gadget.c 105.3 KB
Newer Older
1
/**
2 3
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
4 5 6 7 8 9 10 11 12 13 14
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
15
 */
16 17 18 19 20 21 22

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
23
#include <linux/mutex.h>
24 25 26
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
27
#include <linux/slab.h>
28
#include <linux/of_platform.h>
29 30 31

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
32
#include <linux/usb/phy.h>
33

34
#include "core.h"
35
#include "hw.h"
36 37

/* conversion functions */
38
static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
39
{
40
	return container_of(req, struct dwc2_hsotg_req, req);
41 42
}

43
static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
44
{
45
	return container_of(ep, struct dwc2_hsotg_ep, ep);
46 47
}

48
static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
49
{
50
	return container_of(gadget, struct dwc2_hsotg, gadget);
51 52 53 54
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
55
	dwc2_writel(dwc2_readl(ptr) | val, ptr);
56 57 58 59
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
60
	dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
61 62
}

63
static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
64 65 66 67 68 69 70 71
						u32 ep_index, u32 dir_in)
{
	if (dir_in)
		return hsotg->eps_in[ep_index];
	else
		return hsotg->eps_out[ep_index];
}

72
/* forward declaration of functions */
73
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
92
 * g_using_dma is set depending on dts flag.
93
 */
94
static inline bool using_dma(struct dwc2_hsotg *hsotg)
95
{
96
	return hsotg->g_using_dma;
97 98
}

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
/**
 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
 * @hs_ep: The endpoint
 * @increment: The value to increment by
 *
 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
 */
static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
{
	hs_ep->target_frame += hs_ep->interval;
	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
		hs_ep->frame_overrun = 1;
		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
	} else {
		hs_ep->frame_overrun = 0;
	}
}

118
/**
119
 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
120 121 122
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
123
static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
124
{
125
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
126 127 128 129 130 131
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
132
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
133 134 135 136
	}
}

/**
137
 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
138 139 140
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
141
static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
142
{
143
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
144 145 146 147 148
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
149
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
150 151 152
}

/**
153
 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
154 155 156 157 158 159 160 161
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
162
static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
163 164 165 166 167 168 169 170 171 172 173
				 unsigned int ep, unsigned int dir_in,
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
174
	daint = dwc2_readl(hsotg->regs + DAINTMSK);
175 176 177 178
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
179
	dwc2_writel(daint, hsotg->regs + DAINTMSK);
180 181 182 183
	local_irq_restore(flags);
}

/**
184
 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
185 186
 * @hsotg: The device instance.
 */
187
static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
188
{
189
	unsigned int fifo;
190
	unsigned int addr;
191
	int timeout;
192
	u32 dptxfsizn;
193 194
	u32 val;

195 196 197 198
	/* Reset fifo map if not correctly cleared during previous session */
	WARN_ON(hsotg->fifo_map);
	hsotg->fifo_map = 0;

199
	/* set RX/NPTX FIFO sizes */
200 201
	dwc2_writel(hsotg->g_rx_fifo_sz, hsotg->regs + GRXFSIZ);
	dwc2_writel((hsotg->g_rx_fifo_sz << FIFOSIZE_STARTADDR_SHIFT) |
202 203
		(hsotg->g_np_g_tx_fifo_sz << FIFOSIZE_DEPTH_SHIFT),
		hsotg->regs + GNPTXFSIZ);
204

205 206
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
207 208
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
209 210
	 * known values.
	 */
211 212

	/* start at the end of the GNPTXFSIZ, rounded up */
213
	addr = hsotg->g_rx_fifo_sz + hsotg->g_np_g_tx_fifo_sz;
214

215
	/*
216
	 * Configure fifos sizes from provided configuration and assign
217 218
	 * them to endpoints dynamically according to maxpacket size value of
	 * given endpoint.
219
	 */
220 221
	for (fifo = 1; fifo < MAX_EPS_CHANNELS; fifo++) {
		dptxfsizn = dwc2_readl(hsotg->regs + DPTXFSIZN(fifo));
222 223 224 225 226 227

		val = (dptxfsizn & FIFOSIZE_DEPTH_MASK) | addr;
		addr += dptxfsizn >> FIFOSIZE_DEPTH_SHIFT;

		if (addr > hsotg->fifo_mem)
			break;
228

229
		dwc2_writel(val, hsotg->regs + DPTXFSIZN(fifo));
230
	}
231

232 233 234 235
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
236

237
	dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
238
	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
239 240 241 242

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
243
		val = dwc2_readl(hsotg->regs + GRSTCTL);
244

245
		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
246 247 248 249 250 251
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
252
			break;
253 254 255 256 257 258
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
259 260 261 262 263 264 265 266
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
267
static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
268
						      gfp_t flags)
269
{
270
	struct dwc2_hsotg_req *req;
271

272
	req = kzalloc(sizeof(struct dwc2_hsotg_req), flags);
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
288
static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
289 290 291 292 293
{
	return hs_ep->periodic;
}

/**
294
 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
295 296 297 298
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
299
 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
300
 * of a request to ensure the buffer is ready for access by the caller.
301
 */
302 303 304
static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req)
305 306 307 308 309 310 311
{
	struct usb_request *req = &hs_req->req;

	/* ignore this if we're not moving any data */
	if (hs_req->req.length == 0)
		return;

312
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
313 314 315
}

/**
316
 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
317 318 319 320 321 322 323 324 325 326 327 328 329
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
330
 */
331 332 333
static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req)
334 335
{
	bool periodic = is_ep_periodic(hs_ep);
336
	u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
337 338 339 340 341
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;
342
	int max_transfer;
343 344 345 346 347 348 349

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

350
	if (periodic && !hsotg->dedicated_fifos) {
351
		u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
352 353 354
		int size_left;
		int size_done;

355 356 357 358
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
359

360
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
361

362 363
		/*
		 * if shared fifo, we cannot write anything until the
364 365 366
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
367
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
368 369 370
			return -ENOSPC;
		}

371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
388
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
389 390
			return -ENOSPC;
		}
391
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
392 393
		can_write = dwc2_readl(hsotg->regs +
				DTXFSTS(hs_ep->fifo_index));
394 395 396

		can_write &= 0xffff;
		can_write *= 4;
397
	} else {
398
		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
399 400 401 402
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

403
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
404 405 406
			return -ENOSPC;
		}

407
		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
408
		can_write *= 4;	/* fifo size is in 32bit quantities. */
409 410
	}

411 412 413 414
	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
		 __func__, gnptxsts, can_write, to_write, max_transfer);
415

416 417
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
418 419 420
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
421
	if (can_write > 512 && !periodic)
422 423
		can_write = 512;

424 425
	/*
	 * limit the write to one max-packet size worth of data, but allow
426
	 * the transfer to return that it did not run out of fifo space
427 428
	 * doing it.
	 */
429 430
	if (to_write > max_transfer) {
		to_write = max_transfer;
431

432 433
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
434
			dwc2_hsotg_en_gsint(hsotg,
435 436
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
437 438
	}

439 440 441 442
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
443
		pkt_round = to_write % max_transfer;
444

445 446
		/*
		 * Round the write down to an
447 448 449 450 451 452 453 454 455
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

456 457 458 459
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
460

461 462
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
463
			dwc2_hsotg_en_gsint(hsotg,
464 465
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
		 to_write, hs_req->req.length, can_write, buf_pos);

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

483
	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
484 485 486 487 488 489 490 491 492 493 494

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
495
static unsigned get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
496 497 498 499 500 501
{
	int index = hs_ep->index;
	unsigned maxsize;
	unsigned maxpkt;

	if (index != 0) {
502 503
		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
504
	} else {
505
		maxsize = 64+64;
506
		if (hs_ep->dir_in)
507
			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
508
		else
509 510 511 512 513 514 515
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

516 517 518 519
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
520 521 522 523 524 525 526

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543
/**
* dwc2_hsotg_read_frameno - read current frame number
* @hsotg: The device instance
*
* Return the current frame number
*/
static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
{
	u32 dsts;

	dsts = dwc2_readl(hsotg->regs + DSTS);
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;

	return dsts;
}

544
/**
545
 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
546 547 548 549 550 551 552 553
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
554 555 556
static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req,
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
	unsigned length;
	unsigned packets;
	unsigned maxreq;

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

583 584
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
585 586

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
587
		__func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
588 589
		hs_ep->dir_in ? "in" : "out");

590
	/* If endpoint is stalled, we will restart request later */
591
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
592

593
	if (index && ctrl & DXEPCTL_STALL) {
594 595 596 597
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

598
	length = ureq->length - ureq->actual;
599 600
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620

	maxreq = get_ep_limit(hs_ep);
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

621 622 623 624 625
	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
		return;
	}

626
	if (dir_in && index != 0)
627
		if (hs_ep->isochronous)
628
			epsize = DXEPTSIZ_MC(packets);
629
		else
630
			epsize = DXEPTSIZ_MC(1);
631 632 633
	else
		epsize = 0;

634 635 636 637 638 639 640 641
	/*
	 * zero length packet should be programmed on its own and should not
	 * be counted in DIEPTSIZ.PktCnt with other packets.
	 */
	if (dir_in && ureq->zero && !continuing) {
		/* Test if zlp is actually required. */
		if ((ureq->length >= hs_ep->ep.maxpacket) &&
					!(ureq->length % hs_ep->ep.maxpacket))
642
			hs_ep->send_zlp = 1;
643 644
	}

645 646
	epsize |= DXEPTSIZ_PKTCNT(packets);
	epsize |= DXEPTSIZ_XFERSIZE(length);
647 648 649 650 651 652 653 654

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

	/* write size / packets */
655
	dwc2_writel(epsize, hsotg->regs + epsize_reg);
656

657
	if (using_dma(hsotg) && !continuing) {
658 659
		unsigned int dma_reg;

660 661
		/*
		 * write DMA address to control register, buffer already
662
		 * synced by dwc2_hsotg_ep_queue().
663
		 */
664

665
		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
666
		dwc2_writel(ureq->dma, hsotg->regs + dma_reg);
667

668
		dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
669
			__func__, &ureq->dma, dma_reg);
670 671
	}

672 673 674 675 676 677 678 679 680 681
	if (hs_ep->isochronous && hs_ep->interval == 1) {
		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
		dwc2_gadget_incr_frame_num(hs_ep);

		if (hs_ep->target_frame & 0x1)
			ctrl |= DXEPCTL_SETODDFR;
		else
			ctrl |= DXEPCTL_SETEVENFR;
	}

682
	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
683

684
	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
685 686

	/* For Setup request do not clear NAK */
687
	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
688
		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
689

690
	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
691
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
692

693 694
	/*
	 * set these, it seems that DMA support increments past the end
695
	 * of the packet buffer so we need to calculate the length from
696 697
	 * this information.
	 */
698 699 700 701 702 703 704
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

705
		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
706 707
	}

708 709 710 711
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
712 713

	/* check ep is enabled */
714
	if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
715
		dev_dbg(hsotg->dev,
716
			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
717
			 index, dwc2_readl(hsotg->regs + epctrl_reg));
718

719
	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
720
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
721 722

	/* enable ep interrupts */
723
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
724 725 726
}

/**
727
 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
728 729 730 731 732 733 734 735 736
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
737
 */
738 739
static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
			     struct dwc2_hsotg_ep *hs_ep,
740 741
			     struct usb_request *req)
{
742
	struct dwc2_hsotg_req *hs_req = our_req(req);
743
	int ret;
744 745 746 747 748

	/* if the length is zero, ignore the DMA data */
	if (hs_req->req.length == 0)
		return 0;

749 750 751
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
752 753 754 755 756 757 758 759 760 761

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

762 763
static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
{
	void *req_buf = hs_req->req.buf;

	/* If dma is not being used or buffer is aligned */
	if (!using_dma(hsotg) || !((long)req_buf & 3))
		return 0;

	WARN_ON(hs_req->saved_req_buf);

	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
			hs_ep->ep.name, req_buf, hs_req->req.length);

	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
	if (!hs_req->req.buf) {
		hs_req->req.buf = req_buf;
		dev_err(hsotg->dev,
			"%s: unable to allocate memory for bounce buffer\n",
			__func__);
		return -ENOMEM;
	}

	/* Save actual buffer */
	hs_req->saved_req_buf = req_buf;

	if (hs_ep->dir_in)
		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
	return 0;
}

793 794
static void dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
{
	/* If dma is not being used or buffer was aligned */
	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
		return;

	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);

	/* Copy data from bounce buffer on successful out transfer */
	if (!hs_ep->dir_in && !hs_req->req.status)
		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
							hs_req->req.actual);

	/* Free bounce buffer */
	kfree(hs_req->req.buf);

	hs_req->req.buf = hs_req->saved_req_buf;
	hs_req->saved_req_buf = NULL;
}

815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
/**
 * dwc2_gadget_target_frame_elapsed - Checks target frame
 * @hs_ep: The driver endpoint to check
 *
 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
 * corresponding transfer.
 */
static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	u32 target_frame = hs_ep->target_frame;
	u32 current_frame = dwc2_hsotg_read_frameno(hsotg);
	bool frame_overrun = hs_ep->frame_overrun;

	if (!frame_overrun && current_frame >= target_frame)
		return true;

	if (frame_overrun && current_frame >= target_frame &&
	    ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
		return true;

	return false;
}

839
static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
840 841
			      gfp_t gfp_flags)
{
842 843
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
844
	struct dwc2_hsotg *hs = hs_ep->parent;
845
	bool first;
846
	int ret;
847 848 849 850 851

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

852 853 854 855 856 857 858
	/* Prevent new request submission when controller is suspended */
	if (hs->lx_state == DWC2_L2) {
		dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
				__func__);
		return -EAGAIN;
	}

859 860 861 862 863
	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

864
	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
865 866 867
	if (ret)
		return ret;

868 869
	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
870
		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
871 872 873 874 875 876 877
		if (ret)
			return ret;
	}

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

878 879 880 881 882 883 884 885
	if (first) {
		if (!hs_ep->isochronous) {
			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
			return 0;
		}

		while (dwc2_gadget_target_frame_elapsed(hs_ep))
			dwc2_gadget_incr_frame_num(hs_ep);
886

887 888 889
		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
	}
890 891 892
	return 0;
}

893
static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
894 895
			      gfp_t gfp_flags)
{
896
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
897
	struct dwc2_hsotg *hs = hs_ep->parent;
898 899 900 901
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
902
	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
903 904 905 906 907
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

908
static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
909 910
				      struct usb_request *req)
{
911
	struct dwc2_hsotg_req *hs_req = our_req(req);
912 913 914 915 916

	kfree(hs_req);
}

/**
917
 * dwc2_hsotg_complete_oursetup - setup completion callback
918 919 920 921 922 923
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
924
static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
925 926
					struct usb_request *req)
{
927
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
928
	struct dwc2_hsotg *hsotg = hs_ep->parent;
929 930 931

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

932
	dwc2_hsotg_ep_free_request(ep, req);
933 934 935 936 937 938 939 940 941
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
942
 */
943
static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
944 945
					   u32 windex)
{
946
	struct dwc2_hsotg_ep *ep;
947 948 949 950 951 952
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

953
	if (idx > hsotg->num_of_eps)
954 955
		return NULL;

956 957
	ep = index_to_ep(hsotg, idx, dir);

958 959 960 961 962 963
	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

964
/**
965
 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
966 967 968 969
 * @hsotg: The driver state.
 * @testmode: requested usb test mode
 * Enable usb Test Mode requested by the Host.
 */
970
int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
971
{
972
	int dctl = dwc2_readl(hsotg->regs + DCTL);
973 974 975 976 977 978 979 980 981 982 983 984 985

	dctl &= ~DCTL_TSTCTL_MASK;
	switch (testmode) {
	case TEST_J:
	case TEST_K:
	case TEST_SE0_NAK:
	case TEST_PACKET:
	case TEST_FORCE_EN:
		dctl |= testmode << DCTL_TSTCTL_SHIFT;
		break;
	default:
		return -EINVAL;
	}
986
	dwc2_writel(dctl, hsotg->regs + DCTL);
987 988 989
	return 0;
}

990
/**
991
 * dwc2_hsotg_send_reply - send reply to control request
992 993 994 995 996 997 998 999
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
1000 1001
static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *ep,
1002 1003 1004 1005 1006 1007 1008 1009
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

1010
	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1011 1012 1013 1014 1015 1016 1017 1018
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
1019 1020 1021 1022 1023
	/*
	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
	 * STATUS stage.
	 */
	req->zero = 0;
1024
	req->complete = dwc2_hsotg_complete_oursetup;
1025 1026 1027 1028

	if (length)
		memcpy(req->buf, buff, length);

1029
	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1030 1031 1032 1033 1034 1035 1036 1037 1038
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
1039
 * dwc2_hsotg_process_req_status - process request GET_STATUS
1040 1041 1042
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1043
static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1044 1045
					struct usb_ctrlrequest *ctrl)
{
1046 1047
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_ep *ep;
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
		reply = cpu_to_le16(0); /* bit 0 => self powered,
					 * bit 1 => remote wakeup */
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

1084
	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1085 1086 1087 1088 1089 1090 1091 1092
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

1093
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1094

1095 1096 1097 1098 1099 1100
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
1101
static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1102 1103 1104 1105
{
	if (list_empty(&hs_ep->queue))
		return NULL;

1106
	return list_first_entry(&hs_ep->queue, struct dwc2_hsotg_req, queue);
1107 1108
}

1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144
/**
 * dwc2_gadget_start_next_request - Starts next request from ep queue
 * @hs_ep: Endpoint structure
 *
 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
 * in its handler. Hence we need to unmask it here to be able to do
 * resynchronization.
 */
static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
{
	u32 mask;
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;
	struct dwc2_hsotg_req *hs_req;
	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;

	if (!list_empty(&hs_ep->queue)) {
		hs_req = get_ep_head(hs_ep);
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		return;
	}
	if (!hs_ep->isochronous)
		return;

	if (dir_in) {
		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
			__func__);
	} else {
		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
			__func__);
		mask = dwc2_readl(hsotg->regs + epmsk_reg);
		mask |= DOEPMSK_OUTTKNEPDISMSK;
		dwc2_writel(mask, hsotg->regs + epmsk_reg);
	}
}

1145
/**
1146
 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1147 1148 1149
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1150
static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1151 1152
					 struct usb_ctrlrequest *ctrl)
{
1153 1154
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_req *hs_req;
1155
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1156
	struct dwc2_hsotg_ep *ep;
1157
	int ret;
1158
	bool halted;
1159 1160 1161
	u32 recip;
	u32 wValue;
	u32 wIndex;
1162 1163 1164 1165

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
	wValue = le16_to_cpu(ctrl->wValue);
	wIndex = le16_to_cpu(ctrl->wIndex);
	recip = ctrl->bRequestType & USB_RECIP_MASK;

	switch (recip) {
	case USB_RECIP_DEVICE:
		switch (wValue) {
		case USB_DEVICE_TEST_MODE:
			if ((wIndex & 0xff) != 0)
				return -EINVAL;
			if (!set)
				return -EINVAL;

			hsotg->test_mode = wIndex >> 8;
1180
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
			break;
		default:
			return -ENOENT;
		}
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, wIndex);
1194 1195
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1196
				__func__, wIndex);
1197 1198 1199
			return -ENOENT;
		}

1200
		switch (wValue) {
1201
		case USB_ENDPOINT_HALT:
1202 1203
			halted = ep->halted;

1204
			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1205

1206
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1207 1208 1209 1210 1211
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
1212

1213 1214 1215 1216 1217 1218
			/*
			 * we have to complete all requests for ep if it was
			 * halted, and the halt was cleared by CLEAR_FEATURE
			 */

			if (!set && halted) {
1219 1220 1221 1222 1223 1224 1225 1226
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
1227 1228 1229 1230 1231 1232
					if (hs_req->req.complete) {
						spin_unlock(&hsotg->lock);
						usb_gadget_giveback_request(
							&ep->ep, &hs_req->req);
						spin_lock(&hsotg->lock);
					}
1233 1234 1235
				}

				/* If we have pending request, then start it */
1236
				if (!ep->req) {
1237
					dwc2_gadget_start_next_request(ep);
1238 1239 1240
				}
			}

1241 1242 1243 1244 1245
			break;

		default:
			return -ENOENT;
		}
1246 1247 1248 1249
		break;
	default:
		return -ENOENT;
	}
1250 1251 1252
	return 1;
}

1253
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1254

1255
/**
1256
 * dwc2_hsotg_stall_ep0 - stall ep0
1257 1258 1259 1260
 * @hsotg: The device state
 *
 * Set stall for ep0 as response for setup request.
 */
1261
static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1262
{
1263
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
	u32 reg;
	u32 ctrl;

	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;

	/*
	 * DxEPCTL_Stall will be cleared by EP once it has
	 * taken effect, so no need to clear later.
	 */

1275
	ctrl = dwc2_readl(hsotg->regs + reg);
1276 1277
	ctrl |= DXEPCTL_STALL;
	ctrl |= DXEPCTL_CNAK;
1278
	dwc2_writel(ctrl, hsotg->regs + reg);
1279 1280

	dev_dbg(hsotg->dev,
1281
		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1282
		ctrl, reg, dwc2_readl(hsotg->regs + reg));
1283 1284 1285 1286 1287

	 /*
	  * complete won't be called, so we enqueue
	  * setup request here
	  */
1288
	 dwc2_hsotg_enqueue_setup(hsotg);
1289 1290
}

1291
/**
1292
 * dwc2_hsotg_process_control - process a control request
1293 1294 1295 1296 1297 1298 1299
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
1300
static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1301 1302
				      struct usb_ctrlrequest *ctrl)
{
1303
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1304 1305 1306
	int ret = 0;
	u32 dcfg;

1307 1308 1309 1310
	dev_dbg(hsotg->dev,
		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
		ctrl->wIndex, ctrl->wLength);
1311

1312 1313 1314 1315
	if (ctrl->wLength == 0) {
		ep0->dir_in = 1;
		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
	} else if (ctrl->bRequestType & USB_DIR_IN) {
1316
		ep0->dir_in = 1;
1317 1318 1319 1320 1321
		hsotg->ep0_state = DWC2_EP0_DATA_IN;
	} else {
		ep0->dir_in = 0;
		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
	}
1322 1323 1324 1325

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1326
			hsotg->connected = 1;
1327
			dcfg = dwc2_readl(hsotg->regs + DCFG);
1328
			dcfg &= ~DCFG_DEVADDR_MASK;
P
Paul Zimmerman 已提交
1329 1330
			dcfg |= (le16_to_cpu(ctrl->wValue) <<
				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1331
			dwc2_writel(dcfg, hsotg->regs + DCFG);
1332 1333 1334

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

1335
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1336 1337 1338
			return;

		case USB_REQ_GET_STATUS:
1339
			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1340 1341 1342 1343
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
1344
			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1345 1346 1347 1348 1349 1350 1351
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
1352
		spin_unlock(&hsotg->lock);
1353
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1354
		spin_lock(&hsotg->lock);
1355 1356 1357 1358
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1359 1360
	/*
	 * the request is either unhandlable, or is not formatted correctly
1361 1362 1363
	 * so respond with a STALL for the status stage to indicate failure.
	 */

1364
	if (ret < 0)
1365
		dwc2_hsotg_stall_ep0(hsotg);
1366 1367 1368
}

/**
1369
 * dwc2_hsotg_complete_setup - completion of a setup transfer
1370 1371 1372 1373 1374 1375
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
1376
static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1377 1378
				     struct usb_request *req)
{
1379
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1380
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1381 1382 1383 1384 1385 1386

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

1387
	spin_lock(&hsotg->lock);
1388
	if (req->actual == 0)
1389
		dwc2_hsotg_enqueue_setup(hsotg);
1390
	else
1391
		dwc2_hsotg_process_control(hsotg, req->buf);
1392
	spin_unlock(&hsotg->lock);
1393 1394 1395
}

/**
1396
 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1397 1398 1399 1400 1401
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
1402
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1403 1404
{
	struct usb_request *req = hsotg->ctrl_req;
1405
	struct dwc2_hsotg_req *hs_req = our_req(req);
1406 1407 1408 1409 1410 1411 1412
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
1413
	req->complete = dwc2_hsotg_complete_setup;
1414 1415 1416 1417 1418 1419

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

1420
	hsotg->eps_out[0]->dir_in = 0;
1421
	hsotg->eps_out[0]->send_zlp = 0;
1422
	hsotg->ep0_state = DWC2_EP0_SETUP;
1423

1424
	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1425 1426
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1427 1428 1429 1430
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1431 1432 1433
	}
}

1434 1435
static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
					struct dwc2_hsotg_ep *hs_ep)
1436 1437 1438 1439 1440 1441
{
	u32 ctrl;
	u8 index = hs_ep->index;
	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);

1442 1443 1444 1445 1446 1447
	if (hs_ep->dir_in)
		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
									index);
	else
		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
									index);
1448

1449 1450 1451
	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
		    DXEPTSIZ_XFERSIZE(0), hsotg->regs +
		    epsiz_reg);
1452

1453
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1454 1455 1456
	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
1457
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1458 1459
}

1460
/**
1461
 * dwc2_hsotg_complete_request - complete a request given to us
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1472
 */
1473 1474 1475
static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
				       struct dwc2_hsotg_ep *hs_ep,
				       struct dwc2_hsotg_req *hs_req,
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486
				       int result)
{

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1487 1488 1489 1490
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1491 1492 1493 1494

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

1495 1496 1497
	if (using_dma(hsotg))
		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1498
	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1499

1500 1501 1502
	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

1503 1504 1505 1506
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1507 1508

	if (hs_req->req.complete) {
1509
		spin_unlock(&hsotg->lock);
1510
		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1511
		spin_lock(&hsotg->lock);
1512 1513
	}

1514 1515
	/*
	 * Look to see if there is anything else to do. Note, the completion
1516
	 * of the previous request may have caused a new request to be started
1517 1518
	 * so be careful when doing this.
	 */
1519 1520

	if (!hs_ep->req && result >= 0) {
1521
		dwc2_gadget_start_next_request(hs_ep);
1522 1523 1524 1525
	}
}

/**
1526
 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
1527 1528 1529 1530 1531 1532 1533 1534
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
1535
static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
1536
{
1537 1538
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1539
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1540 1541 1542 1543
	int to_read;
	int max_req;
	int read_ptr;

1544

1545
	if (!hs_req) {
1546
		u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
1547 1548
		int ptr;

1549
		dev_dbg(hsotg->dev,
1550
			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1551 1552 1553 1554
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
1555
			(void)dwc2_readl(fifo);
1556 1557 1558 1559 1560 1561 1562 1563

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

1564 1565 1566
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

1567
	if (to_read > max_req) {
1568 1569
		/*
		 * more data appeared than we where willing
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

1581 1582 1583 1584
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
1585
	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1586 1587 1588
}

/**
1589
 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
1590
 * @hsotg: The device instance
1591
 * @dir_in: If IN zlp
1592 1593 1594 1595 1596
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
1597
 * currently believed that we do not need to wait for any space in
1598 1599
 * the TxFIFO.
 */
1600
static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
1601
{
1602
	/* eps_out[0] is used in both directions */
1603 1604
	hsotg->eps_out[0]->dir_in = dir_in;
	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
1605

1606
	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
1607 1608
}

1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621
static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
			u32 epctl_reg)
{
	u32 ctrl;

	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
	if (ctrl & DXEPCTL_EOFRNUM)
		ctrl |= DXEPCTL_SETEVENFR;
	else
		ctrl |= DXEPCTL_SETODDFR;
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
}

1622
/**
1623
 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1624 1625 1626 1627 1628 1629
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
1630
 */
1631
static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
1632
{
1633
	u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
1634 1635
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1636
	struct usb_request *req = &hs_req->req;
1637
	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1638 1639 1640 1641 1642 1643 1644
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

1645 1646
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
1647 1648
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
		dwc2_hsotg_enqueue_setup(hsotg);
1649 1650 1651
		return;
	}

1652 1653 1654
	if (using_dma(hsotg)) {
		unsigned size_done;

1655 1656
		/*
		 * Calculate the size of the transfer by checking how much
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

1670 1671
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
1672
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1673 1674 1675
		return;
	}

1676 1677 1678 1679
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

1680 1681 1682 1683
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
1684 1685
	}

1686 1687
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
		/* Move to STATUS IN */
1688
		dwc2_hsotg_ep0_zlp(hsotg, true);
1689
		return;
1690 1691
	}

1692 1693 1694 1695 1696 1697 1698
	/*
	 * Slave mode OUT transfers do not go through XferComplete so
	 * adjust the ISOC parity here.
	 */
	if (!using_dma(hsotg)) {
		if (hs_ep->isochronous && hs_ep->interval == 1)
			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
1699 1700
		else if (hs_ep->isochronous && hs_ep->interval > 1)
			dwc2_gadget_incr_frame_num(hs_ep);
1701 1702
	}

1703
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1704 1705 1706
}

/**
1707
 * dwc2_hsotg_handle_rx - RX FIFO has data
1708 1709 1710 1711 1712 1713
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
1714
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1715 1716 1717 1718 1719 1720 1721
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
1722
static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
1723
{
1724
	u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
1725 1726 1727 1728
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

1729 1730
	epnum = grxstsr & GRXSTS_EPNUM_MASK;
	status = grxstsr & GRXSTS_PKTSTS_MASK;
1731

1732 1733
	size = grxstsr & GRXSTS_BYTECNT_MASK;
	size >>= GRXSTS_BYTECNT_SHIFT;
1734

1735
	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1736 1737
			__func__, grxstsr, size, epnum);

1738 1739 1740
	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
	case GRXSTS_PKTSTS_GLOBALOUTNAK:
		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1741 1742
		break;

1743
	case GRXSTS_PKTSTS_OUTDONE:
1744
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1745
			dwc2_hsotg_read_frameno(hsotg));
1746 1747

		if (!using_dma(hsotg))
1748
			dwc2_hsotg_handle_outdone(hsotg, epnum);
1749 1750
		break;

1751
	case GRXSTS_PKTSTS_SETUPDONE:
1752 1753
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1754
			dwc2_hsotg_read_frameno(hsotg),
1755
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
1756
		/*
1757
		 * Call dwc2_hsotg_handle_outdone here if it was not called from
1758 1759 1760 1761
		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
		 */
		if (hsotg->ep0_state == DWC2_EP0_SETUP)
1762
			dwc2_hsotg_handle_outdone(hsotg, epnum);
1763 1764
		break;

1765
	case GRXSTS_PKTSTS_OUTRX:
1766
		dwc2_hsotg_rx_data(hsotg, epnum, size);
1767 1768
		break;

1769
	case GRXSTS_PKTSTS_SETUPRX:
1770 1771
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1772
			dwc2_hsotg_read_frameno(hsotg),
1773
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
1774

1775 1776
		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);

1777
		dwc2_hsotg_rx_data(hsotg, epnum, size);
1778 1779 1780 1781 1782 1783
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

1784
		dwc2_hsotg_dump(hsotg);
1785 1786 1787 1788 1789
		break;
	}
}

/**
1790
 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
1791
 * @mps: The maximum packet size in bytes.
1792
 */
1793
static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
1794 1795 1796
{
	switch (mps) {
	case 64:
1797
		return D0EPCTL_MPS_64;
1798
	case 32:
1799
		return D0EPCTL_MPS_32;
1800
	case 16:
1801
		return D0EPCTL_MPS_16;
1802
	case 8:
1803
		return D0EPCTL_MPS_8;
1804 1805 1806 1807 1808 1809 1810 1811
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
1812
 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1813 1814 1815 1816 1817 1818 1819
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
1820
static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
1821
			unsigned int ep, unsigned int mps, unsigned int dir_in)
1822
{
1823
	struct dwc2_hsotg_ep *hs_ep;
1824 1825
	void __iomem *regs = hsotg->regs;
	u32 mpsval;
1826
	u32 mcval;
1827 1828
	u32 reg;

1829 1830 1831 1832
	hs_ep = index_to_ep(hsotg, ep, dir_in);
	if (!hs_ep)
		return;

1833 1834
	if (ep == 0) {
		/* EP0 is a special case */
1835
		mpsval = dwc2_hsotg_ep0_mps(mps);
1836 1837
		if (mpsval > 3)
			goto bad_mps;
1838
		hs_ep->ep.maxpacket = mps;
1839
		hs_ep->mc = 1;
1840
	} else {
1841
		mpsval = mps & DXEPCTL_MPS_MASK;
1842
		if (mpsval > 1024)
1843
			goto bad_mps;
1844 1845 1846 1847
		mcval = ((mps >> 11) & 0x3) + 1;
		hs_ep->mc = mcval;
		if (mcval > 3)
			goto bad_mps;
1848
		hs_ep->ep.maxpacket = mpsval;
1849 1850
	}

1851
	if (dir_in) {
1852
		reg = dwc2_readl(regs + DIEPCTL(ep));
1853 1854
		reg &= ~DXEPCTL_MPS_MASK;
		reg |= mpsval;
1855
		dwc2_writel(reg, regs + DIEPCTL(ep));
1856
	} else {
1857
		reg = dwc2_readl(regs + DOEPCTL(ep));
1858
		reg &= ~DXEPCTL_MPS_MASK;
1859
		reg |= mpsval;
1860
		dwc2_writel(reg, regs + DOEPCTL(ep));
1861
	}
1862 1863 1864 1865 1866 1867 1868

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

1869
/**
1870
 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
1871 1872 1873
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
1874
static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
1875 1876 1877 1878
{
	int timeout;
	int val;

1879 1880
	dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
		    hsotg->regs + GRSTCTL);
1881 1882 1883 1884 1885

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
1886
		val = dwc2_readl(hsotg->regs + GRSTCTL);
1887

1888
		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1889 1890 1891 1892 1893 1894
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
1895
			break;
1896 1897 1898 1899 1900
		}

		udelay(1);
	}
}
1901 1902

/**
1903
 * dwc2_hsotg_trytx - check to see if anything needs transmitting
1904 1905 1906 1907 1908 1909
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
1910 1911
static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
			   struct dwc2_hsotg_ep *hs_ep)
1912
{
1913
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1914

1915 1916 1917 1918 1919 1920
	if (!hs_ep->dir_in || !hs_req) {
		/**
		 * if request is not enqueued, we disable interrupts
		 * for endpoints, excepting ep0
		 */
		if (hs_ep->index != 0)
1921
			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
1922
					     hs_ep->dir_in, 0);
1923
		return 0;
1924
	}
1925 1926 1927 1928

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
1929
		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1930 1931 1932 1933 1934 1935
	}

	return 0;
}

/**
1936
 * dwc2_hsotg_complete_in - complete IN transfer
1937 1938 1939 1940 1941 1942
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
1943 1944
static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
				  struct dwc2_hsotg_ep *hs_ep)
1945
{
1946
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1947
	u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1948 1949 1950 1951 1952 1953 1954
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

1955
	/* Finish ZLP handling for IN EP0 transactions */
1956 1957
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
		dev_dbg(hsotg->dev, "zlp packet sent\n");
1958
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1959 1960 1961
		if (hsotg->test_mode) {
			int ret;

1962
			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
1963 1964 1965
			if (ret < 0) {
				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
						hsotg->test_mode);
1966
				dwc2_hsotg_stall_ep0(hsotg);
1967 1968 1969
				return;
			}
		}
1970
		dwc2_hsotg_enqueue_setup(hsotg);
1971 1972 1973
		return;
	}

1974 1975
	/*
	 * Calculate the size of the transfer by checking how much is left
1976 1977 1978 1979 1980 1981 1982 1983
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */

1984
	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1985 1986 1987 1988 1989 1990 1991 1992 1993

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
1994 1995 1996
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

1997 1998
	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1999
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2000 2001 2002
		return;
	}

2003
	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
2004
	if (hs_ep->send_zlp) {
2005
		dwc2_hsotg_program_zlp(hsotg, hs_ep);
2006
		hs_ep->send_zlp = 0;
2007 2008 2009 2010
		/* transfer will be completed on next complete interrupt */
		return;
	}

2011 2012
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
		/* Move to STATUS OUT */
2013
		dwc2_hsotg_ep0_zlp(hsotg, false);
2014 2015 2016
		return;
	}

2017
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2018 2019
}

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047
/**
 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
 * @hsotg: The device state.
 * @idx: Index of ep.
 * @dir_in: Endpoint direction 1-in 0-out.
 *
 * Reads for endpoint with given index and direction, by masking
 * epint_reg with coresponding mask.
 */
static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
					  unsigned int idx, int dir_in)
{
	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 ints;
	u32 mask;
	u32 diepempmsk;

	mask = dwc2_readl(hsotg->regs + epmsk_reg);
	diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK);
	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
	mask |= DXEPINT_SETUP_RCVD;

	ints = dwc2_readl(hsotg->regs + epint_reg);
	ints &= mask;
	return ints;
}

2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115
/**
 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
 * @hs_ep: The endpoint on which interrupt is asserted.
 *
 * This interrupt indicates that the endpoint has been disabled per the
 * application's request.
 *
 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
 * in case of ISOC completes current request.
 *
 * For ISOC-OUT endpoints completes expired requests. If there is remaining
 * request starts it.
 */
static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	struct dwc2_hsotg_req *hs_req;
	unsigned char idx = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	int dctl = dwc2_readl(hsotg->regs + DCTL);

	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

	if (dir_in) {
		int epctl = dwc2_readl(hsotg->regs + epctl_reg);

		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);

		if (hs_ep->isochronous) {
			dwc2_hsotg_complete_in(hsotg, hs_ep);
			return;
		}

		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
			int dctl = dwc2_readl(hsotg->regs + DCTL);

			dctl |= DCTL_CGNPINNAK;
			dwc2_writel(dctl, hsotg->regs + DCTL);
		}
		return;
	}

	if (dctl & DCTL_GOUTNAKSTS) {
		dctl |= DCTL_CGOUTNAK;
		dwc2_writel(dctl, hsotg->regs + DCTL);
	}

	if (!hs_ep->isochronous)
		return;

	if (list_empty(&hs_ep->queue)) {
		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
			__func__, hs_ep);
		return;
	}

	do {
		hs_req = get_ep_head(hs_ep);
		if (hs_req)
			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
						    -ENODATA);
		dwc2_gadget_incr_frame_num(hs_ep);
	} while (dwc2_gadget_target_frame_elapsed(hs_ep));

	dwc2_gadget_start_next_request(hs_ep);
}

2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
/**
 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
 * @hs_ep: The endpoint on which interrupt is asserted.
 *
 * This is starting point for ISOC-OUT transfer, synchronization done with
 * first out token received from host while corresponding EP is disabled.
 *
 * Device does not know initial frame in which out token will come. For this
 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
 * getting this interrupt SW starts calculation for next transfer frame.
 */
static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
{
	struct dwc2_hsotg *hsotg = ep->parent;
	int dir_in = ep->dir_in;
	u32 doepmsk;

	if (dir_in || !ep->isochronous)
		return;

	dwc2_hsotg_complete_request(hsotg, ep, get_ep_head(ep), -ENODATA);

	if (ep->interval > 1 &&
	    ep->target_frame == TARGET_FRAME_INITIAL) {
		u32 dsts;
		u32 ctrl;

		dsts = dwc2_readl(hsotg->regs + DSTS);
		ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
		dwc2_gadget_incr_frame_num(ep);

		ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index));
		if (ep->target_frame & 0x1)
			ctrl |= DXEPCTL_SETODDFR;
		else
			ctrl |= DXEPCTL_SETEVENFR;

		dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index));
	}

	dwc2_gadget_start_next_request(ep);
	doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
	doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
	dwc2_writel(doepmsk, hsotg->regs + DOEPMSK);
}

/**
* dwc2_gadget_handle_nak - handle NAK interrupt
* @hs_ep: The endpoint on which interrupt is asserted.
*
* This is starting point for ISOC-IN transfer, synchronization done with
* first IN token received from host while corresponding EP is disabled.
*
* Device does not know when first one token will arrive from host. On first
* token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
* and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
* sent in response to that as there was no data in FIFO. SW is basing on this
* interrupt to obtain frame in which token has come and then based on the
* interval calculates next frame for transfer.
*/
static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
{
	struct dwc2_hsotg *hsotg = hs_ep->parent;
	int dir_in = hs_ep->dir_in;

	if (!dir_in || !hs_ep->isochronous)
		return;

	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
		if (hs_ep->interval > 1) {
			u32 ctrl = dwc2_readl(hsotg->regs +
					      DIEPCTL(hs_ep->index));
			if (hs_ep->target_frame & 0x1)
				ctrl |= DXEPCTL_SETODDFR;
			else
				ctrl |= DXEPCTL_SETEVENFR;

			dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index));
		}

		dwc2_hsotg_complete_request(hsotg, hs_ep,
					    get_ep_head(hs_ep), 0);
	}

	dwc2_gadget_incr_frame_num(hs_ep);
}

2204
/**
2205
 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2206 2207 2208 2209 2210
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
2211
 */
2212
static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2213 2214
			    int dir_in)
{
2215
	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2216 2217 2218
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2219
	u32 ints;
2220
	u32 ctrl;
2221

2222
	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2223
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2224

2225
	/* Clear endpoint interrupts */
2226
	dwc2_writel(ints, hsotg->regs + epint_reg);
2227

2228 2229 2230 2231 2232 2233
	if (!hs_ep) {
		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
					__func__, idx, dir_in ? "in" : "out");
		return;
	}

2234 2235 2236
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

2237 2238 2239 2240
	/* Don't process XferCompl interrupt if it is a setup packet */
	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
		ints &= ~DXEPINT_XFERCOMPL;

2241 2242
	if (ints & DXEPINT_STSPHSERCVD)
		dev_dbg(hsotg->dev, "%s: StsPhseRcvd asserted\n", __func__);
2243

2244
	if (ints & DXEPINT_XFERCOMPL) {
2245
		dev_dbg(hsotg->dev,
2246
			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2247 2248
			__func__, dwc2_readl(hsotg->regs + epctl_reg),
			dwc2_readl(hsotg->regs + epsiz_reg));
2249

2250 2251 2252 2253
		/*
		 * we get OutDone from the FIFO, so we only need to look
		 * at completing IN requests here
		 */
2254
		if (dir_in) {
2255 2256 2257
			if (hs_ep->isochronous && hs_ep->interval > 1)
				dwc2_gadget_incr_frame_num(hs_ep);

2258
			dwc2_hsotg_complete_in(hsotg, hs_ep);
2259 2260
			if (ints & DXEPINT_NAKINTRPT)
				ints &= ~DXEPINT_NAKINTRPT;
2261

2262
			if (idx == 0 && !hs_ep->req)
2263
				dwc2_hsotg_enqueue_setup(hsotg);
2264
		} else if (using_dma(hsotg)) {
2265 2266 2267 2268
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
2269 2270
			if (hs_ep->isochronous && hs_ep->interval > 1)
				dwc2_gadget_incr_frame_num(hs_ep);
2271

2272
			dwc2_hsotg_handle_outdone(hsotg, idx);
2273 2274 2275
		}
	}

2276 2277
	if (ints & DXEPINT_EPDISBLD)
		dwc2_gadget_handle_ep_disabled(hs_ep);
2278

2279 2280 2281 2282 2283 2284
	if (ints & DXEPINT_OUTTKNEPDIS)
		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);

	if (ints & DXEPINT_NAKINTRPT)
		dwc2_gadget_handle_nak(hs_ep);

2285
	if (ints & DXEPINT_AHBERR)
2286 2287
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

2288
	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2289 2290 2291
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
2292 2293
			/*
			 * this is the notification we've received a
2294 2295
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
2296 2297
			 * the setup here.
			 */
2298 2299 2300 2301

			if (dir_in)
				WARN_ON_ONCE(1);
			else
2302
				dwc2_hsotg_handle_outdone(hsotg, 0);
2303 2304 2305
		}
	}

2306
	if (ints & DXEPINT_BACK2BACKSETUP)
2307 2308
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

2309
	if (dir_in && !hs_ep->isochronous) {
2310
		/* not sure if this is important, but we'll clear it anyway */
2311
		if (ints & DXEPINT_INTKNTXFEMP) {
2312 2313 2314 2315 2316
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
2317
		if (ints & DXEPINT_INTKNEPMIS) {
2318 2319 2320
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
2321 2322 2323

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
2324
		    ints & DXEPINT_TXFEMP) {
2325 2326
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
2327
			if (!using_dma(hsotg))
2328
				dwc2_hsotg_trytx(hsotg, hs_ep);
2329
		}
2330 2331 2332 2333
	}
}

/**
2334
 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
2335 2336 2337 2338
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
2339
 */
2340
static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
2341
{
2342
	u32 dsts = dwc2_readl(hsotg->regs + DSTS);
2343
	int ep0_mps = 0, ep_mps = 8;
2344

2345 2346
	/*
	 * This should signal the finish of the enumeration phase
2347
	 * of the USB handshaking, so we should now know what rate
2348 2349
	 * we connected at.
	 */
2350 2351 2352

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

2353 2354
	/*
	 * note, since we're limited by the size of transfer on EP0, and
2355
	 * it seems IN transfers must be a even number of packets we do
2356 2357
	 * not advertise a 64byte MPS on EP0.
	 */
2358 2359

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
2360
	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
2361 2362
	case DSTS_ENUMSPD_FS:
	case DSTS_ENUMSPD_FS48:
2363 2364
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
2365
		ep_mps = 1023;
2366 2367
		break;

2368
	case DSTS_ENUMSPD_HS:
2369 2370
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
2371
		ep_mps = 1024;
2372 2373
		break;

2374
	case DSTS_ENUMSPD_LS:
2375
		hsotg->gadget.speed = USB_SPEED_LOW;
2376 2377
		/*
		 * note, we don't actually support LS in this driver at the
2378 2379 2380 2381 2382
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
2383 2384
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
2385

2386 2387 2388 2389
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
2390 2391 2392

	if (ep0_mps) {
		int i;
2393
		/* Initialize ep0 for both in and out directions */
2394 2395
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 1);
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0);
2396 2397
		for (i = 1; i < hsotg->num_of_eps; i++) {
			if (hsotg->eps_in[i])
2398
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 1);
2399
			if (hsotg->eps_out[i])
2400
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 0);
2401
		}
2402 2403 2404 2405
	}

	/* ensure after enumeration our EP0 is active */

2406
	dwc2_hsotg_enqueue_setup(hsotg);
2407 2408

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2409 2410
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
2422
static void kill_all_requests(struct dwc2_hsotg *hsotg,
2423
			      struct dwc2_hsotg_ep *ep,
2424
			      int result)
2425
{
2426
	struct dwc2_hsotg_req *req, *treq;
2427
	unsigned size;
2428

2429
	ep->req = NULL;
2430

2431
	list_for_each_entry_safe(req, treq, &ep->queue, queue)
2432
		dwc2_hsotg_complete_request(hsotg, ep, req,
2433
					   result);
2434

2435 2436
	if (!hsotg->dedicated_fifos)
		return;
2437
	size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
2438
	if (size < ep->fifo_size)
2439
		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2440 2441 2442
}

/**
2443
 * dwc2_hsotg_disconnect - disconnect service
2444 2445
 * @hsotg: The device state.
 *
2446 2447 2448
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
2449
 */
2450
void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
2451 2452 2453
{
	unsigned ep;

2454 2455 2456 2457
	if (!hsotg->connected)
		return;

	hsotg->connected = 0;
2458
	hsotg->test_mode = 0;
2459 2460 2461 2462 2463 2464 2465 2466 2467

	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
			kill_all_requests(hsotg, hsotg->eps_in[ep],
								-ESHUTDOWN);
		if (hsotg->eps_out[ep])
			kill_all_requests(hsotg, hsotg->eps_out[ep],
								-ESHUTDOWN);
	}
2468 2469

	call_gadget(hsotg, disconnect);
2470
	hsotg->lx_state = DWC2_L3;
2471 2472 2473
}

/**
2474
 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2475 2476 2477
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
2478
static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
2479
{
2480
	struct dwc2_hsotg_ep *ep;
2481 2482 2483
	int epno, ret;

	/* look through for any more data to transmit */
2484
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2485 2486 2487 2488
		ep = index_to_ep(hsotg, epno, 1);

		if (!ep)
			continue;
2489 2490 2491 2492 2493 2494 2495 2496

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

2497
		ret = dwc2_hsotg_trytx(hsotg, ep);
2498 2499 2500 2501 2502 2503
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
2504 2505 2506
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
			GINTSTS_PTXFEMP |  \
			GINTSTS_RXFLVL)
2507

2508
/**
2509
 * dwc2_hsotg_core_init - issue softreset to the core
2510 2511 2512 2513
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
2514
void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
2515
						bool is_usb_reset)
2516
{
2517
	u32 intmsk;
2518
	u32 val;
2519
	u32 usbcfg;
2520

2521 2522 2523
	/* Kill any ep0 requests as controller will be reinitialized */
	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);

2524
	if (!is_usb_reset)
2525
		if (dwc2_core_reset(hsotg))
2526
			return;
2527 2528 2529 2530 2531 2532

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

2533 2534 2535 2536 2537
	/* keep other bits untouched (so e.g. forced modes are not lost) */
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
		GUSBCFG_HNPCAP);

2538
	/* set the PLL on, remove the HNP/SRP and set the PHY */
2539
	val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
2540 2541 2542
	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
		(val << GUSBCFG_USBTRDTIM_SHIFT);
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
2543

2544
	dwc2_hsotg_init_fifo(hsotg);
2545

2546 2547
	if (!is_usb_reset)
		__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2548

2549
	dwc2_writel(DCFG_EPMISCNT(1) | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2550 2551

	/* Clear any pending OTG interrupts */
2552
	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
2553 2554

	/* Clear any pending interrupts */
2555
	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
2556
	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
2557
		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
2558 2559
		GINTSTS_USBRST | GINTSTS_RESETDET |
		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
2560 2561
		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
		GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
2562 2563 2564 2565 2566

	if (hsotg->core_params->external_id_pin_ctl <= 0)
		intmsk |= GINTSTS_CONIDSTSCHNG;

	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
2567 2568

	if (using_dma(hsotg))
2569 2570 2571
		dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
			    (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
			    hsotg->regs + GAHBCFG);
2572
	else
2573 2574 2575 2576
		dwc2_writel(((hsotg->dedicated_fifos) ?
						(GAHBCFG_NP_TXF_EMP_LVL |
						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
			    GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
2577 2578

	/*
2579 2580 2581
	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
	 * when we have no data to transfer. Otherwise we get being flooded by
	 * interrupts.
2582 2583
	 */

2584
	dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
2585
		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
2586
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
2587
		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
2588
		hsotg->regs + DIEPMSK);
2589 2590 2591 2592 2593

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
	 * DMA mode we may need this.
	 */
2594
	dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK) : 0) |
2595
		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
2596
		DOEPMSK_SETUPMSK | DOEPMSK_STSPHSERCVDMSK,
2597
		hsotg->regs + DOEPMSK);
2598

2599
	dwc2_writel(0, hsotg->regs + DAINTMSK);
2600 2601

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2602 2603
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
2604 2605

	/* enable in and out endpoint interrupts */
2606
	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2607 2608 2609 2610 2611 2612 2613

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
2614
		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2615 2616

	/* Enable interrupts for EP0 in and out */
2617 2618
	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2619

2620 2621 2622 2623 2624
	if (!is_usb_reset) {
		__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
		udelay(10);  /* see openiboot */
		__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
	}
2625

2626
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
2627 2628

	/*
2629
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2630 2631 2632 2633
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
2634
	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2635
	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2636

2637
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2638 2639
	       DXEPCTL_CNAK | DXEPCTL_EPENA |
	       DXEPCTL_USBACTEP,
2640
	       hsotg->regs + DOEPCTL0);
2641 2642

	/* enable, but don't activate EP0in */
2643
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2644
	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2645

2646
	dwc2_hsotg_enqueue_setup(hsotg);
2647 2648

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2649 2650
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
2651 2652

	/* clear global NAKs */
2653 2654 2655 2656
	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
	if (!is_usb_reset)
		val |= DCTL_SFTDISCON;
	__orr32(hsotg->regs + DCTL, val);
2657 2658 2659 2660

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

2661
	hsotg->lx_state = DWC2_L0;
2662 2663
}

2664
static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
2665 2666 2667 2668
{
	/* set the soft-disconnect bit */
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
}
2669

2670
void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
2671
{
2672
	/* remove the soft-disconnect and let's go */
2673
	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2674 2675
}

2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754
/**
 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
 * @hsotg: The device state:
 *
 * This interrupt indicates one of the following conditions occurred while
 * transmitting an ISOC transaction.
 * - Corrupted IN Token for ISOC EP.
 * - Packet not complete in FIFO.
 *
 * The following actions will be taken:
 * - Determine the EP
 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
 */
static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
{
	struct dwc2_hsotg_ep *hs_ep;
	u32 epctrl;
	u32 idx;

	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");

	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
		hs_ep = hsotg->eps_in[idx];
		epctrl = dwc2_readl(hsotg->regs + DIEPCTL(idx));
		if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
			epctrl |= DXEPCTL_SNAK;
			epctrl |= DXEPCTL_EPDIS;
			dwc2_writel(epctrl, hsotg->regs + DIEPCTL(idx));
		}
	}

	/* Clear interrupt */
	dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
}

/**
 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
 * @hsotg: The device state:
 *
 * This interrupt indicates one of the following conditions occurred while
 * transmitting an ISOC transaction.
 * - Corrupted OUT Token for ISOC EP.
 * - Packet not complete in FIFO.
 *
 * The following actions will be taken:
 * - Determine the EP
 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
 */
static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
{
	u32 gintsts;
	u32 gintmsk;
	u32 epctrl;
	struct dwc2_hsotg_ep *hs_ep;
	int idx;

	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);

	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
		hs_ep = hsotg->eps_out[idx];
		epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
		if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous &&
		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
			/* Unmask GOUTNAKEFF interrupt */
			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
			gintmsk |= GINTSTS_GOUTNAKEFF;
			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);

			gintsts = dwc2_readl(hsotg->regs + GINTSTS);
			if (!(gintsts & GINTSTS_GOUTNAKEFF))
				__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
		}
	}

	/* Clear interrupt */
	dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
}

2755
/**
2756
 * dwc2_hsotg_irq - handle device interrupt
2757 2758 2759
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
2760
static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
2761
{
2762
	struct dwc2_hsotg *hsotg = pw;
2763 2764 2765 2766
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

2767 2768 2769
	if (!dwc2_is_device_mode(hsotg))
		return IRQ_NONE;

2770
	spin_lock(&hsotg->lock);
2771
irq_retry:
2772 2773
	gintsts = dwc2_readl(hsotg->regs + GINTSTS);
	gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
2774 2775 2776 2777 2778 2779

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809
	if (gintsts & GINTSTS_RESETDET) {
		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);

		dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);

		/* This event must be used only if controller is suspended */
		if (hsotg->lx_state == DWC2_L2) {
			dwc2_exit_hibernation(hsotg, true);
			hsotg->lx_state = DWC2_L0;
		}
	}

	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {

		u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
		u32 connected = hsotg->connected;

		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
			dwc2_readl(hsotg->regs + GNPTXSTS));

		dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);

		/* Report disconnection if it is not already done. */
		dwc2_hsotg_disconnect(hsotg);

		if (usb_status & GOTGCTL_BSESVLD && connected)
			dwc2_hsotg_core_init_disconnected(hsotg, true);
	}

2810
	if (gintsts & GINTSTS_ENUMDONE) {
2811
		dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2812

2813
		dwc2_hsotg_irq_enumdone(hsotg);
2814 2815
	}

2816
	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2817 2818
		u32 daint = dwc2_readl(hsotg->regs + DAINT);
		u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
2819
		u32 daint_out, daint_in;
2820 2821
		int ep;

2822
		daint &= daintmsk;
2823 2824
		daint_out = daint >> DAINT_OUTEP_SHIFT;
		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2825

2826 2827
		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

2828 2829
		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
						ep++, daint_out >>= 1) {
2830
			if (daint_out & 1)
2831
				dwc2_hsotg_epint(hsotg, ep, 0);
2832 2833
		}

2834 2835
		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
						ep++, daint_in >>= 1) {
2836
			if (daint_in & 1)
2837
				dwc2_hsotg_epint(hsotg, ep, 1);
2838 2839 2840 2841 2842
		}
	}

	/* check both FIFOs */

2843
	if (gintsts & GINTSTS_NPTXFEMP) {
2844 2845
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

2846 2847
		/*
		 * Disable the interrupt to stop it happening again
2848
		 * unless one of these endpoint routines decides that
2849 2850
		 * it needs re-enabling
		 */
2851

2852 2853
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, false);
2854 2855
	}

2856
	if (gintsts & GINTSTS_PTXFEMP) {
2857 2858
		dev_dbg(hsotg->dev, "PTxFEmp\n");

2859
		/* See note in GINTSTS_NPTxFEmp */
2860

2861 2862
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, true);
2863 2864
	}

2865
	if (gintsts & GINTSTS_RXFLVL) {
2866 2867
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2868
		 * we need to retry dwc2_hsotg_handle_rx if this is still
2869 2870
		 * set.
		 */
2871

2872
		dwc2_hsotg_handle_rx(hsotg);
2873 2874
	}

2875
	if (gintsts & GINTSTS_ERLYSUSP) {
2876
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2877
		dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2878 2879
	}

2880 2881
	/*
	 * these next two seem to crop-up occasionally causing the core
2882
	 * to shutdown the USB transfer, so try clearing them and logging
2883 2884
	 * the occurrence.
	 */
2885

2886
	if (gintsts & GINTSTS_GOUTNAKEFF) {
2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907
		u8 idx;
		u32 epctrl;
		u32 gintmsk;
		struct dwc2_hsotg_ep *hs_ep;

		/* Mask this interrupt */
		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
		gintmsk &= ~GINTSTS_GOUTNAKEFF;
		dwc2_writel(gintmsk, hsotg->regs + GINTMSK);

		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
		for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
			hs_ep = hsotg->eps_out[idx];
			epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));

			if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
				epctrl |= DXEPCTL_SNAK;
				epctrl |= DXEPCTL_EPDIS;
				dwc2_writel(epctrl, hsotg->regs + DOEPCTL(idx));
			}
		}
2908

2909
		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
2910 2911
	}

2912
	if (gintsts & GINTSTS_GINNAKEFF) {
2913 2914
		dev_info(hsotg->dev, "GINNakEff triggered\n");

2915
		__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
2916

2917
		dwc2_hsotg_dump(hsotg);
2918 2919
	}

2920 2921
	if (gintsts & GINTSTS_INCOMPL_SOIN)
		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
2922

2923 2924
	if (gintsts & GINTSTS_INCOMPL_SOOUT)
		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
2925

2926 2927 2928 2929
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
2930 2931 2932 2933

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
			goto irq_retry;

2934 2935
	spin_unlock(&hsotg->lock);

2936 2937 2938 2939
	return IRQ_HANDLED;
}

/**
2940
 * dwc2_hsotg_ep_enable - enable the given endpoint
2941 2942 2943 2944
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
2945
 */
2946
static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
2947 2948
			       const struct usb_endpoint_descriptor *desc)
{
2949
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2950
	struct dwc2_hsotg *hsotg = hs_ep->parent;
2951
	unsigned long flags;
2952
	unsigned int index = hs_ep->index;
2953 2954 2955
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
2956
	u32 mask;
2957 2958
	unsigned int dir_in;
	unsigned int i, val, size;
2959
	int ret = 0;
2960 2961 2962 2963 2964 2965 2966

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
2967 2968 2969 2970
	if (index == 0) {
		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
		return -EINVAL;
	}
2971 2972 2973 2974 2975 2976 2977

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

2978
	mps = usb_endpoint_maxp(desc);
2979

2980
	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
2981

2982
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2983
	epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
2984 2985 2986 2987

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

2988
	spin_lock_irqsave(&hsotg->lock, flags);
2989

2990 2991
	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
	epctrl |= DXEPCTL_MPS(mps);
2992

2993 2994 2995 2996
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
2997
	epctrl |= DXEPCTL_USBACTEP;
2998 2999

	/* update the endpoint state */
3000
	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, dir_in);
3001 3002

	/* default, set to non-periodic */
3003
	hs_ep->isochronous = 0;
3004
	hs_ep->periodic = 0;
3005
	hs_ep->halted = 0;
3006
	hs_ep->interval = desc->bInterval;
3007

3008 3009
	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
3010 3011
		epctrl |= DXEPCTL_EPTYPE_ISO;
		epctrl |= DXEPCTL_SETEVENFR;
3012
		hs_ep->isochronous = 1;
3013
		hs_ep->interval = 1 << (desc->bInterval - 1);
3014 3015
		hs_ep->target_frame = TARGET_FRAME_INITIAL;
		if (dir_in) {
3016
			hs_ep->periodic = 1;
3017 3018 3019 3020 3021 3022 3023 3024
			mask = dwc2_readl(hsotg->regs + DIEPMSK);
			mask |= DIEPMSK_NAKMSK;
			dwc2_writel(mask, hsotg->regs + DIEPMSK);
		} else {
			mask = dwc2_readl(hsotg->regs + DOEPMSK);
			mask |= DOEPMSK_OUTTKNEPDISMSK;
			dwc2_writel(mask, hsotg->regs + DOEPMSK);
		}
3025
		break;
3026 3027

	case USB_ENDPOINT_XFER_BULK:
3028
		epctrl |= DXEPCTL_EPTYPE_BULK;
3029 3030 3031
		break;

	case USB_ENDPOINT_XFER_INT:
3032
		if (dir_in)
3033 3034
			hs_ep->periodic = 1;

3035 3036 3037
		if (hsotg->gadget.speed == USB_SPEED_HIGH)
			hs_ep->interval = 1 << (desc->bInterval - 1);

3038
		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
3039 3040 3041
		break;

	case USB_ENDPOINT_XFER_CONTROL:
3042
		epctrl |= DXEPCTL_EPTYPE_CONTROL;
3043 3044 3045
		break;
	}

3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
	/* If fifo is already allocated for this ep */
	if (hs_ep->fifo_index) {
		size =  hs_ep->ep.maxpacket * hs_ep->mc;
		/* If bigger fifo is required deallocate current one */
		if (size > hs_ep->fifo_size) {
			hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
			hs_ep->fifo_index = 0;
			hs_ep->fifo_size = 0;
		}
	}

3057 3058
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
3059 3060
	 * a unique tx-fifo even if it is non-periodic.
	 */
3061
	if (dir_in && hsotg->dedicated_fifos && !hs_ep->fifo_index) {
3062 3063
		u32 fifo_index = 0;
		u32 fifo_size = UINT_MAX;
3064
		size = hs_ep->ep.maxpacket*hs_ep->mc;
3065
		for (i = 1; i < hsotg->num_of_eps; ++i) {
3066 3067
			if (hsotg->fifo_map & (1<<i))
				continue;
3068
			val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
3069 3070 3071
			val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
			if (val < size)
				continue;
3072 3073 3074 3075 3076
			/* Search for smallest acceptable fifo */
			if (val < fifo_size) {
				fifo_size = val;
				fifo_index = i;
			}
3077
		}
3078
		if (!fifo_index) {
3079 3080
			dev_err(hsotg->dev,
				"%s: No suitable fifo found\n", __func__);
3081 3082 3083
			ret = -ENOMEM;
			goto error;
		}
3084 3085 3086 3087
		hsotg->fifo_map |= 1 << fifo_index;
		epctrl |= DXEPCTL_TXFNUM(fifo_index);
		hs_ep->fifo_index = fifo_index;
		hs_ep->fifo_size = fifo_size;
3088
	}
3089

3090
	/* for non control endpoints, set PID to D0 */
3091
	if (index && !hs_ep->isochronous)
3092
		epctrl |= DXEPCTL_SETD0PID;
3093 3094 3095 3096

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

3097
	dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
3098
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
3099
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
3100 3101

	/* enable the endpoint interrupt */
3102
	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
3103

3104
error:
3105
	spin_unlock_irqrestore(&hsotg->lock, flags);
3106
	return ret;
3107 3108
}

3109
/**
3110
 * dwc2_hsotg_ep_disable - disable given endpoint
3111 3112
 * @ep: The endpoint to disable.
 */
3113
static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
3114
{
3115
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3116
	struct dwc2_hsotg *hsotg = hs_ep->parent;
3117 3118 3119 3120 3121 3122
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

3123
	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
3124

3125
	if (ep == &hsotg->eps_out[0]->ep) {
3126 3127 3128 3129
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

3130
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3131

3132
	spin_lock_irqsave(&hsotg->lock, flags);
3133

3134 3135 3136
	hsotg->fifo_map &= ~(1<<hs_ep->fifo_index);
	hs_ep->fifo_index = 0;
	hs_ep->fifo_size = 0;
3137

3138
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3139 3140 3141
	ctrl &= ~DXEPCTL_EPENA;
	ctrl &= ~DXEPCTL_USBACTEP;
	ctrl |= DXEPCTL_SNAK;
3142 3143

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
3144
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
3145 3146

	/* disable endpoint interrupts */
3147
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
3148

3149 3150 3151
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);

3152
	spin_unlock_irqrestore(&hsotg->lock, flags);
3153 3154 3155 3156 3157 3158 3159
	return 0;
}

/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
3160
 */
3161
static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
3162
{
3163
	struct dwc2_hsotg_req *req, *treq;
3164 3165 3166 3167 3168 3169 3170 3171 3172

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207
static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg,
							u32 bit, u32 timeout)
{
	u32 i;

	for (i = 0; i < timeout; i++) {
		if (dwc2_readl(hs_otg->regs + reg) & bit)
			return 0;
		udelay(1);
	}

	return -ETIMEDOUT;
}

static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
						struct dwc2_hsotg_ep *hs_ep)
{
	u32 epctrl_reg;
	u32 epint_reg;

	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
		DOEPCTL(hs_ep->index);
	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
		DOEPINT(hs_ep->index);

	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
			hs_ep->name);
	if (hs_ep->dir_in) {
		__orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
		/* Wait for Nak effect */
		if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
						DXEPINT_INEPNAKEFF, 100))
			dev_warn(hsotg->dev,
				"%s: timeout DIEPINT.NAKEFF\n", __func__);
	} else {
3208 3209
		if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF))
			__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3210 3211 3212

		/* Wait for global nak to take effect */
		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3213
						GINTSTS_GOUTNAKEFF, 100))
3214
			dev_warn(hsotg->dev,
3215
				"%s: timeout GINTSTS.GOUTNAKEFF\n", __func__);
3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239
	}

	/* Disable ep */
	__orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);

	/* Wait for ep to be disabled */
	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
		dev_warn(hsotg->dev,
			"%s: timeout DOEPCTL.EPDisable\n", __func__);

	if (hs_ep->dir_in) {
		if (hsotg->dedicated_fifos) {
			dwc2_writel(GRSTCTL_TXFNUM(hs_ep->fifo_index) |
				GRSTCTL_TXFFLSH, hsotg->regs + GRSTCTL);
			/* Wait for fifo flush */
			if (dwc2_hsotg_wait_bit_set(hsotg, GRSTCTL,
							GRSTCTL_TXFFLSH, 100))
				dev_warn(hsotg->dev,
					"%s: timeout flushing fifos\n",
					__func__);
		}
		/* TODO: Flush shared tx fifo */
	} else {
		/* Remove global NAKs */
3240
		__bic32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3241 3242 3243
	}
}

3244
/**
3245
 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
3246 3247 3248
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
3249
static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
3250
{
3251 3252
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3253
	struct dwc2_hsotg *hs = hs_ep->parent;
3254 3255
	unsigned long flags;

3256
	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
3257

3258
	spin_lock_irqsave(&hs->lock, flags);
3259 3260

	if (!on_list(hs_ep, hs_req)) {
3261
		spin_unlock_irqrestore(&hs->lock, flags);
3262 3263 3264
		return -EINVAL;
	}

3265 3266 3267 3268
	/* Dequeue already started request */
	if (req == &hs_ep->req->req)
		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);

3269
	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
3270
	spin_unlock_irqrestore(&hs->lock, flags);
3271 3272 3273 3274

	return 0;
}

3275
/**
3276
 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
3277 3278
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
3279 3280 3281 3282 3283
 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
 *       the endpoint is busy processing requests.
 *
 * We need to stall the endpoint immediately if request comes from set_feature
 * protocol command handler.
3284
 */
3285
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
3286
{
3287
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3288
	struct dwc2_hsotg *hs = hs_ep->parent;
3289 3290 3291
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
3292
	u32 xfertype;
3293 3294 3295

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

3296 3297
	if (index == 0) {
		if (value)
3298
			dwc2_hsotg_stall_ep0(hs);
3299 3300 3301 3302 3303 3304
		else
			dev_warn(hs->dev,
				 "%s: can't clear halt on ep0\n", __func__);
		return 0;
	}

3305 3306 3307 3308 3309
	if (hs_ep->isochronous) {
		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
		return -EINVAL;
	}

3310 3311 3312 3313 3314 3315
	if (!now && value && !list_empty(&hs_ep->queue)) {
		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
			ep->name);
		return -EAGAIN;
	}

3316 3317
	if (hs_ep->dir_in) {
		epreg = DIEPCTL(index);
3318
		epctl = dwc2_readl(hs->regs + epreg);
3319 3320

		if (value) {
3321
			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
3322 3323 3324 3325 3326 3327 3328 3329 3330
			if (epctl & DXEPCTL_EPENA)
				epctl |= DXEPCTL_EPDIS;
		} else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
3331
		dwc2_writel(epctl, hs->regs + epreg);
3332
	} else {
3333

3334
		epreg = DOEPCTL(index);
3335
		epctl = dwc2_readl(hs->regs + epreg);
3336

3337 3338 3339 3340 3341 3342 3343 3344 3345
		if (value)
			epctl |= DXEPCTL_STALL;
		else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
3346
		dwc2_writel(epctl, hs->regs + epreg);
3347
	}
3348

3349 3350
	hs_ep->halted = value;

3351 3352 3353
	return 0;
}

3354
/**
3355
 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
3356 3357 3358
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
3359
static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
3360
{
3361
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3362
	struct dwc2_hsotg *hs = hs_ep->parent;
3363 3364 3365 3366
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
3367
	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
3368 3369 3370 3371 3372
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

3373 3374 3375 3376 3377 3378 3379 3380
static struct usb_ep_ops dwc2_hsotg_ep_ops = {
	.enable		= dwc2_hsotg_ep_enable,
	.disable	= dwc2_hsotg_ep_disable,
	.alloc_request	= dwc2_hsotg_ep_alloc_request,
	.free_request	= dwc2_hsotg_ep_free_request,
	.queue		= dwc2_hsotg_ep_queue_lock,
	.dequeue	= dwc2_hsotg_ep_dequeue,
	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
3381
	/* note, don't believe we have any call for the fifo routines */
3382 3383
};

3384
/**
3385
 * dwc2_hsotg_init - initalize the usb core
3386 3387
 * @hsotg: The driver state
 */
3388
static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
3389
{
3390
	u32 trdtim;
3391
	u32 usbcfg;
3392 3393
	/* unmask subset of endpoint interrupts */

3394 3395 3396
	dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DIEPMSK);
3397

3398 3399 3400
	dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DOEPMSK);
3401

3402
	dwc2_writel(0, hsotg->regs + DAINTMSK);
3403 3404

	/* Be in disconnected state until gadget is registered */
3405
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3406 3407 3408 3409

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3410 3411
		dwc2_readl(hsotg->regs + GRXFSIZ),
		dwc2_readl(hsotg->regs + GNPTXFSIZ));
3412

3413
	dwc2_hsotg_init_fifo(hsotg);
3414

3415 3416 3417 3418 3419
	/* keep other bits untouched (so e.g. forced modes are not lost) */
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
		GUSBCFG_HNPCAP);

3420
	/* set the PLL on, remove the HNP/SRP and set the PHY */
3421
	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3422 3423 3424
	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
		(trdtim << GUSBCFG_USBTRDTIM_SHIFT);
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3425

3426 3427
	if (using_dma(hsotg))
		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
3428 3429
}

3430
/**
3431
 * dwc2_hsotg_udc_start - prepare the udc for work
3432 3433 3434 3435 3436 3437
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
3438
static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
3439
			   struct usb_gadget_driver *driver)
3440
{
3441
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3442
	unsigned long flags;
3443 3444 3445
	int ret;

	if (!hsotg) {
3446
		pr_err("%s: called with no device\n", __func__);
3447 3448 3449 3450 3451 3452 3453 3454
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

3455
	if (driver->max_speed < USB_SPEED_FULL)
3456 3457
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

3458
	if (!driver->setup) {
3459 3460 3461 3462 3463 3464 3465 3466
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
3467
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
3468 3469
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

3470 3471 3472 3473
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
		ret = dwc2_lowlevel_hw_enable(hsotg);
		if (ret)
			goto err;
3474 3475
	}

3476 3477
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
3478

3479
	spin_lock_irqsave(&hsotg->lock, flags);
3480 3481
	dwc2_hsotg_init(hsotg);
	dwc2_hsotg_core_init_disconnected(hsotg, false);
3482
	hsotg->enabled = 0;
3483 3484
	spin_unlock_irqrestore(&hsotg->lock, flags);

3485
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
3486

3487 3488 3489 3490 3491 3492 3493
	return 0;

err:
	hsotg->driver = NULL;
	return ret;
}

3494
/**
3495
 * dwc2_hsotg_udc_stop - stop the udc
3496 3497 3498 3499 3500
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
3501
static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
3502
{
3503
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3504
	unsigned long flags = 0;
3505 3506 3507 3508 3509 3510
	int ep;

	if (!hsotg)
		return -ENODEV;

	/* all endpoints should be shutdown */
3511 3512
	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
3513
			dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3514
		if (hsotg->eps_out[ep])
3515
			dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3516
	}
3517

3518 3519
	spin_lock_irqsave(&hsotg->lock, flags);

3520
	hsotg->driver = NULL;
3521
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3522
	hsotg->enabled = 0;
3523

3524 3525
	spin_unlock_irqrestore(&hsotg->lock, flags);

3526 3527
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, NULL);
3528

3529 3530
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		dwc2_lowlevel_hw_disable(hsotg);
3531 3532 3533 3534

	return 0;
}

3535
/**
3536
 * dwc2_hsotg_gadget_getframe - read the frame number
3537 3538 3539 3540
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
3541
static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
3542
{
3543
	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
3544 3545
}

3546
/**
3547
 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
3548 3549 3550 3551 3552
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
3553
static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
3554
{
3555
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3556 3557
	unsigned long flags = 0;

3558 3559 3560 3561 3562 3563 3564 3565
	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
			hsotg->op_state);

	/* Don't modify pullup state while in host mode */
	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
		hsotg->enabled = is_on;
		return 0;
	}
3566 3567 3568

	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
3569
		hsotg->enabled = 1;
3570 3571
		dwc2_hsotg_core_init_disconnected(hsotg, false);
		dwc2_hsotg_core_connect(hsotg);
3572
	} else {
3573 3574
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
3575
		hsotg->enabled = 0;
3576 3577 3578 3579 3580 3581 3582 3583
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return 0;
}

3584
static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
3585 3586 3587 3588 3589 3590 3591
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
	unsigned long flags;

	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
	spin_lock_irqsave(&hsotg->lock, flags);

3592 3593 3594 3595 3596 3597 3598
	/*
	 * If controller is hibernated, it must exit from hibernation
	 * before being initialized / de-initialized
	 */
	if (hsotg->lx_state == DWC2_L2)
		dwc2_exit_hibernation(hsotg, false);

3599
	if (is_active) {
3600
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3601

3602
		dwc2_hsotg_core_init_disconnected(hsotg, false);
3603
		if (hsotg->enabled)
3604
			dwc2_hsotg_core_connect(hsotg);
3605
	} else {
3606 3607
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
3608 3609 3610 3611 3612 3613
	}

	spin_unlock_irqrestore(&hsotg->lock, flags);
	return 0;
}

3614
/**
3615
 * dwc2_hsotg_vbus_draw - report bMaxPower field
3616 3617 3618 3619 3620
 * @gadget: The usb gadget state
 * @mA: Amount of current
 *
 * Report how much power the device may consume to the phy.
 */
3621
static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned mA)
3622 3623 3624 3625 3626 3627 3628 3629
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);

	if (IS_ERR_OR_NULL(hsotg->uphy))
		return -ENOTSUPP;
	return usb_phy_set_power(hsotg->uphy, mA);
}

3630 3631 3632 3633 3634 3635 3636
static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
	.get_frame	= dwc2_hsotg_gadget_getframe,
	.udc_start		= dwc2_hsotg_udc_start,
	.udc_stop		= dwc2_hsotg_udc_stop,
	.pullup                 = dwc2_hsotg_pullup,
	.vbus_session		= dwc2_hsotg_vbus_session,
	.vbus_draw		= dwc2_hsotg_vbus_draw,
3637 3638 3639
};

/**
3640
 * dwc2_hsotg_initep - initialise a single endpoint
3641 3642 3643 3644 3645 3646 3647 3648
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
3649 3650
static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
				       struct dwc2_hsotg_ep *hs_ep,
3651 3652
				       int epnum,
				       bool dir_in)
3653 3654 3655 3656 3657
{
	char *dir;

	if (epnum == 0)
		dir = "";
3658
	else if (dir_in)
3659
		dir = "in";
3660 3661
	else
		dir = "out";
3662

3663
	hs_ep->dir_in = dir_in;
3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676
	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
3677
	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3678
	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
3679

3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692
	if (epnum == 0) {
		hs_ep->ep.caps.type_control = true;
	} else {
		hs_ep->ep.caps.type_iso = true;
		hs_ep->ep.caps.type_bulk = true;
		hs_ep->ep.caps.type_int = true;
	}

	if (dir_in)
		hs_ep->ep.caps.dir_in = true;
	else
		hs_ep->ep.caps.dir_out = true;

3693 3694
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
3695 3696 3697 3698
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
3699
		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3700
		if (dir_in)
3701
			dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
3702
		else
3703
			dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
3704 3705 3706
	}
}

3707
/**
3708
 * dwc2_hsotg_hw_cfg - read HW configuration registers
3709 3710 3711 3712
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
3713
static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
3714
{
3715 3716 3717 3718
	u32 cfg;
	u32 ep_type;
	u32 i;

3719
	/* check hardware configuration */
3720

3721 3722
	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;

3723 3724
	/* Add ep0 */
	hsotg->num_of_eps++;
3725

3726
	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct dwc2_hsotg_ep),
3727 3728 3729
								GFP_KERNEL);
	if (!hsotg->eps_in[0])
		return -ENOMEM;
3730
	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
3731 3732
	hsotg->eps_out[0] = hsotg->eps_in[0];

3733
	cfg = hsotg->hw_params.dev_ep_dirs;
3734
	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
3735 3736 3737 3738
		ep_type = cfg & 3;
		/* Direction in or both */
		if (!(ep_type & 2)) {
			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
3739
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
3740 3741 3742 3743 3744 3745
			if (!hsotg->eps_in[i])
				return -ENOMEM;
		}
		/* Direction out or both */
		if (!(ep_type & 1)) {
			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
3746
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
3747 3748 3749 3750 3751
			if (!hsotg->eps_out[i])
				return -ENOMEM;
		}
	}

3752 3753
	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
3754

3755 3756 3757 3758
	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
		 hsotg->num_of_eps,
		 hsotg->dedicated_fifos ? "dedicated" : "shared",
		 hsotg->fifo_mem);
3759
	return 0;
3760 3761
}

3762
/**
3763
 * dwc2_hsotg_dump - dump state of the udc
3764 3765
 * @param: The device state
 */
3766
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
3767
{
M
Mark Brown 已提交
3768
#ifdef DEBUG
3769 3770 3771 3772 3773 3774
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3775 3776
		 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
		 dwc2_readl(regs + DIEPMSK));
3777

3778
	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
3779
		 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
3780 3781

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3782
		 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
3783 3784 3785

	/* show periodic fifo settings */

3786
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3787
		val = dwc2_readl(regs + DPTXFSIZN(idx));
3788
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3789 3790
			 val >> FIFOSIZE_DEPTH_SHIFT,
			 val & FIFOSIZE_STARTADDR_MASK);
3791 3792
	}

3793
	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
3794 3795
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3796 3797 3798
			 dwc2_readl(regs + DIEPCTL(idx)),
			 dwc2_readl(regs + DIEPTSIZ(idx)),
			 dwc2_readl(regs + DIEPDMA(idx)));
3799

3800
		val = dwc2_readl(regs + DOEPCTL(idx));
3801 3802
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3803 3804 3805
			 idx, dwc2_readl(regs + DOEPCTL(idx)),
			 dwc2_readl(regs + DOEPTSIZ(idx)),
			 dwc2_readl(regs + DOEPDMA(idx)));
3806 3807 3808 3809

	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3810
		 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
3811
#endif
3812 3813
}

3814
#ifdef CONFIG_OF
3815
static void dwc2_hsotg_of_probe(struct dwc2_hsotg *hsotg)
3816 3817 3818 3819 3820
{
	struct device_node *np = hsotg->dev->of_node;

	/* Enable dma if requested in device tree */
	hsotg->g_using_dma = of_property_read_bool(np, "g-use-dma");
3821 3822 3823 3824 3825 3826 3827

	/* Register RX fifo size */
	of_property_read_u32(np, "g-rx-fifo-size", &hsotg->g_rx_fifo_sz);

	/* Register NPTX fifo size */
	of_property_read_u32(np, "g-np-tx-fifo-size",
						&hsotg->g_np_g_tx_fifo_sz);
3828 3829
}
#else
3830
static inline void dwc2_hsotg_of_probe(struct dwc2_hsotg *hsotg) { }
3831 3832
#endif

3833
/**
3834 3835 3836
 * dwc2_gadget_init - init function for gadget
 * @dwc2: The data structure for the DWC2 driver.
 * @irq: The IRQ number for the controller.
3837
 */
3838
int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
3839
{
3840
	struct device *dev = hsotg->dev;
3841 3842 3843
	int epnum;
	int ret;

3844 3845 3846 3847
	/* Initialize to legacy fifo configuration values */
	hsotg->g_rx_fifo_sz = 2048;
	hsotg->g_np_g_tx_fifo_sz = 1024;
	/* Device tree specific probe */
3848
	dwc2_hsotg_of_probe(hsotg);
3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859

	/* Check against largest possible value. */
	if (hsotg->g_np_g_tx_fifo_sz >
	    hsotg->hw_params.dev_nperio_tx_fifo_size) {
		dev_warn(dev, "Specified GNPTXFDEP=%d > %d\n",
			 hsotg->g_np_g_tx_fifo_sz,
			 hsotg->hw_params.dev_nperio_tx_fifo_size);
		hsotg->g_np_g_tx_fifo_sz =
			hsotg->hw_params.dev_nperio_tx_fifo_size;
	}

3860 3861 3862 3863
	/* Dump fifo information */
	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
						hsotg->g_np_g_tx_fifo_sz);
	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->g_rx_fifo_sz);
3864

3865
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3866
	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
3867
	hsotg->gadget.name = dev_name(dev);
3868 3869
	if (hsotg->dr_mode == USB_DR_MODE_OTG)
		hsotg->gadget.is_otg = 1;
3870 3871
	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3872

3873
	ret = dwc2_hsotg_hw_cfg(hsotg);
3874 3875
	if (ret) {
		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
3876
		return ret;
3877 3878
	}

3879 3880
	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
3881
	if (!hsotg->ctrl_buff)
3882
		return -ENOMEM;
3883 3884 3885

	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
3886
	if (!hsotg->ep0_buff)
3887
		return -ENOMEM;
3888

3889
	ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
3890
				dev_name(hsotg->dev), hsotg);
3891
	if (ret < 0) {
3892
		dev_err(dev, "cannot claim IRQ for gadget\n");
3893
		return ret;
3894 3895
	}

3896 3897 3898 3899
	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
3900
		return -EINVAL;
3901 3902 3903 3904 3905
	}

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3906
	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
3907 3908 3909

	/* allocate EP0 request */

3910
	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
3911 3912 3913
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
3914
		return -ENOMEM;
3915
	}
3916 3917

	/* initialise the endpoints now the core has been initialised */
3918 3919
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
		if (hsotg->eps_in[epnum])
3920
			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
3921 3922
								epnum, 1);
		if (hsotg->eps_out[epnum])
3923
			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
3924 3925
								epnum, 0);
	}
3926

3927
	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
3928
	if (ret)
3929
		return ret;
3930

3931
	dwc2_hsotg_dump(hsotg);
3932 3933 3934 3935

	return 0;
}

3936
/**
3937
 * dwc2_hsotg_remove - remove function for hsotg driver
3938 3939
 * @pdev: The platform information for the driver
 */
3940
int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
3941
{
3942
	usb_del_gadget_udc(&hsotg->gadget);
3943

3944 3945 3946
	return 0;
}

3947
int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
3948 3949 3950
{
	unsigned long flags;

3951
	if (hsotg->lx_state != DWC2_L0)
3952
		return 0;
3953

3954 3955 3956
	if (hsotg->driver) {
		int ep;

3957 3958 3959
		dev_info(hsotg->dev, "suspending usb gadget %s\n",
			 hsotg->driver->driver.name);

3960 3961
		spin_lock_irqsave(&hsotg->lock, flags);
		if (hsotg->enabled)
3962 3963
			dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
3964 3965
		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
		spin_unlock_irqrestore(&hsotg->lock, flags);
3966

3967 3968
		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
			if (hsotg->eps_in[ep])
3969
				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3970
			if (hsotg->eps_out[ep])
3971
				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3972
		}
3973 3974
	}

3975
	return 0;
3976 3977
}

3978
int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
3979 3980 3981
{
	unsigned long flags;

3982
	if (hsotg->lx_state == DWC2_L2)
3983
		return 0;
3984

3985 3986 3987
	if (hsotg->driver) {
		dev_info(hsotg->dev, "resuming usb gadget %s\n",
			 hsotg->driver->driver.name);
3988

3989
		spin_lock_irqsave(&hsotg->lock, flags);
3990
		dwc2_hsotg_core_init_disconnected(hsotg, false);
3991
		if (hsotg->enabled)
3992
			dwc2_hsotg_core_connect(hsotg);
3993 3994
		spin_unlock_irqrestore(&hsotg->lock, flags);
	}
3995

3996
	return 0;
3997
}
3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099

/**
 * dwc2_backup_device_registers() - Backup controller device registers.
 * When suspending usb bus, registers needs to be backuped
 * if controller power is disabled once suspended.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Backup dev regs */
	dr = &hsotg->dr_backup;

	dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
	dr->dctl = dwc2_readl(hsotg->regs + DCTL);
	dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
	dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
	dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Backup IN EPs */
		dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));

		/* Ensure DATA PID is correctly configured */
		if (dr->diepctl[i] & DXEPCTL_DPID)
			dr->diepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->diepctl[i] |= DXEPCTL_SETD0PID;

		dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
		dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));

		/* Backup OUT EPs */
		dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));

		/* Ensure DATA PID is correctly configured */
		if (dr->doepctl[i] & DXEPCTL_DPID)
			dr->doepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->doepctl[i] |= DXEPCTL_SETD0PID;

		dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
		dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
	}
	dr->valid = true;
	return 0;
}

/**
 * dwc2_restore_device_registers() - Restore controller device registers.
 * When resuming usb bus, device registers needs to be restored
 * if controller power were disabled.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	u32 dctl;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Restore dev regs */
	dr = &hsotg->dr_backup;
	if (!dr->valid) {
		dev_err(hsotg->dev, "%s: no device registers to restore\n",
			__func__);
		return -EINVAL;
	}
	dr->valid = false;

	dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
	dwc2_writel(dr->dctl, hsotg->regs + DCTL);
	dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
	dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
	dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Restore IN EPs */
		dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
		dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
		dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));

		/* Restore OUT EPs */
		dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
		dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
	}

	/* Set the Power-On Programming done bit */
	dctl = dwc2_readl(hsotg->regs + DCTL);
	dctl |= DCTL_PWRONPRGDONE;
	dwc2_writel(dctl, hsotg->regs + DCTL);

	return 0;
}