gadget.c 124.6 KB
Newer Older
1
/**
2 3
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
4 5 6 7 8 9 10 11 12 13 14
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
15
 */
16 17 18 19 20 21 22

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
23
#include <linux/mutex.h>
24 25 26
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
27
#include <linux/slab.h>
28
#include <linux/of_platform.h>
29 30 31

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
32
#include <linux/usb/phy.h>
33

34
#include "core.h"
35
#include "hw.h"
36 37

/* conversion functions */
38
static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
39
{
40
	return container_of(req, struct dwc2_hsotg_req, req);
41 42
}

43
static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
44
{
45
	return container_of(ep, struct dwc2_hsotg_ep, ep);
46 47
}

48
static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
49
{
50
	return container_of(gadget, struct dwc2_hsotg, gadget);
51 52 53 54
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
55
	dwc2_writel(dwc2_readl(ptr) | val, ptr);
56 57 58 59
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
60
	dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
61 62
}

63
static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
64 65 66 67 68 69 70 71
						u32 ep_index, u32 dir_in)
{
	if (dir_in)
		return hsotg->eps_in[ep_index];
	else
		return hsotg->eps_out[ep_index];
}

72
/* forward declaration of functions */
73
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
92
 * g_using_dma is set depending on dts flag.
93
 */
94
static inline bool using_dma(struct dwc2_hsotg *hsotg)
95
{
96
	return hsotg->params.g_dma;
97 98
}

99 100 101 102 103 104 105 106 107 108 109
/*
 * using_desc_dma - return the descriptor DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using descriptor DMA.
 */
static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
{
	return hsotg->params.g_dma_desc;
}

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
/**
 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
 * @hs_ep: The endpoint
 * @increment: The value to increment by
 *
 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
 */
static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
{
	hs_ep->target_frame += hs_ep->interval;
	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
		hs_ep->frame_overrun = 1;
		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
	} else {
		hs_ep->frame_overrun = 0;
	}
}

129
/**
130
 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
131 132 133
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
134
static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
135
{
136
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
137 138 139 140 141 142
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
143
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
144 145 146 147
	}
}

/**
148
 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
149 150 151
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
152
static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
153
{
154
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
155 156 157 158 159
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
160
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
161 162 163
}

/**
164
 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
165 166 167 168 169 170 171 172
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
173
static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
174
				  unsigned int ep, unsigned int dir_in,
175 176 177 178 179 180 181 182 183 184
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
185
	daint = dwc2_readl(hsotg->regs + DAINTMSK);
186 187 188 189
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
190
	dwc2_writel(daint, hsotg->regs + DAINTMSK);
191 192 193 194
	local_irq_restore(flags);
}

/**
195
 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
196 197
 * @hsotg: The device instance.
 */
198
static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
199
{
200
	unsigned int ep;
201
	unsigned int addr;
202
	int timeout;
203
	u32 val;
204
	u32 *txfsz = hsotg->params.g_tx_fifo_size;
205

206 207 208 209
	/* Reset fifo map if not correctly cleared during previous session */
	WARN_ON(hsotg->fifo_map);
	hsotg->fifo_map = 0;

210
	/* set RX/NPTX FIFO sizes */
211 212 213 214
	dwc2_writel(hsotg->params.g_rx_fifo_size, hsotg->regs + GRXFSIZ);
	dwc2_writel((hsotg->params.g_rx_fifo_size << FIFOSIZE_STARTADDR_SHIFT) |
		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
		    hsotg->regs + GNPTXFSIZ);
215

216 217
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
218 219
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
220 221
	 * known values.
	 */
222 223

	/* start at the end of the GNPTXFSIZ, rounded up */
224
	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
225

226
	/*
227
	 * Configure fifos sizes from provided configuration and assign
228 229
	 * them to endpoints dynamically according to maxpacket size value of
	 * given endpoint.
230
	 */
231
	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
232
		if (!txfsz[ep])
233 234
			continue;
		val = addr;
235 236
		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
237
			  "insufficient fifo memory");
238
		addr += txfsz[ep];
239

240
		dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
241
		val = dwc2_readl(hsotg->regs + DPTXFSIZN(ep));
242
	}
243

244 245 246 247
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
248

249
	dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
250
	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
251 252 253 254

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
255
		val = dwc2_readl(hsotg->regs + GRSTCTL);
256

257
		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
258 259 260 261 262 263
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
264
			break;
265 266 267 268 269 270
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
271 272 273 274 275 276 277 278
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
279
static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
280
						       gfp_t flags)
281
{
282
	struct dwc2_hsotg_req *req;
283

284
	req = kzalloc(sizeof(struct dwc2_hsotg_req), flags);
285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
300
static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
301 302 303 304 305
{
	return hs_ep->periodic;
}

/**
306
 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
307 308 309 310
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
311
 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
312
 * of a request to ensure the buffer is ready for access by the caller.
313
 */
314
static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
315
				 struct dwc2_hsotg_ep *hs_ep,
316
				struct dwc2_hsotg_req *hs_req)
317 318
{
	struct usb_request *req = &hs_req->req;
319

320
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
321 322
}

323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
/*
 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
 * for Control endpoint
 * @hsotg: The device state.
 *
 * This function will allocate 4 descriptor chains for EP 0: 2 for
 * Setup stage, per one for IN and OUT data/status transactions.
 */
static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
{
	hsotg->setup_desc[0] =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->setup_desc_dma[0],
				    GFP_KERNEL);
	if (!hsotg->setup_desc[0])
		goto fail;

	hsotg->setup_desc[1] =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->setup_desc_dma[1],
				    GFP_KERNEL);
	if (!hsotg->setup_desc[1])
		goto fail;

	hsotg->ctrl_in_desc =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->ctrl_in_desc_dma,
				    GFP_KERNEL);
	if (!hsotg->ctrl_in_desc)
		goto fail;

	hsotg->ctrl_out_desc =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->ctrl_out_desc_dma,
				    GFP_KERNEL);
	if (!hsotg->ctrl_out_desc)
		goto fail;

	return 0;

fail:
	return -ENOMEM;
}

371
/**
372
 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
373 374 375 376 377 378 379 380 381 382 383 384 385
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
386
 */
387
static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
388
				 struct dwc2_hsotg_ep *hs_ep,
389
				struct dwc2_hsotg_req *hs_req)
390 391
{
	bool periodic = is_ep_periodic(hs_ep);
392
	u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
393 394 395 396 397
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;
398
	int max_transfer;
399 400 401 402 403 404 405

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

406
	if (periodic && !hsotg->dedicated_fifos) {
407
		u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
408 409 410
		int size_left;
		int size_done;

411 412 413 414
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
415

416
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
417

418 419
		/*
		 * if shared fifo, we cannot write anything until the
420 421 422
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
423
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
424 425 426
			return -ENOSPC;
		}

427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
444
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
445 446
			return -ENOSPC;
		}
447
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
448 449
		can_write = dwc2_readl(hsotg->regs +
				DTXFSTS(hs_ep->fifo_index));
450 451 452

		can_write &= 0xffff;
		can_write *= 4;
453
	} else {
454
		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
455 456 457 458
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

459
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
460 461 462
			return -ENOSPC;
		}

463
		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
464
		can_write *= 4;	/* fifo size is in 32bit quantities. */
465 466
	}

467 468 469
	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
470
		__func__, gnptxsts, can_write, to_write, max_transfer);
471

472 473
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
474 475 476
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
477
	if (can_write > 512 && !periodic)
478 479
		can_write = 512;

480 481
	/*
	 * limit the write to one max-packet size worth of data, but allow
482
	 * the transfer to return that it did not run out of fifo space
483 484
	 * doing it.
	 */
485 486
	if (to_write > max_transfer) {
		to_write = max_transfer;
487

488 489
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
490
			dwc2_hsotg_en_gsint(hsotg,
491
					    periodic ? GINTSTS_PTXFEMP :
492
					   GINTSTS_NPTXFEMP);
493 494
	}

495 496 497 498
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
499
		pkt_round = to_write % max_transfer;
500

501 502
		/*
		 * Round the write down to an
503 504 505 506 507 508 509 510 511
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

512 513 514 515
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
516

517 518
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
519
			dwc2_hsotg_en_gsint(hsotg,
520
					    periodic ? GINTSTS_PTXFEMP :
521
					   GINTSTS_NPTXFEMP);
522 523 524
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
525
		to_write, hs_req->req.length, can_write, buf_pos);
526 527 528 529 530 531 532 533 534 535 536 537 538

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

539
	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
540 541 542 543 544 545 546 547 548 549 550

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
551
static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
552 553
{
	int index = hs_ep->index;
554 555
	unsigned int maxsize;
	unsigned int maxpkt;
556 557

	if (index != 0) {
558 559
		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
560
	} else {
561
		maxsize = 64 + 64;
562
		if (hs_ep->dir_in)
563
			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
564
		else
565 566 567 568 569 570 571
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

572 573 574 575
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
576 577 578 579 580 581 582

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

583
/**
584 585 586 587 588
 * dwc2_hsotg_read_frameno - read current frame number
 * @hsotg: The device instance
 *
 * Return the current frame number
 */
589 590 591 592 593 594 595 596 597 598 599
static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
{
	u32 dsts;

	dsts = dwc2_readl(hsotg->regs + DSTS);
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;

	return dsts;
}

600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625
/**
 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
 * DMA descriptor chain prepared for specific endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * depending on its descriptor chain capacity so that transfers that
 * are too long can be split.
 */
static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
{
	int is_isoc = hs_ep->isochronous;
	unsigned int maxsize;

	if (is_isoc)
		maxsize = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
					   DEV_DMA_ISOC_RX_NBYTES_LIMIT;
	else
		maxsize = DEV_DMA_NBYTES_LIMIT;

	/* Above size of one descriptor was chosen, multiple it */
	maxsize *= MAX_DMA_DESC_NUM_GENERIC;

	return maxsize;
}

626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
/*
 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
 * @hs_ep: The endpoint
 * @mask: RX/TX bytes mask to be defined
 *
 * Returns maximum data payload for one descriptor after analyzing endpoint
 * characteristics.
 * DMA descriptor transfer bytes limit depends on EP type:
 * Control out - MPS,
 * Isochronous - descriptor rx/tx bytes bitfield limit,
 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
 * have concatenations from various descriptors within one packet.
 *
 * Selects corresponding mask for RX/TX bytes as well.
 */
static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
{
	u32 mps = hs_ep->ep.maxpacket;
	int dir_in = hs_ep->dir_in;
	u32 desc_size = 0;

	if (!hs_ep->index && !dir_in) {
		desc_size = mps;
		*mask = DEV_DMA_NBYTES_MASK;
	} else if (hs_ep->isochronous) {
		if (dir_in) {
			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
		} else {
			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
		}
	} else {
		desc_size = DEV_DMA_NBYTES_LIMIT;
		*mask = DEV_DMA_NBYTES_MASK;

		/* Round down desc_size to be mps multiple */
		desc_size -= desc_size % mps;
	}

	return desc_size;
}

/*
 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
 * @hs_ep: The endpoint
 * @dma_buff: DMA address to use
 * @len: Length of the transfer
 *
 * This function will iterate over descriptor chain and fill its entries
 * with corresponding information based on transfer data.
 */
static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
						 dma_addr_t dma_buff,
						 unsigned int len)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	struct dwc2_dma_desc *desc = hs_ep->desc_list;
	u32 mps = hs_ep->ep.maxpacket;
	u32 maxsize = 0;
	u32 offset = 0;
	u32 mask = 0;
	int i;

	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);

	hs_ep->desc_count = (len / maxsize) +
				((len % maxsize) ? 1 : 0);
	if (len == 0)
		hs_ep->desc_count = 1;

	for (i = 0; i < hs_ep->desc_count; ++i) {
		desc->status = 0;
		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
				 << DEV_DMA_BUFF_STS_SHIFT);

		if (len > maxsize) {
			if (!hs_ep->index && !dir_in)
				desc->status |= (DEV_DMA_L | DEV_DMA_IOC);

			desc->status |= (maxsize <<
						DEV_DMA_NBYTES_SHIFT & mask);
			desc->buf = dma_buff + offset;

			len -= maxsize;
			offset += maxsize;
		} else {
			desc->status |= (DEV_DMA_L | DEV_DMA_IOC);

			if (dir_in)
				desc->status |= (len % mps) ? DEV_DMA_SHORT :
					((hs_ep->send_zlp) ? DEV_DMA_SHORT : 0);
			if (len > maxsize)
				dev_err(hsotg->dev, "wrong len %d\n", len);

			desc->status |=
				len << DEV_DMA_NBYTES_SHIFT & mask;
			desc->buf = dma_buff + offset;
		}

		desc->status &= ~DEV_DMA_BUFF_STS_MASK;
		desc->status |= (DEV_DMA_BUFF_STS_HREADY
				 << DEV_DMA_BUFF_STS_SHIFT);
		desc++;
	}
}

734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
/*
 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
 * @hs_ep: The isochronous endpoint.
 * @dma_buff: usb requests dma buffer.
 * @len: usb request transfer length.
 *
 * Finds out index of first free entry either in the bottom or up half of
 * descriptor chain depend on which is under SW control and not processed
 * by HW. Then fills that descriptor with the data of the arrived usb request,
 * frame info, sets Last and IOC bits increments next_desc. If filled
 * descriptor is not the first one, removes L bit from the previous descriptor
 * status.
 */
static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
				      dma_addr_t dma_buff, unsigned int len)
{
	struct dwc2_dma_desc *desc;
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	u32 index;
	u32 maxsize = 0;
	u32 mask = 0;

	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
	if (len > maxsize) {
		dev_err(hsotg->dev, "wrong len %d\n", len);
		return -EINVAL;
	}

	/*
	 * If SW has already filled half of chain, then return and wait for
	 * the other chain to be processed by HW.
	 */
	if (hs_ep->next_desc == MAX_DMA_DESC_NUM_GENERIC / 2)
		return -EBUSY;

	/* Increment frame number by interval for IN */
	if (hs_ep->dir_in)
		dwc2_gadget_incr_frame_num(hs_ep);

	index = (MAX_DMA_DESC_NUM_GENERIC / 2) * hs_ep->isoc_chain_num +
		 hs_ep->next_desc;

	/* Sanity check of calculated index */
	if ((hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC) ||
	    (!hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC / 2)) {
		dev_err(hsotg->dev, "wrong index %d for iso chain\n", index);
		return -EINVAL;
	}

	desc = &hs_ep->desc_list[index];

	/* Clear L bit of previous desc if more than one entries in the chain */
	if (hs_ep->next_desc)
		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;

	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);

	desc->status = 0;
	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);

	desc->buf = dma_buff;
	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));

	if (hs_ep->dir_in) {
		desc->status |= ((hs_ep->mc << DEV_DMA_ISOC_PID_SHIFT) &
				 DEV_DMA_ISOC_PID_MASK) |
				((len % hs_ep->ep.maxpacket) ?
				 DEV_DMA_SHORT : 0) |
				((hs_ep->target_frame <<
				  DEV_DMA_ISOC_FRNUM_SHIFT) &
				 DEV_DMA_ISOC_FRNUM_MASK);
	}

	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);

	/* Update index of last configured entry in the chain */
	hs_ep->next_desc++;

	return 0;
}

/*
 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
 * @hs_ep: The isochronous endpoint.
 *
 * Prepare first descriptor chain for isochronous endpoints. Afterwards
 * write DMA address to HW and enable the endpoint.
 *
 * Switch between descriptor chains via isoc_chain_num to give SW opportunity
 * to prepare second descriptor chain while first one is being processed by HW.
 */
static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	struct dwc2_hsotg_req *hs_req, *treq;
	int index = hs_ep->index;
	int ret;
	u32 dma_reg;
	u32 depctl;
	u32 ctrl;

	if (list_empty(&hs_ep->queue)) {
		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
		return;
	}

	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
		ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
						 hs_req->req.length);
		if (ret) {
			dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
			break;
		}
	}

	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);

	/* write descriptor chain address to control register */
	dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);

	ctrl = dwc2_readl(hsotg->regs + depctl);
	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
	dwc2_writel(ctrl, hsotg->regs + depctl);

	/* Switch ISOC descriptor chain number being processed by SW*/
	hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
	hs_ep->next_desc = 0;
}

867
/**
868
 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
869 870 871 872 873 874 875 876
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
877
static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
878
				 struct dwc2_hsotg_ep *hs_ep,
879
				struct dwc2_hsotg_req *hs_req,
880 881 882 883 884 885 886 887 888
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
889 890 891
	unsigned int length;
	unsigned int packets;
	unsigned int maxreq;
892
	unsigned int dma_reg;
893 894 895 896 897 898 899 900 901 902 903 904 905 906

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

907
	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
908 909
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
910 911

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
912
		__func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
913 914
		hs_ep->dir_in ? "in" : "out");

915
	/* If endpoint is stalled, we will restart request later */
916
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
917

918
	if (index && ctrl & DXEPCTL_STALL) {
919 920 921 922
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

923
	length = ureq->length - ureq->actual;
924 925
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
926

927 928 929 930 931
	if (!using_desc_dma(hsotg))
		maxreq = get_ep_limit(hs_ep);
	else
		maxreq = dwc2_gadget_get_chain_limit(hs_ep);

932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

950 951 952 953 954
	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
		return;
	}

955
	if (dir_in && index != 0)
956
		if (hs_ep->isochronous)
957
			epsize = DXEPTSIZ_MC(packets);
958
		else
959
			epsize = DXEPTSIZ_MC(1);
960 961 962
	else
		epsize = 0;

963 964 965 966 967 968 969
	/*
	 * zero length packet should be programmed on its own and should not
	 * be counted in DIEPTSIZ.PktCnt with other packets.
	 */
	if (dir_in && ureq->zero && !continuing) {
		/* Test if zlp is actually required. */
		if ((ureq->length >= hs_ep->ep.maxpacket) &&
970
		    !(ureq->length % hs_ep->ep.maxpacket))
971
			hs_ep->send_zlp = 1;
972 973
	}

974 975
	epsize |= DXEPTSIZ_PKTCNT(packets);
	epsize |= DXEPTSIZ_XFERSIZE(length);
976 977 978 979 980 981 982

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

983 984 985 986 987 988 989 990 991 992 993
	if (using_desc_dma(hsotg)) {
		u32 offset = 0;
		u32 mps = hs_ep->ep.maxpacket;

		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
		if (!dir_in) {
			if (!index)
				length = mps;
			else if (length % mps)
				length += (mps - (length % mps));
		}
994

995
		/*
996 997 998
		 * If more data to send, adjust DMA for EP0 out data stage.
		 * ureq->dma stays unchanged, hence increment it by already
		 * passed passed data count before starting new transaction.
999
		 */
1000 1001 1002 1003 1004 1005 1006 1007 1008 1009
		if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
		    continuing)
			offset = ureq->actual;

		/* Fill DDMA chain entries */
		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
						     length);

		/* write descriptor chain address to control register */
		dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
1010

1011 1012 1013 1014 1015 1016
		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
	} else {
		/* write size / packets */
		dwc2_writel(epsize, hsotg->regs + epsize_reg);

1017
		if (using_dma(hsotg) && !continuing && (length != 0)) {
1018 1019 1020 1021
			/*
			 * write DMA address to control register, buffer
			 * already synced by dwc2_hsotg_ep_queue().
			 */
1022

1023 1024 1025 1026 1027
			dwc2_writel(ureq->dma, hsotg->regs + dma_reg);

			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
				__func__, &ureq->dma, dma_reg);
		}
1028 1029
	}

1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
	if (hs_ep->isochronous && hs_ep->interval == 1) {
		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
		dwc2_gadget_incr_frame_num(hs_ep);

		if (hs_ep->target_frame & 0x1)
			ctrl |= DXEPCTL_SETODDFR;
		else
			ctrl |= DXEPCTL_SETEVENFR;
	}

1040
	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
1041

1042
	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1043 1044

	/* For Setup request do not clear NAK */
1045
	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1046
		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1047

1048
	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1049
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
1050

1051 1052
	/*
	 * set these, it seems that DMA support increments past the end
1053
	 * of the packet buffer so we need to calculate the length from
1054 1055
	 * this information.
	 */
1056 1057 1058 1059 1060 1061 1062
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

1063
		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1064 1065
	}

1066 1067 1068 1069
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
1070 1071

	/* check ep is enabled */
1072
	if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
1073
		dev_dbg(hsotg->dev,
1074
			"ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1075
			 index, dwc2_readl(hsotg->regs + epctrl_reg));
1076

1077
	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1078
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
1079 1080

	/* enable ep interrupts */
1081
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1082 1083 1084
}

/**
1085
 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1086 1087 1088 1089 1090 1091 1092 1093 1094
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
1095
 */
1096
static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1097
			      struct dwc2_hsotg_ep *hs_ep,
1098 1099
			     struct usb_request *req)
{
1100
	int ret;
1101

1102 1103 1104
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

1115
static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1116 1117
						 struct dwc2_hsotg_ep *hs_ep,
						 struct dwc2_hsotg_req *hs_req)
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
{
	void *req_buf = hs_req->req.buf;

	/* If dma is not being used or buffer is aligned */
	if (!using_dma(hsotg) || !((long)req_buf & 3))
		return 0;

	WARN_ON(hs_req->saved_req_buf);

	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1128
		hs_ep->ep.name, req_buf, hs_req->req.length);
1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146

	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
	if (!hs_req->req.buf) {
		hs_req->req.buf = req_buf;
		dev_err(hsotg->dev,
			"%s: unable to allocate memory for bounce buffer\n",
			__func__);
		return -ENOMEM;
	}

	/* Save actual buffer */
	hs_req->saved_req_buf = req_buf;

	if (hs_ep->dir_in)
		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
	return 0;
}

1147 1148 1149 1150
static void
dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
					 struct dwc2_hsotg_ep *hs_ep,
					 struct dwc2_hsotg_req *hs_req)
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
{
	/* If dma is not being used or buffer was aligned */
	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
		return;

	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);

	/* Copy data from bounce buffer on successful out transfer */
	if (!hs_ep->dir_in && !hs_req->req.status)
		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1162
		       hs_req->req.actual);
1163 1164 1165 1166 1167 1168 1169 1170

	/* Free bounce buffer */
	kfree(hs_req->req.buf);

	hs_req->req.buf = hs_req->saved_req_buf;
	hs_req->saved_req_buf = NULL;
}

1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
/**
 * dwc2_gadget_target_frame_elapsed - Checks target frame
 * @hs_ep: The driver endpoint to check
 *
 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
 * corresponding transfer.
 */
static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	u32 target_frame = hs_ep->target_frame;
	u32 current_frame = dwc2_hsotg_read_frameno(hsotg);
	bool frame_overrun = hs_ep->frame_overrun;

	if (!frame_overrun && current_frame >= target_frame)
		return true;

	if (frame_overrun && current_frame >= target_frame &&
	    ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
		return true;

	return false;
}

1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
/*
 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
 * @hsotg: The driver state
 * @hs_ep: the ep descriptor chain is for
 *
 * Called to update EP0 structure's pointers depend on stage of
 * control transfer.
 */
static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
					  struct dwc2_hsotg_ep *hs_ep)
{
	switch (hsotg->ep0_state) {
	case DWC2_EP0_SETUP:
	case DWC2_EP0_STATUS_OUT:
		hs_ep->desc_list = hsotg->setup_desc[0];
		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
		break;
	case DWC2_EP0_DATA_IN:
	case DWC2_EP0_STATUS_IN:
		hs_ep->desc_list = hsotg->ctrl_in_desc;
		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
		break;
	case DWC2_EP0_DATA_OUT:
		hs_ep->desc_list = hsotg->ctrl_out_desc;
		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
		break;
	default:
		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
			hsotg->ep0_state);
		return -EINVAL;
	}

	return 0;
}

1230
static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1231
			       gfp_t gfp_flags)
1232
{
1233 1234
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1235
	struct dwc2_hsotg *hs = hs_ep->parent;
1236
	bool first;
1237
	int ret;
1238 1239 1240 1241 1242

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

1243 1244 1245
	/* Prevent new request submission when controller is suspended */
	if (hs->lx_state == DWC2_L2) {
		dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
1246
			__func__);
1247 1248 1249
		return -EAGAIN;
	}

1250 1251 1252 1253 1254
	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

1255
	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1256 1257 1258
	if (ret)
		return ret;

1259 1260
	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
1261
		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1262 1263 1264
		if (ret)
			return ret;
	}
1265 1266 1267 1268 1269 1270
	/* If using descriptor DMA configure EP0 descriptor chain pointers */
	if (using_desc_dma(hs) && !hs_ep->index) {
		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
		if (ret)
			return ret;
	}
1271 1272 1273 1274

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
	/*
	 * Handle DDMA isochronous transfers separately - just add new entry
	 * to the half of descriptor chain that is not processed by HW.
	 * Transfer will be started once SW gets either one of NAK or
	 * OutTknEpDis interrupts.
	 */
	if (using_desc_dma(hs) && hs_ep->isochronous &&
	    hs_ep->target_frame != TARGET_FRAME_INITIAL) {
		ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
						 hs_req->req.length);
		if (ret)
			dev_dbg(hs->dev, "%s: ISO desc chain full\n", __func__);

		return 0;
	}

1291 1292 1293 1294 1295 1296 1297 1298
	if (first) {
		if (!hs_ep->isochronous) {
			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
			return 0;
		}

		while (dwc2_gadget_target_frame_elapsed(hs_ep))
			dwc2_gadget_incr_frame_num(hs_ep);
1299

1300 1301 1302
		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
	}
1303 1304 1305
	return 0;
}

1306
static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1307
				    gfp_t gfp_flags)
1308
{
1309
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1310
	struct dwc2_hsotg *hs = hs_ep->parent;
1311 1312 1313 1314
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
1315
	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1316 1317 1318 1319 1320
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

1321
static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1322
				       struct usb_request *req)
1323
{
1324
	struct dwc2_hsotg_req *hs_req = our_req(req);
1325 1326 1327 1328 1329

	kfree(hs_req);
}

/**
1330
 * dwc2_hsotg_complete_oursetup - setup completion callback
1331 1332 1333 1334 1335 1336
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
1337
static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1338
					 struct usb_request *req)
1339
{
1340
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1341
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1342 1343 1344

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

1345
	dwc2_hsotg_ep_free_request(ep, req);
1346 1347 1348 1349 1350 1351 1352 1353 1354
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
1355
 */
1356
static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1357
					    u32 windex)
1358
{
1359
	struct dwc2_hsotg_ep *ep;
1360 1361 1362 1363 1364 1365
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

1366
	if (idx > hsotg->num_of_eps)
1367 1368
		return NULL;

1369 1370
	ep = index_to_ep(hsotg, idx, dir);

1371 1372 1373 1374 1375 1376
	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

1377
/**
1378
 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1379 1380 1381 1382
 * @hsotg: The driver state.
 * @testmode: requested usb test mode
 * Enable usb Test Mode requested by the Host.
 */
1383
int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1384
{
1385
	int dctl = dwc2_readl(hsotg->regs + DCTL);
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398

	dctl &= ~DCTL_TSTCTL_MASK;
	switch (testmode) {
	case TEST_J:
	case TEST_K:
	case TEST_SE0_NAK:
	case TEST_PACKET:
	case TEST_FORCE_EN:
		dctl |= testmode << DCTL_TSTCTL_SHIFT;
		break;
	default:
		return -EINVAL;
	}
1399
	dwc2_writel(dctl, hsotg->regs + DCTL);
1400 1401 1402
	return 0;
}

1403
/**
1404
 * dwc2_hsotg_send_reply - send reply to control request
1405 1406 1407 1408 1409 1410 1411 1412
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
1413
static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1414
				 struct dwc2_hsotg_ep *ep,
1415 1416 1417 1418 1419 1420 1421 1422
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

1423
	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1424 1425 1426 1427 1428 1429 1430 1431
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
1432 1433 1434 1435 1436
	/*
	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
	 * STATUS stage.
	 */
	req->zero = 0;
1437
	req->complete = dwc2_hsotg_complete_oursetup;
1438 1439 1440 1441

	if (length)
		memcpy(req->buf, buff, length);

1442
	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1443 1444 1445 1446 1447 1448 1449 1450 1451
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
1452
 * dwc2_hsotg_process_req_status - process request GET_STATUS
1453 1454 1455
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1456
static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1457
					 struct usb_ctrlrequest *ctrl)
1458
{
1459 1460
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_ep *ep;
1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
1473 1474 1475 1476 1477
		/*
		 * bit 0 => self powered
		 * bit 1 => remote wakeup
		 */
		reply = cpu_to_le16(0);
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

1500
	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1501 1502 1503 1504 1505 1506 1507 1508
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

1509
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1510

1511 1512 1513 1514 1515 1516
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
1517
static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1518
{
1519 1520
	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
					queue);
1521 1522
}

1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
/**
 * dwc2_gadget_start_next_request - Starts next request from ep queue
 * @hs_ep: Endpoint structure
 *
 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
 * in its handler. Hence we need to unmask it here to be able to do
 * resynchronization.
 */
static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
{
	u32 mask;
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	struct dwc2_hsotg_req *hs_req;
	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;

	if (!list_empty(&hs_ep->queue)) {
		hs_req = get_ep_head(hs_ep);
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		return;
	}
	if (!hs_ep->isochronous)
		return;

	if (dir_in) {
		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
			__func__);
	} else {
		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
			__func__);
		mask = dwc2_readl(hsotg->regs + epmsk_reg);
		mask |= DOEPMSK_OUTTKNEPDISMSK;
		dwc2_writel(mask, hsotg->regs + epmsk_reg);
	}
}

1559
/**
1560
 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1561 1562 1563
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1564
static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1565
					  struct usb_ctrlrequest *ctrl)
1566
{
1567 1568
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_req *hs_req;
1569
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1570
	struct dwc2_hsotg_ep *ep;
1571
	int ret;
1572
	bool halted;
1573 1574 1575
	u32 recip;
	u32 wValue;
	u32 wIndex;
1576 1577 1578 1579

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593
	wValue = le16_to_cpu(ctrl->wValue);
	wIndex = le16_to_cpu(ctrl->wIndex);
	recip = ctrl->bRequestType & USB_RECIP_MASK;

	switch (recip) {
	case USB_RECIP_DEVICE:
		switch (wValue) {
		case USB_DEVICE_TEST_MODE:
			if ((wIndex & 0xff) != 0)
				return -EINVAL;
			if (!set)
				return -EINVAL;

			hsotg->test_mode = wIndex >> 8;
1594
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
			break;
		default:
			return -ENOENT;
		}
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, wIndex);
1608 1609
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1610
				__func__, wIndex);
1611 1612 1613
			return -ENOENT;
		}

1614
		switch (wValue) {
1615
		case USB_ENDPOINT_HALT:
1616 1617
			halted = ep->halted;

1618
			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1619

1620
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1621 1622 1623 1624 1625
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
1626

1627 1628 1629 1630 1631 1632
			/*
			 * we have to complete all requests for ep if it was
			 * halted, and the halt was cleared by CLEAR_FEATURE
			 */

			if (!set && halted) {
1633 1634 1635 1636 1637 1638 1639 1640
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
1641 1642 1643 1644 1645 1646
					if (hs_req->req.complete) {
						spin_unlock(&hsotg->lock);
						usb_gadget_giveback_request(
							&ep->ep, &hs_req->req);
						spin_lock(&hsotg->lock);
					}
1647 1648 1649
				}

				/* If we have pending request, then start it */
J
John Youn 已提交
1650
				if (!ep->req)
1651
					dwc2_gadget_start_next_request(ep);
1652 1653
			}

1654 1655 1656 1657 1658
			break;

		default:
			return -ENOENT;
		}
1659 1660 1661 1662
		break;
	default:
		return -ENOENT;
	}
1663 1664 1665
	return 1;
}

1666
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1667

1668
/**
1669
 * dwc2_hsotg_stall_ep0 - stall ep0
1670 1671 1672 1673
 * @hsotg: The device state
 *
 * Set stall for ep0 as response for setup request.
 */
1674
static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1675
{
1676
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
	u32 reg;
	u32 ctrl;

	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;

	/*
	 * DxEPCTL_Stall will be cleared by EP once it has
	 * taken effect, so no need to clear later.
	 */

1688
	ctrl = dwc2_readl(hsotg->regs + reg);
1689 1690
	ctrl |= DXEPCTL_STALL;
	ctrl |= DXEPCTL_CNAK;
1691
	dwc2_writel(ctrl, hsotg->regs + reg);
1692 1693

	dev_dbg(hsotg->dev,
1694
		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1695
		ctrl, reg, dwc2_readl(hsotg->regs + reg));
1696 1697 1698 1699 1700

	 /*
	  * complete won't be called, so we enqueue
	  * setup request here
	  */
1701
	 dwc2_hsotg_enqueue_setup(hsotg);
1702 1703
}

1704
/**
1705
 * dwc2_hsotg_process_control - process a control request
1706 1707 1708 1709 1710 1711 1712
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
1713
static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1714
				       struct usb_ctrlrequest *ctrl)
1715
{
1716
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1717 1718 1719
	int ret = 0;
	u32 dcfg;

1720 1721 1722 1723
	dev_dbg(hsotg->dev,
		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
		ctrl->wIndex, ctrl->wLength);
1724

1725 1726 1727 1728
	if (ctrl->wLength == 0) {
		ep0->dir_in = 1;
		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
	} else if (ctrl->bRequestType & USB_DIR_IN) {
1729
		ep0->dir_in = 1;
1730 1731 1732 1733 1734
		hsotg->ep0_state = DWC2_EP0_DATA_IN;
	} else {
		ep0->dir_in = 0;
		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
	}
1735 1736 1737 1738

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1739
			hsotg->connected = 1;
1740
			dcfg = dwc2_readl(hsotg->regs + DCFG);
1741
			dcfg &= ~DCFG_DEVADDR_MASK;
P
Paul Zimmerman 已提交
1742 1743
			dcfg |= (le16_to_cpu(ctrl->wValue) <<
				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1744
			dwc2_writel(dcfg, hsotg->regs + DCFG);
1745 1746 1747

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

1748
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1749 1750 1751
			return;

		case USB_REQ_GET_STATUS:
1752
			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1753 1754 1755 1756
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
1757
			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1758 1759 1760 1761 1762 1763 1764
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
1765
		spin_unlock(&hsotg->lock);
1766
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1767
		spin_lock(&hsotg->lock);
1768 1769 1770 1771
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1772 1773
	/*
	 * the request is either unhandlable, or is not formatted correctly
1774 1775 1776
	 * so respond with a STALL for the status stage to indicate failure.
	 */

1777
	if (ret < 0)
1778
		dwc2_hsotg_stall_ep0(hsotg);
1779 1780 1781
}

/**
1782
 * dwc2_hsotg_complete_setup - completion of a setup transfer
1783 1784 1785 1786 1787 1788
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
1789
static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1790
				      struct usb_request *req)
1791
{
1792
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1793
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1794 1795 1796 1797 1798 1799

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

1800
	spin_lock(&hsotg->lock);
1801
	if (req->actual == 0)
1802
		dwc2_hsotg_enqueue_setup(hsotg);
1803
	else
1804
		dwc2_hsotg_process_control(hsotg, req->buf);
1805
	spin_unlock(&hsotg->lock);
1806 1807 1808
}

/**
1809
 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1810 1811 1812 1813 1814
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
1815
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1816 1817
{
	struct usb_request *req = hsotg->ctrl_req;
1818
	struct dwc2_hsotg_req *hs_req = our_req(req);
1819 1820 1821 1822 1823 1824 1825
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
1826
	req->complete = dwc2_hsotg_complete_setup;
1827 1828 1829 1830 1831 1832

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

1833
	hsotg->eps_out[0]->dir_in = 0;
1834
	hsotg->eps_out[0]->send_zlp = 0;
1835
	hsotg->ep0_state = DWC2_EP0_SETUP;
1836

1837
	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1838 1839
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1840 1841 1842 1843
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1844 1845 1846
	}
}

1847
static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
1848
				   struct dwc2_hsotg_ep *hs_ep)
1849 1850 1851 1852 1853 1854
{
	u32 ctrl;
	u8 index = hs_ep->index;
	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);

1855 1856
	if (hs_ep->dir_in)
		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1857
			index);
1858 1859
	else
		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1860 1861 1862 1863
			index);
	if (using_desc_dma(hsotg)) {
		/* Not specific buffer needed for ep0 ZLP */
		dma_addr_t dma = hs_ep->desc_list_dma;
1864

1865 1866 1867 1868 1869 1870 1871
		dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
	} else {
		dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
			    DXEPTSIZ_XFERSIZE(0), hsotg->regs +
			    epsiz_reg);
	}
1872

1873
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1874 1875 1876
	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
1877
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1878 1879
}

1880
/**
1881
 * dwc2_hsotg_complete_request - complete a request given to us
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1892
 */
1893
static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1894
					struct dwc2_hsotg_ep *hs_ep,
1895
				       struct dwc2_hsotg_req *hs_req,
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905
				       int result)
{
	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1906 1907 1908 1909
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1910 1911 1912 1913

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

1914 1915 1916
	if (using_dma(hsotg))
		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1917
	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1918

1919 1920 1921
	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

1922 1923 1924 1925
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1926 1927

	if (hs_req->req.complete) {
1928
		spin_unlock(&hsotg->lock);
1929
		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1930
		spin_lock(&hsotg->lock);
1931 1932
	}

1933 1934 1935 1936
	/* In DDMA don't need to proceed to starting of next ISOC request */
	if (using_desc_dma(hsotg) && hs_ep->isochronous)
		return;

1937 1938
	/*
	 * Look to see if there is anything else to do. Note, the completion
1939
	 * of the previous request may have caused a new request to be started
1940 1941
	 * so be careful when doing this.
	 */
1942

J
John Youn 已提交
1943
	if (!hs_ep->req && result >= 0)
1944
		dwc2_gadget_start_next_request(hs_ep);
1945 1946
}

1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
/*
 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
 * @hs_ep: The endpoint the request was on.
 *
 * Get first request from the ep queue, determine descriptor on which complete
 * happened. SW based on isoc_chain_num discovers which half of the descriptor
 * chain is currently in use by HW, adjusts dma_address and calculates index
 * of completed descriptor based on the value of DEPDMA register. Update actual
 * length of request, giveback to gadget.
 */
static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	struct dwc2_hsotg_req *hs_req;
	struct usb_request *ureq;
	int index;
	dma_addr_t dma_addr;
	u32 dma_reg;
	u32 depdma;
	u32 desc_sts;
	u32 mask;

	hs_req = get_ep_head(hs_ep);
	if (!hs_req) {
		dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
		return;
	}
	ureq = &hs_req->req;

	dma_addr = hs_ep->desc_list_dma;

	/*
	 * If lower half of  descriptor chain is currently use by SW,
	 * that means higher half is being processed by HW, so shift
	 * DMA address to higher half of descriptor chain.
	 */
	if (!hs_ep->isoc_chain_num)
		dma_addr += sizeof(struct dwc2_dma_desc) *
			    (MAX_DMA_DESC_NUM_GENERIC / 2);

	dma_reg = hs_ep->dir_in ? DIEPDMA(hs_ep->index) : DOEPDMA(hs_ep->index);
	depdma = dwc2_readl(hsotg->regs + dma_reg);

	index = (depdma - dma_addr) / sizeof(struct dwc2_dma_desc) - 1;
	desc_sts = hs_ep->desc_list[index].status;

	mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
	       DEV_DMA_ISOC_RX_NBYTES_MASK;
	ureq->actual = ureq->length -
		       ((desc_sts & mask) >> DEV_DMA_ISOC_NBYTES_SHIFT);

1998 1999 2000 2001
	/* Adjust actual length for ISOC Out if length is not align of 4 */
	if (!hs_ep->dir_in && ureq->length & 0x3)
		ureq->actual += 4 - (ureq->length & 0x3);

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
}

/*
 * dwc2_gadget_start_next_isoc_ddma - start next isoc request, if any.
 * @hs_ep: The isochronous endpoint to be re-enabled.
 *
 * If ep has been disabled due to last descriptor servicing (IN endpoint) or
 * BNA (OUT endpoint) check the status of other half of descriptor chain that
 * was under SW control till HW was busy and restart the endpoint if needed.
 */
static void dwc2_gadget_start_next_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	u32 depctl;
	u32 dma_reg;
	u32 ctrl;
	u32 dma_addr = hs_ep->desc_list_dma;
	unsigned char index = hs_ep->index;

	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);

	ctrl = dwc2_readl(hsotg->regs + depctl);

	/*
	 * EP was disabled if HW has processed last descriptor or BNA was set.
	 * So restart ep if SW has prepared new descriptor chain in ep_queue
	 * routine while HW was busy.
	 */
	if (!(ctrl & DXEPCTL_EPENA)) {
		if (!hs_ep->next_desc) {
			dev_dbg(hsotg->dev, "%s: No more ISOC requests\n",
				__func__);
			return;
		}

		dma_addr += sizeof(struct dwc2_dma_desc) *
			    (MAX_DMA_DESC_NUM_GENERIC / 2) *
			    hs_ep->isoc_chain_num;
		dwc2_writel(dma_addr, hsotg->regs + dma_reg);

		ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
		dwc2_writel(ctrl, hsotg->regs + depctl);

		/* Switch ISOC descriptor chain number being processed by SW*/
		hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
		hs_ep->next_desc = 0;

		dev_dbg(hsotg->dev, "%s: Restarted isochronous endpoint\n",
			__func__);
	}
}

2056
/**
2057
 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2058 2059 2060 2061 2062 2063 2064 2065
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
2066
static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2067
{
2068 2069
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2070
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
2071 2072 2073 2074 2075
	int to_read;
	int max_req;
	int read_ptr;

	if (!hs_req) {
2076
		u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
2077 2078
		int ptr;

2079
		dev_dbg(hsotg->dev,
2080
			"%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2081 2082 2083 2084
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
2085
			(void)dwc2_readl(fifo);
2086 2087 2088 2089 2090 2091 2092 2093

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

2094 2095 2096
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

2097
	if (to_read > max_req) {
2098 2099
		/*
		 * more data appeared than we where willing
2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

2111 2112 2113 2114
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
2115
	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
2116 2117 2118
}

/**
2119
 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2120
 * @hsotg: The device instance
2121
 * @dir_in: If IN zlp
2122 2123 2124 2125 2126
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
2127
 * currently believed that we do not need to wait for any space in
2128 2129
 * the TxFIFO.
 */
2130
static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2131
{
2132
	/* eps_out[0] is used in both directions */
2133 2134
	hsotg->eps_out[0]->dir_in = dir_in;
	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2135

2136
	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2137 2138
}

2139
static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2140
					    u32 epctl_reg)
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
{
	u32 ctrl;

	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
	if (ctrl & DXEPCTL_EOFRNUM)
		ctrl |= DXEPCTL_SETEVENFR;
	else
		ctrl |= DXEPCTL_SETODDFR;
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
}

2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
/*
 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
 * @hs_ep - The endpoint on which transfer went
 *
 * Iterate over endpoints descriptor chain and get info on bytes remained
 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
 */
static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	unsigned int bytes_rem = 0;
	struct dwc2_dma_desc *desc = hs_ep->desc_list;
	int i;
	u32 status;

	if (!desc)
		return -EINVAL;

	for (i = 0; i < hs_ep->desc_count; ++i) {
		status = desc->status;
		bytes_rem += status & DEV_DMA_NBYTES_MASK;

		if (status & DEV_DMA_STS_MASK)
			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
				i, status & DEV_DMA_STS_MASK);
	}

	return bytes_rem;
}

2182
/**
2183
 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2184 2185 2186 2187 2188 2189
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
2190
 */
2191
static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2192
{
2193
	u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
2194 2195
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2196
	struct usb_request *req = &hs_req->req;
2197
	unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2198 2199 2200 2201 2202 2203 2204
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

2205 2206
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
2207 2208
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
		dwc2_hsotg_enqueue_setup(hsotg);
2209 2210 2211
		return;
	}

2212 2213 2214
	if (using_desc_dma(hsotg))
		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);

2215
	if (using_dma(hsotg)) {
2216
		unsigned int size_done;
2217

2218 2219
		/*
		 * Calculate the size of the transfer by checking how much
2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

2233 2234
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
2235
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2236 2237 2238
		return;
	}

2239 2240 2241 2242
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

2243 2244 2245 2246
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
2247 2248
	}

2249 2250 2251
	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
	if (!using_desc_dma(hsotg) && epnum == 0 &&
	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2252
		/* Move to STATUS IN */
2253
		dwc2_hsotg_ep0_zlp(hsotg, true);
2254
		return;
2255 2256
	}

2257 2258 2259 2260 2261 2262 2263
	/*
	 * Slave mode OUT transfers do not go through XferComplete so
	 * adjust the ISOC parity here.
	 */
	if (!using_dma(hsotg)) {
		if (hs_ep->isochronous && hs_ep->interval == 1)
			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2264 2265
		else if (hs_ep->isochronous && hs_ep->interval > 1)
			dwc2_gadget_incr_frame_num(hs_ep);
2266 2267
	}

2268
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2269 2270 2271
}

/**
2272
 * dwc2_hsotg_handle_rx - RX FIFO has data
2273 2274 2275 2276 2277 2278
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
2279
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2280 2281 2282 2283 2284 2285 2286
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
2287
static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2288
{
2289
	u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
2290 2291 2292 2293
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

2294 2295
	epnum = grxstsr & GRXSTS_EPNUM_MASK;
	status = grxstsr & GRXSTS_PKTSTS_MASK;
2296

2297 2298
	size = grxstsr & GRXSTS_BYTECNT_MASK;
	size >>= GRXSTS_BYTECNT_SHIFT;
2299

2300
	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2301
		__func__, grxstsr, size, epnum);
2302

2303 2304 2305
	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
	case GRXSTS_PKTSTS_GLOBALOUTNAK:
		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2306 2307
		break;

2308
	case GRXSTS_PKTSTS_OUTDONE:
2309
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2310
			dwc2_hsotg_read_frameno(hsotg));
2311 2312

		if (!using_dma(hsotg))
2313
			dwc2_hsotg_handle_outdone(hsotg, epnum);
2314 2315
		break;

2316
	case GRXSTS_PKTSTS_SETUPDONE:
2317 2318
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2319
			dwc2_hsotg_read_frameno(hsotg),
2320
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2321
		/*
2322
		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2323 2324 2325 2326
		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
		 */
		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2327
			dwc2_hsotg_handle_outdone(hsotg, epnum);
2328 2329
		break;

2330
	case GRXSTS_PKTSTS_OUTRX:
2331
		dwc2_hsotg_rx_data(hsotg, epnum, size);
2332 2333
		break;

2334
	case GRXSTS_PKTSTS_SETUPRX:
2335 2336
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2337
			dwc2_hsotg_read_frameno(hsotg),
2338
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2339

2340 2341
		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);

2342
		dwc2_hsotg_rx_data(hsotg, epnum, size);
2343 2344 2345 2346 2347 2348
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

2349
		dwc2_hsotg_dump(hsotg);
2350 2351 2352 2353 2354
		break;
	}
}

/**
2355
 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2356
 * @mps: The maximum packet size in bytes.
2357
 */
2358
static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2359 2360 2361
{
	switch (mps) {
	case 64:
2362
		return D0EPCTL_MPS_64;
2363
	case 32:
2364
		return D0EPCTL_MPS_32;
2365
	case 16:
2366
		return D0EPCTL_MPS_16;
2367
	case 8:
2368
		return D0EPCTL_MPS_8;
2369 2370 2371 2372 2373 2374 2375 2376
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
2377
 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2378 2379 2380
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
2381
 * @mc: The multicount value
2382 2383 2384 2385
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
2386
static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2387 2388
					unsigned int ep, unsigned int mps,
					unsigned int mc, unsigned int dir_in)
2389
{
2390
	struct dwc2_hsotg_ep *hs_ep;
2391 2392 2393
	void __iomem *regs = hsotg->regs;
	u32 reg;

2394 2395 2396 2397
	hs_ep = index_to_ep(hsotg, ep, dir_in);
	if (!hs_ep)
		return;

2398
	if (ep == 0) {
2399 2400
		u32 mps_bytes = mps;

2401
		/* EP0 is a special case */
2402 2403
		mps = dwc2_hsotg_ep0_mps(mps_bytes);
		if (mps > 3)
2404
			goto bad_mps;
2405
		hs_ep->ep.maxpacket = mps_bytes;
2406
		hs_ep->mc = 1;
2407
	} else {
2408
		if (mps > 1024)
2409
			goto bad_mps;
2410 2411
		hs_ep->mc = mc;
		if (mc > 3)
2412
			goto bad_mps;
2413
		hs_ep->ep.maxpacket = mps;
2414 2415
	}

2416
	if (dir_in) {
2417
		reg = dwc2_readl(regs + DIEPCTL(ep));
2418
		reg &= ~DXEPCTL_MPS_MASK;
2419
		reg |= mps;
2420
		dwc2_writel(reg, regs + DIEPCTL(ep));
2421
	} else {
2422
		reg = dwc2_readl(regs + DOEPCTL(ep));
2423
		reg &= ~DXEPCTL_MPS_MASK;
2424
		reg |= mps;
2425
		dwc2_writel(reg, regs + DOEPCTL(ep));
2426
	}
2427 2428 2429 2430 2431 2432 2433

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

2434
/**
2435
 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2436 2437 2438
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
2439
static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2440 2441 2442 2443
{
	int timeout;
	int val;

2444 2445
	dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
		    hsotg->regs + GRSTCTL);
2446 2447 2448 2449 2450

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
2451
		val = dwc2_readl(hsotg->regs + GRSTCTL);
2452

2453
		if ((val & (GRSTCTL_TXFFLSH)) == 0)
2454 2455 2456 2457 2458 2459
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
2460
			break;
2461 2462 2463 2464 2465
		}

		udelay(1);
	}
}
2466 2467

/**
2468
 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2469 2470 2471 2472 2473 2474
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
2475
static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2476
			    struct dwc2_hsotg_ep *hs_ep)
2477
{
2478
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2479

2480 2481 2482 2483 2484 2485
	if (!hs_ep->dir_in || !hs_req) {
		/**
		 * if request is not enqueued, we disable interrupts
		 * for endpoints, excepting ep0
		 */
		if (hs_ep->index != 0)
2486
			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2487
					      hs_ep->dir_in, 0);
2488
		return 0;
2489
	}
2490 2491 2492 2493

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
2494
		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2495 2496 2497 2498 2499 2500
	}

	return 0;
}

/**
2501
 * dwc2_hsotg_complete_in - complete IN transfer
2502 2503 2504 2505 2506 2507
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
2508
static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2509
				   struct dwc2_hsotg_ep *hs_ep)
2510
{
2511
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2512
	u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
2513 2514 2515 2516 2517 2518 2519
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

2520
	/* Finish ZLP handling for IN EP0 transactions */
2521 2522
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
		dev_dbg(hsotg->dev, "zlp packet sent\n");
2523 2524 2525 2526 2527 2528 2529

		/*
		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
		 * changed to IN. Change back to complete OUT transfer request
		 */
		hs_ep->dir_in = 0;

2530
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2531 2532 2533
		if (hsotg->test_mode) {
			int ret;

2534
			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2535 2536
			if (ret < 0) {
				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2537
					hsotg->test_mode);
2538
				dwc2_hsotg_stall_ep0(hsotg);
2539 2540 2541
				return;
			}
		}
2542
		dwc2_hsotg_enqueue_setup(hsotg);
2543 2544 2545
		return;
	}

2546 2547
	/*
	 * Calculate the size of the transfer by checking how much is left
2548 2549 2550 2551 2552 2553 2554
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */
2555 2556 2557 2558 2559 2560 2561 2562
	if (using_desc_dma(hsotg)) {
		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
		if (size_left < 0)
			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
				size_left);
	} else {
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
	}
2563 2564 2565 2566 2567 2568 2569 2570 2571

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
2572 2573 2574
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

2575 2576
	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2577
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2578 2579 2580
		return;
	}

2581
	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
2582
	if (hs_ep->send_zlp) {
2583
		dwc2_hsotg_program_zlp(hsotg, hs_ep);
2584
		hs_ep->send_zlp = 0;
2585 2586 2587 2588
		/* transfer will be completed on next complete interrupt */
		return;
	}

2589 2590
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
		/* Move to STATUS OUT */
2591
		dwc2_hsotg_ep0_zlp(hsotg, false);
2592 2593 2594
		return;
	}

2595
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2596 2597
}

2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625
/**
 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
 * @hsotg: The device state.
 * @idx: Index of ep.
 * @dir_in: Endpoint direction 1-in 0-out.
 *
 * Reads for endpoint with given index and direction, by masking
 * epint_reg with coresponding mask.
 */
static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
					  unsigned int idx, int dir_in)
{
	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 ints;
	u32 mask;
	u32 diepempmsk;

	mask = dwc2_readl(hsotg->regs + epmsk_reg);
	diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK);
	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
	mask |= DXEPINT_SETUP_RCVD;

	ints = dwc2_readl(hsotg->regs + epint_reg);
	ints &= mask;
	return ints;
}

2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
/**
 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
 * @hs_ep: The endpoint on which interrupt is asserted.
 *
 * This interrupt indicates that the endpoint has been disabled per the
 * application's request.
 *
 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
 * in case of ISOC completes current request.
 *
 * For ISOC-OUT endpoints completes expired requests. If there is remaining
 * request starts it.
 */
static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	struct dwc2_hsotg_req *hs_req;
	unsigned char idx = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	int dctl = dwc2_readl(hsotg->regs + DCTL);

	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

	if (dir_in) {
		int epctl = dwc2_readl(hsotg->regs + epctl_reg);

		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);

		if (hs_ep->isochronous) {
			dwc2_hsotg_complete_in(hsotg, hs_ep);
			return;
		}

		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
			int dctl = dwc2_readl(hsotg->regs + DCTL);

			dctl |= DCTL_CGNPINNAK;
			dwc2_writel(dctl, hsotg->regs + DCTL);
		}
		return;
	}

	if (dctl & DCTL_GOUTNAKSTS) {
		dctl |= DCTL_CGOUTNAK;
		dwc2_writel(dctl, hsotg->regs + DCTL);
	}

	if (!hs_ep->isochronous)
		return;

	if (list_empty(&hs_ep->queue)) {
		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
			__func__, hs_ep);
		return;
	}

	do {
		hs_req = get_ep_head(hs_ep);
		if (hs_req)
			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
						    -ENODATA);
		dwc2_gadget_incr_frame_num(hs_ep);
	} while (dwc2_gadget_target_frame_elapsed(hs_ep));

	dwc2_gadget_start_next_request(hs_ep);
}

2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
/**
 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
 * @hs_ep: The endpoint on which interrupt is asserted.
 *
 * This is starting point for ISOC-OUT transfer, synchronization done with
 * first out token received from host while corresponding EP is disabled.
 *
 * Device does not know initial frame in which out token will come. For this
 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
 * getting this interrupt SW starts calculation for next transfer frame.
 */
static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
{
	struct dwc2_hsotg *hsotg = ep->parent;
	int dir_in = ep->dir_in;
	u32 doepmsk;
2710
	u32 tmp;
2711 2712 2713 2714

	if (dir_in || !ep->isochronous)
		return;

2715 2716 2717 2718 2719 2720
	/*
	 * Store frame in which irq was asserted here, as
	 * it can change while completing request below.
	 */
	tmp = dwc2_hsotg_read_frameno(hsotg);

2721 2722
	dwc2_hsotg_complete_request(hsotg, ep, get_ep_head(ep), -ENODATA);

2723 2724 2725 2726 2727 2728 2729 2730 2731
	if (using_desc_dma(hsotg)) {
		if (ep->target_frame == TARGET_FRAME_INITIAL) {
			/* Start first ISO Out */
			ep->target_frame = tmp;
			dwc2_gadget_start_isoc_ddma(ep);
		}
		return;
	}

2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756
	if (ep->interval > 1 &&
	    ep->target_frame == TARGET_FRAME_INITIAL) {
		u32 dsts;
		u32 ctrl;

		dsts = dwc2_readl(hsotg->regs + DSTS);
		ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
		dwc2_gadget_incr_frame_num(ep);

		ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index));
		if (ep->target_frame & 0x1)
			ctrl |= DXEPCTL_SETODDFR;
		else
			ctrl |= DXEPCTL_SETEVENFR;

		dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index));
	}

	dwc2_gadget_start_next_request(ep);
	doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
	doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
	dwc2_writel(doepmsk, hsotg->regs + DOEPMSK);
}

/**
2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769
 * dwc2_gadget_handle_nak - handle NAK interrupt
 * @hs_ep: The endpoint on which interrupt is asserted.
 *
 * This is starting point for ISOC-IN transfer, synchronization done with
 * first IN token received from host while corresponding EP is disabled.
 *
 * Device does not know when first one token will arrive from host. On first
 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
 * sent in response to that as there was no data in FIFO. SW is basing on this
 * interrupt to obtain frame in which token has come and then based on the
 * interval calculates next frame for transfer.
 */
2770 2771 2772 2773 2774 2775 2776 2777 2778 2779
static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;

	if (!dir_in || !hs_ep->isochronous)
		return;

	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2780 2781 2782 2783 2784 2785

		if (using_desc_dma(hsotg)) {
			dwc2_gadget_start_isoc_ddma(hs_ep);
			return;
		}

2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
		if (hs_ep->interval > 1) {
			u32 ctrl = dwc2_readl(hsotg->regs +
					      DIEPCTL(hs_ep->index));
			if (hs_ep->target_frame & 0x1)
				ctrl |= DXEPCTL_SETODDFR;
			else
				ctrl |= DXEPCTL_SETEVENFR;

			dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index));
		}

		dwc2_hsotg_complete_request(hsotg, hs_ep,
					    get_ep_head(hs_ep), 0);
	}

	dwc2_gadget_incr_frame_num(hs_ep);
}

2804
/**
2805
 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2806 2807 2808 2809 2810
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
2811
 */
2812
static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2813
			     int dir_in)
2814
{
2815
	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2816 2817 2818
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2819
	u32 ints;
2820
	u32 ctrl;
2821

2822
	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2823
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2824

2825
	/* Clear endpoint interrupts */
2826
	dwc2_writel(ints, hsotg->regs + epint_reg);
2827

2828 2829
	if (!hs_ep) {
		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
2830
			__func__, idx, dir_in ? "in" : "out");
2831 2832 2833
		return;
	}

2834 2835 2836
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

2837 2838 2839 2840
	/* Don't process XferCompl interrupt if it is a setup packet */
	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
		ints &= ~DXEPINT_XFERCOMPL;

2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
	/*
	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
	 * stage and xfercomplete was generated without SETUP phase done
	 * interrupt. SW should parse received setup packet only after host's
	 * exit from setup phase of control transfer.
	 */
	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
		ints &= ~DXEPINT_XFERCOMPL;

2851
	if (ints & DXEPINT_XFERCOMPL) {
2852
		dev_dbg(hsotg->dev,
2853
			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2854 2855
			__func__, dwc2_readl(hsotg->regs + epctl_reg),
			dwc2_readl(hsotg->regs + epsiz_reg));
2856

2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867
		/* In DDMA handle isochronous requests separately */
		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
			dwc2_gadget_complete_isoc_request_ddma(hs_ep);
			/* Try to start next isoc request */
			dwc2_gadget_start_next_isoc_ddma(hs_ep);
		} else if (dir_in) {
			/*
			 * We get OutDone from the FIFO, so we only
			 * need to look at completing IN requests here
			 * if operating slave mode
			 */
2868 2869 2870
			if (hs_ep->isochronous && hs_ep->interval > 1)
				dwc2_gadget_incr_frame_num(hs_ep);

2871
			dwc2_hsotg_complete_in(hsotg, hs_ep);
2872 2873
			if (ints & DXEPINT_NAKINTRPT)
				ints &= ~DXEPINT_NAKINTRPT;
2874

2875
			if (idx == 0 && !hs_ep->req)
2876
				dwc2_hsotg_enqueue_setup(hsotg);
2877
		} else if (using_dma(hsotg)) {
2878 2879 2880 2881
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
2882 2883
			if (hs_ep->isochronous && hs_ep->interval > 1)
				dwc2_gadget_incr_frame_num(hs_ep);
2884

2885
			dwc2_hsotg_handle_outdone(hsotg, idx);
2886 2887 2888
		}
	}

2889 2890
	if (ints & DXEPINT_EPDISBLD)
		dwc2_gadget_handle_ep_disabled(hs_ep);
2891

2892 2893 2894 2895 2896 2897
	if (ints & DXEPINT_OUTTKNEPDIS)
		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);

	if (ints & DXEPINT_NAKINTRPT)
		dwc2_gadget_handle_nak(hs_ep);

2898
	if (ints & DXEPINT_AHBERR)
2899 2900
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

2901
	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2902 2903 2904
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
2905 2906
			/*
			 * this is the notification we've received a
2907 2908
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
2909 2910
			 * the setup here.
			 */
2911 2912 2913 2914

			if (dir_in)
				WARN_ON_ONCE(1);
			else
2915
				dwc2_hsotg_handle_outdone(hsotg, 0);
2916 2917 2918
		}
	}

2919
	if (ints & DXEPINT_STSPHSERCVD) {
2920 2921
		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);

2922 2923 2924 2925 2926
		/* Move to STATUS IN for DDMA */
		if (using_desc_dma(hsotg))
			dwc2_hsotg_ep0_zlp(hsotg, true);
	}

2927
	if (ints & DXEPINT_BACK2BACKSETUP)
2928 2929
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942
	if (ints & DXEPINT_BNAINTR) {
		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);

		/*
		 * Try to start next isoc request, if any.
		 * Sometimes the endpoint remains enabled after BNA interrupt
		 * assertion, which is not expected, hence we can enter here
		 * couple of times.
		 */
		if (hs_ep->isochronous)
			dwc2_gadget_start_next_isoc_ddma(hs_ep);
	}

2943
	if (dir_in && !hs_ep->isochronous) {
2944
		/* not sure if this is important, but we'll clear it anyway */
2945
		if (ints & DXEPINT_INTKNTXFEMP) {
2946 2947 2948 2949 2950
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
2951
		if (ints & DXEPINT_INTKNEPMIS) {
2952 2953 2954
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
2955 2956 2957

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
2958
		    ints & DXEPINT_TXFEMP) {
2959 2960
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
2961
			if (!using_dma(hsotg))
2962
				dwc2_hsotg_trytx(hsotg, hs_ep);
2963
		}
2964 2965 2966 2967
	}
}

/**
2968
 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
2969 2970 2971 2972
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
2973
 */
2974
static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
2975
{
2976
	u32 dsts = dwc2_readl(hsotg->regs + DSTS);
2977
	int ep0_mps = 0, ep_mps = 8;
2978

2979 2980
	/*
	 * This should signal the finish of the enumeration phase
2981
	 * of the USB handshaking, so we should now know what rate
2982 2983
	 * we connected at.
	 */
2984 2985 2986

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

2987 2988
	/*
	 * note, since we're limited by the size of transfer on EP0, and
2989
	 * it seems IN transfers must be a even number of packets we do
2990 2991
	 * not advertise a 64byte MPS on EP0.
	 */
2992 2993

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
2994
	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
2995 2996
	case DSTS_ENUMSPD_FS:
	case DSTS_ENUMSPD_FS48:
2997 2998
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
2999
		ep_mps = 1023;
3000 3001
		break;

3002
	case DSTS_ENUMSPD_HS:
3003 3004
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
3005
		ep_mps = 1024;
3006 3007
		break;

3008
	case DSTS_ENUMSPD_LS:
3009
		hsotg->gadget.speed = USB_SPEED_LOW;
3010 3011
		ep0_mps = 8;
		ep_mps = 8;
3012 3013
		/*
		 * note, we don't actually support LS in this driver at the
3014 3015 3016 3017 3018
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
3019 3020
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
3021

3022 3023 3024 3025
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
3026 3027 3028

	if (ep0_mps) {
		int i;
3029
		/* Initialize ep0 for both in and out directions */
3030 3031
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3032 3033
		for (i = 1; i < hsotg->num_of_eps; i++) {
			if (hsotg->eps_in[i])
3034 3035
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
							    0, 1);
3036
			if (hsotg->eps_out[i])
3037 3038
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
							    0, 0);
3039
		}
3040 3041 3042 3043
	}

	/* ensure after enumeration our EP0 is active */

3044
	dwc2_hsotg_enqueue_setup(hsotg);
3045 3046

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3047 3048
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
3060
static void kill_all_requests(struct dwc2_hsotg *hsotg,
3061
			      struct dwc2_hsotg_ep *ep,
3062
			      int result)
3063
{
3064
	struct dwc2_hsotg_req *req, *treq;
3065
	unsigned int size;
3066

3067
	ep->req = NULL;
3068

3069
	list_for_each_entry_safe(req, treq, &ep->queue, queue)
3070
		dwc2_hsotg_complete_request(hsotg, ep, req,
3071
					    result);
3072

3073 3074
	if (!hsotg->dedicated_fifos)
		return;
3075
	size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3076
	if (size < ep->fifo_size)
3077
		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3078 3079 3080
}

/**
3081
 * dwc2_hsotg_disconnect - disconnect service
3082 3083
 * @hsotg: The device state.
 *
3084 3085 3086
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
3087
 */
3088
void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3089
{
3090
	unsigned int ep;
3091

3092 3093 3094 3095
	if (!hsotg->connected)
		return;

	hsotg->connected = 0;
3096
	hsotg->test_mode = 0;
3097 3098 3099 3100

	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
			kill_all_requests(hsotg, hsotg->eps_in[ep],
3101
					  -ESHUTDOWN);
3102 3103
		if (hsotg->eps_out[ep])
			kill_all_requests(hsotg, hsotg->eps_out[ep],
3104
					  -ESHUTDOWN);
3105
	}
3106 3107

	call_gadget(hsotg, disconnect);
3108
	hsotg->lx_state = DWC2_L3;
3109 3110 3111
}

/**
3112
 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3113 3114 3115
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
3116
static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3117
{
3118
	struct dwc2_hsotg_ep *ep;
3119 3120 3121
	int epno, ret;

	/* look through for any more data to transmit */
3122
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3123 3124 3125 3126
		ep = index_to_ep(hsotg, epno, 1);

		if (!ep)
			continue;
3127 3128 3129 3130 3131 3132 3133 3134

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

3135
		ret = dwc2_hsotg_trytx(hsotg, ep);
3136 3137 3138 3139 3140 3141
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
3142 3143 3144
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
			GINTSTS_PTXFEMP |  \
			GINTSTS_RXFLVL)
3145

3146
/**
3147
 * dwc2_hsotg_core_init - issue softreset to the core
3148 3149 3150 3151
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
3152
void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3153
				       bool is_usb_reset)
3154
{
3155
	u32 intmsk;
3156
	u32 val;
3157
	u32 usbcfg;
3158
	u32 dcfg = 0;
3159

3160 3161 3162
	/* Kill any ep0 requests as controller will be reinitialized */
	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);

3163
	if (!is_usb_reset)
3164
		if (dwc2_core_reset(hsotg))
3165
			return;
3166 3167 3168 3169 3170 3171

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

3172 3173 3174 3175 3176
	/* keep other bits untouched (so e.g. forced modes are not lost) */
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
		GUSBCFG_HNPCAP);

3177
	if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS &&
3178 3179
	    (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
	     hsotg->params.speed == DWC2_SPEED_PARAM_LOW)) {
3180 3181 3182 3183 3184 3185 3186 3187
		/* FS/LS Dedicated Transceiver Interface */
		usbcfg |= GUSBCFG_PHYSEL;
	} else {
		/* set the PLL on, remove the HNP/SRP and set the PHY */
		val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
		usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
			(val << GUSBCFG_USBTRDTIM_SHIFT);
	}
3188
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3189

3190
	dwc2_hsotg_init_fifo(hsotg);
3191

3192 3193
	if (!is_usb_reset)
		__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3194

3195
	dcfg |= DCFG_EPMISCNT(1);
3196 3197 3198 3199 3200 3201

	switch (hsotg->params.speed) {
	case DWC2_SPEED_PARAM_LOW:
		dcfg |= DCFG_DEVSPD_LS;
		break;
	case DWC2_SPEED_PARAM_FULL:
3202 3203 3204 3205
		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
			dcfg |= DCFG_DEVSPD_FS48;
		else
			dcfg |= DCFG_DEVSPD_FS;
3206 3207
		break;
	default:
3208 3209
		dcfg |= DCFG_DEVSPD_HS;
	}
3210

3211
	dwc2_writel(dcfg,  hsotg->regs + DCFG);
3212 3213

	/* Clear any pending OTG interrupts */
3214
	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
3215 3216

	/* Clear any pending interrupts */
3217
	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
3218
	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3219
		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3220 3221
		GINTSTS_USBRST | GINTSTS_RESETDET |
		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3222 3223 3224 3225
		GINTSTS_USBSUSP | GINTSTS_WKUPINT;

	if (!using_desc_dma(hsotg))
		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3226

3227
	if (hsotg->params.external_id_pin_ctl <= 0)
3228 3229 3230
		intmsk |= GINTSTS_CONIDSTSCHNG;

	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
3231

3232
	if (using_dma(hsotg)) {
3233 3234 3235
		dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
			    (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
			    hsotg->regs + GAHBCFG);
3236 3237 3238 3239 3240 3241

		/* Set DDMA mode support in the core if needed */
		if (using_desc_dma(hsotg))
			__orr32(hsotg->regs + DCFG, DCFG_DESCDMA_EN);

	} else {
3242 3243 3244 3245
		dwc2_writel(((hsotg->dedicated_fifos) ?
						(GAHBCFG_NP_TXF_EMP_LVL |
						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
			    GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
3246
	}
3247 3248

	/*
3249 3250 3251
	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
	 * when we have no data to transfer. Otherwise we get being flooded by
	 * interrupts.
3252 3253
	 */

3254
	dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3255
		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3256
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3257
		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3258
		hsotg->regs + DIEPMSK);
3259 3260 3261

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3262
	 * DMA mode we may need this and StsPhseRcvd.
3263
	 */
3264 3265
	dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
		DOEPMSK_STSPHSERCVDMSK) : 0) |
3266
		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3267
		DOEPMSK_SETUPMSK,
3268
		hsotg->regs + DOEPMSK);
3269

3270 3271 3272 3273
	/* Enable BNA interrupt for DDMA */
	if (using_desc_dma(hsotg))
		__orr32(hsotg->regs + DOEPMSK, DOEPMSK_BNAMSK);

3274
	dwc2_writel(0, hsotg->regs + DAINTMSK);
3275 3276

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3277 3278
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
3279 3280

	/* enable in and out endpoint interrupts */
3281
	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3282 3283 3284 3285 3286 3287 3288

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
3289
		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3290 3291

	/* Enable interrupts for EP0 in and out */
3292 3293
	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3294

3295 3296 3297 3298 3299
	if (!is_usb_reset) {
		__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
		udelay(10);  /* see openiboot */
		__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
	}
3300

3301
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
3302 3303

	/*
3304
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3305 3306 3307 3308
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
3309
	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3310
	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
3311

3312
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3313 3314
	       DXEPCTL_CNAK | DXEPCTL_EPENA |
	       DXEPCTL_USBACTEP,
3315
	       hsotg->regs + DOEPCTL0);
3316 3317

	/* enable, but don't activate EP0in */
3318
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3319
	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
3320

3321
	dwc2_hsotg_enqueue_setup(hsotg);
3322 3323

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3324 3325
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
3326 3327

	/* clear global NAKs */
3328 3329 3330 3331
	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
	if (!is_usb_reset)
		val |= DCTL_SFTDISCON;
	__orr32(hsotg->regs + DCTL, val);
3332 3333 3334 3335

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

3336
	hsotg->lx_state = DWC2_L0;
3337 3338
}

3339
static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3340 3341 3342 3343
{
	/* set the soft-disconnect bit */
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
}
3344

3345
void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3346
{
3347
	/* remove the soft-disconnect and let's go */
3348
	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3349 3350
}

3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429
/**
 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
 * @hsotg: The device state:
 *
 * This interrupt indicates one of the following conditions occurred while
 * transmitting an ISOC transaction.
 * - Corrupted IN Token for ISOC EP.
 * - Packet not complete in FIFO.
 *
 * The following actions will be taken:
 * - Determine the EP
 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
 */
static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
{
	struct dwc2_hsotg_ep *hs_ep;
	u32 epctrl;
	u32 idx;

	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");

	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
		hs_ep = hsotg->eps_in[idx];
		epctrl = dwc2_readl(hsotg->regs + DIEPCTL(idx));
		if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
			epctrl |= DXEPCTL_SNAK;
			epctrl |= DXEPCTL_EPDIS;
			dwc2_writel(epctrl, hsotg->regs + DIEPCTL(idx));
		}
	}

	/* Clear interrupt */
	dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
}

/**
 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
 * @hsotg: The device state:
 *
 * This interrupt indicates one of the following conditions occurred while
 * transmitting an ISOC transaction.
 * - Corrupted OUT Token for ISOC EP.
 * - Packet not complete in FIFO.
 *
 * The following actions will be taken:
 * - Determine the EP
 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
 */
static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
{
	u32 gintsts;
	u32 gintmsk;
	u32 epctrl;
	struct dwc2_hsotg_ep *hs_ep;
	int idx;

	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);

	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
		hs_ep = hsotg->eps_out[idx];
		epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
		if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
			/* Unmask GOUTNAKEFF interrupt */
			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
			gintmsk |= GINTSTS_GOUTNAKEFF;
			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);

			gintsts = dwc2_readl(hsotg->regs + GINTSTS);
			if (!(gintsts & GINTSTS_GOUTNAKEFF))
				__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
		}
	}

	/* Clear interrupt */
	dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
}

3430
/**
3431
 * dwc2_hsotg_irq - handle device interrupt
3432 3433 3434
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
3435
static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3436
{
3437
	struct dwc2_hsotg *hsotg = pw;
3438 3439 3440 3441
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

3442 3443 3444
	if (!dwc2_is_device_mode(hsotg))
		return IRQ_NONE;

3445
	spin_lock(&hsotg->lock);
3446
irq_retry:
3447 3448
	gintsts = dwc2_readl(hsotg->regs + GINTSTS);
	gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3449 3450 3451 3452 3453 3454

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483
	if (gintsts & GINTSTS_RESETDET) {
		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);

		dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);

		/* This event must be used only if controller is suspended */
		if (hsotg->lx_state == DWC2_L2) {
			dwc2_exit_hibernation(hsotg, true);
			hsotg->lx_state = DWC2_L0;
		}
	}

	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
		u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
		u32 connected = hsotg->connected;

		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
			dwc2_readl(hsotg->regs + GNPTXSTS));

		dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);

		/* Report disconnection if it is not already done. */
		dwc2_hsotg_disconnect(hsotg);

		if (usb_status & GOTGCTL_BSESVLD && connected)
			dwc2_hsotg_core_init_disconnected(hsotg, true);
	}

3484
	if (gintsts & GINTSTS_ENUMDONE) {
3485
		dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
3486

3487
		dwc2_hsotg_irq_enumdone(hsotg);
3488 3489
	}

3490
	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3491 3492
		u32 daint = dwc2_readl(hsotg->regs + DAINT);
		u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3493
		u32 daint_out, daint_in;
3494 3495
		int ep;

3496
		daint &= daintmsk;
3497 3498
		daint_out = daint >> DAINT_OUTEP_SHIFT;
		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3499

3500 3501
		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

3502 3503
		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
						ep++, daint_out >>= 1) {
3504
			if (daint_out & 1)
3505
				dwc2_hsotg_epint(hsotg, ep, 0);
3506 3507
		}

3508 3509
		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
						ep++, daint_in >>= 1) {
3510
			if (daint_in & 1)
3511
				dwc2_hsotg_epint(hsotg, ep, 1);
3512 3513 3514 3515 3516
		}
	}

	/* check both FIFOs */

3517
	if (gintsts & GINTSTS_NPTXFEMP) {
3518 3519
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

3520 3521
		/*
		 * Disable the interrupt to stop it happening again
3522
		 * unless one of these endpoint routines decides that
3523 3524
		 * it needs re-enabling
		 */
3525

3526 3527
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, false);
3528 3529
	}

3530
	if (gintsts & GINTSTS_PTXFEMP) {
3531 3532
		dev_dbg(hsotg->dev, "PTxFEmp\n");

3533
		/* See note in GINTSTS_NPTxFEmp */
3534

3535 3536
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, true);
3537 3538
	}

3539
	if (gintsts & GINTSTS_RXFLVL) {
3540 3541
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3542
		 * we need to retry dwc2_hsotg_handle_rx if this is still
3543 3544
		 * set.
		 */
3545

3546
		dwc2_hsotg_handle_rx(hsotg);
3547 3548
	}

3549
	if (gintsts & GINTSTS_ERLYSUSP) {
3550
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3551
		dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
3552 3553
	}

3554 3555
	/*
	 * these next two seem to crop-up occasionally causing the core
3556
	 * to shutdown the USB transfer, so try clearing them and logging
3557 3558
	 * the occurrence.
	 */
3559

3560
	if (gintsts & GINTSTS_GOUTNAKEFF) {
3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581
		u8 idx;
		u32 epctrl;
		u32 gintmsk;
		struct dwc2_hsotg_ep *hs_ep;

		/* Mask this interrupt */
		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
		gintmsk &= ~GINTSTS_GOUTNAKEFF;
		dwc2_writel(gintmsk, hsotg->regs + GINTMSK);

		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
		for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
			hs_ep = hsotg->eps_out[idx];
			epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));

			if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
				epctrl |= DXEPCTL_SNAK;
				epctrl |= DXEPCTL_EPDIS;
				dwc2_writel(epctrl, hsotg->regs + DOEPCTL(idx));
			}
		}
3582

3583
		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3584 3585
	}

3586
	if (gintsts & GINTSTS_GINNAKEFF) {
3587 3588
		dev_info(hsotg->dev, "GINNakEff triggered\n");

3589
		__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3590

3591
		dwc2_hsotg_dump(hsotg);
3592 3593
	}

3594 3595
	if (gintsts & GINTSTS_INCOMPL_SOIN)
		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3596

3597 3598
	if (gintsts & GINTSTS_INCOMPL_SOOUT)
		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3599

3600 3601 3602 3603
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
3604 3605 3606 3607

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
			goto irq_retry;

3608 3609
	spin_unlock(&hsotg->lock);

3610 3611 3612
	return IRQ_HANDLED;
}

3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701
static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg,
				   u32 bit, u32 timeout)
{
	u32 i;

	for (i = 0; i < timeout; i++) {
		if (dwc2_readl(hs_otg->regs + reg) & bit)
			return 0;
		udelay(1);
	}

	return -ETIMEDOUT;
}

static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
				   struct dwc2_hsotg_ep *hs_ep)
{
	u32 epctrl_reg;
	u32 epint_reg;

	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
		DOEPCTL(hs_ep->index);
	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
		DOEPINT(hs_ep->index);

	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
		hs_ep->name);

	if (hs_ep->dir_in) {
		if (hsotg->dedicated_fifos || hs_ep->periodic) {
			__orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
			/* Wait for Nak effect */
			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
						    DXEPINT_INEPNAKEFF, 100))
				dev_warn(hsotg->dev,
					 "%s: timeout DIEPINT.NAKEFF\n",
					 __func__);
		} else {
			__orr32(hsotg->regs + DCTL, DCTL_SGNPINNAK);
			/* Wait for Nak effect */
			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
						    GINTSTS_GINNAKEFF, 100))
				dev_warn(hsotg->dev,
					 "%s: timeout GINTSTS.GINNAKEFF\n",
					 __func__);
		}
	} else {
		if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF))
			__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);

		/* Wait for global nak to take effect */
		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
					    GINTSTS_GOUTNAKEFF, 100))
			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
				 __func__);
	}

	/* Disable ep */
	__orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);

	/* Wait for ep to be disabled */
	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
		dev_warn(hsotg->dev,
			 "%s: timeout DOEPCTL.EPDisable\n", __func__);

	/* Clear EPDISBLD interrupt */
	__orr32(hsotg->regs + epint_reg, DXEPINT_EPDISBLD);

	if (hs_ep->dir_in) {
		unsigned short fifo_index;

		if (hsotg->dedicated_fifos || hs_ep->periodic)
			fifo_index = hs_ep->fifo_index;
		else
			fifo_index = 0;

		/* Flush TX FIFO */
		dwc2_flush_tx_fifo(hsotg, fifo_index);

		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
			__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);

	} else {
		/* Remove global NAKs */
		__orr32(hsotg->regs + DCTL, DCTL_CGOUTNAK);
	}
}

3702
/**
3703
 * dwc2_hsotg_ep_enable - enable the given endpoint
3704 3705 3706 3707
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
3708
 */
3709
static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3710
				const struct usb_endpoint_descriptor *desc)
3711
{
3712
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3713
	struct dwc2_hsotg *hsotg = hs_ep->parent;
3714
	unsigned long flags;
3715
	unsigned int index = hs_ep->index;
3716 3717 3718
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
3719
	u32 mc;
3720
	u32 mask;
3721 3722
	unsigned int dir_in;
	unsigned int i, val, size;
3723
	int ret = 0;
3724 3725 3726 3727 3728 3729 3730

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
3731 3732 3733 3734
	if (index == 0) {
		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
		return -EINVAL;
	}
3735 3736 3737 3738 3739 3740 3741

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

3742
	mps = usb_endpoint_maxp(desc);
3743
	mc = usb_endpoint_maxp_mult(desc);
3744

3745
	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3746

3747
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3748
	epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3749 3750 3751 3752

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

3753 3754 3755 3756 3757
	/* Allocate DMA descriptor chain for non-ctrl endpoints */
	if (using_desc_dma(hsotg)) {
		hs_ep->desc_list = dma_alloc_coherent(hsotg->dev,
			MAX_DMA_DESC_NUM_GENERIC *
			sizeof(struct dwc2_dma_desc),
3758
			&hs_ep->desc_list_dma, GFP_ATOMIC);
3759 3760 3761 3762 3763 3764
		if (!hs_ep->desc_list) {
			ret = -ENOMEM;
			goto error2;
		}
	}

3765
	spin_lock_irqsave(&hsotg->lock, flags);
3766

3767 3768
	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
	epctrl |= DXEPCTL_MPS(mps);
3769

3770 3771 3772 3773
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
3774
	epctrl |= DXEPCTL_USBACTEP;
3775 3776

	/* update the endpoint state */
3777
	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
3778 3779

	/* default, set to non-periodic */
3780
	hs_ep->isochronous = 0;
3781
	hs_ep->periodic = 0;
3782
	hs_ep->halted = 0;
3783
	hs_ep->interval = desc->bInterval;
3784

3785 3786
	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
3787 3788
		epctrl |= DXEPCTL_EPTYPE_ISO;
		epctrl |= DXEPCTL_SETEVENFR;
3789
		hs_ep->isochronous = 1;
3790
		hs_ep->interval = 1 << (desc->bInterval - 1);
3791
		hs_ep->target_frame = TARGET_FRAME_INITIAL;
3792 3793
		hs_ep->isoc_chain_num = 0;
		hs_ep->next_desc = 0;
3794
		if (dir_in) {
3795
			hs_ep->periodic = 1;
3796 3797 3798 3799 3800 3801 3802 3803
			mask = dwc2_readl(hsotg->regs + DIEPMSK);
			mask |= DIEPMSK_NAKMSK;
			dwc2_writel(mask, hsotg->regs + DIEPMSK);
		} else {
			mask = dwc2_readl(hsotg->regs + DOEPMSK);
			mask |= DOEPMSK_OUTTKNEPDISMSK;
			dwc2_writel(mask, hsotg->regs + DOEPMSK);
		}
3804
		break;
3805 3806

	case USB_ENDPOINT_XFER_BULK:
3807
		epctrl |= DXEPCTL_EPTYPE_BULK;
3808 3809 3810
		break;

	case USB_ENDPOINT_XFER_INT:
3811
		if (dir_in)
3812 3813
			hs_ep->periodic = 1;

3814 3815 3816
		if (hsotg->gadget.speed == USB_SPEED_HIGH)
			hs_ep->interval = 1 << (desc->bInterval - 1);

3817
		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
3818 3819 3820
		break;

	case USB_ENDPOINT_XFER_CONTROL:
3821
		epctrl |= DXEPCTL_EPTYPE_CONTROL;
3822 3823 3824
		break;
	}

3825 3826
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
3827 3828
	 * a unique tx-fifo even if it is non-periodic.
	 */
3829
	if (dir_in && hsotg->dedicated_fifos) {
3830 3831
		u32 fifo_index = 0;
		u32 fifo_size = UINT_MAX;
3832 3833

		size = hs_ep->ep.maxpacket * hs_ep->mc;
3834
		for (i = 1; i < hsotg->num_of_eps; ++i) {
3835
			if (hsotg->fifo_map & (1 << i))
3836
				continue;
3837
			val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
3838
			val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
3839 3840
			if (val < size)
				continue;
3841 3842 3843 3844 3845
			/* Search for smallest acceptable fifo */
			if (val < fifo_size) {
				fifo_size = val;
				fifo_index = i;
			}
3846
		}
3847
		if (!fifo_index) {
3848 3849
			dev_err(hsotg->dev,
				"%s: No suitable fifo found\n", __func__);
3850
			ret = -ENOMEM;
3851
			goto error1;
3852
		}
3853 3854 3855 3856
		hsotg->fifo_map |= 1 << fifo_index;
		epctrl |= DXEPCTL_TXFNUM(fifo_index);
		hs_ep->fifo_index = fifo_index;
		hs_ep->fifo_size = fifo_size;
3857
	}
3858

3859
	/* for non control endpoints, set PID to D0 */
3860
	if (index && !hs_ep->isochronous)
3861
		epctrl |= DXEPCTL_SETD0PID;
3862 3863 3864 3865

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

3866
	dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
3867
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
3868
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
3869 3870

	/* enable the endpoint interrupt */
3871
	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
3872

3873
error1:
3874
	spin_unlock_irqrestore(&hsotg->lock, flags);
3875 3876 3877 3878 3879 3880 3881 3882 3883

error2:
	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
		dma_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
			sizeof(struct dwc2_dma_desc),
			hs_ep->desc_list, hs_ep->desc_list_dma);
		hs_ep->desc_list = NULL;
	}

3884
	return ret;
3885 3886
}

3887
/**
3888
 * dwc2_hsotg_ep_disable - disable given endpoint
3889 3890
 * @ep: The endpoint to disable.
 */
3891
static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
3892
{
3893
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3894
	struct dwc2_hsotg *hsotg = hs_ep->parent;
3895 3896 3897 3898 3899 3900
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

3901
	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
3902

3903
	if (ep == &hsotg->eps_out[0]->ep) {
3904 3905 3906 3907
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

3908 3909 3910 3911 3912 3913 3914 3915
	/* Remove DMA memory allocated for non-control Endpoints */
	if (using_desc_dma(hsotg)) {
		dma_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
				  sizeof(struct dwc2_dma_desc),
				  hs_ep->desc_list, hs_ep->desc_list_dma);
		hs_ep->desc_list = NULL;
	}

3916
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3917

3918
	spin_lock_irqsave(&hsotg->lock, flags);
3919

3920
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3921 3922 3923 3924

	if (ctrl & DXEPCTL_EPENA)
		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);

3925 3926 3927
	ctrl &= ~DXEPCTL_EPENA;
	ctrl &= ~DXEPCTL_USBACTEP;
	ctrl |= DXEPCTL_SNAK;
3928 3929

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
3930
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
3931 3932

	/* disable endpoint interrupts */
3933
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
3934

3935 3936 3937
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);

3938 3939 3940 3941
	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
	hs_ep->fifo_index = 0;
	hs_ep->fifo_size = 0;

3942
	spin_unlock_irqrestore(&hsotg->lock, flags);
3943 3944 3945 3946 3947 3948 3949
	return 0;
}

/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
3950
 */
3951
static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
3952
{
3953
	struct dwc2_hsotg_req *req, *treq;
3954 3955 3956 3957 3958 3959 3960 3961 3962

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

3963
/**
3964
 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
3965 3966 3967
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
3968
static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
3969
{
3970 3971
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3972
	struct dwc2_hsotg *hs = hs_ep->parent;
3973 3974
	unsigned long flags;

3975
	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
3976

3977
	spin_lock_irqsave(&hs->lock, flags);
3978 3979

	if (!on_list(hs_ep, hs_req)) {
3980
		spin_unlock_irqrestore(&hs->lock, flags);
3981 3982 3983
		return -EINVAL;
	}

3984 3985 3986 3987
	/* Dequeue already started request */
	if (req == &hs_ep->req->req)
		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);

3988
	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
3989
	spin_unlock_irqrestore(&hs->lock, flags);
3990 3991 3992 3993

	return 0;
}

3994
/**
3995
 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
3996 3997
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
3998 3999 4000 4001 4002
 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
 *       the endpoint is busy processing requests.
 *
 * We need to stall the endpoint immediately if request comes from set_feature
 * protocol command handler.
4003
 */
4004
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4005
{
4006
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4007
	struct dwc2_hsotg *hs = hs_ep->parent;
4008 4009 4010
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
4011
	u32 xfertype;
4012 4013 4014

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

4015 4016
	if (index == 0) {
		if (value)
4017
			dwc2_hsotg_stall_ep0(hs);
4018 4019 4020 4021 4022 4023
		else
			dev_warn(hs->dev,
				 "%s: can't clear halt on ep0\n", __func__);
		return 0;
	}

4024 4025 4026 4027 4028
	if (hs_ep->isochronous) {
		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
		return -EINVAL;
	}

4029 4030 4031 4032 4033 4034
	if (!now && value && !list_empty(&hs_ep->queue)) {
		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
			ep->name);
		return -EAGAIN;
	}

4035 4036
	if (hs_ep->dir_in) {
		epreg = DIEPCTL(index);
4037
		epctl = dwc2_readl(hs->regs + epreg);
4038 4039

		if (value) {
4040
			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4041 4042 4043 4044 4045 4046
			if (epctl & DXEPCTL_EPENA)
				epctl |= DXEPCTL_EPDIS;
		} else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4047
			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4048 4049
					epctl |= DXEPCTL_SETD0PID;
		}
4050
		dwc2_writel(epctl, hs->regs + epreg);
4051
	} else {
4052
		epreg = DOEPCTL(index);
4053
		epctl = dwc2_readl(hs->regs + epreg);
4054

J
John Youn 已提交
4055
		if (value) {
4056
			epctl |= DXEPCTL_STALL;
J
John Youn 已提交
4057
		} else {
4058 4059 4060
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4061
			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4062 4063
					epctl |= DXEPCTL_SETD0PID;
		}
4064
		dwc2_writel(epctl, hs->regs + epreg);
4065
	}
4066

4067 4068
	hs_ep->halted = value;

4069 4070 4071
	return 0;
}

4072
/**
4073
 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4074 4075 4076
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
4077
static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4078
{
4079
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4080
	struct dwc2_hsotg *hs = hs_ep->parent;
4081 4082 4083 4084
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
4085
	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4086 4087 4088 4089 4090
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

4091 4092 4093 4094 4095 4096 4097 4098
static struct usb_ep_ops dwc2_hsotg_ep_ops = {
	.enable		= dwc2_hsotg_ep_enable,
	.disable	= dwc2_hsotg_ep_disable,
	.alloc_request	= dwc2_hsotg_ep_alloc_request,
	.free_request	= dwc2_hsotg_ep_free_request,
	.queue		= dwc2_hsotg_ep_queue_lock,
	.dequeue	= dwc2_hsotg_ep_dequeue,
	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
4099
	/* note, don't believe we have any call for the fifo routines */
4100 4101
};

4102
/**
4103
 * dwc2_hsotg_init - initialize the usb core
4104 4105
 * @hsotg: The driver state
 */
4106
static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4107
{
4108
	u32 trdtim;
4109
	u32 usbcfg;
4110 4111
	/* unmask subset of endpoint interrupts */

4112 4113 4114
	dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DIEPMSK);
4115

4116 4117 4118
	dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DOEPMSK);
4119

4120
	dwc2_writel(0, hsotg->regs + DAINTMSK);
4121 4122

	/* Be in disconnected state until gadget is registered */
4123
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
4124 4125 4126 4127

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4128 4129
		dwc2_readl(hsotg->regs + GRXFSIZ),
		dwc2_readl(hsotg->regs + GNPTXFSIZ));
4130

4131
	dwc2_hsotg_init_fifo(hsotg);
4132

4133 4134 4135 4136 4137
	/* keep other bits untouched (so e.g. forced modes are not lost) */
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
		GUSBCFG_HNPCAP);

4138
	/* set the PLL on, remove the HNP/SRP and set the PHY */
4139
	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
4140 4141 4142
	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
		(trdtim << GUSBCFG_USBTRDTIM_SHIFT);
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
4143

4144 4145
	if (using_dma(hsotg))
		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
4146 4147
}

4148
/**
4149
 * dwc2_hsotg_udc_start - prepare the udc for work
4150 4151 4152 4153 4154 4155
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
4156
static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4157
				struct usb_gadget_driver *driver)
4158
{
4159
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4160
	unsigned long flags;
4161 4162 4163
	int ret;

	if (!hsotg) {
4164
		pr_err("%s: called with no device\n", __func__);
4165 4166 4167 4168 4169 4170 4171 4172
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

4173
	if (driver->max_speed < USB_SPEED_FULL)
4174 4175
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

4176
	if (!driver->setup) {
4177 4178 4179 4180 4181 4182 4183 4184
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
4185
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4186 4187
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

4188 4189 4190 4191
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
		ret = dwc2_lowlevel_hw_enable(hsotg);
		if (ret)
			goto err;
4192 4193
	}

4194 4195
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4196

4197
	spin_lock_irqsave(&hsotg->lock, flags);
4198 4199 4200 4201 4202
	if (dwc2_hw_is_device(hsotg)) {
		dwc2_hsotg_init(hsotg);
		dwc2_hsotg_core_init_disconnected(hsotg, false);
	}

4203
	hsotg->enabled = 0;
4204 4205
	spin_unlock_irqrestore(&hsotg->lock, flags);

4206
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4207

4208 4209 4210 4211 4212 4213 4214
	return 0;

err:
	hsotg->driver = NULL;
	return ret;
}

4215
/**
4216
 * dwc2_hsotg_udc_stop - stop the udc
4217 4218 4219 4220 4221
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
4222
static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4223
{
4224
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4225
	unsigned long flags = 0;
4226 4227 4228 4229 4230 4231
	int ep;

	if (!hsotg)
		return -ENODEV;

	/* all endpoints should be shutdown */
4232 4233
	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
4234
			dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4235
		if (hsotg->eps_out[ep])
4236
			dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4237
	}
4238

4239 4240
	spin_lock_irqsave(&hsotg->lock, flags);

4241
	hsotg->driver = NULL;
4242
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4243
	hsotg->enabled = 0;
4244

4245 4246
	spin_unlock_irqrestore(&hsotg->lock, flags);

4247 4248
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, NULL);
4249

4250 4251
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		dwc2_lowlevel_hw_disable(hsotg);
4252 4253 4254 4255

	return 0;
}

4256
/**
4257
 * dwc2_hsotg_gadget_getframe - read the frame number
4258 4259 4260 4261
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
4262
static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4263
{
4264
	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4265 4266
}

4267
/**
4268
 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4269 4270 4271 4272 4273
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
4274
static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4275
{
4276
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4277 4278
	unsigned long flags = 0;

4279
	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4280
		hsotg->op_state);
4281 4282 4283 4284 4285 4286

	/* Don't modify pullup state while in host mode */
	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
		hsotg->enabled = is_on;
		return 0;
	}
4287 4288 4289

	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
4290
		hsotg->enabled = 1;
4291 4292
		dwc2_hsotg_core_init_disconnected(hsotg, false);
		dwc2_hsotg_core_connect(hsotg);
4293
	} else {
4294 4295
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
4296
		hsotg->enabled = 0;
4297 4298 4299 4300 4301 4302 4303 4304
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return 0;
}

4305
static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4306 4307 4308 4309 4310 4311 4312
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
	unsigned long flags;

	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
	spin_lock_irqsave(&hsotg->lock, flags);

4313 4314 4315 4316 4317 4318 4319
	/*
	 * If controller is hibernated, it must exit from hibernation
	 * before being initialized / de-initialized
	 */
	if (hsotg->lx_state == DWC2_L2)
		dwc2_exit_hibernation(hsotg, false);

4320
	if (is_active) {
4321
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4322

4323
		dwc2_hsotg_core_init_disconnected(hsotg, false);
4324
		if (hsotg->enabled)
4325
			dwc2_hsotg_core_connect(hsotg);
4326
	} else {
4327 4328
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
4329 4330 4331 4332 4333 4334
	}

	spin_unlock_irqrestore(&hsotg->lock, flags);
	return 0;
}

4335
/**
4336
 * dwc2_hsotg_vbus_draw - report bMaxPower field
4337 4338 4339 4340 4341
 * @gadget: The usb gadget state
 * @mA: Amount of current
 *
 * Report how much power the device may consume to the phy.
 */
4342
static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4343 4344 4345 4346 4347 4348 4349 4350
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);

	if (IS_ERR_OR_NULL(hsotg->uphy))
		return -ENOTSUPP;
	return usb_phy_set_power(hsotg->uphy, mA);
}

4351 4352 4353 4354 4355 4356 4357
static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
	.get_frame	= dwc2_hsotg_gadget_getframe,
	.udc_start		= dwc2_hsotg_udc_start,
	.udc_stop		= dwc2_hsotg_udc_stop,
	.pullup                 = dwc2_hsotg_pullup,
	.vbus_session		= dwc2_hsotg_vbus_session,
	.vbus_draw		= dwc2_hsotg_vbus_draw,
4358 4359 4360
};

/**
4361
 * dwc2_hsotg_initep - initialise a single endpoint
4362 4363 4364 4365 4366 4367 4368 4369
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
4370
static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4371
			      struct dwc2_hsotg_ep *hs_ep,
4372 4373
				       int epnum,
				       bool dir_in)
4374 4375 4376 4377 4378
{
	char *dir;

	if (epnum == 0)
		dir = "";
4379
	else if (dir_in)
4380
		dir = "in";
4381 4382
	else
		dir = "out";
4383

4384
	hs_ep->dir_in = dir_in;
4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397
	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
4398 4399 4400 4401 4402 4403

	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
	else
		usb_ep_set_maxpacket_limit(&hs_ep->ep,
					   epnum ? 1024 : EP0_MPS_LIMIT);
4404
	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4405

4406 4407 4408
	if (epnum == 0) {
		hs_ep->ep.caps.type_control = true;
	} else {
4409 4410 4411 4412
		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
			hs_ep->ep.caps.type_iso = true;
			hs_ep->ep.caps.type_bulk = true;
		}
4413 4414 4415 4416 4417 4418 4419 4420
		hs_ep->ep.caps.type_int = true;
	}

	if (dir_in)
		hs_ep->ep.caps.dir_in = true;
	else
		hs_ep->ep.caps.dir_out = true;

4421 4422
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
4423 4424 4425 4426
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
4427
		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4428

4429
		if (dir_in)
4430
			dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
4431
		else
4432
			dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
4433 4434 4435
	}
}

4436
/**
4437
 * dwc2_hsotg_hw_cfg - read HW configuration registers
4438 4439 4440 4441
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
4442
static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4443
{
4444 4445 4446 4447
	u32 cfg;
	u32 ep_type;
	u32 i;

4448
	/* check hardware configuration */
4449

4450 4451
	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;

4452 4453
	/* Add ep0 */
	hsotg->num_of_eps++;
4454

4455 4456 4457
	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
					sizeof(struct dwc2_hsotg_ep),
					GFP_KERNEL);
4458 4459
	if (!hsotg->eps_in[0])
		return -ENOMEM;
4460
	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4461 4462
	hsotg->eps_out[0] = hsotg->eps_in[0];

4463
	cfg = hsotg->hw_params.dev_ep_dirs;
4464
	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4465 4466 4467 4468
		ep_type = cfg & 3;
		/* Direction in or both */
		if (!(ep_type & 2)) {
			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4469
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4470 4471 4472 4473 4474 4475
			if (!hsotg->eps_in[i])
				return -ENOMEM;
		}
		/* Direction out or both */
		if (!(ep_type & 1)) {
			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4476
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4477 4478 4479 4480 4481
			if (!hsotg->eps_out[i])
				return -ENOMEM;
		}
	}

4482 4483
	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4484

4485 4486 4487 4488
	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
		 hsotg->num_of_eps,
		 hsotg->dedicated_fifos ? "dedicated" : "shared",
		 hsotg->fifo_mem);
4489
	return 0;
4490 4491
}

4492
/**
4493
 * dwc2_hsotg_dump - dump state of the udc
4494 4495
 * @param: The device state
 */
4496
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4497
{
M
Mark Brown 已提交
4498
#ifdef DEBUG
4499 4500 4501 4502 4503 4504
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4505 4506
		 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
		 dwc2_readl(regs + DIEPMSK));
4507

4508
	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4509
		 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
4510 4511

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4512
		 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
4513 4514 4515

	/* show periodic fifo settings */

4516
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4517
		val = dwc2_readl(regs + DPTXFSIZN(idx));
4518
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4519 4520
			 val >> FIFOSIZE_DEPTH_SHIFT,
			 val & FIFOSIZE_STARTADDR_MASK);
4521 4522
	}

4523
	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4524 4525
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4526 4527 4528
			 dwc2_readl(regs + DIEPCTL(idx)),
			 dwc2_readl(regs + DIEPTSIZ(idx)),
			 dwc2_readl(regs + DIEPDMA(idx)));
4529

4530
		val = dwc2_readl(regs + DOEPCTL(idx));
4531 4532
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4533 4534 4535
			 idx, dwc2_readl(regs + DOEPCTL(idx)),
			 dwc2_readl(regs + DOEPTSIZ(idx)),
			 dwc2_readl(regs + DOEPDMA(idx)));
4536 4537 4538
	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4539
		 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
4540
#endif
4541 4542
}

4543
/**
4544 4545 4546
 * dwc2_gadget_init - init function for gadget
 * @dwc2: The data structure for the DWC2 driver.
 * @irq: The IRQ number for the controller.
4547
 */
4548
int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
4549
{
4550
	struct device *dev = hsotg->dev;
4551 4552
	int epnum;
	int ret;
4553

4554 4555
	/* Dump fifo information */
	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4556 4557
		hsotg->params.g_np_tx_fifo_size);
	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4558

4559
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
4560
	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4561
	hsotg->gadget.name = dev_name(dev);
4562 4563
	if (hsotg->dr_mode == USB_DR_MODE_OTG)
		hsotg->gadget.is_otg = 1;
4564 4565
	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4566

4567
	ret = dwc2_hsotg_hw_cfg(hsotg);
4568 4569
	if (ret) {
		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4570
		return ret;
4571 4572
	}

4573 4574
	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4575
	if (!hsotg->ctrl_buff)
4576
		return -ENOMEM;
4577 4578 4579

	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4580
	if (!hsotg->ep0_buff)
4581
		return -ENOMEM;
4582

4583 4584 4585 4586 4587 4588
	if (using_desc_dma(hsotg)) {
		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
		if (ret < 0)
			return ret;
	}

4589
	ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
4590
			       dev_name(hsotg->dev), hsotg);
4591
	if (ret < 0) {
4592
		dev_err(dev, "cannot claim IRQ for gadget\n");
4593
		return ret;
4594 4595
	}

4596 4597 4598 4599
	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
4600
		return -EINVAL;
4601 4602 4603 4604 4605
	}

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4606
	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4607 4608 4609

	/* allocate EP0 request */

4610
	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4611 4612 4613
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
4614
		return -ENOMEM;
4615
	}
4616 4617

	/* initialise the endpoints now the core has been initialised */
4618 4619
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
		if (hsotg->eps_in[epnum])
4620
			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4621
					  epnum, 1);
4622
		if (hsotg->eps_out[epnum])
4623
			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4624
					  epnum, 0);
4625
	}
4626

4627
	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
4628
	if (ret)
4629
		return ret;
4630

4631
	dwc2_hsotg_dump(hsotg);
4632 4633 4634 4635

	return 0;
}

4636
/**
4637
 * dwc2_hsotg_remove - remove function for hsotg driver
4638 4639
 * @pdev: The platform information for the driver
 */
4640
int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4641
{
4642
	usb_del_gadget_udc(&hsotg->gadget);
4643

4644 4645 4646
	return 0;
}

4647
int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4648 4649 4650
{
	unsigned long flags;

4651
	if (hsotg->lx_state != DWC2_L0)
4652
		return 0;
4653

4654 4655 4656
	if (hsotg->driver) {
		int ep;

4657 4658 4659
		dev_info(hsotg->dev, "suspending usb gadget %s\n",
			 hsotg->driver->driver.name);

4660 4661
		spin_lock_irqsave(&hsotg->lock, flags);
		if (hsotg->enabled)
4662 4663
			dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
4664 4665
		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
		spin_unlock_irqrestore(&hsotg->lock, flags);
4666

4667 4668
		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
			if (hsotg->eps_in[ep])
4669
				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4670
			if (hsotg->eps_out[ep])
4671
				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4672
		}
4673 4674
	}

4675
	return 0;
4676 4677
}

4678
int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4679 4680 4681
{
	unsigned long flags;

4682
	if (hsotg->lx_state == DWC2_L2)
4683
		return 0;
4684

4685 4686 4687
	if (hsotg->driver) {
		dev_info(hsotg->dev, "resuming usb gadget %s\n",
			 hsotg->driver->driver.name);
4688

4689
		spin_lock_irqsave(&hsotg->lock, flags);
4690
		dwc2_hsotg_core_init_disconnected(hsotg, false);
4691
		if (hsotg->enabled)
4692
			dwc2_hsotg_core_connect(hsotg);
4693 4694
		spin_unlock_irqrestore(&hsotg->lock, flags);
	}
4695

4696
	return 0;
4697
}
4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799

/**
 * dwc2_backup_device_registers() - Backup controller device registers.
 * When suspending usb bus, registers needs to be backuped
 * if controller power is disabled once suspended.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Backup dev regs */
	dr = &hsotg->dr_backup;

	dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
	dr->dctl = dwc2_readl(hsotg->regs + DCTL);
	dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
	dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
	dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Backup IN EPs */
		dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));

		/* Ensure DATA PID is correctly configured */
		if (dr->diepctl[i] & DXEPCTL_DPID)
			dr->diepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->diepctl[i] |= DXEPCTL_SETD0PID;

		dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
		dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));

		/* Backup OUT EPs */
		dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));

		/* Ensure DATA PID is correctly configured */
		if (dr->doepctl[i] & DXEPCTL_DPID)
			dr->doepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->doepctl[i] |= DXEPCTL_SETD0PID;

		dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
		dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
	}
	dr->valid = true;
	return 0;
}

/**
 * dwc2_restore_device_registers() - Restore controller device registers.
 * When resuming usb bus, device registers needs to be restored
 * if controller power were disabled.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	u32 dctl;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Restore dev regs */
	dr = &hsotg->dr_backup;
	if (!dr->valid) {
		dev_err(hsotg->dev, "%s: no device registers to restore\n",
			__func__);
		return -EINVAL;
	}
	dr->valid = false;

	dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
	dwc2_writel(dr->dctl, hsotg->regs + DCTL);
	dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
	dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
	dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Restore IN EPs */
		dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
		dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
		dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));

		/* Restore OUT EPs */
		dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
		dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
	}

	/* Set the Power-On Programming done bit */
	dctl = dwc2_readl(hsotg->regs + DCTL);
	dctl |= DCTL_PWRONPRGDONE;
	dwc2_writel(dctl, hsotg->regs + DCTL);

	return 0;
}