ? DIEPDMA(hs_ep->index) : DOEPDMA(hs_ep->index);
	depdma = dwc2_readl(hsotg->regs + dma_reg);

	index = (depdma - dma_addr) / sizeof(struct dwc2_dma_desc) - 1;
	desc_sts = hs_ep->desc_list[index].status;

	mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
	       DEV_DMA_ISOC_RX_NBYTES_MASK;
	ureq->actual = ureq->length -
		       ((desc_sts & mask) >> DEV_DMA_ISOC_NBYTES_SHIFT);

2001 2002 2003 2004
	/* Adjust actual length for ISOC Out if length is not align of 4 */
	if (!hs_ep->dir_in && ureq->length & 0x3)
		ureq->actual += 4 - (ureq->length & 0x3);

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
}

/*
 * dwc2_gadget_start_next_isoc_ddma - start next isoc request, if any.
 * @hs_ep: The isochronous endpoint to be re-enabled.
 *
 * If ep has been disabled due to last descriptor servicing (IN endpoint) or
 * BNA (OUT endpoint) check the status of other half of descriptor chain that
 * was under SW control till HW was busy and restart the endpoint if needed.
 */
static void dwc2_gadget_start_next_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	u32 depctl;
	u32 dma_reg;
	u32 ctrl;
	u32 dma_addr = hs_ep->desc_list_dma;
	unsigned char index = hs_ep->index;

	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);

	ctrl = dwc2_readl(hsotg->regs + depctl);

	/*
	 * EP was disabled if HW has processed last descriptor or BNA was set.
	 * So restart ep if SW has prepared new descriptor chain in ep_queue
	 * routine while HW was busy.
	 */
	if (!(ctrl & DXEPCTL_EPENA)) {
		if (!hs_ep->next_desc) {
			dev_dbg(hsotg->dev, "%s: No more ISOC requests\n",
				__func__);
			return;
		}

		dma_addr += sizeof(struct dwc2_dma_desc) *
			    (MAX_DMA_DESC_NUM_GENERIC / 2) *
			    hs_ep->isoc_chain_num;
		dwc2_writel(dma_addr, hsotg->regs + dma_reg);

		ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
		dwc2_writel(ctrl, hsotg->regs + depctl);

		/* Switch ISOC descriptor chain number being processed by SW*/
		hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
		hs_ep->next_desc = 0;

		dev_dbg(hsotg->dev, "%s: Restarted isochronous endpoint\n",
			__func__);
	}
}

2059
/**
2060
 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2061 2062 2063 2064 2065 2066 2067 2068
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
2069
static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2070
{
2071 2072
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2073
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
2074 2075 2076 2077 2078
	int to_read;
	int max_req;
	int read_ptr;

	if (!hs_req) {
2079
		u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
2080 2081
		int ptr;

2082
		dev_dbg(hsotg->dev,
2083
			"%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2084 2085 2086 2087
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
2088
			(void)dwc2_readl(fifo);
2089 2090 2091 2092 2093 2094 2095 2096

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

2097 2098 2099
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

2100
	if (to_read > max_req) {
2101 2102
		/*
		 * more data appeared than we where willing
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

2114 2115 2116 2117
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
2118
	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
2119 2120 2121
}

/**
2122
 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2123
 * @hsotg: The device instance
2124
 * @dir_in: If IN zlp
2125 2126 2127 2128 2129
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
2130
 * currently believed that we do not need to wait for any space in
2131 2132
 * the TxFIFO.
 */
2133
static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2134
{
2135
	/* eps_out[0] is used in both directions */
2136 2137
	hsotg->eps_out[0]->dir_in = dir_in;
	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2138

2139
	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2140 2141
}

2142
static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2143
					    u32 epctl_reg)
2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154
{
	u32 ctrl;

	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
	if (ctrl & DXEPCTL_EOFRNUM)
		ctrl |= DXEPCTL_SETEVENFR;
	else
		ctrl |= DXEPCTL_SETODDFR;
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
}

2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184
/*
 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
 * @hs_ep - The endpoint on which transfer went
 *
 * Iterate over endpoints descriptor chain and get info on bytes remained
 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
 */
static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	unsigned int bytes_rem = 0;
	struct dwc2_dma_desc *desc = hs_ep->desc_list;
	int i;
	u32 status;

	if (!desc)
		return -EINVAL;

	for (i = 0; i < hs_ep->desc_count; ++i) {
		status = desc->status;
		bytes_rem += status & DEV_DMA_NBYTES_MASK;

		if (status & DEV_DMA_STS_MASK)
			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
				i, status & DEV_DMA_STS_MASK);
	}

	return bytes_rem;
}

2185
/**
2186
 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2187 2188 2189 2190 2191 2192
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
2193
 */
2194
static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2195
{
2196
	u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
2197 2198
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2199
	struct usb_request *req = &hs_req->req;
2200
	unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2201 2202 2203 2204 2205 2206 2207
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

2208 2209
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
2210 2211
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
		dwc2_hsotg_enqueue_setup(hsotg);
2212 2213 2214
		return;
	}

2215 2216 2217
	if (using_desc_dma(hsotg))
		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);

2218
	if (using_dma(hsotg)) {
2219
		unsigned int size_done;
2220

2221 2222
		/*
		 * Calculate the size of the transfer by checking how much
2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

2236 2237
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
2238
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2239 2240 2241
		return;
	}

2242 2243 2244 2245
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

2246 2247 2248 2249
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
2250 2251
	}

2252 2253 2254
	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
	if (!using_desc_dma(hsotg) && epnum == 0 &&
	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2255
		/* Move to STATUS IN */
2256
		dwc2_hsotg_ep0_zlp(hsotg, true);
2257
		return;
2258 2259
	}

2260 2261 2262 2263 2264 2265 2266
	/*
	 * Slave mode OUT transfers do not go through XferComplete so
	 * adjust the ISOC parity here.
	 */
	if (!using_dma(hsotg)) {
		if (hs_ep->isochronous && hs_ep->interval == 1)
			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2267 2268
		else if (hs_ep->isochronous && hs_ep->interval > 1)
			dwc2_gadget_incr_frame_num(hs_ep);
2269 2270
	}

2271
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2272 2273 2274
}

/**
2275
 * dwc2_hsotg_handle_rx - RX FIFO has data
2276 2277 2278 2279 2280 2281
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
2282
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2283 2284 2285 2286 2287 2288 2289
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
2290
static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2291
{
2292
	u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
2293 2294 2295 2296
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

2297 2298
	epnum = grxstsr & GRXSTS_EPNUM_MASK;
	status = grxstsr & GRXSTS_PKTSTS_MASK;
2299

2300 2301
	size = grxstsr & GRXSTS_BYTECNT_MASK;
	size >>= GRXSTS_BYTECNT_SHIFT;
2302

2303
	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2304
		__func__, grxstsr, size, epnum);
2305

2306 2307 2308
	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
	case GRXSTS_PKTSTS_GLOBALOUTNAK:
		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2309 2310
		break;

2311
	case GRXSTS_PKTSTS_OUTDONE:
2312
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2313
			dwc2_hsotg_read_frameno(hsotg));
2314 2315

		if (!using_dma(hsotg))
2316
			dwc2_hsotg_handle_outdone(hsotg, epnum);
2317 2318
		break;

2319
	case GRXSTS_PKTSTS_SETUPDONE:
2320 2321
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2322
			dwc2_hsotg_read_frameno(hsotg),
2323
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2324
		/*
2325
		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2326 2327 2328 2329
		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
		 */
		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2330
			dwc2_hsotg_handle_outdone(hsotg, epnum);
2331 2332
		break;

2333
	case GRXSTS_PKTSTS_OUTRX:
2334
		dwc2_hsotg_rx_data(hsotg, epnum, size);
2335 2336
		break;

2337
	case GRXSTS_PKTSTS_SETUPRX:
2338 2339
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2340
			dwc2_hsotg_read_frameno(hsotg),
2341
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2342

2343 2344
		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);

2345
		dwc2_hsotg_rx_data(hsotg, epnum, size);
2346 2347 2348 2349 2350 2351
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

2352
		dwc2_hsotg_dump(hsotg);
2353 2354 2355 2356 2357
		break;
	}
}

/**
2358
 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2359
 * @mps: The maximum packet size in bytes.
2360
 */
2361
static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2362 2363 2364
{
	switch (mps) {
	case 64:
2365
		return D0EPCTL_MPS_64;
2366
	case 32:
2367
		return D0EPCTL_MPS_32;
2368
	case 16:
2369
		return D0EPCTL_MPS_16;
2370
	case 8:
2371
		return D0EPCTL_MPS_8;
2372 2373 2374 2375 2376 2377 2378 2379
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
2380
 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2381 2382 2383
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
2384
 * @mc: The multicount value
2385 2386 2387 2388
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
2389
static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2390 2391
					unsigned int ep, unsigned int mps,
					unsigned int mc, unsigned int dir_in)
2392
{
2393
	struct dwc2_hsotg_ep *hs_ep;
2394 2395 2396
	void __iomem *regs = hsotg->regs;
	u32 reg;

2397 2398 2399 2400
	hs_ep = index_to_ep(hsotg, ep, dir_in);
	if (!hs_ep)
		return;

2401
	if (ep == 0) {
2402 2403
		u32 mps_bytes = mps;

2404
		/* EP0 is a special case */
2405 2406
		mps = dwc2_hsotg_ep0_mps(mps_bytes);
		if (mps > 3)
2407
			goto bad_mps;
2408
		hs_ep->ep.maxpacket = mps_bytes;
2409
		hs_ep->mc = 1;
2410
	} else {
2411
		if (mps > 1024)
2412
			goto bad_mps;
2413 2414
		hs_ep->mc = mc;
		if (mc > 3)
2415
			goto bad_mps;
2416
		hs_ep->ep.maxpacket = mps;
2417 2418
	}

2419
	if (dir_in) {
2420
		reg = dwc2_readl(regs + DIEPCTL(ep));
2421
		reg &= ~DXEPCTL_MPS_MASK;
2422
		reg |= mps;
2423
		dwc2_writel(reg, regs + DIEPCTL(ep));
2424
	} else {
2425
		reg = dwc2_readl(regs + DOEPCTL(ep));
2426
		reg &= ~DXEPCTL_MPS_MASK;
2427
		reg |= mps;
2428
		dwc2_writel(reg, regs + DOEPCTL(ep));
2429
	}
2430 2431 2432 2433 2434 2435 2436

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

2437
/**
2438
 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2439 2440 2441
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
2442
static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2443 2444 2445 2446
{
	int timeout;
	int val;

2447 2448
	dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
		    hsotg->regs + GRSTCTL);
2449 2450 2451 2452 2453

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
2454
		val = dwc2_readl(hsotg->regs + GRSTCTL);
2455

2456
		if ((val & (GRSTCTL_TXFFLSH)) == 0)
2457 2458 2459 2460 2461 2462
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
2463
			break;
2464 2465 2466 2467 2468
		}

		udelay(1);
	}
}
2469 2470

/**
2471
 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2472 2473 2474 2475 2476 2477
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
2478
static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2479
			    struct dwc2_hsotg_ep *hs_ep)
2480
{
2481
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2482

2483 2484 2485 2486 2487 2488
	if (!hs_ep->dir_in || !hs_req) {
		/**
		 * if request is not enqueued, we disable interrupts
		 * for endpoints, excepting ep0
		 */
		if (hs_ep->index != 0)
2489
			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2490
					      hs_ep->dir_in, 0);
2491
		return 0;
2492
	}
2493 2494 2495 2496

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
2497
		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2498 2499 2500 2501 2502 2503
	}

	return 0;
}

/**
2504
 * dwc2_hsotg_complete_in - complete IN transfer
2505 2506 2507 2508 2509 2510
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
2511
static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2512
				   struct dwc2_hsotg_ep *hs_ep)
2513
{
2514
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2515
	u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
2516 2517 2518 2519 2520 2521 2522
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

2523
	/* Finish ZLP handling for IN EP0 transactions */
2524 2525
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
		dev_dbg(hsotg->dev, "zlp packet sent\n");
2526 2527 2528 2529 2530 2531 2532

		/*
		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
		 * changed to IN. Change back to complete OUT transfer request
		 */
		hs_ep->dir_in = 0;

2533
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2534 2535 2536
		if (hsotg->test_mode) {
			int ret;

2537
			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2538 2539
			if (ret < 0) {
				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2540
					hsotg->test_mode);
2541
				dwc2_hsotg_stall_ep0(hsotg);
2542 2543 2544
				return;
			}
		}
2545
		dwc2_hsotg_enqueue_setup(hsotg);
2546 2547 2548
		return;
	}

2549 2550
	/*
	 * Calculate the size of the transfer by checking how much is left
2551 2552 2553 2554 2555 2556 2557
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */
2558 2559 2560 2561 2562 2563 2564 2565
	if (using_desc_dma(hsotg)) {
		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
		if (size_left < 0)
			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
				size_left);
	} else {
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
	}
2566 2567 2568 2569 2570 2571 2572 2573 2574

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
2575 2576 2577
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

2578 2579
	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2580
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2581 2582 2583
		return;
	}

2584
	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
2585
	if (hs_ep->send_zlp) {
2586
		dwc2_hsotg_program_zlp(hsotg, hs_ep);
2587
		hs_ep->send_zlp = 0;
2588 2589 2590 2591
		/* transfer will be completed on next complete interrupt */
		return;
	}

2592 2593
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
		/* Move to STATUS OUT */
2594
		dwc2_hsotg_ep0_zlp(hsotg, false);
2595 2596 2597
		return;
	}

2598
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2599 2600
}

2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
/**
 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
 * @hsotg: The device state.
 * @idx: Index of ep.
 * @dir_in: Endpoint direction 1-in 0-out.
 *
 * Reads for endpoint with given index and direction, by masking
 * epint_reg with coresponding mask.
 */
static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
					  unsigned int idx, int dir_in)
{
	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 ints;
	u32 mask;
	u32 diepempmsk;

	mask = dwc2_readl(hsotg->regs + epmsk_reg);
	diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK);
	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
	mask |= DXEPINT_SETUP_RCVD;

	ints = dwc2_readl(hsotg->regs + epint_reg);
	ints &= mask;
	return ints;
}

2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696
/**
 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
 * @hs_ep: The endpoint on which interrupt is asserted.
 *
 * This interrupt indicates that the endpoint has been disabled per the
 * application's request.
 *
 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
 * in case of ISOC completes current request.
 *
 * For ISOC-OUT endpoints completes expired requests. If there is remaining
 * request starts it.
 */
static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	struct dwc2_hsotg_req *hs_req;
	unsigned char idx = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	int dctl = dwc2_readl(hsotg->regs + DCTL);

	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

	if (dir_in) {
		int epctl = dwc2_readl(hsotg->regs + epctl_reg);

		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);

		if (hs_ep->isochronous) {
			dwc2_hsotg_complete_in(hsotg, hs_ep);
			return;
		}

		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
			int dctl = dwc2_readl(hsotg->regs + DCTL);

			dctl |= DCTL_CGNPINNAK;
			dwc2_writel(dctl, hsotg->regs + DCTL);
		}
		return;
	}

	if (dctl & DCTL_GOUTNAKSTS) {
		dctl |= DCTL_CGOUTNAK;
		dwc2_writel(dctl, hsotg->regs + DCTL);
	}

	if (!hs_ep->isochronous)
		return;

	if (list_empty(&hs_ep->queue)) {
		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
			__func__, hs_ep);
		return;
	}

	do {
		hs_req = get_ep_head(hs_ep);
		if (hs_req)
			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
						    -ENODATA);
		dwc2_gadget_incr_frame_num(hs_ep);
	} while (dwc2_gadget_target_frame_elapsed(hs_ep));

	dwc2_gadget_start_next_request(hs_ep);
}

2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
/**
 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
 * @hs_ep: The endpoint on which interrupt is asserted.
 *
 * This is starting point for ISOC-OUT transfer, synchronization done with
 * first out token received from host while corresponding EP is disabled.
 *
 * Device does not know initial frame in which out token will come. For this
 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
 * getting this interrupt SW starts calculation for next transfer frame.
 */
static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
{
	struct dwc2_hsotg *hsotg = ep->parent;
	int dir_in = ep->dir_in;
	u32 doepmsk;
2713
	u32 tmp;
2714 2715 2716 2717

	if (dir_in || !ep->isochronous)
		return;

2718 2719 2720 2721 2722 2723
	/*
	 * Store frame in which irq was asserted here, as
	 * it can change while completing request below.
	 */
	tmp = dwc2_hsotg_read_frameno(hsotg);

2724 2725
	dwc2_hsotg_complete_request(hsotg, ep, get_ep_head(ep), -ENODATA);

2726 2727 2728 2729 2730 2731 2732 2733 2734
	if (using_desc_dma(hsotg)) {
		if (ep->target_frame == TARGET_FRAME_INITIAL) {
			/* Start first ISO Out */
			ep->target_frame = tmp;
			dwc2_gadget_start_isoc_ddma(ep);
		}
		return;
	}

2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759
	if (ep->interval > 1 &&
	    ep->target_frame == TARGET_FRAME_INITIAL) {
		u32 dsts;
		u32 ctrl;

		dsts = dwc2_readl(hsotg->regs + DSTS);
		ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
		dwc2_gadget_incr_frame_num(ep);

		ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index));
		if (ep->target_frame & 0x1)
			ctrl |= DXEPCTL_SETODDFR;
		else
			ctrl |= DXEPCTL_SETEVENFR;

		dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index));
	}

	dwc2_gadget_start_next_request(ep);
	doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
	doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
	dwc2_writel(doepmsk, hsotg->regs + DOEPMSK);
}

/**
2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
 * dwc2_gadget_handle_nak - handle NAK interrupt
 * @hs_ep: The endpoint on which interrupt is asserted.
 *
 * This is starting point for ISOC-IN transfer, synchronization done with
 * first IN token received from host while corresponding EP is disabled.
 *
 * Device does not know when first one token will arrive from host. On first
 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
 * sent in response to that as there was no data in FIFO. SW is basing on this
 * interrupt to obtain frame in which token has come and then based on the
 * interval calculates next frame for transfer.
 */
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;

	if (!dir_in || !hs_ep->isochronous)
		return;

	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2783 2784 2785 2786 2787 2788

		if (using_desc_dma(hsotg)) {
			dwc2_gadget_start_isoc_ddma(hs_ep);
			return;
		}

2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
		if (hs_ep->interval > 1) {
			u32 ctrl = dwc2_readl(hsotg->regs +
					      DIEPCTL(hs_ep->index));
			if (hs_ep->target_frame & 0x1)
				ctrl |= DXEPCTL_SETODDFR;
			else
				ctrl |= DXEPCTL_SETEVENFR;

			dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index));
		}

		dwc2_hsotg_complete_request(hsotg, hs_ep,
					    get_ep_head(hs_ep), 0);
	}

	dwc2_gadget_incr_frame_num(hs_ep);
}

2807
/**
2808
 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2809 2810 2811 2812 2813
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
2814
 */
2815
static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2816
			     int dir_in)
2817
{
2818
	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2819 2820 2821
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2822
	u32 ints;
2823
	u32 ctrl;
2824

2825
	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2826
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2827

2828
	/* Clear endpoint interrupts */
2829
	dwc2_writel(ints, hsotg->regs + epint_reg);
2830

2831 2832
	if (!hs_ep) {
		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
2833
			__func__, idx, dir_in ? "in" : "out");
2834 2835 2836
		return;
	}

2837 2838 2839
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

2840 2841 2842 2843
	/* Don't process XferCompl interrupt if it is a setup packet */
	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
		ints &= ~DXEPINT_XFERCOMPL;

2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
	/*
	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
	 * stage and xfercomplete was generated without SETUP phase done
	 * interrupt. SW should parse received setup packet only after host's
	 * exit from setup phase of control transfer.
	 */
	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
		ints &= ~DXEPINT_XFERCOMPL;

2854
	if (ints & DXEPINT_XFERCOMPL) {
2855
		dev_dbg(hsotg->dev,
2856
			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2857 2858
			__func__, dwc2_readl(hsotg->regs + epctl_reg),
			dwc2_readl(hsotg->regs + epsiz_reg));
2859

2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870
		/* In DDMA handle isochronous requests separately */
		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
			dwc2_gadget_complete_isoc_request_ddma(hs_ep);
			/* Try to start next isoc request */
			dwc2_gadget_start_next_isoc_ddma(hs_ep);
		} else if (dir_in) {
			/*
			 * We get OutDone from the FIFO, so we only
			 * need to look at completing IN requests here
			 * if operating slave mode
			 */
2871 2872 2873
			if (hs_ep->isochronous && hs_ep->interval > 1)
				dwc2_gadget_incr_frame_num(hs_ep);

2874
			dwc2_hsotg_complete_in(hsotg, hs_ep);
2875 2876
			if (ints & DXEPINT_NAKINTRPT)
				ints &= ~DXEPINT_NAKINTRPT;
2877

2878
			if (idx == 0 && !hs_ep->req)
2879
				dwc2_hsotg_enqueue_setup(hsotg);
2880
		} else if (using_dma(hsotg)) {
2881 2882 2883 2884
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
2885 2886
			if (hs_ep->isochronous && hs_ep->interval > 1)
				dwc2_gadget_incr_frame_num(hs_ep);
2887

2888
			dwc2_hsotg_handle_outdone(hsotg, idx);
2889 2890 2891
		}
	}

2892 2893
	if (ints & DXEPINT_EPDISBLD)
		dwc2_gadget_handle_ep_disabled(hs_ep);
2894

2895 2896 2897 2898 2899 2900
	if (ints & DXEPINT_OUTTKNEPDIS)
		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);

	if (ints & DXEPINT_NAKINTRPT)
		dwc2_gadget_handle_nak(hs_ep);

2901
	if (ints & DXEPINT_AHBERR)
2902 2903
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

2904
	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2905 2906 2907
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
2908 2909
			/*
			 * this is the notification we've received a
2910 2911
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
2912 2913
			 * the setup here.
			 */
2914 2915 2916 2917

			if (dir_in)
				WARN_ON_ONCE(1);
			else
2918
				dwc2_hsotg_handle_outdone(hsotg, 0);
2919 2920 2921
		}
	}

2922
	if (ints & DXEPINT_STSPHSERCVD) {
2923 2924
		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);

2925 2926 2927 2928 2929
		/* Move to STATUS IN for DDMA */
		if (using_desc_dma(hsotg))
			dwc2_hsotg_ep0_zlp(hsotg, true);
	}

2930
	if (ints & DXEPINT_BACK2BACKSETUP)
2931 2932
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945
	if (ints & DXEPINT_BNAINTR) {
		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);

		/*
		 * Try to start next isoc request, if any.
		 * Sometimes the endpoint remains enabled after BNA interrupt
		 * assertion, which is not expected, hence we can enter here
		 * couple of times.
		 */
		if (hs_ep->isochronous)
			dwc2_gadget_start_next_isoc_ddma(hs_ep);
	}

2946
	if (dir_in && !hs_ep->isochronous) {
2947
		/* not sure if this is important, but we'll clear it anyway */
2948
		if (ints & DXEPINT_INTKNTXFEMP) {
2949 2950 2951 2952 2953
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
2954
		if (ints & DXEPINT_INTKNEPMIS) {
2955 2956 2957
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
2958 2959 2960

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
2961
		    ints & DXEPINT_TXFEMP) {
2962 2963
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
2964
			if (!using_dma(hsotg))
2965
				dwc2_hsotg_trytx(hsotg, hs_ep);
2966
		}
2967 2968 2969 2970
	}
}

/**
2971
 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
2972 2973 2974 2975
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
2976
 */
2977
static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
2978
{
2979
	u32 dsts = dwc2_readl(hsotg->regs + DSTS);
2980
	int ep0_mps = 0, ep_mps = 8;
2981

2982 2983
	/*
	 * This should signal the finish of the enumeration phase
2984
	 * of the USB handshaking, so we should now know what rate
2985 2986
	 * we connected at.
	 */
2987 2988 2989

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

2990 2991
	/*
	 * note, since we're limited by the size of transfer on EP0, and
2992
	 * it seems IN transfers must be a even number of packets we do
2993 2994
	 * not advertise a 64byte MPS on EP0.
	 */
2995 2996

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
2997
	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
2998 2999
	case DSTS_ENUMSPD_FS:
	case DSTS_ENUMSPD_FS48:
3000 3001
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
3002
		ep_mps = 1023;
3003 3004
		break;

3005
	case DSTS_ENUMSPD_HS:
3006 3007
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
3008
		ep_mps = 1024;
3009 3010
		break;

3011
	case DSTS_ENUMSPD_LS:
3012
		hsotg->gadget.speed = USB_SPEED_LOW;
3013 3014
		ep0_mps = 8;
		ep_mps = 8;
3015 3016
		/*
		 * note, we don't actually support LS in this driver at the
3017 3018 3019 3020 3021
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
3022 3023
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
3024

3025 3026 3027 3028
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
3029 3030 3031

	if (ep0_mps) {
		int i;
3032
		/* Initialize ep0 for both in and out directions */
3033 3034
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3035 3036
		for (i = 1; i < hsotg->num_of_eps; i++) {
			if (hsotg->eps_in[i])
3037 3038
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
							    0, 1);
3039
			if (hsotg->eps_out[i])
3040 3041
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
							    0, 0);
3042
		}
3043 3044 3045 3046
	}

	/* ensure after enumeration our EP0 is active */

3047
	dwc2_hsotg_enqueue_setup(hsotg);
3048 3049

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3050 3051
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
3063
static void kill_all_requests(struct dwc2_hsotg *hsotg,
3064
			      struct dwc2_hsotg_ep *ep,
3065
			      int result)
3066
{
3067
	struct dwc2_hsotg_req *req, *treq;
3068
	unsigned int size;
3069

3070
	ep->req = NULL;
3071

3072
	list_for_each_entry_safe(req, treq, &ep->queue, queue)
3073
		dwc2_hsotg_complete_request(hsotg, ep, req,
3074
					    result);
3075

3076 3077
	if (!hsotg->dedicated_fifos)
		return;
3078
	size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3079
	if (size < ep->fifo_size)
3080
		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3081 3082 3083
}

/**
3084
 * dwc2_hsotg_disconnect - disconnect service
3085 3086
 * @hsotg: The device state.
 *
3087 3088 3089
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
3090
 */
3091
void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3092
{
3093
	unsigned int ep;
3094

3095 3096 3097 3098
	if (!hsotg->connected)
		return;

	hsotg->connected = 0;
3099
	hsotg->test_mode = 0;
3100 3101 3102 3103

	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
			kill_all_requests(hsotg, hsotg->eps_in[ep],
3104
					  -ESHUTDOWN);
3105 3106
		if (hsotg->eps_out[ep])
			kill_all_requests(hsotg, hsotg->eps_out[ep],
3107
					  -ESHUTDOWN);
3108
	}
3109 3110

	call_gadget(hsotg, disconnect);
3111
	hsotg->lx_state = DWC2_L3;
3112 3113 3114
}

/**
3115
 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3116 3117 3118
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
3119
static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3120
{
3121
	struct dwc2_hsotg_ep *ep;
3122 3123 3124
	int epno, ret;

	/* look through for any more data to transmit */
3125
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3126 3127 3128 3129
		ep = index_to_ep(hsotg, epno, 1);

		if (!ep)
			continue;
3130 3131 3132 3133 3134 3135 3136 3137

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

3138
		ret = dwc2_hsotg_trytx(hsotg, ep);
3139 3140 3141 3142 3143 3144
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
3145 3146 3147
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
			GINTSTS_PTXFEMP |  \
			GINTSTS_RXFLVL)
3148

3149
/**
3150
 * dwc2_hsotg_core_init - issue softreset to the core
3151 3152 3153 3154
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
3155
void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3156
				       bool is_usb_reset)
3157
{
3158
	u32 intmsk;
3159
	u32 val;
3160
	u32 usbcfg;
3161
	u32 dcfg = 0;
3162

3163 3164 3165
	/* Kill any ep0 requests as controller will be reinitialized */
	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);

3166
	if (!is_usb_reset)
3167
		if (dwc2_core_reset(hsotg))
3168
			return;
3169 3170 3171 3172 3173 3174

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

3175 3176 3177 3178 3179
	/* keep other bits untouched (so e.g. forced modes are not lost) */
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
		GUSBCFG_HNPCAP);

3180
	if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS &&
3181 3182
	    (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
	     hsotg->params.speed == DWC2_SPEED_PARAM_LOW)) {
3183 3184 3185 3186 3187 3188 3189 3190
		/* FS/LS Dedicated Transceiver Interface */
		usbcfg |= GUSBCFG_PHYSEL;
	} else {
		/* set the PLL on, remove the HNP/SRP and set the PHY */
		val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
		usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
			(val << GUSBCFG_USBTRDTIM_SHIFT);
	}
3191
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3192

3193
	dwc2_hsotg_init_fifo(hsotg);
3194

3195 3196
	if (!is_usb_reset)
		__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3197

3198
	dcfg |= DCFG_EPMISCNT(1);
3199 3200 3201 3202 3203 3204

	switch (hsotg->params.speed) {
	case DWC2_SPEED_PARAM_LOW:
		dcfg |= DCFG_DEVSPD_LS;
		break;
	case DWC2_SPEED_PARAM_FULL:
3205 3206 3207 3208
		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
			dcfg |= DCFG_DEVSPD_FS48;
		else
			dcfg |= DCFG_DEVSPD_FS;
3209 3210
		break;
	default:
3211 3212
		dcfg |= DCFG_DEVSPD_HS;
	}
3213

3214
	dwc2_writel(dcfg,  hsotg->regs + DCFG);
3215 3216

	/* Clear any pending OTG interrupts */
3217
	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
3218 3219

	/* Clear any pending interrupts */
3220
	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
3221
	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3222
		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3223 3224
		GINTSTS_USBRST | GINTSTS_RESETDET |
		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3225 3226 3227 3228
		GINTSTS_USBSUSP | GINTSTS_WKUPINT;

	if (!using_desc_dma(hsotg))
		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3229

J
John Youn 已提交
3230
	if (!hsotg->params.external_id_pin_ctl)
3231 3232 3233
		intmsk |= GINTSTS_CONIDSTSCHNG;

	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
3234

3235
	if (using_dma(hsotg)) {
3236 3237 3238
		dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
			    (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
			    hsotg->regs + GAHBCFG);
3239 3240 3241 3242 3243 3244

		/* Set DDMA mode support in the core if needed */
		if (using_desc_dma(hsotg))
			__orr32(hsotg->regs + DCFG, DCFG_DESCDMA_EN);

	} else {
3245 3246 3247 3248
		dwc2_writel(((hsotg->dedicated_fifos) ?
						(GAHBCFG_NP_TXF_EMP_LVL |
						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
			    GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
3249
	}
3250 3251

	/*
3252 3253 3254
	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
	 * when we have no data to transfer. Otherwise we get being flooded by
	 * interrupts.
3255 3256
	 */

3257
	dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3258
		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3259
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3260
		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3261
		hsotg->regs + DIEPMSK);
3262 3263 3264

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3265
	 * DMA mode we may need this and StsPhseRcvd.
3266
	 */
3267 3268
	dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
		DOEPMSK_STSPHSERCVDMSK) : 0) |
3269
		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3270
		DOEPMSK_SETUPMSK,
3271
		hsotg->regs + DOEPMSK);
3272

3273 3274 3275 3276
	/* Enable BNA interrupt for DDMA */
	if (using_desc_dma(hsotg))
		__orr32(hsotg->regs + DOEPMSK, DOEPMSK_BNAMSK);

3277
	dwc2_writel(0, hsotg->regs + DAINTMSK);
3278 3279

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3280 3281
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
3282 3283

	/* enable in and out endpoint interrupts */
3284
	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3285 3286 3287 3288 3289 3290 3291

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
3292
		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3293 3294

	/* Enable interrupts for EP0 in and out */
3295 3296
	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3297

3298 3299 3300 3301 3302
	if (!is_usb_reset) {
		__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
		udelay(10);  /* see openiboot */
		__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
	}
3303

3304
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
3305 3306

	/*
3307
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3308 3309 3310 3311
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
3312
	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3313
	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
3314

3315
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3316 3317
	       DXEPCTL_CNAK | DXEPCTL_EPENA |
	       DXEPCTL_USBACTEP,
3318
	       hsotg->regs + DOEPCTL0);
3319 3320

	/* enable, but don't activate EP0in */
3321
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3322
	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
3323

3324
	dwc2_hsotg_enqueue_setup(hsotg);
3325 3326

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3327 3328
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
3329 3330

	/* clear global NAKs */
3331 3332 3333 3334
	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
	if (!is_usb_reset)
		val |= DCTL_SFTDISCON;
	__orr32(hsotg->regs + DCTL, val);
3335 3336 3337 3338

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

3339
	hsotg->lx_state = DWC2_L0;
3340 3341
}

3342
static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3343 3344 3345 3346
{
	/* set the soft-disconnect bit */
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
}
3347

3348
void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3349
{
3350
	/* remove the soft-disconnect and let's go */
3351
	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3352 3353
}

3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432
/**
 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
 * @hsotg: The device state:
 *
 * This interrupt indicates one of the following conditions occurred while
 * transmitting an ISOC transaction.
 * - Corrupted IN Token for ISOC EP.
 * - Packet not complete in FIFO.
 *
 * The following actions will be taken:
 * - Determine the EP
 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
 */
static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
{
	struct dwc2_hsotg_ep *hs_ep;
	u32 epctrl;
	u32 idx;

	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");

	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
		hs_ep = hsotg->eps_in[idx];
		epctrl = dwc2_readl(hsotg->regs + DIEPCTL(idx));
		if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
			epctrl |= DXEPCTL_SNAK;
			epctrl |= DXEPCTL_EPDIS;
			dwc2_writel(epctrl, hsotg->regs + DIEPCTL(idx));
		}
	}

	/* Clear interrupt */
	dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
}

/**
 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
 * @hsotg: The device state:
 *
 * This interrupt indicates one of the following conditions occurred while
 * transmitting an ISOC transaction.
 * - Corrupted OUT Token for ISOC EP.
 * - Packet not complete in FIFO.
 *
 * The following actions will be taken:
 * - Determine the EP
 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
 */
static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
{
	u32 gintsts;
	u32 gintmsk;
	u32 epctrl;
	struct dwc2_hsotg_ep *hs_ep;
	int idx;

	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);

	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
		hs_ep = hsotg->eps_out[idx];
		epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
		if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
			/* Unmask GOUTNAKEFF interrupt */
			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
			gintmsk |= GINTSTS_GOUTNAKEFF;
			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);

			gintsts = dwc2_readl(hsotg->regs + GINTSTS);
			if (!(gintsts & GINTSTS_GOUTNAKEFF))
				__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
		}
	}

	/* Clear interrupt */
	dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
}

3433
/**
3434
 * dwc2_hsotg_irq - handle device interrupt
3435 3436 3437
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
3438
static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3439
{
3440
	struct dwc2_hsotg *hsotg = pw;
3441 3442 3443 3444
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

3445 3446 3447
	if (!dwc2_is_device_mode(hsotg))
		return IRQ_NONE;

3448
	spin_lock(&hsotg->lock);
3449
irq_retry:
3450 3451
	gintsts = dwc2_readl(hsotg->regs + GINTSTS);
	gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3452 3453 3454 3455 3456 3457

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
	if (gintsts & GINTSTS_RESETDET) {
		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);

		dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);

		/* This event must be used only if controller is suspended */
		if (hsotg->lx_state == DWC2_L2) {
			dwc2_exit_hibernation(hsotg, true);
			hsotg->lx_state = DWC2_L0;
		}
	}

	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
		u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
		u32 connected = hsotg->connected;

		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
			dwc2_readl(hsotg->regs + GNPTXSTS));

		dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);

		/* Report disconnection if it is not already done. */
		dwc2_hsotg_disconnect(hsotg);

		if (usb_status & GOTGCTL_BSESVLD && connected)
			dwc2_hsotg_core_init_disconnected(hsotg, true);
	}

3487
	if (gintsts & GINTSTS_ENUMDONE) {
3488
		dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
3489

3490
		dwc2_hsotg_irq_enumdone(hsotg);
3491 3492
	}

3493
	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3494 3495
		u32 daint = dwc2_readl(hsotg->regs + DAINT);
		u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3496
		u32 daint_out, daint_in;
3497 3498
		int ep;

3499
		daint &= daintmsk;
3500 3501
		daint_out = daint >> DAINT_OUTEP_SHIFT;
		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3502

3503 3504
		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

3505 3506
		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
						ep++, daint_out >>= 1) {
3507
			if (daint_out & 1)
3508
				dwc2_hsotg_epint(hsotg, ep, 0);
3509 3510
		}

3511 3512
		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
						ep++, daint_in >>= 1) {
3513
			if (daint_in & 1)
3514
				dwc2_hsotg_epint(hsotg, ep, 1);
3515 3516 3517 3518 3519
		}
	}

	/* check both FIFOs */

3520
	if (gintsts & GINTSTS_NPTXFEMP) {
3521 3522
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

3523 3524
		/*
		 * Disable the interrupt to stop it happening again
3525
		 * unless one of these endpoint routines decides that
3526 3527
		 * it needs re-enabling
		 */
3528

3529 3530
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, false);
3531 3532
	}

3533
	if (gintsts & GINTSTS_PTXFEMP) {
3534 3535
		dev_dbg(hsotg->dev, "PTxFEmp\n");

3536
		/* See note in GINTSTS_NPTxFEmp */
3537

3538 3539
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, true);
3540 3541
	}

3542
	if (gintsts & GINTSTS_RXFLVL) {
3543 3544
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3545
		 * we need to retry dwc2_hsotg_handle_rx if this is still
3546 3547
		 * set.
		 */
3548

3549
		dwc2_hsotg_handle_rx(hsotg);
3550 3551
	}

3552
	if (gintsts & GINTSTS_ERLYSUSP) {
3553
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3554
		dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
3555 3556
	}

3557 3558
	/*
	 * these next two seem to crop-up occasionally causing the core
3559
	 * to shutdown the USB transfer, so try clearing them and logging
3560 3561
	 * the occurrence.
	 */
3562

3563
	if (gintsts & GINTSTS_GOUTNAKEFF) {
3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584
		u8 idx;
		u32 epctrl;
		u32 gintmsk;
		struct dwc2_hsotg_ep *hs_ep;

		/* Mask this interrupt */
		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
		gintmsk &= ~GINTSTS_GOUTNAKEFF;
		dwc2_writel(gintmsk, hsotg->regs + GINTMSK);

		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
		for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
			hs_ep = hsotg->eps_out[idx];
			epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));

			if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
				epctrl |= DXEPCTL_SNAK;
				epctrl |= DXEPCTL_EPDIS;
				dwc2_writel(epctrl, hsotg->regs + DOEPCTL(idx));
			}
		}
3585

3586
		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3587 3588
	}

3589
	if (gintsts & GINTSTS_GINNAKEFF) {
3590 3591
		dev_info(hsotg->dev, "GINNakEff triggered\n");

3592
		__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3593

3594
		dwc2_hsotg_dump(hsotg);
3595 3596
	}

3597 3598
	if (gintsts & GINTSTS_INCOMPL_SOIN)
		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3599

3600 3601
	if (gintsts & GINTSTS_INCOMPL_SOOUT)
		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3602

3603 3604 3605 3606
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
3607 3608

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3609
		goto irq_retry;
3610

3611 3612
	spin_unlock(&hsotg->lock);

3613 3614 3615
	return IRQ_HANDLED;
}

3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704
static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg,
				   u32 bit, u32 timeout)
{
	u32 i;

	for (i = 0; i < timeout; i++) {
		if (dwc2_readl(hs_otg->regs + reg) & bit)
			return 0;
		udelay(1);
	}

	return -ETIMEDOUT;
}

static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
				   struct dwc2_hsotg_ep *hs_ep)
{
	u32 epctrl_reg;
	u32 epint_reg;

	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
		DOEPCTL(hs_ep->index);
	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
		DOEPINT(hs_ep->index);

	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
		hs_ep->name);

	if (hs_ep->dir_in) {
		if (hsotg->dedicated_fifos || hs_ep->periodic) {
			__orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
			/* Wait for Nak effect */
			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
						    DXEPINT_INEPNAKEFF, 100))
				dev_warn(hsotg->dev,
					 "%s: timeout DIEPINT.NAKEFF\n",
					 __func__);
		} else {
			__orr32(hsotg->regs + DCTL, DCTL_SGNPINNAK);
			/* Wait for Nak effect */
			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
						    GINTSTS_GINNAKEFF, 100))
				dev_warn(hsotg->dev,
					 "%s: timeout GINTSTS.GINNAKEFF\n",
					 __func__);
		}
	} else {
		if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF))
			__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);

		/* Wait for global nak to take effect */
		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
					    GINTSTS_GOUTNAKEFF, 100))
			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
				 __func__);
	}

	/* Disable ep */
	__orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);

	/* Wait for ep to be disabled */
	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
		dev_warn(hsotg->dev,
			 "%s: timeout DOEPCTL.EPDisable\n", __func__);

	/* Clear EPDISBLD interrupt */
	__orr32(hsotg->regs + epint_reg, DXEPINT_EPDISBLD);

	if (hs_ep->dir_in) {
		unsigned short fifo_index;

		if (hsotg->dedicated_fifos || hs_ep->periodic)
			fifo_index = hs_ep->fifo_index;
		else
			fifo_index = 0;

		/* Flush TX FIFO */
		dwc2_flush_tx_fifo(hsotg, fifo_index);

		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
			__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);

	} else {
		/* Remove global NAKs */
		__orr32(hsotg->regs + DCTL, DCTL_CGOUTNAK);
	}
}

3705
/**
3706
 * dwc2_hsotg_ep_enable - enable the given endpoint
3707 3708 3709 3710
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
3711
 */
3712
static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3713
				const struct usb_endpoint_descriptor *desc)
3714
{
3715
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3716
	struct dwc2_hsotg *hsotg = hs_ep->parent;
3717
	unsigned long flags;
3718
	unsigned int index = hs_ep->index;
3719 3720 3721
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
3722
	u32 mc;
3723
	u32 mask;
3724 3725
	unsigned int dir_in;
	unsigned int i, val, size;
3726
	int ret = 0;
3727 3728 3729 3730 3731 3732 3733

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
3734 3735 3736 3737
	if (index == 0) {
		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
		return -EINVAL;
	}
3738 3739 3740 3741 3742 3743 3744

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

3745
	mps = usb_endpoint_maxp(desc);
3746
	mc = usb_endpoint_maxp_mult(desc);
3747

3748
	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3749

3750
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3751
	epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3752 3753 3754 3755

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

3756 3757 3758 3759 3760
	/* Allocate DMA descriptor chain for non-ctrl endpoints */
	if (using_desc_dma(hsotg)) {
		hs_ep->desc_list = dma_alloc_coherent(hsotg->dev,
			MAX_DMA_DESC_NUM_GENERIC *
			sizeof(struct dwc2_dma_desc),
3761
			&hs_ep->desc_list_dma, GFP_ATOMIC);
3762 3763 3764 3765 3766 3767
		if (!hs_ep->desc_list) {
			ret = -ENOMEM;
			goto error2;
		}
	}

3768
	spin_lock_irqsave(&hsotg->lock, flags);
3769

3770 3771
	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
	epctrl |= DXEPCTL_MPS(mps);
3772

3773 3774 3775 3776
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
3777
	epctrl |= DXEPCTL_USBACTEP;
3778 3779

	/* update the endpoint state */
3780
	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
3781 3782

	/* default, set to non-periodic */
3783
	hs_ep->isochronous = 0;
3784
	hs_ep->periodic = 0;
3785
	hs_ep->halted = 0;
3786
	hs_ep->interval = desc->bInterval;
3787

3788 3789
	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
3790 3791
		epctrl |= DXEPCTL_EPTYPE_ISO;
		epctrl |= DXEPCTL_SETEVENFR;
3792
		hs_ep->isochronous = 1;
3793
		hs_ep->interval = 1 << (desc->bInterval - 1);
3794
		hs_ep->target_frame = TARGET_FRAME_INITIAL;
3795 3796
		hs_ep->isoc_chain_num = 0;
		hs_ep->next_desc = 0;
3797
		if (dir_in) {
3798
			hs_ep->periodic = 1;
3799 3800 3801 3802 3803 3804 3805 3806
			mask = dwc2_readl(hsotg->regs + DIEPMSK);
			mask |= DIEPMSK_NAKMSK;
			dwc2_writel(mask, hsotg->regs + DIEPMSK);
		} else {
			mask = dwc2_readl(hsotg->regs + DOEPMSK);
			mask |= DOEPMSK_OUTTKNEPDISMSK;
			dwc2_writel(mask, hsotg->regs + DOEPMSK);
		}
3807
		break;
3808 3809

	case USB_ENDPOINT_XFER_BULK:
3810
		epctrl |= DXEPCTL_EPTYPE_BULK;
3811 3812 3813
		break;

	case USB_ENDPOINT_XFER_INT:
3814
		if (dir_in)
3815 3816
			hs_ep->periodic = 1;

3817 3818 3819
		if (hsotg->gadget.speed == USB_SPEED_HIGH)
			hs_ep->interval = 1 << (desc->bInterval - 1);

3820
		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
3821 3822 3823
		break;

	case USB_ENDPOINT_XFER_CONTROL:
3824
		epctrl |= DXEPCTL_EPTYPE_CONTROL;
3825 3826 3827
		break;
	}

3828 3829
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
3830 3831
	 * a unique tx-fifo even if it is non-periodic.
	 */
3832
	if (dir_in && hsotg->dedicated_fifos) {
3833 3834
		u32 fifo_index = 0;
		u32 fifo_size = UINT_MAX;
3835 3836

		size = hs_ep->ep.maxpacket * hs_ep->mc;
3837
		for (i = 1; i < hsotg->num_of_eps; ++i) {
3838
			if (hsotg->fifo_map & (1 << i))
3839
				continue;
3840
			val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
3841
			val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
3842 3843
			if (val < size)
				continue;
3844 3845 3846 3847 3848
			/* Search for smallest acceptable fifo */
			if (val < fifo_size) {
				fifo_size = val;
				fifo_index = i;
			}
3849
		}
3850
		if (!fifo_index) {
3851 3852
			dev_err(hsotg->dev,
				"%s: No suitable fifo found\n", __func__);
3853
			ret = -ENOMEM;
3854
			goto error1;
3855
		}
3856 3857 3858 3859
		hsotg->fifo_map |= 1 << fifo_index;
		epctrl |= DXEPCTL_TXFNUM(fifo_index);
		hs_ep->fifo_index = fifo_index;
		hs_ep->fifo_size = fifo_size;
3860
	}
3861

3862
	/* for non control endpoints, set PID to D0 */
3863
	if (index && !hs_ep->isochronous)
3864
		epctrl |= DXEPCTL_SETD0PID;
3865 3866 3867 3868

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

3869
	dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
3870
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
3871
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
3872 3873

	/* enable the endpoint interrupt */
3874
	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
3875

3876
error1:
3877
	spin_unlock_irqrestore(&hsotg->lock, flags);
3878 3879 3880 3881 3882 3883 3884 3885 3886

error2:
	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
		dma_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
			sizeof(struct dwc2_dma_desc),
			hs_ep->desc_list, hs_ep->desc_list_dma);
		hs_ep->desc_list = NULL;
	}

3887
	return ret;
3888 3889
}

3890
/**
3891
 * dwc2_hsotg_ep_disable - disable given endpoint
3892 3893
 * @ep: The endpoint to disable.
 */
3894
static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
3895
{
3896
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3897
	struct dwc2_hsotg *hsotg = hs_ep->parent;
3898 3899 3900 3901 3902 3903
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

3904
	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
3905

3906
	if (ep == &hsotg->eps_out[0]->ep) {
3907 3908 3909 3910
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

3911 3912 3913 3914 3915 3916 3917 3918
	/* Remove DMA memory allocated for non-control Endpoints */
	if (using_desc_dma(hsotg)) {
		dma_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
				  sizeof(struct dwc2_dma_desc),
				  hs_ep->desc_list, hs_ep->desc_list_dma);
		hs_ep->desc_list = NULL;
	}

3919
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3920

3921
	spin_lock_irqsave(&hsotg->lock, flags);
3922

3923
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3924 3925 3926 3927

	if (ctrl & DXEPCTL_EPENA)
		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);

3928 3929 3930
	ctrl &= ~DXEPCTL_EPENA;
	ctrl &= ~DXEPCTL_USBACTEP;
	ctrl |= DXEPCTL_SNAK;
3931 3932

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
3933
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
3934 3935

	/* disable endpoint interrupts */
3936
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
3937

3938 3939 3940
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);

3941 3942 3943 3944
	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
	hs_ep->fifo_index = 0;
	hs_ep->fifo_size = 0;

3945
	spin_unlock_irqrestore(&hsotg->lock, flags);
3946 3947 3948 3949 3950 3951 3952
	return 0;
}

/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
3953
 */
3954
static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
3955
{
3956
	struct dwc2_hsotg_req *req, *treq;
3957 3958 3959 3960 3961 3962 3963 3964 3965

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

3966
/**
3967
 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
3968 3969 3970
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
3971
static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
3972
{
3973 3974
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3975
	struct dwc2_hsotg *hs = hs_ep->parent;
3976 3977
	unsigned long flags;

3978
	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
3979

3980
	spin_lock_irqsave(&hs->lock, flags);
3981 3982

	if (!on_list(hs_ep, hs_req)) {
3983
		spin_unlock_irqrestore(&hs->lock, flags);
3984 3985 3986
		return -EINVAL;
	}

3987 3988 3989 3990
	/* Dequeue already started request */
	if (req == &hs_ep->req->req)
		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);

3991
	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
3992
	spin_unlock_irqrestore(&hs->lock, flags);
3993 3994 3995 3996

	return 0;
}

3997
/**
3998
 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
3999 4000
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
4001 4002 4003 4004 4005
 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
 *       the endpoint is busy processing requests.
 *
 * We need to stall the endpoint immediately if request comes from set_feature
 * protocol command handler.
4006
 */
4007
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4008
{
4009
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4010
	struct dwc2_hsotg *hs = hs_ep->parent;
4011 4012 4013
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
4014
	u32 xfertype;
4015 4016 4017

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

4018 4019
	if (index == 0) {
		if (value)
4020
			dwc2_hsotg_stall_ep0(hs);
4021 4022 4023 4024 4025 4026
		else
			dev_warn(hs->dev,
				 "%s: can't clear halt on ep0\n", __func__);
		return 0;
	}

4027 4028 4029 4030 4031
	if (hs_ep->isochronous) {
		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
		return -EINVAL;
	}

4032 4033 4034 4035 4036 4037
	if (!now && value && !list_empty(&hs_ep->queue)) {
		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
			ep->name);
		return -EAGAIN;
	}

4038 4039
	if (hs_ep->dir_in) {
		epreg = DIEPCTL(index);
4040
		epctl = dwc2_readl(hs->regs + epreg);
4041 4042

		if (value) {
4043
			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4044 4045 4046 4047 4048 4049
			if (epctl & DXEPCTL_EPENA)
				epctl |= DXEPCTL_EPDIS;
		} else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4050
			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4051
				epctl |= DXEPCTL_SETD0PID;
4052
		}
4053
		dwc2_writel(epctl, hs->regs + epreg);
4054
	} else {
4055
		epreg = DOEPCTL(index);
4056
		epctl = dwc2_readl(hs->regs + epreg);
4057

J
John Youn 已提交
4058
		if (value) {
4059
			epctl |= DXEPCTL_STALL;
J
John Youn 已提交
4060
		} else {
4061 4062 4063
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4064
			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4065
				epctl |= DXEPCTL_SETD0PID;
4066
		}
4067
		dwc2_writel(epctl, hs->regs + epreg);
4068
	}
4069

4070 4071
	hs_ep->halted = value;

4072 4073 4074
	return 0;
}

4075
/**
4076
 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4077 4078 4079
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
4080
static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4081
{
4082
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4083
	struct dwc2_hsotg *hs = hs_ep->parent;
4084 4085 4086 4087
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
4088
	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4089 4090 4091 4092 4093
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

4094 4095 4096 4097 4098 4099 4100 4101
static struct usb_ep_ops dwc2_hsotg_ep_ops = {
	.enable		= dwc2_hsotg_ep_enable,
	.disable	= dwc2_hsotg_ep_disable,
	.alloc_request	= dwc2_hsotg_ep_alloc_request,
	.free_request	= dwc2_hsotg_ep_free_request,
	.queue		= dwc2_hsotg_ep_queue_lock,
	.dequeue	= dwc2_hsotg_ep_dequeue,
	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
4102
	/* note, don't believe we have any call for the fifo routines */
4103 4104
};

4105
/**
4106
 * dwc2_hsotg_init - initialize the usb core
4107 4108
 * @hsotg: The driver state
 */
4109
static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4110
{
4111
	u32 trdtim;
4112
	u32 usbcfg;
4113 4114
	/* unmask subset of endpoint interrupts */

4115 4116 4117
	dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DIEPMSK);
4118

4119 4120 4121
	dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DOEPMSK);
4122

4123
	dwc2_writel(0, hsotg->regs + DAINTMSK);
4124 4125

	/* Be in disconnected state until gadget is registered */
4126
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
4127 4128 4129 4130

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4131 4132
		dwc2_readl(hsotg->regs + GRXFSIZ),
		dwc2_readl(hsotg->regs + GNPTXFSIZ));
4133

4134
	dwc2_hsotg_init_fifo(hsotg);
4135

4136 4137 4138 4139 4140
	/* keep other bits untouched (so e.g. forced modes are not lost) */
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
		GUSBCFG_HNPCAP);

4141
	/* set the PLL on, remove the HNP/SRP and set the PHY */
4142
	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
4143 4144 4145
	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
		(trdtim << GUSBCFG_USBTRDTIM_SHIFT);
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
4146

4147 4148
	if (using_dma(hsotg))
		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
4149 4150
}

4151
/**
4152
 * dwc2_hsotg_udc_start - prepare the udc for work
4153 4154 4155 4156 4157 4158
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
4159
static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4160
				struct usb_gadget_driver *driver)
4161
{
4162
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4163
	unsigned long flags;
4164 4165 4166
	int ret;

	if (!hsotg) {
4167
		pr_err("%s: called with no device\n", __func__);
4168 4169 4170 4171 4172 4173 4174 4175
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

4176
	if (driver->max_speed < USB_SPEED_FULL)
4177 4178
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

4179
	if (!driver->setup) {
4180 4181 4182 4183 4184 4185 4186 4187
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
4188
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4189 4190
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

4191 4192 4193 4194
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
		ret = dwc2_lowlevel_hw_enable(hsotg);
		if (ret)
			goto err;
4195 4196
	}

4197 4198
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4199

4200
	spin_lock_irqsave(&hsotg->lock, flags);
4201 4202 4203 4204 4205
	if (dwc2_hw_is_device(hsotg)) {
		dwc2_hsotg_init(hsotg);
		dwc2_hsotg_core_init_disconnected(hsotg, false);
	}

4206
	hsotg->enabled = 0;
4207 4208
	spin_unlock_irqrestore(&hsotg->lock, flags);

4209
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4210

4211 4212 4213 4214 4215 4216 4217
	return 0;

err:
	hsotg->driver = NULL;
	return ret;
}

4218
/**
4219
 * dwc2_hsotg_udc_stop - stop the udc
4220 4221 4222 4223 4224
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
4225
static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4226
{
4227
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4228
	unsigned long flags = 0;
4229 4230 4231 4232 4233 4234
	int ep;

	if (!hsotg)
		return -ENODEV;

	/* all endpoints should be shutdown */
4235 4236
	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
4237
			dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4238
		if (hsotg->eps_out[ep])
4239
			dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4240
	}
4241

4242 4243
	spin_lock_irqsave(&hsotg->lock, flags);

4244
	hsotg->driver = NULL;
4245
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4246
	hsotg->enabled = 0;
4247

4248 4249
	spin_unlock_irqrestore(&hsotg->lock, flags);

4250 4251
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, NULL);
4252

4253 4254
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		dwc2_lowlevel_hw_disable(hsotg);
4255 4256 4257 4258

	return 0;
}

4259
/**
4260
 * dwc2_hsotg_gadget_getframe - read the frame number
4261 4262 4263 4264
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
4265
static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4266
{
4267
	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4268 4269
}

4270
/**
4271
 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4272 4273 4274 4275 4276
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
4277
static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4278
{
4279
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4280 4281
	unsigned long flags = 0;

4282
	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4283
		hsotg->op_state);
4284 4285 4286 4287 4288 4289

	/* Don't modify pullup state while in host mode */
	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
		hsotg->enabled = is_on;
		return 0;
	}
4290 4291 4292

	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
4293
		hsotg->enabled = 1;
4294 4295
		dwc2_hsotg_core_init_disconnected(hsotg, false);
		dwc2_hsotg_core_connect(hsotg);
4296
	} else {
4297 4298
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
4299
		hsotg->enabled = 0;
4300 4301 4302 4303 4304 4305 4306 4307
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return 0;
}

4308
static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4309 4310 4311 4312 4313 4314 4315
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
	unsigned long flags;

	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
	spin_lock_irqsave(&hsotg->lock, flags);

4316 4317 4318 4319 4320 4321 4322
	/*
	 * If controller is hibernated, it must exit from hibernation
	 * before being initialized / de-initialized
	 */
	if (hsotg->lx_state == DWC2_L2)
		dwc2_exit_hibernation(hsotg, false);

4323
	if (is_active) {
4324
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4325

4326
		dwc2_hsotg_core_init_disconnected(hsotg, false);
4327
		if (hsotg->enabled)
4328
			dwc2_hsotg_core_connect(hsotg);
4329
	} else {
4330 4331
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
4332 4333 4334 4335 4336 4337
	}

	spin_unlock_irqrestore(&hsotg->lock, flags);
	return 0;
}

4338
/**
4339
 * dwc2_hsotg_vbus_draw - report bMaxPower field
4340 4341 4342 4343 4344
 * @gadget: The usb gadget state
 * @mA: Amount of current
 *
 * Report how much power the device may consume to the phy.
 */
4345
static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4346 4347 4348 4349 4350 4351 4352 4353
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);

	if (IS_ERR_OR_NULL(hsotg->uphy))
		return -ENOTSUPP;
	return usb_phy_set_power(hsotg->uphy, mA);
}

4354 4355 4356 4357 4358 4359 4360
static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
	.get_frame	= dwc2_hsotg_gadget_getframe,
	.udc_start		= dwc2_hsotg_udc_start,
	.udc_stop		= dwc2_hsotg_udc_stop,
	.pullup                 = dwc2_hsotg_pullup,
	.vbus_session		= dwc2_hsotg_vbus_session,
	.vbus_draw		= dwc2_hsotg_vbus_draw,
4361 4362 4363
};

/**
4364
 * dwc2_hsotg_initep - initialise a single endpoint
4365 4366 4367 4368 4369 4370 4371 4372
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
4373
static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4374
			      struct dwc2_hsotg_ep *hs_ep,
4375 4376
				       int epnum,
				       bool dir_in)
4377 4378 4379 4380 4381
{
	char *dir;

	if (epnum == 0)
		dir = "";
4382
	else if (dir_in)
4383
		dir = "in";
4384 4385
	else
		dir = "out";
4386

4387
	hs_ep->dir_in = dir_in;
4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400
	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
4401 4402 4403 4404 4405 4406

	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
	else
		usb_ep_set_maxpacket_limit(&hs_ep->ep,
					   epnum ? 1024 : EP0_MPS_LIMIT);
4407
	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4408

4409 4410 4411
	if (epnum == 0) {
		hs_ep->ep.caps.type_control = true;
	} else {
4412 4413 4414 4415
		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
			hs_ep->ep.caps.type_iso = true;
			hs_ep->ep.caps.type_bulk = true;
		}
4416 4417 4418 4419 4420 4421 4422 4423
		hs_ep->ep.caps.type_int = true;
	}

	if (dir_in)
		hs_ep->ep.caps.dir_in = true;
	else
		hs_ep->ep.caps.dir_out = true;

4424 4425
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
4426 4427 4428 4429
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
4430
		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4431

4432
		if (dir_in)
4433
			dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
4434
		else
4435
			dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
4436 4437 4438
	}
}

4439
/**
4440
 * dwc2_hsotg_hw_cfg - read HW configuration registers
4441 4442 4443 4444
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
4445
static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4446
{
4447 4448 4449 4450
	u32 cfg;
	u32 ep_type;
	u32 i;

4451
	/* check hardware configuration */
4452

4453 4454
	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;

4455 4456
	/* Add ep0 */
	hsotg->num_of_eps++;
4457

4458 4459 4460
	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
					sizeof(struct dwc2_hsotg_ep),
					GFP_KERNEL);
4461 4462
	if (!hsotg->eps_in[0])
		return -ENOMEM;
4463
	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4464 4465
	hsotg->eps_out[0] = hsotg->eps_in[0];

4466
	cfg = hsotg->hw_params.dev_ep_dirs;
4467
	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4468 4469 4470 4471
		ep_type = cfg & 3;
		/* Direction in or both */
		if (!(ep_type & 2)) {
			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4472
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4473 4474 4475 4476 4477 4478
			if (!hsotg->eps_in[i])
				return -ENOMEM;
		}
		/* Direction out or both */
		if (!(ep_type & 1)) {
			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4479
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4480 4481 4482 4483 4484
			if (!hsotg->eps_out[i])
				return -ENOMEM;
		}
	}

4485 4486
	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4487

4488 4489 4490 4491
	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
		 hsotg->num_of_eps,
		 hsotg->dedicated_fifos ? "dedicated" : "shared",
		 hsotg->fifo_mem);
4492
	return 0;
4493 4494
}

4495
/**
4496
 * dwc2_hsotg_dump - dump state of the udc
4497 4498
 * @param: The device state
 */
4499
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4500
{
M
Mark Brown 已提交
4501
#ifdef DEBUG
4502 4503 4504 4505 4506 4507
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4508 4509
		 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
		 dwc2_readl(regs + DIEPMSK));
4510

4511
	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4512
		 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
4513 4514

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4515
		 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
4516 4517 4518

	/* show periodic fifo settings */

4519
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4520
		val = dwc2_readl(regs + DPTXFSIZN(idx));
4521
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4522 4523
			 val >> FIFOSIZE_DEPTH_SHIFT,
			 val & FIFOSIZE_STARTADDR_MASK);
4524 4525
	}

4526
	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4527 4528
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4529 4530 4531
			 dwc2_readl(regs + DIEPCTL(idx)),
			 dwc2_readl(regs + DIEPTSIZ(idx)),
			 dwc2_readl(regs + DIEPDMA(idx)));
4532

4533
		val = dwc2_readl(regs + DOEPCTL(idx));
4534 4535
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4536 4537 4538
			 idx, dwc2_readl(regs + DOEPCTL(idx)),
			 dwc2_readl(regs + DOEPTSIZ(idx)),
			 dwc2_readl(regs + DOEPDMA(idx)));
4539 4540 4541
	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4542
		 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
4543
#endif
4544 4545
}

4546
/**
4547 4548 4549
 * dwc2_gadget_init - init function for gadget
 * @dwc2: The data structure for the DWC2 driver.
 * @irq: The IRQ number for the controller.
4550
 */
4551
int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
4552
{
4553
	struct device *dev = hsotg->dev;
4554 4555
	int epnum;
	int ret;
4556

4557 4558
	/* Dump fifo information */
	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4559 4560
		hsotg->params.g_np_tx_fifo_size);
	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4561

4562
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
4563
	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4564
	hsotg->gadget.name = dev_name(dev);
4565 4566
	if (hsotg->dr_mode == USB_DR_MODE_OTG)
		hsotg->gadget.is_otg = 1;
4567 4568
	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4569

4570
	ret = dwc2_hsotg_hw_cfg(hsotg);
4571 4572
	if (ret) {
		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4573
		return ret;
4574 4575
	}

4576 4577
	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4578
	if (!hsotg->ctrl_buff)
4579
		return -ENOMEM;
4580 4581 4582

	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4583
	if (!hsotg->ep0_buff)
4584
		return -ENOMEM;
4585

4586 4587 4588 4589 4590 4591
	if (using_desc_dma(hsotg)) {
		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
		if (ret < 0)
			return ret;
	}

4592
	ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
4593
			       dev_name(hsotg->dev), hsotg);
4594
	if (ret < 0) {
4595
		dev_err(dev, "cannot claim IRQ for gadget\n");
4596
		return ret;
4597 4598
	}

4599 4600 4601 4602
	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
4603
		return -EINVAL;
4604 4605 4606 4607 4608
	}

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4609
	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4610 4611 4612

	/* allocate EP0 request */

4613
	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4614 4615 4616
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
4617
		return -ENOMEM;
4618
	}
4619 4620

	/* initialise the endpoints now the core has been initialised */
4621 4622
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
		if (hsotg->eps_in[epnum])
4623
			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4624
					  epnum, 1);
4625
		if (hsotg->eps_out[epnum])
4626
			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4627
					  epnum, 0);
4628
	}
4629

4630
	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
4631
	if (ret)
4632
		return ret;
4633

4634
	dwc2_hsotg_dump(hsotg);
4635 4636 4637 4638

	return 0;
}

4639
/**
4640
 * dwc2_hsotg_remove - remove function for hsotg driver
4641 4642
 * @pdev: The platform information for the driver
 */
4643
int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4644
{
4645
	usb_del_gadget_udc(&hsotg->gadget);
4646

4647 4648 4649
	return 0;
}

4650
int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4651 4652 4653
{
	unsigned long flags;

4654
	if (hsotg->lx_state != DWC2_L0)
4655
		return 0;
4656

4657 4658 4659
	if (hsotg->driver) {
		int ep;

4660 4661 4662
		dev_info(hsotg->dev, "suspending usb gadget %s\n",
			 hsotg->driver->driver.name);

4663 4664
		spin_lock_irqsave(&hsotg->lock, flags);
		if (hsotg->enabled)
4665 4666
			dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
4667 4668
		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
		spin_unlock_irqrestore(&hsotg->lock, flags);
4669

4670 4671
		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
			if (hsotg->eps_in[ep])
4672
				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4673
			if (hsotg->eps_out[ep])
4674
				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4675
		}
4676 4677
	}

4678
	return 0;
4679 4680
}

4681
int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4682 4683 4684
{
	unsigned long flags;

4685
	if (hsotg->lx_state == DWC2_L2)
4686
		return 0;
4687

4688 4689 4690
	if (hsotg->driver) {
		dev_info(hsotg->dev, "resuming usb gadget %s\n",
			 hsotg->driver->driver.name);
4691

4692
		spin_lock_irqsave(&hsotg->lock, flags);
4693
		dwc2_hsotg_core_init_disconnected(hsotg, false);
4694
		if (hsotg->enabled)
4695
			dwc2_hsotg_core_connect(hsotg);
4696 4697
		spin_unlock_irqrestore(&hsotg->lock, flags);
	}
4698

4699
	return 0;
4700
}
4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802

/**
 * dwc2_backup_device_registers() - Backup controller device registers.
 * When suspending usb bus, registers needs to be backuped
 * if controller power is disabled once suspended.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Backup dev regs */
	dr = &hsotg->dr_backup;

	dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
	dr->dctl = dwc2_readl(hsotg->regs + DCTL);
	dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
	dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
	dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Backup IN EPs */
		dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));

		/* Ensure DATA PID is correctly configured */
		if (dr->diepctl[i] & DXEPCTL_DPID)
			dr->diepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->diepctl[i] |= DXEPCTL_SETD0PID;

		dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
		dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));

		/* Backup OUT EPs */
		dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));

		/* Ensure DATA PID is correctly configured */
		if (dr->doepctl[i] & DXEPCTL_DPID)
			dr->doepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->doepctl[i] |= DXEPCTL_SETD0PID;

		dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
		dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
	}
	dr->valid = true;
	return 0;
}

/**
 * dwc2_restore_device_registers() - Restore controller device registers.
 * When resuming usb bus, device registers needs to be restored
 * if controller power were disabled.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	u32 dctl;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Restore dev regs */
	dr = &hsotg->dr_backup;
	if (!dr->valid) {
		dev_err(hsotg->dev, "%s: no device registers to restore\n",
			__func__);
		return -EINVAL;
	}
	dr->valid = false;

	dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
	dwc2_writel(dr->dctl, hsotg->regs + DCTL);
	dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
	dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
	dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Restore IN EPs */
		dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
		dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
		dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));

		/* Restore OUT EPs */
		dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
		dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
	}

	/* Set the Power-On Programming done bit */
	dctl = dwc2_readl(hsotg->regs + DCTL);
	dctl |= DCTL_PWRONPRGDONE;
	dwc2_writel(dctl, hsotg->regs + DCTL);

	return 0;
}