gadget.c 126.0 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
2
/**
3 4
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
5 6 7 8 9 10 11
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
12
 */
13 14 15 16 17 18 19

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
20
#include <linux/mutex.h>
21 22 23
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
24
#include <linux/slab.h>
25
#include <linux/of_platform.h>
26 27 28

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
29
#include <linux/usb/phy.h>
30

31
#include "core.h"
32
#include "hw.h"
33 34

/* conversion functions */
35
static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
36
{
37
	return container_of(req, struct dwc2_hsotg_req, req);
38 39
}

40
static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
41
{
42
	return container_of(ep, struct dwc2_hsotg_ep, ep);
43 44
}

45
static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
46
{
47
	return container_of(gadget, struct dwc2_hsotg, gadget);
48 49 50 51
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
52
	dwc2_writel(dwc2_readl(ptr) | val, ptr);
53 54 55 56
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
57
	dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
58 59
}

60
static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
61 62 63 64 65 66 67 68
						u32 ep_index, u32 dir_in)
{
	if (dir_in)
		return hsotg->eps_in[ep_index];
	else
		return hsotg->eps_out[ep_index];
}

69
/* forward declaration of functions */
70
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
89
 * g_using_dma is set depending on dts flag.
90
 */
91
static inline bool using_dma(struct dwc2_hsotg *hsotg)
92
{
93
	return hsotg->params.g_dma;
94 95
}

96 97 98 99 100 101 102 103 104 105 106
/*
 * using_desc_dma - return the descriptor DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using descriptor DMA.
 */
static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
{
	return hsotg->params.g_dma_desc;
}

107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
/**
 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
 * @hs_ep: The endpoint
 * @increment: The value to increment by
 *
 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
 */
static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
{
	hs_ep->target_frame += hs_ep->interval;
	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
		hs_ep->frame_overrun = 1;
		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
	} else {
		hs_ep->frame_overrun = 0;
	}
}

126
/**
127
 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
128 129 130
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
131
static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
132
{
133
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
134 135 136 137 138 139
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
140
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
141 142 143 144
	}
}

/**
145
 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
146 147 148
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
149
static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
150
{
151
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
152 153 154 155 156
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
157
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
158 159 160
}

/**
161
 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
162 163 164 165 166 167 168 169
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
170
static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
171
				  unsigned int ep, unsigned int dir_in,
172 173 174 175 176 177 178 179 180 181
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
182
	daint = dwc2_readl(hsotg->regs + DAINTMSK);
183 184 185 186
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
187
	dwc2_writel(daint, hsotg->regs + DAINTMSK);
188 189 190
	local_irq_restore(flags);
}

191 192 193 194 195 196 197
/**
 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
 */
int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
{
	if (hsotg->hw_params.en_multiple_tx_fifo)
		/* In dedicated FIFO mode we need count of IN EPs */
198
		return hsotg->hw_params.num_dev_in_eps;
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
	else
		/* In shared FIFO mode we need count of Periodic IN EPs */
		return hsotg->hw_params.num_dev_perio_in_ep;
}

/**
 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
 * device mode TX FIFOs
 */
int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
{
	int addr;
	int tx_addr_max;
	u32 np_tx_fifo_size;

	np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
				hsotg->params.g_np_tx_fifo_size);

	/* Get Endpoint Info Control block size in DWORDs. */
218
	tx_addr_max = hsotg->hw_params.total_fifo_size;
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

	addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
	if (tx_addr_max <= addr)
		return 0;

	return tx_addr_max - addr;
}

/**
 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
 * TX FIFOs
 */
int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
{
	int tx_fifo_count;
	int tx_fifo_depth;

	tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);

	tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);

	if (!tx_fifo_count)
		return tx_fifo_depth;
	else
		return tx_fifo_depth / tx_fifo_count;
}

246
/**
247
 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
248 249
 * @hsotg: The device instance.
 */
250
static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
251
{
252
	unsigned int ep;
253
	unsigned int addr;
254
	int timeout;
255
	u32 val;
256
	u32 *txfsz = hsotg->params.g_tx_fifo_size;
257

258 259 260 261
	/* Reset fifo map if not correctly cleared during previous session */
	WARN_ON(hsotg->fifo_map);
	hsotg->fifo_map = 0;

262
	/* set RX/NPTX FIFO sizes */
263 264 265 266
	dwc2_writel(hsotg->params.g_rx_fifo_size, hsotg->regs + GRXFSIZ);
	dwc2_writel((hsotg->params.g_rx_fifo_size << FIFOSIZE_STARTADDR_SHIFT) |
		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
		    hsotg->regs + GNPTXFSIZ);
267

268 269
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
270 271
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
272 273
	 * known values.
	 */
274 275

	/* start at the end of the GNPTXFSIZ, rounded up */
276
	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
277

278
	/*
279
	 * Configure fifos sizes from provided configuration and assign
280 281
	 * them to endpoints dynamically according to maxpacket size value of
	 * given endpoint.
282
	 */
283
	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
284
		if (!txfsz[ep])
285 286
			continue;
		val = addr;
287 288
		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
289
			  "insufficient fifo memory");
290
		addr += txfsz[ep];
291

292
		dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
293
		val = dwc2_readl(hsotg->regs + DPTXFSIZN(ep));
294
	}
295

296 297 298
	dwc2_writel(hsotg->hw_params.total_fifo_size |
		    addr << GDFIFOCFG_EPINFOBASE_SHIFT,
		    hsotg->regs + GDFIFOCFG);
299 300 301 302
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
303

304
	dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
305
	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
306 307 308 309

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
310
		val = dwc2_readl(hsotg->regs + GRSTCTL);
311

312
		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
313 314 315 316 317 318
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
319
			break;
320 321 322 323 324 325
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
326 327 328 329 330 331 332 333
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
334
static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
335
						       gfp_t flags)
336
{
337
	struct dwc2_hsotg_req *req;
338

J
John Youn 已提交
339
	req = kzalloc(sizeof(*req), flags);
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
355
static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
356 357 358 359 360
{
	return hs_ep->periodic;
}

/**
361
 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
362 363 364 365
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
366
 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
367
 * of a request to ensure the buffer is ready for access by the caller.
368
 */
369
static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
370
				 struct dwc2_hsotg_ep *hs_ep,
371
				struct dwc2_hsotg_req *hs_req)
372 373
{
	struct usb_request *req = &hs_req->req;
374

375
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
376 377
}

378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
/*
 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
 * for Control endpoint
 * @hsotg: The device state.
 *
 * This function will allocate 4 descriptor chains for EP 0: 2 for
 * Setup stage, per one for IN and OUT data/status transactions.
 */
static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
{
	hsotg->setup_desc[0] =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->setup_desc_dma[0],
				    GFP_KERNEL);
	if (!hsotg->setup_desc[0])
		goto fail;

	hsotg->setup_desc[1] =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->setup_desc_dma[1],
				    GFP_KERNEL);
	if (!hsotg->setup_desc[1])
		goto fail;

	hsotg->ctrl_in_desc =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->ctrl_in_desc_dma,
				    GFP_KERNEL);
	if (!hsotg->ctrl_in_desc)
		goto fail;

	hsotg->ctrl_out_desc =
		dmam_alloc_coherent(hsotg->dev,
				    sizeof(struct dwc2_dma_desc),
				    &hsotg->ctrl_out_desc_dma,
				    GFP_KERNEL);
	if (!hsotg->ctrl_out_desc)
		goto fail;

	return 0;

fail:
	return -ENOMEM;
}

426
/**
427
 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
428 429 430 431 432 433 434 435 436 437 438 439 440
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
441
 */
442
static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
443
				 struct dwc2_hsotg_ep *hs_ep,
444
				struct dwc2_hsotg_req *hs_req)
445 446
{
	bool periodic = is_ep_periodic(hs_ep);
447
	u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
448 449 450 451 452
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;
453
	int max_transfer;
454 455 456 457 458 459 460

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

461
	if (periodic && !hsotg->dedicated_fifos) {
462
		u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
463 464 465
		int size_left;
		int size_done;

466 467 468 469
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
470

471
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
472

473 474
		/*
		 * if shared fifo, we cannot write anything until the
475 476 477
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
478
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
479 480 481
			return -ENOSPC;
		}

482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
499
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
500 501
			return -ENOSPC;
		}
502
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
503 504
		can_write = dwc2_readl(hsotg->regs +
				DTXFSTS(hs_ep->fifo_index));
505 506 507

		can_write &= 0xffff;
		can_write *= 4;
508
	} else {
509
		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
510 511 512 513
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

514
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
515 516 517
			return -ENOSPC;
		}

518
		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
519
		can_write *= 4;	/* fifo size is in 32bit quantities. */
520 521
	}

522 523 524
	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
525
		__func__, gnptxsts, can_write, to_write, max_transfer);
526

527 528
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
529 530 531
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
532
	if (can_write > 512 && !periodic)
533 534
		can_write = 512;

535 536
	/*
	 * limit the write to one max-packet size worth of data, but allow
537
	 * the transfer to return that it did not run out of fifo space
538 539
	 * doing it.
	 */
540 541
	if (to_write > max_transfer) {
		to_write = max_transfer;
542

543 544
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
545
			dwc2_hsotg_en_gsint(hsotg,
546
					    periodic ? GINTSTS_PTXFEMP :
547
					   GINTSTS_NPTXFEMP);
548 549
	}

550 551 552 553
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
554
		pkt_round = to_write % max_transfer;
555

556 557
		/*
		 * Round the write down to an
558 559 560 561 562 563 564 565 566
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

567 568 569 570
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
571

572 573
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
574
			dwc2_hsotg_en_gsint(hsotg,
575
					    periodic ? GINTSTS_PTXFEMP :
576
					   GINTSTS_NPTXFEMP);
577 578 579
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
580
		to_write, hs_req->req.length, can_write, buf_pos);
581 582 583 584 585 586 587 588 589 590 591 592 593

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

594
	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
595 596 597 598 599 600 601 602 603 604 605

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
606
static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
607 608
{
	int index = hs_ep->index;
609 610
	unsigned int maxsize;
	unsigned int maxpkt;
611 612

	if (index != 0) {
613 614
		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
615
	} else {
616
		maxsize = 64 + 64;
617
		if (hs_ep->dir_in)
618
			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
619
		else
620 621 622 623 624 625 626
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

627 628 629 630
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
631 632 633 634 635 636 637

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

638
/**
639 640 641 642 643
 * dwc2_hsotg_read_frameno - read current frame number
 * @hsotg: The device instance
 *
 * Return the current frame number
 */
644 645 646 647 648 649 650 651 652 653 654
static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
{
	u32 dsts;

	dsts = dwc2_readl(hsotg->regs + DSTS);
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;

	return dsts;
}

655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
/**
 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
 * DMA descriptor chain prepared for specific endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * depending on its descriptor chain capacity so that transfers that
 * are too long can be split.
 */
static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
{
	int is_isoc = hs_ep->isochronous;
	unsigned int maxsize;

	if (is_isoc)
		maxsize = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
					   DEV_DMA_ISOC_RX_NBYTES_LIMIT;
	else
		maxsize = DEV_DMA_NBYTES_LIMIT;

	/* Above size of one descriptor was chosen, multiple it */
	maxsize *= MAX_DMA_DESC_NUM_GENERIC;

	return maxsize;
}

681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788
/*
 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
 * @hs_ep: The endpoint
 * @mask: RX/TX bytes mask to be defined
 *
 * Returns maximum data payload for one descriptor after analyzing endpoint
 * characteristics.
 * DMA descriptor transfer bytes limit depends on EP type:
 * Control out - MPS,
 * Isochronous - descriptor rx/tx bytes bitfield limit,
 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
 * have concatenations from various descriptors within one packet.
 *
 * Selects corresponding mask for RX/TX bytes as well.
 */
static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
{
	u32 mps = hs_ep->ep.maxpacket;
	int dir_in = hs_ep->dir_in;
	u32 desc_size = 0;

	if (!hs_ep->index && !dir_in) {
		desc_size = mps;
		*mask = DEV_DMA_NBYTES_MASK;
	} else if (hs_ep->isochronous) {
		if (dir_in) {
			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
		} else {
			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
		}
	} else {
		desc_size = DEV_DMA_NBYTES_LIMIT;
		*mask = DEV_DMA_NBYTES_MASK;

		/* Round down desc_size to be mps multiple */
		desc_size -= desc_size % mps;
	}

	return desc_size;
}

/*
 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
 * @hs_ep: The endpoint
 * @dma_buff: DMA address to use
 * @len: Length of the transfer
 *
 * This function will iterate over descriptor chain and fill its entries
 * with corresponding information based on transfer data.
 */
static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
						 dma_addr_t dma_buff,
						 unsigned int len)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	struct dwc2_dma_desc *desc = hs_ep->desc_list;
	u32 mps = hs_ep->ep.maxpacket;
	u32 maxsize = 0;
	u32 offset = 0;
	u32 mask = 0;
	int i;

	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);

	hs_ep->desc_count = (len / maxsize) +
				((len % maxsize) ? 1 : 0);
	if (len == 0)
		hs_ep->desc_count = 1;

	for (i = 0; i < hs_ep->desc_count; ++i) {
		desc->status = 0;
		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
				 << DEV_DMA_BUFF_STS_SHIFT);

		if (len > maxsize) {
			if (!hs_ep->index && !dir_in)
				desc->status |= (DEV_DMA_L | DEV_DMA_IOC);

			desc->status |= (maxsize <<
						DEV_DMA_NBYTES_SHIFT & mask);
			desc->buf = dma_buff + offset;

			len -= maxsize;
			offset += maxsize;
		} else {
			desc->status |= (DEV_DMA_L | DEV_DMA_IOC);

			if (dir_in)
				desc->status |= (len % mps) ? DEV_DMA_SHORT :
					((hs_ep->send_zlp) ? DEV_DMA_SHORT : 0);
			if (len > maxsize)
				dev_err(hsotg->dev, "wrong len %d\n", len);

			desc->status |=
				len << DEV_DMA_NBYTES_SHIFT & mask;
			desc->buf = dma_buff + offset;
		}

		desc->status &= ~DEV_DMA_BUFF_STS_MASK;
		desc->status |= (DEV_DMA_BUFF_STS_HREADY
				 << DEV_DMA_BUFF_STS_SHIFT);
		desc++;
	}
}

789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
/*
 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
 * @hs_ep: The isochronous endpoint.
 * @dma_buff: usb requests dma buffer.
 * @len: usb request transfer length.
 *
 * Finds out index of first free entry either in the bottom or up half of
 * descriptor chain depend on which is under SW control and not processed
 * by HW. Then fills that descriptor with the data of the arrived usb request,
 * frame info, sets Last and IOC bits increments next_desc. If filled
 * descriptor is not the first one, removes L bit from the previous descriptor
 * status.
 */
static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
				      dma_addr_t dma_buff, unsigned int len)
{
	struct dwc2_dma_desc *desc;
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	u32 index;
	u32 maxsize = 0;
	u32 mask = 0;

	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
	if (len > maxsize) {
		dev_err(hsotg->dev, "wrong len %d\n", len);
		return -EINVAL;
	}

	/*
	 * If SW has already filled half of chain, then return and wait for
	 * the other chain to be processed by HW.
	 */
	if (hs_ep->next_desc == MAX_DMA_DESC_NUM_GENERIC / 2)
		return -EBUSY;

	/* Increment frame number by interval for IN */
	if (hs_ep->dir_in)
		dwc2_gadget_incr_frame_num(hs_ep);

	index = (MAX_DMA_DESC_NUM_GENERIC / 2) * hs_ep->isoc_chain_num +
		 hs_ep->next_desc;

	/* Sanity check of calculated index */
	if ((hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC) ||
	    (!hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC / 2)) {
		dev_err(hsotg->dev, "wrong index %d for iso chain\n", index);
		return -EINVAL;
	}

	desc = &hs_ep->desc_list[index];

	/* Clear L bit of previous desc if more than one entries in the chain */
	if (hs_ep->next_desc)
		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;

	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);

	desc->status = 0;
	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);

	desc->buf = dma_buff;
	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));

	if (hs_ep->dir_in) {
		desc->status |= ((hs_ep->mc << DEV_DMA_ISOC_PID_SHIFT) &
				 DEV_DMA_ISOC_PID_MASK) |
				((len % hs_ep->ep.maxpacket) ?
				 DEV_DMA_SHORT : 0) |
				((hs_ep->target_frame <<
				  DEV_DMA_ISOC_FRNUM_SHIFT) &
				 DEV_DMA_ISOC_FRNUM_MASK);
	}

	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);

	/* Update index of last configured entry in the chain */
	hs_ep->next_desc++;

	return 0;
}

/*
 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
 * @hs_ep: The isochronous endpoint.
 *
 * Prepare first descriptor chain for isochronous endpoints. Afterwards
 * write DMA address to HW and enable the endpoint.
 *
 * Switch between descriptor chains via isoc_chain_num to give SW opportunity
 * to prepare second descriptor chain while first one is being processed by HW.
 */
static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	struct dwc2_hsotg_req *hs_req, *treq;
	int index = hs_ep->index;
	int ret;
	u32 dma_reg;
	u32 depctl;
	u32 ctrl;

	if (list_empty(&hs_ep->queue)) {
		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
		return;
	}

	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
		ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
						 hs_req->req.length);
		if (ret) {
			dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
			break;
		}
	}

	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);

	/* write descriptor chain address to control register */
	dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);

	ctrl = dwc2_readl(hsotg->regs + depctl);
	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
	dwc2_writel(ctrl, hsotg->regs + depctl);

	/* Switch ISOC descriptor chain number being processed by SW*/
	hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
	hs_ep->next_desc = 0;
}

922
/**
923
 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
924 925 926 927 928 929 930 931
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
932
static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
933
				 struct dwc2_hsotg_ep *hs_ep,
934
				struct dwc2_hsotg_req *hs_req,
935 936 937 938 939 940 941 942 943
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
944 945 946
	unsigned int length;
	unsigned int packets;
	unsigned int maxreq;
947
	unsigned int dma_reg;
948 949 950 951 952 953 954 955 956 957 958 959 960 961

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

962
	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
963 964
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
965 966

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
967
		__func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
968 969
		hs_ep->dir_in ? "in" : "out");

970
	/* If endpoint is stalled, we will restart request later */
971
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
972

973
	if (index && ctrl & DXEPCTL_STALL) {
974 975 976 977
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

978
	length = ureq->length - ureq->actual;
979 980
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
981

982 983 984 985 986
	if (!using_desc_dma(hsotg))
		maxreq = get_ep_limit(hs_ep);
	else
		maxreq = dwc2_gadget_get_chain_limit(hs_ep);

987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

1005 1006 1007 1008 1009
	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
		return;
	}

1010
	if (dir_in && index != 0)
1011
		if (hs_ep->isochronous)
1012
			epsize = DXEPTSIZ_MC(packets);
1013
		else
1014
			epsize = DXEPTSIZ_MC(1);
1015 1016 1017
	else
		epsize = 0;

1018 1019 1020 1021 1022 1023 1024
	/*
	 * zero length packet should be programmed on its own and should not
	 * be counted in DIEPTSIZ.PktCnt with other packets.
	 */
	if (dir_in && ureq->zero && !continuing) {
		/* Test if zlp is actually required. */
		if ((ureq->length >= hs_ep->ep.maxpacket) &&
1025
		    !(ureq->length % hs_ep->ep.maxpacket))
1026
			hs_ep->send_zlp = 1;
1027 1028
	}

1029 1030
	epsize |= DXEPTSIZ_PKTCNT(packets);
	epsize |= DXEPTSIZ_XFERSIZE(length);
1031 1032 1033 1034 1035 1036 1037

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
	if (using_desc_dma(hsotg)) {
		u32 offset = 0;
		u32 mps = hs_ep->ep.maxpacket;

		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
		if (!dir_in) {
			if (!index)
				length = mps;
			else if (length % mps)
				length += (mps - (length % mps));
		}
1049

1050
		/*
1051 1052 1053
		 * If more data to send, adjust DMA for EP0 out data stage.
		 * ureq->dma stays unchanged, hence increment it by already
		 * passed passed data count before starting new transaction.
1054
		 */
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
		if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
		    continuing)
			offset = ureq->actual;

		/* Fill DDMA chain entries */
		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
						     length);

		/* write descriptor chain address to control register */
		dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
1065

1066 1067 1068 1069 1070 1071
		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
	} else {
		/* write size / packets */
		dwc2_writel(epsize, hsotg->regs + epsize_reg);

1072
		if (using_dma(hsotg) && !continuing && (length != 0)) {
1073 1074 1075 1076
			/*
			 * write DMA address to control register, buffer
			 * already synced by dwc2_hsotg_ep_queue().
			 */
1077

1078 1079 1080 1081 1082
			dwc2_writel(ureq->dma, hsotg->regs + dma_reg);

			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
				__func__, &ureq->dma, dma_reg);
		}
1083 1084
	}

1085 1086 1087 1088 1089 1090 1091 1092 1093 1094
	if (hs_ep->isochronous && hs_ep->interval == 1) {
		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
		dwc2_gadget_incr_frame_num(hs_ep);

		if (hs_ep->target_frame & 0x1)
			ctrl |= DXEPCTL_SETODDFR;
		else
			ctrl |= DXEPCTL_SETEVENFR;
	}

1095
	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
1096

1097
	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1098 1099

	/* For Setup request do not clear NAK */
1100
	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1101
		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1102

1103
	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1104
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
1105

1106 1107
	/*
	 * set these, it seems that DMA support increments past the end
1108
	 * of the packet buffer so we need to calculate the length from
1109 1110
	 * this information.
	 */
1111 1112 1113 1114 1115 1116 1117
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

1118
		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1119 1120
	}

1121 1122 1123 1124
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
1125 1126

	/* check ep is enabled */
1127
	if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
1128
		dev_dbg(hsotg->dev,
1129
			"ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1130
			 index, dwc2_readl(hsotg->regs + epctrl_reg));
1131

1132
	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1133
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
1134 1135

	/* enable ep interrupts */
1136
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1137 1138 1139
}

/**
1140
 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1141 1142 1143 1144 1145 1146 1147 1148 1149
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
1150
 */
1151
static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1152
			      struct dwc2_hsotg_ep *hs_ep,
1153 1154
			     struct usb_request *req)
{
1155
	int ret;
1156

1157 1158 1159
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

1170
static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1171 1172
						 struct dwc2_hsotg_ep *hs_ep,
						 struct dwc2_hsotg_req *hs_req)
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
{
	void *req_buf = hs_req->req.buf;

	/* If dma is not being used or buffer is aligned */
	if (!using_dma(hsotg) || !((long)req_buf & 3))
		return 0;

	WARN_ON(hs_req->saved_req_buf);

	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1183
		hs_ep->ep.name, req_buf, hs_req->req.length);
1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201

	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
	if (!hs_req->req.buf) {
		hs_req->req.buf = req_buf;
		dev_err(hsotg->dev,
			"%s: unable to allocate memory for bounce buffer\n",
			__func__);
		return -ENOMEM;
	}

	/* Save actual buffer */
	hs_req->saved_req_buf = req_buf;

	if (hs_ep->dir_in)
		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
	return 0;
}

1202 1203 1204 1205
static void
dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
					 struct dwc2_hsotg_ep *hs_ep,
					 struct dwc2_hsotg_req *hs_req)
1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
{
	/* If dma is not being used or buffer was aligned */
	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
		return;

	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);

	/* Copy data from bounce buffer on successful out transfer */
	if (!hs_ep->dir_in && !hs_req->req.status)
		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1217
		       hs_req->req.actual);
1218 1219 1220 1221 1222 1223 1224 1225

	/* Free bounce buffer */
	kfree(hs_req->req.buf);

	hs_req->req.buf = hs_req->saved_req_buf;
	hs_req->saved_req_buf = NULL;
}

1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
/**
 * dwc2_gadget_target_frame_elapsed - Checks target frame
 * @hs_ep: The driver endpoint to check
 *
 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
 * corresponding transfer.
 */
static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	u32 target_frame = hs_ep->target_frame;
	u32 current_frame = dwc2_hsotg_read_frameno(hsotg);
	bool frame_overrun = hs_ep->frame_overrun;

	if (!frame_overrun && current_frame >= target_frame)
		return true;

	if (frame_overrun && current_frame >= target_frame &&
	    ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
		return true;

	return false;
}

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
/*
 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
 * @hsotg: The driver state
 * @hs_ep: the ep descriptor chain is for
 *
 * Called to update EP0 structure's pointers depend on stage of
 * control transfer.
 */
static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
					  struct dwc2_hsotg_ep *hs_ep)
{
	switch (hsotg->ep0_state) {
	case DWC2_EP0_SETUP:
	case DWC2_EP0_STATUS_OUT:
		hs_ep->desc_list = hsotg->setup_desc[0];
		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
		break;
	case DWC2_EP0_DATA_IN:
	case DWC2_EP0_STATUS_IN:
		hs_ep->desc_list = hsotg->ctrl_in_desc;
		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
		break;
	case DWC2_EP0_DATA_OUT:
		hs_ep->desc_list = hsotg->ctrl_out_desc;
		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
		break;
	default:
		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
			hsotg->ep0_state);
		return -EINVAL;
	}

	return 0;
}

1285
static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1286
			       gfp_t gfp_flags)
1287
{
1288 1289
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1290
	struct dwc2_hsotg *hs = hs_ep->parent;
1291
	bool first;
1292
	int ret;
1293 1294 1295 1296 1297

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

1298 1299 1300
	/* Prevent new request submission when controller is suspended */
	if (hs->lx_state == DWC2_L2) {
		dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
1301
			__func__);
1302 1303 1304
		return -EAGAIN;
	}

1305 1306 1307 1308 1309
	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

1310
	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1311 1312 1313
	if (ret)
		return ret;

1314 1315
	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
1316
		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1317 1318 1319
		if (ret)
			return ret;
	}
1320 1321 1322 1323 1324 1325
	/* If using descriptor DMA configure EP0 descriptor chain pointers */
	if (using_desc_dma(hs) && !hs_ep->index) {
		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
		if (ret)
			return ret;
	}
1326 1327 1328 1329

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345
	/*
	 * Handle DDMA isochronous transfers separately - just add new entry
	 * to the half of descriptor chain that is not processed by HW.
	 * Transfer will be started once SW gets either one of NAK or
	 * OutTknEpDis interrupts.
	 */
	if (using_desc_dma(hs) && hs_ep->isochronous &&
	    hs_ep->target_frame != TARGET_FRAME_INITIAL) {
		ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
						 hs_req->req.length);
		if (ret)
			dev_dbg(hs->dev, "%s: ISO desc chain full\n", __func__);

		return 0;
	}

1346 1347 1348 1349 1350 1351 1352 1353
	if (first) {
		if (!hs_ep->isochronous) {
			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
			return 0;
		}

		while (dwc2_gadget_target_frame_elapsed(hs_ep))
			dwc2_gadget_incr_frame_num(hs_ep);
1354

1355 1356 1357
		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
	}
1358 1359 1360
	return 0;
}

1361
static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1362
				    gfp_t gfp_flags)
1363
{
1364
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1365
	struct dwc2_hsotg *hs = hs_ep->parent;
1366 1367 1368 1369
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
1370
	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1371 1372 1373 1374 1375
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

1376
static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1377
				       struct usb_request *req)
1378
{
1379
	struct dwc2_hsotg_req *hs_req = our_req(req);
1380 1381 1382 1383 1384

	kfree(hs_req);
}

/**
1385
 * dwc2_hsotg_complete_oursetup - setup completion callback
1386 1387 1388 1389 1390 1391
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
1392
static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1393
					 struct usb_request *req)
1394
{
1395
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1396
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1397 1398 1399

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

1400
	dwc2_hsotg_ep_free_request(ep, req);
1401 1402 1403 1404 1405 1406 1407 1408 1409
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
1410
 */
1411
static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1412
					    u32 windex)
1413
{
1414
	struct dwc2_hsotg_ep *ep;
1415 1416 1417 1418 1419 1420
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

1421
	if (idx > hsotg->num_of_eps)
1422 1423
		return NULL;

1424 1425
	ep = index_to_ep(hsotg, idx, dir);

1426 1427 1428 1429 1430 1431
	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

1432
/**
1433
 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1434 1435 1436 1437
 * @hsotg: The driver state.
 * @testmode: requested usb test mode
 * Enable usb Test Mode requested by the Host.
 */
1438
int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1439
{
1440
	int dctl = dwc2_readl(hsotg->regs + DCTL);
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453

	dctl &= ~DCTL_TSTCTL_MASK;
	switch (testmode) {
	case TEST_J:
	case TEST_K:
	case TEST_SE0_NAK:
	case TEST_PACKET:
	case TEST_FORCE_EN:
		dctl |= testmode << DCTL_TSTCTL_SHIFT;
		break;
	default:
		return -EINVAL;
	}
1454
	dwc2_writel(dctl, hsotg->regs + DCTL);
1455 1456 1457
	return 0;
}

1458
/**
1459
 * dwc2_hsotg_send_reply - send reply to control request
1460 1461 1462 1463 1464 1465 1466 1467
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
1468
static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1469
				 struct dwc2_hsotg_ep *ep,
1470 1471 1472 1473 1474 1475 1476 1477
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

1478
	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1479 1480 1481 1482 1483 1484 1485 1486
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
1487 1488 1489 1490 1491
	/*
	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
	 * STATUS stage.
	 */
	req->zero = 0;
1492
	req->complete = dwc2_hsotg_complete_oursetup;
1493 1494 1495 1496

	if (length)
		memcpy(req->buf, buff, length);

1497
	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1498 1499 1500 1501 1502 1503 1504 1505 1506
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
1507
 * dwc2_hsotg_process_req_status - process request GET_STATUS
1508 1509 1510
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1511
static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1512
					 struct usb_ctrlrequest *ctrl)
1513
{
1514 1515
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_ep *ep;
1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
1528 1529 1530 1531 1532
		/*
		 * bit 0 => self powered
		 * bit 1 => remote wakeup
		 */
		reply = cpu_to_le16(0);
1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

1555
	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1556 1557 1558 1559 1560 1561 1562 1563
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

1564
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1565

1566 1567 1568 1569 1570 1571
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
1572
static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1573
{
1574 1575
	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
					queue);
1576 1577
}

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
/**
 * dwc2_gadget_start_next_request - Starts next request from ep queue
 * @hs_ep: Endpoint structure
 *
 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
 * in its handler. Hence we need to unmask it here to be able to do
 * resynchronization.
 */
static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
{
	u32 mask;
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	struct dwc2_hsotg_req *hs_req;
	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;

	if (!list_empty(&hs_ep->queue)) {
		hs_req = get_ep_head(hs_ep);
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		return;
	}
	if (!hs_ep->isochronous)
		return;

	if (dir_in) {
		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
			__func__);
	} else {
		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
			__func__);
		mask = dwc2_readl(hsotg->regs + epmsk_reg);
		mask |= DOEPMSK_OUTTKNEPDISMSK;
		dwc2_writel(mask, hsotg->regs + epmsk_reg);
	}
}

1614
/**
1615
 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1616 1617 1618
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1619
static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1620
					  struct usb_ctrlrequest *ctrl)
1621
{
1622 1623
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_req *hs_req;
1624
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1625
	struct dwc2_hsotg_ep *ep;
1626
	int ret;
1627
	bool halted;
1628 1629 1630
	u32 recip;
	u32 wValue;
	u32 wIndex;
1631 1632 1633 1634

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
	wValue = le16_to_cpu(ctrl->wValue);
	wIndex = le16_to_cpu(ctrl->wIndex);
	recip = ctrl->bRequestType & USB_RECIP_MASK;

	switch (recip) {
	case USB_RECIP_DEVICE:
		switch (wValue) {
		case USB_DEVICE_TEST_MODE:
			if ((wIndex & 0xff) != 0)
				return -EINVAL;
			if (!set)
				return -EINVAL;

			hsotg->test_mode = wIndex >> 8;
1649
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
			break;
		default:
			return -ENOENT;
		}
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, wIndex);
1663 1664
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1665
				__func__, wIndex);
1666 1667 1668
			return -ENOENT;
		}

1669
		switch (wValue) {
1670
		case USB_ENDPOINT_HALT:
1671 1672
			halted = ep->halted;

1673
			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1674

1675
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1676 1677 1678 1679 1680
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
1681

1682 1683 1684 1685 1686 1687
			/*
			 * we have to complete all requests for ep if it was
			 * halted, and the halt was cleared by CLEAR_FEATURE
			 */

			if (!set && halted) {
1688 1689 1690 1691 1692 1693 1694 1695
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
1696 1697 1698 1699 1700 1701
					if (hs_req->req.complete) {
						spin_unlock(&hsotg->lock);
						usb_gadget_giveback_request(
							&ep->ep, &hs_req->req);
						spin_lock(&hsotg->lock);
					}
1702 1703 1704
				}

				/* If we have pending request, then start it */
J
John Youn 已提交
1705
				if (!ep->req)
1706
					dwc2_gadget_start_next_request(ep);
1707 1708
			}

1709 1710 1711 1712 1713
			break;

		default:
			return -ENOENT;
		}
1714 1715 1716 1717
		break;
	default:
		return -ENOENT;
	}
1718 1719 1720
	return 1;
}

1721
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1722

1723
/**
1724
 * dwc2_hsotg_stall_ep0 - stall ep0
1725 1726 1727 1728
 * @hsotg: The device state
 *
 * Set stall for ep0 as response for setup request.
 */
1729
static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1730
{
1731
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742
	u32 reg;
	u32 ctrl;

	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;

	/*
	 * DxEPCTL_Stall will be cleared by EP once it has
	 * taken effect, so no need to clear later.
	 */

1743
	ctrl = dwc2_readl(hsotg->regs + reg);
1744 1745
	ctrl |= DXEPCTL_STALL;
	ctrl |= DXEPCTL_CNAK;
1746
	dwc2_writel(ctrl, hsotg->regs + reg);
1747 1748

	dev_dbg(hsotg->dev,
1749
		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1750
		ctrl, reg, dwc2_readl(hsotg->regs + reg));
1751 1752 1753 1754 1755

	 /*
	  * complete won't be called, so we enqueue
	  * setup request here
	  */
1756
	 dwc2_hsotg_enqueue_setup(hsotg);
1757 1758
}

1759
/**
1760
 * dwc2_hsotg_process_control - process a control request
1761 1762 1763 1764 1765 1766 1767
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
1768
static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1769
				       struct usb_ctrlrequest *ctrl)
1770
{
1771
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1772 1773 1774
	int ret = 0;
	u32 dcfg;

1775 1776 1777 1778
	dev_dbg(hsotg->dev,
		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
		ctrl->wIndex, ctrl->wLength);
1779

1780 1781 1782 1783
	if (ctrl->wLength == 0) {
		ep0->dir_in = 1;
		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
	} else if (ctrl->bRequestType & USB_DIR_IN) {
1784
		ep0->dir_in = 1;
1785 1786 1787 1788 1789
		hsotg->ep0_state = DWC2_EP0_DATA_IN;
	} else {
		ep0->dir_in = 0;
		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
	}
1790 1791 1792 1793

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1794
			hsotg->connected = 1;
1795
			dcfg = dwc2_readl(hsotg->regs + DCFG);
1796
			dcfg &= ~DCFG_DEVADDR_MASK;
P
Paul Zimmerman 已提交
1797 1798
			dcfg |= (le16_to_cpu(ctrl->wValue) <<
				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1799
			dwc2_writel(dcfg, hsotg->regs + DCFG);
1800 1801 1802

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

1803
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1804 1805 1806
			return;

		case USB_REQ_GET_STATUS:
1807
			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1808 1809 1810 1811
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
1812
			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1813 1814 1815 1816 1817 1818 1819
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
1820
		spin_unlock(&hsotg->lock);
1821
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1822
		spin_lock(&hsotg->lock);
1823 1824 1825 1826
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1827 1828
	/*
	 * the request is either unhandlable, or is not formatted correctly
1829 1830 1831
	 * so respond with a STALL for the status stage to indicate failure.
	 */

1832
	if (ret < 0)
1833
		dwc2_hsotg_stall_ep0(hsotg);
1834 1835 1836
}

/**
1837
 * dwc2_hsotg_complete_setup - completion of a setup transfer
1838 1839 1840 1841 1842 1843
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
1844
static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1845
				      struct usb_request *req)
1846
{
1847
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1848
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1849 1850 1851 1852 1853 1854

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

1855
	spin_lock(&hsotg->lock);
1856
	if (req->actual == 0)
1857
		dwc2_hsotg_enqueue_setup(hsotg);
1858
	else
1859
		dwc2_hsotg_process_control(hsotg, req->buf);
1860
	spin_unlock(&hsotg->lock);
1861 1862 1863
}

/**
1864
 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1865 1866 1867 1868 1869
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
1870
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1871 1872
{
	struct usb_request *req = hsotg->ctrl_req;
1873
	struct dwc2_hsotg_req *hs_req = our_req(req);
1874 1875 1876 1877 1878 1879 1880
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
1881
	req->complete = dwc2_hsotg_complete_setup;
1882 1883 1884 1885 1886 1887

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

1888
	hsotg->eps_out[0]->dir_in = 0;
1889
	hsotg->eps_out[0]->send_zlp = 0;
1890
	hsotg->ep0_state = DWC2_EP0_SETUP;
1891

1892
	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1893 1894
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1895 1896 1897 1898
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1899 1900 1901
	}
}

1902
static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
1903
				   struct dwc2_hsotg_ep *hs_ep)
1904 1905 1906 1907 1908 1909
{
	u32 ctrl;
	u8 index = hs_ep->index;
	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);

1910 1911
	if (hs_ep->dir_in)
		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1912
			index);
1913 1914
	else
		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1915 1916 1917 1918
			index);
	if (using_desc_dma(hsotg)) {
		/* Not specific buffer needed for ep0 ZLP */
		dma_addr_t dma = hs_ep->desc_list_dma;
1919

1920 1921 1922 1923 1924 1925 1926
		dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
	} else {
		dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
			    DXEPTSIZ_XFERSIZE(0), hsotg->regs +
			    epsiz_reg);
	}
1927

1928
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1929 1930 1931
	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
1932
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1933 1934
}

1935
/**
1936
 * dwc2_hsotg_complete_request - complete a request given to us
1937 1938 1939 1940 1941 1942 1943 1944 1945 1946
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1947
 */
1948
static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1949
					struct dwc2_hsotg_ep *hs_ep,
1950
				       struct dwc2_hsotg_req *hs_req,
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
				       int result)
{
	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1961 1962 1963 1964
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1965 1966 1967 1968

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

1969 1970 1971
	if (using_dma(hsotg))
		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1972
	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1973

1974 1975 1976
	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

1977 1978 1979 1980
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1981 1982

	if (hs_req->req.complete) {
1983
		spin_unlock(&hsotg->lock);
1984
		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1985
		spin_lock(&hsotg->lock);
1986 1987
	}

1988 1989 1990 1991
	/* In DDMA don't need to proceed to starting of next ISOC request */
	if (using_desc_dma(hsotg) && hs_ep->isochronous)
		return;

1992 1993
	/*
	 * Look to see if there is anything else to do. Note, the completion
1994
	 * of the previous request may have caused a new request to be started
1995 1996
	 * so be careful when doing this.
	 */
1997

J
John Youn 已提交
1998
	if (!hs_ep->req && result >= 0)
1999
		dwc2_gadget_start_next_request(hs_ep);
2000 2001
}

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
/*
 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
 * @hs_ep: The endpoint the request was on.
 *
 * Get first request from the ep queue, determine descriptor on which complete
 * happened. SW based on isoc_chain_num discovers which half of the descriptor
 * chain is currently in use by HW, adjusts dma_address and calculates index
 * of completed descriptor based on the value of DEPDMA register. Update actual
 * length of request, giveback to gadget.
 */
static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	struct dwc2_hsotg_req *hs_req;
	struct usb_request *ureq;
	int index;
	dma_addr_t dma_addr;
	u32 dma_reg;
	u32 depdma;
	u32 desc_sts;
	u32 mask;

	hs_req = get_ep_head(hs_ep);
	if (!hs_req) {
		dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
		return;
	}
	ureq = &hs_req->req;

	dma_addr = hs_ep->desc_list_dma;

	/*
	 * If lower half of  descriptor chain is currently use by SW,
	 * that means higher half is being processed by HW, so shift
	 * DMA address to higher half of descriptor chain.
	 */
	if (!hs_ep->isoc_chain_num)
		dma_addr += sizeof(struct dwc2_dma_desc) *
			    (MAX_DMA_DESC_NUM_GENERIC / 2);

	dma_reg = hs_ep->dir_in ? DIEPDMA(hs_ep->index) : DOEPDMA(hs_ep->index);
	depdma = dwc2_readl(hsotg->regs + dma_reg);

	index = (depdma - dma_addr) / sizeof(struct dwc2_dma_desc) - 1;
	desc_sts = hs_ep->desc_list[index].status;

	mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
	       DEV_DMA_ISOC_RX_NBYTES_MASK;
	ureq->actual = ureq->length -
		       ((desc_sts & mask) >> DEV_DMA_ISOC_NBYTES_SHIFT);

2053 2054 2055 2056
	/* Adjust actual length for ISOC Out if length is not align of 4 */
	if (!hs_ep->dir_in && ureq->length & 0x3)
		ureq->actual += 4 - (ureq->length & 0x3);

2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
}

/*
 * dwc2_gadget_start_next_isoc_ddma - start next isoc request, if any.
 * @hs_ep: The isochronous endpoint to be re-enabled.
 *
 * If ep has been disabled due to last descriptor servicing (IN endpoint) or
 * BNA (OUT endpoint) check the status of other half of descriptor chain that
 * was under SW control till HW was busy and restart the endpoint if needed.
 */
static void dwc2_gadget_start_next_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	u32 depctl;
	u32 dma_reg;
	u32 ctrl;
	u32 dma_addr = hs_ep->desc_list_dma;
	unsigned char index = hs_ep->index;

	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);

	ctrl = dwc2_readl(hsotg->regs + depctl);

	/*
	 * EP was disabled if HW has processed last descriptor or BNA was set.
	 * So restart ep if SW has prepared new descriptor chain in ep_queue
	 * routine while HW was busy.
	 */
	if (!(ctrl & DXEPCTL_EPENA)) {
		if (!hs_ep->next_desc) {
			dev_dbg(hsotg->dev, "%s: No more ISOC requests\n",
				__func__);
			return;
		}

		dma_addr += sizeof(struct dwc2_dma_desc) *
			    (MAX_DMA_DESC_NUM_GENERIC / 2) *
			    hs_ep->isoc_chain_num;
		dwc2_writel(dma_addr, hsotg->regs + dma_reg);

		ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
		dwc2_writel(ctrl, hsotg->regs + depctl);

		/* Switch ISOC descriptor chain number being processed by SW*/
		hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
		hs_ep->next_desc = 0;

		dev_dbg(hsotg->dev, "%s: Restarted isochronous endpoint\n",
			__func__);
	}
}

2111
/**
2112
 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2113 2114 2115 2116 2117 2118 2119 2120
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
2121
static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2122
{
2123 2124
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2125
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
2126 2127 2128 2129 2130
	int to_read;
	int max_req;
	int read_ptr;

	if (!hs_req) {
2131
		u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
2132 2133
		int ptr;

2134
		dev_dbg(hsotg->dev,
2135
			"%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2136 2137 2138 2139
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
2140
			(void)dwc2_readl(fifo);
2141 2142 2143 2144 2145 2146 2147 2148

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

2149 2150 2151
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

2152
	if (to_read > max_req) {
2153 2154
		/*
		 * more data appeared than we where willing
2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

2166 2167 2168 2169
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
2170
	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
2171 2172 2173
}

/**
2174
 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2175
 * @hsotg: The device instance
2176
 * @dir_in: If IN zlp
2177 2178 2179 2180 2181
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
2182
 * currently believed that we do not need to wait for any space in
2183 2184
 * the TxFIFO.
 */
2185
static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2186
{
2187
	/* eps_out[0] is used in both directions */
2188 2189
	hsotg->eps_out[0]->dir_in = dir_in;
	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2190

2191
	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2192 2193
}

2194
static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2195
					    u32 epctl_reg)
2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206
{
	u32 ctrl;

	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
	if (ctrl & DXEPCTL_EOFRNUM)
		ctrl |= DXEPCTL_SETEVENFR;
	else
		ctrl |= DXEPCTL_SETODDFR;
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
}

2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236
/*
 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
 * @hs_ep - The endpoint on which transfer went
 *
 * Iterate over endpoints descriptor chain and get info on bytes remained
 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
 */
static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	unsigned int bytes_rem = 0;
	struct dwc2_dma_desc *desc = hs_ep->desc_list;
	int i;
	u32 status;

	if (!desc)
		return -EINVAL;

	for (i = 0; i < hs_ep->desc_count; ++i) {
		status = desc->status;
		bytes_rem += status & DEV_DMA_NBYTES_MASK;

		if (status & DEV_DMA_STS_MASK)
			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
				i, status & DEV_DMA_STS_MASK);
	}

	return bytes_rem;
}

2237
/**
2238
 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2239 2240 2241 2242 2243 2244
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
2245
 */
2246
static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2247
{
2248
	u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
2249 2250
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2251
	struct usb_request *req = &hs_req->req;
2252
	unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2253 2254 2255 2256 2257 2258 2259
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

2260 2261
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
2262 2263
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
		dwc2_hsotg_enqueue_setup(hsotg);
2264 2265 2266
		return;
	}

2267 2268 2269
	if (using_desc_dma(hsotg))
		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);

2270
	if (using_dma(hsotg)) {
2271
		unsigned int size_done;
2272

2273 2274
		/*
		 * Calculate the size of the transfer by checking how much
2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

2288 2289
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
2290
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2291 2292 2293
		return;
	}

2294 2295 2296 2297
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

2298 2299 2300 2301
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
2302 2303
	}

2304 2305 2306
	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
	if (!using_desc_dma(hsotg) && epnum == 0 &&
	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2307
		/* Move to STATUS IN */
2308
		dwc2_hsotg_ep0_zlp(hsotg, true);
2309
		return;
2310 2311
	}

2312 2313 2314 2315 2316 2317 2318
	/*
	 * Slave mode OUT transfers do not go through XferComplete so
	 * adjust the ISOC parity here.
	 */
	if (!using_dma(hsotg)) {
		if (hs_ep->isochronous && hs_ep->interval == 1)
			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2319 2320
		else if (hs_ep->isochronous && hs_ep->interval > 1)
			dwc2_gadget_incr_frame_num(hs_ep);
2321 2322
	}

2323
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2324 2325 2326
}

/**
2327
 * dwc2_hsotg_handle_rx - RX FIFO has data
2328 2329 2330 2331 2332 2333
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
2334
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2335 2336 2337 2338 2339 2340 2341
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
2342
static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2343
{
2344
	u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
2345 2346 2347 2348
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

2349 2350
	epnum = grxstsr & GRXSTS_EPNUM_MASK;
	status = grxstsr & GRXSTS_PKTSTS_MASK;
2351

2352 2353
	size = grxstsr & GRXSTS_BYTECNT_MASK;
	size >>= GRXSTS_BYTECNT_SHIFT;
2354

2355
	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2356
		__func__, grxstsr, size, epnum);
2357

2358 2359 2360
	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
	case GRXSTS_PKTSTS_GLOBALOUTNAK:
		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2361 2362
		break;

2363
	case GRXSTS_PKTSTS_OUTDONE:
2364
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2365
			dwc2_hsotg_read_frameno(hsotg));
2366 2367

		if (!using_dma(hsotg))
2368
			dwc2_hsotg_handle_outdone(hsotg, epnum);
2369 2370
		break;

2371
	case GRXSTS_PKTSTS_SETUPDONE:
2372 2373
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2374
			dwc2_hsotg_read_frameno(hsotg),
2375
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2376
		/*
2377
		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2378 2379 2380 2381
		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
		 */
		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2382
			dwc2_hsotg_handle_outdone(hsotg, epnum);
2383 2384
		break;

2385
	case GRXSTS_PKTSTS_OUTRX:
2386
		dwc2_hsotg_rx_data(hsotg, epnum, size);
2387 2388
		break;

2389
	case GRXSTS_PKTSTS_SETUPRX:
2390 2391
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2392
			dwc2_hsotg_read_frameno(hsotg),
2393
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2394

2395 2396
		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);

2397
		dwc2_hsotg_rx_data(hsotg, epnum, size);
2398 2399 2400 2401 2402 2403
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

2404
		dwc2_hsotg_dump(hsotg);
2405 2406 2407 2408 2409
		break;
	}
}

/**
2410
 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2411
 * @mps: The maximum packet size in bytes.
2412
 */
2413
static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2414 2415 2416
{
	switch (mps) {
	case 64:
2417
		return D0EPCTL_MPS_64;
2418
	case 32:
2419
		return D0EPCTL_MPS_32;
2420
	case 16:
2421
		return D0EPCTL_MPS_16;
2422
	case 8:
2423
		return D0EPCTL_MPS_8;
2424 2425 2426 2427 2428 2429 2430 2431
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
2432
 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2433 2434 2435
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
2436
 * @mc: The multicount value
2437 2438 2439 2440
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
2441
static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2442 2443
					unsigned int ep, unsigned int mps,
					unsigned int mc, unsigned int dir_in)
2444
{
2445
	struct dwc2_hsotg_ep *hs_ep;
2446 2447 2448
	void __iomem *regs = hsotg->regs;
	u32 reg;

2449 2450 2451 2452
	hs_ep = index_to_ep(hsotg, ep, dir_in);
	if (!hs_ep)
		return;

2453
	if (ep == 0) {
2454 2455
		u32 mps_bytes = mps;

2456
		/* EP0 is a special case */
2457 2458
		mps = dwc2_hsotg_ep0_mps(mps_bytes);
		if (mps > 3)
2459
			goto bad_mps;
2460
		hs_ep->ep.maxpacket = mps_bytes;
2461
		hs_ep->mc = 1;
2462
	} else {
2463
		if (mps > 1024)
2464
			goto bad_mps;
2465 2466
		hs_ep->mc = mc;
		if (mc > 3)
2467
			goto bad_mps;
2468
		hs_ep->ep.maxpacket = mps;
2469 2470
	}

2471
	if (dir_in) {
2472
		reg = dwc2_readl(regs + DIEPCTL(ep));
2473
		reg &= ~DXEPCTL_MPS_MASK;
2474
		reg |= mps;
2475
		dwc2_writel(reg, regs + DIEPCTL(ep));
2476
	} else {
2477
		reg = dwc2_readl(regs + DOEPCTL(ep));
2478
		reg &= ~DXEPCTL_MPS_MASK;
2479
		reg |= mps;
2480
		dwc2_writel(reg, regs + DOEPCTL(ep));
2481
	}
2482 2483 2484 2485 2486 2487 2488

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

2489
/**
2490
 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2491 2492 2493
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
2494
static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2495 2496 2497 2498
{
	int timeout;
	int val;

2499 2500
	dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
		    hsotg->regs + GRSTCTL);
2501 2502 2503 2504 2505

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
2506
		val = dwc2_readl(hsotg->regs + GRSTCTL);
2507

2508
		if ((val & (GRSTCTL_TXFFLSH)) == 0)
2509 2510 2511 2512 2513 2514
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
2515
			break;
2516 2517 2518 2519 2520
		}

		udelay(1);
	}
}
2521 2522

/**
2523
 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2524 2525 2526 2527 2528 2529
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
2530
static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2531
			    struct dwc2_hsotg_ep *hs_ep)
2532
{
2533
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2534

2535 2536 2537 2538 2539 2540
	if (!hs_ep->dir_in || !hs_req) {
		/**
		 * if request is not enqueued, we disable interrupts
		 * for endpoints, excepting ep0
		 */
		if (hs_ep->index != 0)
2541
			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2542
					      hs_ep->dir_in, 0);
2543
		return 0;
2544
	}
2545 2546 2547 2548

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
2549
		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2550 2551 2552 2553 2554 2555
	}

	return 0;
}

/**
2556
 * dwc2_hsotg_complete_in - complete IN transfer
2557 2558 2559 2560 2561 2562
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
2563
static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2564
				   struct dwc2_hsotg_ep *hs_ep)
2565
{
2566
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2567
	u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
2568 2569 2570 2571 2572 2573 2574
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

2575
	/* Finish ZLP handling for IN EP0 transactions */
2576 2577
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
		dev_dbg(hsotg->dev, "zlp packet sent\n");
2578 2579 2580 2581 2582 2583 2584

		/*
		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
		 * changed to IN. Change back to complete OUT transfer request
		 */
		hs_ep->dir_in = 0;

2585
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2586 2587 2588
		if (hsotg->test_mode) {
			int ret;

2589
			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2590 2591
			if (ret < 0) {
				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2592
					hsotg->test_mode);
2593
				dwc2_hsotg_stall_ep0(hsotg);
2594 2595 2596
				return;
			}
		}
2597
		dwc2_hsotg_enqueue_setup(hsotg);
2598 2599 2600
		return;
	}

2601 2602
	/*
	 * Calculate the size of the transfer by checking how much is left
2603 2604 2605 2606 2607 2608 2609
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */
2610 2611 2612 2613 2614 2615 2616 2617
	if (using_desc_dma(hsotg)) {
		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
		if (size_left < 0)
			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
				size_left);
	} else {
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
	}
2618 2619 2620 2621 2622 2623 2624 2625 2626

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
2627 2628 2629
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

2630 2631
	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2632
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2633 2634 2635
		return;
	}

2636
	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
2637
	if (hs_ep->send_zlp) {
2638
		dwc2_hsotg_program_zlp(hsotg, hs_ep);
2639
		hs_ep->send_zlp = 0;
2640 2641 2642 2643
		/* transfer will be completed on next complete interrupt */
		return;
	}

2644 2645
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
		/* Move to STATUS OUT */
2646
		dwc2_hsotg_ep0_zlp(hsotg, false);
2647 2648 2649
		return;
	}

2650
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2651 2652
}

2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
/**
 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
 * @hsotg: The device state.
 * @idx: Index of ep.
 * @dir_in: Endpoint direction 1-in 0-out.
 *
 * Reads for endpoint with given index and direction, by masking
 * epint_reg with coresponding mask.
 */
static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
					  unsigned int idx, int dir_in)
{
	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 ints;
	u32 mask;
	u32 diepempmsk;

	mask = dwc2_readl(hsotg->regs + epmsk_reg);
	diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK);
	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
	mask |= DXEPINT_SETUP_RCVD;

	ints = dwc2_readl(hsotg->regs + epint_reg);
	ints &= mask;
	return ints;
}

2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
/**
 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
 * @hs_ep: The endpoint on which interrupt is asserted.
 *
 * This interrupt indicates that the endpoint has been disabled per the
 * application's request.
 *
 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
 * in case of ISOC completes current request.
 *
 * For ISOC-OUT endpoints completes expired requests. If there is remaining
 * request starts it.
 */
static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	struct dwc2_hsotg_req *hs_req;
	unsigned char idx = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	int dctl = dwc2_readl(hsotg->regs + DCTL);

	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

	if (dir_in) {
		int epctl = dwc2_readl(hsotg->regs + epctl_reg);

		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);

		if (hs_ep->isochronous) {
			dwc2_hsotg_complete_in(hsotg, hs_ep);
			return;
		}

		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
			int dctl = dwc2_readl(hsotg->regs + DCTL);

			dctl |= DCTL_CGNPINNAK;
			dwc2_writel(dctl, hsotg->regs + DCTL);
		}
		return;
	}

	if (dctl & DCTL_GOUTNAKSTS) {
		dctl |= DCTL_CGOUTNAK;
		dwc2_writel(dctl, hsotg->regs + DCTL);
	}

	if (!hs_ep->isochronous)
		return;

	if (list_empty(&hs_ep->queue)) {
		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
			__func__, hs_ep);
		return;
	}

	do {
		hs_req = get_ep_head(hs_ep);
		if (hs_req)
			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
						    -ENODATA);
		dwc2_gadget_incr_frame_num(hs_ep);
	} while (dwc2_gadget_target_frame_elapsed(hs_ep));

	dwc2_gadget_start_next_request(hs_ep);
}

2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
/**
 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
 * @hs_ep: The endpoint on which interrupt is asserted.
 *
 * This is starting point for ISOC-OUT transfer, synchronization done with
 * first out token received from host while corresponding EP is disabled.
 *
 * Device does not know initial frame in which out token will come. For this
 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
 * getting this interrupt SW starts calculation for next transfer frame.
 */
static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
{
	struct dwc2_hsotg *hsotg = ep->parent;
	int dir_in = ep->dir_in;
	u32 doepmsk;
2765
	u32 tmp;
2766 2767 2768 2769

	if (dir_in || !ep->isochronous)
		return;

2770 2771 2772 2773 2774 2775
	/*
	 * Store frame in which irq was asserted here, as
	 * it can change while completing request below.
	 */
	tmp = dwc2_hsotg_read_frameno(hsotg);

2776 2777
	dwc2_hsotg_complete_request(hsotg, ep, get_ep_head(ep), -ENODATA);

2778 2779 2780 2781 2782 2783 2784 2785 2786
	if (using_desc_dma(hsotg)) {
		if (ep->target_frame == TARGET_FRAME_INITIAL) {
			/* Start first ISO Out */
			ep->target_frame = tmp;
			dwc2_gadget_start_isoc_ddma(ep);
		}
		return;
	}

2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811
	if (ep->interval > 1 &&
	    ep->target_frame == TARGET_FRAME_INITIAL) {
		u32 dsts;
		u32 ctrl;

		dsts = dwc2_readl(hsotg->regs + DSTS);
		ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
		dwc2_gadget_incr_frame_num(ep);

		ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index));
		if (ep->target_frame & 0x1)
			ctrl |= DXEPCTL_SETODDFR;
		else
			ctrl |= DXEPCTL_SETEVENFR;

		dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index));
	}

	dwc2_gadget_start_next_request(ep);
	doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
	doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
	dwc2_writel(doepmsk, hsotg->regs + DOEPMSK);
}

/**
2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824
 * dwc2_gadget_handle_nak - handle NAK interrupt
 * @hs_ep: The endpoint on which interrupt is asserted.
 *
 * This is starting point for ISOC-IN transfer, synchronization done with
 * first IN token received from host while corresponding EP is disabled.
 *
 * Device does not know when first one token will arrive from host. On first
 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
 * sent in response to that as there was no data in FIFO. SW is basing on this
 * interrupt to obtain frame in which token has come and then based on the
 * interval calculates next frame for transfer.
 */
2825 2826 2827 2828 2829 2830 2831 2832 2833 2834
static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;

	if (!dir_in || !hs_ep->isochronous)
		return;

	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2835 2836 2837 2838 2839 2840

		if (using_desc_dma(hsotg)) {
			dwc2_gadget_start_isoc_ddma(hs_ep);
			return;
		}

2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858
		if (hs_ep->interval > 1) {
			u32 ctrl = dwc2_readl(hsotg->regs +
					      DIEPCTL(hs_ep->index));
			if (hs_ep->target_frame & 0x1)
				ctrl |= DXEPCTL_SETODDFR;
			else
				ctrl |= DXEPCTL_SETEVENFR;

			dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index));
		}

		dwc2_hsotg_complete_request(hsotg, hs_ep,
					    get_ep_head(hs_ep), 0);
	}

	dwc2_gadget_incr_frame_num(hs_ep);
}

2859
/**
2860
 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2861 2862 2863 2864 2865
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
2866
 */
2867
static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2868
			     int dir_in)
2869
{
2870
	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2871 2872 2873
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2874
	u32 ints;
2875
	u32 ctrl;
2876

2877
	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2878
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2879

2880
	/* Clear endpoint interrupts */
2881
	dwc2_writel(ints, hsotg->regs + epint_reg);
2882

2883 2884
	if (!hs_ep) {
		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
2885
			__func__, idx, dir_in ? "in" : "out");
2886 2887 2888
		return;
	}

2889 2890 2891
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

2892 2893 2894 2895
	/* Don't process XferCompl interrupt if it is a setup packet */
	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
		ints &= ~DXEPINT_XFERCOMPL;

2896 2897 2898 2899 2900 2901 2902 2903 2904 2905
	/*
	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
	 * stage and xfercomplete was generated without SETUP phase done
	 * interrupt. SW should parse received setup packet only after host's
	 * exit from setup phase of control transfer.
	 */
	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
		ints &= ~DXEPINT_XFERCOMPL;

2906
	if (ints & DXEPINT_XFERCOMPL) {
2907
		dev_dbg(hsotg->dev,
2908
			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2909 2910
			__func__, dwc2_readl(hsotg->regs + epctl_reg),
			dwc2_readl(hsotg->regs + epsiz_reg));
2911

2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922
		/* In DDMA handle isochronous requests separately */
		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
			dwc2_gadget_complete_isoc_request_ddma(hs_ep);
			/* Try to start next isoc request */
			dwc2_gadget_start_next_isoc_ddma(hs_ep);
		} else if (dir_in) {
			/*
			 * We get OutDone from the FIFO, so we only
			 * need to look at completing IN requests here
			 * if operating slave mode
			 */
2923 2924 2925
			if (hs_ep->isochronous && hs_ep->interval > 1)
				dwc2_gadget_incr_frame_num(hs_ep);

2926
			dwc2_hsotg_complete_in(hsotg, hs_ep);
2927 2928
			if (ints & DXEPINT_NAKINTRPT)
				ints &= ~DXEPINT_NAKINTRPT;
2929

2930
			if (idx == 0 && !hs_ep->req)
2931
				dwc2_hsotg_enqueue_setup(hsotg);
2932
		} else if (using_dma(hsotg)) {
2933 2934 2935 2936
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
2937 2938
			if (hs_ep->isochronous && hs_ep->interval > 1)
				dwc2_gadget_incr_frame_num(hs_ep);
2939

2940
			dwc2_hsotg_handle_outdone(hsotg, idx);
2941 2942 2943
		}
	}

2944 2945
	if (ints & DXEPINT_EPDISBLD)
		dwc2_gadget_handle_ep_disabled(hs_ep);
2946

2947 2948 2949 2950 2951 2952
	if (ints & DXEPINT_OUTTKNEPDIS)
		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);

	if (ints & DXEPINT_NAKINTRPT)
		dwc2_gadget_handle_nak(hs_ep);

2953
	if (ints & DXEPINT_AHBERR)
2954 2955
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

2956
	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2957 2958 2959
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
2960 2961
			/*
			 * this is the notification we've received a
2962 2963
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
2964 2965
			 * the setup here.
			 */
2966 2967 2968 2969

			if (dir_in)
				WARN_ON_ONCE(1);
			else
2970
				dwc2_hsotg_handle_outdone(hsotg, 0);
2971 2972 2973
		}
	}

2974
	if (ints & DXEPINT_STSPHSERCVD) {
2975 2976
		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);

2977 2978 2979 2980 2981
		/* Move to STATUS IN for DDMA */
		if (using_desc_dma(hsotg))
			dwc2_hsotg_ep0_zlp(hsotg, true);
	}

2982
	if (ints & DXEPINT_BACK2BACKSETUP)
2983 2984
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
	if (ints & DXEPINT_BNAINTR) {
		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);

		/*
		 * Try to start next isoc request, if any.
		 * Sometimes the endpoint remains enabled after BNA interrupt
		 * assertion, which is not expected, hence we can enter here
		 * couple of times.
		 */
		if (hs_ep->isochronous)
			dwc2_gadget_start_next_isoc_ddma(hs_ep);
	}

2998
	if (dir_in && !hs_ep->isochronous) {
2999
		/* not sure if this is important, but we'll clear it anyway */
3000
		if (ints & DXEPINT_INTKNTXFEMP) {
3001 3002 3003 3004 3005
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
3006
		if (ints & DXEPINT_INTKNEPMIS) {
3007 3008 3009
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
3010 3011 3012

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
3013
		    ints & DXEPINT_TXFEMP) {
3014 3015
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
3016
			if (!using_dma(hsotg))
3017
				dwc2_hsotg_trytx(hsotg, hs_ep);
3018
		}
3019 3020 3021 3022
	}
}

/**
3023
 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3024 3025 3026 3027
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
3028
 */
3029
static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3030
{
3031
	u32 dsts = dwc2_readl(hsotg->regs + DSTS);
3032
	int ep0_mps = 0, ep_mps = 8;
3033

3034 3035
	/*
	 * This should signal the finish of the enumeration phase
3036
	 * of the USB handshaking, so we should now know what rate
3037 3038
	 * we connected at.
	 */
3039 3040 3041

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

3042 3043
	/*
	 * note, since we're limited by the size of transfer on EP0, and
3044
	 * it seems IN transfers must be a even number of packets we do
3045 3046
	 * not advertise a 64byte MPS on EP0.
	 */
3047 3048

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
3049
	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3050 3051
	case DSTS_ENUMSPD_FS:
	case DSTS_ENUMSPD_FS48:
3052 3053
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
3054
		ep_mps = 1023;
3055 3056
		break;

3057
	case DSTS_ENUMSPD_HS:
3058 3059
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
3060
		ep_mps = 1024;
3061 3062
		break;

3063
	case DSTS_ENUMSPD_LS:
3064
		hsotg->gadget.speed = USB_SPEED_LOW;
3065 3066
		ep0_mps = 8;
		ep_mps = 8;
3067 3068
		/*
		 * note, we don't actually support LS in this driver at the
3069 3070 3071 3072 3073
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
3074 3075
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
3076

3077 3078 3079 3080
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
3081 3082 3083

	if (ep0_mps) {
		int i;
3084
		/* Initialize ep0 for both in and out directions */
3085 3086
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3087 3088
		for (i = 1; i < hsotg->num_of_eps; i++) {
			if (hsotg->eps_in[i])
3089 3090
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
							    0, 1);
3091
			if (hsotg->eps_out[i])
3092 3093
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
							    0, 0);
3094
		}
3095 3096 3097 3098
	}

	/* ensure after enumeration our EP0 is active */

3099
	dwc2_hsotg_enqueue_setup(hsotg);
3100 3101

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3102 3103
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
3115
static void kill_all_requests(struct dwc2_hsotg *hsotg,
3116
			      struct dwc2_hsotg_ep *ep,
3117
			      int result)
3118
{
3119
	struct dwc2_hsotg_req *req, *treq;
3120
	unsigned int size;
3121

3122
	ep->req = NULL;
3123

3124
	list_for_each_entry_safe(req, treq, &ep->queue, queue)
3125
		dwc2_hsotg_complete_request(hsotg, ep, req,
3126
					    result);
3127

3128 3129
	if (!hsotg->dedicated_fifos)
		return;
3130
	size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3131
	if (size < ep->fifo_size)
3132
		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3133 3134 3135
}

/**
3136
 * dwc2_hsotg_disconnect - disconnect service
3137 3138
 * @hsotg: The device state.
 *
3139 3140 3141
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
3142
 */
3143
void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3144
{
3145
	unsigned int ep;
3146

3147 3148 3149 3150
	if (!hsotg->connected)
		return;

	hsotg->connected = 0;
3151
	hsotg->test_mode = 0;
3152 3153 3154 3155

	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
			kill_all_requests(hsotg, hsotg->eps_in[ep],
3156
					  -ESHUTDOWN);
3157 3158
		if (hsotg->eps_out[ep])
			kill_all_requests(hsotg, hsotg->eps_out[ep],
3159
					  -ESHUTDOWN);
3160
	}
3161 3162

	call_gadget(hsotg, disconnect);
3163
	hsotg->lx_state = DWC2_L3;
J
John Stultz 已提交
3164 3165

	usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3166 3167 3168
}

/**
3169
 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3170 3171 3172
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
3173
static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3174
{
3175
	struct dwc2_hsotg_ep *ep;
3176 3177 3178
	int epno, ret;

	/* look through for any more data to transmit */
3179
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3180 3181 3182 3183
		ep = index_to_ep(hsotg, epno, 1);

		if (!ep)
			continue;
3184 3185 3186 3187 3188 3189 3190 3191

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

3192
		ret = dwc2_hsotg_trytx(hsotg, ep);
3193 3194 3195 3196 3197 3198
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
3199 3200 3201
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
			GINTSTS_PTXFEMP |  \
			GINTSTS_RXFLVL)
3202

3203
/**
3204
 * dwc2_hsotg_core_init - issue softreset to the core
3205 3206 3207 3208
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
3209
void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3210
				       bool is_usb_reset)
3211
{
3212
	u32 intmsk;
3213
	u32 val;
3214
	u32 usbcfg;
3215
	u32 dcfg = 0;
3216

3217 3218 3219
	/* Kill any ep0 requests as controller will be reinitialized */
	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);

3220
	if (!is_usb_reset)
3221
		if (dwc2_core_reset(hsotg, true))
3222
			return;
3223 3224 3225 3226 3227 3228

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

3229 3230 3231
	/* keep other bits untouched (so e.g. forced modes are not lost) */
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
3232
		GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
3233

3234
	if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS &&
3235 3236
	    (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
	     hsotg->params.speed == DWC2_SPEED_PARAM_LOW)) {
3237 3238 3239 3240 3241 3242 3243 3244
		/* FS/LS Dedicated Transceiver Interface */
		usbcfg |= GUSBCFG_PHYSEL;
	} else {
		/* set the PLL on, remove the HNP/SRP and set the PHY */
		val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
		usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
			(val << GUSBCFG_USBTRDTIM_SHIFT);
	}
3245
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3246

3247
	dwc2_hsotg_init_fifo(hsotg);
3248

3249 3250
	if (!is_usb_reset)
		__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3251

3252
	dcfg |= DCFG_EPMISCNT(1);
3253 3254 3255 3256 3257 3258

	switch (hsotg->params.speed) {
	case DWC2_SPEED_PARAM_LOW:
		dcfg |= DCFG_DEVSPD_LS;
		break;
	case DWC2_SPEED_PARAM_FULL:
3259 3260 3261 3262
		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
			dcfg |= DCFG_DEVSPD_FS48;
		else
			dcfg |= DCFG_DEVSPD_FS;
3263 3264
		break;
	default:
3265 3266
		dcfg |= DCFG_DEVSPD_HS;
	}
3267

3268
	dwc2_writel(dcfg,  hsotg->regs + DCFG);
3269 3270

	/* Clear any pending OTG interrupts */
3271
	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
3272 3273

	/* Clear any pending interrupts */
3274
	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
3275
	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3276
		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3277 3278
		GINTSTS_USBRST | GINTSTS_RESETDET |
		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3279 3280 3281 3282
		GINTSTS_USBSUSP | GINTSTS_WKUPINT;

	if (!using_desc_dma(hsotg))
		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3283

J
John Youn 已提交
3284
	if (!hsotg->params.external_id_pin_ctl)
3285 3286 3287
		intmsk |= GINTSTS_CONIDSTSCHNG;

	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
3288

3289
	if (using_dma(hsotg)) {
3290 3291 3292
		dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
			    (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
			    hsotg->regs + GAHBCFG);
3293 3294 3295 3296 3297 3298

		/* Set DDMA mode support in the core if needed */
		if (using_desc_dma(hsotg))
			__orr32(hsotg->regs + DCFG, DCFG_DESCDMA_EN);

	} else {
3299 3300 3301 3302
		dwc2_writel(((hsotg->dedicated_fifos) ?
						(GAHBCFG_NP_TXF_EMP_LVL |
						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
			    GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
3303
	}
3304 3305

	/*
3306 3307 3308
	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
	 * when we have no data to transfer. Otherwise we get being flooded by
	 * interrupts.
3309 3310
	 */

3311
	dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3312
		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3313
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3314
		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3315
		hsotg->regs + DIEPMSK);
3316 3317 3318

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3319
	 * DMA mode we may need this and StsPhseRcvd.
3320
	 */
3321 3322
	dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
		DOEPMSK_STSPHSERCVDMSK) : 0) |
3323
		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3324
		DOEPMSK_SETUPMSK,
3325
		hsotg->regs + DOEPMSK);
3326

3327 3328 3329 3330
	/* Enable BNA interrupt for DDMA */
	if (using_desc_dma(hsotg))
		__orr32(hsotg->regs + DOEPMSK, DOEPMSK_BNAMSK);

3331
	dwc2_writel(0, hsotg->regs + DAINTMSK);
3332 3333

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3334 3335
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
3336 3337

	/* enable in and out endpoint interrupts */
3338
	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3339 3340 3341 3342 3343 3344 3345

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
3346
		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3347 3348

	/* Enable interrupts for EP0 in and out */
3349 3350
	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3351

3352 3353 3354 3355 3356
	if (!is_usb_reset) {
		__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
		udelay(10);  /* see openiboot */
		__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
	}
3357

3358
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
3359 3360

	/*
3361
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3362 3363 3364 3365
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
3366
	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3367
	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
3368

3369
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3370 3371
	       DXEPCTL_CNAK | DXEPCTL_EPENA |
	       DXEPCTL_USBACTEP,
3372
	       hsotg->regs + DOEPCTL0);
3373 3374

	/* enable, but don't activate EP0in */
3375
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3376
	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
3377

3378
	dwc2_hsotg_enqueue_setup(hsotg);
3379 3380

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3381 3382
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
3383 3384

	/* clear global NAKs */
3385 3386 3387 3388
	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
	if (!is_usb_reset)
		val |= DCTL_SFTDISCON;
	__orr32(hsotg->regs + DCTL, val);
3389 3390 3391 3392

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

3393
	hsotg->lx_state = DWC2_L0;
3394 3395
}

3396
static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3397 3398 3399 3400
{
	/* set the soft-disconnect bit */
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
}
3401

3402
void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3403
{
3404
	/* remove the soft-disconnect and let's go */
3405
	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3406 3407
}

3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
/**
 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
 * @hsotg: The device state:
 *
 * This interrupt indicates one of the following conditions occurred while
 * transmitting an ISOC transaction.
 * - Corrupted IN Token for ISOC EP.
 * - Packet not complete in FIFO.
 *
 * The following actions will be taken:
 * - Determine the EP
 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
 */
static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
{
	struct dwc2_hsotg_ep *hs_ep;
	u32 epctrl;
	u32 idx;

	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");

	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
		hs_ep = hsotg->eps_in[idx];
		epctrl = dwc2_readl(hsotg->regs + DIEPCTL(idx));
		if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
			epctrl |= DXEPCTL_SNAK;
			epctrl |= DXEPCTL_EPDIS;
			dwc2_writel(epctrl, hsotg->regs + DIEPCTL(idx));
		}
	}

	/* Clear interrupt */
	dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
}

/**
 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
 * @hsotg: The device state:
 *
 * This interrupt indicates one of the following conditions occurred while
 * transmitting an ISOC transaction.
 * - Corrupted OUT Token for ISOC EP.
 * - Packet not complete in FIFO.
 *
 * The following actions will be taken:
 * - Determine the EP
 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
 */
static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
{
	u32 gintsts;
	u32 gintmsk;
	u32 epctrl;
	struct dwc2_hsotg_ep *hs_ep;
	int idx;

	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);

	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
		hs_ep = hsotg->eps_out[idx];
		epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
		if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
			/* Unmask GOUTNAKEFF interrupt */
			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
			gintmsk |= GINTSTS_GOUTNAKEFF;
			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);

			gintsts = dwc2_readl(hsotg->regs + GINTSTS);
			if (!(gintsts & GINTSTS_GOUTNAKEFF))
				__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
		}
	}

	/* Clear interrupt */
	dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
}

3487
/**
3488
 * dwc2_hsotg_irq - handle device interrupt
3489 3490 3491
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
3492
static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3493
{
3494
	struct dwc2_hsotg *hsotg = pw;
3495 3496 3497 3498
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

3499 3500 3501
	if (!dwc2_is_device_mode(hsotg))
		return IRQ_NONE;

3502
	spin_lock(&hsotg->lock);
3503
irq_retry:
3504 3505
	gintsts = dwc2_readl(hsotg->regs + GINTSTS);
	gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3506 3507 3508 3509 3510 3511

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536
	if (gintsts & GINTSTS_RESETDET) {
		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);

		dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);

		/* This event must be used only if controller is suspended */
		if (hsotg->lx_state == DWC2_L2) {
			dwc2_exit_hibernation(hsotg, true);
			hsotg->lx_state = DWC2_L0;
		}
	}

	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
		u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
		u32 connected = hsotg->connected;

		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
			dwc2_readl(hsotg->regs + GNPTXSTS));

		dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);

		/* Report disconnection if it is not already done. */
		dwc2_hsotg_disconnect(hsotg);

3537 3538 3539
		/* Reset device address to zero */
		__bic32(hsotg->regs + DCFG, DCFG_DEVADDR_MASK);

3540 3541 3542 3543
		if (usb_status & GOTGCTL_BSESVLD && connected)
			dwc2_hsotg_core_init_disconnected(hsotg, true);
	}

3544
	if (gintsts & GINTSTS_ENUMDONE) {
3545
		dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
3546

3547
		dwc2_hsotg_irq_enumdone(hsotg);
3548 3549
	}

3550
	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3551 3552
		u32 daint = dwc2_readl(hsotg->regs + DAINT);
		u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3553
		u32 daint_out, daint_in;
3554 3555
		int ep;

3556
		daint &= daintmsk;
3557 3558
		daint_out = daint >> DAINT_OUTEP_SHIFT;
		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3559

3560 3561
		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

3562 3563
		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
						ep++, daint_out >>= 1) {
3564
			if (daint_out & 1)
3565
				dwc2_hsotg_epint(hsotg, ep, 0);
3566 3567
		}

3568 3569
		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
						ep++, daint_in >>= 1) {
3570
			if (daint_in & 1)
3571
				dwc2_hsotg_epint(hsotg, ep, 1);
3572 3573 3574 3575 3576
		}
	}

	/* check both FIFOs */

3577
	if (gintsts & GINTSTS_NPTXFEMP) {
3578 3579
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

3580 3581
		/*
		 * Disable the interrupt to stop it happening again
3582
		 * unless one of these endpoint routines decides that
3583 3584
		 * it needs re-enabling
		 */
3585

3586 3587
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, false);
3588 3589
	}

3590
	if (gintsts & GINTSTS_PTXFEMP) {
3591 3592
		dev_dbg(hsotg->dev, "PTxFEmp\n");

3593
		/* See note in GINTSTS_NPTxFEmp */
3594

3595 3596
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, true);
3597 3598
	}

3599
	if (gintsts & GINTSTS_RXFLVL) {
3600 3601
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3602
		 * we need to retry dwc2_hsotg_handle_rx if this is still
3603 3604
		 * set.
		 */
3605

3606
		dwc2_hsotg_handle_rx(hsotg);
3607 3608
	}

3609
	if (gintsts & GINTSTS_ERLYSUSP) {
3610
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3611
		dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
3612 3613
	}

3614 3615
	/*
	 * these next two seem to crop-up occasionally causing the core
3616
	 * to shutdown the USB transfer, so try clearing them and logging
3617 3618
	 * the occurrence.
	 */
3619

3620
	if (gintsts & GINTSTS_GOUTNAKEFF) {
3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641
		u8 idx;
		u32 epctrl;
		u32 gintmsk;
		struct dwc2_hsotg_ep *hs_ep;

		/* Mask this interrupt */
		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
		gintmsk &= ~GINTSTS_GOUTNAKEFF;
		dwc2_writel(gintmsk, hsotg->regs + GINTMSK);

		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
		for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
			hs_ep = hsotg->eps_out[idx];
			epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));

			if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
				epctrl |= DXEPCTL_SNAK;
				epctrl |= DXEPCTL_EPDIS;
				dwc2_writel(epctrl, hsotg->regs + DOEPCTL(idx));
			}
		}
3642

3643
		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3644 3645
	}

3646
	if (gintsts & GINTSTS_GINNAKEFF) {
3647 3648
		dev_info(hsotg->dev, "GINNakEff triggered\n");

3649
		__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3650

3651
		dwc2_hsotg_dump(hsotg);
3652 3653
	}

3654 3655
	if (gintsts & GINTSTS_INCOMPL_SOIN)
		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
3656

3657 3658
	if (gintsts & GINTSTS_INCOMPL_SOOUT)
		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
3659

3660 3661 3662 3663
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
3664 3665

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3666
		goto irq_retry;
3667

3668 3669
	spin_unlock(&hsotg->lock);

3670 3671 3672
	return IRQ_HANDLED;
}

3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761
static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg,
				   u32 bit, u32 timeout)
{
	u32 i;

	for (i = 0; i < timeout; i++) {
		if (dwc2_readl(hs_otg->regs + reg) & bit)
			return 0;
		udelay(1);
	}

	return -ETIMEDOUT;
}

static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
				   struct dwc2_hsotg_ep *hs_ep)
{
	u32 epctrl_reg;
	u32 epint_reg;

	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
		DOEPCTL(hs_ep->index);
	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
		DOEPINT(hs_ep->index);

	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
		hs_ep->name);

	if (hs_ep->dir_in) {
		if (hsotg->dedicated_fifos || hs_ep->periodic) {
			__orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
			/* Wait for Nak effect */
			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
						    DXEPINT_INEPNAKEFF, 100))
				dev_warn(hsotg->dev,
					 "%s: timeout DIEPINT.NAKEFF\n",
					 __func__);
		} else {
			__orr32(hsotg->regs + DCTL, DCTL_SGNPINNAK);
			/* Wait for Nak effect */
			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
						    GINTSTS_GINNAKEFF, 100))
				dev_warn(hsotg->dev,
					 "%s: timeout GINTSTS.GINNAKEFF\n",
					 __func__);
		}
	} else {
		if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF))
			__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);

		/* Wait for global nak to take effect */
		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
					    GINTSTS_GOUTNAKEFF, 100))
			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
				 __func__);
	}

	/* Disable ep */
	__orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);

	/* Wait for ep to be disabled */
	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
		dev_warn(hsotg->dev,
			 "%s: timeout DOEPCTL.EPDisable\n", __func__);

	/* Clear EPDISBLD interrupt */
	__orr32(hsotg->regs + epint_reg, DXEPINT_EPDISBLD);

	if (hs_ep->dir_in) {
		unsigned short fifo_index;

		if (hsotg->dedicated_fifos || hs_ep->periodic)
			fifo_index = hs_ep->fifo_index;
		else
			fifo_index = 0;

		/* Flush TX FIFO */
		dwc2_flush_tx_fifo(hsotg, fifo_index);

		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
			__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);

	} else {
		/* Remove global NAKs */
		__orr32(hsotg->regs + DCTL, DCTL_CGOUTNAK);
	}
}

3762
/**
3763
 * dwc2_hsotg_ep_enable - enable the given endpoint
3764 3765 3766 3767
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
3768
 */
3769
static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3770
				const struct usb_endpoint_descriptor *desc)
3771
{
3772
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3773
	struct dwc2_hsotg *hsotg = hs_ep->parent;
3774
	unsigned long flags;
3775
	unsigned int index = hs_ep->index;
3776 3777 3778
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
3779
	u32 mc;
3780
	u32 mask;
3781 3782
	unsigned int dir_in;
	unsigned int i, val, size;
3783
	int ret = 0;
3784 3785 3786 3787 3788 3789 3790

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
3791 3792 3793 3794
	if (index == 0) {
		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
		return -EINVAL;
	}
3795 3796 3797 3798 3799 3800 3801

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

3802
	mps = usb_endpoint_maxp(desc);
3803
	mc = usb_endpoint_maxp_mult(desc);
3804

3805
	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3806

3807
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3808
	epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3809 3810 3811 3812

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

3813
	/* Allocate DMA descriptor chain for non-ctrl endpoints */
3814 3815
	if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
		hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
3816 3817
			MAX_DMA_DESC_NUM_GENERIC *
			sizeof(struct dwc2_dma_desc),
3818
			&hs_ep->desc_list_dma, GFP_ATOMIC);
3819 3820 3821 3822 3823 3824
		if (!hs_ep->desc_list) {
			ret = -ENOMEM;
			goto error2;
		}
	}

3825
	spin_lock_irqsave(&hsotg->lock, flags);
3826

3827 3828
	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
	epctrl |= DXEPCTL_MPS(mps);
3829

3830 3831 3832 3833
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
3834
	epctrl |= DXEPCTL_USBACTEP;
3835 3836

	/* update the endpoint state */
3837
	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
3838 3839

	/* default, set to non-periodic */
3840
	hs_ep->isochronous = 0;
3841
	hs_ep->periodic = 0;
3842
	hs_ep->halted = 0;
3843
	hs_ep->interval = desc->bInterval;
3844

3845 3846
	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
3847 3848
		epctrl |= DXEPCTL_EPTYPE_ISO;
		epctrl |= DXEPCTL_SETEVENFR;
3849
		hs_ep->isochronous = 1;
3850
		hs_ep->interval = 1 << (desc->bInterval - 1);
3851
		hs_ep->target_frame = TARGET_FRAME_INITIAL;
3852 3853
		hs_ep->isoc_chain_num = 0;
		hs_ep->next_desc = 0;
3854
		if (dir_in) {
3855
			hs_ep->periodic = 1;
3856 3857 3858 3859 3860 3861 3862 3863
			mask = dwc2_readl(hsotg->regs + DIEPMSK);
			mask |= DIEPMSK_NAKMSK;
			dwc2_writel(mask, hsotg->regs + DIEPMSK);
		} else {
			mask = dwc2_readl(hsotg->regs + DOEPMSK);
			mask |= DOEPMSK_OUTTKNEPDISMSK;
			dwc2_writel(mask, hsotg->regs + DOEPMSK);
		}
3864
		break;
3865 3866

	case USB_ENDPOINT_XFER_BULK:
3867
		epctrl |= DXEPCTL_EPTYPE_BULK;
3868 3869 3870
		break;

	case USB_ENDPOINT_XFER_INT:
3871
		if (dir_in)
3872 3873
			hs_ep->periodic = 1;

3874 3875 3876
		if (hsotg->gadget.speed == USB_SPEED_HIGH)
			hs_ep->interval = 1 << (desc->bInterval - 1);

3877
		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
3878 3879 3880
		break;

	case USB_ENDPOINT_XFER_CONTROL:
3881
		epctrl |= DXEPCTL_EPTYPE_CONTROL;
3882 3883 3884
		break;
	}

3885 3886
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
3887 3888
	 * a unique tx-fifo even if it is non-periodic.
	 */
3889
	if (dir_in && hsotg->dedicated_fifos) {
3890 3891
		u32 fifo_index = 0;
		u32 fifo_size = UINT_MAX;
3892 3893

		size = hs_ep->ep.maxpacket * hs_ep->mc;
3894
		for (i = 1; i < hsotg->num_of_eps; ++i) {
3895
			if (hsotg->fifo_map & (1 << i))
3896
				continue;
3897
			val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
3898
			val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
3899 3900
			if (val < size)
				continue;
3901 3902 3903 3904 3905
			/* Search for smallest acceptable fifo */
			if (val < fifo_size) {
				fifo_size = val;
				fifo_index = i;
			}
3906
		}
3907
		if (!fifo_index) {
3908 3909
			dev_err(hsotg->dev,
				"%s: No suitable fifo found\n", __func__);
3910
			ret = -ENOMEM;
3911
			goto error1;
3912
		}
3913 3914 3915 3916
		hsotg->fifo_map |= 1 << fifo_index;
		epctrl |= DXEPCTL_TXFNUM(fifo_index);
		hs_ep->fifo_index = fifo_index;
		hs_ep->fifo_size = fifo_size;
3917
	}
3918

3919
	/* for non control endpoints, set PID to D0 */
3920
	if (index && !hs_ep->isochronous)
3921
		epctrl |= DXEPCTL_SETD0PID;
3922 3923 3924 3925

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

3926
	dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
3927
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
3928
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
3929 3930

	/* enable the endpoint interrupt */
3931
	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
3932

3933
error1:
3934
	spin_unlock_irqrestore(&hsotg->lock, flags);
3935 3936 3937

error2:
	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
3938
		dmam_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
3939 3940 3941 3942 3943
			sizeof(struct dwc2_dma_desc),
			hs_ep->desc_list, hs_ep->desc_list_dma);
		hs_ep->desc_list = NULL;
	}

3944
	return ret;
3945 3946
}

3947
/**
3948
 * dwc2_hsotg_ep_disable - disable given endpoint
3949 3950
 * @ep: The endpoint to disable.
 */
3951
static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
3952
{
3953
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3954
	struct dwc2_hsotg *hsotg = hs_ep->parent;
3955 3956 3957 3958 3959 3960
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

3961
	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
3962

3963
	if (ep == &hsotg->eps_out[0]->ep) {
3964 3965
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
3966 3967 3968 3969 3970
	}

	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
		dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
		return -EINVAL;
3971 3972
	}

3973
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3974

3975
	spin_lock_irqsave(&hsotg->lock, flags);
3976

3977
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3978 3979 3980 3981

	if (ctrl & DXEPCTL_EPENA)
		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);

3982 3983 3984
	ctrl &= ~DXEPCTL_EPENA;
	ctrl &= ~DXEPCTL_USBACTEP;
	ctrl |= DXEPCTL_SNAK;
3985 3986

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
3987
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
3988 3989

	/* disable endpoint interrupts */
3990
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
3991

3992 3993 3994
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);

3995 3996 3997 3998
	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
	hs_ep->fifo_index = 0;
	hs_ep->fifo_size = 0;

3999
	spin_unlock_irqrestore(&hsotg->lock, flags);
4000 4001 4002 4003 4004 4005 4006
	return 0;
}

/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
4007
 */
4008
static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4009
{
4010
	struct dwc2_hsotg_req *req, *treq;
4011 4012 4013 4014 4015 4016 4017 4018 4019

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

4020
/**
4021
 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4022 4023 4024
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
4025
static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4026
{
4027 4028
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4029
	struct dwc2_hsotg *hs = hs_ep->parent;
4030 4031
	unsigned long flags;

4032
	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4033

4034
	spin_lock_irqsave(&hs->lock, flags);
4035 4036

	if (!on_list(hs_ep, hs_req)) {
4037
		spin_unlock_irqrestore(&hs->lock, flags);
4038 4039 4040
		return -EINVAL;
	}

4041 4042 4043 4044
	/* Dequeue already started request */
	if (req == &hs_ep->req->req)
		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);

4045
	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4046
	spin_unlock_irqrestore(&hs->lock, flags);
4047 4048 4049 4050

	return 0;
}

4051
/**
4052
 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4053 4054
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
4055 4056 4057 4058 4059
 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
 *       the endpoint is busy processing requests.
 *
 * We need to stall the endpoint immediately if request comes from set_feature
 * protocol command handler.
4060
 */
4061
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4062
{
4063
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4064
	struct dwc2_hsotg *hs = hs_ep->parent;
4065 4066 4067
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
4068
	u32 xfertype;
4069 4070 4071

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

4072 4073
	if (index == 0) {
		if (value)
4074
			dwc2_hsotg_stall_ep0(hs);
4075 4076 4077 4078 4079 4080
		else
			dev_warn(hs->dev,
				 "%s: can't clear halt on ep0\n", __func__);
		return 0;
	}

4081 4082 4083 4084 4085
	if (hs_ep->isochronous) {
		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
		return -EINVAL;
	}

4086 4087 4088 4089 4090 4091
	if (!now && value && !list_empty(&hs_ep->queue)) {
		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
			ep->name);
		return -EAGAIN;
	}

4092 4093
	if (hs_ep->dir_in) {
		epreg = DIEPCTL(index);
4094
		epctl = dwc2_readl(hs->regs + epreg);
4095 4096

		if (value) {
4097
			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4098 4099 4100 4101 4102 4103
			if (epctl & DXEPCTL_EPENA)
				epctl |= DXEPCTL_EPDIS;
		} else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4104
			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4105
				epctl |= DXEPCTL_SETD0PID;
4106
		}
4107
		dwc2_writel(epctl, hs->regs + epreg);
4108
	} else {
4109
		epreg = DOEPCTL(index);
4110
		epctl = dwc2_readl(hs->regs + epreg);
4111

J
John Youn 已提交
4112
		if (value) {
4113
			epctl |= DXEPCTL_STALL;
J
John Youn 已提交
4114
		} else {
4115 4116 4117
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4118
			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4119
				epctl |= DXEPCTL_SETD0PID;
4120
		}
4121
		dwc2_writel(epctl, hs->regs + epreg);
4122
	}
4123

4124 4125
	hs_ep->halted = value;

4126 4127 4128
	return 0;
}

4129
/**
4130
 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4131 4132 4133
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
4134
static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4135
{
4136
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4137
	struct dwc2_hsotg *hs = hs_ep->parent;
4138 4139 4140 4141
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
4142
	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4143 4144 4145 4146 4147
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

4148
static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4149 4150 4151 4152 4153 4154 4155
	.enable		= dwc2_hsotg_ep_enable,
	.disable	= dwc2_hsotg_ep_disable,
	.alloc_request	= dwc2_hsotg_ep_alloc_request,
	.free_request	= dwc2_hsotg_ep_free_request,
	.queue		= dwc2_hsotg_ep_queue_lock,
	.dequeue	= dwc2_hsotg_ep_dequeue,
	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
4156
	/* note, don't believe we have any call for the fifo routines */
4157 4158
};

4159
/**
4160
 * dwc2_hsotg_init - initialize the usb core
4161 4162
 * @hsotg: The driver state
 */
4163
static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4164
{
4165
	u32 trdtim;
4166
	u32 usbcfg;
4167 4168
	/* unmask subset of endpoint interrupts */

4169 4170 4171
	dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DIEPMSK);
4172

4173 4174 4175
	dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DOEPMSK);
4176

4177
	dwc2_writel(0, hsotg->regs + DAINTMSK);
4178 4179

	/* Be in disconnected state until gadget is registered */
4180
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
4181 4182 4183 4184

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4185 4186
		dwc2_readl(hsotg->regs + GRXFSIZ),
		dwc2_readl(hsotg->regs + GNPTXFSIZ));
4187

4188
	dwc2_hsotg_init_fifo(hsotg);
4189

4190 4191 4192
	/* keep other bits untouched (so e.g. forced modes are not lost) */
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
4193
		GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
4194

4195
	/* set the PLL on, remove the HNP/SRP and set the PHY */
4196
	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
4197 4198 4199
	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
		(trdtim << GUSBCFG_USBTRDTIM_SHIFT);
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
4200

4201 4202
	if (using_dma(hsotg))
		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
4203 4204
}

4205
/**
4206
 * dwc2_hsotg_udc_start - prepare the udc for work
4207 4208 4209 4210 4211 4212
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
4213
static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4214
				struct usb_gadget_driver *driver)
4215
{
4216
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4217
	unsigned long flags;
4218 4219 4220
	int ret;

	if (!hsotg) {
4221
		pr_err("%s: called with no device\n", __func__);
4222 4223 4224 4225 4226 4227 4228 4229
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

4230
	if (driver->max_speed < USB_SPEED_FULL)
4231 4232
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

4233
	if (!driver->setup) {
4234 4235 4236 4237 4238 4239 4240 4241
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
4242
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4243 4244
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

4245 4246 4247 4248
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
		ret = dwc2_lowlevel_hw_enable(hsotg);
		if (ret)
			goto err;
4249 4250
	}

4251 4252
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4253

4254
	spin_lock_irqsave(&hsotg->lock, flags);
4255 4256 4257 4258 4259
	if (dwc2_hw_is_device(hsotg)) {
		dwc2_hsotg_init(hsotg);
		dwc2_hsotg_core_init_disconnected(hsotg, false);
	}

4260
	hsotg->enabled = 0;
4261 4262
	spin_unlock_irqrestore(&hsotg->lock, flags);

4263
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4264

4265 4266 4267 4268 4269 4270 4271
	return 0;

err:
	hsotg->driver = NULL;
	return ret;
}

4272
/**
4273
 * dwc2_hsotg_udc_stop - stop the udc
4274 4275 4276 4277 4278
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
4279
static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4280
{
4281
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4282
	unsigned long flags = 0;
4283 4284 4285 4286 4287 4288
	int ep;

	if (!hsotg)
		return -ENODEV;

	/* all endpoints should be shutdown */
4289 4290
	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
4291
			dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4292
		if (hsotg->eps_out[ep])
4293
			dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4294
	}
4295

4296 4297
	spin_lock_irqsave(&hsotg->lock, flags);

4298
	hsotg->driver = NULL;
4299
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4300
	hsotg->enabled = 0;
4301

4302 4303
	spin_unlock_irqrestore(&hsotg->lock, flags);

4304 4305
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, NULL);
4306

4307 4308
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		dwc2_lowlevel_hw_disable(hsotg);
4309 4310 4311 4312

	return 0;
}

4313
/**
4314
 * dwc2_hsotg_gadget_getframe - read the frame number
4315 4316 4317 4318
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
4319
static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4320
{
4321
	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4322 4323
}

4324
/**
4325
 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4326 4327 4328 4329 4330
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
4331
static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4332
{
4333
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4334 4335
	unsigned long flags = 0;

4336
	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4337
		hsotg->op_state);
4338 4339 4340 4341 4342 4343

	/* Don't modify pullup state while in host mode */
	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
		hsotg->enabled = is_on;
		return 0;
	}
4344 4345 4346

	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
4347
		hsotg->enabled = 1;
4348 4349
		dwc2_hsotg_core_init_disconnected(hsotg, false);
		dwc2_hsotg_core_connect(hsotg);
4350
	} else {
4351 4352
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
4353
		hsotg->enabled = 0;
4354 4355 4356 4357 4358 4359 4360 4361
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return 0;
}

4362
static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4363 4364 4365 4366 4367 4368 4369
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
	unsigned long flags;

	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
	spin_lock_irqsave(&hsotg->lock, flags);

4370 4371 4372 4373 4374 4375 4376
	/*
	 * If controller is hibernated, it must exit from hibernation
	 * before being initialized / de-initialized
	 */
	if (hsotg->lx_state == DWC2_L2)
		dwc2_exit_hibernation(hsotg, false);

4377
	if (is_active) {
4378
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4379

4380
		dwc2_hsotg_core_init_disconnected(hsotg, false);
4381
		if (hsotg->enabled)
4382
			dwc2_hsotg_core_connect(hsotg);
4383
	} else {
4384 4385
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
4386 4387 4388 4389 4390 4391
	}

	spin_unlock_irqrestore(&hsotg->lock, flags);
	return 0;
}

4392
/**
4393
 * dwc2_hsotg_vbus_draw - report bMaxPower field
4394 4395 4396 4397 4398
 * @gadget: The usb gadget state
 * @mA: Amount of current
 *
 * Report how much power the device may consume to the phy.
 */
4399
static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4400 4401 4402 4403 4404 4405 4406 4407
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);

	if (IS_ERR_OR_NULL(hsotg->uphy))
		return -ENOTSUPP;
	return usb_phy_set_power(hsotg->uphy, mA);
}

4408 4409 4410 4411 4412 4413 4414
static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
	.get_frame	= dwc2_hsotg_gadget_getframe,
	.udc_start		= dwc2_hsotg_udc_start,
	.udc_stop		= dwc2_hsotg_udc_stop,
	.pullup                 = dwc2_hsotg_pullup,
	.vbus_session		= dwc2_hsotg_vbus_session,
	.vbus_draw		= dwc2_hsotg_vbus_draw,
4415 4416 4417
};

/**
4418
 * dwc2_hsotg_initep - initialise a single endpoint
4419 4420 4421 4422 4423 4424 4425 4426
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
4427
static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4428
			      struct dwc2_hsotg_ep *hs_ep,
4429 4430
				       int epnum,
				       bool dir_in)
4431 4432 4433 4434 4435
{
	char *dir;

	if (epnum == 0)
		dir = "";
4436
	else if (dir_in)
4437
		dir = "in";
4438 4439
	else
		dir = "out";
4440

4441
	hs_ep->dir_in = dir_in;
4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454
	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
4455 4456 4457 4458 4459 4460

	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
	else
		usb_ep_set_maxpacket_limit(&hs_ep->ep,
					   epnum ? 1024 : EP0_MPS_LIMIT);
4461
	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4462

4463 4464 4465
	if (epnum == 0) {
		hs_ep->ep.caps.type_control = true;
	} else {
4466 4467 4468 4469
		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
			hs_ep->ep.caps.type_iso = true;
			hs_ep->ep.caps.type_bulk = true;
		}
4470 4471 4472 4473 4474 4475 4476 4477
		hs_ep->ep.caps.type_int = true;
	}

	if (dir_in)
		hs_ep->ep.caps.dir_in = true;
	else
		hs_ep->ep.caps.dir_out = true;

4478 4479
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
4480 4481 4482 4483
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
4484
		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4485

4486
		if (dir_in)
4487
			dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
4488
		else
4489
			dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
4490 4491 4492
	}
}

4493
/**
4494
 * dwc2_hsotg_hw_cfg - read HW configuration registers
4495 4496 4497 4498
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
4499
static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4500
{
4501 4502 4503 4504
	u32 cfg;
	u32 ep_type;
	u32 i;

4505
	/* check hardware configuration */
4506

4507 4508
	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;

4509 4510
	/* Add ep0 */
	hsotg->num_of_eps++;
4511

4512 4513 4514
	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
					sizeof(struct dwc2_hsotg_ep),
					GFP_KERNEL);
4515 4516
	if (!hsotg->eps_in[0])
		return -ENOMEM;
4517
	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4518 4519
	hsotg->eps_out[0] = hsotg->eps_in[0];

4520
	cfg = hsotg->hw_params.dev_ep_dirs;
4521
	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4522 4523 4524 4525
		ep_type = cfg & 3;
		/* Direction in or both */
		if (!(ep_type & 2)) {
			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4526
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4527 4528 4529 4530 4531 4532
			if (!hsotg->eps_in[i])
				return -ENOMEM;
		}
		/* Direction out or both */
		if (!(ep_type & 1)) {
			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4533
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4534 4535 4536 4537 4538
			if (!hsotg->eps_out[i])
				return -ENOMEM;
		}
	}

4539 4540
	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4541

4542 4543 4544 4545
	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
		 hsotg->num_of_eps,
		 hsotg->dedicated_fifos ? "dedicated" : "shared",
		 hsotg->fifo_mem);
4546
	return 0;
4547 4548
}

4549
/**
4550
 * dwc2_hsotg_dump - dump state of the udc
4551 4552
 * @param: The device state
 */
4553
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4554
{
M
Mark Brown 已提交
4555
#ifdef DEBUG
4556 4557 4558 4559 4560 4561
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4562 4563
		 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
		 dwc2_readl(regs + DIEPMSK));
4564

4565
	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4566
		 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
4567 4568

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4569
		 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
4570 4571 4572

	/* show periodic fifo settings */

4573
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4574
		val = dwc2_readl(regs + DPTXFSIZN(idx));
4575
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4576 4577
			 val >> FIFOSIZE_DEPTH_SHIFT,
			 val & FIFOSIZE_STARTADDR_MASK);
4578 4579
	}

4580
	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4581 4582
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4583 4584 4585
			 dwc2_readl(regs + DIEPCTL(idx)),
			 dwc2_readl(regs + DIEPTSIZ(idx)),
			 dwc2_readl(regs + DIEPDMA(idx)));
4586

4587
		val = dwc2_readl(regs + DOEPCTL(idx));
4588 4589
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4590 4591 4592
			 idx, dwc2_readl(regs + DOEPCTL(idx)),
			 dwc2_readl(regs + DOEPTSIZ(idx)),
			 dwc2_readl(regs + DOEPDMA(idx)));
4593 4594 4595
	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4596
		 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
4597
#endif
4598 4599
}

4600
/**
4601 4602 4603
 * dwc2_gadget_init - init function for gadget
 * @dwc2: The data structure for the DWC2 driver.
 * @irq: The IRQ number for the controller.
4604
 */
4605
int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
4606
{
4607
	struct device *dev = hsotg->dev;
4608 4609
	int epnum;
	int ret;
4610

4611 4612
	/* Dump fifo information */
	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4613 4614
		hsotg->params.g_np_tx_fifo_size);
	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4615

4616
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
4617
	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4618
	hsotg->gadget.name = dev_name(dev);
4619 4620
	if (hsotg->dr_mode == USB_DR_MODE_OTG)
		hsotg->gadget.is_otg = 1;
4621 4622
	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4623

4624
	ret = dwc2_hsotg_hw_cfg(hsotg);
4625 4626
	if (ret) {
		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4627
		return ret;
4628 4629
	}

4630 4631
	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4632
	if (!hsotg->ctrl_buff)
4633
		return -ENOMEM;
4634 4635 4636

	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4637
	if (!hsotg->ep0_buff)
4638
		return -ENOMEM;
4639

4640 4641 4642 4643 4644 4645
	if (using_desc_dma(hsotg)) {
		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
		if (ret < 0)
			return ret;
	}

4646
	ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
4647
			       dev_name(hsotg->dev), hsotg);
4648
	if (ret < 0) {
4649
		dev_err(dev, "cannot claim IRQ for gadget\n");
4650
		return ret;
4651 4652
	}

4653 4654 4655 4656
	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
4657
		return -EINVAL;
4658 4659 4660 4661 4662
	}

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4663
	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4664 4665 4666

	/* allocate EP0 request */

4667
	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4668 4669 4670
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
4671
		return -ENOMEM;
4672
	}
4673 4674

	/* initialise the endpoints now the core has been initialised */
4675 4676
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
		if (hsotg->eps_in[epnum])
4677
			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4678
					  epnum, 1);
4679
		if (hsotg->eps_out[epnum])
4680
			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4681
					  epnum, 0);
4682
	}
4683

4684
	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
4685
	if (ret)
4686
		return ret;
4687

4688
	dwc2_hsotg_dump(hsotg);
4689 4690 4691 4692

	return 0;
}

4693
/**
4694
 * dwc2_hsotg_remove - remove function for hsotg driver
4695 4696
 * @pdev: The platform information for the driver
 */
4697
int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4698
{
4699
	usb_del_gadget_udc(&hsotg->gadget);
4700

4701 4702 4703
	return 0;
}

4704
int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4705 4706 4707
{
	unsigned long flags;

4708
	if (hsotg->lx_state != DWC2_L0)
4709
		return 0;
4710

4711 4712 4713
	if (hsotg->driver) {
		int ep;

4714 4715 4716
		dev_info(hsotg->dev, "suspending usb gadget %s\n",
			 hsotg->driver->driver.name);

4717 4718
		spin_lock_irqsave(&hsotg->lock, flags);
		if (hsotg->enabled)
4719 4720
			dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
4721 4722
		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
		spin_unlock_irqrestore(&hsotg->lock, flags);
4723

4724 4725
		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
			if (hsotg->eps_in[ep])
4726
				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4727
			if (hsotg->eps_out[ep])
4728
				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4729
		}
4730 4731
	}

4732
	return 0;
4733 4734
}

4735
int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4736 4737 4738
{
	unsigned long flags;

4739
	if (hsotg->lx_state == DWC2_L2)
4740
		return 0;
4741

4742 4743 4744
	if (hsotg->driver) {
		dev_info(hsotg->dev, "resuming usb gadget %s\n",
			 hsotg->driver->driver.name);
4745

4746
		spin_lock_irqsave(&hsotg->lock, flags);
4747
		dwc2_hsotg_core_init_disconnected(hsotg, false);
4748
		if (hsotg->enabled)
4749
			dwc2_hsotg_core_connect(hsotg);
4750 4751
		spin_unlock_irqrestore(&hsotg->lock, flags);
	}
4752

4753
	return 0;
4754
}
4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856

/**
 * dwc2_backup_device_registers() - Backup controller device registers.
 * When suspending usb bus, registers needs to be backuped
 * if controller power is disabled once suspended.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Backup dev regs */
	dr = &hsotg->dr_backup;

	dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
	dr->dctl = dwc2_readl(hsotg->regs + DCTL);
	dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
	dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
	dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Backup IN EPs */
		dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));

		/* Ensure DATA PID is correctly configured */
		if (dr->diepctl[i] & DXEPCTL_DPID)
			dr->diepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->diepctl[i] |= DXEPCTL_SETD0PID;

		dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
		dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));

		/* Backup OUT EPs */
		dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));

		/* Ensure DATA PID is correctly configured */
		if (dr->doepctl[i] & DXEPCTL_DPID)
			dr->doepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->doepctl[i] |= DXEPCTL_SETD0PID;

		dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
		dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
	}
	dr->valid = true;
	return 0;
}

/**
 * dwc2_restore_device_registers() - Restore controller device registers.
 * When resuming usb bus, device registers needs to be restored
 * if controller power were disabled.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	u32 dctl;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Restore dev regs */
	dr = &hsotg->dr_backup;
	if (!dr->valid) {
		dev_err(hsotg->dev, "%s: no device registers to restore\n",
			__func__);
		return -EINVAL;
	}
	dr->valid = false;

	dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
	dwc2_writel(dr->dctl, hsotg->regs + DCTL);
	dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
	dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
	dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Restore IN EPs */
		dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
		dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
		dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));

		/* Restore OUT EPs */
		dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
		dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
	}

	/* Set the Power-On Programming done bit */
	dctl = dwc2_readl(hsotg->regs + DCTL);
	dctl |= DCTL_PWRONPRGDONE;
	dwc2_writel(dctl, hsotg->regs + DCTL);

	return 0;
}