gadget.c 100.2 KB
Newer Older
1
/**
2 3
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
4 5 6 7 8 9 10 11 12 13 14
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
15
 */
16 17 18 19 20 21 22 23

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/debugfs.h>
24
#include <linux/mutex.h>
25 26 27
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
28
#include <linux/slab.h>
29
#include <linux/clk.h>
30
#include <linux/regulator/consumer.h>
31
#include <linux/of_platform.h>
32
#include <linux/phy/phy.h>
33 34 35

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
36
#include <linux/usb/phy.h>
37
#include <linux/platform_data/s3c-hsotg.h>
38
#include <linux/uaccess.h>
39

40
#include "core.h"
41
#include "hw.h"
42 43 44 45 46 47 48 49 50 51 52 53

/* conversion functions */
static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
{
	return container_of(req, struct s3c_hsotg_req, req);
}

static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
{
	return container_of(ep, struct s3c_hsotg_ep, ep);
}

54
static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
55
{
56
	return container_of(gadget, struct dwc2_hsotg, gadget);
57 58 59 60 61 62 63 64 65 66 67 68
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) | val, ptr);
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) & ~val, ptr);
}

69 70 71 72 73 74 75 76 77
static inline struct s3c_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
						u32 ep_index, u32 dir_in)
{
	if (dir_in)
		return hsotg->eps_in[ep_index];
	else
		return hsotg->eps_out[ep_index];
}

78
/* forward declaration of functions */
79
static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg);
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
98
 * g_using_dma is set depending on dts flag.
99
 */
100
static inline bool using_dma(struct dwc2_hsotg *hsotg)
101
{
102
	return hsotg->g_using_dma;
103 104 105 106 107 108 109
}

/**
 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
110
static void s3c_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
111
{
112
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
113 114 115 116 117 118
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
119
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
120 121 122 123 124 125 126 127
	}
}

/**
 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
128
static void s3c_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
129
{
130
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
131 132 133 134 135
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
136
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
137 138 139 140 141 142 143 144 145 146 147 148
}

/**
 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
149
static void s3c_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
150 151 152 153 154 155 156 157 158 159 160
				 unsigned int ep, unsigned int dir_in,
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
161
	daint = readl(hsotg->regs + DAINTMSK);
162 163 164 165
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
166
	writel(daint, hsotg->regs + DAINTMSK);
167 168 169 170 171 172 173
	local_irq_restore(flags);
}

/**
 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
 * @hsotg: The device instance.
 */
174
static void s3c_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
175
{
176 177
	unsigned int ep;
	unsigned int addr;
178
	int timeout;
179 180
	u32 val;

181 182 183 184
	/* Reset fifo map if not correctly cleared during previous session */
	WARN_ON(hsotg->fifo_map);
	hsotg->fifo_map = 0;

185 186 187 188 189
	/* set RX/NPTX FIFO sizes */
	writel(hsotg->g_rx_fifo_sz, hsotg->regs + GRXFSIZ);
	writel((hsotg->g_rx_fifo_sz << FIFOSIZE_STARTADDR_SHIFT) |
		(hsotg->g_np_g_tx_fifo_sz << FIFOSIZE_DEPTH_SHIFT),
		hsotg->regs + GNPTXFSIZ);
190

191 192
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
193 194
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
195 196
	 * known values.
	 */
197 198

	/* start at the end of the GNPTXFSIZ, rounded up */
199
	addr = hsotg->g_rx_fifo_sz + hsotg->g_np_g_tx_fifo_sz;
200

201
	/*
202
	 * Configure fifos sizes from provided configuration and assign
203 204
	 * them to endpoints dynamically according to maxpacket size value of
	 * given endpoint.
205
	 */
206 207 208
	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
		if (!hsotg->g_tx_fifo_sz[ep])
			continue;
209
		val = addr;
210 211
		val |= hsotg->g_tx_fifo_sz[ep] << FIFOSIZE_DEPTH_SHIFT;
		WARN_ONCE(addr + hsotg->g_tx_fifo_sz[ep] > hsotg->fifo_mem,
212
			  "insufficient fifo memory");
213
		addr += hsotg->g_tx_fifo_sz[ep];
214

215
		writel(val, hsotg->regs + DPTXFSIZN(ep));
216
	}
217

218 219 220 221
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
222

223 224
	writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
225 226 227 228

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
229
		val = readl(hsotg->regs + GRSTCTL);
230

231
		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
232 233 234 235 236 237
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
238
			break;
239 240 241 242 243 244
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
245 246 247 248 249 250 251 252
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
253 254
static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
						      gfp_t flags)
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
{
	struct s3c_hsotg_req *req;

	req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
{
	return hs_ep->periodic;
}

/**
 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
 * of a request to ensure the buffer is ready for access by the caller.
287
 */
288
static void s3c_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
289 290 291 292 293 294 295 296 297
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	struct usb_request *req = &hs_req->req;

	/* ignore this if we're not moving any data */
	if (hs_req->req.length == 0)
		return;

298
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
}

/**
 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
316
 */
317
static int s3c_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
318 319 320 321
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	bool periodic = is_ep_periodic(hs_ep);
322
	u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
323 324 325 326 327
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;
328
	int max_transfer;
329 330 331 332 333 334 335

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

336
	if (periodic && !hsotg->dedicated_fifos) {
337
		u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
338 339 340
		int size_left;
		int size_done;

341 342 343 344
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
345

346
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
347

348 349
		/*
		 * if shared fifo, we cannot write anything until the
350 351 352
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
353
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
354 355 356
			return -ENOSPC;
		}

357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
374
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
375 376
			return -ENOSPC;
		}
377
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
378
		can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
379 380 381

		can_write &= 0xffff;
		can_write *= 4;
382
	} else {
383
		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
384 385 386 387
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

388
			s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
389 390 391
			return -ENOSPC;
		}

392
		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
393
		can_write *= 4;	/* fifo size is in 32bit quantities. */
394 395
	}

396 397 398 399
	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
		 __func__, gnptxsts, can_write, to_write, max_transfer);
400

401 402
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
403 404 405
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
406
	if (can_write > 512 && !periodic)
407 408
		can_write = 512;

409 410
	/*
	 * limit the write to one max-packet size worth of data, but allow
411
	 * the transfer to return that it did not run out of fifo space
412 413
	 * doing it.
	 */
414 415
	if (to_write > max_transfer) {
		to_write = max_transfer;
416

417 418 419
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
			s3c_hsotg_en_gsint(hsotg,
420 421
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
422 423
	}

424 425 426 427
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
428
		pkt_round = to_write % max_transfer;
429

430 431
		/*
		 * Round the write down to an
432 433 434 435 436 437 438 439 440
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

441 442 443 444
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
445

446 447 448
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
			s3c_hsotg_en_gsint(hsotg,
449 450
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
		 to_write, hs_req->req.length, can_write, buf_pos);

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

468
	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
{
	int index = hs_ep->index;
	unsigned maxsize;
	unsigned maxpkt;

	if (index != 0) {
487 488
		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
489
	} else {
490
		maxsize = 64+64;
491
		if (hs_ep->dir_in)
492
			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
493
		else
494 495 496 497 498 499 500
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

501 502 503 504
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

/**
 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
522
static void s3c_hsotg_start_req(struct dwc2_hsotg *hsotg,
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req,
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
	unsigned length;
	unsigned packets;
	unsigned maxreq;

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

551 552
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
553 554 555 556 557

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
		__func__, readl(hsotg->regs + epctrl_reg), index,
		hs_ep->dir_in ? "in" : "out");

558 559 560
	/* If endpoint is stalled, we will restart request later */
	ctrl = readl(hsotg->regs + epctrl_reg);

561
	if (ctrl & DXEPCTL_STALL) {
562 563 564 565
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

566
	length = ureq->length - ureq->actual;
567 568
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588

	maxreq = get_ep_limit(hs_ep);
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

589 590 591 592 593
	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
		return;
	}

594
	if (dir_in && index != 0)
595
		if (hs_ep->isochronous)
596
			epsize = DXEPTSIZ_MC(packets);
597
		else
598
			epsize = DXEPTSIZ_MC(1);
599 600 601
	else
		epsize = 0;

602 603 604 605 606 607 608 609
	/*
	 * zero length packet should be programmed on its own and should not
	 * be counted in DIEPTSIZ.PktCnt with other packets.
	 */
	if (dir_in && ureq->zero && !continuing) {
		/* Test if zlp is actually required. */
		if ((ureq->length >= hs_ep->ep.maxpacket) &&
					!(ureq->length % hs_ep->ep.maxpacket))
610
			hs_ep->send_zlp = 1;
611 612
	}

613 614
	epsize |= DXEPTSIZ_PKTCNT(packets);
	epsize |= DXEPTSIZ_XFERSIZE(length);
615 616 617 618 619 620 621 622 623 624

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

	/* write size / packets */
	writel(epsize, hsotg->regs + epsize_reg);

625
	if (using_dma(hsotg) && !continuing) {
626 627
		unsigned int dma_reg;

628 629 630 631
		/*
		 * write DMA address to control register, buffer already
		 * synced by s3c_hsotg_ep_queue().
		 */
632

633
		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
634 635
		writel(ureq->dma, hsotg->regs + dma_reg);

636
		dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
637
			__func__, &ureq->dma, dma_reg);
638 639
	}

640 641
	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
642

643
	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
644 645

	/* For Setup request do not clear NAK */
646
	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
647
		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
648

649 650 651
	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

652 653
	/*
	 * set these, it seems that DMA support increments past the end
654
	 * of the packet buffer so we need to calculate the length from
655 656
	 * this information.
	 */
657 658 659 660 661 662 663 664 665 666
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

		s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

667 668 669 670
	/*
	 * clear the INTknTXFEmpMsk when we start request, more as a aide
	 * to debugging to see what is going on.
	 */
671
	if (dir_in)
672
		writel(DIEPMSK_INTKNTXFEMPMSK,
673
		       hsotg->regs + DIEPINT(index));
674

675 676 677 678
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
679 680

	/* check ep is enabled */
681
	if (!(readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
682
		dev_dbg(hsotg->dev,
683
			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
684 685
			 index, readl(hsotg->regs + epctrl_reg));

686
	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
687
		__func__, readl(hsotg->regs + epctrl_reg));
688 689 690

	/* enable ep interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
691 692 693 694 695 696 697 698 699 700 701 702 703
}

/**
 * s3c_hsotg_map_dma - map the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
704
 */
705
static int s3c_hsotg_map_dma(struct dwc2_hsotg *hsotg,
706 707 708 709
			     struct s3c_hsotg_ep *hs_ep,
			     struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
710
	int ret;
711 712 713 714 715

	/* if the length is zero, ignore the DMA data */
	if (hs_req->req.length == 0)
		return 0;

716 717 718
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
734
	struct dwc2_hsotg *hs = hs_ep->parent;
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
	bool first;

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
		int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
		if (ret)
			return ret;
	}

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

	if (first)
		s3c_hsotg_start_req(hs, hs_ep, hs_req, false);

	return 0;
}

762 763 764 765
static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
766
	struct dwc2_hsotg *hs = hs_ep->parent;
767 768 769 770 771 772 773 774 775 776
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
				      struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);

	kfree(hs_req);
}

/**
 * s3c_hsotg_complete_oursetup - setup completion callback
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
					struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
797
	struct dwc2_hsotg *hsotg = hs_ep->parent;
798 799 800 801 802 803 804 805 806 807 808 809 810

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

	s3c_hsotg_ep_free_request(ep, req);
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
811
 */
812
static struct s3c_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
813 814
					   u32 windex)
{
815
	struct s3c_hsotg_ep *ep;
816 817 818 819 820 821
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

822
	if (idx > hsotg->num_of_eps)
823 824
		return NULL;

825 826
	ep = index_to_ep(hsotg, idx, dir);

827 828 829 830 831 832
	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
/**
 * s3c_hsotg_set_test_mode - Enable usb Test Modes
 * @hsotg: The driver state.
 * @testmode: requested usb test mode
 * Enable usb Test Mode requested by the Host.
 */
static int s3c_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
{
	int dctl = readl(hsotg->regs + DCTL);

	dctl &= ~DCTL_TSTCTL_MASK;
	switch (testmode) {
	case TEST_J:
	case TEST_K:
	case TEST_SE0_NAK:
	case TEST_PACKET:
	case TEST_FORCE_EN:
		dctl |= testmode << DCTL_TSTCTL_SHIFT;
		break;
	default:
		return -EINVAL;
	}
	writel(dctl, hsotg->regs + DCTL);
	return 0;
}

859 860 861 862 863 864 865 866 867 868
/**
 * s3c_hsotg_send_reply - send reply to control request
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
869
static int s3c_hsotg_send_reply(struct dwc2_hsotg *hsotg,
870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
				struct s3c_hsotg_ep *ep,
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

	req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
888 889 890 891 892
	/*
	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
	 * STATUS stage.
	 */
	req->zero = 0;
893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
	req->complete = s3c_hsotg_complete_oursetup;

	if (length)
		memcpy(req->buf, buff, length);

	ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
 * s3c_hsotg_process_req_status - process request GET_STATUS
 * @hsotg: The device state
 * @ctrl: USB control request
 */
912
static int s3c_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
913 914
					struct usb_ctrlrequest *ctrl)
{
915
	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963
	struct s3c_hsotg_ep *ep;
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
		reply = cpu_to_le16(0); /* bit 0 => self powered,
					 * bit 1 => remote wakeup */
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

	ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);

964 965 966 967 968 969 970 971 972 973 974 975 976 977
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
{
	if (list_empty(&hs_ep->queue))
		return NULL;

	return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
}

978
/**
979
 * s3c_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
980 981 982
 * @hsotg: The device state
 * @ctrl: USB control request
 */
983
static int s3c_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
984 985
					 struct usb_ctrlrequest *ctrl)
{
986
	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
987 988
	struct s3c_hsotg_req *hs_req;
	bool restart;
989 990
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
	struct s3c_hsotg_ep *ep;
991
	int ret;
992
	bool halted;
993 994 995
	u32 recip;
	u32 wValue;
	u32 wIndex;
996 997 998 999

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027
	wValue = le16_to_cpu(ctrl->wValue);
	wIndex = le16_to_cpu(ctrl->wIndex);
	recip = ctrl->bRequestType & USB_RECIP_MASK;

	switch (recip) {
	case USB_RECIP_DEVICE:
		switch (wValue) {
		case USB_DEVICE_TEST_MODE:
			if ((wIndex & 0xff) != 0)
				return -EINVAL;
			if (!set)
				return -EINVAL;

			hsotg->test_mode = wIndex >> 8;
			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
			break;
		default:
			return -ENOENT;
		}
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, wIndex);
1028 1029
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1030
				__func__, wIndex);
1031 1032 1033
			return -ENOENT;
		}

1034
		switch (wValue) {
1035
		case USB_ENDPOINT_HALT:
1036 1037
			halted = ep->halted;

1038
			s3c_hsotg_ep_sethalt(&ep->ep, set);
1039 1040 1041 1042 1043 1044 1045

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
1046

1047 1048 1049 1050 1051 1052
			/*
			 * we have to complete all requests for ep if it was
			 * halted, and the halt was cleared by CLEAR_FEATURE
			 */

			if (!set && halted) {
1053 1054 1055 1056 1057 1058 1059 1060
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
1061 1062 1063 1064 1065 1066
					if (hs_req->req.complete) {
						spin_unlock(&hsotg->lock);
						usb_gadget_giveback_request(
							&ep->ep, &hs_req->req);
						spin_lock(&hsotg->lock);
					}
1067 1068 1069
				}

				/* If we have pending request, then start it */
1070 1071 1072 1073 1074 1075 1076
				if (!ep->req) {
					restart = !list_empty(&ep->queue);
					if (restart) {
						hs_req = get_ep_head(ep);
						s3c_hsotg_start_req(hsotg, ep,
								hs_req, false);
					}
1077 1078 1079
				}
			}

1080 1081 1082 1083 1084
			break;

		default:
			return -ENOENT;
		}
1085 1086 1087 1088
		break;
	default:
		return -ENOENT;
	}
1089 1090 1091
	return 1;
}

1092
static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1093

1094 1095 1096 1097 1098 1099
/**
 * s3c_hsotg_stall_ep0 - stall ep0
 * @hsotg: The device state
 *
 * Set stall for ep0 as response for setup request.
 */
1100
static void s3c_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1101
{
1102
	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
	u32 reg;
	u32 ctrl;

	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;

	/*
	 * DxEPCTL_Stall will be cleared by EP once it has
	 * taken effect, so no need to clear later.
	 */

	ctrl = readl(hsotg->regs + reg);
1115 1116
	ctrl |= DXEPCTL_STALL;
	ctrl |= DXEPCTL_CNAK;
1117 1118 1119
	writel(ctrl, hsotg->regs + reg);

	dev_dbg(hsotg->dev,
1120
		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1121 1122 1123 1124 1125 1126 1127 1128 1129
		ctrl, reg, readl(hsotg->regs + reg));

	 /*
	  * complete won't be called, so we enqueue
	  * setup request here
	  */
	 s3c_hsotg_enqueue_setup(hsotg);
}

1130 1131 1132 1133 1134 1135 1136 1137 1138
/**
 * s3c_hsotg_process_control - process a control request
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
1139
static void s3c_hsotg_process_control(struct dwc2_hsotg *hsotg,
1140 1141
				      struct usb_ctrlrequest *ctrl)
{
1142
	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
1143 1144 1145 1146 1147 1148 1149
	int ret = 0;
	u32 dcfg;

	dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
		 ctrl->bRequest, ctrl->bRequestType,
		 ctrl->wValue, ctrl->wLength);

1150 1151 1152 1153
	if (ctrl->wLength == 0) {
		ep0->dir_in = 1;
		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
	} else if (ctrl->bRequestType & USB_DIR_IN) {
1154
		ep0->dir_in = 1;
1155 1156 1157 1158 1159
		hsotg->ep0_state = DWC2_EP0_DATA_IN;
	} else {
		ep0->dir_in = 0;
		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
	}
1160 1161 1162 1163

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1164
			hsotg->connected = 1;
1165
			dcfg = readl(hsotg->regs + DCFG);
1166
			dcfg &= ~DCFG_DEVADDR_MASK;
P
Paul Zimmerman 已提交
1167 1168
			dcfg |= (le16_to_cpu(ctrl->wValue) <<
				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1169
			writel(dcfg, hsotg->regs + DCFG);
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			return;

		case USB_REQ_GET_STATUS:
			ret = s3c_hsotg_process_req_status(hsotg, ctrl);
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
			ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
1190
		spin_unlock(&hsotg->lock);
1191
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1192
		spin_lock(&hsotg->lock);
1193 1194 1195 1196
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1197 1198
	/*
	 * the request is either unhandlable, or is not formatted correctly
1199 1200 1201
	 * so respond with a STALL for the status stage to indicate failure.
	 */

1202 1203
	if (ret < 0)
		s3c_hsotg_stall_ep0(hsotg);
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
}

/**
 * s3c_hsotg_complete_setup - completion of a setup transfer
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
static void s3c_hsotg_complete_setup(struct usb_ep *ep,
				     struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1218
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1219 1220 1221 1222 1223 1224

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

1225
	spin_lock(&hsotg->lock);
1226 1227 1228 1229
	if (req->actual == 0)
		s3c_hsotg_enqueue_setup(hsotg);
	else
		s3c_hsotg_process_control(hsotg, req->buf);
1230
	spin_unlock(&hsotg->lock);
1231 1232 1233 1234 1235 1236 1237 1238 1239
}

/**
 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
1240
static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
{
	struct usb_request *req = hsotg->ctrl_req;
	struct s3c_hsotg_req *hs_req = our_req(req);
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
	req->complete = s3c_hsotg_complete_setup;

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

1258
	hsotg->eps_out[0]->dir_in = 0;
1259
	hsotg->eps_out[0]->send_zlp = 0;
1260
	hsotg->ep0_state = DWC2_EP0_SETUP;
1261

1262
	ret = s3c_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1263 1264
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1265 1266 1267 1268
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1269 1270 1271
	}
}

1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
static void s3c_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
					struct s3c_hsotg_ep *hs_ep)
{
	u32 ctrl;
	u8 index = hs_ep->index;
	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);

	dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n", index);

	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
			DXEPTSIZ_XFERSIZE(0), hsotg->regs +
			epsiz_reg);

	ctrl = readl(hsotg->regs + epctl_reg);
	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
	writel(ctrl, hsotg->regs + epctl_reg);
}

1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
/**
 * s3c_hsotg_complete_request - complete a request given to us
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1305
 */
1306
static void s3c_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320
				       struct s3c_hsotg_ep *hs_ep,
				       struct s3c_hsotg_req *hs_req,
				       int result)
{
	bool restart;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1321 1322 1323 1324
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

	if (using_dma(hsotg))
		s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1335 1336 1337 1338
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1339 1340

	if (hs_req->req.complete) {
1341
		spin_unlock(&hsotg->lock);
1342
		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1343
		spin_lock(&hsotg->lock);
1344 1345
	}

1346 1347
	/*
	 * Look to see if there is anything else to do. Note, the completion
1348
	 * of the previous request may have caused a new request to be started
1349 1350
	 * so be careful when doing this.
	 */
1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370

	if (!hs_ep->req && result >= 0) {
		restart = !list_empty(&hs_ep->queue);
		if (restart) {
			hs_req = get_ep_head(hs_ep);
			s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		}
	}
}

/**
 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
1371
static void s3c_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
1372
{
1373
	struct s3c_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
1374
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1375
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1376 1377 1378 1379
	int to_read;
	int max_req;
	int read_ptr;

1380

1381
	if (!hs_req) {
1382
		u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
1383 1384
		int ptr;

1385
		dev_dbg(hsotg->dev,
1386
			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
			(void)readl(fifo);

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

1400 1401 1402
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

1403
	if (to_read > max_req) {
1404 1405
		/*
		 * more data appeared than we where willing
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

1417 1418 1419 1420
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
1421
	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1422 1423 1424
}

/**
1425
 * s3c_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
1426
 * @hsotg: The device instance
1427
 * @dir_in: If IN zlp
1428 1429 1430 1431 1432
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
1433
 * currently believed that we do not need to wait for any space in
1434 1435
 * the TxFIFO.
 */
1436
static void s3c_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
1437
{
1438
	/* eps_out[0] is used in both directions */
1439 1440
	hsotg->eps_out[0]->dir_in = dir_in;
	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
1441

1442
	s3c_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
}

/**
 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
1453
 */
1454
static void s3c_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
1455
{
1456
	u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
1457
	struct s3c_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
1458 1459
	struct s3c_hsotg_req *hs_req = hs_ep->req;
	struct usb_request *req = &hs_req->req;
1460
	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1461 1462 1463 1464 1465 1466 1467
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

1468 1469 1470 1471 1472 1473 1474
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
		s3c_hsotg_enqueue_setup(hsotg);
		return;
	}

1475 1476 1477
	if (using_dma(hsotg)) {
		unsigned size_done;

1478 1479
		/*
		 * Calculate the size of the transfer by checking how much
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

1493 1494 1495 1496 1497 1498
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
		return;
	}

1499 1500 1501 1502
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

1503 1504 1505 1506
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
1507 1508
	}

1509 1510 1511 1512
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
		/* Move to STATUS IN */
		s3c_hsotg_ep0_zlp(hsotg, true);
		return;
1513 1514
	}

1515
	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1516 1517 1518 1519 1520 1521 1522
}

/**
 * s3c_hsotg_read_frameno - read current frame number
 * @hsotg: The device instance
 *
 * Return the current frame number
1523
 */
1524
static u32 s3c_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
1525 1526 1527
{
	u32 dsts;

1528 1529 1530
	dsts = readl(hsotg->regs + DSTS);
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;
1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542

	return dsts;
}

/**
 * s3c_hsotg_handle_rx - RX FIFO has data
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
1543
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1544 1545 1546 1547 1548 1549 1550
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
1551
static void s3c_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
1552
{
1553
	u32 grxstsr = readl(hsotg->regs + GRXSTSP);
1554 1555 1556 1557
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

1558 1559
	epnum = grxstsr & GRXSTS_EPNUM_MASK;
	status = grxstsr & GRXSTS_PKTSTS_MASK;
1560

1561 1562
	size = grxstsr & GRXSTS_BYTECNT_MASK;
	size >>= GRXSTS_BYTECNT_SHIFT;
1563

1564
	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1565 1566
			__func__, grxstsr, size, epnum);

1567 1568 1569
	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
	case GRXSTS_PKTSTS_GLOBALOUTNAK:
		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1570 1571
		break;

1572
	case GRXSTS_PKTSTS_OUTDONE:
1573 1574 1575 1576
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg));

		if (!using_dma(hsotg))
1577
			s3c_hsotg_handle_outdone(hsotg, epnum);
1578 1579
		break;

1580
	case GRXSTS_PKTSTS_SETUPDONE:
1581 1582 1583
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1584
			readl(hsotg->regs + DOEPCTL(0)));
1585 1586 1587 1588 1589 1590 1591
		/*
		 * Call s3c_hsotg_handle_outdone here if it was not called from
		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
		 */
		if (hsotg->ep0_state == DWC2_EP0_SETUP)
			s3c_hsotg_handle_outdone(hsotg, epnum);
1592 1593
		break;

1594
	case GRXSTS_PKTSTS_OUTRX:
1595 1596 1597
		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

1598
	case GRXSTS_PKTSTS_SETUPRX:
1599 1600 1601
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1602
			readl(hsotg->regs + DOEPCTL(0)));
1603

1604 1605
		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);

1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

		s3c_hsotg_dump(hsotg);
		break;
	}
}

/**
 * s3c_hsotg_ep0_mps - turn max packet size into register setting
 * @mps: The maximum packet size in bytes.
1621
 */
1622 1623 1624 1625
static u32 s3c_hsotg_ep0_mps(unsigned int mps)
{
	switch (mps) {
	case 64:
1626
		return D0EPCTL_MPS_64;
1627
	case 32:
1628
		return D0EPCTL_MPS_32;
1629
	case 16:
1630
		return D0EPCTL_MPS_16;
1631
	case 8:
1632
		return D0EPCTL_MPS_8;
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
1649
static void s3c_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
1650
			unsigned int ep, unsigned int mps, unsigned int dir_in)
1651
{
1652
	struct s3c_hsotg_ep *hs_ep;
1653 1654
	void __iomem *regs = hsotg->regs;
	u32 mpsval;
1655
	u32 mcval;
1656 1657
	u32 reg;

1658 1659 1660 1661
	hs_ep = index_to_ep(hsotg, ep, dir_in);
	if (!hs_ep)
		return;

1662 1663 1664 1665 1666
	if (ep == 0) {
		/* EP0 is a special case */
		mpsval = s3c_hsotg_ep0_mps(mps);
		if (mpsval > 3)
			goto bad_mps;
1667
		hs_ep->ep.maxpacket = mps;
1668
		hs_ep->mc = 1;
1669
	} else {
1670
		mpsval = mps & DXEPCTL_MPS_MASK;
1671
		if (mpsval > 1024)
1672
			goto bad_mps;
1673 1674 1675 1676
		mcval = ((mps >> 11) & 0x3) + 1;
		hs_ep->mc = mcval;
		if (mcval > 3)
			goto bad_mps;
1677
		hs_ep->ep.maxpacket = mpsval;
1678 1679
	}

1680 1681 1682 1683 1684 1685
	if (dir_in) {
		reg = readl(regs + DIEPCTL(ep));
		reg &= ~DXEPCTL_MPS_MASK;
		reg |= mpsval;
		writel(reg, regs + DIEPCTL(ep));
	} else {
1686
		reg = readl(regs + DOEPCTL(ep));
1687
		reg &= ~DXEPCTL_MPS_MASK;
1688
		reg |= mpsval;
1689
		writel(reg, regs + DOEPCTL(ep));
1690
	}
1691 1692 1693 1694 1695 1696 1697

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

1698 1699 1700 1701 1702
/**
 * s3c_hsotg_txfifo_flush - flush Tx FIFO
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
1703
static void s3c_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
1704 1705 1706 1707
{
	int timeout;
	int val;

1708
	writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
1709
		hsotg->regs + GRSTCTL);
1710 1711 1712 1713 1714

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
1715
		val = readl(hsotg->regs + GRSTCTL);
1716

1717
		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1718 1719 1720 1721 1722 1723
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
1724
			break;
1725 1726 1727 1728 1729
		}

		udelay(1);
	}
}
1730 1731 1732 1733 1734 1735 1736 1737 1738

/**
 * s3c_hsotg_trytx - check to see if anything needs transmitting
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
1739
static int s3c_hsotg_trytx(struct dwc2_hsotg *hsotg,
1740 1741 1742 1743
			   struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;

1744 1745 1746 1747 1748 1749 1750 1751
	if (!hs_ep->dir_in || !hs_req) {
		/**
		 * if request is not enqueued, we disable interrupts
		 * for endpoints, excepting ep0
		 */
		if (hs_ep->index != 0)
			s3c_hsotg_ctrl_epint(hsotg, hs_ep->index,
					     hs_ep->dir_in, 0);
1752
		return 0;
1753
	}
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
		return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

	return 0;
}

/**
 * s3c_hsotg_complete_in - complete IN transfer
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
1772
static void s3c_hsotg_complete_in(struct dwc2_hsotg *hsotg,
1773 1774 1775
				  struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1776
	u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1777 1778 1779 1780 1781 1782 1783
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

1784
	/* Finish ZLP handling for IN EP0 transactions */
1785 1786
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
		dev_dbg(hsotg->dev, "zlp packet sent\n");
1787
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798
		if (hsotg->test_mode) {
			int ret;

			ret = s3c_hsotg_set_test_mode(hsotg, hsotg->test_mode);
			if (ret < 0) {
				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
						hsotg->test_mode);
				s3c_hsotg_stall_ep0(hsotg);
				return;
			}
		}
1799
		s3c_hsotg_enqueue_setup(hsotg);
1800 1801 1802
		return;
	}

1803 1804
	/*
	 * Calculate the size of the transfer by checking how much is left
1805 1806 1807 1808 1809 1810 1811 1812
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */

1813
	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1814 1815 1816 1817 1818 1819 1820 1821 1822

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
1823 1824 1825
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

1826 1827 1828
	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1829 1830 1831
		return;
	}

1832
	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
1833
	if (hs_ep->send_zlp) {
1834
		s3c_hsotg_program_zlp(hsotg, hs_ep);
1835
		hs_ep->send_zlp = 0;
1836 1837 1838 1839
		/* transfer will be completed on next complete interrupt */
		return;
	}

1840 1841 1842 1843 1844 1845 1846
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
		/* Move to STATUS OUT */
		s3c_hsotg_ep0_zlp(hsotg, false);
		return;
	}

	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1847 1848 1849 1850 1851 1852 1853 1854 1855
}

/**
 * s3c_hsotg_epint - handle an in/out endpoint interrupt
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
1856
 */
1857
static void s3c_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
1858 1859
			    int dir_in)
{
1860
	struct s3c_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
1861 1862 1863
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1864
	u32 ints;
1865
	u32 ctrl;
1866 1867

	ints = readl(hsotg->regs + epint_reg);
1868
	ctrl = readl(hsotg->regs + epctl_reg);
1869

1870 1871 1872
	/* Clear endpoint interrupts */
	writel(ints, hsotg->regs + epint_reg);

1873 1874 1875 1876 1877 1878
	if (!hs_ep) {
		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
					__func__, idx, dir_in ? "in" : "out");
		return;
	}

1879 1880 1881
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

1882 1883 1884 1885
	/* Don't process XferCompl interrupt if it is a setup packet */
	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
		ints &= ~DXEPINT_XFERCOMPL;

1886
	if (ints & DXEPINT_XFERCOMPL) {
1887
		if (hs_ep->isochronous && hs_ep->interval == 1) {
1888 1889
			if (ctrl & DXEPCTL_EOFRNUM)
				ctrl |= DXEPCTL_SETEVENFR;
1890
			else
1891
				ctrl |= DXEPCTL_SETODDFR;
1892 1893 1894
			writel(ctrl, hsotg->regs + epctl_reg);
		}

1895
		dev_dbg(hsotg->dev,
1896
			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1897 1898 1899
			__func__, readl(hsotg->regs + epctl_reg),
			readl(hsotg->regs + epsiz_reg));

1900 1901 1902 1903
		/*
		 * we get OutDone from the FIFO, so we only need to look
		 * at completing IN requests here
		 */
1904 1905 1906
		if (dir_in) {
			s3c_hsotg_complete_in(hsotg, hs_ep);

1907
			if (idx == 0 && !hs_ep->req)
1908 1909
				s3c_hsotg_enqueue_setup(hsotg);
		} else if (using_dma(hsotg)) {
1910 1911 1912 1913
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
1914

1915
			s3c_hsotg_handle_outdone(hsotg, idx);
1916 1917 1918
		}
	}

1919
	if (ints & DXEPINT_EPDISBLD) {
1920 1921
		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

1922 1923 1924
		if (dir_in) {
			int epctl = readl(hsotg->regs + epctl_reg);

1925
			s3c_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
1926

1927 1928
			if ((epctl & DXEPCTL_STALL) &&
				(epctl & DXEPCTL_EPTYPE_BULK)) {
1929
				int dctl = readl(hsotg->regs + DCTL);
1930

1931
				dctl |= DCTL_CGNPINNAK;
1932
				writel(dctl, hsotg->regs + DCTL);
1933 1934 1935 1936
			}
		}
	}

1937
	if (ints & DXEPINT_AHBERR)
1938 1939
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

1940
	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
1941 1942 1943
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
1944 1945
			/*
			 * this is the notification we've received a
1946 1947
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
1948 1949
			 * the setup here.
			 */
1950 1951 1952 1953

			if (dir_in)
				WARN_ON_ONCE(1);
			else
1954
				s3c_hsotg_handle_outdone(hsotg, 0);
1955 1956 1957
		}
	}

1958
	if (ints & DXEPINT_BACK2BACKSETUP)
1959 1960
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

1961
	if (dir_in && !hs_ep->isochronous) {
1962
		/* not sure if this is important, but we'll clear it anyway */
1963
		if (ints & DIEPMSK_INTKNTXFEMPMSK) {
1964 1965 1966 1967 1968
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
1969
		if (ints & DIEPMSK_INTKNEPMISMSK) {
1970 1971 1972
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
1973 1974 1975

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
1976
		    ints & DIEPMSK_TXFIFOEMPTY) {
1977 1978
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
1979 1980
			if (!using_dma(hsotg))
				s3c_hsotg_trytx(hsotg, hs_ep);
1981
		}
1982 1983 1984 1985 1986 1987 1988 1989 1990
	}
}

/**
 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
1991
 */
1992
static void s3c_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
1993
{
1994
	u32 dsts = readl(hsotg->regs + DSTS);
1995
	int ep0_mps = 0, ep_mps = 8;
1996

1997 1998
	/*
	 * This should signal the finish of the enumeration phase
1999
	 * of the USB handshaking, so we should now know what rate
2000 2001
	 * we connected at.
	 */
2002 2003 2004

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

2005 2006
	/*
	 * note, since we're limited by the size of transfer on EP0, and
2007
	 * it seems IN transfers must be a even number of packets we do
2008 2009
	 * not advertise a 64byte MPS on EP0.
	 */
2010 2011

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
2012 2013 2014
	switch (dsts & DSTS_ENUMSPD_MASK) {
	case DSTS_ENUMSPD_FS:
	case DSTS_ENUMSPD_FS48:
2015 2016
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
2017
		ep_mps = 1023;
2018 2019
		break;

2020
	case DSTS_ENUMSPD_HS:
2021 2022
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
2023
		ep_mps = 1024;
2024 2025
		break;

2026
	case DSTS_ENUMSPD_LS:
2027
		hsotg->gadget.speed = USB_SPEED_LOW;
2028 2029
		/*
		 * note, we don't actually support LS in this driver at the
2030 2031 2032 2033 2034
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
2035 2036
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
2037

2038 2039 2040 2041
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
2042 2043 2044

	if (ep0_mps) {
		int i;
2045 2046 2047 2048 2049 2050 2051 2052 2053
		/* Initialize ep0 for both in and out directions */
		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 1);
		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0);
		for (i = 1; i < hsotg->num_of_eps; i++) {
			if (hsotg->eps_in[i])
				s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 1);
			if (hsotg->eps_out[i])
				s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 0);
		}
2054 2055 2056 2057 2058 2059 2060
	}

	/* ensure after enumeration our EP0 is active */

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2061 2062
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
2074
static void kill_all_requests(struct dwc2_hsotg *hsotg,
2075
			      struct s3c_hsotg_ep *ep,
2076
			      int result)
2077 2078
{
	struct s3c_hsotg_req *req, *treq;
2079
	unsigned size;
2080

2081
	ep->req = NULL;
2082

2083
	list_for_each_entry_safe(req, treq, &ep->queue, queue)
2084 2085
		s3c_hsotg_complete_request(hsotg, ep, req,
					   result);
2086

2087 2088 2089 2090 2091
	if (!hsotg->dedicated_fifos)
		return;
	size = (readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4;
	if (size < ep->fifo_size)
		s3c_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2092 2093 2094
}

/**
2095
 * s3c_hsotg_disconnect - disconnect service
2096 2097
 * @hsotg: The device state.
 *
2098 2099 2100
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
2101
 */
2102
void s3c_hsotg_disconnect(struct dwc2_hsotg *hsotg)
2103 2104 2105
{
	unsigned ep;

2106 2107 2108 2109
	if (!hsotg->connected)
		return;

	hsotg->connected = 0;
2110
	hsotg->test_mode = 0;
2111 2112 2113 2114 2115 2116 2117 2118 2119

	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
			kill_all_requests(hsotg, hsotg->eps_in[ep],
								-ESHUTDOWN);
		if (hsotg->eps_out[ep])
			kill_all_requests(hsotg, hsotg->eps_out[ep],
								-ESHUTDOWN);
	}
2120 2121 2122

	call_gadget(hsotg, disconnect);
}
2123
EXPORT_SYMBOL_GPL(s3c_hsotg_disconnect);
2124 2125 2126 2127 2128 2129

/**
 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
2130
static void s3c_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
2131 2132 2133 2134 2135
{
	struct s3c_hsotg_ep *ep;
	int epno, ret;

	/* look through for any more data to transmit */
2136
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2137 2138 2139 2140
		ep = index_to_ep(hsotg, epno, 1);

		if (!ep)
			continue;
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

		ret = s3c_hsotg_trytx(hsotg, ep);
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
2156 2157 2158
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
			GINTSTS_PTXFEMP |  \
			GINTSTS_RXFLVL)
2159

2160 2161 2162 2163 2164
/**
 * s3c_hsotg_corereset - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
2165
 */
2166
static int s3c_hsotg_corereset(struct dwc2_hsotg *hsotg)
2167 2168 2169 2170 2171 2172 2173
{
	int timeout;
	u32 grstctl;

	dev_dbg(hsotg->dev, "resetting core\n");

	/* issue soft reset */
2174
	writel(GRSTCTL_CSFTRST, hsotg->regs + GRSTCTL);
2175

2176
	timeout = 10000;
2177
	do {
2178
		grstctl = readl(hsotg->regs + GRSTCTL);
2179
	} while ((grstctl & GRSTCTL_CSFTRST) && timeout-- > 0);
2180

2181
	if (grstctl & GRSTCTL_CSFTRST) {
2182 2183 2184 2185
		dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
		return -EINVAL;
	}

2186
	timeout = 10000;
2187 2188

	while (1) {
2189
		u32 grstctl = readl(hsotg->regs + GRSTCTL);
2190 2191 2192 2193 2194 2195 2196 2197

		if (timeout-- < 0) {
			dev_info(hsotg->dev,
				 "%s: reset failed, GRSTCTL=%08x\n",
				 __func__, grstctl);
			return -ETIMEDOUT;
		}

2198
		if (!(grstctl & GRSTCTL_AHBIDLE))
2199 2200 2201 2202 2203 2204 2205 2206 2207
			continue;

		break;		/* reset done */
	}

	dev_dbg(hsotg->dev, "reset successful\n");
	return 0;
}

2208 2209 2210 2211 2212 2213
/**
 * s3c_hsotg_core_init - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
2214
void s3c_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg)
2215 2216 2217 2218 2219 2220 2221 2222 2223
{
	s3c_hsotg_corereset(hsotg);

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2224
	writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
2225
	       (0x5 << 10), hsotg->regs + GUSBCFG);
2226 2227 2228

	s3c_hsotg_init_fifo(hsotg);

2229
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2230

2231
	writel(1 << 18 | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2232 2233

	/* Clear any pending OTG interrupts */
2234
	writel(0xffffffff, hsotg->regs + GOTGINT);
2235 2236

	/* Clear any pending interrupts */
2237
	writel(0xffffffff, hsotg->regs + GINTSTS);
2238

2239 2240 2241 2242 2243 2244
	writel(GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
		GINTSTS_CONIDSTSCHNG | GINTSTS_USBRST |
		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
		GINTSTS_USBSUSP | GINTSTS_WKUPINT,
		hsotg->regs + GINTMSK);
2245 2246

	if (using_dma(hsotg))
2247
		writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
2248
		       (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
2249
		       hsotg->regs + GAHBCFG);
2250
	else
2251 2252 2253
		writel(((hsotg->dedicated_fifos) ? (GAHBCFG_NP_TXF_EMP_LVL |
						    GAHBCFG_P_TXF_EMP_LVL) : 0) |
		       GAHBCFG_GLBL_INTR_EN,
2254
		       hsotg->regs + GAHBCFG);
2255 2256

	/*
2257 2258 2259
	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
	 * when we have no data to transfer. Otherwise we get being flooded by
	 * interrupts.
2260 2261
	 */

2262 2263
	writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
2264 2265 2266 2267
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		DIEPMSK_INTKNEPMISMSK,
		hsotg->regs + DIEPMSK);
2268 2269 2270 2271 2272

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
	 * DMA mode we may need this.
	 */
2273 2274 2275 2276 2277
	writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
				    DIEPMSK_TIMEOUTMSK) : 0) |
		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
		DOEPMSK_SETUPMSK,
		hsotg->regs + DOEPMSK);
2278

2279
	writel(0, hsotg->regs + DAINTMSK);
2280 2281

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2282 2283
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2284 2285

	/* enable in and out endpoint interrupts */
2286
	s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2287 2288 2289 2290 2291 2292 2293

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
2294
		s3c_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2295 2296 2297 2298 2299

	/* Enable interrupts for EP0 in and out */
	s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);

2300
	__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2301
	udelay(10);  /* see openiboot */
2302
	__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2303

2304
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
2305 2306

	/*
2307
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2308 2309 2310 2311
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
2312 2313
	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2314

2315
	writel(s3c_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2316 2317
	       DXEPCTL_CNAK | DXEPCTL_EPENA |
	       DXEPCTL_USBACTEP,
2318
	       hsotg->regs + DOEPCTL0);
2319 2320

	/* enable, but don't activate EP0in */
2321
	writel(s3c_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2322
	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2323 2324 2325 2326

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2327 2328
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2329 2330

	/* clear global NAKs */
2331
	writel(DCTL_CGOUTNAK | DCTL_CGNPINNAK | DCTL_SFTDISCON,
2332
	       hsotg->regs + DCTL);
2333 2334 2335 2336

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

2337
	hsotg->last_rst = jiffies;
2338 2339
}

2340
static void s3c_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
2341 2342 2343 2344
{
	/* set the soft-disconnect bit */
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
}
2345

2346
void s3c_hsotg_core_connect(struct dwc2_hsotg *hsotg)
2347
{
2348
	/* remove the soft-disconnect and let's go */
2349
	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2350 2351
}

2352 2353 2354 2355 2356 2357 2358
/**
 * s3c_hsotg_irq - handle device interrupt
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
{
2359
	struct dwc2_hsotg *hsotg = pw;
2360 2361 2362 2363
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

2364
	spin_lock(&hsotg->lock);
2365
irq_retry:
2366 2367
	gintsts = readl(hsotg->regs + GINTSTS);
	gintmsk = readl(hsotg->regs + GINTMSK);
2368 2369 2370 2371 2372 2373

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

2374 2375
	if (gintsts & GINTSTS_ENUMDONE) {
		writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2376 2377

		s3c_hsotg_irq_enumdone(hsotg);
2378 2379
	}

2380
	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2381
		u32 daint = readl(hsotg->regs + DAINT);
2382 2383
		u32 daintmsk = readl(hsotg->regs + DAINTMSK);
		u32 daint_out, daint_in;
2384 2385
		int ep;

2386
		daint &= daintmsk;
2387 2388
		daint_out = daint >> DAINT_OUTEP_SHIFT;
		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2389

2390 2391
		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

2392 2393
		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
						ep++, daint_out >>= 1) {
2394 2395 2396 2397
			if (daint_out & 1)
				s3c_hsotg_epint(hsotg, ep, 0);
		}

2398 2399
		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
						ep++, daint_in >>= 1) {
2400 2401 2402 2403 2404
			if (daint_in & 1)
				s3c_hsotg_epint(hsotg, ep, 1);
		}
	}

2405
	if (gintsts & GINTSTS_USBRST) {
2406

2407
		u32 usb_status = readl(hsotg->regs + GOTGCTL);
2408

2409
		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
2410
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2411
			readl(hsotg->regs + GNPTXSTS));
2412

2413
		writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
2414

2415 2416 2417
		/* Report disconnection if it is not already done. */
		s3c_hsotg_disconnect(hsotg);

2418
		if (usb_status & GOTGCTL_BSESVLD) {
2419 2420
			if (time_after(jiffies, hsotg->last_rst +
				       msecs_to_jiffies(200))) {
2421

2422
				kill_all_requests(hsotg, hsotg->eps_out[0],
2423
							  -ECONNRESET);
2424

2425 2426
				s3c_hsotg_core_init_disconnected(hsotg);
				s3c_hsotg_core_connect(hsotg);
2427 2428
			}
		}
2429 2430 2431 2432
	}

	/* check both FIFOs */

2433
	if (gintsts & GINTSTS_NPTXFEMP) {
2434 2435
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

2436 2437
		/*
		 * Disable the interrupt to stop it happening again
2438
		 * unless one of these endpoint routines decides that
2439 2440
		 * it needs re-enabling
		 */
2441

2442
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
2443 2444 2445
		s3c_hsotg_irq_fifoempty(hsotg, false);
	}

2446
	if (gintsts & GINTSTS_PTXFEMP) {
2447 2448
		dev_dbg(hsotg->dev, "PTxFEmp\n");

2449
		/* See note in GINTSTS_NPTxFEmp */
2450

2451
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
2452 2453 2454
		s3c_hsotg_irq_fifoempty(hsotg, true);
	}

2455
	if (gintsts & GINTSTS_RXFLVL) {
2456 2457
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2458
		 * we need to retry s3c_hsotg_handle_rx if this is still
2459 2460
		 * set.
		 */
2461 2462 2463 2464

		s3c_hsotg_handle_rx(hsotg);
	}

2465
	if (gintsts & GINTSTS_ERLYSUSP) {
2466
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2467
		writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2468 2469
	}

2470 2471
	/*
	 * these next two seem to crop-up occasionally causing the core
2472
	 * to shutdown the USB transfer, so try clearing them and logging
2473 2474
	 * the occurrence.
	 */
2475

2476
	if (gintsts & GINTSTS_GOUTNAKEFF) {
2477 2478
		dev_info(hsotg->dev, "GOUTNakEff triggered\n");

2479
		writel(DCTL_CGOUTNAK, hsotg->regs + DCTL);
2480 2481

		s3c_hsotg_dump(hsotg);
2482 2483
	}

2484
	if (gintsts & GINTSTS_GINNAKEFF) {
2485 2486
		dev_info(hsotg->dev, "GINNakEff triggered\n");

2487
		writel(DCTL_CGNPINNAK, hsotg->regs + DCTL);
2488 2489

		s3c_hsotg_dump(hsotg);
2490 2491
	}

2492 2493 2494 2495
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
2496 2497 2498 2499

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
			goto irq_retry;

2500 2501
	spin_unlock(&hsotg->lock);

2502 2503 2504 2505 2506 2507 2508 2509 2510
	return IRQ_HANDLED;
}

/**
 * s3c_hsotg_ep_enable - enable the given endpoint
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
2511
 */
2512 2513 2514 2515
static int s3c_hsotg_ep_enable(struct usb_ep *ep,
			       const struct usb_endpoint_descriptor *desc)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2516
	struct dwc2_hsotg *hsotg = hs_ep->parent;
2517
	unsigned long flags;
2518
	unsigned int index = hs_ep->index;
2519 2520 2521
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
2522 2523
	unsigned int dir_in;
	unsigned int i, val, size;
2524
	int ret = 0;
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
	WARN_ON(index == 0);

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

2540
	mps = usb_endpoint_maxp(desc);
2541 2542 2543

	/* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */

2544
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2545 2546 2547 2548 2549
	epctrl = readl(hsotg->regs + epctrl_reg);

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

2550
	spin_lock_irqsave(&hsotg->lock, flags);
2551

2552 2553
	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
	epctrl |= DXEPCTL_MPS(mps);
2554

2555 2556 2557 2558
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
2559
	epctrl |= DXEPCTL_USBACTEP;
2560

2561 2562
	/*
	 * set the NAK status on the endpoint, otherwise we might try and
2563 2564 2565 2566 2567
	 * do something with data that we've yet got a request to process
	 * since the RXFIFO will take data for an endpoint even if the
	 * size register hasn't been set.
	 */

2568
	epctrl |= DXEPCTL_SNAK;
2569 2570

	/* update the endpoint state */
2571
	s3c_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, dir_in);
2572 2573

	/* default, set to non-periodic */
2574
	hs_ep->isochronous = 0;
2575
	hs_ep->periodic = 0;
2576
	hs_ep->halted = 0;
2577
	hs_ep->interval = desc->bInterval;
2578

2579 2580 2581
	if (hs_ep->interval > 1 && hs_ep->mc > 1)
		dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");

2582 2583
	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
2584 2585
		epctrl |= DXEPCTL_EPTYPE_ISO;
		epctrl |= DXEPCTL_SETEVENFR;
2586 2587 2588 2589
		hs_ep->isochronous = 1;
		if (dir_in)
			hs_ep->periodic = 1;
		break;
2590 2591

	case USB_ENDPOINT_XFER_BULK:
2592
		epctrl |= DXEPCTL_EPTYPE_BULK;
2593 2594 2595
		break;

	case USB_ENDPOINT_XFER_INT:
2596
		if (dir_in)
2597 2598
			hs_ep->periodic = 1;

2599
		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2600 2601 2602
		break;

	case USB_ENDPOINT_XFER_CONTROL:
2603
		epctrl |= DXEPCTL_EPTYPE_CONTROL;
2604 2605 2606
		break;
	}

2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617
	/* If fifo is already allocated for this ep */
	if (hs_ep->fifo_index) {
		size =  hs_ep->ep.maxpacket * hs_ep->mc;
		/* If bigger fifo is required deallocate current one */
		if (size > hs_ep->fifo_size) {
			hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
			hs_ep->fifo_index = 0;
			hs_ep->fifo_size = 0;
		}
	}

2618 2619
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
2620 2621
	 * a unique tx-fifo even if it is non-periodic.
	 */
2622
	if (dir_in && hsotg->dedicated_fifos && !hs_ep->fifo_index) {
2623 2624
		u32 fifo_index = 0;
		u32 fifo_size = UINT_MAX;
2625
		size = hs_ep->ep.maxpacket*hs_ep->mc;
2626
		for (i = 1; i < hsotg->num_of_eps; ++i) {
2627 2628 2629 2630 2631 2632
			if (hsotg->fifo_map & (1<<i))
				continue;
			val = readl(hsotg->regs + DPTXFSIZN(i));
			val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
			if (val < size)
				continue;
2633 2634 2635 2636 2637
			/* Search for smallest acceptable fifo */
			if (val < fifo_size) {
				fifo_size = val;
				fifo_index = i;
			}
2638
		}
2639
		if (!fifo_index) {
2640 2641
			dev_err(hsotg->dev,
				"%s: No suitable fifo found\n", __func__);
2642 2643 2644
			ret = -ENOMEM;
			goto error;
		}
2645 2646 2647 2648
		hsotg->fifo_map |= 1 << fifo_index;
		epctrl |= DXEPCTL_TXFNUM(fifo_index);
		hs_ep->fifo_index = fifo_index;
		hs_ep->fifo_size = fifo_size;
2649
	}
2650

2651 2652
	/* for non control endpoints, set PID to D0 */
	if (index)
2653
		epctrl |= DXEPCTL_SETD0PID;
2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

	writel(epctrl, hsotg->regs + epctrl_reg);
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
		__func__, readl(hsotg->regs + epctrl_reg));

	/* enable the endpoint interrupt */
	s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);

2665
error:
2666
	spin_unlock_irqrestore(&hsotg->lock, flags);
2667
	return ret;
2668 2669
}

2670 2671 2672 2673
/**
 * s3c_hsotg_ep_disable - disable given endpoint
 * @ep: The endpoint to disable.
 */
2674
static int s3c_hsotg_ep_disable_force(struct usb_ep *ep, bool force)
2675 2676
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2677
	struct dwc2_hsotg *hsotg = hs_ep->parent;
2678 2679 2680 2681 2682 2683
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

2684
	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2685

2686
	if (ep == &hsotg->eps_out[0]->ep) {
2687 2688 2689 2690
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

2691
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2692

2693
	spin_lock_irqsave(&hsotg->lock, flags);
2694

2695 2696 2697
	hsotg->fifo_map &= ~(1<<hs_ep->fifo_index);
	hs_ep->fifo_index = 0;
	hs_ep->fifo_size = 0;
2698 2699

	ctrl = readl(hsotg->regs + epctrl_reg);
2700 2701 2702
	ctrl &= ~DXEPCTL_EPENA;
	ctrl &= ~DXEPCTL_USBACTEP;
	ctrl |= DXEPCTL_SNAK;
2703 2704 2705 2706 2707 2708 2709

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

	/* disable endpoint interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);

2710 2711 2712
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);

2713
	spin_unlock_irqrestore(&hsotg->lock, flags);
2714 2715 2716
	return 0;
}

2717 2718 2719 2720
static int s3c_hsotg_ep_disable(struct usb_ep *ep)
{
	return s3c_hsotg_ep_disable_force(ep, false);
}
2721 2722 2723 2724
/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
2725
 */
2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
{
	struct s3c_hsotg_req *req, *treq;

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

2738 2739 2740 2741 2742
/**
 * s3c_hsotg_ep_dequeue - dequeue given endpoint
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
2743 2744 2745 2746
static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2747
	struct dwc2_hsotg *hs = hs_ep->parent;
2748 2749
	unsigned long flags;

2750
	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2751

2752
	spin_lock_irqsave(&hs->lock, flags);
2753 2754

	if (!on_list(hs_ep, hs_req)) {
2755
		spin_unlock_irqrestore(&hs->lock, flags);
2756 2757 2758 2759
		return -EINVAL;
	}

	s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2760
	spin_unlock_irqrestore(&hs->lock, flags);
2761 2762 2763 2764

	return 0;
}

2765 2766 2767 2768 2769
/**
 * s3c_hsotg_ep_sethalt - set halt on a given endpoint
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
2770 2771 2772
static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2773
	struct dwc2_hsotg *hs = hs_ep->parent;
2774 2775 2776
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
2777
	u32 xfertype;
2778 2779 2780

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

2781 2782 2783 2784 2785 2786 2787 2788 2789
	if (index == 0) {
		if (value)
			s3c_hsotg_stall_ep0(hs);
		else
			dev_warn(hs->dev,
				 "%s: can't clear halt on ep0\n", __func__);
		return 0;
	}

2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
	if (hs_ep->dir_in) {
		epreg = DIEPCTL(index);
		epctl = readl(hs->regs + epreg);

		if (value) {
			epctl |= DXEPCTL_STALL + DXEPCTL_SNAK;
			if (epctl & DXEPCTL_EPENA)
				epctl |= DXEPCTL_EPDIS;
		} else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
		writel(epctl, hs->regs + epreg);
2806
	} else {
2807

2808 2809
		epreg = DOEPCTL(index);
		epctl = readl(hs->regs + epreg);
2810

2811 2812 2813 2814 2815 2816 2817 2818 2819 2820
		if (value)
			epctl |= DXEPCTL_STALL;
		else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
		writel(epctl, hs->regs + epreg);
2821
	}
2822

2823 2824
	hs_ep->halted = value;

2825 2826 2827
	return 0;
}

2828 2829 2830 2831 2832 2833 2834 2835
/**
 * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2836
	struct dwc2_hsotg *hs = hs_ep->parent;
2837 2838 2839 2840 2841 2842 2843 2844 2845 2846
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_sethalt(ep, value);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

2847 2848 2849 2850 2851
static struct usb_ep_ops s3c_hsotg_ep_ops = {
	.enable		= s3c_hsotg_ep_enable,
	.disable	= s3c_hsotg_ep_disable,
	.alloc_request	= s3c_hsotg_ep_alloc_request,
	.free_request	= s3c_hsotg_ep_free_request,
2852
	.queue		= s3c_hsotg_ep_queue_lock,
2853
	.dequeue	= s3c_hsotg_ep_dequeue,
2854
	.set_halt	= s3c_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
2855
	/* note, don't believe we have any call for the fifo routines */
2856 2857
};

2858 2859
/**
 * s3c_hsotg_phy_enable - enable platform phy dev
2860
 * @hsotg: The driver state
2861 2862 2863 2864
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
2865
static void s3c_hsotg_phy_enable(struct dwc2_hsotg *hsotg)
2866 2867 2868 2869
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

	dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
2870

2871
	if (hsotg->uphy)
2872
		usb_phy_init(hsotg->uphy);
2873
	else if (hsotg->plat && hsotg->plat->phy_init)
2874
		hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
2875 2876 2877 2878
	else {
		phy_init(hsotg->phy);
		phy_power_on(hsotg->phy);
	}
2879 2880 2881 2882
}

/**
 * s3c_hsotg_phy_disable - disable platform phy dev
2883
 * @hsotg: The driver state
2884 2885 2886 2887
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
2888
static void s3c_hsotg_phy_disable(struct dwc2_hsotg *hsotg)
2889 2890 2891
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

2892
	if (hsotg->uphy)
2893
		usb_phy_shutdown(hsotg->uphy);
2894
	else if (hsotg->plat && hsotg->plat->phy_exit)
2895
		hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
2896 2897 2898 2899
	else {
		phy_power_off(hsotg->phy);
		phy_exit(hsotg->phy);
	}
2900 2901
}

2902 2903 2904 2905
/**
 * s3c_hsotg_init - initalize the usb core
 * @hsotg: The driver state
 */
2906
static void s3c_hsotg_init(struct dwc2_hsotg *hsotg)
2907 2908 2909
{
	/* unmask subset of endpoint interrupts */

2910 2911 2912
	writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
		hsotg->regs + DIEPMSK);
2913

2914 2915 2916
	writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
		DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
		hsotg->regs + DOEPMSK);
2917

2918
	writel(0, hsotg->regs + DAINTMSK);
2919 2920

	/* Be in disconnected state until gadget is registered */
2921
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2922 2923 2924 2925

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2926 2927
		readl(hsotg->regs + GRXFSIZ),
		readl(hsotg->regs + GNPTXFSIZ));
2928 2929 2930 2931

	s3c_hsotg_init_fifo(hsotg);

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2932
	writel(GUSBCFG_PHYIF16 | GUSBCFG_TOUTCAL(7) | (0x5 << 10),
2933
	       hsotg->regs + GUSBCFG);
2934

2935 2936
	if (using_dma(hsotg))
		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
2937 2938
}

2939 2940 2941 2942 2943 2944 2945 2946
/**
 * s3c_hsotg_udc_start - prepare the udc for work
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
2947 2948
static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
			   struct usb_gadget_driver *driver)
2949
{
2950
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
2951
	unsigned long flags;
2952 2953 2954
	int ret;

	if (!hsotg) {
2955
		pr_err("%s: called with no device\n", __func__);
2956 2957 2958 2959 2960 2961 2962 2963
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

2964
	if (driver->max_speed < USB_SPEED_FULL)
2965 2966
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

2967
	if (!driver->setup) {
2968 2969 2970 2971
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

2972
	mutex_lock(&hsotg->init_mutex);
2973 2974 2975 2976
	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
2977
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
2978 2979
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

2980 2981
	clk_enable(hsotg->clk);

2982 2983
	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
2984
	if (ret) {
2985
		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
2986 2987 2988
		goto err;
	}

2989
	s3c_hsotg_phy_enable(hsotg);
2990 2991
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
2992

2993 2994 2995
	spin_lock_irqsave(&hsotg->lock, flags);
	s3c_hsotg_init(hsotg);
	s3c_hsotg_core_init_disconnected(hsotg);
2996
	hsotg->enabled = 0;
2997 2998
	spin_unlock_irqrestore(&hsotg->lock, flags);

2999
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
3000

3001 3002
	mutex_unlock(&hsotg->init_mutex);

3003 3004 3005
	return 0;

err:
3006
	mutex_unlock(&hsotg->init_mutex);
3007 3008 3009 3010
	hsotg->driver = NULL;
	return ret;
}

3011 3012 3013 3014 3015 3016 3017
/**
 * s3c_hsotg_udc_stop - stop the udc
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
3018
static int s3c_hsotg_udc_stop(struct usb_gadget *gadget)
3019
{
3020
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3021
	unsigned long flags = 0;
3022 3023 3024 3025 3026
	int ep;

	if (!hsotg)
		return -ENODEV;

3027 3028
	mutex_lock(&hsotg->init_mutex);

3029
	/* all endpoints should be shutdown */
3030 3031 3032 3033 3034 3035
	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
			s3c_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
		if (hsotg->eps_out[ep])
			s3c_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
	}
3036

3037 3038
	spin_lock_irqsave(&hsotg->lock, flags);

3039
	hsotg->driver = NULL;
3040
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3041
	hsotg->enabled = 0;
3042

3043 3044
	spin_unlock_irqrestore(&hsotg->lock, flags);

3045 3046
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, NULL);
3047 3048
	s3c_hsotg_phy_disable(hsotg);

3049
	regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
3050

3051 3052
	clk_disable(hsotg->clk);

3053 3054
	mutex_unlock(&hsotg->init_mutex);

3055 3056 3057
	return 0;
}

3058 3059 3060 3061 3062 3063
/**
 * s3c_hsotg_gadget_getframe - read the frame number
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
3064 3065 3066 3067 3068
static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
{
	return s3c_hsotg_read_frameno(to_hsotg(gadget));
}

3069 3070 3071 3072 3073 3074 3075 3076 3077
/**
 * s3c_hsotg_pullup - connect/disconnect the USB PHY
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
{
3078
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3079 3080
	unsigned long flags = 0;

3081
	dev_dbg(hsotg->dev, "%s: is_on: %d\n", __func__, is_on);
3082

3083
	mutex_lock(&hsotg->init_mutex);
3084 3085
	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
3086
		clk_enable(hsotg->clk);
3087
		hsotg->enabled = 1;
3088
		s3c_hsotg_core_connect(hsotg);
3089
	} else {
3090
		s3c_hsotg_core_disconnect(hsotg);
3091
		s3c_hsotg_disconnect(hsotg);
3092
		hsotg->enabled = 0;
3093
		clk_disable(hsotg->clk);
3094 3095 3096 3097
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);
3098
	mutex_unlock(&hsotg->init_mutex);
3099 3100 3101 3102

	return 0;
}

3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125
static int s3c_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
	unsigned long flags;

	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
	spin_lock_irqsave(&hsotg->lock, flags);

	if (is_active) {
		/* Kill any ep0 requests as controller will be reinitialized */
		kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
		s3c_hsotg_core_init_disconnected(hsotg);
		if (hsotg->enabled)
			s3c_hsotg_core_connect(hsotg);
	} else {
		s3c_hsotg_core_disconnect(hsotg);
		s3c_hsotg_disconnect(hsotg);
	}

	spin_unlock_irqrestore(&hsotg->lock, flags);
	return 0;
}

3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141
/**
 * s3c_hsotg_vbus_draw - report bMaxPower field
 * @gadget: The usb gadget state
 * @mA: Amount of current
 *
 * Report how much power the device may consume to the phy.
 */
static int s3c_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned mA)
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);

	if (IS_ERR_OR_NULL(hsotg->uphy))
		return -ENOTSUPP;
	return usb_phy_set_power(hsotg->uphy, mA);
}

3142
static const struct usb_gadget_ops s3c_hsotg_gadget_ops = {
3143
	.get_frame	= s3c_hsotg_gadget_getframe,
3144 3145
	.udc_start		= s3c_hsotg_udc_start,
	.udc_stop		= s3c_hsotg_udc_stop,
3146
	.pullup                 = s3c_hsotg_pullup,
3147
	.vbus_session		= s3c_hsotg_vbus_session,
3148
	.vbus_draw		= s3c_hsotg_vbus_draw,
3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160
};

/**
 * s3c_hsotg_initep - initialise a single endpoint
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
3161
static void s3c_hsotg_initep(struct dwc2_hsotg *hsotg,
3162
				       struct s3c_hsotg_ep *hs_ep,
3163 3164
				       int epnum,
				       bool dir_in)
3165 3166 3167 3168 3169
{
	char *dir;

	if (epnum == 0)
		dir = "";
3170
	else if (dir_in)
3171
		dir = "in";
3172 3173
	else
		dir = "out";
3174

3175
	hs_ep->dir_in = dir_in;
3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188
	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
3189
	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3190 3191
	hs_ep->ep.ops = &s3c_hsotg_ep_ops;

3192 3193
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
3194 3195 3196 3197
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
3198
		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3199 3200 3201 3202
		if (dir_in)
			writel(next, hsotg->regs + DIEPCTL(epnum));
		else
			writel(next, hsotg->regs + DOEPCTL(epnum));
3203 3204 3205
	}
}

3206 3207 3208 3209 3210 3211
/**
 * s3c_hsotg_hw_cfg - read HW configuration registers
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
3212
static int s3c_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
3213
{
3214 3215 3216 3217
	u32 cfg;
	u32 ep_type;
	u32 i;

3218
	/* check hardware configuration */
3219

3220 3221 3222 3223
	cfg = readl(hsotg->regs + GHWCFG2);
	hsotg->num_of_eps = (cfg >> 10) & 0xF;
	/* Add ep0 */
	hsotg->num_of_eps++;
3224

3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct s3c_hsotg_ep),
								GFP_KERNEL);
	if (!hsotg->eps_in[0])
		return -ENOMEM;
	/* Same s3c_hsotg_ep is used in both directions for ep0 */
	hsotg->eps_out[0] = hsotg->eps_in[0];

	cfg = readl(hsotg->regs + GHWCFG1);
	for (i = 1; i < hsotg->num_of_eps; i++, cfg >>= 2) {
		ep_type = cfg & 3;
		/* Direction in or both */
		if (!(ep_type & 2)) {
			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
				sizeof(struct s3c_hsotg_ep), GFP_KERNEL);
			if (!hsotg->eps_in[i])
				return -ENOMEM;
		}
		/* Direction out or both */
		if (!(ep_type & 1)) {
			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
				sizeof(struct s3c_hsotg_ep), GFP_KERNEL);
			if (!hsotg->eps_out[i])
				return -ENOMEM;
		}
	}

	cfg = readl(hsotg->regs + GHWCFG3);
	hsotg->fifo_mem = (cfg >> 16);
3253

3254 3255
	cfg = readl(hsotg->regs + GHWCFG4);
	hsotg->dedicated_fifos = (cfg >> 25) & 1;
3256

3257 3258 3259 3260
	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
		 hsotg->num_of_eps,
		 hsotg->dedicated_fifos ? "dedicated" : "shared",
		 hsotg->fifo_mem);
3261
	return 0;
3262 3263
}

3264 3265 3266 3267
/**
 * s3c_hsotg_dump - dump state of the udc
 * @param: The device state
 */
3268
static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg)
3269
{
M
Mark Brown 已提交
3270
#ifdef DEBUG
3271 3272 3273 3274 3275 3276
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3277 3278
		 readl(regs + DCFG), readl(regs + DCTL),
		 readl(regs + DIEPMSK));
3279 3280

	dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
3281
		 readl(regs + GAHBCFG), readl(regs + 0x44));
3282 3283

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3284
		 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
3285 3286 3287

	/* show periodic fifo settings */

3288
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3289
		val = readl(regs + DPTXFSIZN(idx));
3290
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3291 3292
			 val >> FIFOSIZE_DEPTH_SHIFT,
			 val & FIFOSIZE_STARTADDR_MASK);
3293 3294
	}

3295
	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
3296 3297
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3298 3299 3300
			 readl(regs + DIEPCTL(idx)),
			 readl(regs + DIEPTSIZ(idx)),
			 readl(regs + DIEPDMA(idx)));
3301

3302
		val = readl(regs + DOEPCTL(idx));
3303 3304
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3305 3306 3307
			 idx, readl(regs + DOEPCTL(idx)),
			 readl(regs + DOEPTSIZ(idx)),
			 readl(regs + DOEPDMA(idx)));
3308 3309 3310 3311

	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3312
		 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
3313
#endif
3314 3315
}

3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412
/**
 * testmode_write - debugfs: change usb test mode
 * @seq: The seq file to write to.
 * @v: Unused parameter.
 *
 * This debugfs entry modify the current usb test mode.
 */
static ssize_t testmode_write(struct file *file, const char __user *ubuf, size_t
		count, loff_t *ppos)
{
	struct seq_file		*s = file->private_data;
	struct dwc2_hsotg	*hsotg = s->private;
	unsigned long		flags;
	u32			testmode = 0;
	char			buf[32];

	if (copy_from_user(&buf, ubuf, min_t(size_t, sizeof(buf) - 1, count)))
		return -EFAULT;

	if (!strncmp(buf, "test_j", 6))
		testmode = TEST_J;
	else if (!strncmp(buf, "test_k", 6))
		testmode = TEST_K;
	else if (!strncmp(buf, "test_se0_nak", 12))
		testmode = TEST_SE0_NAK;
	else if (!strncmp(buf, "test_packet", 11))
		testmode = TEST_PACKET;
	else if (!strncmp(buf, "test_force_enable", 17))
		testmode = TEST_FORCE_EN;
	else
		testmode = 0;

	spin_lock_irqsave(&hsotg->lock, flags);
	s3c_hsotg_set_test_mode(hsotg, testmode);
	spin_unlock_irqrestore(&hsotg->lock, flags);
	return count;
}

/**
 * testmode_show - debugfs: show usb test mode state
 * @seq: The seq file to write to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows which usb test mode is currently enabled.
 */
static int testmode_show(struct seq_file *s, void *unused)
{
	struct dwc2_hsotg *hsotg = s->private;
	unsigned long flags;
	int dctl;

	spin_lock_irqsave(&hsotg->lock, flags);
	dctl = readl(hsotg->regs + DCTL);
	dctl &= DCTL_TSTCTL_MASK;
	dctl >>= DCTL_TSTCTL_SHIFT;
	spin_unlock_irqrestore(&hsotg->lock, flags);

	switch (dctl) {
	case 0:
		seq_puts(s, "no test\n");
		break;
	case TEST_J:
		seq_puts(s, "test_j\n");
		break;
	case TEST_K:
		seq_puts(s, "test_k\n");
		break;
	case TEST_SE0_NAK:
		seq_puts(s, "test_se0_nak\n");
		break;
	case TEST_PACKET:
		seq_puts(s, "test_packet\n");
		break;
	case TEST_FORCE_EN:
		seq_puts(s, "test_force_enable\n");
		break;
	default:
		seq_printf(s, "UNKNOWN %d\n", dctl);
	}

	return 0;
}

static int testmode_open(struct inode *inode, struct file *file)
{
	return single_open(file, testmode_show, inode->i_private);
}

static const struct file_operations testmode_fops = {
	.owner		= THIS_MODULE,
	.open		= testmode_open,
	.write		= testmode_write,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
/**
 * state_show - debugfs: show overall driver and device state.
 * @seq: The seq file to write to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the overall state of the hardware and
 * some general information about each of the endpoints available
 * to the system.
 */
static int state_show(struct seq_file *seq, void *v)
{
3424
	struct dwc2_hsotg *hsotg = seq->private;
3425 3426 3427 3428
	void __iomem *regs = hsotg->regs;
	int idx;

	seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3429 3430 3431
		 readl(regs + DCFG),
		 readl(regs + DCTL),
		 readl(regs + DSTS));
3432 3433

	seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3434
		   readl(regs + DIEPMSK), readl(regs + DOEPMSK));
3435 3436

	seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3437 3438
		   readl(regs + GINTMSK),
		   readl(regs + GINTSTS));
3439 3440

	seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3441 3442
		   readl(regs + DAINTMSK),
		   readl(regs + DAINT));
3443 3444

	seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3445 3446
		   readl(regs + GNPTXSTS),
		   readl(regs + GRXSTSR));
3447

3448
	seq_puts(seq, "\nEndpoint status:\n");
3449

3450
	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
3451 3452
		u32 in, out;

3453 3454
		in = readl(regs + DIEPCTL(idx));
		out = readl(regs + DOEPCTL(idx));
3455 3456 3457 3458

		seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
			   idx, in, out);

3459 3460
		in = readl(regs + DIEPTSIZ(idx));
		out = readl(regs + DOEPTSIZ(idx));
3461 3462 3463 3464

		seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
			   in, out);

3465
		seq_puts(seq, "\n");
3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490
	}

	return 0;
}

static int state_open(struct inode *inode, struct file *file)
{
	return single_open(file, state_show, inode->i_private);
}

static const struct file_operations state_fops = {
	.owner		= THIS_MODULE,
	.open		= state_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * fifo_show - debugfs: show the fifo information
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * Show the FIFO information for the overall fifo and all the
 * periodic transmission FIFOs.
3491
 */
3492 3493
static int fifo_show(struct seq_file *seq, void *v)
{
3494
	struct dwc2_hsotg *hsotg = seq->private;
3495 3496 3497 3498
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

3499
	seq_puts(seq, "Non-periodic FIFOs:\n");
3500
	seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ));
3501

3502
	val = readl(regs + GNPTXFSIZ);
3503
	seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3504 3505
		   val >> FIFOSIZE_DEPTH_SHIFT,
		   val & FIFOSIZE_DEPTH_MASK);
3506

3507
	seq_puts(seq, "\nPeriodic TXFIFOs:\n");
3508

3509
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3510
		val = readl(regs + DPTXFSIZN(idx));
3511 3512

		seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3513 3514
			   val >> FIFOSIZE_DEPTH_SHIFT,
			   val & FIFOSIZE_STARTADDR_MASK);
3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
	}

	return 0;
}

static int fifo_open(struct inode *inode, struct file *file)
{
	return single_open(file, fifo_show, inode->i_private);
}

static const struct file_operations fifo_fops = {
	.owner		= THIS_MODULE,
	.open		= fifo_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};


static const char *decode_direction(int is_in)
{
	return is_in ? "in" : "out";
}

/**
 * ep_show - debugfs: show the state of an endpoint.
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the state of the given endpoint (one is
 * registered for each available).
3546
 */
3547 3548 3549
static int ep_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg_ep *ep = seq->private;
3550
	struct dwc2_hsotg *hsotg = ep->parent;
3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562
	struct s3c_hsotg_req *req;
	void __iomem *regs = hsotg->regs;
	int index = ep->index;
	int show_limit = 15;
	unsigned long flags;

	seq_printf(seq, "Endpoint index %d, named %s,  dir %s:\n",
		   ep->index, ep->ep.name, decode_direction(ep->dir_in));

	/* first show the register state */

	seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3563 3564
		   readl(regs + DIEPCTL(index)),
		   readl(regs + DOEPCTL(index)));
3565 3566

	seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3567 3568
		   readl(regs + DIEPDMA(index)),
		   readl(regs + DOEPDMA(index)));
3569 3570

	seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3571 3572
		   readl(regs + DIEPINT(index)),
		   readl(regs + DOEPINT(index)));
3573 3574

	seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3575 3576
		   readl(regs + DIEPTSIZ(index)),
		   readl(regs + DOEPTSIZ(index)));
3577

3578
	seq_puts(seq, "\n");
3579 3580 3581 3582 3583 3584
	seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
	seq_printf(seq, "total_data=%ld\n", ep->total_data);

	seq_printf(seq, "request list (%p,%p):\n",
		   ep->queue.next, ep->queue.prev);

3585
	spin_lock_irqsave(&hsotg->lock, flags);
3586 3587 3588

	list_for_each_entry(req, &ep->queue, queue) {
		if (--show_limit < 0) {
3589
			seq_puts(seq, "not showing more requests...\n");
3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
			break;
		}

		seq_printf(seq, "%c req %p: %d bytes @%p, ",
			   req == ep->req ? '*' : ' ',
			   req, req->req.length, req->req.buf);
		seq_printf(seq, "%d done, res %d\n",
			   req->req.actual, req->req.status);
	}

3600
	spin_unlock_irqrestore(&hsotg->lock, flags);
3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625

	return 0;
}

static int ep_open(struct inode *inode, struct file *file)
{
	return single_open(file, ep_show, inode->i_private);
}

static const struct file_operations ep_fops = {
	.owner		= THIS_MODULE,
	.open		= ep_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * s3c_hsotg_create_debug - create debugfs directory and files
 * @hsotg: The driver state
 *
 * Create the debugfs files to allow the user to get information
 * about the state of the system. The directory name is created
 * with the same name as the device itself, in case we end up
 * with multiple blocks in future systems.
3626
 */
3627
static void s3c_hsotg_create_debug(struct dwc2_hsotg *hsotg)
3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646
{
	struct dentry *root;
	unsigned epidx;

	root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
	hsotg->debug_root = root;
	if (IS_ERR(root)) {
		dev_err(hsotg->dev, "cannot create debug root\n");
		return;
	}

	/* create general state file */

	hsotg->debug_file = debugfs_create_file("state", 0444, root,
						hsotg, &state_fops);

	if (IS_ERR(hsotg->debug_file))
		dev_err(hsotg->dev, "%s: failed to create state\n", __func__);

3647 3648 3649 3650 3651 3652 3653 3654
	hsotg->debug_testmode = debugfs_create_file("testmode",
					S_IRUGO | S_IWUSR, root,
					hsotg, &testmode_fops);

	if (IS_ERR(hsotg->debug_testmode))
		dev_err(hsotg->dev, "%s: failed to create testmode\n",
				__func__);

3655 3656 3657 3658 3659 3660
	hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
						hsotg, &fifo_fops);

	if (IS_ERR(hsotg->debug_fifo))
		dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);

3661
	/* Create one file for each out endpoint */
3662
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3663
		struct s3c_hsotg_ep *ep;
3664

3665 3666 3667 3668
		ep = hsotg->eps_out[epidx];
		if (ep) {
			ep->debugfs = debugfs_create_file(ep->name, 0444,
							  root, ep, &ep_fops);
3669

3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687
			if (IS_ERR(ep->debugfs))
				dev_err(hsotg->dev, "failed to create %s debug file\n",
					ep->name);
		}
	}
	/* Create one file for each in endpoint. EP0 is handled with out eps */
	for (epidx = 1; epidx < hsotg->num_of_eps; epidx++) {
		struct s3c_hsotg_ep *ep;

		ep = hsotg->eps_in[epidx];
		if (ep) {
			ep->debugfs = debugfs_create_file(ep->name, 0444,
							  root, ep, &ep_fops);

			if (IS_ERR(ep->debugfs))
				dev_err(hsotg->dev, "failed to create %s debug file\n",
					ep->name);
		}
3688 3689 3690 3691 3692 3693 3694 3695
	}
}

/**
 * s3c_hsotg_delete_debug - cleanup debugfs entries
 * @hsotg: The driver state
 *
 * Cleanup (remove) the debugfs files for use on module exit.
3696
 */
3697
static void s3c_hsotg_delete_debug(struct dwc2_hsotg *hsotg)
3698 3699 3700
{
	unsigned epidx;

3701
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3702 3703 3704 3705
		if (hsotg->eps_in[epidx])
			debugfs_remove(hsotg->eps_in[epidx]->debugfs);
		if (hsotg->eps_out[epidx])
			debugfs_remove(hsotg->eps_out[epidx]->debugfs);
3706 3707 3708
	}

	debugfs_remove(hsotg->debug_file);
3709
	debugfs_remove(hsotg->debug_testmode);
3710 3711 3712 3713
	debugfs_remove(hsotg->debug_fifo);
	debugfs_remove(hsotg->debug_root);
}

3714 3715 3716 3717
#ifdef CONFIG_OF
static void s3c_hsotg_of_probe(struct dwc2_hsotg *hsotg)
{
	struct device_node *np = hsotg->dev->of_node;
3718 3719
	u32 len = 0;
	u32 i = 0;
3720 3721 3722

	/* Enable dma if requested in device tree */
	hsotg->g_using_dma = of_property_read_bool(np, "g-use-dma");
3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753

	/*
	* Register TX periodic fifo size per endpoint.
	* EP0 is excluded since it has no fifo configuration.
	*/
	if (!of_find_property(np, "g-tx-fifo-size", &len))
		goto rx_fifo;

	len /= sizeof(u32);

	/* Read tx fifo sizes other than ep0 */
	if (of_property_read_u32_array(np, "g-tx-fifo-size",
						&hsotg->g_tx_fifo_sz[1], len))
		goto rx_fifo;

	/* Add ep0 */
	len++;

	/* Make remaining TX fifos unavailable */
	if (len < MAX_EPS_CHANNELS) {
		for (i = len; i < MAX_EPS_CHANNELS; i++)
			hsotg->g_tx_fifo_sz[i] = 0;
	}

rx_fifo:
	/* Register RX fifo size */
	of_property_read_u32(np, "g-rx-fifo-size", &hsotg->g_rx_fifo_sz);

	/* Register NPTX fifo size */
	of_property_read_u32(np, "g-np-tx-fifo-size",
						&hsotg->g_np_g_tx_fifo_sz);
3754 3755 3756 3757 3758
}
#else
static inline void s3c_hsotg_of_probe(struct dwc2_hsotg *hsotg) { }
#endif

3759
/**
3760 3761 3762
 * dwc2_gadget_init - init function for gadget
 * @dwc2: The data structure for the DWC2 driver.
 * @irq: The IRQ number for the controller.
3763
 */
3764
int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
3765
{
3766 3767
	struct device *dev = hsotg->dev;
	struct s3c_hsotg_plat *plat = dev->platform_data;
3768 3769
	int epnum;
	int ret;
3770
	int i;
3771
	u32 p_tx_fifo[] = DWC2_G_P_LEGACY_TX_FIFO_SIZE;
3772

3773 3774 3775
	/* Set default UTMI width */
	hsotg->phyif = GUSBCFG_PHYIF16;

3776 3777
	s3c_hsotg_of_probe(hsotg);

3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790
	/* Initialize to legacy fifo configuration values */
	hsotg->g_rx_fifo_sz = 2048;
	hsotg->g_np_g_tx_fifo_sz = 1024;
	memcpy(&hsotg->g_tx_fifo_sz[1], p_tx_fifo, sizeof(p_tx_fifo));
	/* Device tree specific probe */
	s3c_hsotg_of_probe(hsotg);
	/* Dump fifo information */
	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
						hsotg->g_np_g_tx_fifo_sz);
	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->g_rx_fifo_sz);
	for (i = 0; i < MAX_EPS_CHANNELS; i++)
		dev_dbg(dev, "Periodic TXFIFO%2d size: %d\n", i,
						hsotg->g_tx_fifo_sz[i]);
3791
	/*
3792 3793
	 * If platform probe couldn't find a generic PHY or an old style
	 * USB PHY, fall back to pdata
3794
	 */
3795 3796 3797 3798 3799 3800 3801 3802 3803
	if (IS_ERR_OR_NULL(hsotg->phy) && IS_ERR_OR_NULL(hsotg->uphy)) {
		plat = dev_get_platdata(dev);
		if (!plat) {
			dev_err(dev,
			"no platform data or transceiver defined\n");
			return -EPROBE_DEFER;
		}
		hsotg->plat = plat;
	} else if (hsotg->phy) {
3804 3805 3806 3807
		/*
		 * If using the generic PHY framework, check if the PHY bus
		 * width is 8-bit and set the phyif appropriately.
		 */
3808
		if (phy_get_bus_width(hsotg->phy) == 8)
3809 3810
			hsotg->phyif = GUSBCFG_PHYIF8;
	}
3811

3812
	hsotg->clk = devm_clk_get(dev, "otg");
3813
	if (IS_ERR(hsotg->clk)) {
3814
		hsotg->clk = NULL;
3815
		dev_dbg(dev, "cannot get otg clock\n");
3816 3817
	}

3818
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3819 3820 3821 3822 3823
	hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
	hsotg->gadget.name = dev_name(dev);

	/* reset the system */

3824 3825 3826 3827 3828 3829
	ret = clk_prepare_enable(hsotg->clk);
	if (ret) {
		dev_err(dev, "failed to enable otg clk\n");
		goto err_clk;
	}

3830

3831 3832 3833 3834 3835
	/* regulators */

	for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
		hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];

3836
	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3837 3838 3839
				 hsotg->supplies);
	if (ret) {
		dev_err(dev, "failed to request supplies: %d\n", ret);
3840
		goto err_clk;
3841 3842 3843 3844 3845 3846
	}

	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);

	if (ret) {
3847
		dev_err(dev, "failed to enable supplies: %d\n", ret);
3848
		goto err_clk;
3849 3850
	}

3851 3852
	/* usb phy enable */
	s3c_hsotg_phy_enable(hsotg);
3853

3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866
	/*
	 * Force Device mode before initialization.
	 * This allows correctly configuring fifo for device mode.
	 */
	__bic32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEHOSTMODE);
	__orr32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEDEVMODE);

	/*
	 * According to Synopsys databook, this sleep is needed for the force
	 * device mode to take effect.
	 */
	msleep(25);

3867
	s3c_hsotg_corereset(hsotg);
3868 3869 3870 3871 3872 3873
	ret = s3c_hsotg_hw_cfg(hsotg);
	if (ret) {
		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
		goto err_clk;
	}

3874
	s3c_hsotg_init(hsotg);
3875

3876 3877 3878
	/* Switch back to default configuration */
	__bic32(hsotg->regs + GUSBCFG, GUSBCFG_FORCEDEVMODE);

3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894
	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
	if (!hsotg->ctrl_buff) {
		dev_err(dev, "failed to allocate ctrl request buff\n");
		ret = -ENOMEM;
		goto err_supplies;
	}

	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
	if (!hsotg->ep0_buff) {
		dev_err(dev, "failed to allocate ctrl reply buff\n");
		ret = -ENOMEM;
		goto err_supplies;
	}

3895 3896
	ret = devm_request_irq(hsotg->dev, irq, s3c_hsotg_irq, IRQF_SHARED,
				dev_name(hsotg->dev), hsotg);
3897 3898 3899 3900 3901
	if (ret < 0) {
		s3c_hsotg_phy_disable(hsotg);
		clk_disable_unprepare(hsotg->clk);
		regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
				       hsotg->supplies);
3902
		dev_err(dev, "cannot claim IRQ for gadget\n");
3903
		goto err_supplies;
3904 3905
	}

3906 3907 3908 3909
	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
3910
		ret = -EINVAL;
3911 3912 3913 3914 3915 3916
		goto err_supplies;
	}

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3917
	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
3918 3919 3920

	/* allocate EP0 request */

3921
	hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
3922 3923 3924
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
3925
		ret = -ENOMEM;
3926
		goto err_supplies;
3927
	}
3928 3929

	/* initialise the endpoints now the core has been initialised */
3930 3931 3932 3933 3934 3935 3936 3937
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
		if (hsotg->eps_in[epnum])
			s3c_hsotg_initep(hsotg, hsotg->eps_in[epnum],
								epnum, 1);
		if (hsotg->eps_out[epnum])
			s3c_hsotg_initep(hsotg, hsotg->eps_out[epnum],
								epnum, 0);
	}
3938

3939
	/* disable power and clock */
3940
	s3c_hsotg_phy_disable(hsotg);
3941 3942 3943 3944

	ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
	if (ret) {
3945
		dev_err(dev, "failed to disable supplies: %d\n", ret);
3946
		goto err_supplies;
3947 3948
	}

3949
	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
3950
	if (ret)
3951
		goto err_supplies;
3952

3953 3954 3955 3956 3957 3958
	s3c_hsotg_create_debug(hsotg);

	s3c_hsotg_dump(hsotg);

	return 0;

3959
err_supplies:
3960
	s3c_hsotg_phy_disable(hsotg);
3961
err_clk:
3962
	clk_disable_unprepare(hsotg->clk);
3963

3964 3965
	return ret;
}
3966
EXPORT_SYMBOL_GPL(dwc2_gadget_init);
3967

3968 3969 3970 3971
/**
 * s3c_hsotg_remove - remove function for hsotg driver
 * @pdev: The platform information for the driver
 */
3972
int s3c_hsotg_remove(struct dwc2_hsotg *hsotg)
3973
{
3974
	usb_del_gadget_udc(&hsotg->gadget);
3975
	s3c_hsotg_delete_debug(hsotg);
3976
	clk_disable_unprepare(hsotg->clk);
3977

3978 3979
	return 0;
}
3980
EXPORT_SYMBOL_GPL(s3c_hsotg_remove);
3981

3982
int s3c_hsotg_suspend(struct dwc2_hsotg *hsotg)
3983 3984 3985 3986
{
	unsigned long flags;
	int ret = 0;

3987 3988
	mutex_lock(&hsotg->init_mutex);

3989 3990 3991
	if (hsotg->driver) {
		int ep;

3992 3993 3994
		dev_info(hsotg->dev, "suspending usb gadget %s\n",
			 hsotg->driver->driver.name);

3995 3996 3997 3998 3999 4000
		spin_lock_irqsave(&hsotg->lock, flags);
		if (hsotg->enabled)
			s3c_hsotg_core_disconnect(hsotg);
		s3c_hsotg_disconnect(hsotg);
		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
		spin_unlock_irqrestore(&hsotg->lock, flags);
4001

4002
		s3c_hsotg_phy_disable(hsotg);
4003

4004 4005 4006 4007 4008 4009
		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
			if (hsotg->eps_in[ep])
				s3c_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
			if (hsotg->eps_out[ep])
				s3c_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
		}
4010 4011 4012

		ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
					     hsotg->supplies);
4013
		clk_disable(hsotg->clk);
4014 4015
	}

4016 4017
	mutex_unlock(&hsotg->init_mutex);

4018 4019
	return ret;
}
4020
EXPORT_SYMBOL_GPL(s3c_hsotg_suspend);
4021

4022
int s3c_hsotg_resume(struct dwc2_hsotg *hsotg)
4023 4024 4025 4026
{
	unsigned long flags;
	int ret = 0;

4027 4028
	mutex_lock(&hsotg->init_mutex);

4029 4030 4031
	if (hsotg->driver) {
		dev_info(hsotg->dev, "resuming usb gadget %s\n",
			 hsotg->driver->driver.name);
4032 4033

		clk_enable(hsotg->clk);
4034
		ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
4035
					    hsotg->supplies);
4036

4037
		s3c_hsotg_phy_enable(hsotg);
4038

4039 4040 4041 4042 4043 4044
		spin_lock_irqsave(&hsotg->lock, flags);
		s3c_hsotg_core_init_disconnected(hsotg);
		if (hsotg->enabled)
			s3c_hsotg_core_connect(hsotg);
		spin_unlock_irqrestore(&hsotg->lock, flags);
	}
4045
	mutex_unlock(&hsotg->init_mutex);
4046 4047 4048

	return ret;
}
4049
EXPORT_SYMBOL_GPL(s3c_hsotg_resume);