framework.py 125.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
W
WangZhen 已提交
19
from collections import Iterable
Q
qiaolongfei 已提交
20
import contextlib
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
P
peizhilin 已提交
22
import os
F
fengjiayi 已提交
23
import re
24
import traceback
25
import six
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
M
minqiyang 已提交
31
from .. import compat as cpt
32
from .proto import framework_pb2
33 34

from . import core
35
from . import unique_name
Y
Yu Yang 已提交
36

37
__all__ = [
38 39 40 41
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
42
    'name_scope',
S
sneaxiy 已提交
43 44 45
    'cuda_places',
    'cpu_places',
    'cuda_pinned_places',
L
lujun 已提交
46
    'in_dygraph_mode',
47
]
Y
Yu Yang 已提交
48

Q
qiaolongfei 已提交
49 50 51 52
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
53 54
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
55 56
_dygraph_tracer_ = None
_dygraph_current_expected_place_ = None
57 58


L
lujun 已提交
59
def in_dygraph_mode():
L
lujun 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72
    """
    Check program status(tracer), Whether it runs in dygraph mode or not

    Returns:
        out (boolean): True if the program is running in dynamic graph mode

    Examples:
        .. code-block:: python

            if fluid.in_dygraph_mode():
                pass

    """
L
lujun 已提交
73
    return _dygraph_tracer_ is not None
74 75


L
lujun 已提交
76 77
def _dygraph_tracer():
    return _dygraph_tracer_
78

W
Wu Yi 已提交
79

M
minqiyang 已提交
80
def _current_expected_place():
L
lujun 已提交
81
    return _dygraph_current_expected_place_
M
minqiyang 已提交
82 83


S
sneaxiy 已提交
84
def _cpu_num():
85
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
86 87 88 89
        sys.stderr.write(
            'The CPU_NUM is not specified, you should set CPU_NUM in '
            'the environment variable list, i.e export CPU_NUM=1. CPU_NUM '
            'indicates that how many CPUPlace are used in the current task.\n'
90
            '!!! The default number of CPUPlaces is 1.\n\n')
C
chengduo 已提交
91
        os.environ['CPU_NUM'] = str(1)
92
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
93 94 95 96 97 98 99 100 101 102
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
        device_ids = six.moves.range(core.get_cuda_device_count())
    return device_ids
S
sneaxiy 已提交
103 104 105


def cuda_places(device_ids=None):
L
lujun 已提交
106
    """
S
add doc  
sneaxiy 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
    Create a list of :code:`fluid.CUDAPlace` objects.

    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_gpus` would be checked first. If
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
    be [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    If :code:`FLAGS_selected_gpus` is not set, all visible
    gpu places would be returned.  

    If :code:`device_ids` is not None, it should be the device
    ids of gpus. For example, if :code:`device_ids=[0,1,2]`, 
    the returned list would be 
    [fluid.CUDAPlace(0), fluid.CUDAPlace(1), fluid.CUDAPlace(2)].
    
    Args: 
        device_ids (None|list(int)|tuple(int)): gpu device id list.

    Returns:
        out (list(fluid.CUDAPlace)): gpu place list.
L
lujun 已提交
126 127 128 129 130 131 132

    Examples:
        .. code-block:: python

            cuda_places = fluid.cuda_places()

    """
S
sneaxiy 已提交
133 134 135
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_ids is None:
C
chengduo 已提交
136
        device_ids = _cuda_ids()
S
sneaxiy 已提交
137 138 139 140 141 142
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


def cpu_places(device_count=None):
L
lujun 已提交
143
    """
S
add doc  
sneaxiy 已提交
144 145 146 147 148 149 150 151 152 153 154 155
    Create a list of :code:`fluid.CPUPlace` objects.
    
    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
    If :code:`CPU_NUM` is not set, the device count would
    be determined by :code:`multiprocessing.cpu_count()`. 

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CPUPlace)): cpu place list.
L
lujun 已提交
156 157 158 159 160 161 162

    Examples:
        .. code-block:: python

            cpu_places = fluid.cpu_places()
    """

S
sneaxiy 已提交
163 164 165 166 167 168
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
169
    """
S
add doc  
sneaxiy 已提交
170 171 172 173 174 175 176 177 178 179 180 181
    Create a list of :code:`fluid.CUDAPinnedPlace` objects.

    If :code:`device_count` is None, the device count would
    be determined by environment variable :code:`CPU_NUM`. 
    If :code:`CPU_NUM` is not set, the device count would
    be determined by :code:`multiprocessing.cpu_count()`. 

    Args:
        device_count (None|int): device number.

    Returns:
        out (list(fluid.CUDAPinnedPlace)): cuda pinned place list.
L
lujun 已提交
182 183 184 185 186 187 188 189 190

    Examples:
        .. code-block:: python

            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
S
sneaxiy 已提交
191 192 193 194 195 196 197
    assert core.is_compiled_with_cuda(), \
        "Not compiled with CUDA"
    if device_count is None:
        device_count = _cpu_num()
    return [core.cuda_pinned_places()] * device_count


198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
224
@signature_safe_contextmanager
225 226 227 228 229 230 231 232 233 234 235 236
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
237

238 239 240 241 242 243 244 245 246 247 248
          with fluid.name_scope("s1"):
              a = fluid.layers.data(name='data', shape=[1], dtype='int32')
              b = a + 1
              with fluid.name_scope("s2"):
                  c = b * 1
              with fluid.name_scope("s3"):
                  d = c / 1
          with fluid.name_scope("s1"):
              f = fluid.layers.pow(d, 2.0)
          with fluid.name_scope("s4"):
              g = f - 1
249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
268 269 270
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
271 272 273 274


def grad_var_name(var_name):
    """
275 276
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
277 278 279
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
280

281
def convert_np_dtype_to_dtype_(np_dtype):
282 283
    """
    Convert the data type in numpy to the data type in Paddle
284

285
    Args:
286
        np_dtype(np.dtype): the data type in numpy.
287

288 289
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
290 291

    """
292 293
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
294
        return core.VarDesc.VarType.FP32
295
    elif dtype == np.float64:
296
        return core.VarDesc.VarType.FP64
297
    elif dtype == np.float16:
298
        return core.VarDesc.VarType.FP16
299
    elif dtype == np.int32:
300
        return core.VarDesc.VarType.INT32
301
    elif dtype == np.int16:
302
        return core.VarDesc.VarType.INT16
303
    elif dtype == np.int64:
304
        return core.VarDesc.VarType.INT64
305
    elif dtype == np.bool:
306
        return core.VarDesc.VarType.BOOL
307 308
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
309 310
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
311 312
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
313
    else:
M
minqiyang 已提交
314
        raise ValueError("Not supported numpy dtype %s" % dtype)
315 316 317


def dtype_is_floating(dtype):
318 319 320
    """
    Check the data type is floating or not.
    Args:
321
        dtype(np.dtype|core.VarDesc.VarType): data type.
322 323 324 325 326
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
327
    if not isinstance(dtype, core.VarDesc.VarType):
328 329
        dtype = convert_np_dtype_to_dtype_(dtype)

330 331 332 333
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
334 335


Y
Yang Yang(Tony) 已提交
336
def _debug_string_(proto, throw_on_error=True):
337 338 339 340 341 342 343 344 345 346 347
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
348
    error_fields = list()
Y
Yang Yang(Tony) 已提交
349
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
350 351
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
352 353 354
    return proto.__str__()


X
Xin Pan 已提交
355
class Variable(object):
356
    """
357 358 359
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
360
    two variables in different blocks could have the same name.
361

362 363
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
364

365
    Most of a Variable's member variables can be setted to be None. It mean
366
    it is not available or will be specified later.
367 368

    Args:
369
        block(Block): The block that the variable belongs to.
370 371
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
372 373
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
374
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
375
            Some kinds of variable do not contain shape, just set it to None.
376 377 378
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
379
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
380
            series data.
381
            Default: None
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
404 405
    """

Y
Yu Yang 已提交
406 407
    def __init__(self,
                 block,
Y
Yu Yang 已提交
408
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
409 410 411 412
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
413
                 capacity=None,
Q
QI JUN 已提交
414
                 persistable=None,
F
fengjiayi 已提交
415
                 error_clip=None,
Y
Yu Yang 已提交
416
                 stop_gradient=False,
F
fengjiayi 已提交
417
                 is_data=False,
Y
Yu Yang 已提交
418
                 **kwargs):
Y
Yu Yang 已提交
419 420
        self.block = block
        if name is None:
Y
Yu Yang 已提交
421
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
422

Y
Yu Yang 已提交
423
        if dtype is not None:
424
            if not isinstance(dtype, core.VarDesc.VarType):
425
                dtype = convert_np_dtype_to_dtype_(dtype)
426

L
lujun 已提交
427
        if in_dygraph_mode():
M
minqiyang 已提交
428
            # record vars in tracer rather than blocks
M
minqiyang 已提交
429 430
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
431 432 433
                self._ivar = core.VarBase(
                    name, dtype if dtype else core.VarDesc.VarType.FP32,
                    list(shape) if shape else [],
X
fix  
Xin Pan 已提交
434 435
                    _current_expected_place(), stop_gradient, True
                    if persistable else False)
M
minqiyang 已提交
436
            if persistable:
L
lujun 已提交
437
                _dygraph_tracer().trace_var(name, self)
M
minqiyang 已提交
438
            self.op = None
M
minqiyang 已提交
439
        else:
440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
            self.error_clip = error_clip

            is_new_var = False
            name = cpt.to_text(name)
            self.desc = self.block.desc.find_var(cpt.to_bytes(name))

            if self.desc is None:
                self.desc = self.block.desc.var(cpt.to_bytes(name))
                is_new_var = True

            if is_new_var:
                self.desc.set_type(type)
            elif self.desc.type() != type:
                raise ValueError(
                    "Variable {0} has been created before. The "
                    "previous type is {1}; the new type is {2}. They"
                    " are not matched".format(self.name, self.desc.type(),
                                              type))

            if shape is not None:
                if is_new_var:
                    self.desc.set_shape(shape)
                else:
                    old_shape = self.shape
                    shape = tuple(shape)
                    if shape != old_shape:
                        raise ValueError(
                            "Variable {0} has been created before. the previous "
                            "shape is {1}; the new shape is {2}. They are not "
                            "matched.".format(self.name, old_shape, shape))
            if dtype is not None:
                if is_new_var:
                    self.desc.set_dtype(dtype)
                else:
                    old_dtype = self.dtype
                    if dtype != old_dtype:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous data type is {1}; the new "
                            "data type is {2}. They are not "
                            "matched.".format(self.name, old_dtype, dtype))

            if lod_level is not None:
                if is_new_var:
                    self.desc.set_lod_level(lod_level)
                else:
                    if lod_level != self.lod_level:
                        raise ValueError(
                            "Variable {0} has been created before. "
                            "The previous lod_level is {1}; the new "
                            "lod_level is {2}. They are not "
                            "matched".format(self.name, self.lod_level,
                                             lod_level))
            if persistable is not None:
                if is_new_var:
                    self.desc.set_persistable(persistable)
                else:
                    if persistable != self.persistable:
                        raise ValueError(
                            "Variable {0} has been created before."
                            "The previous persistable is {1}; the new "
                            "persistable is {2}. They are not matched".format(
                                self.name, self.persistable, persistable))

            if capacity is not None:
                if is_new_var:
                    self.desc.set_capacity(capacity)
                else:
                    # TODO(abhinavarora) : Compare with set capacity once,
                    # get_capacity is implemented
                    pass

M
minqiyang 已提交
512
            self.block.vars[name] = self
513
            self.op = None
514
            self._stop_gradient = stop_gradient
515
            self.is_data = is_data
Y
Yu Yang 已提交
516

517
    def numpy(self):
M
minqiyang 已提交
518
        new_ivar = self._ivar._copy_to(core.CPUPlace(), True)
P
Paddle CI 已提交
519
        return np.array(new_ivar.value().get_tensor())
520

521 522
    def backward(self, backward_strategy=None):
        from .dygraph import BackwardStrategy
523
        if backward_strategy is None:
524 525
            backward_strategy = BackwardStrategy()
            backward_strategy.sort_sum_gradient = False
526 527 528

        self._ivar._run_backward(backward_strategy)
        _dygraph_tracer()._clear_ops()
529

530
    def gradient(self):
531 532
        new_ivar = self._ivar._grad_ivar()._copy_to(core.CPUPlace(), True)
        return np.array(new_ivar.value().get_tensor())
533

534
    def clear_gradient(self):
X
Xin Pan 已提交
535
        self._ivar._clear_gradient()
X
Xin Pan 已提交
536

537
    def __str__(self):
Y
Yang Yang(Tony) 已提交
538 539
        return self.to_string(True)

F
update  
fengjiayi 已提交
540
    def to_string(self, throw_on_error, with_details=False):
541 542 543 544
        """
        Get debug string.

        Args:
545 546
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
547
            with_details(bool): more details about variables and parameters
548 549
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
550

551 552
        Returns:
            str: The debug string.
553
        """
L
lujun 已提交
554
        if in_dygraph_mode():
L
lujun 已提交
555
            # TODO(panyx0718): add more dygraph debug info.
556 557 558
            return 'name %s, dtype: %s shape: %s %s' % (
                self.name, self.dtype, self.shape,
                str(self._ivar.value().get_tensor()))
559

F
update  
fengjiayi 已提交
560 561
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
562
        protostr = self.desc.serialize_to_string()
563
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
564 565 566 567
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
568 569
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
570
        return res_str
571 572 573

    __repr__ = __str__

574
    def set_desc(self, input):
575 576 577 578 579 580 581 582 583
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
584 585
        self.desc = input

586
    @property
587
    def stop_gradient(self):
L
lujun 已提交
588
        if in_dygraph_mode():
M
minqiyang 已提交
589 590
            return self._ivar.stop_gradient
        else:
591
            return self._stop_gradient
592

593 594
    @stop_gradient.setter
    def stop_gradient(self, s):
L
lujun 已提交
595
        if in_dygraph_mode():
M
minqiyang 已提交
596
            self._ivar.stop_gradient = s
597
        else:
598
            self._stop_gradient = s
599

600 601
    @property
    def persistable(self):
L
lujun 已提交
602
        if in_dygraph_mode():
603 604 605
            return self._ivar.persistable
        else:
            return self.desc.persistable()
606

Y
Yu Yang 已提交
607 608
    @persistable.setter
    def persistable(self, p):
L
lujun 已提交
609
        if in_dygraph_mode():
610 611 612
            return self._ivar.persistable
        else:
            self.desc.set_persistable(p)
Y
Yu Yang 已提交
613

Y
Yu Yang 已提交
614 615
    @property
    def name(self):
L
lujun 已提交
616
        if in_dygraph_mode():
617 618 619
            return self._ivar.name
        else:
            return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
620

T
typhoonzero 已提交
621 622
    @name.setter
    def name(self, new_name):
L
lujun 已提交
623
        if in_dygraph_mode():
624 625 626
            self._ivar.name = new_name
        else:
            self.desc.set_name(new_name)
T
typhoonzero 已提交
627

Y
Yu Yang 已提交
628 629 630
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
L
lujun 已提交
631
        if in_dygraph_mode():
632 633 634
            return self._ivar.shape
        else:
            return tuple(self.desc.shape())
Y
Yu Yang 已提交
635 636

    @property
F
fengjiayi 已提交
637
    def dtype(self):
L
lujun 已提交
638
        if in_dygraph_mode():
639 640 641
            return self._ivar.dtype
        else:
            return self.desc.dtype()
Y
Yu Yang 已提交
642 643 644

    @property
    def lod_level(self):
L
lujun 已提交
645
        # TODO(minqiyang): Support lod_level in dygraph mode
H
Hongyu Liu 已提交
646 647
        if in_dygraph_mode():
            raise Exception("Dygraph model DO NOT supprt lod")
648
        return self.desc.lod_level()
Y
Yu Yang 已提交
649

Y
Yu Yang 已提交
650 651
    @property
    def type(self):
L
lujun 已提交
652
        if in_dygraph_mode():
653 654 655
            return self._ivar.dtype
        else:
            return self.desc.type()
Y
Yu Yang 已提交
656

W
Wu Yi 已提交
657
    def _set_error_clip(self, error_clip):
658 659 660 661 662 663 664 665 666
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
667 668
        self.error_clip = error_clip

669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
    def _slice_indices(self, slice, length):
        """
        Reference implementation for the slice.indices method.
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
            raise ValueError("slice step cannot be zero")

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
            start = max(start + length, lower) if start < 0 else min(start,
                                                                     upper)

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
                if (index > 0 and index >= self.shape[index]) \
                        or (index < 0 and (index + self.shape[index]) < 0):
                    raise IndexError("invalid index")
                start = max(start + self.shape[index], 0) if start < 0 else min(
                    start, self.shape[index])
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
756
    def _cloneVar(self, copy=False):
757 758
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
759 760
                name=unique_name.generate_with_ignorable_key(self.name),
                dtype=self.dtype)
761 762 763 764
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
765
        new_var = self._cloneVar()
766 767 768 769 770 771 772 773 774 775
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes,
                   'starts': starts,
                   'ends': ends})
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
776
        new_var = self._cloneVar()
777 778 779 780 781 782 783 784 785 786
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={'axis': axis, })
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
787
                return self._cloneVar(True)
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                else:
                    while start > stop:
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1]))
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
806
                return self._cloneVar(True)
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
            index = int(item)
            if (index > 0 and index >= self.shape[axis])\
                    or (index < 0 and (index + self.shape[axis]) < 0):
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
        """
        Slice the variable.

        Args:
            item(int/slice/tuple) : the index.

        Returns:
            Sliced variable
        """
H
Hongyu Liu 已提交
825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858

        if not isinstance(item, tuple):
            item = [item]

        decrease_axis = []
        slice_axis = []
        slice_start = []
        slice_end = []
        reverse_axis = []

        for dim, slice_item in enumerate(item):
            if isinstance(slice_item, slice):
                start = slice_item.start
                end = slice_item.stop
                step = slice_item.step if slice_item.step else 1

                assert (step == 1 or step == -1)

                if step == -1:
                    reverse_axis.append(dim)
                    assert (start is None and end is None)

                if start is None and end is None:
                    continue

                if start is None:
                    start = 0

                if end is None:
                    end = 10000000

                slice_axis.append(dim)
                slice_start.append(start)
                slice_end.append(end)
859
            else:
H
Hongyu Liu 已提交
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
                # int
                decrease_axis.append(dim)
                slice_axis.append(dim)
                slice_start.append(slice_item)
                slice_end.append(slice_item + 1
                                 if slice_item != -1 else 10000000)

        out = self
        if len(slice_axis) > 0:
            # append slice_op here

            slice_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_slice"),
                dtype=self.dtype)

            self.block.append_op(
                type="slice",
                inputs={'Input': [out]},
                outputs={'Out': [slice_out_var]},
                attrs={
                    'axes': slice_axis,
                    'starts': slice_start,
                    'ends': slice_end,
                    'decrease_axis': decrease_axis
                })

            out = slice_out_var

        if len(reverse_axis) > 0:
            reverse_out_var = self.block.create_var(
                name=unique_name.generate_with_ignorable_key(self.name +
                                                             "_slice_reverse"),
                dtype=self.dtype)
            self.block.append_op(
                type="reverse",
                inputs={'X': out},
                outputs={'Out': [reverse_out_var]},
                attrs={'axis': reverse_axis})

            out = reverse_out_var

        return out
903

Y
Yu Yang 已提交
904

F
fengjiayi 已提交
905 906 907
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
908

909 910
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
911 912 913 914
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
915
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
916 917 918 919 920
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
921 922 923 924
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
925 926 927 928 929 930 931 932 933
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
934
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
935 936 937 938 939 940
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
941 942 943 944 945 946 947 948
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
949 950
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
951 952
        return self.op_proto_map[type]

953 954 955 956
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
957
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
958 959
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName()
960 961
        }

F
fengjiayi 已提交
962

X
Xin Pan 已提交
963
class Operator(object):
964
    """
965 966 967 968 969 970 971
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
972
        type(str): The type of operator. Default None.
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
993
        Block.append_op or Block._prepend_op instead.
994 995 996 997 998 999 1000 1001 1002 1003

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
1004
    """
1005
    OP_WITHOUT_KERNEL_SET = {
1006 1007 1008
        'feed', 'fetch', 'recurrent', 'go', 'rnn_memory_helper_grad',
        'conditional_block', 'while', 'send', 'recv', 'listen_and_serv',
        'ncclInit', 'select', 'checkpoint_notify', 'gen_nccl_id'
1009
    }
1010

Y
Yu Yang 已提交
1011 1012
    def __init__(self,
                 block,
Y
Yu Yang 已提交
1013
                 desc,
Y
Yu Yang 已提交
1014 1015 1016
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
1017
                 attrs=None):
L
lujun 已提交
1018
        if in_dygraph_mode():
1019 1020
            if type is None:
                raise ValueError(
1021
                    "`type` to initialized an Operator can not be None.")
1022
            self.iop = core.OpBase(type)
M
minqiyang 已提交
1023
            self.previous_ops = []
M
minqiyang 已提交
1024

M
minqiyang 已提交
1025
            self.attrs = attrs if attrs else {}
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
                op_attrs[op_maker.kOpRoleAttrName(
1040
                )] = self.block.program._op_role
1041 1042 1043

            role_var_name = op_maker.kOpRoleVarAttrName()
            if len(self.block.program.
1044 1045
                   _op_role_var) != 0 and role_var_name not in op_attrs:
                op_attrs[role_var_name] = self.block.program._op_role_var
1046 1047 1048 1049 1050 1051 1052 1053

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
                return
            if type is None:
                raise ValueError(
1054
                    "`type` to initialized an Operator can not be None.")
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
                op_attrs[callstack_var_name] = list(
                    reversed(traceback.format_stack()))[1:]

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
                    assert found or in_proto.dispensable, "Input {} not found".format(
                        in_proto.name)
                    if found:
                        in_args = inputs[in_proto.name]
                        if not isinstance(in_args, list):
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
                                % (in_proto.name, len(in_args)))
                        in_arg_names = []
1086
                        for index, arg in enumerate(in_args):
1087 1088 1089 1090
                            if isinstance(arg, six.string_types):
                                in_arg_names.append(arg)
                            elif isinstance(arg, six.binary_type):
                                in_arg_names.append(arg.decode())
1091
                            elif isinstance(arg, Variable):
1092
                                in_arg_names.append(cpt.to_text(arg.name))
1093 1094 1095 1096
                            else:
                                raise ValueError(
                                    "not suprt args type , should be[ string_type, binary_type, Varibale]"
                                )
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
                        raise ValueError(("Incorrect setting for output(s) of "
                                          "operator \"%s\", should set: [%s].")
                                         % (type, m.name))
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
                            % (out_proto.name, len(out_args)))
                    out_arg_names = []
                    for arg in out_args:
                        out_arg_names.append(cpt.to_text(arg.name))
                        # TODO(minqiyang): could we remove variable's op in static mode?
L
lujun 已提交
1123
                        if not in_dygraph_mode():
1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
                            arg.op = self
                    self.desc.set_output(out_proto.name, out_arg_names)

            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
                    if (attr_name not in op_attrs) or (
                            op_attrs[attr_name] is None):
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)

            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
1143
    def _has_kernel(self, op_type):
1144 1145
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
1146
    def to_string(self, throw_on_error):
1147
        """
1148 1149
        Get debug string.

1150
        Args:
1151 1152
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
1153

1154 1155
        Returns:
            str: The debug string.
1156 1157

        """
1158
        protostr = self.desc.serialize_to_string()
1159
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
1160 1161 1162 1163
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
1164 1165 1166

    __repr__ = __str__

F
fengjiayi 已提交
1167 1168
    @property
    def type(self):
L
lujun 已提交
1169
        if in_dygraph_mode():
1170 1171 1172
            return self.iop.type
        else:
            return self.desc.type()
F
fengjiayi 已提交
1173 1174

    def input(self, name):
1175
        """
1176
        Get the input arguments according to the input parameter name.
1177

1178 1179
        Args:
            name(str): The input parameter name.
1180

1181 1182 1183
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
1184
        """
F
fengjiayi 已提交
1185 1186
        return self.desc.input(name)

W
Wu Yi 已提交
1187
    def _rename_input(self, old_name, new_name):
1188 1189 1190 1191 1192 1193 1194 1195 1196 1197
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
1198
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
1199

W
Wu Yi 已提交
1200
    def _rename_output(self, old_name, new_name):
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
1211
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
1212

F
fengjiayi 已提交
1213 1214 1215 1216
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
1217 1218 1219 1220 1221 1222 1223 1224
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
1225
    def output(self, name):
1226
        """
1227
        Get output arguments by the output parameter name.
1228

1229 1230
        Args:
            name(str): The output parameter name.
1231

1232 1233 1234
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
1235
        """
F
fengjiayi 已提交
1236 1237 1238 1239 1240 1241
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

1242 1243 1244 1245 1246 1247 1248 1249
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
1250
    def has_attr(self, name):
1251
        """
1252 1253
        Whether this Operator has the attribute with name or not.

1254
        Args:
1255
            name(str): the attribute name.
1256

1257 1258
        Returns:
            bool: True if has this attribute.
1259 1260

        """
F
fengjiayi 已提交
1261 1262 1263
        return self.desc.has_attr(name)

    def attr_type(self, name):
1264
        """
1265
        Get the type of attribute by attribute's name.
1266

1267 1268
        Args:
            name(str): the attribute name.
1269

1270 1271
        Returns:
            core.AttrType: the attribute type.
1272
        """
F
fengjiayi 已提交
1273 1274
        return self.desc.attr_type(name)

W
Wu Yi 已提交
1275
    def _set_attr(self, name, val):
1276 1277 1278 1279 1280 1281 1282 1283 1284 1285
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
1286 1287
        self._update_desc_attr(name, val)

1288 1289 1290
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
1302 1303
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
1304 1305
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
1306
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
1307 1308 1309 1310
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
1311
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
1312

F
fengjiayi 已提交
1313 1314 1315 1316 1317
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
1318
        """
1319 1320
        Get the attribute by name.

1321
        Args:
1322
            name(str): the attribute name.
1323

1324 1325
        Returns:
            bool|int|str|float|list: The attribute value. The return value
1326 1327
            can be any valid attribute type.
        """
F
fengjiayi 已提交
1328
        return self.desc.attr(name)
Y
Yu Yang 已提交
1329

W
Wu Yi 已提交
1330
    def _block_attr_id(self, name):
1331
        """
G
gongweibao 已提交
1332
        Get the block attribute's id by name.
1333

1334 1335
        Args:
            name(str): the attribute name.
1336

1337 1338
        Returns:
            int: the block index.
1339
        """
W
Wu Yi 已提交
1340
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
1341

W
Wu Yi 已提交
1342
    def _block_attr(self, name):
G
gongweibao 已提交
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
1353
        id = self._block_attr_id(name)
G
gongweibao 已提交
1354 1355 1356
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
1357
    def _blocks_attr(self, name):
G
gongweibao 已提交
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
1368
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
1369 1370 1371 1372 1373
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
1374
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
1375 1376 1377 1378 1379 1380 1381 1382 1383 1384
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
1385
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
1386

J
JiayiFeng 已提交
1387
    def all_attrs(self):
F
fengjiayi 已提交
1388
        """
1389 1390 1391
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
1392
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
1393 1394 1395 1396
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
1397 1398
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
1399
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
1400 1401 1402
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
1403
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
1404 1405 1406 1407
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
1408 1409
        return attr_map

Y
Yu Yang 已提交
1410

Y
Yu Yang 已提交
1411
class Block(object):
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1426
        use `Program._create_block()` to create a block.
1427 1428 1429 1430

    Examples:
        .. code-block:: python

1431 1432 1433
            import paddle.fluid as fluid

            cur_program = fluid.Program()
1434 1435 1436 1437 1438 1439 1440 1441 1442
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1443
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1444
        self.desc = program.desc.block(idx)
1445
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1446
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1447
        self.program = program
1448
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1449

1450
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1451 1452
        return self.to_string(True)

F
fengjiayi 已提交
1453 1454
    def to_string(self, throw_on_error, with_details=False):
        """
1455 1456
        Get debug string.

F
fengjiayi 已提交
1457 1458
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1459
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1460
            with_details(bool): more details about variables and parameters
1461 1462
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1463

1464 1465
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1466 1467 1468 1469
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1470
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1471 1472
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1473
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1474
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1475
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1476
            for op in self.ops:
F
fengjiayi 已提交
1477 1478
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1479 1480 1481
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1482 1483
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1484 1485
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1486 1487 1488

    __repr__ = __str__

Y
Yu Yang 已提交
1489 1490
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1491
        return self.desc.parent
Y
Yu Yang 已提交
1492

Y
Yu Yang 已提交
1493 1494 1495 1496
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1497
    def _set_forward_block_idx(self, idx):
1498 1499 1500 1501 1502 1503 1504 1505 1506
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1507
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1508

Y
Yu Yang 已提交
1509 1510
    @property
    def idx(self):
Y
Yu Yang 已提交
1511
        return self.desc.id
Y
Yu Yang 已提交
1512

Q
Qiao Longfei 已提交
1513
    def var(self, name):
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1527
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1528 1529 1530
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1531 1532
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1533
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1534
        return v
Q
Qiao Longfei 已提交
1535

X
Xin Pan 已提交
1536
    def _find_var_recursive(self, name):
1537 1538 1539 1540 1541 1542 1543
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1544
            Variable: the Variable with the giving name. Or None if not found.
1545
        """
Y
Yu Yang 已提交
1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1570
        return None
Y
Yu Yang 已提交
1571

X
Xin Pan 已提交
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1591

Q
Qiao Longfei 已提交
1592
    def all_parameters(self):
1593
        return list(self.iter_parameters())
1594

1595
    def iter_parameters(self):
M
minqiyang 已提交
1596
        return (item[1] for item in six.iteritems(self.vars)
1597
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1598

Y
Yu Yang 已提交
1599
    def create_var(self, *args, **kwargs):
1600
        var = Variable(block=self, *args, **kwargs)
1601 1602
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1603
        return var
Y
Yu Yang 已提交
1604

Q
Qiao Longfei 已提交
1605 1606 1607
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1608
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1609 1610
        """
        Rename variable in vars and ops' inputs and outputs
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1623
        """
M
minqiyang 已提交
1624 1625
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1626

T
typhoonzero 已提交
1627
        if not self.has_var(name):
1628
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1629 1630
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1631
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1632 1633 1634 1635 1636 1637 1638
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1639
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1640 1641 1642 1643
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1644
        orig_var_type = v.type
M
minqiyang 已提交
1645
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1646
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1647
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1648
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1649 1650 1651 1652
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1653
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1654 1655 1656 1657 1658 1659 1660
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1661
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1662 1663
            var = Variable(
                self,
T
typhoonzero 已提交
1664
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1665 1666 1667 1668
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1669
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1670 1671 1672
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1673
        self._sync_with_cpp()
1674
        return var
T
typhoonzero 已提交
1675

W
Wu Yi 已提交
1676 1677
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1678
        self.desc._remove_var(cpt.to_bytes(name))
1679 1680
        del self.vars[name]

Y
Yu Yang 已提交
1681 1682
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1683
        param = Parameter(global_block, *args, **kwargs)
1684
        if 'initializer' in kwargs:
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1705
        return param
Y
Yu Yang 已提交
1706

Y
Yu Yang 已提交
1707
    def append_op(self, *args, **kwargs):
1708 1709 1710 1711 1712 1713
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
L
lujun 已提交
1714
        if in_dygraph_mode():
1715 1716 1717
            attrs = kwargs.get("attrs", {})
            if _dygraph_tracer_._train_mode == False:
                # eval mode
1718 1719 1720 1721 1722
                if ('trainable_statistics' not in attrs
                    ) or not attrs['trainable_statistics']:
                    attrs['is_test'] = True
                else:
                    attrs['is_test'] = False
1723

1724 1725 1726 1727
            op = Operator(
                block=self,
                desc=None,
                type=kwargs.get("type", None),
M
minqiyang 已提交
1728 1729
                inputs=None,
                outputs=None,
1730
                attrs=attrs)
1731

M
minqiyang 已提交
1732 1733 1734
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
1735
            # currently, we only support stop_gradient in dygraph mode.
M
minqiyang 已提交
1736 1737 1738 1739
            _dygraph_tracer().trace_op(op,
                                       kwargs.get("inputs", {}),
                                       kwargs.get("outputs", {}),
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
1740
        else:
1741 1742 1743 1744 1745 1746 1747 1748 1749
            op_desc = self.desc.append_op()
            op = Operator(
                block=self,
                desc=op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))

M
minqiyang 已提交
1750
            self.ops.append(op)
M
minqiyang 已提交
1751

1752 1753
        return op

W
Wu Yi 已提交
1754
    def _insert_op(self, index, *args, **kwargs):
1755 1756 1757 1758 1759 1760 1761 1762 1763
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1764 1765
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1766 1767 1768 1769
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1770
    def _remove_op(self, index):
1771 1772 1773 1774 1775 1776 1777 1778 1779
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1780 1781
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1782 1783
        del self.ops[index]

W
Wu Yi 已提交
1784
    def _slice_ops(self, start, end):
1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1795
        return self.ops[start:end]
Y
Yancey1989 已提交
1796

W
Wu Yi 已提交
1797
    def _prepend_op(self, *args, **kwargs):
L
lujun 已提交
1798
        if in_dygraph_mode():
1799 1800 1801 1802
            op = Operator(
                self,
                None,
                type=kwargs.get("type", None),
M
minqiyang 已提交
1803 1804 1805 1806 1807 1808 1809 1810
                inputs=None,
                outputs=None,
                attrs=kwargs.get("attrs", {}))

            _dygraph_tracer().trace_op(op,
                                       kwargs.get("inputs", {}),
                                       kwargs.get("outputs", {}),
                                       kwargs.get("stop_gradient", False))
M
minqiyang 已提交
1811
        else:
1812 1813 1814 1815 1816 1817 1818 1819
            op_desc = self.desc._prepend_op()
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None))
M
minqiyang 已提交
1820
            self.ops.insert(0, op)
1821

Y
Yu Yang 已提交
1822 1823
        return op

W
Wu Yi 已提交
1824
    def _sync_with_cpp(self):
1825
        """
1826 1827
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1828
        """
Q
Qiao Longfei 已提交
1829 1830 1831 1832 1833
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1834
        # sync variables removed from c++ end
1835
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1836
            if not self.desc.find_var(cpt.to_bytes(var)):
1837 1838
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1839
        # sync operators from cpp
1840 1841 1842 1843
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1860 1861 1862 1863 1864

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1865
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1866 1867 1868 1869 1870 1871 1872

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1886 1887 1888 1889
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1890
    def _copy_param_info_from(self, other):
1891
        """
1892 1893
        Copy the information of parameters from the other block.

1894
        Args:
1895 1896 1897 1898 1899
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1900 1901 1902 1903 1904

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1905 1906
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1907
        for p in other.iter_parameters():
1908 1909 1910
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1911
                raise ValueError("_copy_param_info_from should be invoked with "
1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1924
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1925
                error_clip=p.error_clip,
1926 1927 1928
                name=v.name)
            self.vars[new_p.name] = new_p

1929
    def _clone_variable(self, var, force_persistable=True):
1930 1931
        """
        Clone a variable into current block.
1932

1933 1934
        Args:
            var: the variable to be cloned.
1935 1936 1937
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
1938 1939

        Returns:
1940
            Variable: the new  variable cloned from 'var' in current block.
1941 1942
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1943 1944 1945 1946 1947
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1948 1949
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1950
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1951 1952 1953 1954 1955 1956
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
1957
                persistable=True if force_persistable else var.persistable,
F
fengjiayi 已提交
1958
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1959 1960 1961 1962 1963 1964 1965
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
1966
                persistable=True if force_persistable else var.persistable,
F
fengjiayi 已提交
1967
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1968
        return ret_var
1969

Y
Yu Yang 已提交
1970

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065
class IrNode(object):
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node,
                          core.Node), 'node must be the instance of core.Node.'
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

2066
    def remove_input_by_id(self, node_id):
2067 2068 2069 2070 2071 2072
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2073
        self.node.remove_input(node_id)
2074

2075
    def remove_input(self, node):
2076 2077 2078 2079
        """
        Remove a node from inputs.

        Args:
2080
            node(IrNode): the node being removed.
2081
        """
2082
        self.node.remove_input(node.node)
2083

2084
    def append_input(self, node):
2085 2086 2087 2088
        """
        Append a node in inputs.

        Args:
2089
            node(IrNode): the node being appended.
2090
        """
2091
        self.node.append_input(node.node)
2092 2093 2094 2095 2096 2097 2098 2099

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

2100
    def remove_output_by_id(self, node_id):
2101 2102 2103 2104 2105 2106
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
2107
        self.node.remove_output(node_id)
2108

2109
    def remove_output(self, node):
2110 2111 2112 2113
        """
        Remove a node from outputs.

        Args:
2114
            node(IrNode): the node being removed.
2115
        """
2116
        self.node.remove_output(node.node)
2117

2118
    def append_output(self, node):
2119 2120 2121 2122
        """
        Append a node in outputs.

        Args:
2123
            node(IrNode): the node being appended.
2124
        """
2125
        self.node.append_output(node.node)
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_var(), \
            'node must be the instance of core.Node and it must be a variable node.'
        super(IrVarNode, self).__init__(node)
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().persistable()

2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
        assert self.node.var() is not None, \
            "The node variable description cannot be None."
        return self.node.var().shape()

2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
        assert isinstance(node, core.Node) and node.is_op(), \
            'node must be the instance of core.Node and it must be a operator node.'
        super(IrOpNode, self).__init__(node)
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        self.node.op()._rename_input(old_input_name, new_input_name)

2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().set_type(new_type)

2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        desc = self.node.op()
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and \
            all(isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
            isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
        assert self.node.op() is not None, \
            "The node operator description cannot be None."
        return self.node.op().output_arg_names()

2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


2380 2381
class IrGraph(object):
    """
2382
    Python IrGraph. Beneath it is a core.Graph, which is used for
2383
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
2384 2385
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
2386 2387 2388 2389
    """

    def __init__(self, graph, for_test=False):
        """
2390 2391
        Construct an IrGraph using core.Graph.

2392 2393 2394 2395 2396 2397 2398 2399 2400
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
            graph, core.Graph), 'graph must be the instance of core.Graph.'
        self.graph = graph
        self._for_test = for_test

2401 2402 2403 2404
    def clone(self):
        """
        Create a new and duplicated IrGraph.

2405 2406 2407
        Warns:
            The method only clones the graph structure, not its attributes.

2408 2409 2410
        Returns:
            IrGraph: A new and duplicated graph.
        """
2411
        g = self.graph.clone()
2412 2413
        return IrGraph(g, self._for_test)

2414
    def is_test(self):
2415 2416 2417
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
2418 2419
        return self._for_test

W
WangZhen 已提交
2420
    def all_nodes(self):
2421 2422 2423
        """
        Return all nodes included in the graph as a set.
        """
2424
        return {IrNode(node) for node in self.graph.nodes()}
2425

2426
    def all_var_nodes(self):
2427 2428 2429
        """
        Return all variable nodes included in the graph as a set.
        """
2430
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
2431

2432
    def all_persistable_nodes(self):
2433 2434 2435
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
2436 2437 2438 2439 2440
        persistable_nodes = set()
        for node in self.graph.nodes():
            if node.is_var() and node.var() is not None and node.var(
            ).persistable():
                persistable_nodes.add(node)
2441
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
2442

2443
    def all_op_nodes(self):
2444 2445 2446
        """
        Return all operator nodes included in the graph as a set.
        """
2447
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
2448

2449
    def create_persistable_node(self, name, var_type, shape, var_dtype):
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
2461
            IrVarNode: the created persistable variable node.
2462
        """
2463 2464 2465 2466 2467
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
2468
        return IrVarNode(self.graph.create_var_node(var_desc))
2469 2470

    def create_var_node(self, name, var_type, shape, var_dtype):
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
2482
            IrVarNode: the created variable node.
2483 2484
        """

2485 2486 2487 2488
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
2489
        return IrVarNode(self.graph.create_var_node(var_desc))
2490 2491

    def create_var_node_from_desc(self, var_desc):
2492 2493 2494 2495 2496 2497 2498 2499
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
2500
            IrVarNode: the created variable node.
2501
        """
2502
        return IrVarNode(self.graph.create_var_node(var_desc))
2503 2504

    def create_op_node(self, op_type, attrs, inputs, outputs):
2505 2506 2507 2508 2509 2510 2511 2512 2513 2514
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
            outputs(dict): the outpus of the operator node.

        Returns:
2515
            IrOpNode: the created operator node.
2516
        """
2517 2518
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
2519
        for attr, value in six.iteritems(attrs):
2520
            self._update_desc_attr(op_desc, attr, value)
2521
        for input_name, var_nodes in six.iteritems(inputs):
2522 2523 2524 2525
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_input(input_name,
                              [var_node.name() for var_node in var_nodes])
2526
        for output_name, var_nodes in six.iteritems(outputs):
2527 2528 2529 2530
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
            op_desc.set_output(output_name,
                               [var_node.name() for var_node in var_nodes])
2531
        return IrOpNode(self.graph.create_op_node(op_desc))
2532 2533

    def create_op_node_from_desc(self, op_desc):
2534 2535 2536 2537 2538 2539 2540
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
2541
            IrOpNode: the created operator node.
2542
        """
2543
        return IrOpNode(self.graph.create_op_node(op_desc))
2544 2545

    def update_input_link(self, old_input_node, new_input_node, op_node):
2546 2547 2548 2549
        """
        Update the input's link of a operator node.

        Args:
2550 2551 2552
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
2553
        """
2554 2555
        assert old_input_node.node in self.graph.nodes() and new_input_node.node in \
        self.graph.nodes() and op_node.node in self.graph.nodes(), \
W
WangZhen 已提交
2556
        'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
2557 2558 2559 2560
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
2561
        op_node.rename_input(old_input_node.name(), new_input_node.name())
2562 2563

    def link_to(self, node_in, node_out):
2564 2565 2566 2567
        """
        Connect two nodes.

        Args:
2568 2569
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
2570
        """
2571
        assert node_in.node in self.graph.nodes() and node_out.node in self.graph.nodes(), \
W
WangZhen 已提交
2572
            'The two arguments(node_in&node_out) must be in the graph nodes.'
2573 2574
        node_in.append_output(node_out)
        node_out.append_input(node_in)
2575 2576

    def safe_remove_nodes(self, remove_nodes):
2577 2578 2579 2580 2581 2582 2583
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
2584
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
2585 2586 2587 2588
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
2589 2590
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
2591

Z
Zhen Wang 已提交
2592 2593 2594 2595 2596 2597 2598 2599
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
2600
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
2601 2602 2603 2604
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
2605
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
2606 2607 2608
                        ]
                    else:
                        var_nodes[each_var_name].append(
2609 2610
                            self._find_node_by_name(node.outputs,
                                                    each_var_name))
Z
Zhen Wang 已提交
2611 2612
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
2613
    def has_circle(self):
2614 2615 2616 2617 2618 2619
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
2620 2621 2622
        return core.has_circle(self.graph)

    def graph_num(self):
2623 2624 2625 2626 2627 2628
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
2629 2630 2631
        return core.graph_num(self.graph)

    def topology_sort(self):
2632 2633 2634 2635 2636 2637
        """
        Perform the topology sort operation on the graph.

        Notes: the `graph` cannot contain a circle.

        Returns:
Z
Zhen Wang 已提交
2638
            list(IrNode): nodes in topology order.
2639
        """
2640
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
2641
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
2642 2643

    def build_adjacency_list(self):
2644 2645 2646 2647
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
2648
            dict{IrNode: set(IrNode)}: the adjacency list.
2649
        """
2650 2651 2652 2653 2654
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
        for k, v in six.iteritems(adj_list):
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
2655

2656 2657 2658 2659 2660 2661 2662 2663
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
2664
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
2665 2666 2667 2668 2669
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

2670 2671 2672 2673 2674 2675 2676 2677 2678
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
            exited_code = subprocess.call('dot -Tpdf ' + dot_file_path \
                            + ' -o ' + pdf_save_path, shell=True)
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
                print('The {} is saved as the dot filetype.'.format(
                    dot_file_path))

2679
        remove_ctr_vars = set()
2680
        if remove_ctr_var:
2681
            for node in self.all_var_nodes():
2682 2683 2684
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
2685 2686
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

2687 2688
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
2689 2690 2691 2692 2693 2694
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
2706 2707 2708
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
2709
        WARN: When the graph includes backward operator nodes, the
2710 2711 2712 2713 2714 2715
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
2716
        convert_pass = core.get_pass('graph_to_program_pass')
2717 2718
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
2719 2720 2721 2722
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
        assert target_node is not None, "Cannot find the target node in the giving set."
        return target_node

2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
        if isinstance(val, Block):
            desc.set_block_attr(name, val.desc)
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
            desc.set_blocks_attr(name, [v.desc for v in val])
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


Y
Yu Yang 已提交
2750
class Program(object):
D
dzhwinter 已提交
2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
2762
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
2763 2764

    Returns:
Y
yuyang18 已提交
2765
        A empty program.
D
dzhwinter 已提交
2766 2767

    Examples:
2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
2781 2782 2783

    """

2784 2785
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
2786 2787
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
2788
        self._seed = 0
Y
yuyang18 已提交
2789
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
2790
        self.__op_role_var = []
T
tangwei12 已提交
2791

2792 2793
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
2794
        self._is_distributed = False
2795
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
2796
        self._is_chief = False
2797 2798 2799
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
2800
        self._endpoints = []
2801 2802 2803
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
2804
        self._trainers_endpoints = []
2805
        # the distributed lookup table names
T
tangwei12 已提交
2806
        self._distributed_lookup_table = None
2807 2808 2809

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
2810 2811 2812 2813
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
        self._hierarchical_allreduce_exter_nranks = 0
2814

D
dzhwinter 已提交
2815
        # @deprecated(the python memory optimize transpiler is deprecated)
D
dzhwinter 已提交
2816
        # whether the program is optimized by memory_optimize_transpiler
D
dzhwinter 已提交
2817
        self.__is_mem_optimized = False
D
dzhwinter 已提交
2818

2819 2820 2821
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
2822
        self._program_config = None
2823

H
hutuxian 已提交
2824 2825 2826
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

2827 2828 2829
        # appending gradients times
        self._appending_grad_times = 0

D
dzhwinter 已提交
2830
    @property
D
dzhwinter 已提交
2831
    def _is_mem_optimized(self):
D
dzhwinter 已提交
2832 2833
        # if the program is optimized, operator input/outputs
        # maybe same, which conflict with save_inference_model.
D
dzhwinter 已提交
2834
        return self.__is_mem_optimized
D
dzhwinter 已提交
2835

D
dzhwinter 已提交
2836 2837 2838
    @_is_mem_optimized.setter
    def _is_mem_optimized(self, target):
        self.__is_mem_optimized = target
Y
yuyang18 已提交
2839 2840

    @property
2841
    def _op_role(self):
Y
yuyang18 已提交
2842 2843 2844 2845 2846 2847 2848 2849
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
2850
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
2851 2852 2853 2854
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
2855 2856
        return self._current_role

2857 2858
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
2859 2860 2861
        self._current_role = role

    @property
2862
    def _op_role_var(self):
Y
yuyang18 已提交
2863
        """
2864
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
2865

2866
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
2867 2868 2869

        Notes: This is a very low-level API. Users should not use it directly.
        """
2870
        return self.__op_role_var
Y
yuyang18 已提交
2871

2872 2873 2874 2875 2876 2877 2878 2879 2880
    @contextlib.contextmanager
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
        yield
        self._current_role = tmp_role

S
rename  
sneaxiy 已提交
2881
    @signature_safe_contextmanager
W
Wu Yi 已提交
2882
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
2883 2884 2885 2886 2887 2888 2889
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
2890
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
2891 2892 2893 2894

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
2895
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
2896 2897
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
2898
        tmp_role = self._current_role
2899
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
2900

Y
yuyang18 已提交
2901 2902
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
2903
        self.__op_role_var = [
2904 2905 2906
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
2907
        yield
2908
        self.__op_role_var = tmp_var
X
Xin Pan 已提交
2909
        self._current_role = tmp_role
Y
Yu Yang 已提交
2910

S
rename  
sneaxiy 已提交
2911
    @signature_safe_contextmanager
X
Xin Pan 已提交
2912
    def _lr_schedule_guard(self, is_with_opt=False):
2913 2914 2915 2916 2917 2918 2919
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
2920 2921 2922 2923
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
2924 2925 2926 2927 2928 2929 2930

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
2931 2932

        tmp_role = self._current_role
2933
        tmp_var = self.__op_role_var
2934

2935 2936
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
2937 2938
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
2939
        # TODO(typhoonzero): how to set target learning rate var
2940
        self.__op_role_var = []
2941
        yield
2942
        self.__op_role_var = tmp_var
2943
        self._current_role = tmp_role
2944

2945
    def __str__(self):
Y
yuyang18 已提交
2946 2947 2948 2949 2950 2951 2952 2953 2954
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
2955 2956
        return self.to_string(True)

F
fengjiayi 已提交
2957 2958 2959
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
2960

F
fengjiayi 已提交
2961
        Args:
Y
yuyang18 已提交
2962 2963
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
2964

Y
yuyang18 已提交
2965 2966 2967 2968
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
2969 2970
        Returns:
            str : The debug string.
Y
yuyang18 已提交
2971 2972 2973 2974

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
2975

2976 2977 2978 2979 2980 2981 2982 2983 2984
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
                print(prog_string)

F
fengjiayi 已提交
2985 2986 2987 2988 2989 2990 2991 2992 2993
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
2994 2995
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
2996 2997
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
2998

W
Wu Yi 已提交
2999
    def _get_desc(self):
Y
yuyang18 已提交
3000 3001 3002 3003 3004 3005 3006
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
3007 3008
        return self.desc

X
version  
Xin Pan 已提交
3009 3010 3011
    def _version(self):
        return self.desc._version()

3012
    def clone(self, for_test=False):
Y
yuyang18 已提交
3013 3014 3015
        """
        Create a new, duplicated program.

3016

Y
yuyang18 已提交
3017 3018 3019 3020
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
3021

Y
yuyang18 已提交
3022
        * Set for_test to False when we want to clone the program for training.
3023 3024 3025 3026
        * Set for_test to True when we want to clone the program for testing.
          We will not do any prune on program here, So if you just want an
          forward program for testing, please use :code:`clone` before using
          :code:`Opimizer.minimize`
Y
yuyang18 已提交
3027

3028 3029 3030 3031
        Notes: 
        1. :code:`Program.clone()` method DOES NOT clone :code:`py_reader`.
        2. This API DOES NOT prune any operator. Use
        :code:`clone(for_test=True)` before backward and optimization please. E.g.
L
Luo Tao 已提交
3032

3033 3034 3035 3036 3037
        .. code-block:: python

            test_program = fluid.default_main_program().clone(for_test=True)
            optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            optimizer.minimize()
3038 3039

        Args:
Y
yuyang18 已提交
3040 3041
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
3042

D
dzhwinter 已提交
3043
        Returns:
Y
yuyang18 已提交
3044 3045 3046 3047
            Program: The new, duplicated Program object.

        Examples:

3048 3049 3050 3051 3052 3053
        Notes: The Program Descs' order maybe different after :code:`clone` and
        this will not affect your training or testing progress. In the following
        example we give you an simple method :code:`print_prog(program)` to
        print Program Descs inorder to make sure you have same print result
        after :code:`clone`:

3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
            .. code-block:: python

                import paddle.fluid as fluid
                import six


                def print_prog(prog):
                    for name, value in sorted(six.iteritems(prog.block(0).vars)):
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
                        for key, value in sorted(six.iteritems(op.all_attrs())):
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


        1. To clone a test program, the sample code is:
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

                    train_program = fluid.Program()
                    startup_program = fluid.Program()
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            img = fluid.layers.data(name='image', shape=[784])
                            hidden = fluid.layers.fc(input=img, size=200, act='relu')
                            hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                            loss = fluid.layers.cross_entropy(
                                                      input=fluid.layers.fc(hidden, size=10, act='softmax'),
                                        label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = fluid.layers.mean(loss)
                            test_program = train_program.clone(for_test=False)
                    print_prog(test_program)
                    with fluid.program_guard(train_program, startup_program):
                        with fluid.unique_name.guard():
                            sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                            sgd.minimize(avg_loss)


        2. The clone method can be avoid if you create program for training and program for testing individually.
                .. code-block:: python

                    import paddle.fluid as fluid
                    import six

                    def print_prog(prog):
                        for name, value in sorted(six.iteritems(prog.block(0).vars)):
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
                            for key, value in sorted(six.iteritems(op.all_attrs())):
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
                    def network(is_test):
                        img = fluid.layers.data(name='image', shape=[784])
                        hidden = fluid.layers.fc(input=img, size=200, act='relu')
                        hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
                        loss = fluid.layers.cross_entropy(
                            input=fluid.layers.fc(hidden, size=10, act='softmax'),
                            label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = fluid.layers.mean(loss)
                        return avg_loss


                    train_program_2 = fluid.Program()
                    startup_program_2 = fluid.Program()
                    test_program_2 = fluid.Program()
                    with fluid.program_guard(train_program_2, startup_program_2):
                        with fluid.unique_name.guard():
                             sgd = fluid.optimizer.SGD(learning_rate=1e-3)
                             sgd.minimize(avg_loss)
                    # the test startup program is not used.
                    with fluid.program_guard(test_program_2, fluid.Program()):
                        with fluid.unique_name.guard():
                            loss = network(is_test=True)
                    print(test_program_2)

        The two code snippets above will generate and print same programs.
3149 3150
        """
        if for_test:
X
Xin Pan 已提交
3151
            p = self._inference_optimize(prune_read_op=False)
3152
        else:
3153
            p = Program()
G
gongweibao 已提交
3154 3155
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
3156
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
3157 3158 3159
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
3160 3161

            p._current_role = self._current_role
3162
            p.__op_role_var = self.__op_role_var
3163
            p._appending_grad_times = self._appending_grad_times
G
gongweibao 已提交
3164

W
Wu Yi 已提交
3165
            p._sync_with_cpp()
3166

W
Wu Yi 已提交
3167
        p._copy_param_info_from(self)
W
Wu Yi 已提交
3168
        p._copy_data_info_from(self)
3169
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
3170
        return p
3171

W
Wu Yi 已提交
3172
    def _prune(self, targets):
Y
yuyang18 已提交
3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
3188 3189 3190 3191 3192 3193
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
3194 3195
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
3196
                    # and we need to find the current op that generate this
3197 3198 3199 3200 3201 3202 3203 3204
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

3205
                    t = t.op
3206 3207 3208 3209
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
3210
                else:
3211 3212
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
3213 3214 3215 3216

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
3217 3218 3219
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3220
        res._sync_with_cpp()
3221 3222
        return res

X
Xin Pan 已提交
3223
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
3224
        """
F
fengjiayi 已提交
3225 3226 3227 3228 3229
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

3230
        3. change the :code:`is_test`
Y
yuyang18 已提交
3231 3232 3233
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

3234
        Args:
X
Xin Pan 已提交
3235 3236
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
3237

Y
yuyang18 已提交
3238 3239 3240 3241 3242 3243
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
3244
        res = Program()
3245
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
3246 3247 3248 3249

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
3250
        if prune_read_op:
3251 3252 3253 3254 3255 3256 3257 3258 3259
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
3260
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
3261 3262

        # change all `is_test` attributes to True
M
minqiyang 已提交
3263
        for i in six.moves.range(res.desc.num_blocks()):
3264
            block = res.desc.block(i)
M
minqiyang 已提交
3265
            for j in six.moves.range(block.op_size()):
3266 3267
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
3268
                    op._set_attr('is_test', True)
M
minqiyang 已提交
3269 3270 3271
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
3272
        res._sync_with_cpp()
3273 3274
        return res

3275 3276
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
3277 3278 3279 3280 3281 3282 3283
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
3284
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
3285 3286 3287 3288

        Returns:
            Program: A deserialized program desc.
        """
3289 3290
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
3291
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
3292
        p._sync_with_cpp()
3293
        return p
Y
Yu Yang 已提交
3294

3295
    @staticmethod
3296
    def _construct_from_desc(desc):
3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
3312 3313
    @property
    def random_seed(self):
Y
yuyang18 已提交
3314 3315 3316 3317 3318
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                random_seed = prog.random_seed
                print(random_seed)
                prog.random_seed = 1
                print(prog.random_seed)
Y
yuyang18 已提交
3330
        """
D
dzhwinter 已提交
3331 3332
        return self._seed

Q
qiaolongfei 已提交
3333 3334
    @property
    def num_blocks(self):
Y
yuyang18 已提交
3335 3336
        """
        The number of blocks in this program.
3337 3338 3339 3340 3341 3342 3343 3344 3345

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                num_blocks = prog.num_blocks
                print(num_blocks)
Y
yuyang18 已提交
3346
        """
Q
qiaolongfei 已提交
3347 3348
        return self.desc.num_blocks()

D
dzhwinter 已提交
3349 3350 3351 3352 3353 3354
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
3355
    def __repr__(self):
3356
        return self.__str__()
3357

Y
Yu Yang 已提交
3358
    def global_block(self):
Y
yuyang18 已提交
3359 3360
        """
        Get the first block of this program.
3361 3362 3363 3364 3365 3366 3367 3368 3369

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                gb_block = prog.global_block()
                print(gb_block)
Y
yuyang18 已提交
3370
        """
Y
Yu Yang 已提交
3371 3372
        return self.blocks[0]

Q
Qiao Longfei 已提交
3373
    def block(self, index):
Y
yuyang18 已提交
3374 3375 3376 3377 3378 3379 3380
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
3381 3382 3383 3384 3385 3386 3387 3388 3389

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
3390
        """
Q
Qiao Longfei 已提交
3391 3392
        return self.blocks[index]

Y
Yu Yang 已提交
3393
    def current_block(self):
Y
yuyang18 已提交
3394 3395 3396
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
3397 3398 3399 3400 3401 3402 3403 3404 3405

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
3406
        """
Y
Yu Yang 已提交
3407 3408
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
3409
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
3410 3411 3412 3413 3414 3415 3416 3417 3418 3419
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
3420
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
3421 3422 3423
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
3424 3425 3426 3427
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
3428
    def _rollback(self):
Y
yuyang18 已提交
3429 3430 3431 3432 3433
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
3434 3435
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
3436
    def _sync_with_cpp(self):
Y
yuyang18 已提交
3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
3447 3448 3449
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
3450
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
3451

W
Wu Yi 已提交
3452
    def _copy_param_info_from(self, other):
3453
        """
3454
        Copy the information of parameters from other program.
D
dzhwinter 已提交
3455

Y
yuyang18 已提交
3456 3457 3458
        Notes: This is a very low level API. Users should not invoke it
        directly.

3459 3460 3461 3462 3463 3464 3465
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
3466
            raise TypeError("_copy_param_info_from should be invoked with "
3467 3468 3469
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
3470
            raise ValueError("_copy_param_info_from should be invoked with two "
3471
                             "program, with represent the same topology")
W
Wu Yi 已提交
3472
        self.global_block()._copy_param_info_from(other.global_block())
3473

3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
3489
        self._parameters_on_pservers = other._parameters_on_pservers
3490
        self._endpoints = other._endpoints
3491
        self._ps_endpoint = other._ps_endpoint
3492 3493
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
3494
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
3495 3496
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
3497

Y
yuyang18 已提交
3498 3499 3500
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
3501 3502 3503 3504 3505 3506 3507
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
3508
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
3509 3510 3511
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
3512
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
3513
                             "program, with represent the same topology")
3514
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
3515 3516 3517
            if var.is_data:
                self.global_block().var(var.name).is_data = True

3518
    def list_vars(self):
Y
yuyang18 已提交
3519 3520 3521 3522 3523
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
                label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
                for var in prog.list_vars():
                    print(var)
Y
yuyang18 已提交
3535
        """
3536
        for each_block in self.blocks:
3537
            for each_var in list(each_block.vars.values()):
3538 3539
                yield each_var

Y
Yu Yang 已提交
3540

Y
Yu Yang 已提交
3541
class Parameter(Variable):
3542
    """
3543
    Parameter is derived from Variable. A parameter is a persistable
3544
    Variable, and will be updated by optimizers after each iteration.
3545
    The training of a neural network is essentially the updating of
3546 3547
    its parameters.

3548
    Relative to a general Variable, a Parameter has several its own
3549 3550
    member variables:

3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
3563 3564
    """

Y
Yu Yang 已提交
3565 3566 3567 3568 3569 3570 3571 3572 3573 3574
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
3575 3576 3577

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
3578 3579 3580 3581
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

3582 3583
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
3584
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
3585

W
wanghaoshuang 已提交
3586
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
3587

F
fengjiayi 已提交
3588 3589 3590
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
3591 3592 3593
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
3594

F
update  
fengjiayi 已提交
3595 3596 3597 3598 3599 3600 3601 3602
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

3603 3604 3605 3606 3607 3608 3609 3610 3611
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
3612 3613 3614 3615 3616 3617
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
3618
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
3619
            for attr_name in additional_attr:
3620 3621
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
3622 3623
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
3624 3625 3626 3627
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
3628

Y
Yu Yang 已提交
3629
# program is a global instance.
Y
Yu Yang 已提交
3630 3631
_main_program_ = Program()
_startup_program_ = Program()
3632

3633

3634
def default_startup_program():
Y
Yu Yang 已提交
3635
    """
Y
yuyang18 已提交
3636 3637 3638 3639 3640 3641 3642 3643 3644
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
3645

Y
Yu Yang 已提交
3646 3647
    Returns:
        Program: startup program
3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            main_program = fluid.Program()
            startup_program = fluid.Program()
            with fluid.program_guard(main_program=main_program, startup_program=startup_program):
                x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
                y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
                z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")

                print("main program is: {}".format(fluid.default_main_program()))
                print("start up program is: {}".format(fluid.default_startup_program()))
Y
Yu Yang 已提交
3663
    """
Y
Yu Yang 已提交
3664
    return _startup_program_
3665

3666

3667
def default_main_program():
Y
Yu Yang 已提交
3668
    """
Y
yuyang18 已提交
3669 3670 3671 3672 3673 3674 3675 3676 3677
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
3678

Y
Yu Yang 已提交
3679 3680
    Returns:
        Program: main program
3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709

    Examples:
        ..  code-block:: python

            import paddle.fluid as fluid
            
            # Sample Network:
            data = fluid.layers.data(name='image', shape=[3, 224, 224], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            
            conv1 = fluid.layers.conv2d(data, 4, 5, 1, act=None)
            bn1 = fluid.layers.batch_norm(conv1, act='relu')
            pool1 = fluid.layers.pool2d(bn1, 2, 'max', 2)
            conv2 = fluid.layers.conv2d(pool1, 16, 5, 1, act=None)
            bn2 = fluid.layers.batch_norm(conv2, act='relu')
            pool2 = fluid.layers.pool2d(bn2, 2, 'max', 2)
            
            fc1 = fluid.layers.fc(pool2, size=50, act='relu')
            fc2 = fluid.layers.fc(fc1, size=102, act='softmax')
            
            loss = fluid.layers.cross_entropy(input=fc2, label=label)
            loss = fluid.layers.mean(loss)
            opt = fluid.optimizer.Momentum(
                learning_rate=0.1,
                momentum=0.9,
                regularization=fluid.regularizer.L2Decay(1e-4))
            opt.minimize(loss)
            
            print(fluid.default_main_program())
Y
Yu Yang 已提交
3710
    """
Y
Yu Yang 已提交
3711
    return _main_program_
Y
Yu Yang 已提交
3712 3713 3714 3715 3716


def switch_main_program(program):
    """
    Switch the main program to a new program.
3717

Y
Yu Yang 已提交
3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
3732
    Switch the startup program to a new program
Y
Yu Yang 已提交
3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
3745
@signature_safe_contextmanager
Y
Yu Yang 已提交
3746 3747
def program_guard(main_program, startup_program=None):
    """
3748 3749
    Change the global main program and startup program with `"with"` statement.
    Layer functions in the Python `"with"` block will append operators and
Y
yuyang18 已提交
3750
    variables to the new main programs.
3751

Y
Yu Yang 已提交
3752
    Examples:
3753 3754 3755
       .. code-block:: python
       
         import paddle.fluid as fluid
Y
yuyang18 已提交
3756

3757 3758 3759 3760 3761
         main_program = fluid.Program()
         startup_program = fluid.Program()
         with fluid.program_guard(main_program, startup_program):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
             hidden = fluid.layers.fc(input=data, size=10, act='relu')
Y
yuyang18 已提交
3762 3763 3764

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
3765

Y
Yu Yang 已提交
3766
    Examples:
3767
       .. code-block:: python
Y
yuyang18 已提交
3768

3769 3770 3771 3772 3773 3774
         import paddle.fluid as fluid

         main_program = fluid.Program()
         # does not care about startup program. Just pass a temporary value.
         with fluid.program_guard(main_program, fluid.Program()):
             data = fluid.layers.data(name='image', shape=[784, 784], dtype='float32')
3775

Y
Yu Yang 已提交
3776
    Args:
3777 3778 3779
        main_program(Program): New main program inside `"with"` statement.
        startup_program(Program): New startup program inside `"with"` statement.
            None means not changing startup program.
Y
Yu Yang 已提交
3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
3792 3793


W
Wu Yi 已提交
3794
def _get_var(name, program=None):
X
xuwei06 已提交
3795
    """
Y
yuyang18 已提交
3796
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
3797

X
xuwei06 已提交
3798 3799 3800
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
3801
        If None, default_global_program() will be used.
X
xuwei06 已提交
3802 3803 3804 3805 3806 3807 3808

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
3809
    assert isinstance(program, Program)
X
xuwei06 已提交
3810 3811

    return program.global_block().var(name)
3812 3813


S
rename  
sneaxiy 已提交
3814
@signature_safe_contextmanager
L
lujun 已提交
3815 3816 3817 3818
def _dygraph_guard(tracer):
    global _dygraph_tracer_
    tmp_trace = _dygraph_tracer_
    _dygraph_tracer_ = tracer
M
minqiyang 已提交
3819

3820
    yield
P
Paddle CI 已提交
3821

L
lujun 已提交
3822
    _dygraph_tracer_ = tmp_trace
P
Paddle CI 已提交
3823 3824


S
rename  
sneaxiy 已提交
3825
@signature_safe_contextmanager
L
lujun 已提交
3826 3827 3828 3829
def _dygraph_place_guard(place):
    global _dygraph_current_expected_place_
    tmp_place = _dygraph_current_expected_place_
    _dygraph_current_expected_place_ = place
M
minqiyang 已提交
3830

3831
    yield
M
minqiyang 已提交
3832

L
lujun 已提交
3833
    _dygraph_current_expected_place_ = tmp_place