gadget.c 96.9 KB
Newer Older
1
/**
2 3
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
4 5 6 7 8 9 10 11 12 13 14
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
15
 */
16 17 18 19 20 21 22

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
23
#include <linux/mutex.h>
24 25 26
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
27
#include <linux/slab.h>
28
#include <linux/of_platform.h>
29 30 31

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
32
#include <linux/usb/phy.h>
33

34
#include "core.h"
35
#include "hw.h"
36 37

/* conversion functions */
38
static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
39
{
40
	return container_of(req, struct dwc2_hsotg_req, req);
41 42
}

43
static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
44
{
45
	return container_of(ep, struct dwc2_hsotg_ep, ep);
46 47
}

48
static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
49
{
50
	return container_of(gadget, struct dwc2_hsotg, gadget);
51 52 53 54
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
55
	dwc2_writel(dwc2_readl(ptr) | val, ptr);
56 57 58 59
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
60
	dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
61 62
}

63
static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
64 65 66 67 68 69 70 71
						u32 ep_index, u32 dir_in)
{
	if (dir_in)
		return hsotg->eps_in[ep_index];
	else
		return hsotg->eps_out[ep_index];
}

72
/* forward declaration of functions */
73
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
92
 * g_using_dma is set depending on dts flag.
93
 */
94
static inline bool using_dma(struct dwc2_hsotg *hsotg)
95
{
96
	return hsotg->g_using_dma;
97 98
}

99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
/**
 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
 * @hs_ep: The endpoint
 * @increment: The value to increment by
 *
 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
 */
static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
{
	hs_ep->target_frame += hs_ep->interval;
	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
		hs_ep->frame_overrun = 1;
		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
	} else {
		hs_ep->frame_overrun = 0;
	}
}

118
/**
119
 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
120 121 122
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
123
static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
124
{
125
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
126 127 128 129 130 131
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
132
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
133 134 135 136
	}
}

/**
137
 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
138 139 140
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
141
static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
142
{
143
	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
144 145 146 147 148
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
149
		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
150 151 152
}

/**
153
 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
154 155 156 157 158 159 160 161
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
162
static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
163 164 165 166 167 168 169 170 171 172 173
				 unsigned int ep, unsigned int dir_in,
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
174
	daint = dwc2_readl(hsotg->regs + DAINTMSK);
175 176 177 178
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
179
	dwc2_writel(daint, hsotg->regs + DAINTMSK);
180 181 182 183
	local_irq_restore(flags);
}

/**
184
 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
185 186
 * @hsotg: The device instance.
 */
187
static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
188
{
189 190
	unsigned int ep;
	unsigned int addr;
191
	int timeout;
192 193
	u32 val;

194 195 196 197
	/* Reset fifo map if not correctly cleared during previous session */
	WARN_ON(hsotg->fifo_map);
	hsotg->fifo_map = 0;

198
	/* set RX/NPTX FIFO sizes */
199 200
	dwc2_writel(hsotg->g_rx_fifo_sz, hsotg->regs + GRXFSIZ);
	dwc2_writel((hsotg->g_rx_fifo_sz << FIFOSIZE_STARTADDR_SHIFT) |
201 202
		(hsotg->g_np_g_tx_fifo_sz << FIFOSIZE_DEPTH_SHIFT),
		hsotg->regs + GNPTXFSIZ);
203

204 205
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
206 207
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
208 209
	 * known values.
	 */
210 211

	/* start at the end of the GNPTXFSIZ, rounded up */
212
	addr = hsotg->g_rx_fifo_sz + hsotg->g_np_g_tx_fifo_sz;
213

214
	/*
215
	 * Configure fifos sizes from provided configuration and assign
216 217
	 * them to endpoints dynamically according to maxpacket size value of
	 * given endpoint.
218
	 */
219 220 221
	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
		if (!hsotg->g_tx_fifo_sz[ep])
			continue;
222
		val = addr;
223 224
		val |= hsotg->g_tx_fifo_sz[ep] << FIFOSIZE_DEPTH_SHIFT;
		WARN_ONCE(addr + hsotg->g_tx_fifo_sz[ep] > hsotg->fifo_mem,
225
			  "insufficient fifo memory");
226
		addr += hsotg->g_tx_fifo_sz[ep];
227

228
		dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
229
	}
230

231 232 233 234
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
235

236
	dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
237
	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
238 239 240 241

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
242
		val = dwc2_readl(hsotg->regs + GRSTCTL);
243

244
		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
245 246 247 248 249 250
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
251
			break;
252 253 254 255 256 257
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
258 259 260 261 262 263 264 265
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
266
static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
267
						      gfp_t flags)
268
{
269
	struct dwc2_hsotg_req *req;
270

271
	req = kzalloc(sizeof(struct dwc2_hsotg_req), flags);
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
287
static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
288 289 290 291 292
{
	return hs_ep->periodic;
}

/**
293
 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
294 295 296 297
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
298
 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
299
 * of a request to ensure the buffer is ready for access by the caller.
300
 */
301 302 303
static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req)
304 305 306 307 308 309 310
{
	struct usb_request *req = &hs_req->req;

	/* ignore this if we're not moving any data */
	if (hs_req->req.length == 0)
		return;

311
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
312 313 314
}

/**
315
 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
316 317 318 319 320 321 322 323 324 325 326 327 328
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
329
 */
330 331 332
static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req)
333 334
{
	bool periodic = is_ep_periodic(hs_ep);
335
	u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
336 337 338 339 340
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;
341
	int max_transfer;
342 343 344 345 346 347 348

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

349
	if (periodic && !hsotg->dedicated_fifos) {
350
		u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
351 352 353
		int size_left;
		int size_done;

354 355 356 357
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
358

359
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
360

361 362
		/*
		 * if shared fifo, we cannot write anything until the
363 364 365
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
366
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
367 368 369
			return -ENOSPC;
		}

370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
387
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
388 389
			return -ENOSPC;
		}
390
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
391
		can_write = dwc2_readl(hsotg->regs + DTXFSTS(hs_ep->index));
392 393 394

		can_write &= 0xffff;
		can_write *= 4;
395
	} else {
396
		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
397 398 399 400
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

401
			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
402 403 404
			return -ENOSPC;
		}

405
		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
406
		can_write *= 4;	/* fifo size is in 32bit quantities. */
407 408
	}

409 410 411 412
	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
		 __func__, gnptxsts, can_write, to_write, max_transfer);
413

414 415
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
416 417 418
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
419
	if (can_write > 512 && !periodic)
420 421
		can_write = 512;

422 423
	/*
	 * limit the write to one max-packet size worth of data, but allow
424
	 * the transfer to return that it did not run out of fifo space
425 426
	 * doing it.
	 */
427 428
	if (to_write > max_transfer) {
		to_write = max_transfer;
429

430 431
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
432
			dwc2_hsotg_en_gsint(hsotg,
433 434
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
435 436
	}

437 438 439 440
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
441
		pkt_round = to_write % max_transfer;
442

443 444
		/*
		 * Round the write down to an
445 446 447 448 449 450 451 452 453
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

454 455 456 457
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
458

459 460
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
461
			dwc2_hsotg_en_gsint(hsotg,
462 463
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
		 to_write, hs_req->req.length, can_write, buf_pos);

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

481
	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
482 483 484 485 486 487 488 489 490 491 492

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
493
static unsigned get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
494 495 496 497 498 499
{
	int index = hs_ep->index;
	unsigned maxsize;
	unsigned maxpkt;

	if (index != 0) {
500 501
		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
502
	} else {
503
		maxsize = 64+64;
504
		if (hs_ep->dir_in)
505
			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
506
		else
507 508 509 510 511 512 513
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

514 515 516 517
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
518 519 520 521 522 523 524 525

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

/**
526
 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
527 528 529 530 531 532 533 534
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
535 536 537
static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *hs_ep,
				struct dwc2_hsotg_req *hs_req,
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
	unsigned length;
	unsigned packets;
	unsigned maxreq;

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

564 565
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
566 567

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
568
		__func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
569 570
		hs_ep->dir_in ? "in" : "out");

571
	/* If endpoint is stalled, we will restart request later */
572
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
573

574
	if (index && ctrl & DXEPCTL_STALL) {
575 576 577 578
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

579
	length = ureq->length - ureq->actual;
580 581
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601

	maxreq = get_ep_limit(hs_ep);
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

602 603 604 605 606
	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
		return;
	}

607
	if (dir_in && index != 0)
608
		if (hs_ep->isochronous)
609
			epsize = DXEPTSIZ_MC(packets);
610
		else
611
			epsize = DXEPTSIZ_MC(1);
612 613 614
	else
		epsize = 0;

615 616 617 618 619 620 621 622
	/*
	 * zero length packet should be programmed on its own and should not
	 * be counted in DIEPTSIZ.PktCnt with other packets.
	 */
	if (dir_in && ureq->zero && !continuing) {
		/* Test if zlp is actually required. */
		if ((ureq->length >= hs_ep->ep.maxpacket) &&
					!(ureq->length % hs_ep->ep.maxpacket))
623
			hs_ep->send_zlp = 1;
624 625
	}

626 627
	epsize |= DXEPTSIZ_PKTCNT(packets);
	epsize |= DXEPTSIZ_XFERSIZE(length);
628 629 630 631 632 633 634 635

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

	/* write size / packets */
636
	dwc2_writel(epsize, hsotg->regs + epsize_reg);
637

638
	if (using_dma(hsotg) && !continuing) {
639 640
		unsigned int dma_reg;

641 642
		/*
		 * write DMA address to control register, buffer already
643
		 * synced by dwc2_hsotg_ep_queue().
644
		 */
645

646
		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
647
		dwc2_writel(ureq->dma, hsotg->regs + dma_reg);
648

649
		dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
650
			__func__, &ureq->dma, dma_reg);
651 652
	}

653
	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
654

655
	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
656 657

	/* For Setup request do not clear NAK */
658
	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
659
		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
660

661
	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
662
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
663

664 665
	/*
	 * set these, it seems that DMA support increments past the end
666
	 * of the packet buffer so we need to calculate the length from
667 668
	 * this information.
	 */
669 670 671 672 673 674 675
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

676
		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
677 678
	}

679 680 681 682
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
683 684

	/* check ep is enabled */
685
	if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
686
		dev_dbg(hsotg->dev,
687
			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
688
			 index, dwc2_readl(hsotg->regs + epctrl_reg));
689

690
	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
691
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
692 693

	/* enable ep interrupts */
694
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
695 696 697
}

/**
698
 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
699 700 701 702 703 704 705 706 707
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
708
 */
709 710
static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
			     struct dwc2_hsotg_ep *hs_ep,
711 712
			     struct usb_request *req)
{
713
	struct dwc2_hsotg_req *hs_req = our_req(req);
714
	int ret;
715 716 717 718 719

	/* if the length is zero, ignore the DMA data */
	if (hs_req->req.length == 0)
		return 0;

720 721 722
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
723 724 725 726 727 728 729 730 731 732

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

733 734
static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
{
	void *req_buf = hs_req->req.buf;

	/* If dma is not being used or buffer is aligned */
	if (!using_dma(hsotg) || !((long)req_buf & 3))
		return 0;

	WARN_ON(hs_req->saved_req_buf);

	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
			hs_ep->ep.name, req_buf, hs_req->req.length);

	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
	if (!hs_req->req.buf) {
		hs_req->req.buf = req_buf;
		dev_err(hsotg->dev,
			"%s: unable to allocate memory for bounce buffer\n",
			__func__);
		return -ENOMEM;
	}

	/* Save actual buffer */
	hs_req->saved_req_buf = req_buf;

	if (hs_ep->dir_in)
		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
	return 0;
}

764 765
static void dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
{
	/* If dma is not being used or buffer was aligned */
	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
		return;

	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);

	/* Copy data from bounce buffer on successful out transfer */
	if (!hs_ep->dir_in && !hs_req->req.status)
		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
							hs_req->req.actual);

	/* Free bounce buffer */
	kfree(hs_req->req.buf);

	hs_req->req.buf = hs_req->saved_req_buf;
	hs_req->saved_req_buf = NULL;
}

786
static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
787 788
			      gfp_t gfp_flags)
{
789 790
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
791
	struct dwc2_hsotg *hs = hs_ep->parent;
792
	bool first;
793
	int ret;
794 795 796 797 798

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

799 800 801 802 803 804 805
	/* Prevent new request submission when controller is suspended */
	if (hs->lx_state == DWC2_L2) {
		dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
				__func__);
		return -EAGAIN;
	}

806 807 808 809 810
	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

811
	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
812 813 814
	if (ret)
		return ret;

815 816
	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
817
		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
818 819 820 821 822 823 824 825
		if (ret)
			return ret;
	}

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

	if (first)
826
		dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
827 828 829 830

	return 0;
}

831
static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
832 833
			      gfp_t gfp_flags)
{
834
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
835
	struct dwc2_hsotg *hs = hs_ep->parent;
836 837 838 839
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
840
	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
841 842 843 844 845
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

846
static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
847 848
				      struct usb_request *req)
{
849
	struct dwc2_hsotg_req *hs_req = our_req(req);
850 851 852 853 854

	kfree(hs_req);
}

/**
855
 * dwc2_hsotg_complete_oursetup - setup completion callback
856 857 858 859 860 861
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
862
static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
863 864
					struct usb_request *req)
{
865
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
866
	struct dwc2_hsotg *hsotg = hs_ep->parent;
867 868 869

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

870
	dwc2_hsotg_ep_free_request(ep, req);
871 872 873 874 875 876 877 878 879
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
880
 */
881
static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
882 883
					   u32 windex)
{
884
	struct dwc2_hsotg_ep *ep;
885 886 887 888 889 890
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

891
	if (idx > hsotg->num_of_eps)
892 893
		return NULL;

894 895
	ep = index_to_ep(hsotg, idx, dir);

896 897 898 899 900 901
	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

902
/**
903
 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
904 905 906 907
 * @hsotg: The driver state.
 * @testmode: requested usb test mode
 * Enable usb Test Mode requested by the Host.
 */
908
int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
909
{
910
	int dctl = dwc2_readl(hsotg->regs + DCTL);
911 912 913 914 915 916 917 918 919 920 921 922 923

	dctl &= ~DCTL_TSTCTL_MASK;
	switch (testmode) {
	case TEST_J:
	case TEST_K:
	case TEST_SE0_NAK:
	case TEST_PACKET:
	case TEST_FORCE_EN:
		dctl |= testmode << DCTL_TSTCTL_SHIFT;
		break;
	default:
		return -EINVAL;
	}
924
	dwc2_writel(dctl, hsotg->regs + DCTL);
925 926 927
	return 0;
}

928
/**
929
 * dwc2_hsotg_send_reply - send reply to control request
930 931 932 933 934 935 936 937
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
938 939
static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
				struct dwc2_hsotg_ep *ep,
940 941 942 943 944 945 946 947
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

948
	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
949 950 951 952 953 954 955 956
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
957 958 959 960 961
	/*
	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
	 * STATUS stage.
	 */
	req->zero = 0;
962
	req->complete = dwc2_hsotg_complete_oursetup;
963 964 965 966

	if (length)
		memcpy(req->buf, buff, length);

967
	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
968 969 970 971 972 973 974 975 976
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
977
 * dwc2_hsotg_process_req_status - process request GET_STATUS
978 979 980
 * @hsotg: The device state
 * @ctrl: USB control request
 */
981
static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
982 983
					struct usb_ctrlrequest *ctrl)
{
984 985
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_ep *ep;
986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
		reply = cpu_to_le16(0); /* bit 0 => self powered,
					 * bit 1 => remote wakeup */
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

1022
	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1023 1024 1025 1026 1027 1028 1029 1030
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

1031
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1032

1033 1034 1035 1036 1037 1038
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
1039
static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1040 1041 1042 1043
{
	if (list_empty(&hs_ep->queue))
		return NULL;

1044
	return list_first_entry(&hs_ep->queue, struct dwc2_hsotg_req, queue);
1045 1046
}

1047
/**
1048
 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1049 1050 1051
 * @hsotg: The device state
 * @ctrl: USB control request
 */
1052
static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1053 1054
					 struct usb_ctrlrequest *ctrl)
{
1055 1056
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
	struct dwc2_hsotg_req *hs_req;
1057
	bool restart;
1058
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1059
	struct dwc2_hsotg_ep *ep;
1060
	int ret;
1061
	bool halted;
1062 1063 1064
	u32 recip;
	u32 wValue;
	u32 wIndex;
1065 1066 1067 1068

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
	wValue = le16_to_cpu(ctrl->wValue);
	wIndex = le16_to_cpu(ctrl->wIndex);
	recip = ctrl->bRequestType & USB_RECIP_MASK;

	switch (recip) {
	case USB_RECIP_DEVICE:
		switch (wValue) {
		case USB_DEVICE_TEST_MODE:
			if ((wIndex & 0xff) != 0)
				return -EINVAL;
			if (!set)
				return -EINVAL;

			hsotg->test_mode = wIndex >> 8;
1083
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
			break;
		default:
			return -ENOENT;
		}
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, wIndex);
1097 1098
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1099
				__func__, wIndex);
1100 1101 1102
			return -ENOENT;
		}

1103
		switch (wValue) {
1104
		case USB_ENDPOINT_HALT:
1105 1106
			halted = ep->halted;

1107
			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1108

1109
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1110 1111 1112 1113 1114
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
1115

1116 1117 1118 1119 1120 1121
			/*
			 * we have to complete all requests for ep if it was
			 * halted, and the halt was cleared by CLEAR_FEATURE
			 */

			if (!set && halted) {
1122 1123 1124 1125 1126 1127 1128 1129
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
1130 1131 1132 1133 1134 1135
					if (hs_req->req.complete) {
						spin_unlock(&hsotg->lock);
						usb_gadget_giveback_request(
							&ep->ep, &hs_req->req);
						spin_lock(&hsotg->lock);
					}
1136 1137 1138
				}

				/* If we have pending request, then start it */
1139 1140 1141 1142
				if (!ep->req) {
					restart = !list_empty(&ep->queue);
					if (restart) {
						hs_req = get_ep_head(ep);
1143
						dwc2_hsotg_start_req(hsotg, ep,
1144 1145
								hs_req, false);
					}
1146 1147 1148
				}
			}

1149 1150 1151 1152 1153
			break;

		default:
			return -ENOENT;
		}
1154 1155 1156 1157
		break;
	default:
		return -ENOENT;
	}
1158 1159 1160
	return 1;
}

1161
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1162

1163
/**
1164
 * dwc2_hsotg_stall_ep0 - stall ep0
1165 1166 1167 1168
 * @hsotg: The device state
 *
 * Set stall for ep0 as response for setup request.
 */
1169
static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1170
{
1171
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
	u32 reg;
	u32 ctrl;

	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;

	/*
	 * DxEPCTL_Stall will be cleared by EP once it has
	 * taken effect, so no need to clear later.
	 */

1183
	ctrl = dwc2_readl(hsotg->regs + reg);
1184 1185
	ctrl |= DXEPCTL_STALL;
	ctrl |= DXEPCTL_CNAK;
1186
	dwc2_writel(ctrl, hsotg->regs + reg);
1187 1188

	dev_dbg(hsotg->dev,
1189
		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1190
		ctrl, reg, dwc2_readl(hsotg->regs + reg));
1191 1192 1193 1194 1195

	 /*
	  * complete won't be called, so we enqueue
	  * setup request here
	  */
1196
	 dwc2_hsotg_enqueue_setup(hsotg);
1197 1198
}

1199
/**
1200
 * dwc2_hsotg_process_control - process a control request
1201 1202 1203 1204 1205 1206 1207
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
1208
static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1209 1210
				      struct usb_ctrlrequest *ctrl)
{
1211
	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1212 1213 1214
	int ret = 0;
	u32 dcfg;

1215 1216 1217 1218
	dev_dbg(hsotg->dev,
		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
		ctrl->wIndex, ctrl->wLength);
1219

1220 1221 1222 1223
	if (ctrl->wLength == 0) {
		ep0->dir_in = 1;
		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
	} else if (ctrl->bRequestType & USB_DIR_IN) {
1224
		ep0->dir_in = 1;
1225 1226 1227 1228 1229
		hsotg->ep0_state = DWC2_EP0_DATA_IN;
	} else {
		ep0->dir_in = 0;
		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
	}
1230 1231 1232 1233

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1234
			hsotg->connected = 1;
1235
			dcfg = dwc2_readl(hsotg->regs + DCFG);
1236
			dcfg &= ~DCFG_DEVADDR_MASK;
P
Paul Zimmerman 已提交
1237 1238
			dcfg |= (le16_to_cpu(ctrl->wValue) <<
				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1239
			dwc2_writel(dcfg, hsotg->regs + DCFG);
1240 1241 1242

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

1243
			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1244 1245 1246
			return;

		case USB_REQ_GET_STATUS:
1247
			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1248 1249 1250 1251
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
1252
			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1253 1254 1255 1256 1257 1258 1259
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
1260
		spin_unlock(&hsotg->lock);
1261
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1262
		spin_lock(&hsotg->lock);
1263 1264 1265 1266
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1267 1268
	/*
	 * the request is either unhandlable, or is not formatted correctly
1269 1270 1271
	 * so respond with a STALL for the status stage to indicate failure.
	 */

1272
	if (ret < 0)
1273
		dwc2_hsotg_stall_ep0(hsotg);
1274 1275 1276
}

/**
1277
 * dwc2_hsotg_complete_setup - completion of a setup transfer
1278 1279 1280 1281 1282 1283
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
1284
static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1285 1286
				     struct usb_request *req)
{
1287
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1288
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1289 1290 1291 1292 1293 1294

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

1295
	spin_lock(&hsotg->lock);
1296
	if (req->actual == 0)
1297
		dwc2_hsotg_enqueue_setup(hsotg);
1298
	else
1299
		dwc2_hsotg_process_control(hsotg, req->buf);
1300
	spin_unlock(&hsotg->lock);
1301 1302 1303
}

/**
1304
 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1305 1306 1307 1308 1309
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
1310
static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1311 1312
{
	struct usb_request *req = hsotg->ctrl_req;
1313
	struct dwc2_hsotg_req *hs_req = our_req(req);
1314 1315 1316 1317 1318 1319 1320
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
1321
	req->complete = dwc2_hsotg_complete_setup;
1322 1323 1324 1325 1326 1327

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

1328
	hsotg->eps_out[0]->dir_in = 0;
1329
	hsotg->eps_out[0]->send_zlp = 0;
1330
	hsotg->ep0_state = DWC2_EP0_SETUP;
1331

1332
	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1333 1334
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1335 1336 1337 1338
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1339 1340 1341
	}
}

1342 1343
static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
					struct dwc2_hsotg_ep *hs_ep)
1344 1345 1346 1347 1348 1349
{
	u32 ctrl;
	u8 index = hs_ep->index;
	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);

1350 1351 1352 1353 1354 1355
	if (hs_ep->dir_in)
		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
									index);
	else
		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
									index);
1356

1357 1358 1359
	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
		    DXEPTSIZ_XFERSIZE(0), hsotg->regs +
		    epsiz_reg);
1360

1361
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1362 1363 1364
	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
1365
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1366 1367
}

1368
/**
1369
 * dwc2_hsotg_complete_request - complete a request given to us
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1380
 */
1381 1382 1383
static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
				       struct dwc2_hsotg_ep *hs_ep,
				       struct dwc2_hsotg_req *hs_req,
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395
				       int result)
{
	bool restart;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1396 1397 1398 1399
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1400 1401 1402 1403

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

1404 1405 1406
	if (using_dma(hsotg))
		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1407
	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1408

1409 1410 1411
	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

1412 1413 1414 1415
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1416 1417

	if (hs_req->req.complete) {
1418
		spin_unlock(&hsotg->lock);
1419
		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1420
		spin_lock(&hsotg->lock);
1421 1422
	}

1423 1424
	/*
	 * Look to see if there is anything else to do. Note, the completion
1425
	 * of the previous request may have caused a new request to be started
1426 1427
	 * so be careful when doing this.
	 */
1428 1429 1430 1431 1432

	if (!hs_ep->req && result >= 0) {
		restart = !list_empty(&hs_ep->queue);
		if (restart) {
			hs_req = get_ep_head(hs_ep);
1433
			dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1434 1435 1436 1437 1438
		}
	}
}

/**
1439
 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
1440 1441 1442 1443 1444 1445 1446 1447
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
1448
static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
1449
{
1450 1451
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1452
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1453 1454 1455 1456
	int to_read;
	int max_req;
	int read_ptr;

1457

1458
	if (!hs_req) {
1459
		u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
1460 1461
		int ptr;

1462
		dev_dbg(hsotg->dev,
1463
			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1464 1465 1466 1467
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
1468
			(void)dwc2_readl(fifo);
1469 1470 1471 1472 1473 1474 1475 1476

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

1477 1478 1479
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

1480
	if (to_read > max_req) {
1481 1482
		/*
		 * more data appeared than we where willing
1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

1494 1495 1496 1497
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
1498
	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1499 1500 1501
}

/**
1502
 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
1503
 * @hsotg: The device instance
1504
 * @dir_in: If IN zlp
1505 1506 1507 1508 1509
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
1510
 * currently believed that we do not need to wait for any space in
1511 1512
 * the TxFIFO.
 */
1513
static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
1514
{
1515
	/* eps_out[0] is used in both directions */
1516 1517
	hsotg->eps_out[0]->dir_in = dir_in;
	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
1518

1519
	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
1520 1521
}

1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
			u32 epctl_reg)
{
	u32 ctrl;

	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
	if (ctrl & DXEPCTL_EOFRNUM)
		ctrl |= DXEPCTL_SETEVENFR;
	else
		ctrl |= DXEPCTL_SETODDFR;
	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
}

1535
/**
1536
 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1537 1538 1539 1540 1541 1542
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
1543
 */
1544
static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
1545
{
1546
	u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
1547 1548
	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1549
	struct usb_request *req = &hs_req->req;
1550
	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1551 1552 1553 1554 1555 1556 1557
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

1558 1559
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
		dev_dbg(hsotg->dev, "zlp packet received\n");
1560 1561
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
		dwc2_hsotg_enqueue_setup(hsotg);
1562 1563 1564
		return;
	}

1565 1566 1567
	if (using_dma(hsotg)) {
		unsigned size_done;

1568 1569
		/*
		 * Calculate the size of the transfer by checking how much
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

1583 1584
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
1585
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1586 1587 1588
		return;
	}

1589 1590 1591 1592
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

1593 1594 1595 1596
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
1597 1598
	}

1599 1600
	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
		/* Move to STATUS IN */
1601
		dwc2_hsotg_ep0_zlp(hsotg, true);
1602
		return;
1603 1604
	}

1605 1606 1607 1608 1609 1610 1611 1612 1613 1614
	/*
	 * Slave mode OUT transfers do not go through XferComplete so
	 * adjust the ISOC parity here.
	 */
	if (!using_dma(hsotg)) {
		hs_ep->has_correct_parity = 1;
		if (hs_ep->isochronous && hs_ep->interval == 1)
			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
	}

1615
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1616 1617 1618
}

/**
1619
 * dwc2_hsotg_read_frameno - read current frame number
1620 1621 1622
 * @hsotg: The device instance
 *
 * Return the current frame number
1623
 */
1624
static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
1625 1626 1627
{
	u32 dsts;

1628
	dsts = dwc2_readl(hsotg->regs + DSTS);
1629 1630
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;
1631 1632 1633 1634 1635

	return dsts;
}

/**
1636
 * dwc2_hsotg_handle_rx - RX FIFO has data
1637 1638 1639 1640 1641 1642
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
1643
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1644 1645 1646 1647 1648 1649 1650
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
1651
static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
1652
{
1653
	u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
1654 1655 1656 1657
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

1658 1659
	epnum = grxstsr & GRXSTS_EPNUM_MASK;
	status = grxstsr & GRXSTS_PKTSTS_MASK;
1660

1661 1662
	size = grxstsr & GRXSTS_BYTECNT_MASK;
	size >>= GRXSTS_BYTECNT_SHIFT;
1663

1664
	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1665 1666
			__func__, grxstsr, size, epnum);

1667 1668 1669
	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
	case GRXSTS_PKTSTS_GLOBALOUTNAK:
		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1670 1671
		break;

1672
	case GRXSTS_PKTSTS_OUTDONE:
1673
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1674
			dwc2_hsotg_read_frameno(hsotg));
1675 1676

		if (!using_dma(hsotg))
1677
			dwc2_hsotg_handle_outdone(hsotg, epnum);
1678 1679
		break;

1680
	case GRXSTS_PKTSTS_SETUPDONE:
1681 1682
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1683
			dwc2_hsotg_read_frameno(hsotg),
1684
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
1685
		/*
1686
		 * Call dwc2_hsotg_handle_outdone here if it was not called from
1687 1688 1689 1690
		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
		 */
		if (hsotg->ep0_state == DWC2_EP0_SETUP)
1691
			dwc2_hsotg_handle_outdone(hsotg, epnum);
1692 1693
		break;

1694
	case GRXSTS_PKTSTS_OUTRX:
1695
		dwc2_hsotg_rx_data(hsotg, epnum, size);
1696 1697
		break;

1698
	case GRXSTS_PKTSTS_SETUPRX:
1699 1700
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1701
			dwc2_hsotg_read_frameno(hsotg),
1702
			dwc2_readl(hsotg->regs + DOEPCTL(0)));
1703

1704 1705
		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);

1706
		dwc2_hsotg_rx_data(hsotg, epnum, size);
1707 1708 1709 1710 1711 1712
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

1713
		dwc2_hsotg_dump(hsotg);
1714 1715 1716 1717 1718
		break;
	}
}

/**
1719
 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
1720
 * @mps: The maximum packet size in bytes.
1721
 */
1722
static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
1723 1724 1725
{
	switch (mps) {
	case 64:
1726
		return D0EPCTL_MPS_64;
1727
	case 32:
1728
		return D0EPCTL_MPS_32;
1729
	case 16:
1730
		return D0EPCTL_MPS_16;
1731
	case 8:
1732
		return D0EPCTL_MPS_8;
1733 1734 1735 1736 1737 1738 1739 1740
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
1741
 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1742 1743 1744 1745 1746 1747 1748
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
1749
static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
1750
			unsigned int ep, unsigned int mps, unsigned int dir_in)
1751
{
1752
	struct dwc2_hsotg_ep *hs_ep;
1753 1754
	void __iomem *regs = hsotg->regs;
	u32 mpsval;
1755
	u32 mcval;
1756 1757
	u32 reg;

1758 1759 1760 1761
	hs_ep = index_to_ep(hsotg, ep, dir_in);
	if (!hs_ep)
		return;

1762 1763
	if (ep == 0) {
		/* EP0 is a special case */
1764
		mpsval = dwc2_hsotg_ep0_mps(mps);
1765 1766
		if (mpsval > 3)
			goto bad_mps;
1767
		hs_ep->ep.maxpacket = mps;
1768
		hs_ep->mc = 1;
1769
	} else {
1770
		mpsval = mps & DXEPCTL_MPS_MASK;
1771
		if (mpsval > 1024)
1772
			goto bad_mps;
1773 1774 1775 1776
		mcval = ((mps >> 11) & 0x3) + 1;
		hs_ep->mc = mcval;
		if (mcval > 3)
			goto bad_mps;
1777
		hs_ep->ep.maxpacket = mpsval;
1778 1779
	}

1780
	if (dir_in) {
1781
		reg = dwc2_readl(regs + DIEPCTL(ep));
1782 1783
		reg &= ~DXEPCTL_MPS_MASK;
		reg |= mpsval;
1784
		dwc2_writel(reg, regs + DIEPCTL(ep));
1785
	} else {
1786
		reg = dwc2_readl(regs + DOEPCTL(ep));
1787
		reg &= ~DXEPCTL_MPS_MASK;
1788
		reg |= mpsval;
1789
		dwc2_writel(reg, regs + DOEPCTL(ep));
1790
	}
1791 1792 1793 1794 1795 1796 1797

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

1798
/**
1799
 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
1800 1801 1802
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
1803
static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
1804 1805 1806 1807
{
	int timeout;
	int val;

1808 1809
	dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
		    hsotg->regs + GRSTCTL);
1810 1811 1812 1813 1814

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
1815
		val = dwc2_readl(hsotg->regs + GRSTCTL);
1816

1817
		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1818 1819 1820 1821 1822 1823
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
1824
			break;
1825 1826 1827 1828 1829
		}

		udelay(1);
	}
}
1830 1831

/**
1832
 * dwc2_hsotg_trytx - check to see if anything needs transmitting
1833 1834 1835 1836 1837 1838
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
1839 1840
static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
			   struct dwc2_hsotg_ep *hs_ep)
1841
{
1842
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1843

1844 1845 1846 1847 1848 1849
	if (!hs_ep->dir_in || !hs_req) {
		/**
		 * if request is not enqueued, we disable interrupts
		 * for endpoints, excepting ep0
		 */
		if (hs_ep->index != 0)
1850
			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
1851
					     hs_ep->dir_in, 0);
1852
		return 0;
1853
	}
1854 1855 1856 1857

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
1858
		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1859 1860 1861 1862 1863 1864
	}

	return 0;
}

/**
1865
 * dwc2_hsotg_complete_in - complete IN transfer
1866 1867 1868 1869 1870 1871
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
1872 1873
static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
				  struct dwc2_hsotg_ep *hs_ep)
1874
{
1875
	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1876
	u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1877 1878 1879 1880 1881 1882 1883
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

1884
	/* Finish ZLP handling for IN EP0 transactions */
1885 1886
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
		dev_dbg(hsotg->dev, "zlp packet sent\n");
1887
		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1888 1889 1890
		if (hsotg->test_mode) {
			int ret;

1891
			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
1892 1893 1894
			if (ret < 0) {
				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
						hsotg->test_mode);
1895
				dwc2_hsotg_stall_ep0(hsotg);
1896 1897 1898
				return;
			}
		}
1899
		dwc2_hsotg_enqueue_setup(hsotg);
1900 1901 1902
		return;
	}

1903 1904
	/*
	 * Calculate the size of the transfer by checking how much is left
1905 1906 1907 1908 1909 1910 1911 1912
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */

1913
	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1914 1915 1916 1917 1918 1919 1920 1921 1922

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
1923 1924 1925
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

1926 1927
	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1928
		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1929 1930 1931
		return;
	}

1932
	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
1933
	if (hs_ep->send_zlp) {
1934
		dwc2_hsotg_program_zlp(hsotg, hs_ep);
1935
		hs_ep->send_zlp = 0;
1936 1937 1938 1939
		/* transfer will be completed on next complete interrupt */
		return;
	}

1940 1941
	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
		/* Move to STATUS OUT */
1942
		dwc2_hsotg_ep0_zlp(hsotg, false);
1943 1944 1945
		return;
	}

1946
	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1947 1948 1949
}

/**
1950
 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
1951 1952 1953 1954 1955
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
1956
 */
1957
static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
1958 1959
			    int dir_in)
{
1960
	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
1961 1962 1963
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1964
	u32 ints;
1965
	u32 ctrl;
1966

1967 1968
	ints = dwc2_readl(hsotg->regs + epint_reg);
	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1969

1970
	/* Clear endpoint interrupts */
1971
	dwc2_writel(ints, hsotg->regs + epint_reg);
1972

1973 1974 1975 1976 1977 1978
	if (!hs_ep) {
		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
					__func__, idx, dir_in ? "in" : "out");
		return;
	}

1979 1980 1981
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

1982 1983 1984 1985
	/* Don't process XferCompl interrupt if it is a setup packet */
	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
		ints &= ~DXEPINT_XFERCOMPL;

1986
	if (ints & DXEPINT_XFERCOMPL) {
1987 1988 1989
		hs_ep->has_correct_parity = 1;
		if (hs_ep->isochronous && hs_ep->interval == 1)
			dwc2_hsotg_change_ep_iso_parity(hsotg, epctl_reg);
1990

1991
		dev_dbg(hsotg->dev,
1992
			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1993 1994
			__func__, dwc2_readl(hsotg->regs + epctl_reg),
			dwc2_readl(hsotg->regs + epsiz_reg));
1995

1996 1997 1998 1999
		/*
		 * we get OutDone from the FIFO, so we only need to look
		 * at completing IN requests here
		 */
2000
		if (dir_in) {
2001
			dwc2_hsotg_complete_in(hsotg, hs_ep);
2002

2003
			if (idx == 0 && !hs_ep->req)
2004
				dwc2_hsotg_enqueue_setup(hsotg);
2005
		} else if (using_dma(hsotg)) {
2006 2007 2008 2009
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
2010

2011
			dwc2_hsotg_handle_outdone(hsotg, idx);
2012 2013 2014
		}
	}

2015
	if (ints & DXEPINT_EPDISBLD) {
2016 2017
		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

2018
		if (dir_in) {
2019
			int epctl = dwc2_readl(hsotg->regs + epctl_reg);
2020

2021
			dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2022

2023 2024
			if ((epctl & DXEPCTL_STALL) &&
				(epctl & DXEPCTL_EPTYPE_BULK)) {
2025
				int dctl = dwc2_readl(hsotg->regs + DCTL);
2026

2027
				dctl |= DCTL_CGNPINNAK;
2028
				dwc2_writel(dctl, hsotg->regs + DCTL);
2029 2030 2031 2032
			}
		}
	}

2033
	if (ints & DXEPINT_AHBERR)
2034 2035
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

2036
	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2037 2038 2039
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
2040 2041
			/*
			 * this is the notification we've received a
2042 2043
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
2044 2045
			 * the setup here.
			 */
2046 2047 2048 2049

			if (dir_in)
				WARN_ON_ONCE(1);
			else
2050
				dwc2_hsotg_handle_outdone(hsotg, 0);
2051 2052 2053
		}
	}

2054
	if (ints & DXEPINT_BACK2BACKSETUP)
2055 2056
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

2057
	if (dir_in && !hs_ep->isochronous) {
2058
		/* not sure if this is important, but we'll clear it anyway */
2059
		if (ints & DXEPINT_INTKNTXFEMP) {
2060 2061 2062 2063 2064
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
2065
		if (ints & DXEPINT_INTKNEPMIS) {
2066 2067 2068
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
2069 2070 2071

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
2072
		    ints & DXEPINT_TXFEMP) {
2073 2074
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
2075
			if (!using_dma(hsotg))
2076
				dwc2_hsotg_trytx(hsotg, hs_ep);
2077
		}
2078 2079 2080 2081
	}
}

/**
2082
 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
2083 2084 2085 2086
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
2087
 */
2088
static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
2089
{
2090
	u32 dsts = dwc2_readl(hsotg->regs + DSTS);
2091
	int ep0_mps = 0, ep_mps = 8;
2092

2093 2094
	/*
	 * This should signal the finish of the enumeration phase
2095
	 * of the USB handshaking, so we should now know what rate
2096 2097
	 * we connected at.
	 */
2098 2099 2100

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

2101 2102
	/*
	 * note, since we're limited by the size of transfer on EP0, and
2103
	 * it seems IN transfers must be a even number of packets we do
2104 2105
	 * not advertise a 64byte MPS on EP0.
	 */
2106 2107

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
2108
	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
2109 2110
	case DSTS_ENUMSPD_FS:
	case DSTS_ENUMSPD_FS48:
2111 2112
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
2113
		ep_mps = 1023;
2114 2115
		break;

2116
	case DSTS_ENUMSPD_HS:
2117 2118
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
2119
		ep_mps = 1024;
2120 2121
		break;

2122
	case DSTS_ENUMSPD_LS:
2123
		hsotg->gadget.speed = USB_SPEED_LOW;
2124 2125
		/*
		 * note, we don't actually support LS in this driver at the
2126 2127 2128 2129 2130
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
2131 2132
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
2133

2134 2135 2136 2137
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
2138 2139 2140

	if (ep0_mps) {
		int i;
2141
		/* Initialize ep0 for both in and out directions */
2142 2143
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 1);
		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0);
2144 2145
		for (i = 1; i < hsotg->num_of_eps; i++) {
			if (hsotg->eps_in[i])
2146
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 1);
2147
			if (hsotg->eps_out[i])
2148
				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 0);
2149
		}
2150 2151 2152 2153
	}

	/* ensure after enumeration our EP0 is active */

2154
	dwc2_hsotg_enqueue_setup(hsotg);
2155 2156

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2157 2158
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
2170
static void kill_all_requests(struct dwc2_hsotg *hsotg,
2171
			      struct dwc2_hsotg_ep *ep,
2172
			      int result)
2173
{
2174
	struct dwc2_hsotg_req *req, *treq;
2175
	unsigned size;
2176

2177
	ep->req = NULL;
2178

2179
	list_for_each_entry_safe(req, treq, &ep->queue, queue)
2180
		dwc2_hsotg_complete_request(hsotg, ep, req,
2181
					   result);
2182

2183 2184
	if (!hsotg->dedicated_fifos)
		return;
2185
	size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4;
2186
	if (size < ep->fifo_size)
2187
		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2188 2189 2190
}

/**
2191
 * dwc2_hsotg_disconnect - disconnect service
2192 2193
 * @hsotg: The device state.
 *
2194 2195 2196
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
2197
 */
2198
void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
2199 2200 2201
{
	unsigned ep;

2202 2203 2204 2205
	if (!hsotg->connected)
		return;

	hsotg->connected = 0;
2206
	hsotg->test_mode = 0;
2207 2208 2209 2210 2211 2212 2213 2214 2215

	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
			kill_all_requests(hsotg, hsotg->eps_in[ep],
								-ESHUTDOWN);
		if (hsotg->eps_out[ep])
			kill_all_requests(hsotg, hsotg->eps_out[ep],
								-ESHUTDOWN);
	}
2216 2217

	call_gadget(hsotg, disconnect);
2218
	hsotg->lx_state = DWC2_L3;
2219 2220 2221
}

/**
2222
 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2223 2224 2225
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
2226
static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
2227
{
2228
	struct dwc2_hsotg_ep *ep;
2229 2230 2231
	int epno, ret;

	/* look through for any more data to transmit */
2232
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2233 2234 2235 2236
		ep = index_to_ep(hsotg, epno, 1);

		if (!ep)
			continue;
2237 2238 2239 2240 2241 2242 2243 2244

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

2245
		ret = dwc2_hsotg_trytx(hsotg, ep);
2246 2247 2248 2249 2250 2251
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
2252 2253 2254
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
			GINTSTS_PTXFEMP |  \
			GINTSTS_RXFLVL)
2255

2256
/**
2257
 * dwc2_hsotg_core_init - issue softreset to the core
2258 2259 2260 2261
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
2262
void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
2263
						bool is_usb_reset)
2264
{
2265
	u32 intmsk;
2266
	u32 val;
2267
	u32 usbcfg;
2268

2269 2270 2271
	/* Kill any ep0 requests as controller will be reinitialized */
	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);

2272
	if (!is_usb_reset)
2273
		if (dwc2_core_reset(hsotg))
2274
			return;
2275 2276 2277 2278 2279 2280

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

2281 2282 2283 2284 2285
	/* keep other bits untouched (so e.g. forced modes are not lost) */
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
		GUSBCFG_HNPCAP);

2286
	/* set the PLL on, remove the HNP/SRP and set the PHY */
2287
	val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
2288 2289 2290
	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
		(val << GUSBCFG_USBTRDTIM_SHIFT);
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
2291

2292
	dwc2_hsotg_init_fifo(hsotg);
2293

2294 2295
	if (!is_usb_reset)
		__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2296

2297
	dwc2_writel(DCFG_EPMISCNT(1) | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2298 2299

	/* Clear any pending OTG interrupts */
2300
	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
2301 2302

	/* Clear any pending interrupts */
2303
	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
2304
	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
2305
		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
2306 2307
		GINTSTS_USBRST | GINTSTS_RESETDET |
		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
2308 2309
		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
		GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
2310 2311 2312 2313 2314

	if (hsotg->core_params->external_id_pin_ctl <= 0)
		intmsk |= GINTSTS_CONIDSTSCHNG;

	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
2315 2316

	if (using_dma(hsotg))
2317 2318 2319
		dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
			    (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
			    hsotg->regs + GAHBCFG);
2320
	else
2321 2322 2323 2324
		dwc2_writel(((hsotg->dedicated_fifos) ?
						(GAHBCFG_NP_TXF_EMP_LVL |
						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
			    GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
2325 2326

	/*
2327 2328 2329
	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
	 * when we have no data to transfer. Otherwise we get being flooded by
	 * interrupts.
2330 2331
	 */

2332
	dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
2333
		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
2334 2335 2336 2337
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		DIEPMSK_INTKNEPMISMSK,
		hsotg->regs + DIEPMSK);
2338 2339 2340 2341 2342

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
	 * DMA mode we may need this.
	 */
2343
	dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
2344 2345 2346 2347
				    DIEPMSK_TIMEOUTMSK) : 0) |
		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
		DOEPMSK_SETUPMSK,
		hsotg->regs + DOEPMSK);
2348

2349
	dwc2_writel(0, hsotg->regs + DAINTMSK);
2350 2351

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2352 2353
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
2354 2355

	/* enable in and out endpoint interrupts */
2356
	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2357 2358 2359 2360 2361 2362 2363

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
2364
		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2365 2366

	/* Enable interrupts for EP0 in and out */
2367 2368
	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2369

2370 2371 2372 2373 2374
	if (!is_usb_reset) {
		__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
		udelay(10);  /* see openiboot */
		__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
	}
2375

2376
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
2377 2378

	/*
2379
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2380 2381 2382 2383
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
2384
	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2385
	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2386

2387
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2388 2389
	       DXEPCTL_CNAK | DXEPCTL_EPENA |
	       DXEPCTL_USBACTEP,
2390
	       hsotg->regs + DOEPCTL0);
2391 2392

	/* enable, but don't activate EP0in */
2393
	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2394
	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2395

2396
	dwc2_hsotg_enqueue_setup(hsotg);
2397 2398

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2399 2400
		dwc2_readl(hsotg->regs + DIEPCTL0),
		dwc2_readl(hsotg->regs + DOEPCTL0));
2401 2402

	/* clear global NAKs */
2403 2404 2405 2406
	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
	if (!is_usb_reset)
		val |= DCTL_SFTDISCON;
	__orr32(hsotg->regs + DCTL, val);
2407 2408 2409 2410

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

2411
	hsotg->lx_state = DWC2_L0;
2412 2413
}

2414
static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
2415 2416 2417 2418
{
	/* set the soft-disconnect bit */
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
}
2419

2420
void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
2421
{
2422
	/* remove the soft-disconnect and let's go */
2423
	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2424 2425
}

2426
/**
2427
 * dwc2_hsotg_irq - handle device interrupt
2428 2429 2430
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
2431
static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
2432
{
2433
	struct dwc2_hsotg *hsotg = pw;
2434 2435 2436 2437
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

2438 2439 2440
	if (!dwc2_is_device_mode(hsotg))
		return IRQ_NONE;

2441
	spin_lock(&hsotg->lock);
2442
irq_retry:
2443 2444
	gintsts = dwc2_readl(hsotg->regs + GINTSTS);
	gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
2445 2446 2447 2448 2449 2450

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480
	if (gintsts & GINTSTS_RESETDET) {
		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);

		dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);

		/* This event must be used only if controller is suspended */
		if (hsotg->lx_state == DWC2_L2) {
			dwc2_exit_hibernation(hsotg, true);
			hsotg->lx_state = DWC2_L0;
		}
	}

	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {

		u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
		u32 connected = hsotg->connected;

		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
			dwc2_readl(hsotg->regs + GNPTXSTS));

		dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);

		/* Report disconnection if it is not already done. */
		dwc2_hsotg_disconnect(hsotg);

		if (usb_status & GOTGCTL_BSESVLD && connected)
			dwc2_hsotg_core_init_disconnected(hsotg, true);
	}

2481
	if (gintsts & GINTSTS_ENUMDONE) {
2482
		dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2483

2484
		dwc2_hsotg_irq_enumdone(hsotg);
2485 2486
	}

2487
	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2488 2489
		u32 daint = dwc2_readl(hsotg->regs + DAINT);
		u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
2490
		u32 daint_out, daint_in;
2491 2492
		int ep;

2493
		daint &= daintmsk;
2494 2495
		daint_out = daint >> DAINT_OUTEP_SHIFT;
		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2496

2497 2498
		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

2499 2500
		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
						ep++, daint_out >>= 1) {
2501
			if (daint_out & 1)
2502
				dwc2_hsotg_epint(hsotg, ep, 0);
2503 2504
		}

2505 2506
		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
						ep++, daint_in >>= 1) {
2507
			if (daint_in & 1)
2508
				dwc2_hsotg_epint(hsotg, ep, 1);
2509 2510 2511 2512 2513
		}
	}

	/* check both FIFOs */

2514
	if (gintsts & GINTSTS_NPTXFEMP) {
2515 2516
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

2517 2518
		/*
		 * Disable the interrupt to stop it happening again
2519
		 * unless one of these endpoint routines decides that
2520 2521
		 * it needs re-enabling
		 */
2522

2523 2524
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, false);
2525 2526
	}

2527
	if (gintsts & GINTSTS_PTXFEMP) {
2528 2529
		dev_dbg(hsotg->dev, "PTxFEmp\n");

2530
		/* See note in GINTSTS_NPTxFEmp */
2531

2532 2533
		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
		dwc2_hsotg_irq_fifoempty(hsotg, true);
2534 2535
	}

2536
	if (gintsts & GINTSTS_RXFLVL) {
2537 2538
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2539
		 * we need to retry dwc2_hsotg_handle_rx if this is still
2540 2541
		 * set.
		 */
2542

2543
		dwc2_hsotg_handle_rx(hsotg);
2544 2545
	}

2546
	if (gintsts & GINTSTS_ERLYSUSP) {
2547
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2548
		dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2549 2550
	}

2551 2552
	/*
	 * these next two seem to crop-up occasionally causing the core
2553
	 * to shutdown the USB transfer, so try clearing them and logging
2554 2555
	 * the occurrence.
	 */
2556

2557
	if (gintsts & GINTSTS_GOUTNAKEFF) {
2558 2559
		dev_info(hsotg->dev, "GOUTNakEff triggered\n");

2560
		__orr32(hsotg->regs + DCTL, DCTL_CGOUTNAK);
2561

2562
		dwc2_hsotg_dump(hsotg);
2563 2564
	}

2565
	if (gintsts & GINTSTS_GINNAKEFF) {
2566 2567
		dev_info(hsotg->dev, "GINNakEff triggered\n");

2568
		__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
2569

2570
		dwc2_hsotg_dump(hsotg);
2571 2572
	}

2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606
	if (gintsts & GINTSTS_INCOMPL_SOIN) {
		u32 idx, epctl_reg;
		struct dwc2_hsotg_ep *hs_ep;

		dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOIN\n", __func__);
		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
			hs_ep = hsotg->eps_in[idx];

			if (!hs_ep->isochronous || hs_ep->has_correct_parity)
				continue;

			epctl_reg = DIEPCTL(idx);
			dwc2_hsotg_change_ep_iso_parity(hsotg, epctl_reg);
		}
		dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
	}

	if (gintsts & GINTSTS_INCOMPL_SOOUT) {
		u32 idx, epctl_reg;
		struct dwc2_hsotg_ep *hs_ep;

		dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
			hs_ep = hsotg->eps_out[idx];

			if (!hs_ep->isochronous || hs_ep->has_correct_parity)
				continue;

			epctl_reg = DOEPCTL(idx);
			dwc2_hsotg_change_ep_iso_parity(hsotg, epctl_reg);
		}
		dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
	}

2607 2608 2609 2610
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
2611 2612 2613 2614

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
			goto irq_retry;

2615 2616
	spin_unlock(&hsotg->lock);

2617 2618 2619 2620
	return IRQ_HANDLED;
}

/**
2621
 * dwc2_hsotg_ep_enable - enable the given endpoint
2622 2623 2624 2625
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
2626
 */
2627
static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
2628 2629
			       const struct usb_endpoint_descriptor *desc)
{
2630
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2631
	struct dwc2_hsotg *hsotg = hs_ep->parent;
2632
	unsigned long flags;
2633
	unsigned int index = hs_ep->index;
2634 2635 2636
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
2637 2638
	unsigned int dir_in;
	unsigned int i, val, size;
2639
	int ret = 0;
2640 2641 2642 2643 2644 2645 2646

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
2647 2648 2649 2650
	if (index == 0) {
		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
		return -EINVAL;
	}
2651 2652 2653 2654 2655 2656 2657

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

2658
	mps = usb_endpoint_maxp(desc);
2659

2660
	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
2661

2662
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2663
	epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
2664 2665 2666 2667

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

2668
	spin_lock_irqsave(&hsotg->lock, flags);
2669

2670 2671
	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
	epctrl |= DXEPCTL_MPS(mps);
2672

2673 2674 2675 2676
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
2677
	epctrl |= DXEPCTL_USBACTEP;
2678

2679 2680
	/*
	 * set the NAK status on the endpoint, otherwise we might try and
2681 2682 2683 2684 2685
	 * do something with data that we've yet got a request to process
	 * since the RXFIFO will take data for an endpoint even if the
	 * size register hasn't been set.
	 */

2686
	epctrl |= DXEPCTL_SNAK;
2687 2688

	/* update the endpoint state */
2689
	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, dir_in);
2690 2691

	/* default, set to non-periodic */
2692
	hs_ep->isochronous = 0;
2693
	hs_ep->periodic = 0;
2694
	hs_ep->halted = 0;
2695
	hs_ep->interval = desc->bInterval;
2696

2697 2698
	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
2699 2700
		epctrl |= DXEPCTL_EPTYPE_ISO;
		epctrl |= DXEPCTL_SETEVENFR;
2701
		hs_ep->isochronous = 1;
2702
		hs_ep->interval = 1 << (desc->bInterval - 1);
2703 2704 2705
		if (dir_in)
			hs_ep->periodic = 1;
		break;
2706 2707

	case USB_ENDPOINT_XFER_BULK:
2708
		epctrl |= DXEPCTL_EPTYPE_BULK;
2709 2710 2711
		break;

	case USB_ENDPOINT_XFER_INT:
2712
		if (dir_in)
2713 2714
			hs_ep->periodic = 1;

2715 2716 2717
		if (hsotg->gadget.speed == USB_SPEED_HIGH)
			hs_ep->interval = 1 << (desc->bInterval - 1);

2718
		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2719 2720 2721
		break;

	case USB_ENDPOINT_XFER_CONTROL:
2722
		epctrl |= DXEPCTL_EPTYPE_CONTROL;
2723 2724 2725
		break;
	}

2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
	/* If fifo is already allocated for this ep */
	if (hs_ep->fifo_index) {
		size =  hs_ep->ep.maxpacket * hs_ep->mc;
		/* If bigger fifo is required deallocate current one */
		if (size > hs_ep->fifo_size) {
			hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
			hs_ep->fifo_index = 0;
			hs_ep->fifo_size = 0;
		}
	}

2737 2738
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
2739 2740
	 * a unique tx-fifo even if it is non-periodic.
	 */
2741
	if (dir_in && hsotg->dedicated_fifos && !hs_ep->fifo_index) {
2742 2743
		u32 fifo_index = 0;
		u32 fifo_size = UINT_MAX;
2744
		size = hs_ep->ep.maxpacket*hs_ep->mc;
2745
		for (i = 1; i < hsotg->num_of_eps; ++i) {
2746 2747
			if (hsotg->fifo_map & (1<<i))
				continue;
2748
			val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
2749 2750 2751
			val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
			if (val < size)
				continue;
2752 2753 2754 2755 2756
			/* Search for smallest acceptable fifo */
			if (val < fifo_size) {
				fifo_size = val;
				fifo_index = i;
			}
2757
		}
2758
		if (!fifo_index) {
2759 2760
			dev_err(hsotg->dev,
				"%s: No suitable fifo found\n", __func__);
2761 2762 2763
			ret = -ENOMEM;
			goto error;
		}
2764 2765 2766 2767
		hsotg->fifo_map |= 1 << fifo_index;
		epctrl |= DXEPCTL_TXFNUM(fifo_index);
		hs_ep->fifo_index = fifo_index;
		hs_ep->fifo_size = fifo_size;
2768
	}
2769

2770 2771
	/* for non control endpoints, set PID to D0 */
	if (index)
2772
		epctrl |= DXEPCTL_SETD0PID;
2773 2774 2775 2776

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

2777
	dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
2778
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2779
		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
2780 2781

	/* enable the endpoint interrupt */
2782
	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2783

2784
error:
2785
	spin_unlock_irqrestore(&hsotg->lock, flags);
2786
	return ret;
2787 2788
}

2789
/**
2790
 * dwc2_hsotg_ep_disable - disable given endpoint
2791 2792
 * @ep: The endpoint to disable.
 */
2793
static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
2794
{
2795
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2796
	struct dwc2_hsotg *hsotg = hs_ep->parent;
2797 2798 2799 2800 2801 2802
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

2803
	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2804

2805
	if (ep == &hsotg->eps_out[0]->ep) {
2806 2807 2808 2809
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

2810
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2811

2812
	spin_lock_irqsave(&hsotg->lock, flags);
2813

2814 2815 2816
	hsotg->fifo_map &= ~(1<<hs_ep->fifo_index);
	hs_ep->fifo_index = 0;
	hs_ep->fifo_size = 0;
2817

2818
	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
2819 2820 2821
	ctrl &= ~DXEPCTL_EPENA;
	ctrl &= ~DXEPCTL_USBACTEP;
	ctrl |= DXEPCTL_SNAK;
2822 2823

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2824
	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
2825 2826

	/* disable endpoint interrupts */
2827
	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2828

2829 2830 2831
	/* terminate all requests with shutdown */
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);

2832
	spin_unlock_irqrestore(&hsotg->lock, flags);
2833 2834 2835 2836 2837 2838 2839
	return 0;
}

/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
2840
 */
2841
static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
2842
{
2843
	struct dwc2_hsotg_req *req, *treq;
2844 2845 2846 2847 2848 2849 2850 2851 2852

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887
static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg,
							u32 bit, u32 timeout)
{
	u32 i;

	for (i = 0; i < timeout; i++) {
		if (dwc2_readl(hs_otg->regs + reg) & bit)
			return 0;
		udelay(1);
	}

	return -ETIMEDOUT;
}

static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
						struct dwc2_hsotg_ep *hs_ep)
{
	u32 epctrl_reg;
	u32 epint_reg;

	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
		DOEPCTL(hs_ep->index);
	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
		DOEPINT(hs_ep->index);

	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
			hs_ep->name);
	if (hs_ep->dir_in) {
		__orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
		/* Wait for Nak effect */
		if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
						DXEPINT_INEPNAKEFF, 100))
			dev_warn(hsotg->dev,
				"%s: timeout DIEPINT.NAKEFF\n", __func__);
	} else {
2888 2889
		if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF))
			__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
2890 2891 2892

		/* Wait for global nak to take effect */
		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
2893
						GINTSTS_GOUTNAKEFF, 100))
2894
			dev_warn(hsotg->dev,
2895
				"%s: timeout GINTSTS.GOUTNAKEFF\n", __func__);
2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919
	}

	/* Disable ep */
	__orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);

	/* Wait for ep to be disabled */
	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
		dev_warn(hsotg->dev,
			"%s: timeout DOEPCTL.EPDisable\n", __func__);

	if (hs_ep->dir_in) {
		if (hsotg->dedicated_fifos) {
			dwc2_writel(GRSTCTL_TXFNUM(hs_ep->fifo_index) |
				GRSTCTL_TXFFLSH, hsotg->regs + GRSTCTL);
			/* Wait for fifo flush */
			if (dwc2_hsotg_wait_bit_set(hsotg, GRSTCTL,
							GRSTCTL_TXFFLSH, 100))
				dev_warn(hsotg->dev,
					"%s: timeout flushing fifos\n",
					__func__);
		}
		/* TODO: Flush shared tx fifo */
	} else {
		/* Remove global NAKs */
2920
		__bic32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
2921 2922 2923
	}
}

2924
/**
2925
 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
2926 2927 2928
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
2929
static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2930
{
2931 2932
	struct dwc2_hsotg_req *hs_req = our_req(req);
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2933
	struct dwc2_hsotg *hs = hs_ep->parent;
2934 2935
	unsigned long flags;

2936
	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2937

2938
	spin_lock_irqsave(&hs->lock, flags);
2939 2940

	if (!on_list(hs_ep, hs_req)) {
2941
		spin_unlock_irqrestore(&hs->lock, flags);
2942 2943 2944
		return -EINVAL;
	}

2945 2946 2947 2948
	/* Dequeue already started request */
	if (req == &hs_ep->req->req)
		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);

2949
	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2950
	spin_unlock_irqrestore(&hs->lock, flags);
2951 2952 2953 2954

	return 0;
}

2955
/**
2956
 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
2957 2958
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
2959 2960 2961 2962 2963
 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
 *       the endpoint is busy processing requests.
 *
 * We need to stall the endpoint immediately if request comes from set_feature
 * protocol command handler.
2964
 */
2965
static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
2966
{
2967
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2968
	struct dwc2_hsotg *hs = hs_ep->parent;
2969 2970 2971
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
2972
	u32 xfertype;
2973 2974 2975

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

2976 2977
	if (index == 0) {
		if (value)
2978
			dwc2_hsotg_stall_ep0(hs);
2979 2980 2981 2982 2983 2984
		else
			dev_warn(hs->dev,
				 "%s: can't clear halt on ep0\n", __func__);
		return 0;
	}

2985 2986 2987 2988 2989
	if (hs_ep->isochronous) {
		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
		return -EINVAL;
	}

2990 2991 2992 2993 2994 2995
	if (!now && value && !list_empty(&hs_ep->queue)) {
		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
			ep->name);
		return -EAGAIN;
	}

2996 2997
	if (hs_ep->dir_in) {
		epreg = DIEPCTL(index);
2998
		epctl = dwc2_readl(hs->regs + epreg);
2999 3000

		if (value) {
3001
			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
3002 3003 3004 3005 3006 3007 3008 3009 3010
			if (epctl & DXEPCTL_EPENA)
				epctl |= DXEPCTL_EPDIS;
		} else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
3011
		dwc2_writel(epctl, hs->regs + epreg);
3012
	} else {
3013

3014
		epreg = DOEPCTL(index);
3015
		epctl = dwc2_readl(hs->regs + epreg);
3016

3017 3018 3019 3020 3021 3022 3023 3024 3025
		if (value)
			epctl |= DXEPCTL_STALL;
		else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
3026
		dwc2_writel(epctl, hs->regs + epreg);
3027
	}
3028

3029 3030
	hs_ep->halted = value;

3031 3032 3033
	return 0;
}

3034
/**
3035
 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
3036 3037 3038
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
3039
static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
3040
{
3041
	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3042
	struct dwc2_hsotg *hs = hs_ep->parent;
3043 3044 3045 3046
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
3047
	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
3048 3049 3050 3051 3052
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

3053 3054 3055 3056 3057 3058 3059 3060
static struct usb_ep_ops dwc2_hsotg_ep_ops = {
	.enable		= dwc2_hsotg_ep_enable,
	.disable	= dwc2_hsotg_ep_disable,
	.alloc_request	= dwc2_hsotg_ep_alloc_request,
	.free_request	= dwc2_hsotg_ep_free_request,
	.queue		= dwc2_hsotg_ep_queue_lock,
	.dequeue	= dwc2_hsotg_ep_dequeue,
	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
3061
	/* note, don't believe we have any call for the fifo routines */
3062 3063
};

3064
/**
3065
 * dwc2_hsotg_init - initalize the usb core
3066 3067
 * @hsotg: The driver state
 */
3068
static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
3069
{
3070
	u32 trdtim;
3071
	u32 usbcfg;
3072 3073
	/* unmask subset of endpoint interrupts */

3074 3075 3076
	dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DIEPMSK);
3077

3078 3079 3080
	dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
		    hsotg->regs + DOEPMSK);
3081

3082
	dwc2_writel(0, hsotg->regs + DAINTMSK);
3083 3084

	/* Be in disconnected state until gadget is registered */
3085
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3086 3087 3088 3089

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3090 3091
		dwc2_readl(hsotg->regs + GRXFSIZ),
		dwc2_readl(hsotg->regs + GNPTXFSIZ));
3092

3093
	dwc2_hsotg_init_fifo(hsotg);
3094

3095 3096 3097 3098 3099
	/* keep other bits untouched (so e.g. forced modes are not lost) */
	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
		GUSBCFG_HNPCAP);

3100
	/* set the PLL on, remove the HNP/SRP and set the PHY */
3101
	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3102 3103 3104
	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
		(trdtim << GUSBCFG_USBTRDTIM_SHIFT);
	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3105

3106 3107
	if (using_dma(hsotg))
		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
3108 3109
}

3110
/**
3111
 * dwc2_hsotg_udc_start - prepare the udc for work
3112 3113 3114 3115 3116 3117
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
3118
static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
3119
			   struct usb_gadget_driver *driver)
3120
{
3121
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3122
	unsigned long flags;
3123 3124 3125
	int ret;

	if (!hsotg) {
3126
		pr_err("%s: called with no device\n", __func__);
3127 3128 3129 3130 3131 3132 3133 3134
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

3135
	if (driver->max_speed < USB_SPEED_FULL)
3136 3137
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

3138
	if (!driver->setup) {
3139 3140 3141 3142 3143 3144 3145 3146
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
3147
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
3148 3149
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

3150 3151 3152 3153
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
		ret = dwc2_lowlevel_hw_enable(hsotg);
		if (ret)
			goto err;
3154 3155
	}

3156 3157
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
3158

3159
	spin_lock_irqsave(&hsotg->lock, flags);
3160 3161
	dwc2_hsotg_init(hsotg);
	dwc2_hsotg_core_init_disconnected(hsotg, false);
3162
	hsotg->enabled = 0;
3163 3164
	spin_unlock_irqrestore(&hsotg->lock, flags);

3165
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
3166

3167 3168 3169 3170 3171 3172 3173
	return 0;

err:
	hsotg->driver = NULL;
	return ret;
}

3174
/**
3175
 * dwc2_hsotg_udc_stop - stop the udc
3176 3177 3178 3179 3180
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
3181
static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
3182
{
3183
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3184
	unsigned long flags = 0;
3185 3186 3187 3188 3189 3190
	int ep;

	if (!hsotg)
		return -ENODEV;

	/* all endpoints should be shutdown */
3191 3192
	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
3193
			dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3194
		if (hsotg->eps_out[ep])
3195
			dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3196
	}
3197

3198 3199
	spin_lock_irqsave(&hsotg->lock, flags);

3200
	hsotg->driver = NULL;
3201
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3202
	hsotg->enabled = 0;
3203

3204 3205
	spin_unlock_irqrestore(&hsotg->lock, flags);

3206 3207
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, NULL);
3208

3209 3210
	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		dwc2_lowlevel_hw_disable(hsotg);
3211 3212 3213 3214

	return 0;
}

3215
/**
3216
 * dwc2_hsotg_gadget_getframe - read the frame number
3217 3218 3219 3220
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
3221
static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
3222
{
3223
	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
3224 3225
}

3226
/**
3227
 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
3228 3229 3230 3231 3232
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
3233
static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
3234
{
3235
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3236 3237
	unsigned long flags = 0;

3238 3239 3240 3241 3242 3243 3244 3245
	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
			hsotg->op_state);

	/* Don't modify pullup state while in host mode */
	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
		hsotg->enabled = is_on;
		return 0;
	}
3246 3247 3248

	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
3249
		hsotg->enabled = 1;
3250 3251
		dwc2_hsotg_core_init_disconnected(hsotg, false);
		dwc2_hsotg_core_connect(hsotg);
3252
	} else {
3253 3254
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
3255
		hsotg->enabled = 0;
3256 3257 3258 3259 3260 3261 3262 3263
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);

	return 0;
}

3264
static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
3265 3266 3267 3268 3269 3270 3271
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
	unsigned long flags;

	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
	spin_lock_irqsave(&hsotg->lock, flags);

3272 3273 3274 3275 3276 3277 3278
	/*
	 * If controller is hibernated, it must exit from hibernation
	 * before being initialized / de-initialized
	 */
	if (hsotg->lx_state == DWC2_L2)
		dwc2_exit_hibernation(hsotg, false);

3279
	if (is_active) {
3280
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3281

3282
		dwc2_hsotg_core_init_disconnected(hsotg, false);
3283
		if (hsotg->enabled)
3284
			dwc2_hsotg_core_connect(hsotg);
3285
	} else {
3286 3287
		dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
3288 3289 3290 3291 3292 3293
	}

	spin_unlock_irqrestore(&hsotg->lock, flags);
	return 0;
}

3294
/**
3295
 * dwc2_hsotg_vbus_draw - report bMaxPower field
3296 3297 3298 3299 3300
 * @gadget: The usb gadget state
 * @mA: Amount of current
 *
 * Report how much power the device may consume to the phy.
 */
3301
static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned mA)
3302 3303 3304 3305 3306 3307 3308 3309
{
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);

	if (IS_ERR_OR_NULL(hsotg->uphy))
		return -ENOTSUPP;
	return usb_phy_set_power(hsotg->uphy, mA);
}

3310 3311 3312 3313 3314 3315 3316
static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
	.get_frame	= dwc2_hsotg_gadget_getframe,
	.udc_start		= dwc2_hsotg_udc_start,
	.udc_stop		= dwc2_hsotg_udc_stop,
	.pullup                 = dwc2_hsotg_pullup,
	.vbus_session		= dwc2_hsotg_vbus_session,
	.vbus_draw		= dwc2_hsotg_vbus_draw,
3317 3318 3319
};

/**
3320
 * dwc2_hsotg_initep - initialise a single endpoint
3321 3322 3323 3324 3325 3326 3327 3328
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
3329 3330
static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
				       struct dwc2_hsotg_ep *hs_ep,
3331 3332
				       int epnum,
				       bool dir_in)
3333 3334 3335 3336 3337
{
	char *dir;

	if (epnum == 0)
		dir = "";
3338
	else if (dir_in)
3339
		dir = "in";
3340 3341
	else
		dir = "out";
3342

3343
	hs_ep->dir_in = dir_in;
3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356
	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
3357
	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3358
	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
3359

3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372
	if (epnum == 0) {
		hs_ep->ep.caps.type_control = true;
	} else {
		hs_ep->ep.caps.type_iso = true;
		hs_ep->ep.caps.type_bulk = true;
		hs_ep->ep.caps.type_int = true;
	}

	if (dir_in)
		hs_ep->ep.caps.dir_in = true;
	else
		hs_ep->ep.caps.dir_out = true;

3373 3374
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
3375 3376 3377 3378
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
3379
		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3380
		if (dir_in)
3381
			dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
3382
		else
3383
			dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
3384 3385 3386
	}
}

3387
/**
3388
 * dwc2_hsotg_hw_cfg - read HW configuration registers
3389 3390 3391 3392
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
3393
static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
3394
{
3395 3396 3397 3398
	u32 cfg;
	u32 ep_type;
	u32 i;

3399
	/* check hardware configuration */
3400

3401 3402
	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;

3403 3404
	/* Add ep0 */
	hsotg->num_of_eps++;
3405

3406
	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct dwc2_hsotg_ep),
3407 3408 3409
								GFP_KERNEL);
	if (!hsotg->eps_in[0])
		return -ENOMEM;
3410
	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
3411 3412
	hsotg->eps_out[0] = hsotg->eps_in[0];

3413
	cfg = hsotg->hw_params.dev_ep_dirs;
3414
	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
3415 3416 3417 3418
		ep_type = cfg & 3;
		/* Direction in or both */
		if (!(ep_type & 2)) {
			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
3419
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
3420 3421 3422 3423 3424 3425
			if (!hsotg->eps_in[i])
				return -ENOMEM;
		}
		/* Direction out or both */
		if (!(ep_type & 1)) {
			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
3426
				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
3427 3428 3429 3430 3431
			if (!hsotg->eps_out[i])
				return -ENOMEM;
		}
	}

3432 3433
	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
3434

3435 3436 3437 3438
	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
		 hsotg->num_of_eps,
		 hsotg->dedicated_fifos ? "dedicated" : "shared",
		 hsotg->fifo_mem);
3439
	return 0;
3440 3441
}

3442
/**
3443
 * dwc2_hsotg_dump - dump state of the udc
3444 3445
 * @param: The device state
 */
3446
static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
3447
{
M
Mark Brown 已提交
3448
#ifdef DEBUG
3449 3450 3451 3452 3453 3454
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3455 3456
		 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
		 dwc2_readl(regs + DIEPMSK));
3457

3458
	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
3459
		 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
3460 3461

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3462
		 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
3463 3464 3465

	/* show periodic fifo settings */

3466
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3467
		val = dwc2_readl(regs + DPTXFSIZN(idx));
3468
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3469 3470
			 val >> FIFOSIZE_DEPTH_SHIFT,
			 val & FIFOSIZE_STARTADDR_MASK);
3471 3472
	}

3473
	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
3474 3475
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3476 3477 3478
			 dwc2_readl(regs + DIEPCTL(idx)),
			 dwc2_readl(regs + DIEPTSIZ(idx)),
			 dwc2_readl(regs + DIEPDMA(idx)));
3479

3480
		val = dwc2_readl(regs + DOEPCTL(idx));
3481 3482
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3483 3484 3485
			 idx, dwc2_readl(regs + DOEPCTL(idx)),
			 dwc2_readl(regs + DOEPTSIZ(idx)),
			 dwc2_readl(regs + DOEPDMA(idx)));
3486 3487 3488 3489

	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3490
		 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
3491
#endif
3492 3493
}

3494
#ifdef CONFIG_OF
3495
static void dwc2_hsotg_of_probe(struct dwc2_hsotg *hsotg)
3496 3497
{
	struct device_node *np = hsotg->dev->of_node;
3498 3499
	u32 len = 0;
	u32 i = 0;
3500 3501 3502

	/* Enable dma if requested in device tree */
	hsotg->g_using_dma = of_property_read_bool(np, "g-use-dma");
3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533

	/*
	* Register TX periodic fifo size per endpoint.
	* EP0 is excluded since it has no fifo configuration.
	*/
	if (!of_find_property(np, "g-tx-fifo-size", &len))
		goto rx_fifo;

	len /= sizeof(u32);

	/* Read tx fifo sizes other than ep0 */
	if (of_property_read_u32_array(np, "g-tx-fifo-size",
						&hsotg->g_tx_fifo_sz[1], len))
		goto rx_fifo;

	/* Add ep0 */
	len++;

	/* Make remaining TX fifos unavailable */
	if (len < MAX_EPS_CHANNELS) {
		for (i = len; i < MAX_EPS_CHANNELS; i++)
			hsotg->g_tx_fifo_sz[i] = 0;
	}

rx_fifo:
	/* Register RX fifo size */
	of_property_read_u32(np, "g-rx-fifo-size", &hsotg->g_rx_fifo_sz);

	/* Register NPTX fifo size */
	of_property_read_u32(np, "g-np-tx-fifo-size",
						&hsotg->g_np_g_tx_fifo_sz);
3534 3535
}
#else
3536
static inline void dwc2_hsotg_of_probe(struct dwc2_hsotg *hsotg) { }
3537 3538
#endif

3539
/**
3540 3541 3542
 * dwc2_gadget_init - init function for gadget
 * @dwc2: The data structure for the DWC2 driver.
 * @irq: The IRQ number for the controller.
3543
 */
3544
int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
3545
{
3546
	struct device *dev = hsotg->dev;
3547 3548
	int epnum;
	int ret;
3549
	int i;
3550
	u32 p_tx_fifo[] = DWC2_G_P_LEGACY_TX_FIFO_SIZE;
3551

3552 3553 3554 3555 3556
	/* Initialize to legacy fifo configuration values */
	hsotg->g_rx_fifo_sz = 2048;
	hsotg->g_np_g_tx_fifo_sz = 1024;
	memcpy(&hsotg->g_tx_fifo_sz[1], p_tx_fifo, sizeof(p_tx_fifo));
	/* Device tree specific probe */
3557
	dwc2_hsotg_of_probe(hsotg);
3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568

	/* Check against largest possible value. */
	if (hsotg->g_np_g_tx_fifo_sz >
	    hsotg->hw_params.dev_nperio_tx_fifo_size) {
		dev_warn(dev, "Specified GNPTXFDEP=%d > %d\n",
			 hsotg->g_np_g_tx_fifo_sz,
			 hsotg->hw_params.dev_nperio_tx_fifo_size);
		hsotg->g_np_g_tx_fifo_sz =
			hsotg->hw_params.dev_nperio_tx_fifo_size;
	}

3569 3570 3571 3572 3573 3574 3575
	/* Dump fifo information */
	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
						hsotg->g_np_g_tx_fifo_sz);
	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->g_rx_fifo_sz);
	for (i = 0; i < MAX_EPS_CHANNELS; i++)
		dev_dbg(dev, "Periodic TXFIFO%2d size: %d\n", i,
						hsotg->g_tx_fifo_sz[i]);
3576

3577
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3578
	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
3579
	hsotg->gadget.name = dev_name(dev);
3580 3581
	if (hsotg->dr_mode == USB_DR_MODE_OTG)
		hsotg->gadget.is_otg = 1;
3582 3583
	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3584

3585
	ret = dwc2_hsotg_hw_cfg(hsotg);
3586 3587
	if (ret) {
		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
3588
		return ret;
3589 3590
	}

3591 3592 3593 3594
	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
	if (!hsotg->ctrl_buff) {
		dev_err(dev, "failed to allocate ctrl request buff\n");
3595
		return -ENOMEM;
3596 3597 3598 3599 3600 3601
	}

	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
	if (!hsotg->ep0_buff) {
		dev_err(dev, "failed to allocate ctrl reply buff\n");
3602
		return -ENOMEM;
3603 3604
	}

3605
	ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
3606
				dev_name(hsotg->dev), hsotg);
3607
	if (ret < 0) {
3608
		dev_err(dev, "cannot claim IRQ for gadget\n");
3609
		return ret;
3610 3611
	}

3612 3613 3614 3615
	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
3616
		return -EINVAL;
3617 3618 3619 3620 3621
	}

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3622
	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
3623 3624 3625

	/* allocate EP0 request */

3626
	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
3627 3628 3629
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
3630
		return -ENOMEM;
3631
	}
3632 3633

	/* initialise the endpoints now the core has been initialised */
3634 3635
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
		if (hsotg->eps_in[epnum])
3636
			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
3637 3638
								epnum, 1);
		if (hsotg->eps_out[epnum])
3639
			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
3640 3641
								epnum, 0);
	}
3642

3643
	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
3644
	if (ret)
3645
		return ret;
3646

3647
	dwc2_hsotg_dump(hsotg);
3648 3649 3650 3651

	return 0;
}

3652
/**
3653
 * dwc2_hsotg_remove - remove function for hsotg driver
3654 3655
 * @pdev: The platform information for the driver
 */
3656
int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
3657
{
3658
	usb_del_gadget_udc(&hsotg->gadget);
3659

3660 3661 3662
	return 0;
}

3663
int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
3664 3665 3666
{
	unsigned long flags;

3667
	if (hsotg->lx_state != DWC2_L0)
3668
		return 0;
3669

3670 3671 3672
	if (hsotg->driver) {
		int ep;

3673 3674 3675
		dev_info(hsotg->dev, "suspending usb gadget %s\n",
			 hsotg->driver->driver.name);

3676 3677
		spin_lock_irqsave(&hsotg->lock, flags);
		if (hsotg->enabled)
3678 3679
			dwc2_hsotg_core_disconnect(hsotg);
		dwc2_hsotg_disconnect(hsotg);
3680 3681
		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
		spin_unlock_irqrestore(&hsotg->lock, flags);
3682

3683 3684
		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
			if (hsotg->eps_in[ep])
3685
				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3686
			if (hsotg->eps_out[ep])
3687
				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3688
		}
3689 3690
	}

3691
	return 0;
3692 3693
}

3694
int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
3695 3696 3697
{
	unsigned long flags;

3698
	if (hsotg->lx_state == DWC2_L2)
3699
		return 0;
3700

3701 3702 3703
	if (hsotg->driver) {
		dev_info(hsotg->dev, "resuming usb gadget %s\n",
			 hsotg->driver->driver.name);
3704

3705
		spin_lock_irqsave(&hsotg->lock, flags);
3706
		dwc2_hsotg_core_init_disconnected(hsotg, false);
3707
		if (hsotg->enabled)
3708
			dwc2_hsotg_core_connect(hsotg);
3709 3710
		spin_unlock_irqrestore(&hsotg->lock, flags);
	}
3711

3712
	return 0;
3713
}
3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815

/**
 * dwc2_backup_device_registers() - Backup controller device registers.
 * When suspending usb bus, registers needs to be backuped
 * if controller power is disabled once suspended.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Backup dev regs */
	dr = &hsotg->dr_backup;

	dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
	dr->dctl = dwc2_readl(hsotg->regs + DCTL);
	dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
	dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
	dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Backup IN EPs */
		dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));

		/* Ensure DATA PID is correctly configured */
		if (dr->diepctl[i] & DXEPCTL_DPID)
			dr->diepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->diepctl[i] |= DXEPCTL_SETD0PID;

		dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
		dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));

		/* Backup OUT EPs */
		dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));

		/* Ensure DATA PID is correctly configured */
		if (dr->doepctl[i] & DXEPCTL_DPID)
			dr->doepctl[i] |= DXEPCTL_SETD1PID;
		else
			dr->doepctl[i] |= DXEPCTL_SETD0PID;

		dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
		dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
	}
	dr->valid = true;
	return 0;
}

/**
 * dwc2_restore_device_registers() - Restore controller device registers.
 * When resuming usb bus, device registers needs to be restored
 * if controller power were disabled.
 *
 * @hsotg: Programming view of the DWC_otg controller
 */
int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
{
	struct dwc2_dregs_backup *dr;
	u32 dctl;
	int i;

	dev_dbg(hsotg->dev, "%s\n", __func__);

	/* Restore dev regs */
	dr = &hsotg->dr_backup;
	if (!dr->valid) {
		dev_err(hsotg->dev, "%s: no device registers to restore\n",
			__func__);
		return -EINVAL;
	}
	dr->valid = false;

	dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
	dwc2_writel(dr->dctl, hsotg->regs + DCTL);
	dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
	dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
	dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);

	for (i = 0; i < hsotg->num_of_eps; i++) {
		/* Restore IN EPs */
		dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
		dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
		dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));

		/* Restore OUT EPs */
		dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
		dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
	}

	/* Set the Power-On Programming done bit */
	dctl = dwc2_readl(hsotg->regs + DCTL);
	dctl |= DCTL_PWRONPRGDONE;
	dwc2_writel(dctl, hsotg->regs + DCTL);

	return 0;
}