gadget.c 89.3 KB
Newer Older
1
/**
2 3
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
4 5 6 7 8 9 10 11 12 13 14
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
15
 */
16 17 18 19 20 21 22 23 24 25 26

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
27
#include <linux/slab.h>
28
#include <linux/clk.h>
29
#include <linux/regulator/consumer.h>
30
#include <linux/of_platform.h>
31
#include <linux/phy/phy.h>
32 33 34

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
35
#include <linux/usb/phy.h>
36
#include <linux/platform_data/s3c-hsotg.h>
37

38
#include "core.h"
39
#include "hw.h"
40 41 42 43 44 45 46 47 48 49 50 51

/* conversion functions */
static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
{
	return container_of(req, struct s3c_hsotg_req, req);
}

static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
{
	return container_of(ep, struct s3c_hsotg_ep, ep);
}

52
static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
53
{
54
	return container_of(gadget, struct dwc2_hsotg, gadget);
55 56 57 58 59 60 61 62 63 64 65 66 67
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) | val, ptr);
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) & ~val, ptr);
}

/* forward decleration of functions */
68
static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg);
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
 * Until this issue is sorted out, we always return 'false'.
 */
89
static inline bool using_dma(struct dwc2_hsotg *hsotg)
90 91 92 93 94 95 96 97 98
{
	return false;	/* support is not complete */
}

/**
 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
99
static void s3c_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
100
{
101
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
102 103 104 105 106 107
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
108
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
109 110 111 112 113 114 115 116
	}
}

/**
 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
117
static void s3c_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
118
{
119
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
120 121 122 123 124
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
125
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
126 127 128 129 130 131 132 133 134 135 136 137
}

/**
 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
138
static void s3c_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
139 140 141 142 143 144 145 146 147 148 149
				 unsigned int ep, unsigned int dir_in,
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
150
	daint = readl(hsotg->regs + DAINTMSK);
151 152 153 154
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
155
	writel(daint, hsotg->regs + DAINTMSK);
156 157 158 159 160 161 162
	local_irq_restore(flags);
}

/**
 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
 * @hsotg: The device instance.
 */
163
static void s3c_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
164
{
165 166 167
	unsigned int ep;
	unsigned int addr;
	unsigned int size;
168
	int timeout;
169 170
	u32 val;

171
	/* set FIFO sizes to 2048/1024 */
172

173
	writel(2048, hsotg->regs + GRXFSIZ);
174 175
	writel((2048 << FIFOSIZE_STARTADDR_SHIFT) |
		(1024 << FIFOSIZE_DEPTH_SHIFT), hsotg->regs + GNPTXFSIZ);
176

177 178
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
179 180
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
181 182
	 * known values.
	 */
183 184 185 186

	/* start at the end of the GNPTXFSIZ, rounded up */
	addr = 2048 + 1024;

187
	/*
188 189 190 191 192
	 * Because we have not enough memory to have each TX FIFO of size at
	 * least 3072 bytes (the maximum single packet size), we create four
	 * FIFOs of lenght 1024, and four of length 3072 bytes, and assing
	 * them to endpoints dynamically according to maxpacket size value of
	 * given endpoint.
193
	 */
194

195 196 197 198 199 200 201 202 203 204 205 206 207 208
	/* 256*4=1024 bytes FIFO length */
	size = 256;
	for (ep = 1; ep <= 4; ep++) {
		val = addr;
		val |= size << FIFOSIZE_DEPTH_SHIFT;
		WARN_ONCE(addr + size > hsotg->fifo_mem,
			  "insufficient fifo memory");
		addr += size;

		writel(val, hsotg->regs + DPTXFSIZN(ep));
	}
	/* 768*4=3072 bytes FIFO length */
	size = 768;
	for (ep = 5; ep <= 8; ep++) {
209
		val = addr;
210
		val |= size << FIFOSIZE_DEPTH_SHIFT;
211 212
		WARN_ONCE(addr + size > hsotg->fifo_mem,
			  "insufficient fifo memory");
213 214
		addr += size;

215
		writel(val, hsotg->regs + DPTXFSIZN(ep));
216
	}
217

218 219 220 221
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
222

223 224
	writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
225 226 227 228

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
229
		val = readl(hsotg->regs + GRSTCTL);
230

231
		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
232 233 234 235 236 237 238 239 240 241 242 243
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
244 245 246 247 248 249 250 251
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
252 253
static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
						      gfp_t flags)
254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
{
	struct s3c_hsotg_req *req;

	req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
{
	return hs_ep->periodic;
}

/**
 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
 * of a request to ensure the buffer is ready for access by the caller.
286
 */
287
static void s3c_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
288 289 290 291 292 293 294 295 296
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	struct usb_request *req = &hs_req->req;

	/* ignore this if we're not moving any data */
	if (hs_req->req.length == 0)
		return;

297
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
}

/**
 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
315
 */
316
static int s3c_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
317 318 319 320
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	bool periodic = is_ep_periodic(hs_ep);
321
	u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
322 323 324 325 326
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;
327
	int max_transfer;
328 329 330 331 332 333 334

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

335
	if (periodic && !hsotg->dedicated_fifos) {
336
		u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
337 338 339
		int size_left;
		int size_done;

340 341 342 343
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
344

345
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
346

347 348
		/*
		 * if shared fifo, we cannot write anything until the
349 350 351
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
352
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
353 354 355
			return -ENOSPC;
		}

356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
373
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
374 375
			return -ENOSPC;
		}
376
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
377
		can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
378 379 380

		can_write &= 0xffff;
		can_write *= 4;
381
	} else {
382
		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
383 384 385 386
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

387
			s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
388 389 390
			return -ENOSPC;
		}

391
		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
392
		can_write *= 4;	/* fifo size is in 32bit quantities. */
393 394
	}

395 396 397 398
	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
		 __func__, gnptxsts, can_write, to_write, max_transfer);
399

400 401
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
402 403 404
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
405
	if (can_write > 512 && !periodic)
406 407
		can_write = 512;

408 409
	/*
	 * limit the write to one max-packet size worth of data, but allow
410
	 * the transfer to return that it did not run out of fifo space
411 412
	 * doing it.
	 */
413 414
	if (to_write > max_transfer) {
		to_write = max_transfer;
415

416 417 418
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
			s3c_hsotg_en_gsint(hsotg,
419 420
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
421 422
	}

423 424 425 426
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
427
		pkt_round = to_write % max_transfer;
428

429 430
		/*
		 * Round the write down to an
431 432 433 434 435 436 437 438 439
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

440 441 442 443
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
444

445 446 447
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
			s3c_hsotg_en_gsint(hsotg,
448 449
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
		 to_write, hs_req->req.length, can_write, buf_pos);

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

467
	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
{
	int index = hs_ep->index;
	unsigned maxsize;
	unsigned maxpkt;

	if (index != 0) {
486 487
		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
488
	} else {
489
		maxsize = 64+64;
490
		if (hs_ep->dir_in)
491
			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
492
		else
493 494 495 496 497 498 499
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

500 501 502 503
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

/**
 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
521
static void s3c_hsotg_start_req(struct dwc2_hsotg *hsotg,
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req,
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
	unsigned length;
	unsigned packets;
	unsigned maxreq;

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

550 551
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
552 553 554 555 556

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
		__func__, readl(hsotg->regs + epctrl_reg), index,
		hs_ep->dir_in ? "in" : "out");

557 558 559
	/* If endpoint is stalled, we will restart request later */
	ctrl = readl(hsotg->regs + epctrl_reg);

560
	if (ctrl & DXEPCTL_STALL) {
561 562 563 564
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

565
	length = ureq->length - ureq->actual;
566 567
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
568 569
	if (0)
		dev_dbg(hsotg->dev,
570
			"REQ buf %p len %d dma %pad noi=%d zp=%d snok=%d\n",
571
			ureq->buf, length, &ureq->dma,
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
			ureq->no_interrupt, ureq->zero, ureq->short_not_ok);

	maxreq = get_ep_limit(hs_ep);
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

593 594 595 596 597
	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
		return;
	}

598
	if (dir_in && index != 0)
599
		if (hs_ep->isochronous)
600
			epsize = DXEPTSIZ_MC(packets);
601
		else
602
			epsize = DXEPTSIZ_MC(1);
603 604 605 606
	else
		epsize = 0;

	if (index != 0 && ureq->zero) {
607 608 609 610
		/*
		 * test for the packets being exactly right for the
		 * transfer
		 */
611 612 613 614 615

		if (length == (packets * hs_ep->ep.maxpacket))
			packets++;
	}

616 617
	epsize |= DXEPTSIZ_PKTCNT(packets);
	epsize |= DXEPTSIZ_XFERSIZE(length);
618 619 620 621 622 623 624 625 626 627

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

	/* write size / packets */
	writel(epsize, hsotg->regs + epsize_reg);

628
	if (using_dma(hsotg) && !continuing) {
629 630
		unsigned int dma_reg;

631 632 633 634
		/*
		 * write DMA address to control register, buffer already
		 * synced by s3c_hsotg_ep_queue().
		 */
635

636
		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
637 638
		writel(ureq->dma, hsotg->regs + dma_reg);

639
		dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
640
			__func__, &ureq->dma, dma_reg);
641 642
	}

643 644
	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
645 646 647 648 649 650 651

	dev_dbg(hsotg->dev, "setup req:%d\n", hsotg->setup);

	/* For Setup request do not clear NAK */
	if (hsotg->setup && index == 0)
		hsotg->setup = 0;
	else
652
		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
653

654 655 656 657

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

658 659
	/*
	 * set these, it seems that DMA support increments past the end
660
	 * of the packet buffer so we need to calculate the length from
661 662
	 * this information.
	 */
663 664 665 666 667 668 669 670 671 672
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

		s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

673 674 675 676
	/*
	 * clear the INTknTXFEmpMsk when we start request, more as a aide
	 * to debugging to see what is going on.
	 */
677
	if (dir_in)
678
		writel(DIEPMSK_INTKNTXFEMPMSK,
679
		       hsotg->regs + DIEPINT(index));
680

681 682 683 684
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
685 686

	/* check ep is enabled */
687
	if (!(readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
688
		dev_warn(hsotg->dev,
689
			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
690 691
			 index, readl(hsotg->regs + epctrl_reg));

692
	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
693
		__func__, readl(hsotg->regs + epctrl_reg));
694 695 696

	/* enable ep interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
697 698 699 700 701 702 703 704 705 706 707 708 709
}

/**
 * s3c_hsotg_map_dma - map the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
710
 */
711
static int s3c_hsotg_map_dma(struct dwc2_hsotg *hsotg,
712 713 714 715
			     struct s3c_hsotg_ep *hs_ep,
			     struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
716
	int ret;
717 718 719 720 721

	/* if the length is zero, ignore the DMA data */
	if (hs_req->req.length == 0)
		return 0;

722 723 724
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
740
	struct dwc2_hsotg *hs = hs_ep->parent;
741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767
	bool first;

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
		int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
		if (ret)
			return ret;
	}

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

	if (first)
		s3c_hsotg_start_req(hs, hs_ep, hs_req, false);

	return 0;
}

768 769 770 771
static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
772
	struct dwc2_hsotg *hs = hs_ep->parent;
773 774 775 776 777 778 779 780 781 782
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
				      struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);

	kfree(hs_req);
}

/**
 * s3c_hsotg_complete_oursetup - setup completion callback
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
					struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
803
	struct dwc2_hsotg *hsotg = hs_ep->parent;
804 805 806 807 808 809 810 811 812 813 814 815 816

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

	s3c_hsotg_ep_free_request(ep, req);
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
817
 */
818
static struct s3c_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
819 820 821 822 823 824 825 826 827
					   u32 windex)
{
	struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

828
	if (idx > hsotg->num_of_eps)
829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
		return NULL;

	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

/**
 * s3c_hsotg_send_reply - send reply to control request
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
847
static int s3c_hsotg_send_reply(struct dwc2_hsotg *hsotg,
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
				struct s3c_hsotg_ep *ep,
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

	req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
	req->zero = 1; /* always do zero-length final transfer */
	req->complete = s3c_hsotg_complete_oursetup;

	if (length)
		memcpy(req->buf, buff, length);
	else
		ep->sent_zlp = 1;

	ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
 * s3c_hsotg_process_req_status - process request GET_STATUS
 * @hsotg: The device state
 * @ctrl: USB control request
 */
888
static int s3c_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939
					struct usb_ctrlrequest *ctrl)
{
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
	struct s3c_hsotg_ep *ep;
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
		reply = cpu_to_le16(0); /* bit 0 => self powered,
					 * bit 1 => remote wakeup */
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

	ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);

940 941 942 943 944 945 946 947 948 949 950 951 952 953
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
{
	if (list_empty(&hs_ep->queue))
		return NULL;

	return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
}

954 955 956 957 958
/**
 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
 * @hsotg: The device state
 * @ctrl: USB control request
 */
959
static int s3c_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
960 961
					 struct usb_ctrlrequest *ctrl)
{
962
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
963 964
	struct s3c_hsotg_req *hs_req;
	bool restart;
965 966
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
	struct s3c_hsotg_ep *ep;
967
	int ret;
968
	bool halted;
969 970 971 972 973 974 975 976 977 978 979 980 981 982

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

	if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
				__func__, le16_to_cpu(ctrl->wIndex));
			return -ENOENT;
		}

		switch (le16_to_cpu(ctrl->wValue)) {
		case USB_ENDPOINT_HALT:
983 984
			halted = ep->halted;

985
			s3c_hsotg_ep_sethalt(&ep->ep, set);
986 987 988 989 990 991 992

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
993

994 995 996 997 998 999
			/*
			 * we have to complete all requests for ep if it was
			 * halted, and the halt was cleared by CLEAR_FEATURE
			 */

			if (!set && halted) {
1000 1001 1002 1003 1004 1005 1006 1007
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
1008 1009
					usb_gadget_giveback_request(&ep->ep,
								    &hs_req->req);
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
				}

				/* If we have pending request, then start it */
				restart = !list_empty(&ep->queue);
				if (restart) {
					hs_req = get_ep_head(ep);
					s3c_hsotg_start_req(hsotg, ep,
							    hs_req, false);
				}
			}

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
			break;

		default:
			return -ENOENT;
		}
	} else
		return -ENOENT;  /* currently only deal with endpoint */

	return 1;
}

1032
static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1033

1034 1035 1036 1037 1038 1039
/**
 * s3c_hsotg_stall_ep0 - stall ep0
 * @hsotg: The device state
 *
 * Set stall for ep0 as response for setup request.
 */
1040
static void s3c_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1041
{
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
	u32 reg;
	u32 ctrl;

	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;

	/*
	 * DxEPCTL_Stall will be cleared by EP once it has
	 * taken effect, so no need to clear later.
	 */

	ctrl = readl(hsotg->regs + reg);
1055 1056
	ctrl |= DXEPCTL_STALL;
	ctrl |= DXEPCTL_CNAK;
1057 1058 1059
	writel(ctrl, hsotg->regs + reg);

	dev_dbg(hsotg->dev,
1060
		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1061 1062 1063 1064 1065 1066 1067 1068 1069
		ctrl, reg, readl(hsotg->regs + reg));

	 /*
	  * complete won't be called, so we enqueue
	  * setup request here
	  */
	 s3c_hsotg_enqueue_setup(hsotg);
}

1070 1071 1072 1073 1074 1075 1076 1077 1078
/**
 * s3c_hsotg_process_control - process a control request
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
1079
static void s3c_hsotg_process_control(struct dwc2_hsotg *hsotg,
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
				      struct usb_ctrlrequest *ctrl)
{
	struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
	int ret = 0;
	u32 dcfg;

	ep0->sent_zlp = 0;

	dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
		 ctrl->bRequest, ctrl->bRequestType,
		 ctrl->wValue, ctrl->wLength);

1092 1093 1094 1095
	/*
	 * record the direction of the request, for later use when enquing
	 * packets onto EP0.
	 */
1096 1097 1098 1099

	ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
	dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);

1100 1101 1102 1103
	/*
	 * if we've no data with this request, then the last part of the
	 * transaction is going to implicitly be IN.
	 */
1104 1105 1106 1107 1108 1109
	if (ctrl->wLength == 0)
		ep0->dir_in = 1;

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1110
			dcfg = readl(hsotg->regs + DCFG);
1111
			dcfg &= ~DCFG_DEVADDR_MASK;
P
Paul Zimmerman 已提交
1112 1113
			dcfg |= (le16_to_cpu(ctrl->wValue) <<
				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1114
			writel(dcfg, hsotg->regs + DCFG);
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			return;

		case USB_REQ_GET_STATUS:
			ret = s3c_hsotg_process_req_status(hsotg, ctrl);
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
			ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
1135
		spin_unlock(&hsotg->lock);
1136
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1137
		spin_lock(&hsotg->lock);
1138 1139 1140 1141
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1142 1143
	/*
	 * the request is either unhandlable, or is not formatted correctly
1144 1145 1146
	 * so respond with a STALL for the status stage to indicate failure.
	 */

1147 1148
	if (ret < 0)
		s3c_hsotg_stall_ep0(hsotg);
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
}

/**
 * s3c_hsotg_complete_setup - completion of a setup transfer
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
static void s3c_hsotg_complete_setup(struct usb_ep *ep,
				     struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1163
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1164 1165 1166 1167 1168 1169

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

1170
	spin_lock(&hsotg->lock);
1171 1172 1173 1174
	if (req->actual == 0)
		s3c_hsotg_enqueue_setup(hsotg);
	else
		s3c_hsotg_process_control(hsotg, req->buf);
1175
	spin_unlock(&hsotg->lock);
1176 1177 1178 1179 1180 1181 1182 1183 1184
}

/**
 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
1185
static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
{
	struct usb_request *req = hsotg->ctrl_req;
	struct s3c_hsotg_req *hs_req = our_req(req);
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
	req->complete = s3c_hsotg_complete_setup;

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

	hsotg->eps[0].dir_in = 0;

	ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1208 1209 1210 1211
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
	}
}

/**
 * s3c_hsotg_complete_request - complete a request given to us
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1227
 */
1228
static void s3c_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242
				       struct s3c_hsotg_ep *hs_ep,
				       struct s3c_hsotg_req *hs_req,
				       int result)
{
	bool restart;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1243 1244 1245 1246
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

	if (using_dma(hsotg))
		s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1257 1258 1259 1260
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1261 1262

	if (hs_req->req.complete) {
1263
		spin_unlock(&hsotg->lock);
1264
		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1265
		spin_lock(&hsotg->lock);
1266 1267
	}

1268 1269
	/*
	 * Look to see if there is anything else to do. Note, the completion
1270
	 * of the previous request may have caused a new request to be started
1271 1272
	 * so be careful when doing this.
	 */
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292

	if (!hs_ep->req && result >= 0) {
		restart = !list_empty(&hs_ep->queue);
		if (restart) {
			hs_req = get_ep_head(hs_ep);
			s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		}
	}
}

/**
 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
1293
static void s3c_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
1294 1295 1296
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1297
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1298 1299 1300 1301
	int to_read;
	int max_req;
	int read_ptr;

1302

1303
	if (!hs_req) {
1304
		u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
1305 1306 1307
		int ptr;

		dev_warn(hsotg->dev,
1308
			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
			(void)readl(fifo);

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

1322 1323 1324
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

1325
	if (to_read > max_req) {
1326 1327
		/*
		 * more data appeared than we where willing
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

1339 1340 1341 1342
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
1343
	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354
}

/**
 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
 * @hsotg: The device instance
 * @req: The request currently on this endpoint
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
1355
 * currently believed that we do not need to wait for any space in
1356 1357
 * the TxFIFO.
 */
1358
static void s3c_hsotg_send_zlp(struct dwc2_hsotg *hsotg,
1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
			       struct s3c_hsotg_req *req)
{
	u32 ctrl;

	if (!req) {
		dev_warn(hsotg->dev, "%s: no request?\n", __func__);
		return;
	}

	if (req->req.length == 0) {
		hsotg->eps[0].sent_zlp = 1;
		s3c_hsotg_enqueue_setup(hsotg);
		return;
	}

	hsotg->eps[0].dir_in = 1;
	hsotg->eps[0].sent_zlp = 1;

	dev_dbg(hsotg->dev, "sending zero-length packet\n");

	/* issue a zero-sized packet to terminate this */
1380 1381
	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
	       DXEPTSIZ_XFERSIZE(0), hsotg->regs + DIEPTSIZ(0));
1382

1383
	ctrl = readl(hsotg->regs + DIEPCTL0);
1384 1385 1386
	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
1387
	writel(ctrl, hsotg->regs + DIEPCTL0);
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
}

/**
 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 * @was_setup: Set if processing a SetupDone event.
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
1399
 */
1400
static void s3c_hsotg_handle_outdone(struct dwc2_hsotg *hsotg,
1401 1402
				     int epnum, bool was_setup)
{
1403
	u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
1404 1405 1406
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
	struct s3c_hsotg_req *hs_req = hs_ep->req;
	struct usb_request *req = &hs_req->req;
1407
	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

	if (using_dma(hsotg)) {
		unsigned size_done;

1418 1419
		/*
		 * Calculate the size of the transfer by checking how much
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

1433 1434 1435 1436
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
		return;
1437 1438 1439 1440 1441 1442
	} else if (epnum == 0) {
		/*
		 * After was_setup = 1 =>
		 * set CNAK for non Setup requests
		 */
		hsotg->setup = was_setup ? 0 : 1;
1443 1444
	}

1445 1446 1447 1448
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

1449 1450 1451 1452
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
1453 1454 1455
	}

	if (epnum == 0) {
1456 1457 1458 1459
		/*
		 * Condition req->complete != s3c_hsotg_complete_setup says:
		 * send ZLP when we have an asynchronous request from gadget
		 */
1460 1461 1462 1463
		if (!was_setup && req->complete != s3c_hsotg_complete_setup)
			s3c_hsotg_send_zlp(hsotg, hs_req);
	}

1464
	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1465 1466 1467 1468 1469 1470 1471
}

/**
 * s3c_hsotg_read_frameno - read current frame number
 * @hsotg: The device instance
 *
 * Return the current frame number
1472
 */
1473
static u32 s3c_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
1474 1475 1476
{
	u32 dsts;

1477 1478 1479
	dsts = readl(hsotg->regs + DSTS);
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491

	return dsts;
}

/**
 * s3c_hsotg_handle_rx - RX FIFO has data
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
1492
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1493 1494 1495 1496 1497 1498 1499
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
1500
static void s3c_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
1501
{
1502
	u32 grxstsr = readl(hsotg->regs + GRXSTSP);
1503 1504 1505 1506
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

1507 1508
	epnum = grxstsr & GRXSTS_EPNUM_MASK;
	status = grxstsr & GRXSTS_PKTSTS_MASK;
1509

1510 1511
	size = grxstsr & GRXSTS_BYTECNT_MASK;
	size >>= GRXSTS_BYTECNT_SHIFT;
1512 1513 1514 1515 1516

	if (1)
		dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
			__func__, grxstsr, size, epnum);

1517 1518 1519
	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
	case GRXSTS_PKTSTS_GLOBALOUTNAK:
		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1520 1521
		break;

1522
	case GRXSTS_PKTSTS_OUTDONE:
1523 1524 1525 1526 1527 1528 1529
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg));

		if (!using_dma(hsotg))
			s3c_hsotg_handle_outdone(hsotg, epnum, false);
		break;

1530
	case GRXSTS_PKTSTS_SETUPDONE:
1531 1532 1533
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1534
			readl(hsotg->regs + DOEPCTL(0)));
1535 1536 1537 1538

		s3c_hsotg_handle_outdone(hsotg, epnum, true);
		break;

1539
	case GRXSTS_PKTSTS_OUTRX:
1540 1541 1542
		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

1543
	case GRXSTS_PKTSTS_SETUPRX:
1544 1545 1546
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1547
			readl(hsotg->regs + DOEPCTL(0)));
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563

		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

		s3c_hsotg_dump(hsotg);
		break;
	}
}

/**
 * s3c_hsotg_ep0_mps - turn max packet size into register setting
 * @mps: The maximum packet size in bytes.
1564
 */
1565 1566 1567 1568
static u32 s3c_hsotg_ep0_mps(unsigned int mps)
{
	switch (mps) {
	case 64:
1569
		return D0EPCTL_MPS_64;
1570
	case 32:
1571
		return D0EPCTL_MPS_32;
1572
	case 16:
1573
		return D0EPCTL_MPS_16;
1574
	case 8:
1575
		return D0EPCTL_MPS_8;
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
1592
static void s3c_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
1593 1594 1595 1596 1597
				       unsigned int ep, unsigned int mps)
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
	void __iomem *regs = hsotg->regs;
	u32 mpsval;
1598
	u32 mcval;
1599 1600 1601 1602 1603 1604 1605
	u32 reg;

	if (ep == 0) {
		/* EP0 is a special case */
		mpsval = s3c_hsotg_ep0_mps(mps);
		if (mpsval > 3)
			goto bad_mps;
1606
		hs_ep->ep.maxpacket = mps;
1607
		hs_ep->mc = 1;
1608
	} else {
1609
		mpsval = mps & DXEPCTL_MPS_MASK;
1610
		if (mpsval > 1024)
1611
			goto bad_mps;
1612 1613 1614 1615
		mcval = ((mps >> 11) & 0x3) + 1;
		hs_ep->mc = mcval;
		if (mcval > 3)
			goto bad_mps;
1616
		hs_ep->ep.maxpacket = mpsval;
1617 1618
	}

1619 1620 1621 1622
	/*
	 * update both the in and out endpoint controldir_ registers, even
	 * if one of the directions may not be in use.
	 */
1623

1624
	reg = readl(regs + DIEPCTL(ep));
1625
	reg &= ~DXEPCTL_MPS_MASK;
1626
	reg |= mpsval;
1627
	writel(reg, regs + DIEPCTL(ep));
1628

1629
	if (ep) {
1630
		reg = readl(regs + DOEPCTL(ep));
1631
		reg &= ~DXEPCTL_MPS_MASK;
1632
		reg |= mpsval;
1633
		writel(reg, regs + DOEPCTL(ep));
1634
	}
1635 1636 1637 1638 1639 1640 1641

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

1642 1643 1644 1645 1646
/**
 * s3c_hsotg_txfifo_flush - flush Tx FIFO
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
1647
static void s3c_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
1648 1649 1650 1651
{
	int timeout;
	int val;

1652
	writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
1653
		hsotg->regs + GRSTCTL);
1654 1655 1656 1657 1658

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
1659
		val = readl(hsotg->regs + GRSTCTL);
1660

1661
		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1662 1663 1664 1665 1666 1667
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
1668
			break;
1669 1670 1671 1672 1673
		}

		udelay(1);
	}
}
1674 1675 1676 1677 1678 1679 1680 1681 1682

/**
 * s3c_hsotg_trytx - check to see if anything needs transmitting
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
1683
static int s3c_hsotg_trytx(struct dwc2_hsotg *hsotg,
1684 1685 1686 1687
			   struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;

1688 1689 1690 1691 1692 1693 1694 1695
	if (!hs_ep->dir_in || !hs_req) {
		/**
		 * if request is not enqueued, we disable interrupts
		 * for endpoints, excepting ep0
		 */
		if (hs_ep->index != 0)
			s3c_hsotg_ctrl_epint(hsotg, hs_ep->index,
					     hs_ep->dir_in, 0);
1696
		return 0;
1697
	}
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
		return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

	return 0;
}

/**
 * s3c_hsotg_complete_in - complete IN transfer
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
1716
static void s3c_hsotg_complete_in(struct dwc2_hsotg *hsotg,
1717 1718 1719
				  struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1720
	u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1721 1722 1723 1724 1725 1726 1727
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

1728 1729 1730
	/* Finish ZLP handling for IN EP0 transactions */
	if (hsotg->eps[0].sent_zlp) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
1731
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1732 1733 1734
		return;
	}

1735 1736
	/*
	 * Calculate the size of the transfer by checking how much is left
1737 1738 1739 1740 1741 1742 1743 1744
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */

1745
	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1746 1747 1748 1749 1750 1751 1752 1753 1754

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

	/*
	 * Check if dealing with Maximum Packet Size(MPS) IN transfer at EP0
	 * When sent data is a multiple MPS size (e.g. 64B ,128B ,192B
	 * ,256B ... ), after last MPS sized packet send IN ZLP packet to
	 * inform the host that no more data is available.
	 * The state of req.zero member is checked to be sure that the value to
	 * send is smaller than wValue expected from host.
	 * Check req.length to NOT send another ZLP when the current one is
	 * under completion (the one for which this completion has been called).
	 */
	if (hs_req->req.length && hs_ep->index == 0 && hs_req->req.zero &&
	    hs_req->req.length == hs_req->req.actual &&
	    !(hs_req->req.length % hs_ep->ep.maxpacket)) {

		dev_dbg(hsotg->dev, "ep0 zlp IN packet sent\n");
		s3c_hsotg_send_zlp(hsotg, hs_req);
1774

1775 1776
		return;
	}
1777 1778 1779 1780 1781

	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
	} else
1782
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1783 1784 1785 1786 1787 1788 1789 1790 1791
}

/**
 * s3c_hsotg_epint - handle an in/out endpoint interrupt
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
1792
 */
1793
static void s3c_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
1794 1795 1796
			    int dir_in)
{
	struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
1797 1798 1799
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1800
	u32 ints;
1801
	u32 ctrl;
1802 1803

	ints = readl(hsotg->regs + epint_reg);
1804
	ctrl = readl(hsotg->regs + epctl_reg);
1805

1806 1807 1808
	/* Clear endpoint interrupts */
	writel(ints, hsotg->regs + epint_reg);

1809 1810 1811
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

1812
	if (ints & DXEPINT_XFERCOMPL) {
1813
		if (hs_ep->isochronous && hs_ep->interval == 1) {
1814 1815
			if (ctrl & DXEPCTL_EOFRNUM)
				ctrl |= DXEPCTL_SETEVENFR;
1816
			else
1817
				ctrl |= DXEPCTL_SETODDFR;
1818 1819 1820
			writel(ctrl, hsotg->regs + epctl_reg);
		}

1821
		dev_dbg(hsotg->dev,
1822
			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1823 1824 1825
			__func__, readl(hsotg->regs + epctl_reg),
			readl(hsotg->regs + epsiz_reg));

1826 1827 1828 1829
		/*
		 * we get OutDone from the FIFO, so we only need to look
		 * at completing IN requests here
		 */
1830 1831 1832
		if (dir_in) {
			s3c_hsotg_complete_in(hsotg, hs_ep);

1833
			if (idx == 0 && !hs_ep->req)
1834 1835
				s3c_hsotg_enqueue_setup(hsotg);
		} else if (using_dma(hsotg)) {
1836 1837 1838 1839
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
1840 1841 1842 1843 1844

			s3c_hsotg_handle_outdone(hsotg, idx, false);
		}
	}

1845
	if (ints & DXEPINT_EPDISBLD) {
1846 1847
		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

1848 1849 1850
		if (dir_in) {
			int epctl = readl(hsotg->regs + epctl_reg);

1851
			s3c_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
1852

1853 1854
			if ((epctl & DXEPCTL_STALL) &&
				(epctl & DXEPCTL_EPTYPE_BULK)) {
1855
				int dctl = readl(hsotg->regs + DCTL);
1856

1857
				dctl |= DCTL_CGNPINNAK;
1858
				writel(dctl, hsotg->regs + DCTL);
1859 1860 1861 1862
			}
		}
	}

1863
	if (ints & DXEPINT_AHBERR)
1864 1865
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

1866
	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
1867 1868 1869
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
1870 1871
			/*
			 * this is the notification we've received a
1872 1873
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
1874 1875
			 * the setup here.
			 */
1876 1877 1878 1879 1880 1881 1882 1883

			if (dir_in)
				WARN_ON_ONCE(1);
			else
				s3c_hsotg_handle_outdone(hsotg, 0, true);
		}
	}

1884
	if (ints & DXEPINT_BACK2BACKSETUP)
1885 1886
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

1887
	if (dir_in && !hs_ep->isochronous) {
1888
		/* not sure if this is important, but we'll clear it anyway */
1889
		if (ints & DIEPMSK_INTKNTXFEMPMSK) {
1890 1891 1892 1893 1894
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
1895
		if (ints & DIEPMSK_INTKNEPMISMSK) {
1896 1897 1898
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
1899 1900 1901

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
1902
		    ints & DIEPMSK_TXFIFOEMPTY) {
1903 1904
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
1905 1906
			if (!using_dma(hsotg))
				s3c_hsotg_trytx(hsotg, hs_ep);
1907
		}
1908 1909 1910 1911 1912 1913 1914 1915 1916
	}
}

/**
 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
1917
 */
1918
static void s3c_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
1919
{
1920
	u32 dsts = readl(hsotg->regs + DSTS);
1921
	int ep0_mps = 0, ep_mps = 8;
1922

1923 1924
	/*
	 * This should signal the finish of the enumeration phase
1925
	 * of the USB handshaking, so we should now know what rate
1926 1927
	 * we connected at.
	 */
1928 1929 1930

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

1931 1932
	/*
	 * note, since we're limited by the size of transfer on EP0, and
1933
	 * it seems IN transfers must be a even number of packets we do
1934 1935
	 * not advertise a 64byte MPS on EP0.
	 */
1936 1937

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
1938 1939 1940
	switch (dsts & DSTS_ENUMSPD_MASK) {
	case DSTS_ENUMSPD_FS:
	case DSTS_ENUMSPD_FS48:
1941 1942
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
1943
		ep_mps = 1023;
1944 1945
		break;

1946
	case DSTS_ENUMSPD_HS:
1947 1948
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
1949
		ep_mps = 1024;
1950 1951
		break;

1952
	case DSTS_ENUMSPD_LS:
1953
		hsotg->gadget.speed = USB_SPEED_LOW;
1954 1955
		/*
		 * note, we don't actually support LS in this driver at the
1956 1957 1958 1959 1960
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
1961 1962
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
1963

1964 1965 1966 1967
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
1968 1969 1970 1971

	if (ep0_mps) {
		int i;
		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
1972
		for (i = 1; i < hsotg->num_of_eps; i++)
1973 1974 1975 1976 1977 1978 1979 1980
			s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
	}

	/* ensure after enumeration our EP0 is active */

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
1981 1982
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 * @force: Force removal of any current requests
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
1995
static void kill_all_requests(struct dwc2_hsotg *hsotg,
1996 1997 1998 1999
			      struct s3c_hsotg_ep *ep,
			      int result, bool force)
{
	struct s3c_hsotg_req *req, *treq;
2000
	unsigned size;
2001 2002

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2003 2004 2005 2006
		/*
		 * currently, we can't do much about an already
		 * running request on an in endpoint
		 */
2007 2008 2009 2010 2011 2012 2013

		if (ep->req == req && ep->dir_in && !force)
			continue;

		s3c_hsotg_complete_request(hsotg, ep, req,
					   result);
	}
2014 2015 2016 2017 2018
	if (!hsotg->dedicated_fifos)
		return;
	size = (readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4;
	if (size < ep->fifo_size)
		s3c_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2019 2020 2021
}

/**
2022
 * s3c_hsotg_disconnect - disconnect service
2023 2024
 * @hsotg: The device state.
 *
2025 2026 2027
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
2028
 */
2029
void s3c_hsotg_disconnect(struct dwc2_hsotg *hsotg)
2030 2031 2032
{
	unsigned ep;

2033 2034 2035 2036
	if (!hsotg->connected)
		return;

	hsotg->connected = 0;
2037
	for (ep = 0; ep < hsotg->num_of_eps; ep++)
2038 2039 2040 2041
		kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);

	call_gadget(hsotg, disconnect);
}
2042
EXPORT_SYMBOL_GPL(s3c_hsotg_disconnect);
2043 2044 2045 2046 2047 2048

/**
 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
2049
static void s3c_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
2050 2051 2052 2053 2054 2055
{
	struct s3c_hsotg_ep *ep;
	int epno, ret;

	/* look through for any more data to transmit */

2056
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072
		ep = &hsotg->eps[epno];

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

		ret = s3c_hsotg_trytx(hsotg, ep);
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
2073 2074 2075
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
			GINTSTS_PTXFEMP |  \
			GINTSTS_RXFLVL)
2076

2077 2078 2079 2080 2081
/**
 * s3c_hsotg_corereset - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
2082
 */
2083
static int s3c_hsotg_corereset(struct dwc2_hsotg *hsotg)
2084 2085 2086 2087 2088 2089 2090
{
	int timeout;
	u32 grstctl;

	dev_dbg(hsotg->dev, "resetting core\n");

	/* issue soft reset */
2091
	writel(GRSTCTL_CSFTRST, hsotg->regs + GRSTCTL);
2092

2093
	timeout = 10000;
2094
	do {
2095
		grstctl = readl(hsotg->regs + GRSTCTL);
2096
	} while ((grstctl & GRSTCTL_CSFTRST) && timeout-- > 0);
2097

2098
	if (grstctl & GRSTCTL_CSFTRST) {
2099 2100 2101 2102
		dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
		return -EINVAL;
	}

2103
	timeout = 10000;
2104 2105

	while (1) {
2106
		u32 grstctl = readl(hsotg->regs + GRSTCTL);
2107 2108 2109 2110 2111 2112 2113 2114

		if (timeout-- < 0) {
			dev_info(hsotg->dev,
				 "%s: reset failed, GRSTCTL=%08x\n",
				 __func__, grstctl);
			return -ETIMEDOUT;
		}

2115
		if (!(grstctl & GRSTCTL_AHBIDLE))
2116 2117 2118 2119 2120 2121 2122 2123 2124
			continue;

		break;		/* reset done */
	}

	dev_dbg(hsotg->dev, "reset successful\n");
	return 0;
}

2125 2126 2127 2128 2129 2130
/**
 * s3c_hsotg_core_init - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
2131
void s3c_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg)
2132 2133 2134 2135 2136 2137 2138 2139 2140
{
	s3c_hsotg_corereset(hsotg);

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2141
	writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
2142
	       (0x5 << 10), hsotg->regs + GUSBCFG);
2143 2144 2145

	s3c_hsotg_init_fifo(hsotg);

2146
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2147

2148
	writel(1 << 18 | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2149 2150

	/* Clear any pending OTG interrupts */
2151
	writel(0xffffffff, hsotg->regs + GOTGINT);
2152 2153

	/* Clear any pending interrupts */
2154
	writel(0xffffffff, hsotg->regs + GINTSTS);
2155

2156 2157 2158 2159 2160 2161
	writel(GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
		GINTSTS_CONIDSTSCHNG | GINTSTS_USBRST |
		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
		GINTSTS_USBSUSP | GINTSTS_WKUPINT,
		hsotg->regs + GINTMSK);
2162 2163

	if (using_dma(hsotg))
2164 2165
		writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
		       GAHBCFG_HBSTLEN_INCR4,
2166
		       hsotg->regs + GAHBCFG);
2167
	else
2168 2169 2170
		writel(((hsotg->dedicated_fifos) ? (GAHBCFG_NP_TXF_EMP_LVL |
						    GAHBCFG_P_TXF_EMP_LVL) : 0) |
		       GAHBCFG_GLBL_INTR_EN,
2171
		       hsotg->regs + GAHBCFG);
2172 2173

	/*
2174 2175 2176
	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
	 * when we have no data to transfer. Otherwise we get being flooded by
	 * interrupts.
2177 2178
	 */

2179 2180 2181 2182 2183 2184
	writel(((hsotg->dedicated_fifos) ? DIEPMSK_TXFIFOEMPTY |
		DIEPMSK_INTKNTXFEMPMSK : 0) |
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		DIEPMSK_INTKNEPMISMSK,
		hsotg->regs + DIEPMSK);
2185 2186 2187 2188 2189

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
	 * DMA mode we may need this.
	 */
2190 2191 2192 2193 2194
	writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
				    DIEPMSK_TIMEOUTMSK) : 0) |
		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
		DOEPMSK_SETUPMSK,
		hsotg->regs + DOEPMSK);
2195

2196
	writel(0, hsotg->regs + DAINTMSK);
2197 2198

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2199 2200
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2201 2202

	/* enable in and out endpoint interrupts */
2203
	s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2204 2205 2206 2207 2208 2209 2210

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
2211
		s3c_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2212 2213 2214 2215 2216

	/* Enable interrupts for EP0 in and out */
	s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);

2217
	__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2218
	udelay(10);  /* see openiboot */
2219
	__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2220

2221
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
2222 2223

	/*
2224
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2225 2226 2227 2228
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
2229 2230
	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2231 2232

	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2233 2234
	       DXEPCTL_CNAK | DXEPCTL_EPENA |
	       DXEPCTL_USBACTEP,
2235
	       hsotg->regs + DOEPCTL0);
2236 2237 2238

	/* enable, but don't activate EP0in */
	writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
2239
	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2240 2241 2242 2243

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2244 2245
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2246 2247

	/* clear global NAKs */
2248
	writel(DCTL_CGOUTNAK | DCTL_CGNPINNAK | DCTL_SFTDISCON,
2249
	       hsotg->regs + DCTL);
2250 2251 2252 2253

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

2254
	hsotg->last_rst = jiffies;
2255 2256
}

2257
static void s3c_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
2258 2259 2260 2261
{
	/* set the soft-disconnect bit */
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
}
2262

2263
void s3c_hsotg_core_connect(struct dwc2_hsotg *hsotg)
2264
{
2265
	/* remove the soft-disconnect and let's go */
2266
	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2267 2268
}

2269 2270 2271 2272 2273 2274 2275
/**
 * s3c_hsotg_irq - handle device interrupt
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
{
2276
	struct dwc2_hsotg *hsotg = pw;
2277 2278 2279 2280
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

2281
	spin_lock(&hsotg->lock);
2282
irq_retry:
2283 2284
	gintsts = readl(hsotg->regs + GINTSTS);
	gintmsk = readl(hsotg->regs + GINTMSK);
2285 2286 2287 2288 2289 2290

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

2291 2292
	if (gintsts & GINTSTS_ENUMDONE) {
		writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2293 2294

		s3c_hsotg_irq_enumdone(hsotg);
2295
		hsotg->connected = 1;
2296 2297
	}

2298
	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2299
		u32 daint = readl(hsotg->regs + DAINT);
2300 2301
		u32 daintmsk = readl(hsotg->regs + DAINTMSK);
		u32 daint_out, daint_in;
2302 2303
		int ep;

2304
		daint &= daintmsk;
2305 2306
		daint_out = daint >> DAINT_OUTEP_SHIFT;
		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2307

2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320
		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

		for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
			if (daint_out & 1)
				s3c_hsotg_epint(hsotg, ep, 0);
		}

		for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
			if (daint_in & 1)
				s3c_hsotg_epint(hsotg, ep, 1);
		}
	}

2321
	if (gintsts & GINTSTS_USBRST) {
2322

2323
		u32 usb_status = readl(hsotg->regs + GOTGCTL);
2324

2325 2326
		dev_info(hsotg->dev, "%s: USBRst\n", __func__);
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2327
			readl(hsotg->regs + GNPTXSTS));
2328

2329
		writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
2330

2331
		if (usb_status & GOTGCTL_BSESVLD) {
2332 2333
			if (time_after(jiffies, hsotg->last_rst +
				       msecs_to_jiffies(200))) {
2334

2335 2336
				kill_all_requests(hsotg, &hsotg->eps[0],
							  -ECONNRESET, true);
2337

2338 2339
				s3c_hsotg_core_init_disconnected(hsotg);
				s3c_hsotg_core_connect(hsotg);
2340 2341
			}
		}
2342 2343 2344 2345
	}

	/* check both FIFOs */

2346
	if (gintsts & GINTSTS_NPTXFEMP) {
2347 2348
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

2349 2350
		/*
		 * Disable the interrupt to stop it happening again
2351
		 * unless one of these endpoint routines decides that
2352 2353
		 * it needs re-enabling
		 */
2354

2355
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
2356 2357 2358
		s3c_hsotg_irq_fifoempty(hsotg, false);
	}

2359
	if (gintsts & GINTSTS_PTXFEMP) {
2360 2361
		dev_dbg(hsotg->dev, "PTxFEmp\n");

2362
		/* See note in GINTSTS_NPTxFEmp */
2363

2364
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
2365 2366 2367
		s3c_hsotg_irq_fifoempty(hsotg, true);
	}

2368
	if (gintsts & GINTSTS_RXFLVL) {
2369 2370
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2371
		 * we need to retry s3c_hsotg_handle_rx if this is still
2372 2373
		 * set.
		 */
2374 2375 2376 2377

		s3c_hsotg_handle_rx(hsotg);
	}

2378
	if (gintsts & GINTSTS_ERLYSUSP) {
2379
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2380
		writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2381 2382
	}

2383 2384
	/*
	 * these next two seem to crop-up occasionally causing the core
2385
	 * to shutdown the USB transfer, so try clearing them and logging
2386 2387
	 * the occurrence.
	 */
2388

2389
	if (gintsts & GINTSTS_GOUTNAKEFF) {
2390 2391
		dev_info(hsotg->dev, "GOUTNakEff triggered\n");

2392
		writel(DCTL_CGOUTNAK, hsotg->regs + DCTL);
2393 2394

		s3c_hsotg_dump(hsotg);
2395 2396
	}

2397
	if (gintsts & GINTSTS_GINNAKEFF) {
2398 2399
		dev_info(hsotg->dev, "GINNakEff triggered\n");

2400
		writel(DCTL_CGNPINNAK, hsotg->regs + DCTL);
2401 2402

		s3c_hsotg_dump(hsotg);
2403 2404
	}

2405 2406 2407 2408
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
2409 2410 2411 2412

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
			goto irq_retry;

2413 2414
	spin_unlock(&hsotg->lock);

2415 2416 2417 2418 2419 2420 2421 2422 2423
	return IRQ_HANDLED;
}

/**
 * s3c_hsotg_ep_enable - enable the given endpoint
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
2424
 */
2425 2426 2427 2428
static int s3c_hsotg_ep_enable(struct usb_ep *ep,
			       const struct usb_endpoint_descriptor *desc)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2429
	struct dwc2_hsotg *hsotg = hs_ep->parent;
2430 2431 2432 2433 2434 2435
	unsigned long flags;
	int index = hs_ep->index;
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
	int dir_in;
2436
	int i, val, size;
2437
	int ret = 0;
2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
	WARN_ON(index == 0);

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

2453
	mps = usb_endpoint_maxp(desc);
2454 2455 2456

	/* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */

2457
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2458 2459 2460 2461 2462
	epctrl = readl(hsotg->regs + epctrl_reg);

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

2463
	spin_lock_irqsave(&hsotg->lock, flags);
2464

2465 2466
	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
	epctrl |= DXEPCTL_MPS(mps);
2467

2468 2469 2470 2471
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
2472
	epctrl |= DXEPCTL_USBACTEP;
2473

2474 2475
	/*
	 * set the NAK status on the endpoint, otherwise we might try and
2476 2477 2478 2479 2480
	 * do something with data that we've yet got a request to process
	 * since the RXFIFO will take data for an endpoint even if the
	 * size register hasn't been set.
	 */

2481
	epctrl |= DXEPCTL_SNAK;
2482 2483

	/* update the endpoint state */
2484
	s3c_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps);
2485 2486

	/* default, set to non-periodic */
2487
	hs_ep->isochronous = 0;
2488
	hs_ep->periodic = 0;
2489
	hs_ep->halted = 0;
2490
	hs_ep->interval = desc->bInterval;
2491

2492 2493 2494
	if (hs_ep->interval > 1 && hs_ep->mc > 1)
		dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");

2495 2496
	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
2497 2498
		epctrl |= DXEPCTL_EPTYPE_ISO;
		epctrl |= DXEPCTL_SETEVENFR;
2499 2500 2501 2502
		hs_ep->isochronous = 1;
		if (dir_in)
			hs_ep->periodic = 1;
		break;
2503 2504

	case USB_ENDPOINT_XFER_BULK:
2505
		epctrl |= DXEPCTL_EPTYPE_BULK;
2506 2507 2508
		break;

	case USB_ENDPOINT_XFER_INT:
2509
		if (dir_in)
2510 2511
			hs_ep->periodic = 1;

2512
		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2513 2514 2515
		break;

	case USB_ENDPOINT_XFER_CONTROL:
2516
		epctrl |= DXEPCTL_EPTYPE_CONTROL;
2517 2518 2519
		break;
	}

2520 2521
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
2522 2523
	 * a unique tx-fifo even if it is non-periodic.
	 */
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539
	if (dir_in && hsotg->dedicated_fifos) {
		size = hs_ep->ep.maxpacket*hs_ep->mc;
		for (i = 1; i <= 8; ++i) {
			if (hsotg->fifo_map & (1<<i))
				continue;
			val = readl(hsotg->regs + DPTXFSIZN(i));
			val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
			if (val < size)
				continue;
			hsotg->fifo_map |= 1<<i;

			epctrl |= DXEPCTL_TXFNUM(i);
			hs_ep->fifo_index = i;
			hs_ep->fifo_size = val;
			break;
		}
2540 2541 2542 2543
		if (i == 8) {
			ret = -ENOMEM;
			goto error;
		}
2544
	}
2545

2546 2547
	/* for non control endpoints, set PID to D0 */
	if (index)
2548
		epctrl |= DXEPCTL_SETD0PID;
2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

	writel(epctrl, hsotg->regs + epctrl_reg);
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
		__func__, readl(hsotg->regs + epctrl_reg));

	/* enable the endpoint interrupt */
	s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);

2560
error:
2561
	spin_unlock_irqrestore(&hsotg->lock, flags);
2562
	return ret;
2563 2564
}

2565 2566 2567 2568
/**
 * s3c_hsotg_ep_disable - disable given endpoint
 * @ep: The endpoint to disable.
 */
2569 2570 2571
static int s3c_hsotg_ep_disable(struct usb_ep *ep)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2572
	struct dwc2_hsotg *hsotg = hs_ep->parent;
2573 2574 2575 2576 2577 2578
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

2579
	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2580 2581 2582 2583 2584 2585

	if (ep == &hsotg->eps[0].ep) {
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

2586
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2587

2588
	spin_lock_irqsave(&hsotg->lock, flags);
2589 2590 2591
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);

2592 2593 2594
	hsotg->fifo_map &= ~(1<<hs_ep->fifo_index);
	hs_ep->fifo_index = 0;
	hs_ep->fifo_size = 0;
2595 2596

	ctrl = readl(hsotg->regs + epctrl_reg);
2597 2598 2599
	ctrl &= ~DXEPCTL_EPENA;
	ctrl &= ~DXEPCTL_USBACTEP;
	ctrl |= DXEPCTL_SNAK;
2600 2601 2602 2603 2604 2605 2606

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

	/* disable endpoint interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);

2607
	spin_unlock_irqrestore(&hsotg->lock, flags);
2608 2609 2610 2611 2612 2613 2614
	return 0;
}

/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
2615
 */
2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627
static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
{
	struct s3c_hsotg_req *req, *treq;

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

2628 2629 2630 2631 2632
/**
 * s3c_hsotg_ep_dequeue - dequeue given endpoint
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
2633 2634 2635 2636
static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2637
	struct dwc2_hsotg *hs = hs_ep->parent;
2638 2639
	unsigned long flags;

2640
	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2641

2642
	spin_lock_irqsave(&hs->lock, flags);
2643 2644

	if (!on_list(hs_ep, hs_req)) {
2645
		spin_unlock_irqrestore(&hs->lock, flags);
2646 2647 2648 2649
		return -EINVAL;
	}

	s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2650
	spin_unlock_irqrestore(&hs->lock, flags);
2651 2652 2653 2654

	return 0;
}

2655 2656 2657 2658 2659
/**
 * s3c_hsotg_ep_sethalt - set halt on a given endpoint
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
2660 2661 2662
static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2663
	struct dwc2_hsotg *hs = hs_ep->parent;
2664 2665 2666
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
2667
	u32 xfertype;
2668 2669 2670

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

2671 2672 2673 2674 2675 2676 2677 2678 2679
	if (index == 0) {
		if (value)
			s3c_hsotg_stall_ep0(hs);
		else
			dev_warn(hs->dev,
				 "%s: can't clear halt on ep0\n", __func__);
		return 0;
	}

2680 2681
	/* write both IN and OUT control registers */

2682
	epreg = DIEPCTL(index);
2683 2684
	epctl = readl(hs->regs + epreg);

2685
	if (value) {
2686 2687 2688
		epctl |= DXEPCTL_STALL + DXEPCTL_SNAK;
		if (epctl & DXEPCTL_EPENA)
			epctl |= DXEPCTL_EPDIS;
2689
	} else {
2690 2691 2692 2693 2694
		epctl &= ~DXEPCTL_STALL;
		xfertype = epctl & DXEPCTL_EPTYPE_MASK;
		if (xfertype == DXEPCTL_EPTYPE_BULK ||
			xfertype == DXEPCTL_EPTYPE_INTERRUPT)
				epctl |= DXEPCTL_SETD0PID;
2695
	}
2696 2697 2698

	writel(epctl, hs->regs + epreg);

2699
	epreg = DOEPCTL(index);
2700 2701 2702
	epctl = readl(hs->regs + epreg);

	if (value)
2703
		epctl |= DXEPCTL_STALL;
2704
	else {
2705 2706 2707 2708 2709
		epctl &= ~DXEPCTL_STALL;
		xfertype = epctl & DXEPCTL_EPTYPE_MASK;
		if (xfertype == DXEPCTL_EPTYPE_BULK ||
			xfertype == DXEPCTL_EPTYPE_INTERRUPT)
				epctl |= DXEPCTL_SETD0PID;
2710
	}
2711 2712 2713

	writel(epctl, hs->regs + epreg);

2714 2715
	hs_ep->halted = value;

2716 2717 2718
	return 0;
}

2719 2720 2721 2722 2723 2724 2725 2726
/**
 * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2727
	struct dwc2_hsotg *hs = hs_ep->parent;
2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_sethalt(ep, value);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

2738 2739 2740 2741 2742
static struct usb_ep_ops s3c_hsotg_ep_ops = {
	.enable		= s3c_hsotg_ep_enable,
	.disable	= s3c_hsotg_ep_disable,
	.alloc_request	= s3c_hsotg_ep_alloc_request,
	.free_request	= s3c_hsotg_ep_free_request,
2743
	.queue		= s3c_hsotg_ep_queue_lock,
2744
	.dequeue	= s3c_hsotg_ep_dequeue,
2745
	.set_halt	= s3c_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
2746
	/* note, don't believe we have any call for the fifo routines */
2747 2748
};

2749 2750
/**
 * s3c_hsotg_phy_enable - enable platform phy dev
2751
 * @hsotg: The driver state
2752 2753 2754 2755
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
2756
static void s3c_hsotg_phy_enable(struct dwc2_hsotg *hsotg)
2757 2758 2759 2760
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

	dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
2761

2762
	if (hsotg->uphy)
2763
		usb_phy_init(hsotg->uphy);
2764
	else if (hsotg->plat && hsotg->plat->phy_init)
2765
		hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
2766 2767 2768 2769
	else {
		phy_init(hsotg->phy);
		phy_power_on(hsotg->phy);
	}
2770 2771 2772 2773
}

/**
 * s3c_hsotg_phy_disable - disable platform phy dev
2774
 * @hsotg: The driver state
2775 2776 2777 2778
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
2779
static void s3c_hsotg_phy_disable(struct dwc2_hsotg *hsotg)
2780 2781 2782
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

2783
	if (hsotg->uphy)
2784
		usb_phy_shutdown(hsotg->uphy);
2785
	else if (hsotg->plat && hsotg->plat->phy_exit)
2786
		hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
2787 2788 2789 2790
	else {
		phy_power_off(hsotg->phy);
		phy_exit(hsotg->phy);
	}
2791 2792
}

2793 2794 2795 2796
/**
 * s3c_hsotg_init - initalize the usb core
 * @hsotg: The driver state
 */
2797
static void s3c_hsotg_init(struct dwc2_hsotg *hsotg)
2798 2799 2800
{
	/* unmask subset of endpoint interrupts */

2801 2802 2803
	writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
		hsotg->regs + DIEPMSK);
2804

2805 2806 2807
	writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
		DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
		hsotg->regs + DOEPMSK);
2808

2809
	writel(0, hsotg->regs + DAINTMSK);
2810 2811

	/* Be in disconnected state until gadget is registered */
2812
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2813 2814 2815

	if (0) {
		/* post global nak until we're ready */
2816
		writel(DCTL_SGNPINNAK | DCTL_SGOUTNAK,
2817
		       hsotg->regs + DCTL);
2818 2819 2820 2821 2822
	}

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2823 2824
		readl(hsotg->regs + GRXFSIZ),
		readl(hsotg->regs + GNPTXFSIZ));
2825 2826 2827 2828

	s3c_hsotg_init_fifo(hsotg);

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2829
	writel(GUSBCFG_PHYIF16 | GUSBCFG_TOUTCAL(7) | (0x5 << 10),
2830
	       hsotg->regs + GUSBCFG);
2831

2832
	writel(using_dma(hsotg) ? GAHBCFG_DMA_EN : 0x0,
2833
	       hsotg->regs + GAHBCFG);
2834 2835
}

2836 2837 2838 2839 2840 2841 2842 2843
/**
 * s3c_hsotg_udc_start - prepare the udc for work
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
2844 2845
static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
			   struct usb_gadget_driver *driver)
2846
{
2847
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
2848
	unsigned long flags;
2849 2850 2851
	int ret;

	if (!hsotg) {
2852
		pr_err("%s: called with no device\n", __func__);
2853 2854 2855 2856 2857 2858 2859 2860
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

2861
	if (driver->max_speed < USB_SPEED_FULL)
2862 2863
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

2864
	if (!driver->setup) {
2865 2866 2867 2868 2869 2870 2871 2872
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
2873
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
2874 2875
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

2876 2877
	clk_enable(hsotg->clk);

2878 2879
	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
2880
	if (ret) {
2881
		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
2882 2883 2884
		goto err;
	}

2885 2886
	s3c_hsotg_phy_enable(hsotg);

2887 2888 2889 2890 2891
	spin_lock_irqsave(&hsotg->lock, flags);
	s3c_hsotg_init(hsotg);
	s3c_hsotg_core_init_disconnected(hsotg);
	spin_unlock_irqrestore(&hsotg->lock, flags);

2892
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
2893

2894 2895 2896 2897 2898 2899 2900
	return 0;

err:
	hsotg->driver = NULL;
	return ret;
}

2901 2902 2903 2904 2905 2906 2907
/**
 * s3c_hsotg_udc_stop - stop the udc
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
2908
static int s3c_hsotg_udc_stop(struct usb_gadget *gadget)
2909
{
2910
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
2911
	unsigned long flags = 0;
2912 2913 2914 2915 2916 2917
	int ep;

	if (!hsotg)
		return -ENODEV;

	/* all endpoints should be shutdown */
2918
	for (ep = 1; ep < hsotg->num_of_eps; ep++)
2919 2920
		s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);

2921 2922
	spin_lock_irqsave(&hsotg->lock, flags);

2923
	hsotg->driver = NULL;
2924 2925
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

2926 2927
	spin_unlock_irqrestore(&hsotg->lock, flags);

2928 2929
	s3c_hsotg_phy_disable(hsotg);

2930
	regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
2931

2932 2933
	clk_disable(hsotg->clk);

2934 2935 2936
	return 0;
}

2937 2938 2939 2940 2941 2942
/**
 * s3c_hsotg_gadget_getframe - read the frame number
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
2943 2944 2945 2946 2947
static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
{
	return s3c_hsotg_read_frameno(to_hsotg(gadget));
}

2948 2949 2950 2951 2952 2953 2954 2955 2956
/**
 * s3c_hsotg_pullup - connect/disconnect the USB PHY
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
{
2957
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
2958 2959
	unsigned long flags = 0;

2960
	dev_dbg(hsotg->dev, "%s: is_on: %d\n", __func__, is_on);
2961 2962 2963

	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
2964
		clk_enable(hsotg->clk);
2965
		s3c_hsotg_core_connect(hsotg);
2966
	} else {
2967
		s3c_hsotg_core_disconnect(hsotg);
2968
		clk_disable(hsotg->clk);
2969 2970 2971 2972 2973 2974 2975 2976
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return 0;
}

2977
static const struct usb_gadget_ops s3c_hsotg_gadget_ops = {
2978
	.get_frame	= s3c_hsotg_gadget_getframe,
2979 2980
	.udc_start		= s3c_hsotg_udc_start,
	.udc_stop		= s3c_hsotg_udc_stop,
2981
	.pullup                 = s3c_hsotg_pullup,
2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
};

/**
 * s3c_hsotg_initep - initialise a single endpoint
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
2994
static void s3c_hsotg_initep(struct dwc2_hsotg *hsotg,
2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
				       struct s3c_hsotg_ep *hs_ep,
				       int epnum)
{
	char *dir;

	if (epnum == 0)
		dir = "";
	else if ((epnum % 2) == 0) {
		dir = "out";
	} else {
		dir = "in";
		hs_ep->dir_in = 1;
	}

	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
3022
	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3023 3024
	hs_ep->ep.ops = &s3c_hsotg_ep_ops;

3025 3026
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
3027 3028 3029 3030
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
3031
		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3032 3033
		writel(next, hsotg->regs + DIEPCTL(epnum));
		writel(next, hsotg->regs + DOEPCTL(epnum));
3034 3035 3036
	}
}

3037 3038 3039 3040 3041 3042
/**
 * s3c_hsotg_hw_cfg - read HW configuration registers
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
3043
static void s3c_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
3044
{
3045
	u32 cfg2, cfg3, cfg4;
3046
	/* check hardware configuration */
3047

3048 3049
	cfg2 = readl(hsotg->regs + 0x48);
	hsotg->num_of_eps = (cfg2 >> 10) & 0xF;
3050

3051 3052
	cfg3 = readl(hsotg->regs + 0x4C);
	hsotg->fifo_mem = (cfg3 >> 16);
3053 3054 3055 3056

	cfg4 = readl(hsotg->regs + 0x50);
	hsotg->dedicated_fifos = (cfg4 >> 25) & 1;

3057 3058 3059 3060
	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
		 hsotg->num_of_eps,
		 hsotg->dedicated_fifos ? "dedicated" : "shared",
		 hsotg->fifo_mem);
3061 3062
}

3063 3064 3065 3066
/**
 * s3c_hsotg_dump - dump state of the udc
 * @param: The device state
 */
3067
static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg)
3068
{
M
Mark Brown 已提交
3069
#ifdef DEBUG
3070 3071 3072 3073 3074 3075
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3076 3077
		 readl(regs + DCFG), readl(regs + DCTL),
		 readl(regs + DIEPMSK));
3078 3079

	dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
3080
		 readl(regs + GAHBCFG), readl(regs + 0x44));
3081 3082

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3083
		 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
3084 3085 3086 3087

	/* show periodic fifo settings */

	for (idx = 1; idx <= 15; idx++) {
3088
		val = readl(regs + DPTXFSIZN(idx));
3089
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3090 3091
			 val >> FIFOSIZE_DEPTH_SHIFT,
			 val & FIFOSIZE_STARTADDR_MASK);
3092 3093 3094 3095 3096
	}

	for (idx = 0; idx < 15; idx++) {
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3097 3098 3099
			 readl(regs + DIEPCTL(idx)),
			 readl(regs + DIEPTSIZ(idx)),
			 readl(regs + DIEPDMA(idx)));
3100

3101
		val = readl(regs + DOEPCTL(idx));
3102 3103
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3104 3105 3106
			 idx, readl(regs + DOEPCTL(idx)),
			 readl(regs + DOEPTSIZ(idx)),
			 readl(regs + DOEPDMA(idx)));
3107 3108 3109 3110

	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3111
		 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
3112
#endif
3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
}

/**
 * state_show - debugfs: show overall driver and device state.
 * @seq: The seq file to write to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the overall state of the hardware and
 * some general information about each of the endpoints available
 * to the system.
 */
static int state_show(struct seq_file *seq, void *v)
{
3126
	struct dwc2_hsotg *hsotg = seq->private;
3127 3128 3129 3130
	void __iomem *regs = hsotg->regs;
	int idx;

	seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3131 3132 3133
		 readl(regs + DCFG),
		 readl(regs + DCTL),
		 readl(regs + DSTS));
3134 3135

	seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3136
		   readl(regs + DIEPMSK), readl(regs + DOEPMSK));
3137 3138

	seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3139 3140
		   readl(regs + GINTMSK),
		   readl(regs + GINTSTS));
3141 3142

	seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3143 3144
		   readl(regs + DAINTMSK),
		   readl(regs + DAINT));
3145 3146

	seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3147 3148
		   readl(regs + GNPTXSTS),
		   readl(regs + GRXSTSR));
3149

3150
	seq_puts(seq, "\nEndpoint status:\n");
3151 3152 3153 3154

	for (idx = 0; idx < 15; idx++) {
		u32 in, out;

3155 3156
		in = readl(regs + DIEPCTL(idx));
		out = readl(regs + DOEPCTL(idx));
3157 3158 3159 3160

		seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
			   idx, in, out);

3161 3162
		in = readl(regs + DIEPTSIZ(idx));
		out = readl(regs + DOEPTSIZ(idx));
3163 3164 3165 3166

		seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
			   in, out);

3167
		seq_puts(seq, "\n");
3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192
	}

	return 0;
}

static int state_open(struct inode *inode, struct file *file)
{
	return single_open(file, state_show, inode->i_private);
}

static const struct file_operations state_fops = {
	.owner		= THIS_MODULE,
	.open		= state_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * fifo_show - debugfs: show the fifo information
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * Show the FIFO information for the overall fifo and all the
 * periodic transmission FIFOs.
3193
 */
3194 3195
static int fifo_show(struct seq_file *seq, void *v)
{
3196
	struct dwc2_hsotg *hsotg = seq->private;
3197 3198 3199 3200
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

3201
	seq_puts(seq, "Non-periodic FIFOs:\n");
3202
	seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ));
3203

3204
	val = readl(regs + GNPTXFSIZ);
3205
	seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3206 3207
		   val >> FIFOSIZE_DEPTH_SHIFT,
		   val & FIFOSIZE_DEPTH_MASK);
3208

3209
	seq_puts(seq, "\nPeriodic TXFIFOs:\n");
3210 3211

	for (idx = 1; idx <= 15; idx++) {
3212
		val = readl(regs + DPTXFSIZN(idx));
3213 3214

		seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3215 3216
			   val >> FIFOSIZE_DEPTH_SHIFT,
			   val & FIFOSIZE_STARTADDR_MASK);
3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
	}

	return 0;
}

static int fifo_open(struct inode *inode, struct file *file)
{
	return single_open(file, fifo_show, inode->i_private);
}

static const struct file_operations fifo_fops = {
	.owner		= THIS_MODULE,
	.open		= fifo_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};


static const char *decode_direction(int is_in)
{
	return is_in ? "in" : "out";
}

/**
 * ep_show - debugfs: show the state of an endpoint.
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the state of the given endpoint (one is
 * registered for each available).
3248
 */
3249 3250 3251
static int ep_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg_ep *ep = seq->private;
3252
	struct dwc2_hsotg *hsotg = ep->parent;
3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
	struct s3c_hsotg_req *req;
	void __iomem *regs = hsotg->regs;
	int index = ep->index;
	int show_limit = 15;
	unsigned long flags;

	seq_printf(seq, "Endpoint index %d, named %s,  dir %s:\n",
		   ep->index, ep->ep.name, decode_direction(ep->dir_in));

	/* first show the register state */

	seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3265 3266
		   readl(regs + DIEPCTL(index)),
		   readl(regs + DOEPCTL(index)));
3267 3268

	seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3269 3270
		   readl(regs + DIEPDMA(index)),
		   readl(regs + DOEPDMA(index)));
3271 3272

	seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3273 3274
		   readl(regs + DIEPINT(index)),
		   readl(regs + DOEPINT(index)));
3275 3276

	seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3277 3278
		   readl(regs + DIEPTSIZ(index)),
		   readl(regs + DOEPTSIZ(index)));
3279

3280
	seq_puts(seq, "\n");
3281 3282 3283 3284 3285 3286
	seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
	seq_printf(seq, "total_data=%ld\n", ep->total_data);

	seq_printf(seq, "request list (%p,%p):\n",
		   ep->queue.next, ep->queue.prev);

3287
	spin_lock_irqsave(&hsotg->lock, flags);
3288 3289 3290

	list_for_each_entry(req, &ep->queue, queue) {
		if (--show_limit < 0) {
3291
			seq_puts(seq, "not showing more requests...\n");
3292 3293 3294 3295 3296 3297 3298 3299 3300 3301
			break;
		}

		seq_printf(seq, "%c req %p: %d bytes @%p, ",
			   req == ep->req ? '*' : ' ',
			   req, req->req.length, req->req.buf);
		seq_printf(seq, "%d done, res %d\n",
			   req->req.actual, req->req.status);
	}

3302
	spin_unlock_irqrestore(&hsotg->lock, flags);
3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327

	return 0;
}

static int ep_open(struct inode *inode, struct file *file)
{
	return single_open(file, ep_show, inode->i_private);
}

static const struct file_operations ep_fops = {
	.owner		= THIS_MODULE,
	.open		= ep_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * s3c_hsotg_create_debug - create debugfs directory and files
 * @hsotg: The driver state
 *
 * Create the debugfs files to allow the user to get information
 * about the state of the system. The directory name is created
 * with the same name as the device itself, in case we end up
 * with multiple blocks in future systems.
3328
 */
3329
static void s3c_hsotg_create_debug(struct dwc2_hsotg *hsotg)
3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
{
	struct dentry *root;
	unsigned epidx;

	root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
	hsotg->debug_root = root;
	if (IS_ERR(root)) {
		dev_err(hsotg->dev, "cannot create debug root\n");
		return;
	}

	/* create general state file */

	hsotg->debug_file = debugfs_create_file("state", 0444, root,
						hsotg, &state_fops);

	if (IS_ERR(hsotg->debug_file))
		dev_err(hsotg->dev, "%s: failed to create state\n", __func__);

	hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
						hsotg, &fifo_fops);

	if (IS_ERR(hsotg->debug_fifo))
		dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);

	/* create one file for each endpoint */

3357
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];

		ep->debugfs = debugfs_create_file(ep->name, 0444,
						  root, ep, &ep_fops);

		if (IS_ERR(ep->debugfs))
			dev_err(hsotg->dev, "failed to create %s debug file\n",
				ep->name);
	}
}

/**
 * s3c_hsotg_delete_debug - cleanup debugfs entries
 * @hsotg: The driver state
 *
 * Cleanup (remove) the debugfs files for use on module exit.
3374
 */
3375
static void s3c_hsotg_delete_debug(struct dwc2_hsotg *hsotg)
3376 3377 3378
{
	unsigned epidx;

3379
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3380 3381 3382 3383 3384 3385 3386 3387 3388
		struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
		debugfs_remove(ep->debugfs);
	}

	debugfs_remove(hsotg->debug_file);
	debugfs_remove(hsotg->debug_fifo);
	debugfs_remove(hsotg->debug_root);
}

3389
/**
3390 3391 3392
 * dwc2_gadget_init - init function for gadget
 * @dwc2: The data structure for the DWC2 driver.
 * @irq: The IRQ number for the controller.
3393
 */
3394
int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
3395
{
3396 3397
	struct device *dev = hsotg->dev;
	struct s3c_hsotg_plat *plat = dev->platform_data;
3398 3399
	struct phy *phy;
	struct usb_phy *uphy;
3400
	struct s3c_hsotg_ep *eps;
3401 3402
	int epnum;
	int ret;
3403
	int i;
3404

3405 3406 3407
	/* Set default UTMI width */
	hsotg->phyif = GUSBCFG_PHYIF16;

3408 3409 3410 3411
	/*
	 * Attempt to find a generic PHY, then look for an old style
	 * USB PHY, finally fall back to pdata
	 */
3412
	phy = devm_phy_get(dev, "usb2-phy");
3413
	if (IS_ERR(phy)) {
3414 3415 3416
		uphy = devm_usb_get_phy(dev, USB_PHY_TYPE_USB2);
		if (IS_ERR(uphy)) {
			/* Fallback for pdata */
3417
			plat = dev_get_platdata(dev);
3418
			if (!plat) {
3419
				dev_err(dev,
3420 3421 3422
				"no platform data or transceiver defined\n");
				return -EPROBE_DEFER;
			}
3423
			hsotg->plat = plat;
3424 3425
		} else
			hsotg->uphy = uphy;
3426
	} else {
3427
		hsotg->phy = phy;
3428 3429 3430 3431 3432 3433 3434
		/*
		 * If using the generic PHY framework, check if the PHY bus
		 * width is 8-bit and set the phyif appropriately.
		 */
		if (phy_get_bus_width(phy) == 8)
			hsotg->phyif = GUSBCFG_PHYIF8;
	}
3435

3436
	hsotg->clk = devm_clk_get(dev, "otg");
3437
	if (IS_ERR(hsotg->clk)) {
3438
		hsotg->clk = NULL;
3439
		dev_err(dev, "cannot get otg clock\n");
3440
		return PTR_ERR(hsotg->clk);
3441 3442
	}

3443
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3444 3445 3446 3447 3448
	hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
	hsotg->gadget.name = dev_name(dev);

	/* reset the system */

3449
	clk_prepare_enable(hsotg->clk);
3450

3451 3452 3453 3454 3455
	/* regulators */

	for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
		hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];

3456
	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3457 3458
				 hsotg->supplies);
	if (ret) {
3459
		dev_err(dev, "failed to request supplies: %d\n", ret);
3460
		goto err_clk;
3461 3462 3463 3464 3465 3466
	}

	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);

	if (ret) {
3467
		dev_err(dev, "failed to enable supplies: %d\n", ret);
3468 3469 3470
		goto err_supplies;
	}

3471 3472
	/* usb phy enable */
	s3c_hsotg_phy_enable(hsotg);
3473 3474

	s3c_hsotg_corereset(hsotg);
3475
	s3c_hsotg_hw_cfg(hsotg);
3476
	s3c_hsotg_init(hsotg);
3477

3478 3479
	ret = devm_request_irq(hsotg->dev, irq, s3c_hsotg_irq, IRQF_SHARED,
				dev_name(hsotg->dev), hsotg);
3480 3481 3482 3483 3484
	if (ret < 0) {
		s3c_hsotg_phy_disable(hsotg);
		clk_disable_unprepare(hsotg->clk);
		regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
				       hsotg->supplies);
3485
		dev_err(dev, "cannot claim IRQ for gadget\n");
3486 3487 3488
		goto err_clk;
	}

3489 3490 3491 3492
	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
3493
		ret = -EINVAL;
3494 3495 3496 3497 3498 3499
		goto err_supplies;
	}

	eps = kcalloc(hsotg->num_of_eps + 1, sizeof(struct s3c_hsotg_ep),
		      GFP_KERNEL);
	if (!eps) {
3500
		ret = -ENOMEM;
3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
		goto err_supplies;
	}

	hsotg->eps = eps;

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
	hsotg->gadget.ep0 = &hsotg->eps[0].ep;

	/* allocate EP0 request */

	hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
3517
		ret = -ENOMEM;
3518 3519
		goto err_ep_mem;
	}
3520 3521

	/* initialise the endpoints now the core has been initialised */
3522
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++)
3523 3524
		s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);

3525
	/* disable power and clock */
3526
	s3c_hsotg_phy_disable(hsotg);
3527 3528 3529 3530

	ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
	if (ret) {
3531
		dev_err(dev, "failed to disable supplies: %d\n", ret);
3532 3533 3534
		goto err_ep_mem;
	}

3535
	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
3536
	if (ret)
3537
		goto err_ep_mem;
3538

3539 3540 3541 3542 3543 3544
	s3c_hsotg_create_debug(hsotg);

	s3c_hsotg_dump(hsotg);

	return 0;

3545
err_ep_mem:
3546
	kfree(eps);
3547
err_supplies:
3548
	s3c_hsotg_phy_disable(hsotg);
3549
err_clk:
3550
	clk_disable_unprepare(hsotg->clk);
3551

3552 3553
	return ret;
}
3554
EXPORT_SYMBOL_GPL(dwc2_gadget_init);
3555

3556 3557 3558 3559
/**
 * s3c_hsotg_remove - remove function for hsotg driver
 * @pdev: The platform information for the driver
 */
3560
int s3c_hsotg_remove(struct dwc2_hsotg *hsotg)
3561
{
3562
	usb_del_gadget_udc(&hsotg->gadget);
3563
	s3c_hsotg_delete_debug(hsotg);
3564
	clk_disable_unprepare(hsotg->clk);
3565

3566 3567
	return 0;
}
3568
EXPORT_SYMBOL_GPL(s3c_hsotg_remove);
3569

3570
int s3c_hsotg_suspend(struct dwc2_hsotg *hsotg)
3571 3572 3573 3574 3575 3576 3577 3578 3579
{
	unsigned long flags;
	int ret = 0;

	if (hsotg->driver)
		dev_info(hsotg->dev, "suspending usb gadget %s\n",
			 hsotg->driver->driver.name);

	spin_lock_irqsave(&hsotg->lock, flags);
3580
	s3c_hsotg_core_disconnect(hsotg);
3581 3582 3583 3584
	s3c_hsotg_disconnect(hsotg);
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);

3585 3586
	s3c_hsotg_phy_disable(hsotg);

3587 3588 3589 3590 3591 3592 3593
	if (hsotg->driver) {
		int ep;
		for (ep = 0; ep < hsotg->num_of_eps; ep++)
			s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);

		ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
					     hsotg->supplies);
3594
		clk_disable(hsotg->clk);
3595 3596 3597 3598
	}

	return ret;
}
3599
EXPORT_SYMBOL_GPL(s3c_hsotg_suspend);
3600

3601
int s3c_hsotg_resume(struct dwc2_hsotg *hsotg)
3602 3603 3604 3605 3606 3607 3608
{
	unsigned long flags;
	int ret = 0;

	if (hsotg->driver) {
		dev_info(hsotg->dev, "resuming usb gadget %s\n",
			 hsotg->driver->driver.name);
3609 3610

		clk_enable(hsotg->clk);
3611 3612 3613 3614 3615
		ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				      hsotg->supplies);
	}

	s3c_hsotg_phy_enable(hsotg);
3616 3617

	spin_lock_irqsave(&hsotg->lock, flags);
3618 3619
	s3c_hsotg_core_init_disconnected(hsotg);
	s3c_hsotg_core_connect(hsotg);
3620 3621 3622 3623
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return ret;
}
3624
EXPORT_SYMBOL_GPL(s3c_hsotg_resume);