gadget.c 126.8 KB
Newer Older
1
/**
2 3
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
4 5 6 7 8 9 10 11 12 13 14
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
15
 */
16 17 18 19 20 21 22

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
23
#include <linux/mutex.h>
24 25 26
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
27
#include <linux/slab.h>
28
#include <linux/of_platform.h>
29 30 31

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
32
#include <linux/usb/phy.h>
33

34
#include "core.h"
35
#include "hw.h"
36 37

/* conversion functions */
38
static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
39
{
40
	return container_of(req, struct dwc2_hsotg_req, req);
41 42
}

43
static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
44
{
45
	return container_of(ep, struct dwc2_hsotg_ep, ep);
46 47
}

48
static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
49
{
50
	return container_of(gadget, struct dwc2_hsotg, gadget);
51 52 53 54
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
55
	dwc2_writel(dwc2_readl(ptr) | val, ptr);
56 57 58 59
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
60
	dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
61 62
}

63
static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
64 65 66 67 68 69 70 71
						u32 ep_index, u32 dir_in)
{
	if (dir_in)
		return hsotg->eps_in[ep_index];
	else
		return hsotg->eps_out[ep_index];
}

72
/* forward declaration of functions */
73
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
92
 * g_using_dma is set depending on dts flag.
93
 */
94
static inline bool using_dma(struct dwc2_hsotg *hsotg)
95
{
96
	return hsotg->params.g_dma;
97 98
}

99 100 101 102 103 104 105 106 107 108 109
/*
 * using_desc_dma - return the descriptor DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using descriptor DMA.
 */
static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
{
	return hsotg->params.g_dma_desc;
}

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
/**
 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
 * @hs_ep: The endpoint
 * @increment: The value to increment by
 *
 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
 */
static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
{
	hs_ep->target_frame += hs_ep->interval;
	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
		hs_ep->frame_overrun = 1;
		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
	} else {
		hs_ep->frame_overrun = 0;
	}
}

129
/**
130
 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
131 132 133
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
134
static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
135
{
136
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
137 138 139 140 141 142
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
143
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
144 145 146 147
	}
}

/**
148
 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
149 150 151
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
152
static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
153
{
154
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
155 156 157 158 159
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
160
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
161 162 163
}

/**
164
 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
165 166 167 168 169 170 171 172
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
173
static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
174
				  unsigned int ep, unsigned int dir_in,
175 176 177 178 179 180 181 182 183 184
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
185
	daint = dwc2_readl(hsotg->regs + DAINTMSK);
186 187 188 189
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
190
	dwc2_writel(daint, hsotg->regs + DAINTMSK);
191 192 193
	local_irq_restore(flags);
}

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
/**
 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
 */
int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
{
	if (hsotg->hw_params.en_multiple_tx_fifo)
		/* In dedicated FIFO mode we need count of IN EPs */
		return (dwc2_readl(hsotg->regs + GHWCFG4)  &
			GHWCFG4_NUM_IN_EPS_MASK) >> GHWCFG4_NUM_IN_EPS_SHIFT;
	else
		/* In shared FIFO mode we need count of Periodic IN EPs */
		return hsotg->hw_params.num_dev_perio_in_ep;
}

/**
 * dwc2_hsotg_ep_info_size - return Endpoint Info Control block size in DWORDs
 */
static int dwc2_hsotg_ep_info_size(struct dwc2_hsotg *hsotg)
{
	int val = 0;
	int i;
	u32 ep_dirs;

	/*
	 * Don't need additional space for ep info control registers in
	 * slave mode.
	 */
	if (!using_dma(hsotg)) {
		dev_dbg(hsotg->dev, "Buffer DMA ep info size 0\n");
		return 0;
	}

	/*
	 * Buffer DMA mode - 1 location per endpoit
	 * Descriptor DMA mode - 4 locations per endpoint
	 */
	ep_dirs = hsotg->hw_params.dev_ep_dirs;

	for (i = 0; i <= hsotg->hw_params.num_dev_ep; i++) {
		val += ep_dirs & 3 ? 1 : 2;
		ep_dirs >>= 2;
	}

	if (using_desc_dma(hsotg))
		val = val * 4;

	return val;
}

/**
 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
 * device mode TX FIFOs
 */
int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
{
	int ep_info_size;
	int addr;
	int tx_addr_max;
	u32 np_tx_fifo_size;

	np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
				hsotg->params.g_np_tx_fifo_size);

	/* Get Endpoint Info Control block size in DWORDs. */
	ep_info_size = dwc2_hsotg_ep_info_size(hsotg);
	tx_addr_max = hsotg->hw_params.total_fifo_size - ep_info_size;

	addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
	if (tx_addr_max <= addr)
		return 0;

	return tx_addr_max - addr;
}

/**
 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
 * TX FIFOs
 */
int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
{
	int tx_fifo_count;
	int tx_fifo_depth;

	tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);

	tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);

	if (!tx_fifo_count)
		return tx_fifo_depth;
	else
		return tx_fifo_depth / tx_fifo_count;
}

287
/**
288
 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
289 290
 * @hsotg: The device instance.
 */
291
static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
292
{
293
	unsigned int ep;
294
	unsigned int addr;
295
	int timeout;
296
	u32 val;
297
	u32 *txfsz = hsotg->params.g_tx_fifo_size;
298

299 300 301 302
	/* Reset fifo map if not correctly cleared during previous session */
	WARN_ON(hsotg->fifo_map);
	hsotg->fifo_map = 0;

303
	/* set RX/NPTX FIFO sizes */
304 305 306 307
	dwc2_writel(hsotg->params.g_rx_fifo_size, hsotg->regs + GRXFSIZ);
	dwc2_writel((hsotg->params.g_rx_fifo_size << FIFOSIZE_STARTADDR_SHIFT) |
		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
		    hsotg->regs + GNPTXFSIZ);
308

309 310
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
311 312
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
313 314
	 * known values.
	 */
315 316

	/* start at the end of the GNPTXFSIZ, rounded up */
317
	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
318

319
	/*
320
	 * Configure fifos sizes from provided configuration and assign
321 322
	 * them to endpoints dynamically according to maxpacket size value of
	 * given endpoint.
323
	 */
324
	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
325
		if (!txfsz[ep])
326 327
			continue;
		val = addr;
328 329
		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
330
			  "insufficient fifo memory");
331
		addr += txfsz[ep];
332

333
		dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
334
		val = dwc2_readl(hsotg->regs + DPTXFSIZN(ep));
335
	}
336

337 338 339
	dwc2_writel(hsotg->hw_params.total_fifo_size |
		    addr << GDFIFOCFG_EPINFOBASE_SHIFT,
		    hsotg->regs + GDFIFOCFG);
340 341 342 343
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
344

345
	dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
346
	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
347 348 349 350

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
351
		val = dwc2_readl(hsotg->regs + GRSTCTL);
352

353
		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
354 355 356 357 358 359
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
360
			break;
361 362 363 364 365 366
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
367 368 369 370 371 372 373 374
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
375
static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
376
						       gfp_t flags)
377
{
378
	struct dwc2_hsotg_req *req;
379

J
John Youn 已提交
380
	req = kzalloc(sizeof(*req), flags);
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
396
static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
397 398 399 400 401
{
	return hs_ep->periodic;
}

/**
402
 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
403 404 405 406
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
407
 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
408
 * of a request to ensure the buffer is ready for access by the caller.
409
 */
410
static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
411
				 struct dwc2_hsotg_ep *hs_ep,
412
				struct dwc2_hsotg_req *hs_req)
413 414
{
	struct usb_request *req = &hs_req->req;
415

416
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
417 418
}

419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
/*
 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
 * for Control endpoint
 * @hsotg: The device state.
 *
 * This function will allocate 4 descriptor chains for EP 0: 2 for
 * Setup stage, per one for IN and OUT data/status transactions.
 */
static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
{
	hsotg->setup_desc[0] =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->setup_desc_dma[0],
				    GFP_KERNEL);
	if (!hsotg->setup_desc[0])
		goto fail;

	hsotg->setup_desc[1] =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->setup_desc_dma[1],
				    GFP_KERNEL);
	if (!hsotg->setup_desc[1])
		goto fail;

	hsotg->ctrl_in_desc =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->ctrl_in_desc_dma,
				    GFP_KERNEL);
	if (!hsotg->ctrl_in_desc)
		goto fail;

	hsotg->ctrl_out_desc =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->ctrl_out_desc_dma,
				    GFP_KERNEL);
	if (!hsotg->ctrl_out_desc)
		goto fail;

	return 0;

fail:
	return -ENOMEM;
}

467
/**
468
 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
469 470 471 472 473 474 475 476 477 478 479 480 481
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
482
 */
483
static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
484
				 struct dwc2_hsotg_ep *hs_ep,
485
				struct dwc2_hsotg_req *hs_req)
486 487
{
	bool periodic = is_ep_periodic(hs_ep);
488
	u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
489 490 491 492 493
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;
494
	int max_transfer;
495 496 497 498 499 500 501

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

502
	if (periodic && !hsotg->dedicated_fifos) {
503
		u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
504 505 506
		int size_left;
		int size_done;

507 508 509 510
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
511

512
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
513

514 515
		/*
		 * if shared fifo, we cannot write anything until the
516 517 518
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
519
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
520 521 522
			return -ENOSPC;
		}

523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
540
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
541 542
			return -ENOSPC;
		}
543
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
544 545
		can_write = dwc2_readl(hsotg->regs +
				DTXFSTS(hs_ep->fifo_index));
546 547 548

		can_write &= 0xffff;
		can_write *= 4;
549
	} else {
550
		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
551 552 553 554
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

555
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
556 557 558
			return -ENOSPC;
		}

559
		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
560
		can_write *= 4;	/* fifo size is in 32bit quantities. */
561 562
	}

563 564 565
	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
566
		__func__, gnptxsts, can_write, to_write, max_transfer);
567

568 569
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
570 571 572
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
573
	if (can_write > 512 && !periodic)
574 575
		can_write = 512;

576 577
	/*
	 * limit the write to one max-packet size worth of data, but allow
578
	 * the transfer to return that it did not run out of fifo space
579 580
	 * doing it.
	 */
581 582
	if (to_write > max_transfer) {
		to_write = max_transfer;
583

584 585
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
586
			dwc2_hsotg_en_gsint(hsotg,
587
					    periodic ? GINTSTS_PTXFEMP :
588
					   GINTSTS_NPTXFEMP);
589 590
	}

591 592 593 594
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
595
		pkt_round = to_write % max_transfer;
596

597 598
		/*
		 * Round the write down to an
599 600 601 602 603 604 605 606 607
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

608 609 610 611
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
612

613 614
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
615
			dwc2_hsotg_en_gsint(hsotg,
616
					    periodic ? GINTSTS_PTXFEMP :
617
					   GINTSTS_NPTXFEMP);
618 619 620
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
621
		to_write, hs_req->req.length, can_write, buf_pos);
622 623 624 625 626 627 628 629 630 631 632 633 634

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

635
	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
636 637 638 639 640 641 642 643 644 645 646

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
647
static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
648 649
{
	int index = hs_ep->index;
650 651
	unsigned int maxsize;
	unsigned int maxpkt;
652 653

	if (index != 0) {
654 655
		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
656
	} else {
657
		maxsize = 64 + 64;
658
		if (hs_ep->dir_in)
659
			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
660
		else
661 662 663 664 665 666 667
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

668 669 670 671
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
672 673 674 675 676 677 678

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

679
/**
680 681 682 683 684
 * dwc2_hsotg_read_frameno - read current frame number
 * @hsotg: The device instance
 *
 * Return the current frame number
 */
685 686 687 688 689 690 691 692 693 694 695
static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
{
	u32 dsts;

	dsts = dwc2_readl(hsotg->regs + DSTS);
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;

	return dsts;
}

696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
/**
 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
 * DMA descriptor chain prepared for specific endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * depending on its descriptor chain capacity so that transfers that
 * are too long can be split.
 */
static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
{
	int is_isoc = hs_ep->isochronous;
	unsigned int maxsize;

	if (is_isoc)
		maxsize = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
					   DEV_DMA_ISOC_RX_NBYTES_LIMIT;
	else
		maxsize = DEV_DMA_NBYTES_LIMIT;

	/* Above size of one descriptor was chosen, multiple it */
	maxsize *= MAX_DMA_DESC_NUM_GENERIC;

	return maxsize;
}

722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
/*
 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
 * @hs_ep: The endpoint
 * @mask: RX/TX bytes mask to be defined
 *
 * Returns maximum data payload for one descriptor after analyzing endpoint
 * characteristics.
 * DMA descriptor transfer bytes limit depends on EP type:
 * Control out - MPS,
 * Isochronous - descriptor rx/tx bytes bitfield limit,
 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
 * have concatenations from various descriptors within one packet.
 *
 * Selects corresponding mask for RX/TX bytes as well.
 */
static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
{
	u32 mps = hs_ep->ep.maxpacket;
	int dir_in = hs_ep->dir_in;
	u32 desc_size = 0;

	if (!hs_ep->index && !dir_in) {
		desc_size = mps;
		*mask = DEV_DMA_NBYTES_MASK;
	} else if (hs_ep->isochronous) {
		if (dir_in) {
			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
		} else {
			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
		}
	} else {
		desc_size = DEV_DMA_NBYTES_LIMIT;
		*mask = DEV_DMA_NBYTES_MASK;

		/* Round down desc_size to be mps multiple */
		desc_size -= desc_size % mps;
	}

	return desc_size;
}

/*
 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
 * @hs_ep: The endpoint
 * @dma_buff: DMA address to use
 * @len: Length of the transfer
 *
 * This function will iterate over descriptor chain and fill its entries
 * with corresponding information based on transfer data.
 */
static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
						 dma_addr_t dma_buff,
						 unsigned int len)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	struct dwc2_dma_desc *desc = hs_ep->desc_list;
	u32 mps = hs_ep->ep.maxpacket;
	u32 maxsize = 0;
	u32 offset = 0;
	u32 mask = 0;
	int i;

	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);

	hs_ep->desc_count = (len / maxsize) +
				((len % maxsize) ? 1 : 0);
	if (len == 0)
		hs_ep->desc_count = 1;

	for (i = 0; i < hs_ep->desc_count; ++i) {
		desc->status = 0;
		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
				 << DEV_DMA_BUFF_STS_SHIFT);

		if (len > maxsize) {
			if (!hs_ep->index && !dir_in)
				desc->status |= (DEV_DMA_L | DEV_DMA_IOC);

			desc->status |= (maxsize <<
						DEV_DMA_NBYTES_SHIFT & mask);
			desc->buf = dma_buff + offset;

			len -= maxsize;
			offset += maxsize;
		} else {
			desc->status |= (DEV_DMA_L | DEV_DMA_IOC);

			if (dir_in)
				desc->status |= (len % mps) ? DEV_DMA_SHORT :
					((hs_ep->send_zlp) ? DEV_DMA_SHORT : 0);
			if (len > maxsize)
				dev_err(hsotg->dev, "wrong len %d\n", len);

			desc->status |=
				len << DEV_DMA_NBYTES_SHIFT & mask;
			desc->buf = dma_buff + offset;
		}

		desc->status &= ~DEV_DMA_BUFF_STS_MASK;
		desc->status |= (DEV_DMA_BUFF_STS_HREADY
				 << DEV_DMA_BUFF_STS_SHIFT);
		desc++;
	}
}

830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
/*
 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
 * @hs_ep: The isochronous endpoint.
 * @dma_buff: usb requests dma buffer.
 * @len: usb request transfer length.
 *
 * Finds out index of first free entry either in the bottom or up half of
 * descriptor chain depend on which is under SW control and not processed
 * by HW. Then fills that descriptor with the data of the arrived usb request,
 * frame info, sets Last and IOC bits increments next_desc. If filled
 * descriptor is not the first one, removes L bit from the previous descriptor
 * status.
 */
static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
				      dma_addr_t dma_buff, unsigned int len)
{
	struct dwc2_dma_desc *desc;
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	u32 index;
	u32 maxsize = 0;
	u32 mask = 0;

	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
	if (len > maxsize) {
		dev_err(hsotg->dev, "wrong len %d\n", len);
		return -EINVAL;
	}

	/*
	 * If SW has already filled half of chain, then return and wait for
	 * the other chain to be processed by HW.
	 */
	if (hs_ep->next_desc == MAX_DMA_DESC_NUM_GENERIC / 2)
		return -EBUSY;

	/* Increment frame number by interval for IN */
	if (hs_ep->dir_in)
		dwc2_gadget_incr_frame_num(hs_ep);

	index = (MAX_DMA_DESC_NUM_GENERIC / 2) * hs_ep->isoc_chain_num +
		 hs_ep->next_desc;

	/* Sanity check of calculated index */
	if ((hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC) ||
	    (!hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC / 2)) {
		dev_err(hsotg->dev, "wrong index %d for iso chain\n", index);
		return -EINVAL;
	}

	desc = &hs_ep->desc_list[index];

	/* Clear L bit of previous desc if more than one entries in the chain */
	if (hs_ep->next_desc)
		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;

	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);

	desc->status = 0;
	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);

	desc->buf = dma_buff;
	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));

	if (hs_ep->dir_in) {
		desc->status |= ((hs_ep->mc << DEV_DMA_ISOC_PID_SHIFT) &
				 DEV_DMA_ISOC_PID_MASK) |
				((len % hs_ep->ep.maxpacket) ?
				 DEV_DMA_SHORT : 0) |
				((hs_ep->target_frame <<
				  DEV_DMA_ISOC_FRNUM_SHIFT) &
				 DEV_DMA_ISOC_FRNUM_MASK);
	}

	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);

	/* Update index of last configured entry in the chain */
	hs_ep->next_desc++;

	return 0;
}

/*
 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
 * @hs_ep: The isochronous endpoint.
 *
 * Prepare first descriptor chain for isochronous endpoints. Afterwards
 * write DMA address to HW and enable the endpoint.
 *
 * Switch between descriptor chains via isoc_chain_num to give SW opportunity
 * to prepare second descriptor chain while first one is being processed by HW.
 */
static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	struct dwc2_hsotg_req *hs_req, *treq;
	int index = hs_ep->index;
	int ret;
	u32 dma_reg;
	u32 depctl;
	u32 ctrl;

	if (list_empty(&hs_ep->queue)) {
		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
		return;
	}

	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
		ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
						 hs_req->req.length);
		if (ret) {
			dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
			break;
		}
	}

	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);

	/* write descriptor chain address to control register */
	dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);

	ctrl = dwc2_readl(hsotg->regs + depctl);
	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
	dwc2_writel(ctrl, hsotg->regs + depctl);

	/* Switch ISOC descriptor chain number being processed by SW*/
	hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
	hs_ep->next_desc = 0;
}

963
/**
964
 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
965 966 967 968 969 970 971 972
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
973
static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
974
				 struct dwc2_hsotg_ep *hs_ep,
975
				struct dwc2_hsotg_req *hs_req,
976 977 978 979 980 981 982 983 984
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
985 986 987
	unsigned int length;
	unsigned int packets;
	unsigned int maxreq;
988
	unsigned int dma_reg;
989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

1003
	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
1004 1005
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1006 1007

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
1008
		__func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
1009 1010
		hs_ep->dir_in ? "in" : "out");

1011
	/* If endpoint is stalled, we will restart request later */
1012
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
1013

1014
	if (index && ctrl & DXEPCTL_STALL) {
1015 1016 1017 1018
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

1019
	length = ureq->length - ureq->actual;
1020 1021
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
1022

1023 1024 1025 1026 1027
	if (!using_desc_dma(hsotg))
		maxreq = get_ep_limit(hs_ep);
	else
		maxreq = dwc2_gadget_get_chain_limit(hs_ep);

1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

1046 1047 1048 1049 1050
	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
		return;
	}

1051
	if (dir_in && index != 0)
1052
		if (hs_ep->isochronous)
1053
			epsize = DXEPTSIZ_MC(packets);
1054
		else
1055
			epsize = DXEPTSIZ_MC(1);
1056 1057 1058
	else
		epsize = 0;

1059 1060 1061 1062 1063 1064 1065
	/*
	 * zero length packet should be programmed on its own and should not
	 * be counted in DIEPTSIZ.PktCnt with other packets.
	 */
	if (dir_in && ureq->zero && !continuing) {
		/* Test if zlp is actually required. */
		if ((ureq->length >= hs_ep->ep.maxpacket) &&
1066
		    !(ureq->length % hs_ep->ep.maxpacket))
1067
			hs_ep->send_zlp = 1;
1068 1069
	}

1070 1071
	epsize |= DXEPTSIZ_PKTCNT(packets);
	epsize |= DXEPTSIZ_XFERSIZE(length);
1072 1073 1074 1075 1076 1077 1078

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
	if (using_desc_dma(hsotg)) {
		u32 offset = 0;
		u32 mps = hs_ep->ep.maxpacket;

		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
		if (!dir_in) {
			if (!index)
				length = mps;
			else if (length % mps)
				length += (mps - (length % mps));
		}
1090

1091
		/*
1092 1093 1094
		 * If more data to send, adjust DMA for EP0 out data stage.
		 * ureq->dma stays unchanged, hence increment it by already
		 * passed passed data count before starting new transaction.
1095
		 */
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
		if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
		    continuing)
			offset = ureq->actual;

		/* Fill DDMA chain entries */
		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
						     length);

		/* write descriptor chain address to control register */
		dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
1106

1107 1108 1109 1110 1111 1112
		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
	} else {
		/* write size / packets */
		dwc2_writel(epsize, hsotg->regs + epsize_reg);

1113
		if (using_dma(hsotg) && !continuing && (length != 0)) {
1114 1115 1116 1117
			/*
			 * write DMA address to control register, buffer
			 * already synced by dwc2_hsotg_ep_queue().
			 */
1118

1119 1120 1121 1122 1123
			dwc2_writel(ureq->dma, hsotg->regs + dma_reg);

			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
				__func__, &ureq->dma, dma_reg);
		}
1124 1125
	}

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
	if (hs_ep->isochronous && hs_ep->interval == 1) {
		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
		dwc2_gadget_incr_frame_num(hs_ep);

		if (hs_ep->target_frame & 0x1)
			ctrl |= DXEPCTL_SETODDFR;
		else
			ctrl |= DXEPCTL_SETEVENFR;
	}

1136
	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
1137

1138
	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1139 1140

	/* For Setup request do not clear NAK */
1141
	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1142
		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1143

1144
	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1145
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
1146

1147 1148
	/*
	 * set these, it seems that DMA support increments past the end
1149
	 * of the packet buffer so we need to calculate the length from
1150 1151
	 * this information.
	 */
1152 1153 1154 1155 1156 1157 1158
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

1159
		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1160 1161
	}

1162 1163 1164 1165
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
1166 1167

	/* check ep is enabled */
1168
	if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
1169
		dev_dbg(hsotg->dev,
1170
			"ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1171
			 index, dwc2_readl(hsotg->regs + epctrl_reg));
1172

1173
	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1174
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
1175 1176

	/* enable ep interrupts */
1177
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1178 1179 1180
}

/**
1181
 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1182 1183 1184 1185 1186 1187 1188 1189 1190
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
1191
 */
1192
static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1193
			      struct dwc2_hsotg_ep *hs_ep,
1194 1195
			     struct usb_request *req)
{
1196
	int ret;
1197

1198 1199 1200
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

1211
static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1212 1213
						 struct dwc2_hsotg_ep *hs_ep,
						 struct dwc2_hsotg_req *hs_req)
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
{
	void *req_buf = hs_req->req.buf;

	/* If dma is not being used or buffer is aligned */
	if (!using_dma(hsotg) || !((long)req_buf & 3))
		return 0;

	WARN_ON(hs_req->saved_req_buf);

	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1224
		hs_ep->ep.name, req_buf, hs_req->req.length);
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242

	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
	if (!hs_req->req.buf) {
		hs_req->req.buf = req_buf;
		dev_err(hsotg->dev,
			"%s: unable to allocate memory for bounce buffer\n",
			__func__);
		return -ENOMEM;
	}

	/* Save actual buffer */
	hs_req->saved_req_buf = req_buf;

	if (hs_ep->dir_in)
		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
	return 0;
}

1243 1244 1245 1246
static void
dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
					 struct dwc2_hsotg_ep *hs_ep,
					 struct dwc2_hsotg_req *hs_req)
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
{
	/* If dma is not being used or buffer was aligned */
	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
		return;

	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);

	/* Copy data from bounce buffer on successful out transfer */
	if (!hs_ep->dir_in && !hs_req->req.status)
		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1258
		       hs_req->req.actual);
1259 1260 1261 1262 1263 1264 1265 1266

	/* Free bounce buffer */
	kfree(hs_req->req.buf);

	hs_req->req.buf = hs_req->saved_req_buf;
	hs_req->saved_req_buf = NULL;
}

1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
/**
 * dwc2_gadget_target_frame_elapsed - Checks target frame
 * @hs_ep: The driver endpoint to check
 *
 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
 * corresponding transfer.
 */
static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	u32 target_frame = hs_ep->target_frame;
	u32 current_frame = dwc2_hsotg_read_frameno(hsotg);
	bool frame_overrun = hs_ep->frame_overrun;

	if (!frame_overrun && current_frame >= target_frame)
		return true;

	if (frame_overrun && current_frame >= target_frame &&
	    ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
		return true;

	return false;
}

1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
/*
 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
 * @hsotg: The driver state
 * @hs_ep: the ep descriptor chain is for
 *
 * Called to update EP0 structure's pointers depend on stage of
 * control transfer.
 */
static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
					  struct dwc2_hsotg_ep *hs_ep)
{
	switch (hsotg->ep0_state) {
	case DWC2_EP0_SETUP:
	case DWC2_EP0_STATUS_OUT:
		hs_ep->desc_list = hsotg->setup_desc[0];
		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
		break;
	case DWC2_EP0_DATA_IN:
	case DWC2_EP0_STATUS_IN:
		hs_ep->desc_list = hsotg->ctrl_in_desc;
		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
		break;
	case DWC2_EP0_DATA_OUT:
		hs_ep->desc_list = hsotg->ctrl_out_desc;
		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
		break;
	default:
		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
			hsotg->ep0_state);
		return -EINVAL;
	}

	return 0;
}

1326
static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1327
			       gfp_t gfp_flags)
1328
{
1329 1330
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1331
	struct dwc2_hsotg *hs = hs_ep->parent;
1332
	bool first;
1333
	int ret;
1334 1335 1336 1337 1338

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

1339 1340 1341
	/* Prevent new request submission when controller is suspended */
	if (hs->lx_state == DWC2_L2) {
		dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
1342
			__func__);
1343 1344 1345
		return -EAGAIN;
	}

1346 1347 1348 1349 1350
	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

1351
	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1352 1353 1354
	if (ret)
		return ret;

1355 1356
	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
1357
		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1358 1359 1360
		if (ret)
			return ret;
	}
1361 1362 1363 1364 1365 1366
	/* If using descriptor DMA configure EP0 descriptor chain pointers */
	if (using_desc_dma(hs) && !hs_ep->index) {
		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
		if (ret)
			return ret;
	}
1367 1368 1369 1370

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386
	/*
	 * Handle DDMA isochronous transfers separately - just add new entry
	 * to the half of descriptor chain that is not processed by HW.
	 * Transfer will be started once SW gets either one of NAK or
	 * OutTknEpDis interrupts.
	 */
	if (using_desc_dma(hs) && hs_ep->isochronous &&
	    hs_ep->target_frame != TARGET_FRAME_INITIAL) {
		ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
						 hs_req->req.length);
		if (ret)
			dev_dbg(hs->dev, "%s: ISO desc chain full\n", __func__);

		return 0;
	}

1387 1388 1389 1390 1391 1392 1393 1394
	if (first) {
		if (!hs_ep->isochronous) {
			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
			return 0;
		}

		while (dwc2_gadget_target_frame_elapsed(hs_ep))
			dwc2_gadget_incr_frame_num(hs_ep);
1395

1396 1397 1398
		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
	}
1399 1400 1401
	return 0;
}

1402
static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1403
				    gfp_t gfp_flags)
1404
{
1405
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1406
	struct dwc2_hsotg *hs = hs_ep->parent;
1407 1408 1409 1410
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
1411
	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1412 1413 1414 1415 1416
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

1417
static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1418
				       struct usb_request *req)
1419
{
1420
	struct dwc2_hsotg_req *hs_req = our_req(req);
1421 1422 1423 1424 1425

	kfree(hs_req);
}

/**
1426
 * dwc2_hsotg_complete_oursetup - setup completion callback
1427 1428 1429 1430 1431 1432
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
1433
static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1434
					 struct usb_request *req)
1435
{
1436
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1437
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1438 1439 1440

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

1441
	dwc2_hsotg_ep_free_request(ep, req);
1442 1443 1444 1445 1446 1447 1448 1449 1450
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
1451
 */
1452
static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1453
					    u32 windex)
1454
{
1455
	struct dwc2_hsotg_ep *ep;
1456 1457 1458 1459 1460 1461
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

1462
	if (idx > hsotg->num_of_eps)
1463 1464
		return NULL;

1465 1466
	ep = index_to_ep(hsotg, idx, dir);

1467 1468 1469 1470 1471 1472
	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

1473
/**
1474
 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1475 1476 1477 1478
 * @hsotg: The driver state.
 * @testmode: requested usb test mode
 * Enable usb Test Mode requested by the Host.
 */
1479
int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1480
{
1481
	int dctl = dwc2_readl(hsotg->regs + DCTL);
1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494

	dctl &= ~DCTL_TSTCTL_MASK;
	switch (testmode) {
	case TEST_J:
	case TEST_K:
	case TEST_SE0_NAK:
	case TEST_PACKET:
	case TEST_FORCE_EN:
		dctl |= testmode << DCTL_TSTCTL_SHIFT;
		break;
	default:
		return -EINVAL;
	}
1495
	dwc2_writel(dctl, hsotg->regs + DCTL);
1496 1497 1498
	return 0;
}

1499
/**
1500
 * dwc2_hsotg_send_reply - send reply to control request
1501 1502 1503 1504 1505 1506 1507 1508
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
1509
static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1510
				 struct dwc2_hsotg_ep *ep,
1511 1512 1513 1514 1515 1516 1517 1518
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

1519
	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1520 1521 1522 1523 1524 1525 1526 1527
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
1528 1529 1530 1531 1532
	/*
	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
	 * STATUS stage.
	 */
	req->zero = 0;
1533
	req->complete = dwc2_hsotg_complete_oursetup;
1534 1535 1536 1537

	if (length)
		memcpy(req->buf, buff, length);

1538
	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1539 1540 1541 1542 1543 1544 1545 1546 1547
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
1548
 * dwc2_hsotg_process_req_status - process request GET_STATUS
1549 1550 1551
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1552
static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1553
					 struct usb_ctrlrequest *ctrl)
1554
{
1555 1556
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_ep *ep;
1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
1569 1570 1571 1572 1573
		/*
		 * bit 0 => self powered
		 * bit 1 => remote wakeup
		 */
		reply = cpu_to_le16(0);
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

1596
	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1597 1598 1599 1600 1601 1602 1603 1604
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

1605
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1606

1607 1608 1609 1610 1611 1612
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
1613
static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1614
{
1615 1616
	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
					queue);
1617 1618
}

1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
/**
 * dwc2_gadget_start_next_request - Starts next request from ep queue
 * @hs_ep: Endpoint structure
 *
 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
 * in its handler. Hence we need to unmask it here to be able to do
 * resynchronization.
 */
static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
{
	u32 mask;
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	struct dwc2_hsotg_req *hs_req;
	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;

	if (!list_empty(&hs_ep->queue)) {
		hs_req = get_ep_head(hs_ep);
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		return;
	}
	if (!hs_ep->isochronous)
		return;

	if (dir_in) {
		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
			__func__);
	} else {
		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
			__func__);
		mask = dwc2_readl(hsotg->regs + epmsk_reg);
		mask |= DOEPMSK_OUTTKNEPDISMSK;
		dwc2_writel(mask, hsotg->regs + epmsk_reg);
	}
}

1655
/**
1656
 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1657 1658 1659
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1660
static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1661
					  struct usb_ctrlrequest *ctrl)
1662
{
1663 1664
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_req *hs_req;
1665
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1666
	struct dwc2_hsotg_ep *ep;
1667
	int ret;
1668
	bool halted;
1669 1670 1671
	u32 recip;
	u32 wValue;
	u32 wIndex;
1672 1673 1674 1675

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689
	wValue = le16_to_cpu(ctrl->wValue);
	wIndex = le16_to_cpu(ctrl->wIndex);
	recip = ctrl->bRequestType & USB_RECIP_MASK;

	switch (recip) {
	case USB_RECIP_DEVICE:
		switch (wValue) {
		case USB_DEVICE_TEST_MODE:
			if ((wIndex & 0xff) != 0)
				return -EINVAL;
			if (!set)
				return -EINVAL;

			hsotg->test_mode = wIndex >> 8;
1690
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
			break;
		default:
			return -ENOENT;
		}
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, wIndex);
1704 1705
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1706
				__func__, wIndex);
1707 1708 1709
			return -ENOENT;
		}

1710
		switch (wValue) {
1711
		case USB_ENDPOINT_HALT:
1712 1713
			halted = ep->halted;

1714
			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1715

1716
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1717 1718 1719 1720 1721
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
1722

1723 1724 1725 1726 1727 1728
			/*
			 * we have to complete all requests for ep if it was
			 * halted, and the halt was cleared by CLEAR_FEATURE
			 */

			if (!set && halted) {
1729 1730 1731 1732 1733 1734 1735 1736
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
1737 1738 1739 1740 1741 1742
					if (hs_req->req.complete) {
						spin_unlock(&hsotg->lock);
						usb_gadget_giveback_request(
							&ep->ep, &hs_req->req);
						spin_lock(&hsotg->lock);
					}
1743 1744 1745
				}

				/* If we have pending request, then start it */
J
John Youn 已提交
1746
				if (!ep->req)
1747
					dwc2_gadget_start_next_request(ep);
1748 1749
			}

1750 1751 1752 1753 1754
			break;

		default:
			return -ENOENT;
		}
1755 1756 1757 1758
		break;
	default:
		return -ENOENT;
	}
1759 1760 1761
	return 1;
}

1762
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1763

1764
/**
1765
 * dwc2_hsotg_stall_ep0 - stall ep0
1766 1767 1768 1769
 * @hsotg: The device state
 *
 * Set stall for ep0 as response for setup request.
 */
1770
static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1771
{
1772
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783
	u32 reg;
	u32 ctrl;

	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;

	/*
	 * DxEPCTL_Stall will be cleared by EP once it has
	 * taken effect, so no need to clear later.
	 */

1784
	ctrl = dwc2_readl(hsotg->regs + reg);
1785 1786
	ctrl |= DXEPCTL_STALL;
	ctrl |= DXEPCTL_CNAK;
1787
	dwc2_writel(ctrl, hsotg->regs + reg);
1788 1789

	dev_dbg(hsotg->dev,
1790
		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1791
		ctrl, reg, dwc2_readl(hsotg->regs + reg));
1792 1793 1794 1795 1796

	 /*
	  * complete won't be called, so we enqueue
	  * setup request here
	  */
1797
	 dwc2_hsotg_enqueue_setup(hsotg);
1798 1799
}

1800
/**
1801
 * dwc2_hsotg_process_control - process a control request
1802 1803 1804 1805 1806 1807 1808
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
1809
static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1810
				       struct usb_ctrlrequest *ctrl)
1811
{
1812
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1813 1814 1815
	int ret = 0;
	u32 dcfg;

1816 1817 1818 1819
	dev_dbg(hsotg->dev,
		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
		ctrl->wIndex, ctrl->wLength);
1820

1821 1822 1823 1824
	if (ctrl->wLength == 0) {
		ep0->dir_in = 1;
		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
	} else if (ctrl->bRequestType & USB_DIR_IN) {
1825
		ep0->dir_in = 1;
1826 1827 1828 1829 1830
		hsotg->ep0_state = DWC2_EP0_DATA_IN;
	} else {
		ep0->dir_in = 0;
		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
	}
1831 1832 1833 1834

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1835
			hsotg->connected = 1;
1836
			dcfg = dwc2_readl(hsotg->regs + DCFG);
1837
			dcfg &= ~DCFG_DEVADDR_MASK;
P
Paul Zimmerman 已提交
1838 1839
			dcfg |= (le16_to_cpu(ctrl->wValue) <<
				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1840
			dwc2_writel(dcfg, hsotg->regs + DCFG);
1841 1842 1843

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

1844
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1845 1846 1847
			return;

		case USB_REQ_GET_STATUS:
1848
			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1849 1850 1851 1852
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
1853
			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1854 1855 1856 1857 1858 1859 1860
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
1861
		spin_unlock(&hsotg->lock);
1862
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1863
		spin_lock(&hsotg->lock);
1864 1865 1866 1867
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1868 1869
	/*
	 * the request is either unhandlable, or is not formatted correctly
1870 1871 1872
	 * so respond with a STALL for the status stage to indicate failure.
	 */

1873
	if (ret < 0)
1874
		dwc2_hsotg_stall_ep0(hsotg);
1875 1876 1877
}

/**
1878
 * dwc2_hsotg_complete_setup - completion of a setup transfer
1879 1880 1881 1882 1883 1884
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
1885
static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1886
				      struct usb_request *req)
1887
{
1888
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1889
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1890 1891 1892 1893 1894 1895

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

1896
	spin_lock(&hsotg->lock);
1897
	if (req->actual == 0)
1898
		dwc2_hsotg_enqueue_setup(hsotg);
1899
	else
1900
		dwc2_hsotg_process_control(hsotg, req->buf);
1901
	spin_unlock(&hsotg->lock);
1902 1903 1904
}

/**
1905
 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1906 1907 1908 1909 1910
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
1911
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1912 1913
{
	struct usb_request *req = hsotg->ctrl_req;
1914
	struct dwc2_hsotg_req *hs_req = our_req(req);
1915 1916 1917 1918 1919 1920 1921
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
1922
	req->complete = dwc2_hsotg_complete_setup;
1923 1924 1925 1926 1927 1928

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

1929
	hsotg->eps_out[0]->dir_in = 0;
1930
	hsotg->eps_out[0]->send_zlp = 0;
1931
	hsotg->ep0_state = DWC2_EP0_SETUP;
1932

1933
	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1934 1935
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1936 1937 1938 1939
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1940 1941 1942
	}
}

1943
static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
1944
				   struct dwc2_hsotg_ep *hs_ep)
1945 1946 1947 1948 1949 1950
{
	u32 ctrl;
	u8 index = hs_ep->index;
	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);

1951 1952
	if (hs_ep->dir_in)
		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1953
			index);
1954 1955
	else
		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1956 1957 1958 1959
			index);
	if (using_desc_dma(hsotg)) {
		/* Not specific buffer needed for ep0 ZLP */
		dma_addr_t dma = hs_ep->desc_list_dma;
1960

1961 1962 1963 1964 1965 1966 1967
		dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
	} else {
		dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
			    DXEPTSIZ_XFERSIZE(0), hsotg->regs +
			    epsiz_reg);
	}
1968

1969
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1970 1971 1972
	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
1973
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1974 1975
}

1976
/**
1977
 * dwc2_hsotg_complete_request - complete a request given to us
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1988
 */
1989
static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1990
					struct dwc2_hsotg_ep *hs_ep,
1991
				       struct dwc2_hsotg_req *hs_req,
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
				       int result)
{
	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

2002 2003 2004 2005
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
2006 2007 2008 2009

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

2010 2011 2012
	if (using_dma(hsotg))
		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

2013
	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
2014

2015 2016 2017
	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

2018 2019 2020 2021
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
2022 2023

	if (hs_req->req.complete) {
2024
		spin_unlock(&hsotg->lock);
2025
		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
2026
		spin_lock(&hsotg->lock);
2027 2028
	}

2029 2030 2031 2032
	/* In DDMA don't need to proceed to starting of next ISOC request */
	if (using_desc_dma(hsotg) && hs_ep->isochronous)
		return;

2033 2034
	/*
	 * Look to see if there is anything else to do. Note, the completion
2035
	 * of the previous request may have caused a new request to be started
2036 2037
	 * so be careful when doing this.
	 */
2038

J
John Youn 已提交
2039
	if (!hs_ep->req && result >= 0)
2040
		dwc2_gadget_start_next_request(hs_ep);
2041 2042
}

2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
/*
 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
 * @hs_ep: The endpoint the request was on.
 *
 * Get first request from the ep queue, determine descriptor on which complete
 * happened. SW based on isoc_chain_num discovers which half of the descriptor
 * chain is currently in use by HW, adjusts dma_address and calculates index
 * of completed descriptor based on the value of DEPDMA register. Update actual
 * length of request, giveback to gadget.
 */
static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	struct dwc2_hsotg_req *hs_req;
	struct usb_request *ureq;
	int index;
	dma_addr_t dma_addr;
	u32 dma_reg;
	u32 depdma;
	u32 desc_sts;
	u32 mask;

	hs_req = get_ep_head(hs_ep);
	if (!hs_req) {
		dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
		return;
	}
	ureq = &hs_req->req;

	dma_addr = hs_ep->desc_list_dma;

	/*
	 * If lower half of  descriptor chain is currently use by SW,
	 * that means higher half is being processed by HW, so shift
	 * DMA address to higher half of descriptor chain.
	 */
	if (!hs_ep->isoc_chain_num)
		dma_addr += sizeof(struct dwc2_dma_desc) *
			    (MAX_DMA_DESC_NUM_GENERIC / 2);

	dma_reg = hs_ep->dir_in ? DIEPDMA(hs_ep->index) : DOEPDMA(hs_ep->index);
	depdma = dwc2_readl(hsotg->regs + dma_reg);

	index = (depdma - dma_addr) / sizeof(struct dwc2_dma_desc) - 1;
	desc_sts = hs_ep->desc_list[index].status;

	mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
	       DEV_DMA_ISOC_RX_NBYTES_MASK;
	ureq->actual = ureq->length -
		       ((desc_sts & mask) >> DEV_DMA_ISOC_NBYTES_SHIFT);

2094 2095 2096 2097
	/* Adjust actual length for ISOC Out if length is not align of 4 */
	if (!hs_ep->dir_in && ureq->length & 0x3)
		ureq->actual += 4 - (ureq->length & 0x3);

2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
}

/*
 * dwc2_gadget_start_next_isoc_ddma - start next isoc request, if any.
 * @hs_ep: The isochronous endpoint to be re-enabled.
 *
 * If ep has been disabled due to last descriptor servicing (IN endpoint) or
 * BNA (OUT endpoint) check the status of other half of descriptor chain that
 * was under SW control till HW was busy and restart the endpoint if needed.
 */
static void dwc2_gadget_start_next_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	u32 depctl;
	u32 dma_reg;
	u32 ctrl;
	u32 dma_addr = hs_ep->desc_list_dma;
	unsigned char index = hs_ep->index;

	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);

	ctrl = dwc2_readl(hsotg->regs + depctl);

	/*
	 * EP was disabled if HW has processed last descriptor or BNA was set.
	 * So restart ep if SW has prepared new descriptor chain in ep_queue
	 * routine while HW was busy.
	 */
	if (!(ctrl & DXEPCTL_EPENA)) {
		if (!hs_ep->next_desc) {
			dev_dbg(hsotg->dev, "%s: No more ISOC requests\n",
				__func__);
			return;
		}

		dma_addr += sizeof(struct dwc2_dma_desc) *
			    (MAX_DMA_DESC_NUM_GENERIC / 2) *
			    hs_ep->isoc_chain_num;
		dwc2_writel(dma_addr, hsotg->regs + dma_reg);

		ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
		dwc2_writel(ctrl, hsotg->regs + depctl);

		/* Switch ISOC descriptor chain number being processed by SW*/
		hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
		hs_ep->next_desc = 0;

		dev_dbg(hsotg->dev, "%s: Restarted isochronous endpoint\n",
			__func__);
	}
}

2152
/**
2153
 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2154 2155 2156 2157 2158 2159 2160 2161
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
2162
static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2163
{
2164 2165
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2166
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
2167 2168 2169 2170 2171
	int to_read;
	int max_req;
	int read_ptr;

	if (!hs_req) {
2172
		u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
2173 2174
		int ptr;

2175
		dev_dbg(hsotg->dev,
2176
			"%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2177 2178 2179 2180
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
2181
			(void)dwc2_readl(fifo);
2182 2183 2184 2185 2186 2187 2188 2189

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

2190 2191 2192
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

2193
	if (to_read > max_req) {
2194 2195
		/*
		 * more data appeared than we where willing
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

2207 2208 2209 2210
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
2211
	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
2212 2213 2214
}

/**
2215
 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2216
 * @hsotg: The device instance
2217
 * @dir_in: If IN zlp
2218 2219 2220 2221 2222
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
2223
 * currently believed that we do not need to wait for any space in
2224 2225
 * the TxFIFO.
 */
2226
static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2227
{
2228
	/* eps_out[0] is used in both directions */
2229 2230
	hsotg->eps_out[0]->dir_in = dir_in;
	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2231

2232
	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2233 2234
}

2235
static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2236
					    u32 epctl_reg)
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
{
	u32 ctrl;

	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
	if (ctrl & DXEPCTL_EOFRNUM)
		ctrl |= DXEPCTL_SETEVENFR;
	else
		ctrl |= DXEPCTL_SETODDFR;
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
}

2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277
/*
 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
 * @hs_ep - The endpoint on which transfer went
 *
 * Iterate over endpoints descriptor chain and get info on bytes remained
 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
 */
static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	unsigned int bytes_rem = 0;
	struct dwc2_dma_desc *desc = hs_ep->desc_list;
	int i;
	u32 status;

	if (!desc)
		return -EINVAL;

	for (i = 0; i < hs_ep->desc_count; ++i) {
		status = desc->status;
		bytes_rem += status & DEV_DMA_NBYTES_MASK;

		if (status & DEV_DMA_STS_MASK)
			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
				i, status & DEV_DMA_STS_MASK);
	}

	return bytes_rem;
}

2278
/**
2279
 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2280 2281 2282 2283 2284 2285
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
2286
 */
2287
static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2288
{
2289
	u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
2290 2291
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2292
	struct usb_request *req = &hs_req->req;
2293
	unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2294 2295 2296 2297 2298 2299 2300
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

2301 2302
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
2303 2304
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
		dwc2_hsotg_enqueue_setup(hsotg);
2305 2306 2307
		return;
	}

2308 2309 2310
	if (using_desc_dma(hsotg))
		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);

2311
	if (using_dma(hsotg)) {
2312
		unsigned int size_done;
2313

2314 2315
		/*
		 * Calculate the size of the transfer by checking how much
2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

2329 2330
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
2331
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2332 2333 2334
		return;
	}

2335 2336 2337 2338
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

2339 2340 2341 2342
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
2343 2344
	}

2345 2346 2347
	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
	if (!using_desc_dma(hsotg) && epnum == 0 &&
	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2348
		/* Move to STATUS IN */
2349
		dwc2_hsotg_ep0_zlp(hsotg, true);
2350
		return;
2351 2352
	}

2353 2354 2355 2356 2357 2358 2359
	/*
	 * Slave mode OUT transfers do not go through XferComplete so
	 * adjust the ISOC parity here.
	 */
	if (!using_dma(hsotg)) {
		if (hs_ep->isochronous && hs_ep->interval == 1)
			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2360 2361
		else if (hs_ep->isochronous && hs_ep->interval > 1)
			dwc2_gadget_incr_frame_num(hs_ep);
2362 2363
	}

2364
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2365 2366 2367
}

/**
2368
 * dwc2_hsotg_handle_rx - RX FIFO has data
2369 2370 2371 2372 2373 2374
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
2375
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2376 2377 2378 2379 2380 2381 2382
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
2383
static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2384
{
2385
	u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
2386 2387 2388 2389
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

2390 2391
	epnum = grxstsr & GRXSTS_EPNUM_MASK;
	status = grxstsr & GRXSTS_PKTSTS_MASK;
2392

2393 2394
	size = grxstsr & GRXSTS_BYTECNT_MASK;
	size >>= GRXSTS_BYTECNT_SHIFT;
2395

2396
	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2397
		__func__, grxstsr, size, epnum);
2398

2399 2400 2401
	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
	case GRXSTS_PKTSTS_GLOBALOUTNAK:
		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2402 2403
		break;

2404
	case GRXSTS_PKTSTS_OUTDONE:
2405
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2406
			dwc2_hsotg_read_frameno(hsotg));
2407 2408

		if (!using_dma(hsotg))
2409
			dwc2_hsotg_handle_outdone(hsotg, epnum);
2410 2411
		break;

2412
	case GRXSTS_PKTSTS_SETUPDONE:
2413 2414
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2415
			dwc2_hsotg_read_frameno(hsotg),
2416
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2417
		/*
2418
		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2419 2420 2421 2422
		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
		 */
		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2423
			dwc2_hsotg_handle_outdone(hsotg, epnum);
2424 2425
		break;

2426
	case GRXSTS_PKTSTS_OUTRX:
2427
		dwc2_hsotg_rx_data(hsotg, epnum, size);
2428 2429
		break;

2430
	case GRXSTS_PKTSTS_SETUPRX:
2431 2432
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2433
			dwc2_hsotg_read_frameno(hsotg),
2434
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2435

2436 2437
		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);

2438
		dwc2_hsotg_rx_data(hsotg, epnum, size);
2439 2440 2441 2442 2443 2444
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

2445
		dwc2_hsotg_dump(hsotg);
2446 2447 2448 2449 2450
		break;
	}
}

/**
2451
 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2452
 * @mps: The maximum packet size in bytes.
2453
 */
2454
static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2455 2456 2457
{
	switch (mps) {
	case 64:
2458
		return D0EPCTL_MPS_64;
2459
	case 32:
2460
		return D0EPCTL_MPS_32;
2461
	case 16:
2462
		return D0EPCTL_MPS_16;
2463
	case 8:
2464
		return D0EPCTL_MPS_8;
2465 2466 2467 2468 2469 2470 2471 2472
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
2473
 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2474 2475 2476
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
2477
 * @mc: The multicount value
2478 2479 2480 2481
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
2482
static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2483 2484
					unsigned int ep, unsigned int mps,
					unsigned int mc, unsigned int dir_in)
2485
{
2486
	struct dwc2_hsotg_ep *hs_ep;
2487 2488 2489
	void __iomem *regs = hsotg->regs;
	u32 reg;

2490 2491 2492 2493
	hs_ep = index_to_ep(hsotg, ep, dir_in);
	if (!hs_ep)
		return;

2494
	if (ep == 0) {
2495 2496
		u32 mps_bytes = mps;

2497
		/* EP0 is a special case */
2498 2499
		mps = dwc2_hsotg_ep0_mps(mps_bytes);
		if (mps > 3)
2500
			goto bad_mps;
2501
		hs_ep->ep.maxpacket = mps_bytes;
2502
		hs_ep->mc = 1;
2503
	} else {
2504
		if (mps > 1024)
2505
			goto bad_mps;
2506 2507
		hs_ep->mc = mc;
		if (mc > 3)
2508
			goto bad_mps;
2509
		hs_ep->ep.maxpacket = mps;
2510 2511
	}

2512
	if (dir_in) {
2513
		reg = dwc2_readl(regs + DIEPCTL(ep));
2514
		reg &= ~DXEPCTL_MPS_MASK;
2515
		reg |= mps;
2516
		dwc2_writel(reg, regs + DIEPCTL(ep));
2517
	} else {
2518
		reg = dwc2_readl(regs + DOEPCTL(ep));
2519
		reg &= ~DXEPCTL_MPS_MASK;
2520
		reg |= mps;
2521
		dwc2_writel(reg, regs + DOEPCTL(ep));
2522
	}
2523 2524 2525 2526 2527 2528 2529

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

2530
/**
2531
 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2532 2533 2534
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
2535
static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2536 2537 2538 2539
{
	int timeout;
	int val;

2540 2541
	dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
		    hsotg->regs + GRSTCTL);
2542 2543 2544 2545 2546

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
2547
		val = dwc2_readl(hsotg->regs + GRSTCTL);
2548

2549
		if ((val & (GRSTCTL_TXFFLSH)) == 0)
2550 2551 2552 2553 2554 2555
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
2556
			break;
2557 2558 2559 2560 2561
		}

		udelay(1);
	}
}
2562 2563

/**
2564
 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2565 2566 2567 2568 2569 2570
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
2571
static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2572
			    struct dwc2_hsotg_ep *hs_ep)
2573
{
2574
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2575

2576 2577 2578 2579 2580 2581
	if (!hs_ep->dir_in || !hs_req) {
		/**
		 * if request is not enqueued, we disable interrupts
		 * for endpoints, excepting ep0
		 */
		if (hs_ep->index != 0)
2582
			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2583
					      hs_ep->dir_in, 0);
2584
		return 0;
2585
	}
2586 2587 2588 2589

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
2590
		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2591 2592 2593 2594 2595 2596
	}

	return 0;
}

/**
2597
 * dwc2_hsotg_complete_in - complete IN transfer
2598 2599 2600 2601 2602 2603
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
2604
static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2605
				   struct dwc2_hsotg_ep *hs_ep)
2606
{
2607
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2608
	u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
2609 2610 2611 2612 2613 2614 2615
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

2616
	/* Finish ZLP handling for IN EP0 transactions */
2617 2618
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
		dev_dbg(hsotg->dev, "zlp packet sent\n");
2619 2620 2621 2622 2623 2624 2625

		/*
		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
		 * changed to IN. Change back to complete OUT transfer request
		 */
		hs_ep->dir_in = 0;

2626
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2627 2628 2629
		if (hsotg->test_mode) {
			int ret;

2630
			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2631 2632
			if (ret < 0) {
				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2633
					hsotg->test_mode);
2634
				dwc2_hsotg_stall_ep0(hsotg);
2635 2636 2637
				return;
			}
		}
2638
		dwc2_hsotg_enqueue_setup(hsotg);
2639 2640 2641
		return;
	}

2642 2643
	/*
	 * Calculate the size of the transfer by checking how much is left
2644 2645 2646 2647 2648 2649 2650
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */
2651 2652 2653 2654 2655 2656 2657 2658
	if (using_desc_dma(hsotg)) {
		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
		if (size_left < 0)
			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
				size_left);
	} else {
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
	}
2659 2660 2661 2662 2663 2664 2665 2666 2667

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
2668 2669 2670
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

2671 2672
	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2673
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2674 2675 2676
		return;
	}

2677
	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
2678
	if (hs_ep->send_zlp) {
2679
		dwc2_hsotg_program_zlp(hsotg, hs_ep);
2680
		hs_ep->send_zlp = 0;
2681 2682 2683 2684
		/* transfer will be completed on next complete interrupt */
		return;
	}

2685 2686
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
		/* Move to STATUS OUT */
2687
		dwc2_hsotg_ep0_zlp(hsotg, false);
2688 2689 2690
		return;
	}

2691
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2692 2693
}

2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
/**
 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
 * @hsotg: The device state.
 * @idx: Index of ep.
 * @dir_in: Endpoint direction 1-in 0-out.
 *
 * Reads for endpoint with given index and direction, by masking
 * epint_reg with coresponding mask.
 */
static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
					  unsigned int idx, int dir_in)
{
	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 ints;
	u32 mask;
	u32 diepempmsk;

	mask = dwc2_readl(hsotg->regs + epmsk_reg);
	diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK);
	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
	mask |= DXEPINT_SETUP_RCVD;

	ints = dwc2_readl(hsotg->regs + epint_reg);
	ints &= mask;
	return ints;
}

2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789
/**
 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
 * @hs_ep: The endpoint on which interrupt is asserted.
 *
 * This interrupt indicates that the endpoint has been disabled per the
 * application's request.
 *
 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
 * in case of ISOC completes current request.
 *
 * For ISOC-OUT endpoints completes expired requests. If there is remaining
 * request starts it.
 */
static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	struct dwc2_hsotg_req *hs_req;
	unsigned char idx = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	int dctl = dwc2_readl(hsotg->regs + DCTL);

	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

	if (dir_in) {
		int epctl = dwc2_readl(hsotg->regs + epctl_reg);

		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);

		if (hs_ep->isochronous) {
			dwc2_hsotg_complete_in(hsotg, hs_ep);
			return;
		}

		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
			int dctl = dwc2_readl(hsotg->regs + DCTL);

			dctl |= DCTL_CGNPINNAK;
			dwc2_writel(dctl, hsotg->regs + DCTL);
		}
		return;
	}

	if (dctl & DCTL_GOUTNAKSTS) {
		dctl |= DCTL_CGOUTNAK;
		dwc2_writel(dctl, hsotg->regs + DCTL);
	}

	if (!hs_ep->isochronous)
		return;

	if (list_empty(&hs_ep->queue)) {
		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
			__func__, hs_ep);
		return;
	}

	do {
		hs_req = get_ep_head(hs_ep);
		if (hs_req)
			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
						    -ENODATA);
		dwc2_gadget_incr_frame_num(hs_ep);
	} while (dwc2_gadget_target_frame_elapsed(hs_ep));

	dwc2_gadget_start_next_request(hs_ep);
}

2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805
/**
 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
 * @hs_ep: The endpoint on which interrupt is asserted.
 *
 * This is starting point for ISOC-OUT transfer, synchronization done with
 * first out token received from host while corresponding EP is disabled.
 *
 * Device does not know initial frame in which out token will come. For this
 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
 * getting this interrupt SW starts calculation for next transfer frame.
 */
static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
{
	struct dwc2_hsotg *hsotg = ep->parent;
	int dir_in = ep->dir_in;
	u32 doepmsk;
2806
	u32 tmp;
2807 2808 2809 2810

	if (dir_in || !ep->isochronous)
		return;

2811 2812 2813 2814 2815 2816
	/*
	 * Store frame in which irq was asserted here, as
	 * it can change while completing request below.
	 */
	tmp = dwc2_hsotg_read_frameno(hsotg);

2817 2818
	dwc2_hsotg_complete_request(hsotg, ep, get_ep_head(ep), -ENODATA);

2819 2820 2821 2822 2823 2824 2825 2826 2827
	if (using_desc_dma(hsotg)) {
		if (ep->target_frame == TARGET_FRAME_INITIAL) {
			/* Start first ISO Out */
			ep->target_frame = tmp;
			dwc2_gadget_start_isoc_ddma(ep);
		}
		return;
	}

2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852
	if (ep->interval > 1 &&
	    ep->target_frame == TARGET_FRAME_INITIAL) {
		u32 dsts;
		u32 ctrl;

		dsts = dwc2_readl(hsotg->regs + DSTS);
		ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
		dwc2_gadget_incr_frame_num(ep);

		ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index));
		if (ep->target_frame & 0x1)
			ctrl |= DXEPCTL_SETODDFR;
		else
			ctrl |= DXEPCTL_SETEVENFR;

		dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index));
	}

	dwc2_gadget_start_next_request(ep);
	doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
	doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
	dwc2_writel(doepmsk, hsotg->regs + DOEPMSK);
}

/**
2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
 * dwc2_gadget_handle_nak - handle NAK interrupt
 * @hs_ep: The endpoint on which interrupt is asserted.
 *
 * This is starting point for ISOC-IN transfer, synchronization done with
 * first IN token received from host while corresponding EP is disabled.
 *
 * Device does not know when first one token will arrive from host. On first
 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
 * sent in response to that as there was no data in FIFO. SW is basing on this
 * interrupt to obtain frame in which token has come and then based on the
 * interval calculates next frame for transfer.
 */
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;

	if (!dir_in || !hs_ep->isochronous)
		return;

	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2876 2877 2878 2879 2880 2881

		if (using_desc_dma(hsotg)) {
			dwc2_gadget_start_isoc_ddma(hs_ep);
			return;
		}

2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899
		if (hs_ep->interval > 1) {
			u32 ctrl = dwc2_readl(hsotg->regs +
					      DIEPCTL(hs_ep->index));
			if (hs_ep->target_frame & 0x1)
				ctrl |= DXEPCTL_SETODDFR;
			else
				ctrl |= DXEPCTL_SETEVENFR;

			dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index));
		}

		dwc2_hsotg_complete_request(hsotg, hs_ep,
					    get_ep_head(hs_ep), 0);
	}

	dwc2_gadget_incr_frame_num(hs_ep);
}

2900
/**
2901
 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2902 2903 2904 2905 2906
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
2907
 */
2908
static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2909
			     int dir_in)
2910
{
2911
	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2912 2913 2914
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2915
	u32 ints;
2916
	u32 ctrl;
2917

2918
	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2919
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2920

2921
	/* Clear endpoint interrupts */
2922
	dwc2_writel(ints, hsotg->regs + epint_reg);
2923

2924 2925
	if (!hs_ep) {
		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
2926
			__func__, idx, dir_in ? "in" : "out");
2927 2928 2929
		return;
	}

2930 2931 2932
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

2933 2934 2935 2936
	/* Don't process XferCompl interrupt if it is a setup packet */
	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
		ints &= ~DXEPINT_XFERCOMPL;

2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
	/*
	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
	 * stage and xfercomplete was generated without SETUP phase done
	 * interrupt. SW should parse received setup packet only after host's
	 * exit from setup phase of control transfer.
	 */
	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
		ints &= ~DXEPINT_XFERCOMPL;

2947
	if (ints & DXEPINT_XFERCOMPL) {
2948
		dev_dbg(hsotg->dev,
2949
			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2950 2951
			__func__, dwc2_readl(hsotg->regs + epctl_reg),
			dwc2_readl(hsotg->regs + epsiz_reg));
2952

2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963
		/* In DDMA handle isochronous requests separately */
		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
			dwc2_gadget_complete_isoc_request_ddma(hs_ep);
			/* Try to start next isoc request */
			dwc2_gadget_start_next_isoc_ddma(hs_ep);
		} else if (dir_in) {
			/*
			 * We get OutDone from the FIFO, so we only
			 * need to look at completing IN requests here
			 * if operating slave mode
			 */
2964 2965 2966
			if (hs_ep->isochronous && hs_ep->interval > 1)
				dwc2_gadget_incr_frame_num(hs_ep);

2967
			dwc2_hsotg_complete_in(hsotg, hs_ep);
2968 2969
			if (ints & DXEPINT_NAKINTRPT)
				ints &= ~DXEPINT_NAKINTRPT;
2970

2971
			if (idx == 0 && !hs_ep->req)
2972
				dwc2_hsotg_enqueue_setup(hsotg);
2973
		} else if (using_dma(hsotg)) {
2974 2975 2976 2977
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
2978 2979
			if (hs_ep->isochronous && hs_ep->interval > 1)
				dwc2_gadget_incr_frame_num(hs_ep);
2980

2981
			dwc2_hsotg_handle_outdone(hsotg, idx);
2982 2983 2984
		}
	}

2985 2986
	if (ints & DXEPINT_EPDISBLD)
		dwc2_gadget_handle_ep_disabled(hs_ep);
2987

2988 2989 2990 2991 2992 2993
	if (ints & DXEPINT_OUTTKNEPDIS)
		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);

	if (ints & DXEPINT_NAKINTRPT)
		dwc2_gadget_handle_nak(hs_ep);

2994
	if (ints & DXEPINT_AHBERR)
2995 2996
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

2997
	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2998 2999 3000
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
3001 3002
			/*
			 * this is the notification we've received a
3003 3004
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
3005 3006
			 * the setup here.
			 */
3007 3008 3009 3010

			if (dir_in)
				WARN_ON_ONCE(1);
			else
3011
				dwc2_hsotg_handle_outdone(hsotg, 0);
3012 3013 3014
		}
	}

3015
	if (ints & DXEPINT_STSPHSERCVD) {
3016 3017
		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);

3018 3019 3020 3021 3022
		/* Move to STATUS IN for DDMA */
		if (using_desc_dma(hsotg))
			dwc2_hsotg_ep0_zlp(hsotg, true);
	}

3023
	if (ints & DXEPINT_BACK2BACKSETUP)
3024 3025
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038
	if (ints & DXEPINT_BNAINTR) {
		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);

		/*
		 * Try to start next isoc request, if any.
		 * Sometimes the endpoint remains enabled after BNA interrupt
		 * assertion, which is not expected, hence we can enter here
		 * couple of times.
		 */
		if (hs_ep->isochronous)
			dwc2_gadget_start_next_isoc_ddma(hs_ep);
	}

3039
	if (dir_in && !hs_ep->isochronous) {
3040
		/* not sure if this is important, but we'll clear it anyway */
3041
		if (ints & DXEPINT_INTKNTXFEMP) {
3042 3043 3044 3045 3046
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
3047
		if (ints & DXEPINT_INTKNEPMIS) {
3048 3049 3050
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
3051 3052 3053

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
3054
		    ints & DXEPINT_TXFEMP) {
3055 3056
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
3057
			if (!using_dma(hsotg))
3058
				dwc2_hsotg_trytx(hsotg, hs_ep);
3059
		}
3060 3061 3062 3063
	}
}

/**
3064
 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3065 3066 3067 3068
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
3069
 */
3070
static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3071
{
3072
	u32 dsts = dwc2_readl(hsotg->regs + DSTS);
3073
	int ep0_mps = 0, ep_mps = 8;
3074

3075 3076
	/*
	 * This should signal the finish of the enumeration phase
3077
	 * of the USB handshaking, so we should now know what rate
3078 3079
	 * we connected at.
	 */
3080 3081 3082

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

3083 3084
	/*
	 * note, since we're limited by the size of transfer on EP0, and
3085
	 * it seems IN transfers must be a even number of packets we do
3086 3087
	 * not advertise a 64byte MPS on EP0.
	 */
3088 3089

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
3090
	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3091 3092
	case DSTS_ENUMSPD_FS:
	case DSTS_ENUMSPD_FS48:
3093 3094
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
3095
		ep_mps = 1023;
3096 3097
		break;

3098
	case DSTS_ENUMSPD_HS:
3099 3100
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
3101
		ep_mps = 1024;
3102 3103
		break;

3104
	case DSTS_ENUMSPD_LS:
3105
		hsotg->gadget.speed = USB_SPEED_LOW;
3106 3107
		ep0_mps = 8;
		ep_mps = 8;
3108 3109
		/*
		 * note, we don't actually support LS in this driver at the
3110 3111 3112 3113 3114
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
3115 3116
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
3117

3118 3119 3120 3121
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
3122 3123 3124

	if (ep0_mps) {
		int i;
3125
		/* Initialize ep0 for both in and out directions */
3126 3127
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3128 3129
		for (i = 1; i < hsotg->num_of_eps; i++) {
			if (hsotg->eps_in[i])
3130 3131
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
							    0, 1);
3132
			if (hsotg->eps_out[i])
3133 3134
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
							    0, 0);
3135
		}
3136 3137 3138 3139
	}

	/* ensure after enumeration our EP0 is active */

3140
	dwc2_hsotg_enqueue_setup(hsotg);
3141 3142

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3143 3144
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
3156
static void kill_all_requests(struct dwc2_hsotg *hsotg,
3157
			      struct dwc2_hsotg_ep *ep,
3158
			      int result)
3159
{
3160
	struct dwc2_hsotg_req *req, *treq;
3161
	unsigned int size;
3162

3163
	ep->req = NULL;
3164

3165
	list_for_each_entry_safe(req, treq, &ep->queue, queue)
3166
		dwc2_hsotg_complete_request(hsotg, ep, req,
3167
					    result);
3168

3169 3170
	if (!hsotg->dedicated_fifos)
		return;
3171
	size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3172
	if (size < ep->fifo_size)
3173
		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3174 3175 3176
}

/**
3177
 * dwc2_hsotg_disconnect - disconnect service
3178 3179
 * @hsotg: The device state.
 *
3180 3181 3182
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
3183
 */
3184
void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3185
{
3186
	unsigned int ep;
3187

3188 3189 3190 3191
	if (!hsotg->connected)
		return;

	hsotg->connected = 0;
3192
	hsotg->test_mode = 0;
3193 3194 3195 3196

	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
			kill_all_requests(hsotg, hsotg->eps_in[ep],
3197
					  -ESHUTDOWN);
3198 3199
		if (hsotg->eps_out[ep])
			kill_all_requests(hsotg, hsotg->eps_out[ep],
3200
					  -ESHUTDOWN);
3201
	}
3202 3203

	call_gadget(hsotg, disconnect);
3204
	hsotg->lx_state = DWC2_L3;
3205 3206 3207
}

/**
3208
 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3209 3210 3211
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
3212
static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3213
{
3214
	struct dwc2_hsotg_ep *ep;
3215 3216 3217
	int epno, ret;

	/* look through for any more data to transmit */
3218
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3219 3220 3221 3222
		ep = index_to_ep(hsotg, epno, 1);

		if (!ep)
			continue;
3223 3224 3225 3226 3227 3228 3229 3230

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

3231
		ret = dwc2_hsotg_trytx(hsotg, ep);
3232 3233 3234 3235 3236 3237
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
3238 3239 3240
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
			GINTSTS_PTXFEMP |  \
			GINTSTS_RXFLVL)
3241

3242
/**
3243
 * dwc2_hsotg_core_init - issue softreset to the core
3244 3245 3246 3247
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
3248
void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3249
				       bool is_usb_reset)
3250
{
3251
	u32 intmsk;
3252
	u32 val;
3253
	u32 usbcfg;
3254
	u32 dcfg = 0;
3255

3256 3257 3258
	/* Kill any ep0 requests as controller will be reinitialized */
	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);

3259
	if (!is_usb_reset)
3260
		if (dwc2_core_reset(hsotg, true))
3261
			return;
3262 3263 3264 3265 3266 3267

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

3268 3269 3270
	/* keep other bits untouched (so e.g. forced modes are not lost) */
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
3271
		GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
3272

3273
	if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS &&
3274 3275
	    (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
	     hsotg->params.speed == DWC2_SPEED_PARAM_LOW)) {
3276 3277 3278 3279 3280 3281 3282 3283
		/* FS/LS Dedicated Transceiver Interface */
		usbcfg |= GUSBCFG_PHYSEL;
	} else {
		/* set the PLL on, remove the HNP/SRP and set the PHY */
		val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
		usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
			(val << GUSBCFG_USBTRDTIM_SHIFT);
	}
3284
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3285

3286
	dwc2_hsotg_init_fifo(hsotg);
3287

3288 3289
	if (!is_usb_reset)
		__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3290

3291
	dcfg |= DCFG_EPMISCNT(1);
3292 3293 3294 3295 3296 3297

	switch (hsotg->params.speed) {
	case DWC2_SPEED_PARAM_LOW:
		dcfg |= DCFG_DEVSPD_LS;
		break;
	case DWC2_SPEED_PARAM_FULL:
3298 3299 3300 3301
		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
			dcfg |= DCFG_DEVSPD_FS48;
		else
			dcfg |= DCFG_DEVSPD_FS;
3302 3303
		break;
	default:
3304 3305
		dcfg |= DCFG_DEVSPD_HS;
	}
3306

3307
	dwc2_writel(dcfg,  hsotg->regs + DCFG);
3308 3309

	/* Clear any pending OTG interrupts */
3310
	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
3311 3312

	/* Clear any pending interrupts */
3313
	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
3314
	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3315
		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3316 3317
		GINTSTS_USBRST | GINTSTS_RESETDET |
		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3318 3319 3320 3321
		GINTSTS_USBSUSP | GINTSTS_WKUPINT;

	if (!using_desc_dma(hsotg))
		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3322

J
John Youn 已提交
3323
	if (!hsotg->params.external_id_pin_ctl)
3324 3325 3326
		intmsk |= GINTSTS_CONIDSTSCHNG;

	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
3327

3328
	if (using_dma(hsotg)) {
3329 3330 3331
		dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
			    (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
			    hsotg->regs + GAHBCFG);
3332 3333 3334 3335 3336 3337

		/* Set DDMA mode support in the core if needed */
		if (using_desc_dma(hsotg))
			__orr32(hsotg->regs + DCFG, DCFG_DESCDMA_EN);

	} else {
3338 3339 3340 3341
		dwc2_writel(((hsotg->dedicated_fifos) ?
						(GAHBCFG_NP_TXF_EMP_LVL |
						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
			    GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
3342
	}
3343 3344

	/*
3345 3346 3347
	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
	 * when we have no data to transfer. Otherwise we get being flooded by
	 * interrupts.
3348 3349
	 */

3350
	dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3351
		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3352
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3353
		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3354
		hsotg->regs + DIEPMSK);
3355 3356 3357

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3358
	 * DMA mode we may need this and StsPhseRcvd.
3359
	 */
3360 3361
	dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
		DOEPMSK_STSPHSERCVDMSK) : 0) |
3362
		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3363
		DOEPMSK_SETUPMSK,
3364
		hsotg->regs + DOEPMSK);
3365

3366 3367 3368 3369
	/* Enable BNA interrupt for DDMA */
	if (using_desc_dma(hsotg))
		__orr32(hsotg->regs + DOEPMSK, DOEPMSK_BNAMSK);

3370
	dwc2_writel(0, hsotg->regs + DAINTMSK);
3371 3372

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3373 3374
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
3375 3376

	/* enable in and out endpoint interrupts */
3377
	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3378 3379 3380 3381 3382 3383 3384

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
3385
		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3386 3387

	/* Enable interrupts for EP0 in and out */
3388 3389
	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3390

3391 3392 3393 3394 3395
	if (!is_usb_reset) {
		__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
		udelay(10);  /* see openiboot */
		__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
	}
3396

3397
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
3398 3399

	/*
3400
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3401 3402 3403 3404
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
3405
	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3406
	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
3407

3408
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3409 3410
	       DXEPCTL_CNAK | DXEPCTL_EPENA |
	       DXEPCTL_USBACTEP,
3411
	       hsotg->regs + DOEPCTL0);
3412 3413

	/* enable, but don't activate EP0in */
3414
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3415
	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
3416

3417
	dwc2_hsotg_enqueue_setup(hsotg);
3418 3419

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3420 3421
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
3422 3423

	/* clear global NAKs */
3424 3425 3426 3427
	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
	if (!is_usb_reset)
		val |= DCTL_SFTDISCON;
	__orr32(hsotg->regs + DCTL, val);
3428 3429 3430 3431

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

3432
	hsotg->lx_state = DWC2_L0;
3433 3434
}

3435
static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3436 3437 3438 3439
{
	/* set the soft-disconnect bit */
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
}
3440

3441
void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3442
{
3443
	/* remove the soft-disconnect and let's go */
3444
	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3445 3446
}

3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525
/**
 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
 * @hsotg: The device state:
 *
 * This interrupt indicates one of the following conditions occurred while
 * transmitting an ISOC transaction.
 * - Corrupted IN Token for ISOC EP.
 * - Packet not complete in FIFO.
 *
 * The following actions will be taken:
 * - Determine the EP
 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
 */
static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
{
	struct dwc2_hsotg_ep *hs_ep;
	u32 epctrl;
	u32 idx;

	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");

	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
		hs_ep = hsotg->eps_in[idx];
		epctrl = dwc2_readl(hsotg->regs + DIEPCTL(idx));
		if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
			epctrl |= DXEPCTL_SNAK;
			epctrl |= DXEPCTL_EPDIS;
			dwc2_writel(epctrl, hsotg->regs + DIEPCTL(idx));
		}
	}

	/* Clear interrupt */
	dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
}

/**
 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
 * @hsotg: The device state:
 *
 * This interrupt indicates one of the following conditions occurred while
 * transmitting an ISOC transaction.
 * - Corrupted OUT Token for ISOC EP.
 * - Packet not complete in FIFO.
 *
 * The following actions will be taken:
 * - Determine the EP
 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
 */
static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
{
	u32 gintsts;
	u32 gintmsk;
	u32 epctrl;
	struct dwc2_hsotg_ep *hs_ep;
	int idx;

	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);

	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
		hs_ep = hsotg->eps_out[idx];
		epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
		if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
			/* Unmask GOUTNAKEFF interrupt */
			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
			gintmsk |= GINTSTS_GOUTNAKEFF;
			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);

			gintsts = dwc2_readl(hsotg->regs + GINTSTS);
			if (!(gintsts & GINTSTS_GOUTNAKEFF))
				__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
		}
	}

	/* Clear interrupt */
	dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
}

3526
/**
3527
 * dwc2_hsotg_irq - handle device interrupt
3528 3529 3530
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
3531
static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3532
{
3533
	struct dwc2_hsotg *hsotg = pw;
3534 3535 3536 3537
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

3538 3539 3540
	if (!dwc2_is_device_mode(hsotg))
		return IRQ_NONE;

3541
	spin_lock(&hsotg->lock);
3542
irq_retry:
3543 3544
	gintsts = dwc2_readl(hsotg->regs + GINTSTS);
	gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3545 3546 3547 3548 3549 3550

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575
	if (gintsts & GINTSTS_RESETDET) {
		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);

		dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);

		/* This event must be used only if controller is suspended */
		if (hsotg->lx_state == DWC2_L2) {
			dwc2_exit_hibernation(hsotg, true);
			hsotg->lx_state = DWC2_L0;
		}
	}

	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
		u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
		u32 connected = hsotg->connected;

		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
			dwc2_readl(hsotg->regs + GNPTXSTS));

		dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);

		/* Report disconnection if it is not already done. */
		dwc2_hsotg_disconnect(hsotg);

3576 3577 3578
		/* Reset device address to zero */
		__bic32(hsotg->regs + DCFG, DCFG_DEVADDR_MASK);

3579 3580 3581 3582
		if (usb_status & GOTGCTL_BSESVLD && connected)
			dwc2_hsotg_core_init_disconnected(hsotg, true);
	}

3583
	if (gintsts & GINTSTS_ENUMDONE) {
3584
		dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
3585

3586
		dwc2_hsotg_irq_enumdone(hsotg);
3587 3588
	}

3589
	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3590 3591
		u32 daint = dwc2_readl(hsotg->regs + DAINT);
		u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3592
		u32 daint_out, daint_in;
3593 3594
		int ep;

3595
		daint &= daintmsk;
3596 3597
		daint_out = daint >> DAINT_OUTEP_SHIFT;
		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3598

3599 3600
		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

3601 3602
		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
						ep++, daint_out >>= 1) {
3603
			if (daint_out & 1)
3604
				dwc2_hsotg_epint(hsotg, ep, 0);
3605 3606
		}

3607 3608
		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
						ep++, daint_in >>= 1) {
3609
			if (daint_in & 1)
3610
				dwc2_hsotg_epint(hsotg, ep, 1);
3611 3612 3613 3614 3615
		}
	}

	/* check both FIFOs */

3616
	if (gintsts & GINTSTS_NPTXFEMP) {
3617 3618
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

3619 3620
		/*
		 * Disable the interrupt to stop it happening again
3621
		 * unless one of these endpoint routines decides that
3622 3623
		 * it needs re-enabling
		 */
3624

3625 3626
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, false);
3627 3628
	}

3629
	if (gintsts & GINTSTS_PTXFEMP) {
3630 3631
		dev_dbg(hsotg->dev, "PTxFEmp\n");

3632
		/* See note in GINTSTS_NPTxFEmp */
3633

3634 3635
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, true);
3636 3637
	}

3638
	if (gintsts & GINTSTS_RXFLVL) {
3639 3640
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3641
		 * we need to retry dwc2_hsotg_handle_rx if this is still
3642 3643
		 * set.
		 */
3644

3645
		dwc2_hsotg_handle_rx(hsotg);
3646 3647
	}

3648
	if (gintsts & GINTSTS_ERLYSUSP) {
3649
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3650
		dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
3651 3652
	}

3653 3654
	/*
	 * these next two seem to crop-up occasionally causing the core
3655
	 * to shutdown the USB transfer, so try clearing them and logging
3656 3657
	 * the occurrence.
	 */
3658

3659
	if (gintsts & GINTSTS_GOUTNAKEFF) {
3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680
		u8 idx;
		u32 epctrl;
		u32 gintmsk;
		struct dwc2_hsotg_ep *hs_ep;

		/* Mask this interrupt */
		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
		gintmsk &= ~GINTSTS_GOUTNAKEFF;
		dwc2_writel(gintmsk, hsotg->regs + GINTMSK);

		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
		for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
			hs_ep = hsotg->eps_out[idx];
			epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));

			if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
				epctrl |= DXEPCTL_SNAK;
				epctrl |= DXEPCTL_EPDIS;
				dwc2_writel(epctrl, hsotg->regs + DOEPCTL(idx));
			}
		}
3681

3682
		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3683 3684
	}

3685
	if (gintsts & GINTSTS_GINNAKEFF) {
3686 3687
		dev_info(hsotg->dev, "GINNakEff triggered\n");

3688
		__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3689

3690
		dwc2_hsotg_dump(hsotg);
3691 3692
	}

3693 3694
	if (gintsts & GINTSTS_INCOMPL_SOIN)
		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3695

3696 3697
	if (gintsts & GINTSTS_INCOMPL_SOOUT)
		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3698

3699 3700 3701 3702
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
3703 3704

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3705
		goto irq_retry;
3706

3707 3708
	spin_unlock(&hsotg->lock);

3709 3710 3711
	return IRQ_HANDLED;
}

3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800
static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg,
				   u32 bit, u32 timeout)
{
	u32 i;

	for (i = 0; i < timeout; i++) {
		if (dwc2_readl(hs_otg->regs + reg) & bit)
			return 0;
		udelay(1);
	}

	return -ETIMEDOUT;
}

static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
				   struct dwc2_hsotg_ep *hs_ep)
{
	u32 epctrl_reg;
	u32 epint_reg;

	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
		DOEPCTL(hs_ep->index);
	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
		DOEPINT(hs_ep->index);

	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
		hs_ep->name);

	if (hs_ep->dir_in) {
		if (hsotg->dedicated_fifos || hs_ep->periodic) {
			__orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
			/* Wait for Nak effect */
			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
						    DXEPINT_INEPNAKEFF, 100))
				dev_warn(hsotg->dev,
					 "%s: timeout DIEPINT.NAKEFF\n",
					 __func__);
		} else {
			__orr32(hsotg->regs + DCTL, DCTL_SGNPINNAK);
			/* Wait for Nak effect */
			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
						    GINTSTS_GINNAKEFF, 100))
				dev_warn(hsotg->dev,
					 "%s: timeout GINTSTS.GINNAKEFF\n",
					 __func__);
		}
	} else {
		if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF))
			__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);

		/* Wait for global nak to take effect */
		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
					    GINTSTS_GOUTNAKEFF, 100))
			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
				 __func__);
	}

	/* Disable ep */
	__orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);

	/* Wait for ep to be disabled */
	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
		dev_warn(hsotg->dev,
			 "%s: timeout DOEPCTL.EPDisable\n", __func__);

	/* Clear EPDISBLD interrupt */
	__orr32(hsotg->regs + epint_reg, DXEPINT_EPDISBLD);

	if (hs_ep->dir_in) {
		unsigned short fifo_index;

		if (hsotg->dedicated_fifos || hs_ep->periodic)
			fifo_index = hs_ep->fifo_index;
		else
			fifo_index = 0;

		/* Flush TX FIFO */
		dwc2_flush_tx_fifo(hsotg, fifo_index);

		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
			__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);

	} else {
		/* Remove global NAKs */
		__orr32(hsotg->regs + DCTL, DCTL_CGOUTNAK);
	}
}

3801
/**
3802
 * dwc2_hsotg_ep_enable - enable the given endpoint
3803 3804 3805 3806
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
3807
 */
3808
static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3809
				const struct usb_endpoint_descriptor *desc)
3810
{
3811
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3812
	struct dwc2_hsotg *hsotg = hs_ep->parent;
3813
	unsigned long flags;
3814
	unsigned int index = hs_ep->index;
3815 3816 3817
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
3818
	u32 mc;
3819
	u32 mask;
3820 3821
	unsigned int dir_in;
	unsigned int i, val, size;
3822
	int ret = 0;
3823 3824 3825 3826 3827 3828 3829

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
3830 3831 3832 3833
	if (index == 0) {
		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
		return -EINVAL;
	}
3834 3835 3836 3837 3838 3839 3840

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

3841
	mps = usb_endpoint_maxp(desc);
3842
	mc = usb_endpoint_maxp_mult(desc);
3843

3844
	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3845

3846
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3847
	epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3848 3849 3850 3851

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

3852
	/* Allocate DMA descriptor chain for non-ctrl endpoints */
3853 3854
	if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
		hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
3855 3856
			MAX_DMA_DESC_NUM_GENERIC *
			sizeof(struct dwc2_dma_desc),
3857
			&hs_ep->desc_list_dma, GFP_ATOMIC);
3858 3859 3860 3861 3862 3863
		if (!hs_ep->desc_list) {
			ret = -ENOMEM;
			goto error2;
		}
	}

3864
	spin_lock_irqsave(&hsotg->lock, flags);
3865

3866 3867
	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
	epctrl |= DXEPCTL_MPS(mps);
3868

3869 3870 3871 3872
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
3873
	epctrl |= DXEPCTL_USBACTEP;
3874 3875

	/* update the endpoint state */
3876
	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
3877 3878

	/* default, set to non-periodic */
3879
	hs_ep->isochronous = 0;
3880
	hs_ep->periodic = 0;
3881
	hs_ep->halted = 0;
3882
	hs_ep->interval = desc->bInterval;
3883

3884 3885
	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
3886 3887
		epctrl |= DXEPCTL_EPTYPE_ISO;
		epctrl |= DXEPCTL_SETEVENFR;
3888
		hs_ep->isochronous = 1;
3889
		hs_ep->interval = 1 << (desc->bInterval - 1);
3890
		hs_ep->target_frame = TARGET_FRAME_INITIAL;
3891 3892
		hs_ep->isoc_chain_num = 0;
		hs_ep->next_desc = 0;
3893
		if (dir_in) {
3894
			hs_ep->periodic = 1;
3895 3896 3897 3898 3899 3900 3901 3902
			mask = dwc2_readl(hsotg->regs + DIEPMSK);
			mask |= DIEPMSK_NAKMSK;
			dwc2_writel(mask, hsotg->regs + DIEPMSK);
		} else {
			mask = dwc2_readl(hsotg->regs + DOEPMSK);
			mask |= DOEPMSK_OUTTKNEPDISMSK;
			dwc2_writel(mask, hsotg->regs + DOEPMSK);
		}
3903
		break;
3904 3905

	case USB_ENDPOINT_XFER_BULK:
3906
		epctrl |= DXEPCTL_EPTYPE_BULK;
3907 3908 3909
		break;

	case USB_ENDPOINT_XFER_INT:
3910
		if (dir_in)
3911 3912
			hs_ep->periodic = 1;

3913 3914 3915
		if (hsotg->gadget.speed == USB_SPEED_HIGH)
			hs_ep->interval = 1 << (desc->bInterval - 1);

3916
		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
3917 3918 3919
		break;

	case USB_ENDPOINT_XFER_CONTROL:
3920
		epctrl |= DXEPCTL_EPTYPE_CONTROL;
3921 3922 3923
		break;
	}

3924 3925
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
3926 3927
	 * a unique tx-fifo even if it is non-periodic.
	 */
3928
	if (dir_in && hsotg->dedicated_fifos) {
3929 3930
		u32 fifo_index = 0;
		u32 fifo_size = UINT_MAX;
3931 3932

		size = hs_ep->ep.maxpacket * hs_ep->mc;
3933
		for (i = 1; i < hsotg->num_of_eps; ++i) {
3934
			if (hsotg->fifo_map & (1 << i))
3935
				continue;
3936
			val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
3937
			val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
3938 3939
			if (val < size)
				continue;
3940 3941 3942 3943 3944
			/* Search for smallest acceptable fifo */
			if (val < fifo_size) {
				fifo_size = val;
				fifo_index = i;
			}
3945
		}
3946
		if (!fifo_index) {
3947 3948
			dev_err(hsotg->dev,
				"%s: No suitable fifo found\n", __func__);
3949
			ret = -ENOMEM;
3950
			goto error1;
3951
		}
3952 3953 3954 3955
		hsotg->fifo_map |= 1 << fifo_index;
		epctrl |= DXEPCTL_TXFNUM(fifo_index);
		hs_ep->fifo_index = fifo_index;
		hs_ep->fifo_size = fifo_size;
3956
	}
3957

3958
	/* for non control endpoints, set PID to D0 */
3959
	if (index && !hs_ep->isochronous)
3960
		epctrl |= DXEPCTL_SETD0PID;
3961 3962 3963 3964

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

3965
	dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
3966
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
3967
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
3968 3969

	/* enable the endpoint interrupt */
3970
	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
3971

3972
error1:
3973
	spin_unlock_irqrestore(&hsotg->lock, flags);
3974 3975 3976

error2:
	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
3977
		dmam_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
3978 3979 3980 3981 3982
			sizeof(struct dwc2_dma_desc),
			hs_ep->desc_list, hs_ep->desc_list_dma);
		hs_ep->desc_list = NULL;
	}

3983
	return ret;
3984 3985
}

3986
/**
3987
 * dwc2_hsotg_ep_disable - disable given endpoint
3988 3989
 * @ep: The endpoint to disable.
 */
3990
static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
3991
{
3992
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3993
	struct dwc2_hsotg *hsotg = hs_ep->parent;
3994 3995 3996 3997 3998 3999
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

4000
	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
4001

4002
	if (ep == &hsotg->eps_out[0]->ep) {
4003 4004 4005 4006
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

4007
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4008

4009
	spin_lock_irqsave(&hsotg->lock, flags);
4010

4011
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
4012 4013 4014 4015

	if (ctrl & DXEPCTL_EPENA)
		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);

4016 4017 4018
	ctrl &= ~DXEPCTL_EPENA;
	ctrl &= ~DXEPCTL_USBACTEP;
	ctrl |= DXEPCTL_SNAK;
4019 4020

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4021
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
4022 4023

	/* disable endpoint interrupts */
4024
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4025

4026 4027 4028
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);

4029 4030 4031 4032
	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
	hs_ep->fifo_index = 0;
	hs_ep->fifo_size = 0;

4033
	spin_unlock_irqrestore(&hsotg->lock, flags);
4034 4035 4036 4037 4038 4039 4040
	return 0;
}

/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
4041
 */
4042
static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4043
{
4044
	struct dwc2_hsotg_req *req, *treq;
4045 4046 4047 4048 4049 4050 4051 4052 4053

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

4054
/**
4055
 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4056 4057 4058
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
4059
static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4060
{
4061 4062
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4063
	struct dwc2_hsotg *hs = hs_ep->parent;
4064 4065
	unsigned long flags;

4066
	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4067

4068
	spin_lock_irqsave(&hs->lock, flags);
4069 4070

	if (!on_list(hs_ep, hs_req)) {
4071
		spin_unlock_irqrestore(&hs->lock, flags);
4072 4073 4074
		return -EINVAL;
	}

4075 4076 4077 4078
	/* Dequeue already started request */
	if (req == &hs_ep->req->req)
		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);

4079
	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4080
	spin_unlock_irqrestore(&hs->lock, flags);
4081 4082 4083 4084

	return 0;
}

4085
/**
4086
 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4087 4088
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
4089 4090 4091 4092 4093
 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
 *       the endpoint is busy processing requests.
 *
 * We need to stall the endpoint immediately if request comes from set_feature
 * protocol command handler.
4094
 */
4095
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4096
{
4097
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4098
	struct dwc2_hsotg *hs = hs_ep->parent;
4099 4100 4101
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
4102
	u32 xfertype;
4103 4104 4105

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

4106 4107
	if (index == 0) {
		if (value)
4108
			dwc2_hsotg_stall_ep0(hs);
4109 4110 4111 4112 4113 4114
		else
			dev_warn(hs->dev,
				 "%s: can't clear halt on ep0\n", __func__);
		return 0;
	}

4115 4116 4117 4118 4119
	if (hs_ep->isochronous) {
		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
		return -EINVAL;
	}

4120 4121 4122 4123 4124 4125
	if (!now && value && !list_empty(&hs_ep->queue)) {
		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
			ep->name);
		return -EAGAIN;
	}

4126 4127
	if (hs_ep->dir_in) {
		epreg = DIEPCTL(index);
4128
		epctl = dwc2_readl(hs->regs + epreg);
4129 4130

		if (value) {
4131
			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4132 4133 4134 4135 4136 4137
			if (epctl & DXEPCTL_EPENA)
				epctl |= DXEPCTL_EPDIS;
		} else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4138
			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4139
				epctl |= DXEPCTL_SETD0PID;
4140
		}
4141
		dwc2_writel(epctl, hs->regs + epreg);
4142
	} else {
4143
		epreg = DOEPCTL(index);
4144
		epctl = dwc2_readl(hs->regs + epreg);
4145

J
John Youn 已提交
4146
		if (value) {
4147
			epctl |= DXEPCTL_STALL;
J
John Youn 已提交
4148
		} else {
4149 4150 4151
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4152
			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4153
				epctl |= DXEPCTL_SETD0PID;
4154
		}
4155
		dwc2_writel(epctl, hs->regs + epreg);
4156
	}
4157

4158 4159
	hs_ep->halted = value;

4160 4161 4162
	return 0;
}

4163
/**
4164
 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4165 4166 4167
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
4168
static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4169
{
4170
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4171
	struct dwc2_hsotg *hs = hs_ep->parent;
4172 4173 4174 4175
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
4176
	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4177 4178 4179 4180 4181
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

4182
static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4183 4184 4185 4186 4187 4188 4189
	.enable		= dwc2_hsotg_ep_enable,
	.disable	= dwc2_hsotg_ep_disable,
	.alloc_request	= dwc2_hsotg_ep_alloc_request,
	.free_request	= dwc2_hsotg_ep_free_request,
	.queue		= dwc2_hsotg_ep_queue_lock,
	.dequeue	= dwc2_hsotg_ep_dequeue,
	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
4190
	/* note, don't believe we have any call for the fifo routines */
4191 4192
};

4193
/**
4194
 * dwc2_hsotg_init - initialize the usb core
4195 4196
 * @hsotg: The driver state
 */
4197
static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4198
{
4199
	u32 trdtim;
4200
	u32 usbcfg;
4201 4202
	/* unmask subset of endpoint interrupts */

4203 4204 4205
	dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DIEPMSK);
4206

4207 4208 4209
	dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DOEPMSK);
4210

4211
	dwc2_writel(0, hsotg->regs + DAINTMSK);
4212 4213

	/* Be in disconnected state until gadget is registered */
4214
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
4215 4216 4217 4218

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4219 4220
		dwc2_readl(hsotg->regs + GRXFSIZ),
		dwc2_readl(hsotg->regs + GNPTXFSIZ));
4221

4222
	dwc2_hsotg_init_fifo(hsotg);
4223

4224 4225 4226
	/* keep other bits untouched (so e.g. forced modes are not lost) */
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
4227
		GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
4228

4229
	/* set the PLL on, remove the HNP/SRP and set the PHY */
4230
	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
4231 4232 4233
	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
		(trdtim << GUSBCFG_USBTRDTIM_SHIFT);
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
4234

4235 4236
	if (using_dma(hsotg))
		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
4237 4238
}

4239
/**
4240
 * dwc2_hsotg_udc_start - prepare the udc for work
4241 4242 4243 4244 4245 4246
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
4247
static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4248
				struct usb_gadget_driver *driver)
4249
{
4250
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4251
	unsigned long flags;
4252 4253 4254
	int ret;

	if (!hsotg) {
4255
		pr_err("%s: called with no device\n", __func__);
4256 4257 4258 4259 4260 4261 4262 4263
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

4264
	if (driver->max_speed < USB_SPEED_FULL)
4265 4266
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

4267
	if (!driver->setup) {
4268 4269 4270 4271 4272 4273 4274 4275
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
4276
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4277 4278
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

4279 4280 4281 4282
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
		ret = dwc2_lowlevel_hw_enable(hsotg);
		if (ret)
			goto err;
4283 4284
	}

4285 4286
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4287

4288
	spin_lock_irqsave(&hsotg->lock, flags);
4289 4290 4291 4292 4293
	if (dwc2_hw_is_device(hsotg)) {
		dwc2_hsotg_init(hsotg);
		dwc2_hsotg_core_init_disconnected(hsotg, false);
	}

4294
	hsotg->enabled = 0;
4295 4296
	spin_unlock_irqrestore(&hsotg->lock, flags);

4297
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4298

4299 4300 4301 4302 4303 4304 4305
	return 0;

err:
	hsotg->driver = NULL;
	return ret;
}

4306
/**
4307
 * dwc2_hsotg_udc_stop - stop the udc
4308 4309 4310 4311 4312
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
4313
static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4314
{
4315
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4316
	unsigned long flags = 0;
4317 4318 4319 4320 4321 4322
	int ep;

	if (!hsotg)
		return -ENODEV;

	/* all endpoints should be shutdown */
4323 4324
	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
4325
			dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4326
		if (hsotg->eps_out[ep])
4327
			dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4328
	}
4329

4330 4331
	spin_lock_irqsave(&hsotg->lock, flags);

4332
	hsotg->driver = NULL;
4333
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4334
	hsotg->enabled = 0;
4335

4336 4337
	spin_unlock_irqrestore(&hsotg->lock, flags);

4338 4339
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, NULL);
4340

4341 4342
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		dwc2_lowlevel_hw_disable(hsotg);
4343 4344 4345 4346

	return 0;
}

4347
/**
4348
 * dwc2_hsotg_gadget_getframe - read the frame number
4349 4350 4351 4352
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
4353
static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4354
{
4355
	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4356 4357
}

4358
/**
4359
 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4360 4361 4362 4363 4364
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
4365
static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4366
{
4367
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4368 4369
	unsigned long flags = 0;

4370
	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4371
		hsotg->op_state);
4372 4373 4374 4375 4376 4377

	/* Don't modify pullup state while in host mode */
	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
		hsotg->enabled = is_on;
		return 0;
	}
4378 4379 4380

	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
4381
		hsotg->enabled = 1;
4382 4383
		dwc2_hsotg_core_init_disconnected(hsotg, false);
		dwc2_hsotg_core_connect(hsotg);
4384
	} else {
4385 4386
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
4387
		hsotg->enabled = 0;
4388 4389 4390 4391 4392 4393 4394 4395
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return 0;
}

4396
static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4397 4398 4399 4400 4401 4402 4403
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
	unsigned long flags;

	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
	spin_lock_irqsave(&hsotg->lock, flags);

4404 4405 4406 4407 4408 4409 4410
	/*
	 * If controller is hibernated, it must exit from hibernation
	 * before being initialized / de-initialized
	 */
	if (hsotg->lx_state == DWC2_L2)
		dwc2_exit_hibernation(hsotg, false);

4411
	if (is_active) {
4412
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4413

4414
		dwc2_hsotg_core_init_disconnected(hsotg, false);
4415
		if (hsotg->enabled)
4416
			dwc2_hsotg_core_connect(hsotg);
4417
	} else {
4418 4419
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
4420 4421 4422 4423 4424 4425
	}

	spin_unlock_irqrestore(&hsotg->lock, flags);
	return 0;
}

4426
/**
4427
 * dwc2_hsotg_vbus_draw - report bMaxPower field
4428 4429 4430 4431 4432
 * @gadget: The usb gadget state
 * @mA: Amount of current
 *
 * Report how much power the device may consume to the phy.
 */
4433
static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4434 4435 4436 4437 4438 4439 4440 4441
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);

	if (IS_ERR_OR_NULL(hsotg->uphy))
		return -ENOTSUPP;
	return usb_phy_set_power(hsotg->uphy, mA);
}

4442 4443 4444 4445 4446 4447 4448
static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
	.get_frame	= dwc2_hsotg_gadget_getframe,
	.udc_start		= dwc2_hsotg_udc_start,
	.udc_stop		= dwc2_hsotg_udc_stop,
	.pullup                 = dwc2_hsotg_pullup,
	.vbus_session		= dwc2_hsotg_vbus_session,
	.vbus_draw		= dwc2_hsotg_vbus_draw,
4449 4450 4451
};

/**
4452
 * dwc2_hsotg_initep - initialise a single endpoint
4453 4454 4455 4456 4457 4458 4459 4460
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
4461
static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4462
			      struct dwc2_hsotg_ep *hs_ep,
4463 4464
				       int epnum,
				       bool dir_in)
4465 4466 4467 4468 4469
{
	char *dir;

	if (epnum == 0)
		dir = "";
4470
	else if (dir_in)
4471
		dir = "in";
4472 4473
	else
		dir = "out";
4474

4475
	hs_ep->dir_in = dir_in;
4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488
	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
4489 4490 4491 4492 4493 4494

	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
	else
		usb_ep_set_maxpacket_limit(&hs_ep->ep,
					   epnum ? 1024 : EP0_MPS_LIMIT);
4495
	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4496

4497 4498 4499
	if (epnum == 0) {
		hs_ep->ep.caps.type_control = true;
	} else {
4500 4501 4502 4503
		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
			hs_ep->ep.caps.type_iso = true;
			hs_ep->ep.caps.type_bulk = true;
		}
4504 4505 4506 4507 4508 4509 4510 4511
		hs_ep->ep.caps.type_int = true;
	}

	if (dir_in)
		hs_ep->ep.caps.dir_in = true;
	else
		hs_ep->ep.caps.dir_out = true;

4512 4513
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
4514 4515 4516 4517
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
4518
		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4519

4520
		if (dir_in)
4521
			dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
4522
		else
4523
			dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
4524 4525 4526
	}
}

4527
/**
4528
 * dwc2_hsotg_hw_cfg - read HW configuration registers
4529 4530 4531 4532
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
4533
static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4534
{
4535 4536 4537 4538
	u32 cfg;
	u32 ep_type;
	u32 i;

4539
	/* check hardware configuration */
4540

4541 4542
	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;

4543 4544
	/* Add ep0 */
	hsotg->num_of_eps++;
4545

4546 4547 4548
	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
					sizeof(struct dwc2_hsotg_ep),
					GFP_KERNEL);
4549 4550
	if (!hsotg->eps_in[0])
		return -ENOMEM;
4551
	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4552 4553
	hsotg->eps_out[0] = hsotg->eps_in[0];

4554
	cfg = hsotg->hw_params.dev_ep_dirs;
4555
	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4556 4557 4558 4559
		ep_type = cfg & 3;
		/* Direction in or both */
		if (!(ep_type & 2)) {
			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4560
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4561 4562 4563 4564 4565 4566
			if (!hsotg->eps_in[i])
				return -ENOMEM;
		}
		/* Direction out or both */
		if (!(ep_type & 1)) {
			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4567
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4568 4569 4570 4571 4572
			if (!hsotg->eps_out[i])
				return -ENOMEM;
		}
	}

4573 4574
	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4575

4576 4577 4578 4579
	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
		 hsotg->num_of_eps,
		 hsotg->dedicated_fifos ? "dedicated" : "shared",
		 hsotg->fifo_mem);
4580
	return 0;
4581 4582
}

4583
/**
4584
 * dwc2_hsotg_dump - dump state of the udc
4585 4586
 * @param: The device state
 */
4587
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4588
{
M
Mark Brown 已提交
4589
#ifdef DEBUG
4590 4591 4592 4593 4594 4595
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4596 4597
		 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
		 dwc2_readl(regs + DIEPMSK));
4598

4599
	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4600
		 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
4601 4602

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4603
		 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
4604 4605 4606

	/* show periodic fifo settings */

4607
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4608
		val = dwc2_readl(regs + DPTXFSIZN(idx));
4609
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4610 4611
			 val >> FIFOSIZE_DEPTH_SHIFT,
			 val & FIFOSIZE_STARTADDR_MASK);
4612 4613
	}

4614
	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4615 4616
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4617 4618 4619
			 dwc2_readl(regs + DIEPCTL(idx)),
			 dwc2_readl(regs + DIEPTSIZ(idx)),
			 dwc2_readl(regs + DIEPDMA(idx)));
4620

4621
		val = dwc2_readl(regs + DOEPCTL(idx));
4622 4623
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4624 4625 4626
			 idx, dwc2_readl(regs + DOEPCTL(idx)),
			 dwc2_readl(regs + DOEPTSIZ(idx)),
			 dwc2_readl(regs + DOEPDMA(idx)));
4627 4628 4629
	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4630
		 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
4631
#endif
4632 4633
}

4634
/**
4635 4636 4637
 * dwc2_gadget_init - init function for gadget
 * @dwc2: The data structure for the DWC2 driver.
 * @irq: The IRQ number for the controller.
4638
 */
4639
int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
4640
{
4641
	struct device *dev = hsotg->dev;
4642 4643
	int epnum;
	int ret;
4644

4645 4646
	/* Dump fifo information */
	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4647 4648
		hsotg->params.g_np_tx_fifo_size);
	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4649

4650
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
4651
	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4652
	hsotg->gadget.name = dev_name(dev);
4653 4654
	if (hsotg->dr_mode == USB_DR_MODE_OTG)
		hsotg->gadget.is_otg = 1;
4655 4656
	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4657

4658
	ret = dwc2_hsotg_hw_cfg(hsotg);
4659 4660
	if (ret) {
		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4661
		return ret;
4662 4663
	}

4664 4665
	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4666
	if (!hsotg->ctrl_buff)
4667
		return -ENOMEM;
4668 4669 4670

	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4671
	if (!hsotg->ep0_buff)
4672
		return -ENOMEM;
4673

4674 4675 4676 4677 4678 4679
	if (using_desc_dma(hsotg)) {
		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
		if (ret < 0)
			return ret;
	}

4680
	ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
4681
			       dev_name(hsotg->dev), hsotg);
4682
	if (ret < 0) {
4683
		dev_err(dev, "cannot claim IRQ for gadget\n");
4684
		return ret;
4685 4686
	}

4687 4688 4689 4690
	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
4691
		return -EINVAL;
4692 4693 4694 4695 4696
	}

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4697
	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4698 4699 4700

	/* allocate EP0 request */

4701
	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4702 4703 4704
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
4705
		return -ENOMEM;
4706
	}
4707 4708

	/* initialise the endpoints now the core has been initialised */
4709 4710
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
		if (hsotg->eps_in[epnum])
4711
			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4712
					  epnum, 1);
4713
		if (hsotg->eps_out[epnum])
4714
			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4715
					  epnum, 0);
4716
	}
4717

4718
	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
4719
	if (ret)
4720
		return ret;
4721

4722
	dwc2_hsotg_dump(hsotg);
4723 4724 4725 4726

	return 0;
}

4727
/**
4728
 * dwc2_hsotg_remove - remove function for hsotg driver
4729 4730
 * @pdev: The platform information for the driver
 */
4731
int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4732
{
4733
	usb_del_gadget_udc(&hsotg->gadget);
4734

4735 4736 4737
	return 0;
}

4738
int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4739 4740 4741
{
	unsigned long flags;

4742
	if (hsotg->lx_state != DWC2_L0)
4743
		return 0;
4744

4745 4746 4747
	if (hsotg->driver) {
		int ep;

4748 4749 4750
		dev_info(hsotg->dev, "suspending usb gadget %s\n",
			 hsotg->driver->driver.name);

4751 4752
		spin_lock_irqsave(&hsotg->lock, flags);
		if (hsotg->enabled)
4753 4754
			dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
4755 4756
		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
		spin_unlock_irqrestore(&hsotg->lock, flags);
4757

4758 4759
		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
			if (hsotg->eps_in[ep])
4760
				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4761
			if (hsotg->eps_out[ep])
4762
				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4763
		}
4764 4765
	}

4766
	return 0;
4767 4768
}

4769
int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4770 4771 4772
{
	unsigned long flags;

4773
	if (hsotg->lx_state == DWC2_L2)
4774
		return 0;
4775

4776 4777 4778
	if (hsotg->driver) {
		dev_info(hsotg->dev, "resuming usb gadget %s\n",
			 hsotg->driver->driver.name);
4779

4780
		spin_lock_irqsave(&hsotg->lock, flags);
4781
		dwc2_hsotg_core_init_disconnected(hsotg, false);
4782
		if (hsotg->enabled)
4783
			dwc2_hsotg_core_connect(hsotg);
4784 4785
		spin_unlock_irqrestore(&hsotg->lock, flags);
	}
4786

4787
	return 0;
4788
}
4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890

/**
 * dwc2_backup_device_registers() - Backup controller device registers.
 * When suspending usb bus, registers needs to be backuped
 * if controller power is disabled once suspended.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Backup dev regs */
	dr = &hsotg->dr_backup;

	dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
	dr->dctl = dwc2_readl(hsotg->regs + DCTL);
	dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
	dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
	dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Backup IN EPs */
		dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));

		/* Ensure DATA PID is correctly configured */
		if (dr->diepctl[i] & DXEPCTL_DPID)
			dr->diepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->diepctl[i] |= DXEPCTL_SETD0PID;

		dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
		dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));

		/* Backup OUT EPs */
		dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));

		/* Ensure DATA PID is correctly configured */
		if (dr->doepctl[i] & DXEPCTL_DPID)
			dr->doepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->doepctl[i] |= DXEPCTL_SETD0PID;

		dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
		dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
	}
	dr->valid = true;
	return 0;
}

/**
 * dwc2_restore_device_registers() - Restore controller device registers.
 * When resuming usb bus, device registers needs to be restored
 * if controller power were disabled.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	u32 dctl;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Restore dev regs */
	dr = &hsotg->dr_backup;
	if (!dr->valid) {
		dev_err(hsotg->dev, "%s: no device registers to restore\n",
			__func__);
		return -EINVAL;
	}
	dr->valid = false;

	dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
	dwc2_writel(dr->dctl, hsotg->regs + DCTL);
	dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
	dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
	dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Restore IN EPs */
		dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
		dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
		dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));

		/* Restore OUT EPs */
		dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
		dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
	}

	/* Set the Power-On Programming done bit */
	dctl = dwc2_readl(hsotg->regs + DCTL);
	dctl |= DCTL_PWRONPRGDONE;
	dwc2_writel(dctl, hsotg->regs + DCTL);

	return 0;
}