gadget.c 94.1 KB
Newer Older
1
/**
2 3
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com
4 5 6 7 8 9 10 11 12 13 14
 *
 * Copyright 2008 Openmoko, Inc.
 * Copyright 2008 Simtec Electronics
 *      Ben Dooks <ben@simtec.co.uk>
 *      http://armlinux.simtec.co.uk/
 *
 * S3C USB2.0 High-speed / OtG driver
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
15
 */
16 17 18 19 20 21 22 23

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/debugfs.h>
24
#include <linux/mutex.h>
25 26 27
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
28
#include <linux/slab.h>
29
#include <linux/clk.h>
30
#include <linux/regulator/consumer.h>
31
#include <linux/of_platform.h>
32
#include <linux/phy/phy.h>
33 34 35

#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
36
#include <linux/usb/phy.h>
37
#include <linux/platform_data/s3c-hsotg.h>
38

39
#include "core.h"
40
#include "hw.h"
41 42 43 44 45 46 47 48 49 50 51 52

/* conversion functions */
static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
{
	return container_of(req, struct s3c_hsotg_req, req);
}

static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
{
	return container_of(ep, struct s3c_hsotg_ep, ep);
}

53
static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
54
{
55
	return container_of(gadget, struct dwc2_hsotg, gadget);
56 57 58 59 60 61 62 63 64 65 66 67
}

static inline void __orr32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) | val, ptr);
}

static inline void __bic32(void __iomem *ptr, u32 val)
{
	writel(readl(ptr) & ~val, ptr);
}

68 69 70 71 72 73 74 75 76
static inline struct s3c_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
						u32 ep_index, u32 dir_in)
{
	if (dir_in)
		return hsotg->eps_in[ep_index];
	else
		return hsotg->eps_out[ep_index];
}

77
/* forward declaration of functions */
78
static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg);
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

/**
 * using_dma - return the DMA status of the driver.
 * @hsotg: The driver state.
 *
 * Return true if we're using DMA.
 *
 * Currently, we have the DMA support code worked into everywhere
 * that needs it, but the AMBA DMA implementation in the hardware can
 * only DMA from 32bit aligned addresses. This means that gadgets such
 * as the CDC Ethernet cannot work as they often pass packets which are
 * not 32bit aligned.
 *
 * Unfortunately the choice to use DMA or not is global to the controller
 * and seems to be only settable when the controller is being put through
 * a core reset. This means we either need to fix the gadgets to take
 * account of DMA alignment, or add bounce buffers (yuerk).
 *
97
 * g_using_dma is set depending on dts flag.
98
 */
99
static inline bool using_dma(struct dwc2_hsotg *hsotg)
100
{
101
	return hsotg->g_using_dma;
102 103 104 105 106 107 108
}

/**
 * s3c_hsotg_en_gsint - enable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
109
static void s3c_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
110
{
111
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
112 113 114 115 116 117
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk | ints;

	if (new_gsintmsk != gsintmsk) {
		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
118
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
119 120 121 122 123 124 125 126
	}
}

/**
 * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
 * @hsotg: The device state
 * @ints: A bitmask of the interrupts to enable
 */
127
static void s3c_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
128
{
129
	u32 gsintmsk = readl(hsotg->regs + GINTMSK);
130 131 132 133 134
	u32 new_gsintmsk;

	new_gsintmsk = gsintmsk & ~ints;

	if (new_gsintmsk != gsintmsk)
135
		writel(new_gsintmsk, hsotg->regs + GINTMSK);
136 137 138 139 140 141 142 143 144 145 146 147
}

/**
 * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
 * @hsotg: The device state
 * @ep: The endpoint index
 * @dir_in: True if direction is in.
 * @en: The enable value, true to enable
 *
 * Set or clear the mask for an individual endpoint's interrupt
 * request.
 */
148
static void s3c_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
149 150 151 152 153 154 155 156 157 158 159
				 unsigned int ep, unsigned int dir_in,
				 unsigned int en)
{
	unsigned long flags;
	u32 bit = 1 << ep;
	u32 daint;

	if (!dir_in)
		bit <<= 16;

	local_irq_save(flags);
160
	daint = readl(hsotg->regs + DAINTMSK);
161 162 163 164
	if (en)
		daint |= bit;
	else
		daint &= ~bit;
165
	writel(daint, hsotg->regs + DAINTMSK);
166 167 168 169 170 171 172
	local_irq_restore(flags);
}

/**
 * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
 * @hsotg: The device instance.
 */
173
static void s3c_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
174
{
175 176
	unsigned int ep;
	unsigned int addr;
177
	int timeout;
178 179
	u32 val;

180 181 182 183 184
	/* set RX/NPTX FIFO sizes */
	writel(hsotg->g_rx_fifo_sz, hsotg->regs + GRXFSIZ);
	writel((hsotg->g_rx_fifo_sz << FIFOSIZE_STARTADDR_SHIFT) |
		(hsotg->g_np_g_tx_fifo_sz << FIFOSIZE_DEPTH_SHIFT),
		hsotg->regs + GNPTXFSIZ);
185

186 187
	/*
	 * arange all the rest of the TX FIFOs, as some versions of this
188 189
	 * block have overlapping default addresses. This also ensures
	 * that if the settings have been changed, then they are set to
190 191
	 * known values.
	 */
192 193

	/* start at the end of the GNPTXFSIZ, rounded up */
194
	addr = hsotg->g_rx_fifo_sz + hsotg->g_np_g_tx_fifo_sz;
195

196
	/*
197
	 * Configure fifos sizes from provided configuration and assign
198 199
	 * them to endpoints dynamically according to maxpacket size value of
	 * given endpoint.
200
	 */
201 202 203
	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
		if (!hsotg->g_tx_fifo_sz[ep])
			continue;
204
		val = addr;
205 206
		val |= hsotg->g_tx_fifo_sz[ep] << FIFOSIZE_DEPTH_SHIFT;
		WARN_ONCE(addr + hsotg->g_tx_fifo_sz[ep] > hsotg->fifo_mem,
207
			  "insufficient fifo memory");
208
		addr += hsotg->g_tx_fifo_sz[ep];
209

210
		writel(val, hsotg->regs + DPTXFSIZN(ep));
211
	}
212

213 214 215 216
	/*
	 * according to p428 of the design guide, we need to ensure that
	 * all fifos are flushed before continuing
	 */
217

218 219
	writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
220 221 222 223

	/* wait until the fifos are both flushed */
	timeout = 100;
	while (1) {
224
		val = readl(hsotg->regs + GRSTCTL);
225

226
		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
227 228 229 230 231 232 233 234 235 236 237 238
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
				__func__, val);
		}

		udelay(1);
	}

	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
239 240 241 242 243 244 245 246
}

/**
 * @ep: USB endpoint to allocate request for.
 * @flags: Allocation flags
 *
 * Allocate a new USB request structure appropriate for the specified endpoint
 */
247 248
static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
						      gfp_t flags)
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
{
	struct s3c_hsotg_req *req;

	req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
	if (!req)
		return NULL;

	INIT_LIST_HEAD(&req->queue);

	return &req->req;
}

/**
 * is_ep_periodic - return true if the endpoint is in periodic mode.
 * @hs_ep: The endpoint to query.
 *
 * Returns true if the endpoint is in periodic mode, meaning it is being
 * used for an Interrupt or ISO transfer.
 */
static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
{
	return hs_ep->periodic;
}

/**
 * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint for the request
 * @hs_req: The request being processed.
 *
 * This is the reverse of s3c_hsotg_map_dma(), called for the completion
 * of a request to ensure the buffer is ready for access by the caller.
281
 */
282
static void s3c_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
283 284 285 286 287 288 289 290 291
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	struct usb_request *req = &hs_req->req;

	/* ignore this if we're not moving any data */
	if (hs_req->req.length == 0)
		return;

292
	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
}

/**
 * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
 * @hsotg: The controller state.
 * @hs_ep: The endpoint we're going to write for.
 * @hs_req: The request to write data for.
 *
 * This is called when the TxFIFO has some space in it to hold a new
 * transmission and we have something to give it. The actual setup of
 * the data size is done elsewhere, so all we have to do is to actually
 * write the data.
 *
 * The return value is zero if there is more space (or nothing was done)
 * otherwise -ENOSPC is returned if the FIFO space was used up.
 *
 * This routine is only needed for PIO
310
 */
311
static int s3c_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
312 313 314 315
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req)
{
	bool periodic = is_ep_periodic(hs_ep);
316
	u32 gnptxsts = readl(hsotg->regs + GNPTXSTS);
317 318 319 320 321
	int buf_pos = hs_req->req.actual;
	int to_write = hs_ep->size_loaded;
	void *data;
	int can_write;
	int pkt_round;
322
	int max_transfer;
323 324 325 326 327 328 329

	to_write -= (buf_pos - hs_ep->last_load);

	/* if there's nothing to write, get out early */
	if (to_write == 0)
		return 0;

330
	if (periodic && !hsotg->dedicated_fifos) {
331
		u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
332 333 334
		int size_left;
		int size_done;

335 336 337 338
		/*
		 * work out how much data was loaded so we can calculate
		 * how much data is left in the fifo.
		 */
339

340
		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
341

342 343
		/*
		 * if shared fifo, we cannot write anything until the
344 345 346
		 * previous data has been completely sent.
		 */
		if (hs_ep->fifo_load != 0) {
347
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
348 349 350
			return -ENOSPC;
		}

351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
			__func__, size_left,
			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);

		/* how much of the data has moved */
		size_done = hs_ep->size_loaded - size_left;

		/* how much data is left in the fifo */
		can_write = hs_ep->fifo_load - size_done;
		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
			__func__, can_write);

		can_write = hs_ep->fifo_size - can_write;
		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
			__func__, can_write);

		if (can_write <= 0) {
368
			s3c_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
369 370
			return -ENOSPC;
		}
371
	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
372
		can_write = readl(hsotg->regs + DTXFSTS(hs_ep->index));
373 374 375

		can_write &= 0xffff;
		can_write *= 4;
376
	} else {
377
		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
378 379 380 381
			dev_dbg(hsotg->dev,
				"%s: no queue slots available (0x%08x)\n",
				__func__, gnptxsts);

382
			s3c_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
383 384 385
			return -ENOSPC;
		}

386
		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
387
		can_write *= 4;	/* fifo size is in 32bit quantities. */
388 389
	}

390 391 392 393
	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;

	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
		 __func__, gnptxsts, can_write, to_write, max_transfer);
394

395 396
	/*
	 * limit to 512 bytes of data, it seems at least on the non-periodic
397 398 399
	 * FIFO, requests of >512 cause the endpoint to get stuck with a
	 * fragment of the end of the transfer in it.
	 */
400
	if (can_write > 512 && !periodic)
401 402
		can_write = 512;

403 404
	/*
	 * limit the write to one max-packet size worth of data, but allow
405
	 * the transfer to return that it did not run out of fifo space
406 407
	 * doing it.
	 */
408 409
	if (to_write > max_transfer) {
		to_write = max_transfer;
410

411 412 413
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
			s3c_hsotg_en_gsint(hsotg,
414 415
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
416 417
	}

418 419 420 421
	/* see if we can write data */

	if (to_write > can_write) {
		to_write = can_write;
422
		pkt_round = to_write % max_transfer;
423

424 425
		/*
		 * Round the write down to an
426 427 428 429 430 431 432 433 434
		 * exact number of packets.
		 *
		 * Note, we do not currently check to see if we can ever
		 * write a full packet or not to the FIFO.
		 */

		if (pkt_round)
			to_write -= pkt_round;

435 436 437 438
		/*
		 * enable correct FIFO interrupt to alert us when there
		 * is more room left.
		 */
439

440 441 442
		/* it's needed only when we do not use dedicated fifos */
		if (!hsotg->dedicated_fifos)
			s3c_hsotg_en_gsint(hsotg,
443 444
					   periodic ? GINTSTS_PTXFEMP :
					   GINTSTS_NPTXFEMP);
445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
	}

	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
		 to_write, hs_req->req.length, can_write, buf_pos);

	if (to_write <= 0)
		return -ENOSPC;

	hs_req->req.actual = buf_pos + to_write;
	hs_ep->total_data += to_write;

	if (periodic)
		hs_ep->fifo_load += to_write;

	to_write = DIV_ROUND_UP(to_write, 4);
	data = hs_req->req.buf + buf_pos;

462
	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480

	return (to_write >= can_write) ? -ENOSPC : 0;
}

/**
 * get_ep_limit - get the maximum data legnth for this endpoint
 * @hs_ep: The endpoint
 *
 * Return the maximum data that can be queued in one go on a given endpoint
 * so that transfers that are too long can be split.
 */
static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
{
	int index = hs_ep->index;
	unsigned maxsize;
	unsigned maxpkt;

	if (index != 0) {
481 482
		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
483
	} else {
484
		maxsize = 64+64;
485
		if (hs_ep->dir_in)
486
			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
487
		else
488 489 490 491 492 493 494
			maxpkt = 2;
	}

	/* we made the constant loading easier above by using +1 */
	maxpkt--;
	maxsize--;

495 496 497 498
	/*
	 * constrain by packet count if maxpkts*pktsize is greater
	 * than the length register size.
	 */
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515

	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
		maxsize = maxpkt * hs_ep->ep.maxpacket;

	return maxsize;
}

/**
 * s3c_hsotg_start_req - start a USB request from an endpoint's queue
 * @hsotg: The controller state.
 * @hs_ep: The endpoint to process a request for
 * @hs_req: The request to start.
 * @continuing: True if we are doing more for the current request.
 *
 * Start the given request running by setting the endpoint registers
 * appropriately, and writing any data to the FIFOs.
 */
516
static void s3c_hsotg_start_req(struct dwc2_hsotg *hsotg,
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
				struct s3c_hsotg_ep *hs_ep,
				struct s3c_hsotg_req *hs_req,
				bool continuing)
{
	struct usb_request *ureq = &hs_req->req;
	int index = hs_ep->index;
	int dir_in = hs_ep->dir_in;
	u32 epctrl_reg;
	u32 epsize_reg;
	u32 epsize;
	u32 ctrl;
	unsigned length;
	unsigned packets;
	unsigned maxreq;

	if (index != 0) {
		if (hs_ep->req && !continuing) {
			dev_err(hsotg->dev, "%s: active request\n", __func__);
			WARN_ON(1);
			return;
		} else if (hs_ep->req != hs_req && continuing) {
			dev_err(hsotg->dev,
				"%s: continue different req\n", __func__);
			WARN_ON(1);
			return;
		}
	}

545 546
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
547 548 549 550 551

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
		__func__, readl(hsotg->regs + epctrl_reg), index,
		hs_ep->dir_in ? "in" : "out");

552 553 554
	/* If endpoint is stalled, we will restart request later */
	ctrl = readl(hsotg->regs + epctrl_reg);

555
	if (ctrl & DXEPCTL_STALL) {
556 557 558 559
		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
		return;
	}

560
	length = ureq->length - ureq->actual;
561 562
	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
		ureq->length, ureq->actual);
563 564
	if (0)
		dev_dbg(hsotg->dev,
565
			"REQ buf %p len %d dma %pad noi=%d zp=%d snok=%d\n",
566
			ureq->buf, length, &ureq->dma,
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
			ureq->no_interrupt, ureq->zero, ureq->short_not_ok);

	maxreq = get_ep_limit(hs_ep);
	if (length > maxreq) {
		int round = maxreq % hs_ep->ep.maxpacket;

		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
			__func__, length, maxreq, round);

		/* round down to multiple of packets */
		if (round)
			maxreq -= round;

		length = maxreq;
	}

	if (length)
		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
	else
		packets = 1;	/* send one packet if length is zero. */

588 589 590 591 592
	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
		return;
	}

593
	if (dir_in && index != 0)
594
		if (hs_ep->isochronous)
595
			epsize = DXEPTSIZ_MC(packets);
596
		else
597
			epsize = DXEPTSIZ_MC(1);
598 599 600 601
	else
		epsize = 0;

	if (index != 0 && ureq->zero) {
602 603 604 605
		/*
		 * test for the packets being exactly right for the
		 * transfer
		 */
606 607 608 609 610

		if (length == (packets * hs_ep->ep.maxpacket))
			packets++;
	}

611 612
	epsize |= DXEPTSIZ_PKTCNT(packets);
	epsize |= DXEPTSIZ_XFERSIZE(length);
613 614 615 616 617 618 619 620 621 622

	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
		__func__, packets, length, ureq->length, epsize, epsize_reg);

	/* store the request as the current one we're doing */
	hs_ep->req = hs_req;

	/* write size / packets */
	writel(epsize, hsotg->regs + epsize_reg);

623
	if (using_dma(hsotg) && !continuing) {
624 625
		unsigned int dma_reg;

626 627 628 629
		/*
		 * write DMA address to control register, buffer already
		 * synced by s3c_hsotg_ep_queue().
		 */
630

631
		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
632 633
		writel(ureq->dma, hsotg->regs + dma_reg);

634
		dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
635
			__func__, &ureq->dma, dma_reg);
636 637
	}

638 639
	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
640 641 642 643 644 645 646

	dev_dbg(hsotg->dev, "setup req:%d\n", hsotg->setup);

	/* For Setup request do not clear NAK */
	if (hsotg->setup && index == 0)
		hsotg->setup = 0;
	else
647
		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
648

649 650 651 652

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

653 654
	/*
	 * set these, it seems that DMA support increments past the end
655
	 * of the packet buffer so we need to calculate the length from
656 657
	 * this information.
	 */
658 659 660 661 662 663 664 665 666 667
	hs_ep->size_loaded = length;
	hs_ep->last_load = ureq->actual;

	if (dir_in && !using_dma(hsotg)) {
		/* set these anyway, we may need them for non-periodic in */
		hs_ep->fifo_load = 0;

		s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

668 669 670 671
	/*
	 * clear the INTknTXFEmpMsk when we start request, more as a aide
	 * to debugging to see what is going on.
	 */
672
	if (dir_in)
673
		writel(DIEPMSK_INTKNTXFEMPMSK,
674
		       hsotg->regs + DIEPINT(index));
675

676 677 678 679
	/*
	 * Note, trying to clear the NAK here causes problems with transmit
	 * on the S3C6400 ending up with the TXFIFO becoming full.
	 */
680 681

	/* check ep is enabled */
682
	if (!(readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
683
		dev_warn(hsotg->dev,
684
			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
685 686
			 index, readl(hsotg->regs + epctrl_reg));

687
	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
688
		__func__, readl(hsotg->regs + epctrl_reg));
689 690 691

	/* enable ep interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
692 693 694 695 696 697 698 699 700 701 702 703 704
}

/**
 * s3c_hsotg_map_dma - map the DMA memory being used for the request
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request is on.
 * @req: The request being processed.
 *
 * We've been asked to queue a request, so ensure that the memory buffer
 * is correctly setup for DMA. If we've been passed an extant DMA address
 * then ensure the buffer has been synced to memory. If our buffer has no
 * DMA memory, then we map the memory and mark our request to allow us to
 * cleanup on completion.
705
 */
706
static int s3c_hsotg_map_dma(struct dwc2_hsotg *hsotg,
707 708 709 710
			     struct s3c_hsotg_ep *hs_ep,
			     struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
711
	int ret;
712 713 714 715 716

	/* if the length is zero, ignore the DMA data */
	if (hs_req->req.length == 0)
		return 0;

717 718 719
	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
	if (ret)
		goto dma_error;
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734

	return 0;

dma_error:
	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
		__func__, req->buf, req->length);

	return -EIO;
}

static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
735
	struct dwc2_hsotg *hs = hs_ep->parent;
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
	bool first;

	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
		ep->name, req, req->length, req->buf, req->no_interrupt,
		req->zero, req->short_not_ok);

	/* initialise status of the request */
	INIT_LIST_HEAD(&hs_req->queue);
	req->actual = 0;
	req->status = -EINPROGRESS;

	/* if we're using DMA, sync the buffers as necessary */
	if (using_dma(hs)) {
		int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
		if (ret)
			return ret;
	}

	first = list_empty(&hs_ep->queue);
	list_add_tail(&hs_req->queue, &hs_ep->queue);

	if (first)
		s3c_hsotg_start_req(hs, hs_ep, hs_req, false);

	return 0;
}

763 764 765 766
static int s3c_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
			      gfp_t gfp_flags)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
767
	struct dwc2_hsotg *hs = hs_ep->parent;
768 769 770 771 772 773 774 775 776 777
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_queue(ep, req, gfp_flags);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797
static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
				      struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);

	kfree(hs_req);
}

/**
 * s3c_hsotg_complete_oursetup - setup completion callback
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself
 * submitted that need cleaning up.
 */
static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
					struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
798
	struct dwc2_hsotg *hsotg = hs_ep->parent;
799 800 801 802 803 804 805 806 807 808 809 810 811

	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);

	s3c_hsotg_ep_free_request(ep, req);
}

/**
 * ep_from_windex - convert control wIndex value to endpoint
 * @hsotg: The driver state.
 * @windex: The control request wIndex field (in host order).
 *
 * Convert the given wIndex into a pointer to an driver endpoint
 * structure, or return NULL if it is not a valid endpoint.
812
 */
813
static struct s3c_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
814 815
					   u32 windex)
{
816
	struct s3c_hsotg_ep *ep;
817 818 819 820 821 822
	int dir = (windex & USB_DIR_IN) ? 1 : 0;
	int idx = windex & 0x7F;

	if (windex >= 0x100)
		return NULL;

823
	if (idx > hsotg->num_of_eps)
824 825
		return NULL;

826 827
	ep = index_to_ep(hsotg, idx, dir);

828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
	if (idx && ep->dir_in != dir)
		return NULL;

	return ep;
}

/**
 * s3c_hsotg_send_reply - send reply to control request
 * @hsotg: The device state
 * @ep: Endpoint 0
 * @buff: Buffer for request
 * @length: Length of reply.
 *
 * Create a request and queue it on the given endpoint. This is useful as
 * an internal method of sending replies to certain control requests, etc.
 */
844
static int s3c_hsotg_send_reply(struct dwc2_hsotg *hsotg,
845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
				struct s3c_hsotg_ep *ep,
				void *buff,
				int length)
{
	struct usb_request *req;
	int ret;

	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);

	req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
	hsotg->ep0_reply = req;
	if (!req) {
		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
		return -ENOMEM;
	}

	req->buf = hsotg->ep0_buff;
	req->length = length;
	req->zero = 1; /* always do zero-length final transfer */
	req->complete = s3c_hsotg_complete_oursetup;

	if (length)
		memcpy(req->buf, buff, length);
	else
		ep->sent_zlp = 1;

	ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
	if (ret) {
		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
		return ret;
	}

	return 0;
}

/**
 * s3c_hsotg_process_req_status - process request GET_STATUS
 * @hsotg: The device state
 * @ctrl: USB control request
 */
885
static int s3c_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
886 887
					struct usb_ctrlrequest *ctrl)
{
888
	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936
	struct s3c_hsotg_ep *ep;
	__le16 reply;
	int ret;

	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);

	if (!ep0->dir_in) {
		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
		return -EINVAL;
	}

	switch (ctrl->bRequestType & USB_RECIP_MASK) {
	case USB_RECIP_DEVICE:
		reply = cpu_to_le16(0); /* bit 0 => self powered,
					 * bit 1 => remote wakeup */
		break;

	case USB_RECIP_INTERFACE:
		/* currently, the data result should be zero */
		reply = cpu_to_le16(0);
		break;

	case USB_RECIP_ENDPOINT:
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep)
			return -ENOENT;

		reply = cpu_to_le16(ep->halted ? 1 : 0);
		break;

	default:
		return 0;
	}

	if (le16_to_cpu(ctrl->wLength) != 2)
		return -EINVAL;

	ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
	if (ret) {
		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
		return ret;
	}

	return 1;
}

static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);

937 938 939 940 941 942 943 944 945 946 947 948 949 950
/**
 * get_ep_head - return the first request on the endpoint
 * @hs_ep: The controller endpoint to get
 *
 * Get the first request on the endpoint.
 */
static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
{
	if (list_empty(&hs_ep->queue))
		return NULL;

	return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
}

951 952 953 954 955
/**
 * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
 * @hsotg: The device state
 * @ctrl: USB control request
 */
956
static int s3c_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
957 958
					 struct usb_ctrlrequest *ctrl)
{
959
	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
960 961
	struct s3c_hsotg_req *hs_req;
	bool restart;
962 963
	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
	struct s3c_hsotg_ep *ep;
964
	int ret;
965
	bool halted;
966 967 968 969 970 971 972 973 974 975 976 977 978 979

	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
		__func__, set ? "SET" : "CLEAR");

	if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
		if (!ep) {
			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
				__func__, le16_to_cpu(ctrl->wIndex));
			return -ENOENT;
		}

		switch (le16_to_cpu(ctrl->wValue)) {
		case USB_ENDPOINT_HALT:
980 981
			halted = ep->halted;

982
			s3c_hsotg_ep_sethalt(&ep->ep, set);
983 984 985 986 987 988 989

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			if (ret) {
				dev_err(hsotg->dev,
					"%s: failed to send reply\n", __func__);
				return ret;
			}
990

991 992 993 994 995 996
			/*
			 * we have to complete all requests for ep if it was
			 * halted, and the halt was cleared by CLEAR_FEATURE
			 */

			if (!set && halted) {
997 998 999 1000 1001 1002 1003 1004
				/*
				 * If we have request in progress,
				 * then complete it
				 */
				if (ep->req) {
					hs_req = ep->req;
					ep->req = NULL;
					list_del_init(&hs_req->queue);
1005 1006
					usb_gadget_giveback_request(&ep->ep,
								    &hs_req->req);
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017
				}

				/* If we have pending request, then start it */
				restart = !list_empty(&ep->queue);
				if (restart) {
					hs_req = get_ep_head(ep);
					s3c_hsotg_start_req(hsotg, ep,
							    hs_req, false);
				}
			}

1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
			break;

		default:
			return -ENOENT;
		}
	} else
		return -ENOENT;  /* currently only deal with endpoint */

	return 1;
}

1029
static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1030

1031 1032 1033 1034 1035 1036
/**
 * s3c_hsotg_stall_ep0 - stall ep0
 * @hsotg: The device state
 *
 * Set stall for ep0 as response for setup request.
 */
1037
static void s3c_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1038
{
1039
	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
	u32 reg;
	u32 ctrl;

	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;

	/*
	 * DxEPCTL_Stall will be cleared by EP once it has
	 * taken effect, so no need to clear later.
	 */

	ctrl = readl(hsotg->regs + reg);
1052 1053
	ctrl |= DXEPCTL_STALL;
	ctrl |= DXEPCTL_CNAK;
1054 1055 1056
	writel(ctrl, hsotg->regs + reg);

	dev_dbg(hsotg->dev,
1057
		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1058 1059 1060 1061 1062 1063 1064 1065 1066
		ctrl, reg, readl(hsotg->regs + reg));

	 /*
	  * complete won't be called, so we enqueue
	  * setup request here
	  */
	 s3c_hsotg_enqueue_setup(hsotg);
}

1067 1068 1069 1070 1071 1072 1073 1074 1075
/**
 * s3c_hsotg_process_control - process a control request
 * @hsotg: The device state
 * @ctrl: The control request received
 *
 * The controller has received the SETUP phase of a control request, and
 * needs to work out what to do next (and whether to pass it on to the
 * gadget driver).
 */
1076
static void s3c_hsotg_process_control(struct dwc2_hsotg *hsotg,
1077 1078
				      struct usb_ctrlrequest *ctrl)
{
1079
	struct s3c_hsotg_ep *ep0 = hsotg->eps_out[0];
1080 1081 1082 1083 1084 1085 1086 1087 1088
	int ret = 0;
	u32 dcfg;

	ep0->sent_zlp = 0;

	dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
		 ctrl->bRequest, ctrl->bRequestType,
		 ctrl->wValue, ctrl->wLength);

1089 1090 1091 1092
	/*
	 * record the direction of the request, for later use when enquing
	 * packets onto EP0.
	 */
1093 1094 1095 1096

	ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
	dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);

1097 1098 1099 1100
	/*
	 * if we've no data with this request, then the last part of the
	 * transaction is going to implicitly be IN.
	 */
1101 1102 1103 1104 1105 1106
	if (ctrl->wLength == 0)
		ep0->dir_in = 1;

	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
		switch (ctrl->bRequest) {
		case USB_REQ_SET_ADDRESS:
1107
			dcfg = readl(hsotg->regs + DCFG);
1108
			dcfg &= ~DCFG_DEVADDR_MASK;
P
Paul Zimmerman 已提交
1109 1110
			dcfg |= (le16_to_cpu(ctrl->wValue) <<
				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1111
			writel(dcfg, hsotg->regs + DCFG);
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131

			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);

			ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
			return;

		case USB_REQ_GET_STATUS:
			ret = s3c_hsotg_process_req_status(hsotg, ctrl);
			break;

		case USB_REQ_CLEAR_FEATURE:
		case USB_REQ_SET_FEATURE:
			ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
			break;
		}
	}

	/* as a fallback, try delivering it to the driver to deal with */

	if (ret == 0 && hsotg->driver) {
1132
		spin_unlock(&hsotg->lock);
1133
		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1134
		spin_lock(&hsotg->lock);
1135 1136 1137 1138
		if (ret < 0)
			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
	}

1139 1140
	/*
	 * the request is either unhandlable, or is not formatted correctly
1141 1142 1143
	 * so respond with a STALL for the status stage to indicate failure.
	 */

1144 1145
	if (ret < 0)
		s3c_hsotg_stall_ep0(hsotg);
1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
}

/**
 * s3c_hsotg_complete_setup - completion of a setup transfer
 * @ep: The endpoint the request was on.
 * @req: The request completed.
 *
 * Called on completion of any requests the driver itself submitted for
 * EP0 setup packets
 */
static void s3c_hsotg_complete_setup(struct usb_ep *ep,
				     struct usb_request *req)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
1160
	struct dwc2_hsotg *hsotg = hs_ep->parent;
1161 1162 1163 1164 1165 1166

	if (req->status < 0) {
		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
		return;
	}

1167
	spin_lock(&hsotg->lock);
1168 1169 1170 1171
	if (req->actual == 0)
		s3c_hsotg_enqueue_setup(hsotg);
	else
		s3c_hsotg_process_control(hsotg, req->buf);
1172
	spin_unlock(&hsotg->lock);
1173 1174 1175 1176 1177 1178 1179 1180 1181
}

/**
 * s3c_hsotg_enqueue_setup - start a request for EP0 packets
 * @hsotg: The device state.
 *
 * Enqueue a request on EP0 if necessary to received any SETUP packets
 * received from the host.
 */
1182
static void s3c_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
{
	struct usb_request *req = hsotg->ctrl_req;
	struct s3c_hsotg_req *hs_req = our_req(req);
	int ret;

	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);

	req->zero = 0;
	req->length = 8;
	req->buf = hsotg->ctrl_buff;
	req->complete = s3c_hsotg_complete_setup;

	if (!list_empty(&hs_req->queue)) {
		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
		return;
	}

1200
	hsotg->eps_out[0]->dir_in = 0;
1201

1202
	ret = s3c_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1203 1204
	if (ret < 0) {
		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1205 1206 1207 1208
		/*
		 * Don't think there's much we can do other than watch the
		 * driver fail.
		 */
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223
	}
}

/**
 * s3c_hsotg_complete_request - complete a request given to us
 * @hsotg: The device state.
 * @hs_ep: The endpoint the request was on.
 * @hs_req: The request to complete.
 * @result: The result code (0 => Ok, otherwise errno)
 *
 * The given request has finished, so call the necessary completion
 * if it has one and then look to see if we can start a new request
 * on the endpoint.
 *
 * Note, expects the ep to already be locked as appropriate.
1224
 */
1225
static void s3c_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239
				       struct s3c_hsotg_ep *hs_ep,
				       struct s3c_hsotg_req *hs_req,
				       int result)
{
	bool restart;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
		return;
	}

	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);

1240 1241 1242 1243
	/*
	 * only replace the status if we've not already set an error
	 * from a previous transaction
	 */
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253

	if (hs_req->req.status == -EINPROGRESS)
		hs_req->req.status = result;

	hs_ep->req = NULL;
	list_del_init(&hs_req->queue);

	if (using_dma(hsotg))
		s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);

1254 1255 1256 1257
	/*
	 * call the complete request with the locks off, just in case the
	 * request tries to queue more work for this endpoint.
	 */
1258 1259

	if (hs_req->req.complete) {
1260
		spin_unlock(&hsotg->lock);
1261
		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1262
		spin_lock(&hsotg->lock);
1263 1264
	}

1265 1266
	/*
	 * Look to see if there is anything else to do. Note, the completion
1267
	 * of the previous request may have caused a new request to be started
1268 1269
	 * so be careful when doing this.
	 */
1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289

	if (!hs_ep->req && result >= 0) {
		restart = !list_empty(&hs_ep->queue);
		if (restart) {
			hs_req = get_ep_head(hs_ep);
			s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
		}
	}
}

/**
 * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
 * @hsotg: The device state.
 * @ep_idx: The endpoint index for the data
 * @size: The size of data in the fifo, in bytes
 *
 * The FIFO status shows there is data to read from the FIFO for a given
 * endpoint, so sort out whether we need to read the data into a request
 * that has been made for that endpoint.
 */
1290
static void s3c_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
1291
{
1292
	struct s3c_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
1293
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1294
	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1295 1296 1297 1298
	int to_read;
	int max_req;
	int read_ptr;

1299

1300
	if (!hs_req) {
1301
		u32 epctl = readl(hsotg->regs + DOEPCTL(ep_idx));
1302 1303
		int ptr;

1304
		dev_dbg(hsotg->dev,
1305
			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318
			 __func__, size, ep_idx, epctl);

		/* dump the data from the FIFO, we've nothing we can do */
		for (ptr = 0; ptr < size; ptr += 4)
			(void)readl(fifo);

		return;
	}

	to_read = size;
	read_ptr = hs_req->req.actual;
	max_req = hs_req->req.length - read_ptr;

1319 1320 1321
	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
		__func__, to_read, max_req, read_ptr, hs_req->req.length);

1322
	if (to_read > max_req) {
1323 1324
		/*
		 * more data appeared than we where willing
1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335
		 * to deal with in this request.
		 */

		/* currently we don't deal this */
		WARN_ON_ONCE(1);
	}

	hs_ep->total_data += to_read;
	hs_req->req.actual += to_read;
	to_read = DIV_ROUND_UP(to_read, 4);

1336 1337 1338 1339
	/*
	 * note, we might over-write the buffer end by 3 bytes depending on
	 * alignment of the data.
	 */
1340
	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351
}

/**
 * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
 * @hsotg: The device instance
 * @req: The request currently on this endpoint
 *
 * Generate a zero-length IN packet request for terminating a SETUP
 * transaction.
 *
 * Note, since we don't write any data to the TxFIFO, then it is
L
Lucas De Marchi 已提交
1352
 * currently believed that we do not need to wait for any space in
1353 1354
 * the TxFIFO.
 */
1355
static void s3c_hsotg_send_zlp(struct dwc2_hsotg *hsotg,
1356 1357 1358 1359 1360 1361 1362 1363 1364 1365
			       struct s3c_hsotg_req *req)
{
	u32 ctrl;

	if (!req) {
		dev_warn(hsotg->dev, "%s: no request?\n", __func__);
		return;
	}

	if (req->req.length == 0) {
1366
		hsotg->eps_out[0]->sent_zlp = 1;
1367 1368 1369 1370
		s3c_hsotg_enqueue_setup(hsotg);
		return;
	}

1371 1372 1373
	/* eps_out[0] is used in both directions */
	hsotg->eps_out[0]->dir_in = 1;
	hsotg->eps_out[0]->sent_zlp = 1;
1374 1375 1376 1377

	dev_dbg(hsotg->dev, "sending zero-length packet\n");

	/* issue a zero-sized packet to terminate this */
1378 1379
	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
	       DXEPTSIZ_XFERSIZE(0), hsotg->regs + DIEPTSIZ(0));
1380

1381
	ctrl = readl(hsotg->regs + DIEPCTL0);
1382 1383 1384
	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
	ctrl |= DXEPCTL_USBACTEP;
1385
	writel(ctrl, hsotg->regs + DIEPCTL0);
1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
}

/**
 * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
 * @hsotg: The device instance
 * @epnum: The endpoint received from
 * @was_setup: Set if processing a SetupDone event.
 *
 * The RXFIFO has delivered an OutDone event, which means that the data
 * transfer for an OUT endpoint has been completed, either by a short
 * packet or by the finish of a transfer.
1397
 */
1398
static void s3c_hsotg_handle_outdone(struct dwc2_hsotg *hsotg,
1399 1400
				     int epnum, bool was_setup)
{
1401
	u32 epsize = readl(hsotg->regs + DOEPTSIZ(epnum));
1402
	struct s3c_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
1403 1404
	struct s3c_hsotg_req *hs_req = hs_ep->req;
	struct usb_request *req = &hs_req->req;
1405
	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
	int result = 0;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
		return;
	}

	if (using_dma(hsotg)) {
		unsigned size_done;

1416 1417
		/*
		 * Calculate the size of the transfer by checking how much
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430
		 * is left in the endpoint size register and then working it
		 * out from the amount we loaded for the transfer.
		 *
		 * We need to do this as DMA pointers are always 32bit aligned
		 * so may overshoot/undershoot the transfer.
		 */

		size_done = hs_ep->size_loaded - size_left;
		size_done += hs_ep->last_load;

		req->actual = size_done;
	}

1431 1432 1433 1434
	/* if there is more request to do, schedule new transfer */
	if (req->actual < req->length && size_left == 0) {
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
		return;
1435 1436 1437 1438 1439 1440
	} else if (epnum == 0) {
		/*
		 * After was_setup = 1 =>
		 * set CNAK for non Setup requests
		 */
		hsotg->setup = was_setup ? 0 : 1;
1441 1442
	}

1443 1444 1445 1446
	if (req->actual < req->length && req->short_not_ok) {
		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
			__func__, req->actual, req->length);

1447 1448 1449 1450
		/*
		 * todo - what should we return here? there's no one else
		 * even bothering to check the status.
		 */
1451 1452 1453
	}

	if (epnum == 0) {
1454 1455 1456 1457
		/*
		 * Condition req->complete != s3c_hsotg_complete_setup says:
		 * send ZLP when we have an asynchronous request from gadget
		 */
1458 1459 1460 1461
		if (!was_setup && req->complete != s3c_hsotg_complete_setup)
			s3c_hsotg_send_zlp(hsotg, hs_req);
	}

1462
	s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1463 1464 1465 1466 1467 1468 1469
}

/**
 * s3c_hsotg_read_frameno - read current frame number
 * @hsotg: The device instance
 *
 * Return the current frame number
1470
 */
1471
static u32 s3c_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
1472 1473 1474
{
	u32 dsts;

1475 1476 1477
	dsts = readl(hsotg->regs + DSTS);
	dsts &= DSTS_SOFFN_MASK;
	dsts >>= DSTS_SOFFN_SHIFT;
1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489

	return dsts;
}

/**
 * s3c_hsotg_handle_rx - RX FIFO has data
 * @hsotg: The device instance
 *
 * The IRQ handler has detected that the RX FIFO has some data in it
 * that requires processing, so find out what is in there and do the
 * appropriate read.
 *
L
Lucas De Marchi 已提交
1490
 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1491 1492 1493 1494 1495 1496 1497
 * chunks, so if you have x packets received on an endpoint you'll get x
 * FIFO events delivered, each with a packet's worth of data in it.
 *
 * When using DMA, we should not be processing events from the RXFIFO
 * as the actual data should be sent to the memory directly and we turn
 * on the completion interrupts to get notifications of transfer completion.
 */
1498
static void s3c_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
1499
{
1500
	u32 grxstsr = readl(hsotg->regs + GRXSTSP);
1501 1502 1503 1504
	u32 epnum, status, size;

	WARN_ON(using_dma(hsotg));

1505 1506
	epnum = grxstsr & GRXSTS_EPNUM_MASK;
	status = grxstsr & GRXSTS_PKTSTS_MASK;
1507

1508 1509
	size = grxstsr & GRXSTS_BYTECNT_MASK;
	size >>= GRXSTS_BYTECNT_SHIFT;
1510 1511 1512 1513 1514

	if (1)
		dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
			__func__, grxstsr, size, epnum);

1515 1516 1517
	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
	case GRXSTS_PKTSTS_GLOBALOUTNAK:
		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1518 1519
		break;

1520
	case GRXSTS_PKTSTS_OUTDONE:
1521 1522 1523 1524 1525 1526 1527
		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg));

		if (!using_dma(hsotg))
			s3c_hsotg_handle_outdone(hsotg, epnum, false);
		break;

1528
	case GRXSTS_PKTSTS_SETUPDONE:
1529 1530 1531
		dev_dbg(hsotg->dev,
			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1532
			readl(hsotg->regs + DOEPCTL(0)));
1533 1534 1535 1536

		s3c_hsotg_handle_outdone(hsotg, epnum, true);
		break;

1537
	case GRXSTS_PKTSTS_OUTRX:
1538 1539 1540
		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

1541
	case GRXSTS_PKTSTS_SETUPRX:
1542 1543 1544
		dev_dbg(hsotg->dev,
			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
			s3c_hsotg_read_frameno(hsotg),
1545
			readl(hsotg->regs + DOEPCTL(0)));
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561

		s3c_hsotg_rx_data(hsotg, epnum, size);
		break;

	default:
		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
			 __func__, grxstsr);

		s3c_hsotg_dump(hsotg);
		break;
	}
}

/**
 * s3c_hsotg_ep0_mps - turn max packet size into register setting
 * @mps: The maximum packet size in bytes.
1562
 */
1563 1564 1565 1566
static u32 s3c_hsotg_ep0_mps(unsigned int mps)
{
	switch (mps) {
	case 64:
1567
		return D0EPCTL_MPS_64;
1568
	case 32:
1569
		return D0EPCTL_MPS_32;
1570
	case 16:
1571
		return D0EPCTL_MPS_16;
1572
	case 8:
1573
		return D0EPCTL_MPS_8;
1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
	}

	/* bad max packet size, warn and return invalid result */
	WARN_ON(1);
	return (u32)-1;
}

/**
 * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
 * @hsotg: The driver state.
 * @ep: The index number of the endpoint
 * @mps: The maximum packet size in bytes
 *
 * Configure the maximum packet size for the given endpoint, updating
 * the hardware control registers to reflect this.
 */
1590
static void s3c_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
1591
			unsigned int ep, unsigned int mps, unsigned int dir_in)
1592
{
1593
	struct s3c_hsotg_ep *hs_ep;
1594 1595
	void __iomem *regs = hsotg->regs;
	u32 mpsval;
1596
	u32 mcval;
1597 1598
	u32 reg;

1599 1600 1601 1602
	hs_ep = index_to_ep(hsotg, ep, dir_in);
	if (!hs_ep)
		return;

1603 1604 1605 1606 1607
	if (ep == 0) {
		/* EP0 is a special case */
		mpsval = s3c_hsotg_ep0_mps(mps);
		if (mpsval > 3)
			goto bad_mps;
1608
		hs_ep->ep.maxpacket = mps;
1609
		hs_ep->mc = 1;
1610
	} else {
1611
		mpsval = mps & DXEPCTL_MPS_MASK;
1612
		if (mpsval > 1024)
1613
			goto bad_mps;
1614 1615 1616 1617
		mcval = ((mps >> 11) & 0x3) + 1;
		hs_ep->mc = mcval;
		if (mcval > 3)
			goto bad_mps;
1618
		hs_ep->ep.maxpacket = mpsval;
1619 1620
	}

1621 1622 1623 1624 1625 1626
	if (dir_in) {
		reg = readl(regs + DIEPCTL(ep));
		reg &= ~DXEPCTL_MPS_MASK;
		reg |= mpsval;
		writel(reg, regs + DIEPCTL(ep));
	} else {
1627
		reg = readl(regs + DOEPCTL(ep));
1628
		reg &= ~DXEPCTL_MPS_MASK;
1629
		reg |= mpsval;
1630
		writel(reg, regs + DOEPCTL(ep));
1631
	}
1632 1633 1634 1635 1636 1637 1638

	return;

bad_mps:
	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}

1639 1640 1641 1642 1643
/**
 * s3c_hsotg_txfifo_flush - flush Tx FIFO
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 */
1644
static void s3c_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
1645 1646 1647 1648
{
	int timeout;
	int val;

1649
	writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
1650
		hsotg->regs + GRSTCTL);
1651 1652 1653 1654 1655

	/* wait until the fifo is flushed */
	timeout = 100;

	while (1) {
1656
		val = readl(hsotg->regs + GRSTCTL);
1657

1658
		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1659 1660 1661 1662 1663 1664
			break;

		if (--timeout == 0) {
			dev_err(hsotg->dev,
				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
				__func__, val);
1665
			break;
1666 1667 1668 1669 1670
		}

		udelay(1);
	}
}
1671 1672 1673 1674 1675 1676 1677 1678 1679

/**
 * s3c_hsotg_trytx - check to see if anything needs transmitting
 * @hsotg: The driver state
 * @hs_ep: The driver endpoint to check.
 *
 * Check to see if there is a request that has data to send, and if so
 * make an attempt to write data into the FIFO.
 */
1680
static int s3c_hsotg_trytx(struct dwc2_hsotg *hsotg,
1681 1682 1683 1684
			   struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;

1685 1686 1687 1688 1689 1690 1691 1692
	if (!hs_ep->dir_in || !hs_req) {
		/**
		 * if request is not enqueued, we disable interrupts
		 * for endpoints, excepting ep0
		 */
		if (hs_ep->index != 0)
			s3c_hsotg_ctrl_epint(hsotg, hs_ep->index,
					     hs_ep->dir_in, 0);
1693
		return 0;
1694
	}
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712

	if (hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
			hs_ep->index);
		return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
	}

	return 0;
}

/**
 * s3c_hsotg_complete_in - complete IN transfer
 * @hsotg: The device state.
 * @hs_ep: The endpoint that has just completed.
 *
 * An IN transfer has been completed, update the transfer's state and then
 * call the relevant completion routines.
 */
1713
static void s3c_hsotg_complete_in(struct dwc2_hsotg *hsotg,
1714 1715 1716
				  struct s3c_hsotg_ep *hs_ep)
{
	struct s3c_hsotg_req *hs_req = hs_ep->req;
1717
	u32 epsize = readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1718 1719 1720 1721 1722 1723 1724
	int size_left, size_done;

	if (!hs_req) {
		dev_dbg(hsotg->dev, "XferCompl but no req\n");
		return;
	}

1725
	/* Finish ZLP handling for IN EP0 transactions */
1726
	if (hsotg->eps_out[0]->sent_zlp) {
1727
		dev_dbg(hsotg->dev, "zlp packet received\n");
1728
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1729 1730 1731
		return;
	}

1732 1733
	/*
	 * Calculate the size of the transfer by checking how much is left
1734 1735 1736 1737 1738 1739 1740 1741
	 * in the endpoint size register and then working it out from
	 * the amount we loaded for the transfer.
	 *
	 * We do this even for DMA, as the transfer may have incremented
	 * past the end of the buffer (DMA transfers are always 32bit
	 * aligned).
	 */

1742
	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1743 1744 1745 1746 1747 1748 1749 1750 1751

	size_done = hs_ep->size_loaded - size_left;
	size_done += hs_ep->last_load;

	if (hs_req->req.actual != size_done)
		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
			__func__, hs_req->req.actual, size_done);

	hs_req->req.actual = size_done;
1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);

	/*
	 * Check if dealing with Maximum Packet Size(MPS) IN transfer at EP0
	 * When sent data is a multiple MPS size (e.g. 64B ,128B ,192B
	 * ,256B ... ), after last MPS sized packet send IN ZLP packet to
	 * inform the host that no more data is available.
	 * The state of req.zero member is checked to be sure that the value to
	 * send is smaller than wValue expected from host.
	 * Check req.length to NOT send another ZLP when the current one is
	 * under completion (the one for which this completion has been called).
	 */
	if (hs_req->req.length && hs_ep->index == 0 && hs_req->req.zero &&
	    hs_req->req.length == hs_req->req.actual &&
	    !(hs_req->req.length % hs_ep->ep.maxpacket)) {

		dev_dbg(hsotg->dev, "ep0 zlp IN packet sent\n");
		s3c_hsotg_send_zlp(hsotg, hs_req);
1771

1772 1773
		return;
	}
1774 1775 1776 1777 1778

	if (!size_left && hs_req->req.actual < hs_req->req.length) {
		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
		s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
	} else
1779
		s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1780 1781 1782 1783 1784 1785 1786 1787 1788
}

/**
 * s3c_hsotg_epint - handle an in/out endpoint interrupt
 * @hsotg: The driver state
 * @idx: The index for the endpoint (0..15)
 * @dir_in: Set if this is an IN endpoint
 *
 * Process and clear any interrupt pending for an individual endpoint
1789
 */
1790
static void s3c_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
1791 1792
			    int dir_in)
{
1793
	struct s3c_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
1794 1795 1796
	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1797
	u32 ints;
1798
	u32 ctrl;
1799 1800

	ints = readl(hsotg->regs + epint_reg);
1801
	ctrl = readl(hsotg->regs + epctl_reg);
1802

1803 1804 1805
	/* Clear endpoint interrupts */
	writel(ints, hsotg->regs + epint_reg);

1806 1807 1808 1809 1810 1811
	if (!hs_ep) {
		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
					__func__, idx, dir_in ? "in" : "out");
		return;
	}

1812 1813 1814
	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
		__func__, idx, dir_in ? "in" : "out", ints);

1815 1816 1817 1818
	/* Don't process XferCompl interrupt if it is a setup packet */
	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
		ints &= ~DXEPINT_XFERCOMPL;

1819
	if (ints & DXEPINT_XFERCOMPL) {
1820
		if (hs_ep->isochronous && hs_ep->interval == 1) {
1821 1822
			if (ctrl & DXEPCTL_EOFRNUM)
				ctrl |= DXEPCTL_SETEVENFR;
1823
			else
1824
				ctrl |= DXEPCTL_SETODDFR;
1825 1826 1827
			writel(ctrl, hsotg->regs + epctl_reg);
		}

1828
		dev_dbg(hsotg->dev,
1829
			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1830 1831 1832
			__func__, readl(hsotg->regs + epctl_reg),
			readl(hsotg->regs + epsiz_reg));

1833 1834 1835 1836
		/*
		 * we get OutDone from the FIFO, so we only need to look
		 * at completing IN requests here
		 */
1837 1838 1839
		if (dir_in) {
			s3c_hsotg_complete_in(hsotg, hs_ep);

1840
			if (idx == 0 && !hs_ep->req)
1841 1842
				s3c_hsotg_enqueue_setup(hsotg);
		} else if (using_dma(hsotg)) {
1843 1844 1845 1846
			/*
			 * We're using DMA, we need to fire an OutDone here
			 * as we ignore the RXFIFO.
			 */
1847 1848 1849 1850 1851

			s3c_hsotg_handle_outdone(hsotg, idx, false);
		}
	}

1852
	if (ints & DXEPINT_EPDISBLD) {
1853 1854
		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);

1855 1856 1857
		if (dir_in) {
			int epctl = readl(hsotg->regs + epctl_reg);

1858
			s3c_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
1859

1860 1861
			if ((epctl & DXEPCTL_STALL) &&
				(epctl & DXEPCTL_EPTYPE_BULK)) {
1862
				int dctl = readl(hsotg->regs + DCTL);
1863

1864
				dctl |= DCTL_CGNPINNAK;
1865
				writel(dctl, hsotg->regs + DCTL);
1866 1867 1868 1869
			}
		}
	}

1870
	if (ints & DXEPINT_AHBERR)
1871 1872
		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);

1873
	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
1874 1875 1876
		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);

		if (using_dma(hsotg) && idx == 0) {
1877 1878
			/*
			 * this is the notification we've received a
1879 1880
			 * setup packet. In non-DMA mode we'd get this
			 * from the RXFIFO, instead we need to process
1881 1882
			 * the setup here.
			 */
1883 1884 1885 1886 1887 1888 1889 1890

			if (dir_in)
				WARN_ON_ONCE(1);
			else
				s3c_hsotg_handle_outdone(hsotg, 0, true);
		}
	}

1891
	if (ints & DXEPINT_BACK2BACKSETUP)
1892 1893
		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);

1894
	if (dir_in && !hs_ep->isochronous) {
1895
		/* not sure if this is important, but we'll clear it anyway */
1896
		if (ints & DIEPMSK_INTKNTXFEMPMSK) {
1897 1898 1899 1900 1901
			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
				__func__, idx);
		}

		/* this probably means something bad is happening */
1902
		if (ints & DIEPMSK_INTKNEPMISMSK) {
1903 1904 1905
			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
				 __func__, idx);
		}
1906 1907 1908

		/* FIFO has space or is empty (see GAHBCFG) */
		if (hsotg->dedicated_fifos &&
1909
		    ints & DIEPMSK_TXFIFOEMPTY) {
1910 1911
			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
				__func__, idx);
1912 1913
			if (!using_dma(hsotg))
				s3c_hsotg_trytx(hsotg, hs_ep);
1914
		}
1915 1916 1917 1918 1919 1920 1921 1922 1923
	}
}

/**
 * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
 * @hsotg: The device state.
 *
 * Handle updating the device settings after the enumeration phase has
 * been completed.
1924
 */
1925
static void s3c_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
1926
{
1927
	u32 dsts = readl(hsotg->regs + DSTS);
1928
	int ep0_mps = 0, ep_mps = 8;
1929

1930 1931
	/*
	 * This should signal the finish of the enumeration phase
1932
	 * of the USB handshaking, so we should now know what rate
1933 1934
	 * we connected at.
	 */
1935 1936 1937

	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);

1938 1939
	/*
	 * note, since we're limited by the size of transfer on EP0, and
1940
	 * it seems IN transfers must be a even number of packets we do
1941 1942
	 * not advertise a 64byte MPS on EP0.
	 */
1943 1944

	/* catch both EnumSpd_FS and EnumSpd_FS48 */
1945 1946 1947
	switch (dsts & DSTS_ENUMSPD_MASK) {
	case DSTS_ENUMSPD_FS:
	case DSTS_ENUMSPD_FS48:
1948 1949
		hsotg->gadget.speed = USB_SPEED_FULL;
		ep0_mps = EP0_MPS_LIMIT;
1950
		ep_mps = 1023;
1951 1952
		break;

1953
	case DSTS_ENUMSPD_HS:
1954 1955
		hsotg->gadget.speed = USB_SPEED_HIGH;
		ep0_mps = EP0_MPS_LIMIT;
1956
		ep_mps = 1024;
1957 1958
		break;

1959
	case DSTS_ENUMSPD_LS:
1960
		hsotg->gadget.speed = USB_SPEED_LOW;
1961 1962
		/*
		 * note, we don't actually support LS in this driver at the
1963 1964 1965 1966 1967
		 * moment, and the documentation seems to imply that it isn't
		 * supported by the PHYs on some of the devices.
		 */
		break;
	}
1968 1969
	dev_info(hsotg->dev, "new device is %s\n",
		 usb_speed_string(hsotg->gadget.speed));
1970

1971 1972 1973 1974
	/*
	 * we should now know the maximum packet size for an
	 * endpoint, so set the endpoints to a default value.
	 */
1975 1976 1977

	if (ep0_mps) {
		int i;
1978 1979 1980 1981 1982 1983 1984 1985 1986
		/* Initialize ep0 for both in and out directions */
		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 1);
		s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0);
		for (i = 1; i < hsotg->num_of_eps; i++) {
			if (hsotg->eps_in[i])
				s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 1);
			if (hsotg->eps_out[i])
				s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 0);
		}
1987 1988 1989 1990 1991 1992 1993
	}

	/* ensure after enumeration our EP0 is active */

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
1994 1995
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
}

/**
 * kill_all_requests - remove all requests from the endpoint's queue
 * @hsotg: The device state.
 * @ep: The endpoint the requests may be on.
 * @result: The result code to use.
 *
 * Go through the requests on the given endpoint and mark them
 * completed with the given result code.
 */
2007
static void kill_all_requests(struct dwc2_hsotg *hsotg,
2008
			      struct s3c_hsotg_ep *ep,
2009
			      int result)
2010 2011
{
	struct s3c_hsotg_req *req, *treq;
2012
	unsigned size;
2013

2014
	ep->req = NULL;
2015

2016
	list_for_each_entry_safe(req, treq, &ep->queue, queue)
2017 2018
		s3c_hsotg_complete_request(hsotg, ep, req,
					   result);
2019

2020 2021 2022 2023 2024
	if (!hsotg->dedicated_fifos)
		return;
	size = (readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4;
	if (size < ep->fifo_size)
		s3c_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2025 2026 2027
}

/**
2028
 * s3c_hsotg_disconnect - disconnect service
2029 2030
 * @hsotg: The device state.
 *
2031 2032 2033
 * The device has been disconnected. Remove all current
 * transactions and signal the gadget driver that this
 * has happened.
2034
 */
2035
void s3c_hsotg_disconnect(struct dwc2_hsotg *hsotg)
2036 2037 2038
{
	unsigned ep;

2039 2040 2041 2042
	if (!hsotg->connected)
		return;

	hsotg->connected = 0;
2043 2044 2045 2046 2047 2048 2049 2050 2051

	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
			kill_all_requests(hsotg, hsotg->eps_in[ep],
								-ESHUTDOWN);
		if (hsotg->eps_out[ep])
			kill_all_requests(hsotg, hsotg->eps_out[ep],
								-ESHUTDOWN);
	}
2052 2053 2054

	call_gadget(hsotg, disconnect);
}
2055
EXPORT_SYMBOL_GPL(s3c_hsotg_disconnect);
2056 2057 2058 2059 2060 2061

/**
 * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
 * @hsotg: The device state:
 * @periodic: True if this is a periodic FIFO interrupt
 */
2062
static void s3c_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
2063 2064 2065 2066 2067
{
	struct s3c_hsotg_ep *ep;
	int epno, ret;

	/* look through for any more data to transmit */
2068
	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2069 2070 2071 2072
		ep = index_to_ep(hsotg, epno, 1);

		if (!ep)
			continue;
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087

		if (!ep->dir_in)
			continue;

		if ((periodic && !ep->periodic) ||
		    (!periodic && ep->periodic))
			continue;

		ret = s3c_hsotg_trytx(hsotg, ep);
		if (ret < 0)
			break;
	}
}

/* IRQ flags which will trigger a retry around the IRQ loop */
2088 2089 2090
#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
			GINTSTS_PTXFEMP |  \
			GINTSTS_RXFLVL)
2091

2092 2093 2094 2095 2096
/**
 * s3c_hsotg_corereset - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
2097
 */
2098
static int s3c_hsotg_corereset(struct dwc2_hsotg *hsotg)
2099 2100 2101 2102 2103 2104 2105
{
	int timeout;
	u32 grstctl;

	dev_dbg(hsotg->dev, "resetting core\n");

	/* issue soft reset */
2106
	writel(GRSTCTL_CSFTRST, hsotg->regs + GRSTCTL);
2107

2108
	timeout = 10000;
2109
	do {
2110
		grstctl = readl(hsotg->regs + GRSTCTL);
2111
	} while ((grstctl & GRSTCTL_CSFTRST) && timeout-- > 0);
2112

2113
	if (grstctl & GRSTCTL_CSFTRST) {
2114 2115 2116 2117
		dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
		return -EINVAL;
	}

2118
	timeout = 10000;
2119 2120

	while (1) {
2121
		u32 grstctl = readl(hsotg->regs + GRSTCTL);
2122 2123 2124 2125 2126 2127 2128 2129

		if (timeout-- < 0) {
			dev_info(hsotg->dev,
				 "%s: reset failed, GRSTCTL=%08x\n",
				 __func__, grstctl);
			return -ETIMEDOUT;
		}

2130
		if (!(grstctl & GRSTCTL_AHBIDLE))
2131 2132 2133 2134 2135 2136 2137 2138 2139
			continue;

		break;		/* reset done */
	}

	dev_dbg(hsotg->dev, "reset successful\n");
	return 0;
}

2140 2141 2142 2143 2144 2145
/**
 * s3c_hsotg_core_init - issue softreset to the core
 * @hsotg: The device state
 *
 * Issue a soft reset to the core, and await the core finishing it.
 */
2146
void s3c_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg)
2147 2148 2149 2150 2151 2152 2153 2154 2155
{
	s3c_hsotg_corereset(hsotg);

	/*
	 * we must now enable ep0 ready for host detection and then
	 * set configuration.
	 */

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2156
	writel(hsotg->phyif | GUSBCFG_TOUTCAL(7) |
2157
	       (0x5 << 10), hsotg->regs + GUSBCFG);
2158 2159 2160

	s3c_hsotg_init_fifo(hsotg);

2161
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2162

2163
	writel(1 << 18 | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2164 2165

	/* Clear any pending OTG interrupts */
2166
	writel(0xffffffff, hsotg->regs + GOTGINT);
2167 2168

	/* Clear any pending interrupts */
2169
	writel(0xffffffff, hsotg->regs + GINTSTS);
2170

2171 2172 2173 2174 2175 2176
	writel(GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
		GINTSTS_CONIDSTSCHNG | GINTSTS_USBRST |
		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
		GINTSTS_USBSUSP | GINTSTS_WKUPINT,
		hsotg->regs + GINTMSK);
2177 2178

	if (using_dma(hsotg))
2179
		writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
2180
		       (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
2181
		       hsotg->regs + GAHBCFG);
2182
	else
2183 2184 2185
		writel(((hsotg->dedicated_fifos) ? (GAHBCFG_NP_TXF_EMP_LVL |
						    GAHBCFG_P_TXF_EMP_LVL) : 0) |
		       GAHBCFG_GLBL_INTR_EN,
2186
		       hsotg->regs + GAHBCFG);
2187 2188

	/*
2189 2190 2191
	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
	 * when we have no data to transfer. Otherwise we get being flooded by
	 * interrupts.
2192 2193
	 */

2194 2195
	writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
2196 2197 2198 2199
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		DIEPMSK_INTKNEPMISMSK,
		hsotg->regs + DIEPMSK);
2200 2201 2202 2203 2204

	/*
	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
	 * DMA mode we may need this.
	 */
2205 2206 2207 2208 2209
	writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
				    DIEPMSK_TIMEOUTMSK) : 0) |
		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
		DOEPMSK_SETUPMSK,
		hsotg->regs + DOEPMSK);
2210

2211
	writel(0, hsotg->regs + DAINTMSK);
2212 2213

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2214 2215
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2216 2217

	/* enable in and out endpoint interrupts */
2218
	s3c_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2219 2220 2221 2222 2223 2224 2225

	/*
	 * Enable the RXFIFO when in slave mode, as this is how we collect
	 * the data. In DMA mode, we get events from the FIFO but also
	 * things we cannot process, so do not use it.
	 */
	if (!using_dma(hsotg))
2226
		s3c_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2227 2228 2229 2230 2231

	/* Enable interrupts for EP0 in and out */
	s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
	s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);

2232
	__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2233
	udelay(10);  /* see openiboot */
2234
	__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2235

2236
	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + DCTL));
2237 2238

	/*
2239
	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2240 2241 2242 2243
	 * writing to the EPCTL register..
	 */

	/* set to read 1 8byte packet */
2244 2245
	writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2246

2247
	writel(s3c_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2248 2249
	       DXEPCTL_CNAK | DXEPCTL_EPENA |
	       DXEPCTL_USBACTEP,
2250
	       hsotg->regs + DOEPCTL0);
2251 2252

	/* enable, but don't activate EP0in */
2253
	writel(s3c_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2254
	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2255 2256 2257 2258

	s3c_hsotg_enqueue_setup(hsotg);

	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2259 2260
		readl(hsotg->regs + DIEPCTL0),
		readl(hsotg->regs + DOEPCTL0));
2261 2262

	/* clear global NAKs */
2263
	writel(DCTL_CGOUTNAK | DCTL_CGNPINNAK | DCTL_SFTDISCON,
2264
	       hsotg->regs + DCTL);
2265 2266 2267 2268

	/* must be at-least 3ms to allow bus to see disconnect */
	mdelay(3);

2269
	hsotg->last_rst = jiffies;
2270 2271
}

2272
static void s3c_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
2273 2274 2275 2276
{
	/* set the soft-disconnect bit */
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
}
2277

2278
void s3c_hsotg_core_connect(struct dwc2_hsotg *hsotg)
2279
{
2280
	/* remove the soft-disconnect and let's go */
2281
	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2282 2283
}

2284 2285 2286 2287 2288 2289 2290
/**
 * s3c_hsotg_irq - handle device interrupt
 * @irq: The IRQ number triggered
 * @pw: The pw value when registered the handler.
 */
static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
{
2291
	struct dwc2_hsotg *hsotg = pw;
2292 2293 2294 2295
	int retry_count = 8;
	u32 gintsts;
	u32 gintmsk;

2296
	spin_lock(&hsotg->lock);
2297
irq_retry:
2298 2299
	gintsts = readl(hsotg->regs + GINTSTS);
	gintmsk = readl(hsotg->regs + GINTMSK);
2300 2301 2302 2303 2304 2305

	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);

	gintsts &= gintmsk;

2306 2307
	if (gintsts & GINTSTS_ENUMDONE) {
		writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2308 2309

		s3c_hsotg_irq_enumdone(hsotg);
2310
		hsotg->connected = 1;
2311 2312
	}

2313
	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2314
		u32 daint = readl(hsotg->regs + DAINT);
2315 2316
		u32 daintmsk = readl(hsotg->regs + DAINTMSK);
		u32 daint_out, daint_in;
2317 2318
		int ep;

2319
		daint &= daintmsk;
2320 2321
		daint_out = daint >> DAINT_OUTEP_SHIFT;
		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2322

2323 2324
		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);

2325 2326
		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
						ep++, daint_out >>= 1) {
2327 2328 2329 2330
			if (daint_out & 1)
				s3c_hsotg_epint(hsotg, ep, 0);
		}

2331 2332
		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
						ep++, daint_in >>= 1) {
2333 2334 2335 2336 2337
			if (daint_in & 1)
				s3c_hsotg_epint(hsotg, ep, 1);
		}
	}

2338
	if (gintsts & GINTSTS_USBRST) {
2339

2340
		u32 usb_status = readl(hsotg->regs + GOTGCTL);
2341

2342
		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
2343
		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2344
			readl(hsotg->regs + GNPTXSTS));
2345

2346
		writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
2347

2348
		if (usb_status & GOTGCTL_BSESVLD) {
2349 2350
			if (time_after(jiffies, hsotg->last_rst +
				       msecs_to_jiffies(200))) {
2351

2352
				kill_all_requests(hsotg, hsotg->eps_out[0],
2353
							  -ECONNRESET);
2354

2355 2356
				s3c_hsotg_core_init_disconnected(hsotg);
				s3c_hsotg_core_connect(hsotg);
2357 2358
			}
		}
2359 2360 2361 2362
	}

	/* check both FIFOs */

2363
	if (gintsts & GINTSTS_NPTXFEMP) {
2364 2365
		dev_dbg(hsotg->dev, "NPTxFEmp\n");

2366 2367
		/*
		 * Disable the interrupt to stop it happening again
2368
		 * unless one of these endpoint routines decides that
2369 2370
		 * it needs re-enabling
		 */
2371

2372
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
2373 2374 2375
		s3c_hsotg_irq_fifoempty(hsotg, false);
	}

2376
	if (gintsts & GINTSTS_PTXFEMP) {
2377 2378
		dev_dbg(hsotg->dev, "PTxFEmp\n");

2379
		/* See note in GINTSTS_NPTxFEmp */
2380

2381
		s3c_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
2382 2383 2384
		s3c_hsotg_irq_fifoempty(hsotg, true);
	}

2385
	if (gintsts & GINTSTS_RXFLVL) {
2386 2387
		/*
		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2388
		 * we need to retry s3c_hsotg_handle_rx if this is still
2389 2390
		 * set.
		 */
2391 2392 2393 2394

		s3c_hsotg_handle_rx(hsotg);
	}

2395
	if (gintsts & GINTSTS_ERLYSUSP) {
2396
		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2397
		writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2398 2399
	}

2400 2401
	/*
	 * these next two seem to crop-up occasionally causing the core
2402
	 * to shutdown the USB transfer, so try clearing them and logging
2403 2404
	 * the occurrence.
	 */
2405

2406
	if (gintsts & GINTSTS_GOUTNAKEFF) {
2407 2408
		dev_info(hsotg->dev, "GOUTNakEff triggered\n");

2409
		writel(DCTL_CGOUTNAK, hsotg->regs + DCTL);
2410 2411

		s3c_hsotg_dump(hsotg);
2412 2413
	}

2414
	if (gintsts & GINTSTS_GINNAKEFF) {
2415 2416
		dev_info(hsotg->dev, "GINNakEff triggered\n");

2417
		writel(DCTL_CGNPINNAK, hsotg->regs + DCTL);
2418 2419

		s3c_hsotg_dump(hsotg);
2420 2421
	}

2422 2423 2424 2425
	/*
	 * if we've had fifo events, we should try and go around the
	 * loop again to see if there's any point in returning yet.
	 */
2426 2427 2428 2429

	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
			goto irq_retry;

2430 2431
	spin_unlock(&hsotg->lock);

2432 2433 2434 2435 2436 2437 2438 2439 2440
	return IRQ_HANDLED;
}

/**
 * s3c_hsotg_ep_enable - enable the given endpoint
 * @ep: The USB endpint to configure
 * @desc: The USB endpoint descriptor to configure with.
 *
 * This is called from the USB gadget code's usb_ep_enable().
2441
 */
2442 2443 2444 2445
static int s3c_hsotg_ep_enable(struct usb_ep *ep,
			       const struct usb_endpoint_descriptor *desc)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2446
	struct dwc2_hsotg *hsotg = hs_ep->parent;
2447 2448 2449 2450 2451 2452
	unsigned long flags;
	int index = hs_ep->index;
	u32 epctrl_reg;
	u32 epctrl;
	u32 mps;
	int dir_in;
2453
	int i, val, size;
2454
	int ret = 0;
2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469

	dev_dbg(hsotg->dev,
		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
		desc->wMaxPacketSize, desc->bInterval);

	/* not to be called for EP0 */
	WARN_ON(index == 0);

	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
	if (dir_in != hs_ep->dir_in) {
		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
		return -EINVAL;
	}

2470
	mps = usb_endpoint_maxp(desc);
2471 2472 2473

	/* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */

2474
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2475 2476 2477 2478 2479
	epctrl = readl(hsotg->regs + epctrl_reg);

	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
		__func__, epctrl, epctrl_reg);

2480
	spin_lock_irqsave(&hsotg->lock, flags);
2481

2482 2483
	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
	epctrl |= DXEPCTL_MPS(mps);
2484

2485 2486 2487 2488
	/*
	 * mark the endpoint as active, otherwise the core may ignore
	 * transactions entirely for this endpoint
	 */
2489
	epctrl |= DXEPCTL_USBACTEP;
2490

2491 2492
	/*
	 * set the NAK status on the endpoint, otherwise we might try and
2493 2494 2495 2496 2497
	 * do something with data that we've yet got a request to process
	 * since the RXFIFO will take data for an endpoint even if the
	 * size register hasn't been set.
	 */

2498
	epctrl |= DXEPCTL_SNAK;
2499 2500

	/* update the endpoint state */
2501
	s3c_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, dir_in);
2502 2503

	/* default, set to non-periodic */
2504
	hs_ep->isochronous = 0;
2505
	hs_ep->periodic = 0;
2506
	hs_ep->halted = 0;
2507
	hs_ep->interval = desc->bInterval;
2508

2509 2510 2511
	if (hs_ep->interval > 1 && hs_ep->mc > 1)
		dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");

2512 2513
	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
	case USB_ENDPOINT_XFER_ISOC:
2514 2515
		epctrl |= DXEPCTL_EPTYPE_ISO;
		epctrl |= DXEPCTL_SETEVENFR;
2516 2517 2518 2519
		hs_ep->isochronous = 1;
		if (dir_in)
			hs_ep->periodic = 1;
		break;
2520 2521

	case USB_ENDPOINT_XFER_BULK:
2522
		epctrl |= DXEPCTL_EPTYPE_BULK;
2523 2524 2525
		break;

	case USB_ENDPOINT_XFER_INT:
2526
		if (dir_in)
2527 2528
			hs_ep->periodic = 1;

2529
		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2530 2531 2532
		break;

	case USB_ENDPOINT_XFER_CONTROL:
2533
		epctrl |= DXEPCTL_EPTYPE_CONTROL;
2534 2535 2536
		break;
	}

2537 2538
	/*
	 * if the hardware has dedicated fifos, we must give each IN EP
2539 2540
	 * a unique tx-fifo even if it is non-periodic.
	 */
2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556
	if (dir_in && hsotg->dedicated_fifos) {
		size = hs_ep->ep.maxpacket*hs_ep->mc;
		for (i = 1; i <= 8; ++i) {
			if (hsotg->fifo_map & (1<<i))
				continue;
			val = readl(hsotg->regs + DPTXFSIZN(i));
			val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
			if (val < size)
				continue;
			hsotg->fifo_map |= 1<<i;

			epctrl |= DXEPCTL_TXFNUM(i);
			hs_ep->fifo_index = i;
			hs_ep->fifo_size = val;
			break;
		}
2557 2558 2559 2560
		if (i == 8) {
			ret = -ENOMEM;
			goto error;
		}
2561
	}
2562

2563 2564
	/* for non control endpoints, set PID to D0 */
	if (index)
2565
		epctrl |= DXEPCTL_SETD0PID;
2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576

	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
		__func__, epctrl);

	writel(epctrl, hsotg->regs + epctrl_reg);
	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
		__func__, readl(hsotg->regs + epctrl_reg));

	/* enable the endpoint interrupt */
	s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);

2577
error:
2578
	spin_unlock_irqrestore(&hsotg->lock, flags);
2579
	return ret;
2580 2581
}

2582 2583 2584 2585
/**
 * s3c_hsotg_ep_disable - disable given endpoint
 * @ep: The endpoint to disable.
 */
2586 2587 2588
static int s3c_hsotg_ep_disable(struct usb_ep *ep)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2589
	struct dwc2_hsotg *hsotg = hs_ep->parent;
2590 2591 2592 2593 2594 2595
	int dir_in = hs_ep->dir_in;
	int index = hs_ep->index;
	unsigned long flags;
	u32 epctrl_reg;
	u32 ctrl;

2596
	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2597

2598
	if (ep == &hsotg->eps_out[0]->ep) {
2599 2600 2601 2602
		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
		return -EINVAL;
	}

2603
	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2604

2605
	spin_lock_irqsave(&hsotg->lock, flags);
2606
	/* terminate all requests with shutdown */
2607
	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
2608

2609 2610 2611
	hsotg->fifo_map &= ~(1<<hs_ep->fifo_index);
	hs_ep->fifo_index = 0;
	hs_ep->fifo_size = 0;
2612 2613

	ctrl = readl(hsotg->regs + epctrl_reg);
2614 2615 2616
	ctrl &= ~DXEPCTL_EPENA;
	ctrl &= ~DXEPCTL_USBACTEP;
	ctrl |= DXEPCTL_SNAK;
2617 2618 2619 2620 2621 2622 2623

	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
	writel(ctrl, hsotg->regs + epctrl_reg);

	/* disable endpoint interrupts */
	s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);

2624
	spin_unlock_irqrestore(&hsotg->lock, flags);
2625 2626 2627 2628 2629 2630 2631
	return 0;
}

/**
 * on_list - check request is on the given endpoint
 * @ep: The endpoint to check.
 * @test: The request to test if it is on the endpoint.
2632
 */
2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644
static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
{
	struct s3c_hsotg_req *req, *treq;

	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
		if (req == test)
			return true;
	}

	return false;
}

2645 2646 2647 2648 2649
/**
 * s3c_hsotg_ep_dequeue - dequeue given endpoint
 * @ep: The endpoint to dequeue.
 * @req: The request to be removed from a queue.
 */
2650 2651 2652 2653
static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
{
	struct s3c_hsotg_req *hs_req = our_req(req);
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2654
	struct dwc2_hsotg *hs = hs_ep->parent;
2655 2656
	unsigned long flags;

2657
	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2658

2659
	spin_lock_irqsave(&hs->lock, flags);
2660 2661

	if (!on_list(hs_ep, hs_req)) {
2662
		spin_unlock_irqrestore(&hs->lock, flags);
2663 2664 2665 2666
		return -EINVAL;
	}

	s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2667
	spin_unlock_irqrestore(&hs->lock, flags);
2668 2669 2670 2671

	return 0;
}

2672 2673 2674 2675 2676
/**
 * s3c_hsotg_ep_sethalt - set halt on a given endpoint
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
2677 2678 2679
static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2680
	struct dwc2_hsotg *hs = hs_ep->parent;
2681 2682 2683
	int index = hs_ep->index;
	u32 epreg;
	u32 epctl;
2684
	u32 xfertype;
2685 2686 2687

	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);

2688 2689 2690 2691 2692 2693 2694 2695 2696
	if (index == 0) {
		if (value)
			s3c_hsotg_stall_ep0(hs);
		else
			dev_warn(hs->dev,
				 "%s: can't clear halt on ep0\n", __func__);
		return 0;
	}

2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712
	if (hs_ep->dir_in) {
		epreg = DIEPCTL(index);
		epctl = readl(hs->regs + epreg);

		if (value) {
			epctl |= DXEPCTL_STALL + DXEPCTL_SNAK;
			if (epctl & DXEPCTL_EPENA)
				epctl |= DXEPCTL_EPDIS;
		} else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
		writel(epctl, hs->regs + epreg);
2713
	} else {
2714

2715 2716
		epreg = DOEPCTL(index);
		epctl = readl(hs->regs + epreg);
2717

2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
		if (value)
			epctl |= DXEPCTL_STALL;
		else {
			epctl &= ~DXEPCTL_STALL;
			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
			if (xfertype == DXEPCTL_EPTYPE_BULK ||
				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
					epctl |= DXEPCTL_SETD0PID;
		}
		writel(epctl, hs->regs + epreg);
2728
	}
2729

2730 2731
	hs_ep->halted = value;

2732 2733 2734
	return 0;
}

2735 2736 2737 2738 2739 2740 2741 2742
/**
 * s3c_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
 * @ep: The endpoint to set halt.
 * @value: Set or unset the halt.
 */
static int s3c_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
{
	struct s3c_hsotg_ep *hs_ep = our_ep(ep);
2743
	struct dwc2_hsotg *hs = hs_ep->parent;
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
	unsigned long flags = 0;
	int ret = 0;

	spin_lock_irqsave(&hs->lock, flags);
	ret = s3c_hsotg_ep_sethalt(ep, value);
	spin_unlock_irqrestore(&hs->lock, flags);

	return ret;
}

2754 2755 2756 2757 2758
static struct usb_ep_ops s3c_hsotg_ep_ops = {
	.enable		= s3c_hsotg_ep_enable,
	.disable	= s3c_hsotg_ep_disable,
	.alloc_request	= s3c_hsotg_ep_alloc_request,
	.free_request	= s3c_hsotg_ep_free_request,
2759
	.queue		= s3c_hsotg_ep_queue_lock,
2760
	.dequeue	= s3c_hsotg_ep_dequeue,
2761
	.set_halt	= s3c_hsotg_ep_sethalt_lock,
L
Lucas De Marchi 已提交
2762
	/* note, don't believe we have any call for the fifo routines */
2763 2764
};

2765 2766
/**
 * s3c_hsotg_phy_enable - enable platform phy dev
2767
 * @hsotg: The driver state
2768 2769 2770 2771
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
2772
static void s3c_hsotg_phy_enable(struct dwc2_hsotg *hsotg)
2773 2774 2775 2776
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

	dev_dbg(hsotg->dev, "pdev 0x%p\n", pdev);
2777

2778
	if (hsotg->uphy)
2779
		usb_phy_init(hsotg->uphy);
2780
	else if (hsotg->plat && hsotg->plat->phy_init)
2781
		hsotg->plat->phy_init(pdev, hsotg->plat->phy_type);
2782 2783 2784 2785
	else {
		phy_init(hsotg->phy);
		phy_power_on(hsotg->phy);
	}
2786 2787 2788 2789
}

/**
 * s3c_hsotg_phy_disable - disable platform phy dev
2790
 * @hsotg: The driver state
2791 2792 2793 2794
 *
 * A wrapper for platform code responsible for controlling
 * low-level USB code
 */
2795
static void s3c_hsotg_phy_disable(struct dwc2_hsotg *hsotg)
2796 2797 2798
{
	struct platform_device *pdev = to_platform_device(hsotg->dev);

2799
	if (hsotg->uphy)
2800
		usb_phy_shutdown(hsotg->uphy);
2801
	else if (hsotg->plat && hsotg->plat->phy_exit)
2802
		hsotg->plat->phy_exit(pdev, hsotg->plat->phy_type);
2803 2804 2805 2806
	else {
		phy_power_off(hsotg->phy);
		phy_exit(hsotg->phy);
	}
2807 2808
}

2809 2810 2811 2812
/**
 * s3c_hsotg_init - initalize the usb core
 * @hsotg: The driver state
 */
2813
static void s3c_hsotg_init(struct dwc2_hsotg *hsotg)
2814 2815 2816
{
	/* unmask subset of endpoint interrupts */

2817 2818 2819
	writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
		hsotg->regs + DIEPMSK);
2820

2821 2822 2823
	writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
		DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
		hsotg->regs + DOEPMSK);
2824

2825
	writel(0, hsotg->regs + DAINTMSK);
2826 2827

	/* Be in disconnected state until gadget is registered */
2828
	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2829 2830 2831

	if (0) {
		/* post global nak until we're ready */
2832
		writel(DCTL_SGNPINNAK | DCTL_SGOUTNAK,
2833
		       hsotg->regs + DCTL);
2834 2835 2836 2837 2838
	}

	/* setup fifos */

	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
2839 2840
		readl(hsotg->regs + GRXFSIZ),
		readl(hsotg->regs + GNPTXFSIZ));
2841 2842 2843 2844

	s3c_hsotg_init_fifo(hsotg);

	/* set the PLL on, remove the HNP/SRP and set the PHY */
2845
	writel(GUSBCFG_PHYIF16 | GUSBCFG_TOUTCAL(7) | (0x5 << 10),
2846
	       hsotg->regs + GUSBCFG);
2847

2848 2849
	if (using_dma(hsotg))
		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
2850 2851
}

2852 2853 2854 2855 2856 2857 2858 2859
/**
 * s3c_hsotg_udc_start - prepare the udc for work
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Perform initialization to prepare udc device and driver
 * to work.
 */
2860 2861
static int s3c_hsotg_udc_start(struct usb_gadget *gadget,
			   struct usb_gadget_driver *driver)
2862
{
2863
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
2864
	unsigned long flags;
2865 2866 2867
	int ret;

	if (!hsotg) {
2868
		pr_err("%s: called with no device\n", __func__);
2869 2870 2871 2872 2873 2874 2875 2876
		return -ENODEV;
	}

	if (!driver) {
		dev_err(hsotg->dev, "%s: no driver\n", __func__);
		return -EINVAL;
	}

2877
	if (driver->max_speed < USB_SPEED_FULL)
2878 2879
		dev_err(hsotg->dev, "%s: bad speed\n", __func__);

2880
	if (!driver->setup) {
2881 2882 2883 2884
		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
		return -EINVAL;
	}

2885
	mutex_lock(&hsotg->init_mutex);
2886 2887 2888 2889
	WARN_ON(hsotg->driver);

	driver->driver.bus = NULL;
	hsotg->driver = driver;
2890
	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
2891 2892
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;

2893 2894
	clk_enable(hsotg->clk);

2895 2896
	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
2897
	if (ret) {
2898
		dev_err(hsotg->dev, "failed to enable supplies: %d\n", ret);
2899 2900 2901
		goto err;
	}

2902
	s3c_hsotg_phy_enable(hsotg);
2903 2904
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
2905

2906 2907 2908
	spin_lock_irqsave(&hsotg->lock, flags);
	s3c_hsotg_init(hsotg);
	s3c_hsotg_core_init_disconnected(hsotg);
2909
	hsotg->enabled = 0;
2910 2911
	spin_unlock_irqrestore(&hsotg->lock, flags);

2912
	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
2913

2914 2915
	mutex_unlock(&hsotg->init_mutex);

2916 2917 2918
	return 0;

err:
2919
	mutex_unlock(&hsotg->init_mutex);
2920 2921 2922 2923
	hsotg->driver = NULL;
	return ret;
}

2924 2925 2926 2927 2928 2929 2930
/**
 * s3c_hsotg_udc_stop - stop the udc
 * @gadget: The usb gadget state
 * @driver: The usb gadget driver
 *
 * Stop udc hw block and stay tunned for future transmissions
 */
2931
static int s3c_hsotg_udc_stop(struct usb_gadget *gadget)
2932
{
2933
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
2934
	unsigned long flags = 0;
2935 2936 2937 2938 2939
	int ep;

	if (!hsotg)
		return -ENODEV;

2940 2941
	mutex_lock(&hsotg->init_mutex);

2942
	/* all endpoints should be shutdown */
2943 2944 2945 2946 2947 2948
	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
		if (hsotg->eps_in[ep])
			s3c_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
		if (hsotg->eps_out[ep])
			s3c_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
	}
2949

2950 2951
	spin_lock_irqsave(&hsotg->lock, flags);

2952
	hsotg->driver = NULL;
2953
	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
2954
	hsotg->enabled = 0;
2955

2956 2957
	spin_unlock_irqrestore(&hsotg->lock, flags);

2958 2959
	if (!IS_ERR_OR_NULL(hsotg->uphy))
		otg_set_peripheral(hsotg->uphy->otg, NULL);
2960 2961
	s3c_hsotg_phy_disable(hsotg);

2962
	regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies), hsotg->supplies);
2963

2964 2965
	clk_disable(hsotg->clk);

2966 2967
	mutex_unlock(&hsotg->init_mutex);

2968 2969 2970
	return 0;
}

2971 2972 2973 2974 2975 2976
/**
 * s3c_hsotg_gadget_getframe - read the frame number
 * @gadget: The usb gadget state
 *
 * Read the {micro} frame number
 */
2977 2978 2979 2980 2981
static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
{
	return s3c_hsotg_read_frameno(to_hsotg(gadget));
}

2982 2983 2984 2985 2986 2987 2988 2989 2990
/**
 * s3c_hsotg_pullup - connect/disconnect the USB PHY
 * @gadget: The usb gadget state
 * @is_on: Current state of the USB PHY
 *
 * Connect/Disconnect the USB PHY pullup
 */
static int s3c_hsotg_pullup(struct usb_gadget *gadget, int is_on)
{
2991
	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
2992 2993
	unsigned long flags = 0;

2994
	dev_dbg(hsotg->dev, "%s: is_on: %d\n", __func__, is_on);
2995

2996
	mutex_lock(&hsotg->init_mutex);
2997 2998
	spin_lock_irqsave(&hsotg->lock, flags);
	if (is_on) {
2999
		clk_enable(hsotg->clk);
3000
		hsotg->enabled = 1;
3001
		s3c_hsotg_core_connect(hsotg);
3002
	} else {
3003
		s3c_hsotg_core_disconnect(hsotg);
3004
		hsotg->enabled = 0;
3005
		clk_disable(hsotg->clk);
3006 3007 3008 3009
	}

	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
	spin_unlock_irqrestore(&hsotg->lock, flags);
3010
	mutex_unlock(&hsotg->init_mutex);
3011 3012 3013 3014

	return 0;
}

3015
static const struct usb_gadget_ops s3c_hsotg_gadget_ops = {
3016
	.get_frame	= s3c_hsotg_gadget_getframe,
3017 3018
	.udc_start		= s3c_hsotg_udc_start,
	.udc_stop		= s3c_hsotg_udc_stop,
3019
	.pullup                 = s3c_hsotg_pullup,
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031
};

/**
 * s3c_hsotg_initep - initialise a single endpoint
 * @hsotg: The device state.
 * @hs_ep: The endpoint to be initialised.
 * @epnum: The endpoint number
 *
 * Initialise the given endpoint (as part of the probe and device state
 * creation) to give to the gadget driver. Setup the endpoint name, any
 * direction information and other state that may be required.
 */
3032
static void s3c_hsotg_initep(struct dwc2_hsotg *hsotg,
3033
				       struct s3c_hsotg_ep *hs_ep,
3034 3035
				       int epnum,
				       bool dir_in)
3036 3037 3038 3039 3040
{
	char *dir;

	if (epnum == 0)
		dir = "";
3041
	else if (dir_in)
3042
		dir = "in";
3043 3044
	else
		dir = "out";
3045

3046
	hs_ep->dir_in = dir_in;
3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059
	hs_ep->index = epnum;

	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);

	INIT_LIST_HEAD(&hs_ep->queue);
	INIT_LIST_HEAD(&hs_ep->ep.ep_list);

	/* add to the list of endpoints known by the gadget driver */
	if (epnum)
		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);

	hs_ep->parent = hsotg;
	hs_ep->ep.name = hs_ep->name;
3060
	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
3061 3062
	hs_ep->ep.ops = &s3c_hsotg_ep_ops;

3063 3064
	/*
	 * if we're using dma, we need to set the next-endpoint pointer
3065 3066 3067 3068
	 * to be something valid.
	 */

	if (using_dma(hsotg)) {
3069
		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
3070 3071 3072 3073
		if (dir_in)
			writel(next, hsotg->regs + DIEPCTL(epnum));
		else
			writel(next, hsotg->regs + DOEPCTL(epnum));
3074 3075 3076
	}
}

3077 3078 3079 3080 3081 3082
/**
 * s3c_hsotg_hw_cfg - read HW configuration registers
 * @param: The device state
 *
 * Read the USB core HW configuration registers
 */
3083
static int s3c_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
3084
{
3085 3086 3087 3088
	u32 cfg;
	u32 ep_type;
	u32 i;

3089
	/* check hardware configuration */
3090

3091 3092 3093 3094
	cfg = readl(hsotg->regs + GHWCFG2);
	hsotg->num_of_eps = (cfg >> 10) & 0xF;
	/* Add ep0 */
	hsotg->num_of_eps++;
3095

3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct s3c_hsotg_ep),
								GFP_KERNEL);
	if (!hsotg->eps_in[0])
		return -ENOMEM;
	/* Same s3c_hsotg_ep is used in both directions for ep0 */
	hsotg->eps_out[0] = hsotg->eps_in[0];

	cfg = readl(hsotg->regs + GHWCFG1);
	for (i = 1; i < hsotg->num_of_eps; i++, cfg >>= 2) {
		ep_type = cfg & 3;
		/* Direction in or both */
		if (!(ep_type & 2)) {
			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
				sizeof(struct s3c_hsotg_ep), GFP_KERNEL);
			if (!hsotg->eps_in[i])
				return -ENOMEM;
		}
		/* Direction out or both */
		if (!(ep_type & 1)) {
			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
				sizeof(struct s3c_hsotg_ep), GFP_KERNEL);
			if (!hsotg->eps_out[i])
				return -ENOMEM;
		}
	}

	cfg = readl(hsotg->regs + GHWCFG3);
	hsotg->fifo_mem = (cfg >> 16);
3124

3125 3126
	cfg = readl(hsotg->regs + GHWCFG4);
	hsotg->dedicated_fifos = (cfg >> 25) & 1;
3127

3128 3129 3130 3131
	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
		 hsotg->num_of_eps,
		 hsotg->dedicated_fifos ? "dedicated" : "shared",
		 hsotg->fifo_mem);
3132
	return 0;
3133 3134
}

3135 3136 3137 3138
/**
 * s3c_hsotg_dump - dump state of the udc
 * @param: The device state
 */
3139
static void s3c_hsotg_dump(struct dwc2_hsotg *hsotg)
3140
{
M
Mark Brown 已提交
3141
#ifdef DEBUG
3142 3143 3144 3145 3146 3147
	struct device *dev = hsotg->dev;
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3148 3149
		 readl(regs + DCFG), readl(regs + DCTL),
		 readl(regs + DIEPMSK));
3150 3151

	dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
3152
		 readl(regs + GAHBCFG), readl(regs + 0x44));
3153 3154

	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3155
		 readl(regs + GRXFSIZ), readl(regs + GNPTXFSIZ));
3156 3157 3158

	/* show periodic fifo settings */

3159
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3160
		val = readl(regs + DPTXFSIZN(idx));
3161
		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3162 3163
			 val >> FIFOSIZE_DEPTH_SHIFT,
			 val & FIFOSIZE_STARTADDR_MASK);
3164 3165
	}

3166
	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
3167 3168
		dev_info(dev,
			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3169 3170 3171
			 readl(regs + DIEPCTL(idx)),
			 readl(regs + DIEPTSIZ(idx)),
			 readl(regs + DIEPDMA(idx)));
3172

3173
		val = readl(regs + DOEPCTL(idx));
3174 3175
		dev_info(dev,
			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3176 3177 3178
			 idx, readl(regs + DOEPCTL(idx)),
			 readl(regs + DOEPTSIZ(idx)),
			 readl(regs + DOEPDMA(idx)));
3179 3180 3181 3182

	}

	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3183
		 readl(regs + DVBUSDIS), readl(regs + DVBUSPULSE));
M
Mark Brown 已提交
3184
#endif
3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197
}

/**
 * state_show - debugfs: show overall driver and device state.
 * @seq: The seq file to write to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the overall state of the hardware and
 * some general information about each of the endpoints available
 * to the system.
 */
static int state_show(struct seq_file *seq, void *v)
{
3198
	struct dwc2_hsotg *hsotg = seq->private;
3199 3200 3201 3202
	void __iomem *regs = hsotg->regs;
	int idx;

	seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
3203 3204 3205
		 readl(regs + DCFG),
		 readl(regs + DCTL),
		 readl(regs + DSTS));
3206 3207

	seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
3208
		   readl(regs + DIEPMSK), readl(regs + DOEPMSK));
3209 3210

	seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
3211 3212
		   readl(regs + GINTMSK),
		   readl(regs + GINTSTS));
3213 3214

	seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
3215 3216
		   readl(regs + DAINTMSK),
		   readl(regs + DAINT));
3217 3218

	seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
3219 3220
		   readl(regs + GNPTXSTS),
		   readl(regs + GRXSTSR));
3221

3222
	seq_puts(seq, "\nEndpoint status:\n");
3223

3224
	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
3225 3226
		u32 in, out;

3227 3228
		in = readl(regs + DIEPCTL(idx));
		out = readl(regs + DOEPCTL(idx));
3229 3230 3231 3232

		seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
			   idx, in, out);

3233 3234
		in = readl(regs + DIEPTSIZ(idx));
		out = readl(regs + DOEPTSIZ(idx));
3235 3236 3237 3238

		seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
			   in, out);

3239
		seq_puts(seq, "\n");
3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264
	}

	return 0;
}

static int state_open(struct inode *inode, struct file *file)
{
	return single_open(file, state_show, inode->i_private);
}

static const struct file_operations state_fops = {
	.owner		= THIS_MODULE,
	.open		= state_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * fifo_show - debugfs: show the fifo information
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * Show the FIFO information for the overall fifo and all the
 * periodic transmission FIFOs.
3265
 */
3266 3267
static int fifo_show(struct seq_file *seq, void *v)
{
3268
	struct dwc2_hsotg *hsotg = seq->private;
3269 3270 3271 3272
	void __iomem *regs = hsotg->regs;
	u32 val;
	int idx;

3273
	seq_puts(seq, "Non-periodic FIFOs:\n");
3274
	seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + GRXFSIZ));
3275

3276
	val = readl(regs + GNPTXFSIZ);
3277
	seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
3278 3279
		   val >> FIFOSIZE_DEPTH_SHIFT,
		   val & FIFOSIZE_DEPTH_MASK);
3280

3281
	seq_puts(seq, "\nPeriodic TXFIFOs:\n");
3282

3283
	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3284
		val = readl(regs + DPTXFSIZN(idx));
3285 3286

		seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
3287 3288
			   val >> FIFOSIZE_DEPTH_SHIFT,
			   val & FIFOSIZE_STARTADDR_MASK);
3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
	}

	return 0;
}

static int fifo_open(struct inode *inode, struct file *file)
{
	return single_open(file, fifo_show, inode->i_private);
}

static const struct file_operations fifo_fops = {
	.owner		= THIS_MODULE,
	.open		= fifo_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};


static const char *decode_direction(int is_in)
{
	return is_in ? "in" : "out";
}

/**
 * ep_show - debugfs: show the state of an endpoint.
 * @seq: The seq_file to write data to.
 * @v: Unused parameter.
 *
 * This debugfs entry shows the state of the given endpoint (one is
 * registered for each available).
3320
 */
3321 3322 3323
static int ep_show(struct seq_file *seq, void *v)
{
	struct s3c_hsotg_ep *ep = seq->private;
3324
	struct dwc2_hsotg *hsotg = ep->parent;
3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
	struct s3c_hsotg_req *req;
	void __iomem *regs = hsotg->regs;
	int index = ep->index;
	int show_limit = 15;
	unsigned long flags;

	seq_printf(seq, "Endpoint index %d, named %s,  dir %s:\n",
		   ep->index, ep->ep.name, decode_direction(ep->dir_in));

	/* first show the register state */

	seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
3337 3338
		   readl(regs + DIEPCTL(index)),
		   readl(regs + DOEPCTL(index)));
3339 3340

	seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
3341 3342
		   readl(regs + DIEPDMA(index)),
		   readl(regs + DOEPDMA(index)));
3343 3344

	seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
3345 3346
		   readl(regs + DIEPINT(index)),
		   readl(regs + DOEPINT(index)));
3347 3348

	seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
3349 3350
		   readl(regs + DIEPTSIZ(index)),
		   readl(regs + DOEPTSIZ(index)));
3351

3352
	seq_puts(seq, "\n");
3353 3354 3355 3356 3357 3358
	seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
	seq_printf(seq, "total_data=%ld\n", ep->total_data);

	seq_printf(seq, "request list (%p,%p):\n",
		   ep->queue.next, ep->queue.prev);

3359
	spin_lock_irqsave(&hsotg->lock, flags);
3360 3361 3362

	list_for_each_entry(req, &ep->queue, queue) {
		if (--show_limit < 0) {
3363
			seq_puts(seq, "not showing more requests...\n");
3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
			break;
		}

		seq_printf(seq, "%c req %p: %d bytes @%p, ",
			   req == ep->req ? '*' : ' ',
			   req, req->req.length, req->req.buf);
		seq_printf(seq, "%d done, res %d\n",
			   req->req.actual, req->req.status);
	}

3374
	spin_unlock_irqrestore(&hsotg->lock, flags);
3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399

	return 0;
}

static int ep_open(struct inode *inode, struct file *file)
{
	return single_open(file, ep_show, inode->i_private);
}

static const struct file_operations ep_fops = {
	.owner		= THIS_MODULE,
	.open		= ep_open,
	.read		= seq_read,
	.llseek		= seq_lseek,
	.release	= single_release,
};

/**
 * s3c_hsotg_create_debug - create debugfs directory and files
 * @hsotg: The driver state
 *
 * Create the debugfs files to allow the user to get information
 * about the state of the system. The directory name is created
 * with the same name as the device itself, in case we end up
 * with multiple blocks in future systems.
3400
 */
3401
static void s3c_hsotg_create_debug(struct dwc2_hsotg *hsotg)
3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426
{
	struct dentry *root;
	unsigned epidx;

	root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
	hsotg->debug_root = root;
	if (IS_ERR(root)) {
		dev_err(hsotg->dev, "cannot create debug root\n");
		return;
	}

	/* create general state file */

	hsotg->debug_file = debugfs_create_file("state", 0444, root,
						hsotg, &state_fops);

	if (IS_ERR(hsotg->debug_file))
		dev_err(hsotg->dev, "%s: failed to create state\n", __func__);

	hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
						hsotg, &fifo_fops);

	if (IS_ERR(hsotg->debug_fifo))
		dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);

3427
	/* Create one file for each out endpoint */
3428
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3429
		struct s3c_hsotg_ep *ep;
3430

3431 3432 3433 3434
		ep = hsotg->eps_out[epidx];
		if (ep) {
			ep->debugfs = debugfs_create_file(ep->name, 0444,
							  root, ep, &ep_fops);
3435

3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453
			if (IS_ERR(ep->debugfs))
				dev_err(hsotg->dev, "failed to create %s debug file\n",
					ep->name);
		}
	}
	/* Create one file for each in endpoint. EP0 is handled with out eps */
	for (epidx = 1; epidx < hsotg->num_of_eps; epidx++) {
		struct s3c_hsotg_ep *ep;

		ep = hsotg->eps_in[epidx];
		if (ep) {
			ep->debugfs = debugfs_create_file(ep->name, 0444,
							  root, ep, &ep_fops);

			if (IS_ERR(ep->debugfs))
				dev_err(hsotg->dev, "failed to create %s debug file\n",
					ep->name);
		}
3454 3455 3456 3457 3458 3459 3460 3461
	}
}

/**
 * s3c_hsotg_delete_debug - cleanup debugfs entries
 * @hsotg: The driver state
 *
 * Cleanup (remove) the debugfs files for use on module exit.
3462
 */
3463
static void s3c_hsotg_delete_debug(struct dwc2_hsotg *hsotg)
3464 3465 3466
{
	unsigned epidx;

3467
	for (epidx = 0; epidx < hsotg->num_of_eps; epidx++) {
3468 3469 3470 3471
		if (hsotg->eps_in[epidx])
			debugfs_remove(hsotg->eps_in[epidx]->debugfs);
		if (hsotg->eps_out[epidx])
			debugfs_remove(hsotg->eps_out[epidx]->debugfs);
3472 3473 3474 3475 3476 3477 3478
	}

	debugfs_remove(hsotg->debug_file);
	debugfs_remove(hsotg->debug_fifo);
	debugfs_remove(hsotg->debug_root);
}

3479 3480 3481 3482
#ifdef CONFIG_OF
static void s3c_hsotg_of_probe(struct dwc2_hsotg *hsotg)
{
	struct device_node *np = hsotg->dev->of_node;
3483 3484
	u32 len = 0;
	u32 i = 0;
3485 3486 3487

	/* Enable dma if requested in device tree */
	hsotg->g_using_dma = of_property_read_bool(np, "g-use-dma");
3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518

	/*
	* Register TX periodic fifo size per endpoint.
	* EP0 is excluded since it has no fifo configuration.
	*/
	if (!of_find_property(np, "g-tx-fifo-size", &len))
		goto rx_fifo;

	len /= sizeof(u32);

	/* Read tx fifo sizes other than ep0 */
	if (of_property_read_u32_array(np, "g-tx-fifo-size",
						&hsotg->g_tx_fifo_sz[1], len))
		goto rx_fifo;

	/* Add ep0 */
	len++;

	/* Make remaining TX fifos unavailable */
	if (len < MAX_EPS_CHANNELS) {
		for (i = len; i < MAX_EPS_CHANNELS; i++)
			hsotg->g_tx_fifo_sz[i] = 0;
	}

rx_fifo:
	/* Register RX fifo size */
	of_property_read_u32(np, "g-rx-fifo-size", &hsotg->g_rx_fifo_sz);

	/* Register NPTX fifo size */
	of_property_read_u32(np, "g-np-tx-fifo-size",
						&hsotg->g_np_g_tx_fifo_sz);
3519 3520 3521 3522 3523
}
#else
static inline void s3c_hsotg_of_probe(struct dwc2_hsotg *hsotg) { }
#endif

3524
/**
3525 3526 3527
 * dwc2_gadget_init - init function for gadget
 * @dwc2: The data structure for the DWC2 driver.
 * @irq: The IRQ number for the controller.
3528
 */
3529
int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
3530
{
3531 3532
	struct device *dev = hsotg->dev;
	struct s3c_hsotg_plat *plat = dev->platform_data;
3533 3534
	int epnum;
	int ret;
3535
	int i;
3536
	u32 p_tx_fifo[] = DWC2_G_P_LEGACY_TX_FIFO_SIZE;
3537

3538 3539 3540
	/* Set default UTMI width */
	hsotg->phyif = GUSBCFG_PHYIF16;

3541 3542
	s3c_hsotg_of_probe(hsotg);

3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555
	/* Initialize to legacy fifo configuration values */
	hsotg->g_rx_fifo_sz = 2048;
	hsotg->g_np_g_tx_fifo_sz = 1024;
	memcpy(&hsotg->g_tx_fifo_sz[1], p_tx_fifo, sizeof(p_tx_fifo));
	/* Device tree specific probe */
	s3c_hsotg_of_probe(hsotg);
	/* Dump fifo information */
	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
						hsotg->g_np_g_tx_fifo_sz);
	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->g_rx_fifo_sz);
	for (i = 0; i < MAX_EPS_CHANNELS; i++)
		dev_dbg(dev, "Periodic TXFIFO%2d size: %d\n", i,
						hsotg->g_tx_fifo_sz[i]);
3556
	/*
3557 3558
	 * If platform probe couldn't find a generic PHY or an old style
	 * USB PHY, fall back to pdata
3559
	 */
3560 3561 3562 3563 3564 3565 3566 3567 3568
	if (IS_ERR_OR_NULL(hsotg->phy) && IS_ERR_OR_NULL(hsotg->uphy)) {
		plat = dev_get_platdata(dev);
		if (!plat) {
			dev_err(dev,
			"no platform data or transceiver defined\n");
			return -EPROBE_DEFER;
		}
		hsotg->plat = plat;
	} else if (hsotg->phy) {
3569 3570 3571 3572
		/*
		 * If using the generic PHY framework, check if the PHY bus
		 * width is 8-bit and set the phyif appropriately.
		 */
3573
		if (phy_get_bus_width(hsotg->phy) == 8)
3574 3575
			hsotg->phyif = GUSBCFG_PHYIF8;
	}
3576

3577
	hsotg->clk = devm_clk_get(dev, "otg");
3578
	if (IS_ERR(hsotg->clk)) {
3579
		hsotg->clk = NULL;
3580
		dev_dbg(dev, "cannot get otg clock\n");
3581 3582
	}

3583
	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3584 3585 3586 3587 3588
	hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
	hsotg->gadget.name = dev_name(dev);

	/* reset the system */

3589 3590 3591 3592 3593 3594
	ret = clk_prepare_enable(hsotg->clk);
	if (ret) {
		dev_err(dev, "failed to enable otg clk\n");
		goto err_clk;
	}

3595

3596 3597 3598 3599 3600
	/* regulators */

	for (i = 0; i < ARRAY_SIZE(hsotg->supplies); i++)
		hsotg->supplies[i].supply = s3c_hsotg_supply_names[i];

3601
	ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsotg->supplies),
3602 3603 3604
				 hsotg->supplies);
	if (ret) {
		dev_err(dev, "failed to request supplies: %d\n", ret);
3605
		goto err_clk;
3606 3607 3608 3609 3610 3611
	}

	ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);

	if (ret) {
3612
		dev_err(dev, "failed to enable supplies: %d\n", ret);
3613
		goto err_clk;
3614 3615
	}

3616 3617
	/* usb phy enable */
	s3c_hsotg_phy_enable(hsotg);
3618 3619

	s3c_hsotg_corereset(hsotg);
3620 3621 3622 3623 3624 3625
	ret = s3c_hsotg_hw_cfg(hsotg);
	if (ret) {
		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
		goto err_clk;
	}

3626
	s3c_hsotg_init(hsotg);
3627

3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643
	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
	if (!hsotg->ctrl_buff) {
		dev_err(dev, "failed to allocate ctrl request buff\n");
		ret = -ENOMEM;
		goto err_supplies;
	}

	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
	if (!hsotg->ep0_buff) {
		dev_err(dev, "failed to allocate ctrl reply buff\n");
		ret = -ENOMEM;
		goto err_supplies;
	}

3644 3645
	ret = devm_request_irq(hsotg->dev, irq, s3c_hsotg_irq, IRQF_SHARED,
				dev_name(hsotg->dev), hsotg);
3646 3647 3648 3649 3650
	if (ret < 0) {
		s3c_hsotg_phy_disable(hsotg);
		clk_disable_unprepare(hsotg->clk);
		regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
				       hsotg->supplies);
3651
		dev_err(dev, "cannot claim IRQ for gadget\n");
3652
		goto err_supplies;
3653 3654
	}

3655 3656 3657 3658
	/* hsotg->num_of_eps holds number of EPs other than ep0 */

	if (hsotg->num_of_eps == 0) {
		dev_err(dev, "wrong number of EPs (zero)\n");
3659
		ret = -EINVAL;
3660 3661 3662 3663 3664 3665
		goto err_supplies;
	}

	/* setup endpoint information */

	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3666
	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
3667 3668 3669

	/* allocate EP0 request */

3670
	hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
3671 3672 3673
						     GFP_KERNEL);
	if (!hsotg->ctrl_req) {
		dev_err(dev, "failed to allocate ctrl req\n");
3674
		ret = -ENOMEM;
3675
		goto err_supplies;
3676
	}
3677 3678

	/* initialise the endpoints now the core has been initialised */
3679 3680 3681 3682 3683 3684 3685 3686
	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
		if (hsotg->eps_in[epnum])
			s3c_hsotg_initep(hsotg, hsotg->eps_in[epnum],
								epnum, 1);
		if (hsotg->eps_out[epnum])
			s3c_hsotg_initep(hsotg, hsotg->eps_out[epnum],
								epnum, 0);
	}
3687

3688
	/* disable power and clock */
3689
	s3c_hsotg_phy_disable(hsotg);
3690 3691 3692 3693

	ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
				    hsotg->supplies);
	if (ret) {
3694
		dev_err(dev, "failed to disable supplies: %d\n", ret);
3695
		goto err_supplies;
3696 3697
	}

3698
	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
3699
	if (ret)
3700
		goto err_supplies;
3701

3702 3703 3704 3705 3706 3707
	s3c_hsotg_create_debug(hsotg);

	s3c_hsotg_dump(hsotg);

	return 0;

3708
err_supplies:
3709
	s3c_hsotg_phy_disable(hsotg);
3710
err_clk:
3711
	clk_disable_unprepare(hsotg->clk);
3712

3713 3714
	return ret;
}
3715
EXPORT_SYMBOL_GPL(dwc2_gadget_init);
3716

3717 3718 3719 3720
/**
 * s3c_hsotg_remove - remove function for hsotg driver
 * @pdev: The platform information for the driver
 */
3721
int s3c_hsotg_remove(struct dwc2_hsotg *hsotg)
3722
{
3723
	usb_del_gadget_udc(&hsotg->gadget);
3724
	s3c_hsotg_delete_debug(hsotg);
3725
	clk_disable_unprepare(hsotg->clk);
3726

3727 3728
	return 0;
}
3729
EXPORT_SYMBOL_GPL(s3c_hsotg_remove);
3730

3731
int s3c_hsotg_suspend(struct dwc2_hsotg *hsotg)
3732 3733 3734 3735
{
	unsigned long flags;
	int ret = 0;

3736 3737
	mutex_lock(&hsotg->init_mutex);

3738 3739 3740
	if (hsotg->driver) {
		int ep;

3741 3742 3743
		dev_info(hsotg->dev, "suspending usb gadget %s\n",
			 hsotg->driver->driver.name);

3744 3745 3746 3747 3748 3749
		spin_lock_irqsave(&hsotg->lock, flags);
		if (hsotg->enabled)
			s3c_hsotg_core_disconnect(hsotg);
		s3c_hsotg_disconnect(hsotg);
		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
		spin_unlock_irqrestore(&hsotg->lock, flags);
3750

3751
		s3c_hsotg_phy_disable(hsotg);
3752

3753 3754 3755 3756 3757 3758
		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
			if (hsotg->eps_in[ep])
				s3c_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
			if (hsotg->eps_out[ep])
				s3c_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
		}
3759 3760 3761

		ret = regulator_bulk_disable(ARRAY_SIZE(hsotg->supplies),
					     hsotg->supplies);
3762
		clk_disable(hsotg->clk);
3763 3764
	}

3765 3766
	mutex_unlock(&hsotg->init_mutex);

3767 3768
	return ret;
}
3769
EXPORT_SYMBOL_GPL(s3c_hsotg_suspend);
3770

3771
int s3c_hsotg_resume(struct dwc2_hsotg *hsotg)
3772 3773 3774 3775
{
	unsigned long flags;
	int ret = 0;

3776 3777
	mutex_lock(&hsotg->init_mutex);

3778 3779 3780
	if (hsotg->driver) {
		dev_info(hsotg->dev, "resuming usb gadget %s\n",
			 hsotg->driver->driver.name);
3781 3782

		clk_enable(hsotg->clk);
3783
		ret = regulator_bulk_enable(ARRAY_SIZE(hsotg->supplies),
3784
					    hsotg->supplies);
3785

3786
		s3c_hsotg_phy_enable(hsotg);
3787

3788 3789 3790 3791 3792 3793
		spin_lock_irqsave(&hsotg->lock, flags);
		s3c_hsotg_core_init_disconnected(hsotg);
		if (hsotg->enabled)
			s3c_hsotg_core_connect(hsotg);
		spin_unlock_irqrestore(&hsotg->lock, flags);
	}
3794
	mutex_unlock(&hsotg->init_mutex);
3795 3796 3797

	return ret;
}
3798
EXPORT_SYMBOL_GPL(s3c_hsotg_resume);