nn.py 396.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
"""
15
All layers just related to the neural network.
Y
Yu Yang 已提交
16 17
"""

18 19
from __future__ import print_function

20
import numpy as np
S
sneaxiy 已提交
21
import six
P
peizhilin 已提交
22
import os
S
sneaxiy 已提交
23
import inspect
Y
Yu Yang 已提交
24
from ..layer_helper import LayerHelper
25
from ..initializer import Normal, Constant, NumpyArrayInitializer
L
lujun 已提交
26
from ..framework import Variable, OpProtoHolder, in_dygraph_mode
L
lujun 已提交
27
from ..dygraph import base
Y
yangyaming 已提交
28
from ..param_attr import ParamAttr
S
sneaxiy 已提交
29
from .layer_function_generator import autodoc, templatedoc, _generate_doc_string_
30
from .tensor import concat, assign
31
from . import utils
F
fengjiayi 已提交
32
from .. import unique_name
33
from functools import reduce
34
from .. import core
L
lujun 已提交
35
from ..dygraph import layers
Y
Yu Yang 已提交
36 37

__all__ = [
X
Xin Pan 已提交
38 39 40 41 42 43 44 45 46 47
    'fc',
    'embedding',
    'dynamic_lstm',
    'dynamic_lstmp',
    'dynamic_gru',
    'gru_unit',
    'linear_chain_crf',
    'crf_decoding',
    'cos_sim',
    'cross_entropy',
48
    'bpr_loss',
X
Xin Pan 已提交
49 50 51 52 53 54 55 56 57 58
    'square_error_cost',
    'chunk_eval',
    'sequence_conv',
    'conv2d',
    'conv3d',
    'sequence_pool',
    'sequence_softmax',
    'softmax',
    'pool2d',
    'pool3d',
59 60
    'adaptive_pool2d',
    'adaptive_pool3d',
X
Xin Pan 已提交
61
    'batch_norm',
H
heqiaozhi 已提交
62
    'data_norm',
X
Xin Pan 已提交
63 64 65 66 67 68
    'beam_search_decode',
    'conv2d_transpose',
    'conv3d_transpose',
    'sequence_expand',
    'sequence_expand_as',
    'sequence_pad',
Y
Yibing Liu 已提交
69
    'sequence_unpad',
X
Xin Pan 已提交
70 71 72 73 74 75 76 77
    'lstm_unit',
    'reduce_sum',
    'reduce_mean',
    'reduce_max',
    'reduce_min',
    'reduce_prod',
    'sequence_first_step',
    'sequence_last_step',
Y
Yibing Liu 已提交
78
    'sequence_slice',
X
Xin Pan 已提交
79 80 81 82 83 84 85 86 87 88 89 90
    'dropout',
    'split',
    'ctc_greedy_decoder',
    'edit_distance',
    'l2_normalize',
    'matmul',
    'topk',
    'warpctc',
    'sequence_reshape',
    'transpose',
    'im2sequence',
    'nce',
91
    'sampled_softmax_with_cross_entropy',
X
Xin Pan 已提交
92 93 94 95 96
    'hsigmoid',
    'beam_search',
    'row_conv',
    'multiplex',
    'layer_norm',
D
Dun 已提交
97
    'group_norm',
D
dengkaipeng 已提交
98
    'spectral_norm',
X
Xin Pan 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111
    'softmax_with_cross_entropy',
    'smooth_l1',
    'one_hot',
    'autoincreased_step_counter',
    'reshape',
    'squeeze',
    'unsqueeze',
    'lod_reset',
    'lrn',
    'pad',
    'pad_constant_like',
    'label_smooth',
    'roi_pool',
J
jerrywgz 已提交
112
    'roi_align',
X
Xin Pan 已提交
113 114 115 116
    'dice_loss',
    'image_resize',
    'image_resize_short',
    'resize_bilinear',
117
    'resize_nearest',
X
Xin Pan 已提交
118 119 120 121 122 123
    'gather',
    'scatter',
    'sequence_scatter',
    'random_crop',
    'mean_iou',
    'relu',
C
chengduo 已提交
124
    'selu',
X
Xin Pan 已提交
125 126 127
    'log',
    'crop',
    'rank_loss',
M
minqiyang 已提交
128
    'margin_rank_loss',
X
Xin Pan 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
    'elu',
    'relu6',
    'pow',
    'stanh',
    'hard_sigmoid',
    'swish',
    'prelu',
    'brelu',
    'leaky_relu',
    'soft_relu',
    'flatten',
    'sequence_mask',
    'stack',
    'pad2d',
    'unstack',
    'sequence_enumerate',
    'expand',
    'sequence_concat',
    'scale',
    'elementwise_add',
    'elementwise_div',
    'elementwise_sub',
    'elementwise_mul',
    'elementwise_max',
    'elementwise_min',
    'elementwise_pow',
    'uniform_random_batch_size_like',
    'gaussian_random',
    'sampling_id',
    'gaussian_random_batch_size_like',
    'sum',
    'slice',
    'shape',
    'logical_and',
    'logical_or',
    'logical_xor',
    'logical_not',
    'clip',
    'clip_by_norm',
    'mean',
    'mul',
    'sigmoid_cross_entropy_with_logits',
    'maxout',
J
JiabinYang 已提交
172
    'space_to_depth',
W
whs 已提交
173
    'affine_grid',
S
sneaxiy 已提交
174
    'sequence_reverse',
175
    'affine_channel',
B
barrierye 已提交
176
    'similarity_focus',
M
minqiyang 已提交
177
    'hash',
D
dengkaipeng 已提交
178
    'grid_sampler',
G
gmcather 已提交
179 180
    'log_loss',
    'add_position_encoding',
Q
Qiao Longfei 已提交
181
    'bilinear_tensor_product',
C
chengduo 已提交
182 183
    'merge_selected_rows',
    'get_tensor_from_selected_rows',
P
phlrain 已提交
184
    'lstm',
S
shippingwang 已提交
185
    'shuffle_channel',
186
    'temporal_shift',
S
sneaxiy 已提交
187
    'py_func',
188
    'psroi_pool',
H
heqiaozhi 已提交
189
    'teacher_student_sigmoid_loss',
M
minqiyang 已提交
190
    'huber_loss',
D
dengkaipeng 已提交
191
    'kldiv_loss',
Z
zhaozhehao 已提交
192
    'tree_conv',
C
ceci3 已提交
193
    'npair_loss',
R
ruri 已提交
194
    'pixel_shuffle',
195
    'fsp_matrix',
196
    'continuous_value_model',
Y
Yu Yang 已提交
197 198
]

J
jerrywgz 已提交
199 200
kIgnoreIndex = -100

Y
Yu Yang 已提交
201 202 203 204 205 206 207

def fc(input,
       size,
       num_flatten_dims=1,
       param_attr=None,
       bias_attr=None,
       act=None,
J
Jacek Czaja 已提交
208
       is_test=False,
209
       name=None):
Y
Yu Yang 已提交
210
    """
211
    **Fully Connected Layer**
Y
Yu Yang 已提交
212

213
    This function creates a fully connected layer in the network. It can take
214
    one or multiple tensors as its inputs(input can be a list of Variable, see
A
Aurelius84 已提交
215
    Args in detail). It creates a variable called weights for each input tensor,
216 217 218 219
    which represents a fully connected weight matrix from each input unit to
    each output unit. The fully connected layer multiplies each input tensor
    with its corresponding weight to produce an output Tensor with shape [M, `size`],
    where M is batch size. If multiple input tensors are given, the results of
A
Aurelius84 已提交
220
    multiple output tensors with shape [M, `size`] will be summed up. If bias_attr
221 222
    is not None, a bias variable will be created and added to the output.
    Finally, if activation is not None, it will be applied to the output as well.
C
caoying03 已提交
223

224
    When the input is single tensor:
C
caoying03 已提交
225

226 227 228 229 230
    .. math::

        Out = Act({XW + b})

    When the input are multiple tensors:
231 232 233

    .. math::

234
        Out = Act({\sum_{i=0}^{N-1}X_iW_i + b})
235 236 237

    In the above equation:

238 239 240
    * :math:`N`: Number of the input. N equals to len(input) if input is list of Variable.
    * :math:`X_i`: The i-th input tensor.
    * :math:`W_i`: The i-th weights matrix corresponding i-th input tensor.
C
caoying03 已提交
241
    * :math:`b`: The bias parameter created by this layer (if needed).
242
    * :math:`Act`: The activation function.
C
caoying03 已提交
243
    * :math:`Out`: The output tensor.
Y
Yu Yang 已提交
244

245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
    See below for an example.

    .. code-block:: text

        Given:
            data_1.data = [[[0.1, 0.2],
                           [0.3, 0.4]]]
            data_1.shape = (1, 2, 2) # 1 is batch_size

            data_2 = [[[0.1, 0.2, 0.3]]]
            data_2.shape = (1, 1, 3)

            out = fluid.layers.fc(input=[data_1, data_2], size=2)

        Then:
            out.data = [[0.18669507, 0.1893476]]
            out.shape = (1, 2)

Y
Yu Yang 已提交
263
    Args:
R
ranqiu 已提交
264 265 266 267 268 269 270 271 272 273
        input (Variable|list of Variable): The input tensor(s) of this layer, and the dimension of
            the input tensor(s) is at least 2.
        size(int): The number of output units in this layer.
        num_flatten_dims (int, default 1): The fc layer can accept an input tensor with more than
            two dimensions. If this happens, the multidimensional tensor will first be flattened
            into a 2-dimensional matrix. The parameter `num_flatten_dims` determines how the input
            tensor is flattened: the first `num_flatten_dims` (inclusive, index starts from 1)
            dimensions will be flatten to form the first dimension of the final matrix (height of
            the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
            form the second dimension of the final matrix (width of the matrix). For example, suppose
H
haowang101779990 已提交
274
            `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
R
ranqiu 已提交
275 276 277 278
            Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
        param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
            parameters/weights of this layer.
        bias_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for the bias
279 280
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
R
ranqiu 已提交
281
        act (str, default None): Activation to be applied to the output of this layer.
J
Jacek Czaja 已提交
282
        is_test(bool): A flag indicating whether execution is in test phase.
R
ranqiu 已提交
283
        name (str, default None): The name of this layer.
Y
Yu Yang 已提交
284

285
    Returns:
F
fengjiayi 已提交
286
        Variable: The transformation result.
287 288

    Raises:
C
caoying03 已提交
289
        ValueError: If rank of the input tensor is less than 2.
290 291 292 293

    Examples:
        .. code-block:: python

294
          # when input is single tensor
F
fengjiayi 已提交
295
          data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
296
          fc = fluid.layers.fc(input=data, size=1000, act="tanh")
297 298 299 300 301

          # when input are multiple tensors
          data_1 = fluid.layers.data(name="data_1", shape=[32, 32], dtype="float32")
          data_2 = fluid.layers.data(name="data_2", shape=[24, 36], dtype="float32")
          fc = fluid.layers.fc(input=[data_1, data_2], size=1000, act="tanh")
Y
Yu Yang 已提交
302
    """
C
caoying03 已提交
303
    helper = LayerHelper("fc", **locals())
Y
Yu Yang 已提交
304 305 306 307

    dtype = helper.input_dtype()

    mul_results = []
308 309
    for input_var, param_attr in helper.iter_inputs_and_params():
        input_shape = input_var.shape
Y
Yu Yang 已提交
310 311 312
        param_shape = [
            reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1)
        ] + [size]
Y
ying 已提交
313

Y
Yu Yang 已提交
314
        w = helper.create_parameter(
315
            attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
316
        tmp = helper.create_variable_for_type_inference(dtype)
317
        helper.append_op(
318 319 320
            type="mul",
            inputs={"X": input_var,
                    "Y": w},
321
            outputs={"Out": tmp},
M
mozga-intel 已提交
322 323
            attrs={"x_num_col_dims": num_flatten_dims,
                   "y_num_col_dims": 1})
324 325 326 327
        mul_results.append(tmp)

    if len(mul_results) == 1:
        pre_bias = mul_results[0]
328
    else:
X
Xin Pan 已提交
329
        pre_bias = helper.create_variable_for_type_inference(dtype)
330
        helper.append_op(
331 332 333
            type="sum",
            inputs={"X": mul_results},
            outputs={"Out": pre_bias},
X
Xin Pan 已提交
334
            attrs={"use_mkldnn": False})
335 336 337 338
    # add bias
    pre_activation = helper.append_bias_op(pre_bias, dim_start=num_flatten_dims)
    # add activation
    return helper.append_activation(pre_activation)
Y
Yu Yang 已提交
339 340


341 342 343
def embedding(input,
              size,
              is_sparse=False,
344
              is_distributed=False,
345 346 347
              padding_idx=None,
              param_attr=None,
              dtype='float32'):
Y
Yu Yang 已提交
348
    """
349 350
    **Embedding Layer**

351
    This layer is used to lookup embeddings of IDs, provided by :attr:`input`, in
352 353
    a lookup table. The result of this lookup is the embedding of each ID in the
    :attr:`input`.
354 355 356

    All the input variables are passed in as local variables to the LayerHelper
    constructor.
Y
Yu Yang 已提交
357 358

    Args:
359 360 361 362 363
        input(Variable): The tensor variable containing the IDs.
        size(tuple|list): The shape of the look up table parameter. It should
            have two elements which indicate the size of the dictionary of
            embeddings and the size of each embedding vector respectively.
        is_sparse(bool): The flag indicating whether to use sparse update.
364
        is_distributed(bool): Whether to run lookup table from remote parameter server.
365 366
        padding_idx(int|long|None): If :attr:`None`, it makes no effect to lookup.
            Otherwise the given :attr:`padding_idx` indicates padding the output
367
            with zeros whenever lookup encounters it in :attr:`input`. If
368
            :math:`padding_idx < 0`, the :attr:`padding_idx` to use in lookup is
369 370
            :math:`size[0] + dim`.
        param_attr(ParamAttr): Parameters for this layer
371
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
Y
Yu Yang 已提交
372

373 374 375
    Returns:
        Variable: The tensor variable storing the embeddings of the \
                  supplied inputs.
Y
Yu Yang 已提交
376

377 378
    Examples:
        .. code-block:: python
Y
Yu Yang 已提交
379

C
chengduoZH 已提交
380
          dict_size = len(dataset.ids)
381
          data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32')
C
chengduoZH 已提交
382
          fc = fluid.layers.embedding(input=data, size=[dict_size, 16])
Y
Yu Yang 已提交
383 384 385
    """

    helper = LayerHelper('embedding', **locals())
386
    remote_prefetch = is_sparse and (not is_distributed)
Q
Qiao Longfei 已提交
387 388
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
Y
Yu Yang 已提交
389 390
    w = helper.create_parameter(
        attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False)
X
Xin Pan 已提交
391
    tmp = helper.create_variable_for_type_inference(dtype)
392 393
    padding_idx = -1 if padding_idx is None else padding_idx if padding_idx >= 0 else (
        size[0] + padding_idx)
Y
Yu Yang 已提交
394 395 396 397 398
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': w},
        outputs={'Out': tmp},
399 400 401
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
Q
Qiao Longfei 已提交
402
            'remote_prefetch': remote_prefetch,
403 404
            'padding_idx': padding_idx
        })
Y
Yu Yang 已提交
405 406 407
    return tmp


W
wopeizl 已提交
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
@templatedoc(op_type="lstm")
def dynamic_lstm(input,
                 size,
                 h_0=None,
                 c_0=None,
                 param_attr=None,
                 bias_attr=None,
                 use_peepholes=True,
                 is_reverse=False,
                 gate_activation='sigmoid',
                 cell_activation='tanh',
                 candidate_activation='tanh',
                 dtype='float32',
                 name=None):
    """
    ${comment}
Y
Yibing Liu 已提交
424

W
wopeizl 已提交
425 426 427 428 429 430 431 432 433 434 435
    Args:
        input (Variable): ${input_comment}
        size (int): 4 * hidden size.
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the hidden size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
Y
Yu Yang 已提交
436

W
wopeizl 已提交
437 438 439 440
                               - Weights = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}
                               - The shape is (D x 4D), where D is the hidden
                                 size.
Y
Yu Yang 已提交
441

W
wopeizl 已提交
442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                 - Biases = {:math:`b_c, b_i, b_f, b_o`}.
                                 - The shape is (1 x 4D).
                              2. `use_peepholes = True`
                                 - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
                                 - The shape is (1 x 7D).

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
        use_peepholes (bool): ${use_peepholes_comment}
        is_reverse (bool): ${is_reverse_comment}
        gate_activation (str): ${gate_activation_comment}
        cell_activation (str): ${cell_activation_comment}
        candidate_activation (str): ${candidate_activation_comment}
        dtype (str): Data type. Choices = ["float32", "float64"], default "float32".
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.

    Returns:
        tuple: The hidden state, and cell state of LSTM. The shape of both \
        is (T x D), and lod is the same with the `input`.

    Examples:
        .. code-block:: python

            hidden_dim = 512
            forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
                                           bias_attr=False)
            forward, _ = fluid.layers.dynamic_lstm(
                input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
    """
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
    helper = LayerHelper('lstm', **locals())
    size = size // 4
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

    hidden = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, size), \
            'The shape of h0 should be (batch_size, %d)' % size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0

    helper.append_op(
        type='lstm',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'Cell': cell,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation
        })
    return hidden, cell
Y
Yu Yang 已提交
528 529


P
phlrain 已提交
530 531 532 533 534 535
def lstm(input,
         init_h,
         init_c,
         max_len,
         hidden_size,
         num_layers,
P
phlrain 已提交
536
         dropout_prob=0.0,
P
phlrain 已提交
537 538 539 540 541
         is_bidirec=False,
         is_test=False,
         name=None,
         default_initializer=None,
         seed=-1):
L
liuhongyu 已提交
542
    """
P
phlrain 已提交
543
    If Device is GPU, This op will use cudnn LSTM implementation
L
liuhongyu 已提交
544 545

    A four-gate Long Short-Term Memory network with no peephole connections.
M
minqiyang 已提交
546
    In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
L
liuhongyu 已提交
547 548
    the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:

H
haowang101779990 已提交
549
    .. math::
M
minqiyang 已提交
550 551 552 553 554 555 556

       i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)

       f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)

       o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)

H
haowang101779990 已提交
557
       \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
M
minqiyang 已提交
558 559 560 561

       c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}

       h_t &= o_t \odot tanh(c_t)
H
haowang101779990 已提交
562 563

    - $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
P
phlrain 已提交
564 565 566 567 568 569
      of weights from the input gate to the input)
    - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
    - sigmoid is the logistic sigmoid function.
    - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
      and cell activation vectors, respectively, all of which have the same size as
      the cell output activation vector $h$.
H
haowang101779990 已提交
570 571 572
    - The :math:`\odot` is the element-wise product of the vectors.
    - :math:`tanh` is the activation functions.
    - :math:`\\tilde{c_t}` is also called candidate hidden state,
P
phlrain 已提交
573
      which is computed based on the current input and the previous hidden state.
L
liuhongyu 已提交
574

M
minqiyang 已提交
575
    Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
L
liuhongyu 已提交
576 577 578 579 580
    X represensts a matrix multiplication


    Args:
        input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
M
minqiyang 已提交
581
        init_h(Variable): The initial hidden state of the LSTM
L
liuhongyu 已提交
582 583 584 585 586
                       This is a tensor with shape ( num_layers x batch_size x hidden_size)
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
        init_c(Variable): The initial cell state of the LSTM.
                       This is a tensor with shape ( num_layers x batch_size x hidden_size )
                       if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
M
minqiyang 已提交
587
        max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
L
liuhongyu 已提交
588 589
        hidden_size (int): hidden size of the LSTM
        num_layers (int): total layers number of the LSTM
P
phlrain 已提交
590 591
        dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
                             There is NO dropout work on rnn output of the last RNN layers
L
liuhongyu 已提交
592 593 594 595 596 597
        is_bidirec (bool): If it is bidirectional
        is_test (bool): If it is in test phrase
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
        default_initializer(Initialize|None): Where use initializer to initialize the Weight
                         If set None, defaule initializer will be used
P
phlrain 已提交
598
        seed(int): Seed for dropout in LSTM, If it's -1, dropout will use random seed
P
phlrain 已提交
599

L
liuhongyu 已提交
600 601

    Returns:
M
minqiyang 已提交
602 603
        rnn_out(Tensor),last_h(Tensor),last_c(Tensor):

H
haowang101779990 已提交
604
                        Three tensors, rnn_out, last_h, last_c:
M
minqiyang 已提交
605

H
haowang101779990 已提交
606 607 608 609
                        - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
                          if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
                        - last_h is the hidden state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
610
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
H
haowang101779990 已提交
611 612
                        - last_c(Tensor): the cell state of the last step of LSTM \
                          shape is ( num_layers x batch_size x hidden_size ) \
M
minqiyang 已提交
613
                          if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
L
liuhongyu 已提交
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628


    Examples:
        .. code-block:: python

            input = embedding
            batch_size = 20
            max_len = 100
            dropout_prob = 0.2
            input_size = 100
            hidden_size = 150
            num_layers = 1
            init_hidden1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)
            init_cell1 = layers.fill_constant( [num_layers, batch_size, hidden_size], 'float32', 0.0, stop_grad=False)

P
phlrain 已提交
629
            rnn_out, last_h, last_c = layers.lstm( input, init_h, init_c, \
L
liuhongyu 已提交
630 631 632 633 634 635
                    max_len, dropout_prob, input_size, hidden_size, \
                    num_layers)
    """

    helper = LayerHelper('cudnn_lstm', **locals())

P
phlrain 已提交
636 637 638
    dtype = input.dtype
    input_shape = list(input.shape)
    input_size = input_shape[-1]
L
liuhongyu 已提交
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697
    weight_size = 0
    for i in range(num_layers):
        if i == 0:
            input_weight_size = (input_size * hidden_size) * 4
        else:
            if is_bidirec:
                input_weight_size = (hidden_size * 2 * hidden_size) * 4
            else:
                input_weight_size = (hidden_size * hidden_size) * 4

        hidden_weight_size = (hidden_size * hidden_size) * 4

        if is_bidirec:
            weight_size += (input_weight_size + hidden_weight_size) * 2
            weight_size += hidden_size * 8 * 2
        else:
            weight_size += input_weight_size + hidden_weight_size
            weight_size += hidden_size * 8

    weight = helper.create_parameter(
        attr=helper.param_attr,
        shape=[weight_size],
        dtype=dtype,
        default_initializer=default_initializer)

    out = helper.create_variable_for_type_inference(dtype)
    last_h = helper.create_variable_for_type_inference(dtype)
    last_c = helper.create_variable_for_type_inference(dtype)

    cache = helper.create_variable(
        persistable=True, type=core.VarDesc.VarType.RAW, stop_gradient=True)

    helper.append_op(
        type='cudnn_lstm',
        inputs={
            'Input': input,
            'InitH': init_h,
            'InitC': init_c,
            'W': weight,
            'Cache': cache,
        },
        outputs={
            'Out': out,
            'last_h': last_h,
            'last_c': last_c,
        },
        attrs={
            'max_len': max_len,
            'is_bidirec': is_bidirec,
            'input_size': input_size,
            'hidden_size': hidden_size,
            'num_layers': num_layers,
            'is_test': is_test,
            'dropout_prob': dropout_prob,
            'seed': seed,
        })
    return out, last_h, last_c


Y
Yibing Liu 已提交
698 699 700 701 702 703 704 705 706 707
def dynamic_lstmp(input,
                  size,
                  proj_size,
                  param_attr=None,
                  bias_attr=None,
                  use_peepholes=True,
                  is_reverse=False,
                  gate_activation='sigmoid',
                  cell_activation='tanh',
                  candidate_activation='tanh',
X
xuezhong 已提交
708
                  proj_activation='tanh',
709
                  dtype='float32',
X
xuezhong 已提交
710 711 712 713 714
                  name=None,
                  h_0=None,
                  c_0=None,
                  cell_clip=None,
                  proj_clip=None):
Y
Yibing Liu 已提交
715 716 717
    """
    **Dynamic LSTMP Layer**

718 719 720 721 722 723
    LSTMP (LSTM with recurrent projection) layer has a separate projection
    layer after the LSTM layer, projecting the original hidden state to a
    lower-dimensional one, which is proposed to reduce the number of total
    parameters and furthermore computational complexity for the LSTM,
    espeacially for the case that the size of output units is relative
    large (https://research.google.com/pubs/archive/43905.pdf).
Y
Yibing Liu 已提交
724 725 726 727 728

    The formula is as follows:

    .. math::

729
        i_t & = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i)
Y
Yibing Liu 已提交
730

731
        f_t & = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f)
Y
Yibing Liu 已提交
732

733
        \\tilde{c_t} & = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c)
Y
Yibing Liu 已提交
734

735
        o_t & = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o)
Y
Yibing Liu 已提交
736

737
        c_t & = f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
Y
Yibing Liu 已提交
738

739
        h_t & = o_t \odot act_h(c_t)
Y
Yibing Liu 已提交
740

741
        r_t & = \overline{act_h}(W_{rh}h_t)
Y
Yibing Liu 已提交
742

Y
Yibing Liu 已提交
743 744 745 746 747 748
    In the above formula:

    * :math:`W`: Denotes weight matrices (e.g. :math:`W_{xi}` is \
          the matrix of weights from the input gate to the input).
    * :math:`W_{ic}`, :math:`W_{fc}`, :math:`W_{oc}`: Diagonal weight \
          matrices for peephole connections. In our implementation, \
749
          we use vectors to reprenset these diagonal weight matrices.
Y
Yibing Liu 已提交
750
    * :math:`b`: Denotes bias vectors (e.g. :math:`b_i` is the input gate \
751
          bias vector).
Y
Yibing Liu 已提交
752 753 754
    * :math:`\sigma`: The activation, such as logistic sigmoid function.
    * :math:`i, f, o` and :math:`c`: The input gate, forget gate, output \
          gate, and cell activation vectors, respectively, all of which have \
755
          the same size as the cell output activation vector :math:`h`.
Y
Yibing Liu 已提交
756
    * :math:`h`: The hidden state.
757
    * :math:`r`: The recurrent projection of the hidden state.
Y
Yibing Liu 已提交
758 759
    * :math:`\\tilde{c_t}`: The candidate hidden state, whose \
          computation is based on the current input and previous hidden state.
760
    * :math:`\odot`: The element-wise product of the vectors.
Y
Yibing Liu 已提交
761
    * :math:`act_g` and :math:`act_h`: The cell input and cell output \
762
          activation functions and `tanh` is usually used for them.
Y
Yibing Liu 已提交
763 764
    * :math:`\overline{act_h}`: The activation function for the projection \
          output, usually using `identity` or same as :math:`act_h`.
Y
Yibing Liu 已提交
765 766 767 768

    Set `use_peepholes` to `False` to disable peephole connection. The formula
    is omitted here, please refer to the paper
    http://www.bioinf.jku.at/publications/older/2604.pdf for details.
769

Y
Yibing Liu 已提交
770 771 772 773 774 775 776 777 778 779 780 781
    Note that these :math:`W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}`
    operations on the input :math:`x_{t}` are NOT included in this operator.
    Users can choose to use fully-connected layer before LSTMP layer.

    Args:
        input(Variable): The input of dynamic_lstmp layer, which supports
                         variable-time length input sequence. The underlying
                         tensor in this Variable is a matrix with shape
                         (T X 4D), where T is the total time steps in this
                         mini-batch, D is the hidden size.
        size(int): 4 * hidden size.
        proj_size(int): The size of projection output.
782
        param_attr(ParamAttr|None): The parameter attribute for the learnable
Y
Yibing Liu 已提交
783 784
                               hidden-hidden weight and projection weight.

785 786
                               - Hidden-hidden weight = {:math:`W_{ch}, W_{ih}, \
                                                W_{fh}, W_{oh}`}.
787 788
                               - The shape of hidden-hidden weight is (P x 4D),
                                 where P is the projection size and D the hidden
Y
Yibing Liu 已提交
789 790
                                 size.
                               - Projection weight = {:math:`W_{rh}`}.
791
                               - The shape of projection weight is (D x P).
C
chengduo 已提交
792 793 794 795 796

                               If it is set to None or one attribute of ParamAttr,
                               dynamic_lstm will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
797
        bias_attr(ParamAttr|None): The bias attribute for the learnable bias
Y
Yibing Liu 已提交
798 799 800 801 802 803
                              weights, which contains two parts, input-hidden
                              bias weights and peephole connections weights if
                              setting `use_peepholes` to `True`.

                              1. `use_peepholes = False`
                                - Biases = {:math:`b_c, b_i, b_f, b_o`}.
804
                                - The shape is (1 x 4D).
Y
Yibing Liu 已提交
805 806 807
                              2. `use_peepholes = True`
                                - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
                                                 W_{fc}, W_{oc}`}.
808
                                - The shape is (1 x 7D).
C
chengduo 已提交
809 810 811 812 813

                              If it is set to None or one attribute of ParamAttr,
                              dynamic_lstm will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
Y
Yibing Liu 已提交
814 815 816 817 818 819 820 821 822
        use_peepholes(bool): Whether to enable diagonal/peephole connections,
                             default `True`.
        is_reverse(bool): Whether to compute reversed LSTM, default `False`.
        gate_activation(str): The activation for input gate, forget gate and
                              output gate. Choices = ["sigmoid", "tanh", "relu",
                              "identity"], default "sigmoid".
        cell_activation(str): The activation for cell output. Choices = ["sigmoid",
                              "tanh", "relu", "identity"], default "tanh".
        candidate_activation(str): The activation for candidate hidden state.
823
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
Y
Yibing Liu 已提交
824 825
                              default "tanh".
        proj_activation(str): The activation for projection output.
826
                              Choices = ["sigmoid", "tanh", "relu", "identity"],
X
xuezhong 已提交
827
                              default "tanh".
Y
Yibing Liu 已提交
828
        dtype(str): Data type. Choices = ["float32", "float64"], default "float32".
829 830
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
X
xuezhong 已提交
831 832 833 834 835 836 837 838 839 840 841
        h_0(Variable): The initial hidden state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size and D is the projection size.
        c_0(Variable): The initial cell state is an optional input, default is zero.
                       This is a tensor with shape (N x D), where N is the
                       batch size. `h_0` and `c_0` can be NULL but only at the same time.
        cell_clip(float): If provided the cell state is clipped
                             by this value prior to the cell output activation.
        proj_clip(float): If `num_proj > 0` and `proj_clip` is
                            provided, then the projected values are clipped elementwise to within
                            `[-proj_clip, proj_clip]`.
Y
Yibing Liu 已提交
842 843

    Returns:
844 845 846 847
        tuple: A tuple of two output variable: the projection of hidden state, \
               and cell state of LSTMP. The shape of projection is (T x P), \
               for the cell state which is (T x D), and both LoD is the same \
               with the `input`.
Y
Yibing Liu 已提交
848 849

    Examples:
850

Y
Yibing Liu 已提交
851 852
        .. code-block:: python

853 854 855 856
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
Y
Yibing Liu 已提交
857
            hidden_dim, proj_dim = 512, 256
858
            fc_out = fluid.layers.fc(input=emb, size=hidden_dim * 4,
Y
Yibing Liu 已提交
859
                                     act=None, bias_attr=None)
860 861 862
            proj_out, _ = fluid.layers.dynamic_lstmp(input=fc_out,
                                                     size=hidden_dim * 4,
                                                     proj_size=proj_dim,
Y
Yibing Liu 已提交
863 864 865 866
                                                     use_peepholes=False,
                                                     is_reverse=True,
                                                     cell_activation="tanh",
                                                     proj_activation="tanh")
Y
Yibing Liu 已提交
867
    """
868

C
chengduo 已提交
869
    assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
Y
Yibing Liu 已提交
870
    helper = LayerHelper('lstmp', **locals())
M
minqiyang 已提交
871
    size = size // 4
Y
Yibing Liu 已提交
872 873 874 875 876 877 878 879 880 881
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[proj_size, 4 * size], dtype=dtype)
    proj_weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, proj_size], dtype=dtype)
    bias_size = [1, 7 * size]
    if not use_peepholes:
        bias_size[1] = 4 * size
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)

X
Xin Pan 已提交
882 883 884 885 886 887
    projection = helper.create_variable_for_type_inference(dtype)
    cell = helper.create_variable_for_type_inference(dtype)
    ordered_proj0 = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_cell_pre_act = helper.create_variable_for_type_inference(dtype)
888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
    inputs = {
        'Input': input,
        'Weight': weight,
        'ProjWeight': proj_weight,
        'Bias': bias
    }
    batch_size = input.shape[0]
    if h_0:
        assert h_0.shape == (batch_size, proj_size), \
            'The shape of h0 should be (batch_size, %d)' % proj_size
        inputs['H0'] = h_0
    if c_0:
        assert c_0.shape == (batch_size, size), \
            'The shape of c0 should be (batch_size, %d)' % size
        inputs['C0'] = c_0
Y
Yibing Liu 已提交
903

X
xuezhong 已提交
904 905 906 907 908
    if cell_clip:
        assert cell_clip >= 0, "cell_clip should not be negtive."
    if proj_clip:
        assert proj_clip >= 0, "proj_clip should not be negtive."

Y
Yibing Liu 已提交
909 910
    helper.append_op(
        type='lstmp',
911
        inputs=inputs,
Y
Yibing Liu 已提交
912 913 914 915 916 917 918 919 920
        outputs={
            'Projection': projection,
            'Cell': cell,
            'BatchHidden': batch_hidden,
            'BatchGate': batch_gate,
            'BatchCellPreAct': batch_cell_pre_act
        },
        attrs={
            'use_peepholes': use_peepholes,
921 922
            'cell_clip': cell_clip,
            'proj_clip': proj_clip,
Y
Yibing Liu 已提交
923 924 925 926 927 928 929 930 931
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
            'cell_activation': cell_activation,
            'candidate_activation': candidate_activation,
            'proj_activation': proj_activation
        })
    return projection, cell


G
guosheng 已提交
932 933 934 935 936 937 938
def dynamic_gru(input,
                size,
                param_attr=None,
                bias_attr=None,
                is_reverse=False,
                gate_activation='sigmoid',
                candidate_activation='tanh',
939 940
                h_0=None,
                origin_mode=False):
G
guosheng 已提交
941
    """
942
    **Gated Recurrent Unit (GRU) Layer**
G
guosheng 已提交
943

944 945 946
    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_ .
947

G
guosheng 已提交
948 949 950 951 952 953 954 955 956
    The formula is as follows:

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)
957

G
guosheng 已提交
958
        h_t & = (1-u_t) \odot h_{t-1} + u_t \odot \\tilde{h_t}
959

Q
Qiao Longfei 已提交
960 961 962

    if origin_mode is True then the equation is from paper
    Learning Phrase Representations using RNN Encoder-Decoder for Statistical
963 964 965 966 967 968 969 970 971 972 973 974
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_

    .. math::

        u_t & = act_g(W_{ux}x_{t} + W_{uh}h_{t-1} + b_u)

        r_t & = act_g(W_{rx}x_{t} + W_{rh}h_{t-1} + b_r)

        \\tilde{h_t} & = act_c(W_{cx}x_{t} + W_{ch}(r_t \odot h_{t-1}) + b_c)

        h_t & = u_t \odot h_{t-1} + (1-u_t) \odot \\tilde{h_t}

G
guosheng 已提交
975
    The :math:`\odot` is the element-wise product of the vectors. :math:`act_g`
976 977
    is the update gate and reset gate activation function and :math:`sigmoid`
    is usually used for it. :math:`act_c` is the activation function for
G
guosheng 已提交
978 979 980 981
    candidate hidden state and :math:`tanh` is usually used for it.

    Note that these :math:`W_{ux}x_{t}, W_{rx}x_{t}, W_{cx}x_{t}` operations on
    the input :math:`x_{t}` are NOT included in this operator. Users can choose
982
    to use fully-connect layer before GRU layer.
G
guosheng 已提交
983 984

    Args:
985 986
        input(Variable): The input of dynamic_gru layer, which supports
            variable-time length input sequence. The underlying tensor in this
G
guosheng 已提交
987
            Variable is a matrix with shape :math:`(T \\times 3D)`, where
988
            :math:`T` is the total time steps in this mini-batch, :math:`D`
G
guosheng 已提交
989 990
            is the hidden size.
        size(int): The dimension of the gru cell.
991
        param_attr(ParamAttr|None): The parameter attribute for the learnable
G
guosheng 已提交
992 993
            hidden-hidden weight matrix. Note:

994
            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
G
guosheng 已提交
995
              :math:`D` is the hidden size.
996
            - All elements in the weight matrix can be divided into two parts.
G
guosheng 已提交
997
              The first part are weights of the update gate and reset gate with
998
              shape :math:`(D \\times 2D)`, and the second part are weights for
G
guosheng 已提交
999
              candidate hidden state with shape :math:`(D \\times D)`.
1000 1001 1002 1003 1004

            If it is set to None or one attribute of ParamAttr, dynamic_gru will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1005
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1006
            the bias in the update gate, reset gate and candidate calculations.
1007 1008 1009
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, dynamic_gru will create ParamAttr as
1010 1011
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1012
        is_reverse(bool): Whether to compute reversed GRU, default
G
guosheng 已提交
1013 1014 1015
            :attr:`False`.
        gate_activation(str): The activation for update gate and reset gate.
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "sigmoid".
1016
        candidate_activation(str): The activation for candidate hidden state.
G
guosheng 已提交
1017
            Choices = ["sigmoid", "tanh", "relu", "identity"], default "tanh".
1018 1019 1020 1021
        h_0 (Variable): This is initial hidden state. If not set, default is
            zero. This is a tensor with shape (N x D), where N is the number of
            total time steps of input mini-batch feature and D is the hidden
            size.
G
guosheng 已提交
1022 1023

    Returns:
G
guosheng 已提交
1024
        Variable: The hidden state of GRU. The shape is :math:`(T \\times D)`, \
1025
            and sequence length is the same with the input.
1026

G
guosheng 已提交
1027
    Examples:
1028

G
guosheng 已提交
1029 1030
        .. code-block:: python

1031 1032 1033 1034
            dict_dim, emb_dim = 128, 64
            data = fluid.layers.data(name='sequence', shape=[1],
                                     dtype='int32', lod_level=1)
            emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
G
guosheng 已提交
1035
            hidden_dim = 512
1036
            x = fluid.layers.fc(input=emb, size=hidden_dim * 3)
T
Tink_Y 已提交
1037
            hidden = fluid.layers.dynamic_gru(input=x, size=hidden_dim)
G
guosheng 已提交
1038 1039 1040 1041 1042 1043 1044 1045 1046
    """

    helper = LayerHelper('gru', **locals())
    dtype = helper.input_dtype()

    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
    bias = helper.create_parameter(
        attr=helper.bias_attr, shape=[1, 3 * size], dtype=dtype, is_bias=True)
Y
Yancey 已提交
1047
    batch_size = input.shape[0]
G
guosheng 已提交
1048
    inputs = {'Input': input, 'Weight': weight, 'Bias': bias}
S
sneaxiy 已提交
1049
    if h_0:
G
guosheng 已提交
1050
        assert h_0.shape == (
Y
Yancey 已提交
1051 1052 1053
            batch_size, size
        ), 'The shape of h0 should be(batch_size, %d)' % size
        inputs['H0'] = h_0
G
guosheng 已提交
1054

X
Xin Pan 已提交
1055 1056 1057 1058
    hidden = helper.create_variable_for_type_inference(dtype)
    batch_gate = helper.create_variable_for_type_inference(dtype)
    batch_reset_hidden_prev = helper.create_variable_for_type_inference(dtype)
    batch_hidden = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071

    helper.append_op(
        type='gru',
        inputs=inputs,
        outputs={
            'Hidden': hidden,
            'BatchGate': batch_gate,
            'BatchResetHiddenPrev': batch_reset_hidden_prev,
            'BatchHidden': batch_hidden
        },
        attrs={
            'is_reverse': is_reverse,
            'gate_activation': gate_activation,
1072 1073
            'activation': candidate_activation,
            'origin_mode': origin_mode
G
guosheng 已提交
1074 1075 1076 1077
        })
    return hidden


Y
Yu Yang 已提交
1078 1079 1080
def gru_unit(input,
             hidden,
             size,
1081 1082
             param_attr=None,
             bias_attr=None,
Y
Yu Yang 已提交
1083
             activation='tanh',
Q
Qiao Longfei 已提交
1084 1085
             gate_activation='sigmoid',
             origin_mode=False):
Y
Yu Yang 已提交
1086
    """
1087 1088 1089
    **GRU unit layer**

    if origin_mode is True, then the equation of a gru step is from paper
Q
Qiao Longfei 已提交
1090
    `Learning Phrase Representations using RNN Encoder-Decoder for Statistical
1091
    Machine Translation <https://arxiv.org/pdf/1406.1078.pdf>`_
Y
Yu Yang 已提交
1092

1093 1094
        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
Y
Yu Yang 已提交
1095

1096
            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
Y
Yu Yang 已提交
1097

1098
            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)
1099

1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
            h_t & = dot(u_t, h_{t-1}) + dot((1-u_t), m_t)

    if origin_mode is False, then the equation of a gru step is from paper
    `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence
    Modeling <https://arxiv.org/pdf/1412.3555.pdf>`_

        .. math::
            u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)

            r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)

            m_t & = actNode(xm_t + W_c dot(r_t, h_{t-1}) + b_m)

            h_t & = dot((1-u_t), h_{t-1}) + dot(u_t, m_t)

1115 1116

    The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
1117 1118 1119
    of the equation above, the :math:`z_t` is split into 3 parts -
    :math:`xu_t`, :math:`xr_t` and :math:`xm_t`. This means that in order to
    implement a full GRU unit operator for an input, a fully
1120 1121
    connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.

1122 1123
    The terms :math:`u_t` and :math:`r_t` represent the update and reset gates
    of the GRU cell. Unlike LSTM, GRU has one lesser gate. However, there is
1124 1125 1126
    an intermediate candidate hidden output, which is denoted by :math:`m_t`.
    This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t-1})`
    and concatenation of :math:`u_t`, :math:`r_t` and :math:`m_t`.
1127 1128 1129

    Args:
        input (Variable): The fc transformed input value of current step.
1130
        hidden (Variable): The hidden value of gru unit from previous step.
1131
        size (integer): The input dimension value.
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            hidden-hidden weight matrix. Note:

            - The shape of the weight matrix is :math:`(T \\times 3D)`, where
              :math:`D` is the hidden size.
            - All elements in the weight matrix can be divided into two parts.
              The first part are weights of the update gate and reset gate with
              shape :math:`(D \\times 2D)`, and the second part are weights for
              candidate hidden state with shape :math:`(D \\times D)`.

            If it is set to None or one attribute of ParamAttr, gru_unit will
            create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias
1146
            of GRU.Note that the bias with :math:`(1 \\times 3D)` concatenates
1147
            the bias in the update gate, reset gate and candidate calculations.
1148 1149 1150
            If it is set to False, no bias will be applied to the update gate,
            reset gate and candidate calculations. If it is set to None or one
            attribute of ParamAttr, gru_unit will create ParamAttr as
1151 1152
            bias_attr. If the Initializer of the bias_attr is not set, the bias
            is initialized zero. Default: None.
1153 1154 1155 1156
        activation (string): The activation type for cell (actNode).
                             Default: 'tanh'
        gate_activation (string): The activation type for gates (actGate).
                                  Default: 'sigmoid'
Y
Yu Yang 已提交
1157

1158 1159 1160 1161 1162 1163
    Returns:
        tuple: The hidden value, reset-hidden value and gate values.

    Examples:

        .. code-block:: python
Y
Yu Yang 已提交
1164

1165
             # assuming we have x_t_data and prev_hidden of size=10
1166
             x_t = fluid.layers.fc(input=x_t_data, size=30)
1167 1168
             hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
                                                    hidden = prev_hidden)
Y
Yu Yang 已提交
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180

    """
    activation_dict = dict(
        identity=0,
        sigmoid=1,
        tanh=2,
        relu=3, )
    activation = activation_dict[activation]
    gate_activation = activation_dict[gate_activation]

    helper = LayerHelper('gru_unit', **locals())
    dtype = helper.input_dtype()
M
minqiyang 已提交
1181
    size = size // 3
Y
Yu Yang 已提交
1182 1183

    # create weight
1184 1185
    weight = helper.create_parameter(
        attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype)
Y
Yu Yang 已提交
1186

X
Xin Pan 已提交
1187 1188 1189
    gate = helper.create_variable_for_type_inference(dtype)
    reset_hidden_pre = helper.create_variable_for_type_inference(dtype)
    updated_hidden = helper.create_variable_for_type_inference(dtype)
1190
    inputs = {'Input': input, 'HiddenPrev': hidden, 'Weight': weight}
Y
Yu Yang 已提交
1191
    # create bias
1192
    if helper.bias_attr:
Y
Yu Yang 已提交
1193 1194 1195
        bias_size = [1, 3 * size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
1196
        inputs['Bias'] = bias
Y
Yu Yang 已提交
1197 1198 1199

    helper.append_op(
        type='gru_unit',
1200
        inputs=inputs,
Y
Yu Yang 已提交
1201 1202 1203 1204 1205 1206
        outputs={
            'Gate': gate,
            'ResetHiddenPrev': reset_hidden_pre,
            'Hidden': updated_hidden,
        },
        attrs={
1207 1208
            'activation': 2,  # tanh
            'gate_activation': 1,  # sigmoid
Y
Yu Yang 已提交
1209 1210 1211 1212 1213
        })

    return updated_hidden, reset_hidden_pre, gate


Y
yuyang18 已提交
1214
@templatedoc()
1215
def linear_chain_crf(input, label, param_attr=None):
Y
yuyang18 已提交
1216 1217 1218 1219 1220 1221 1222
    """
    Linear Chain CRF.

    ${comment}

    Args:
        input(${emission_type}): ${emission_comment}
D
dzhwinter 已提交
1223
        input(${transition_type}): ${transition_comment}
Y
yuyang18 已提交
1224 1225 1226 1227
        label(${label_type}): ${label_comment}
        param_attr(ParamAttr): The attribute of the learnable parameter.

    Returns:
D
dzhwinter 已提交
1228 1229 1230
        output(${emission_exps_type}): ${emission_exps_comment} \n
        output(${transition_exps_type}): ${transition_exps_comment} \n
        output(${log_likelihood_type}): ${log_likelihood_comment}
Y
yuyang18 已提交
1231 1232

    """
Y
Yu Yang 已提交
1233 1234 1235 1236 1237 1238
    helper = LayerHelper('linear_chain_crf', **locals())
    size = input.shape[1]
    transition = helper.create_parameter(
        attr=helper.param_attr,
        shape=[size + 2, size],
        dtype=helper.input_dtype())
X
Xin Pan 已提交
1239 1240 1241 1242 1243 1244 1245 1246
    alpha = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    emission_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    transition_exps = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    log_likelihood = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
Y
Yu Yang 已提交
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
    helper.append_op(
        type='linear_chain_crf',
        inputs={"Emission": [input],
                "Transition": transition,
                "Label": label},
        outputs={
            "Alpha": [alpha],
            "EmissionExps": [emission_exps],
            "TransitionExps": transition_exps,
            "LogLikelihood": log_likelihood
        })

    return log_likelihood


W
wopeizl 已提交
1262 1263 1264 1265
@templatedoc()
def crf_decoding(input, param_attr, label=None):
    """
    ${comment}
Y
yi.wu 已提交
1266

W
wopeizl 已提交
1267 1268
    Args:
        input(${emission_type}): ${emission_comment}
Y
yi.wu 已提交
1269

W
wopeizl 已提交
1270
        param_attr(ParamAttr): The parameter attribute for training.
Y
yuyang18 已提交
1271

W
wopeizl 已提交
1272
        label(${label_type}): ${label_comment}
1273

W
wopeizl 已提交
1274 1275
    Returns:
        Variable: ${viterbi_path_comment}
Y
yi.wu 已提交
1276

W
wopeizl 已提交
1277 1278
    Examples:
        .. code-block:: python
Y
yi.wu 已提交
1279

W
wopeizl 已提交
1280 1281 1282 1283 1284 1285 1286 1287 1288 1289
           crf_decode = layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
    """
    helper = LayerHelper('crf_decoding', **locals())
    transition = helper.get_parameter(param_attr.name)
    viterbi_path = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    helper.append_op(
        type='crf_decoding',
        inputs={"Emission": [input],
Y
Yu Yang 已提交
1290
                "Transition": transition,
W
wopeizl 已提交
1291 1292
                "Label": label},
        outputs={"ViterbiPath": [viterbi_path]})
Y
Yu Yang 已提交
1293

W
wopeizl 已提交
1294
    return viterbi_path
Y
Yu Yang 已提交
1295 1296


Y
yi.wu 已提交
1297
@templatedoc()
F
fengjiayi 已提交
1298
def cos_sim(X, Y):
Y
Yu Yang 已提交
1299
    """
Y
yi.wu 已提交
1300 1301 1302
    ${comment}

    Args:
1303 1304
        X (Variable): ${x_comment}.
        Y (Variable): ${y_comment}.
F
fengjiayi 已提交
1305

Y
yi.wu 已提交
1306
    Returns:
1307
        Variable: the output of cosine(X, Y).
Y
Yu Yang 已提交
1308
    """
F
fengjiayi 已提交
1309
    helper = LayerHelper('cos_sim', **locals())
X
Xin Pan 已提交
1310 1311 1312
    out = helper.create_variable_for_type_inference(dtype=X.dtype)
    xnorm = helper.create_variable_for_type_inference(dtype=X.dtype)
    ynorm = helper.create_variable_for_type_inference(dtype=X.dtype)
Y
Yu Yang 已提交
1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
    helper.append_op(
        type='cos_sim',
        inputs={'X': [X],
                'Y': [Y]},
        outputs={'Out': [out],
                 'XNorm': [xnorm],
                 'YNorm': [ynorm]})
    return out


P
phlrain 已提交
1323 1324 1325 1326 1327
def dropout(x,
            dropout_prob,
            is_test=False,
            seed=None,
            name=None,
P
phlrain 已提交
1328
            dropout_implementation="downgrade_in_infer"):
1329 1330 1331 1332 1333
    """
    Computes dropout.

    Drop or keep each element of `x` independently. Dropout is a regularization
    technique for reducing overfitting by preventing neuron co-adaption during
1334
    training. The dropout operator randomly sets (according to the given dropout
1335 1336 1337
    probability) the outputs of some units to zero, while others are remain
    unchanged.

H
haowang101779990 已提交
1338 1339
    dropout op can be removed from the program to make the program more efficient.

1340
    Args:
1341 1342
        x (Variable): The input tensor variable.
        dropout_prob (float): Probability of setting units to zero.
1343 1344 1345 1346 1347 1348 1349
        is_test (bool): A flag indicating whether it is in test phrase or not.
        seed (int): A Python integer used to create random seeds. If this
                    parameter is set to None, a random seed is used.
                    NOTE: If an integer seed is given, always the same output
                    units will be dropped. DO NOT use a fixed seed in training.
        name (str|None): A name for this layer(optional). If set None, the layer
                         will be named automatically.
H
haowang101779990 已提交
1350 1351
        dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']

P
phlrain 已提交
1352
                                        1. downgrade_in_infer(default), downgrade the outcome at inference
H
haowang101779990 已提交
1353 1354

                                           - train: out = input * mask
C
ceci3 已提交
1355
                                           - inference: out = input * (1.0 - dropout_prob)
H
haowang101779990 已提交
1356 1357 1358

                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
P
phlrain 已提交
1359
                                        2. upscale_in_train, upscale the outcome at training time
1360

H
haowang101779990 已提交
1361 1362
                                           - train: out = input * mask / ( 1.0 - dropout_prob )
                                           - inference: out = input
P
phlrain 已提交
1363

H
haowang101779990 已提交
1364 1365
                                           (mask is a tensor same shape with input, value is 0 or 1
                                           ratio of 0 is dropout_prob)
1366

M
minqiyang 已提交
1367

1368
    Returns:
1369
        Variable: A tensor variable is the shape with `x`.
1370 1371

    Examples:
1372

1373 1374
        .. code-block:: python

1375 1376
            x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
            droped = fluid.layers.dropout(x, dropout_prob=0.5)
1377 1378
    """

F
fengjiayi 已提交
1379
    helper = LayerHelper('dropout', **locals())
X
Xin Pan 已提交
1380 1381 1382
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    mask = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
C
chengduo 已提交
1383 1384 1385 1386

    if (seed is None or seed == 0) and helper.main_program.random_seed != 0:
        seed = helper.main_program.random_seed

1387 1388 1389 1390 1391
    helper.append_op(
        type='dropout',
        inputs={'X': [x]},
        outputs={'Out': [out],
                 'Mask': [mask]},
1392 1393 1394 1395
        attrs={
            'dropout_prob': dropout_prob,
            'is_test': is_test,
            'fix_seed': seed is not None,
P
phlrain 已提交
1396 1397
            'seed': seed if seed is not None else 0,
            'dropout_implementation': dropout_implementation,
1398
        })
1399 1400 1401
    return out


J
jerrywgz 已提交
1402
def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
Y
Yu Yang 已提交
1403
    """
Y
Yibing Liu 已提交
1404 1405
    **Cross Entropy Layer**

1406 1407 1408
    This layer computes the cross entropy between `input` and `label`. It
    supports both standard cross-entropy and soft-label cross-entropy loss
    computation.
Y
Yibing Liu 已提交
1409 1410

    1) One-hot cross-entropy:
F
fengjiayi 已提交
1411
        `soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
Y
yangyaming 已提交
1412

Y
Yibing Liu 已提交
1413
        .. math::
Y
yangyaming 已提交
1414

Y
Yibing Liu 已提交
1415 1416 1417
            Y[i] = -\log(X[i, Label[i]])

    2) Soft-label cross-entropy:
F
fengjiayi 已提交
1418 1419
        `soft_label = True`, `Label[i, j]` indicates the soft label of class j
        for sample i:
Y
Yibing Liu 已提交
1420 1421 1422 1423 1424

        .. math::

            Y[i] = \sum_j{-Label[i, j] * log(X[i, j])}

Y
Yibing Liu 已提交
1425
       Please make sure that in this case the summation of each row of `label`
Y
Yibing Liu 已提交
1426 1427 1428
       equals one.

    3) One-hot cross-entropy with vecterized `label`:
F
fengjiayi 已提交
1429 1430
         As a special case of 2), when each row of 'label' has only one
         non-zero element which is equal to 1, soft-label cross-entropy degenerates
Y
Yibing Liu 已提交
1431
         to a one-hot cross-entropy with one-hot label representation.
Y
yangyaming 已提交
1432

Y
Yibing Liu 已提交
1433
    Args:
Y
yangyaming 已提交
1434
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
1435 1436 1437 1438
                                batch size and D is the number of classes. This
                                input is a probability computed by the previous
                                operator, which is almost always the result of
                                a softmax operator.
Y
yangyaming 已提交
1439
        label (Variable|list): the ground truth which is a 2-D tensor. When
1440 1441 1442 1443
                               `soft_label` is set to `False`, `label` is a
                               tensor<int64> with shape [N x 1]. When
                               `soft_label` is set to `True`, `label` is a
                               tensor<float/double> with shape [N x D].
F
fengjiayi 已提交
1444
        soft_label (bool): a flag indicating whether to
1445
                                           interpretate the given labels as soft
1446
                                           labels. Default: `False`.
M
minqiyang 已提交
1447 1448
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
1449
                            if soft_label is set to False. Default: kIgnoreIndex
Y
Yibing Liu 已提交
1450 1451 1452 1453 1454

    Returns:
         A 2-D tensor with shape [N x 1], the cross entropy loss.

    Raises:
H
haowang101779990 已提交
1455 1456 1457
         ValueError:

                      1. the 1st dimension of ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1458

H
haowang101779990 已提交
1459 1460
                      2. when ``soft_label == True``, and the 2nd dimension of
                         ``input`` and ``label`` are not equal.
M
minqiyang 已提交
1461

H
haowang101779990 已提交
1462 1463
                      3. when ``soft_label == False``, and the 2nd dimension of
                         ``label`` is not 1.
Y
Yibing Liu 已提交
1464 1465 1466 1467 1468 1469

    Examples:
        .. code-block:: python

          predict = fluid.layers.fc(input=net, size=classdim, act='softmax')
          cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
1470
    """
S
sneaxiy 已提交
1471 1472
    if not soft_label:
        return cross_entropy2(input, label, ignore_index)
F
fengjiayi 已提交
1473
    helper = LayerHelper('cross_entropy', **locals())
X
Xin Pan 已提交
1474
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1475 1476 1477 1478 1479
    helper.append_op(
        type='cross_entropy',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
1480 1481
        attrs={"soft_label": soft_label,
               "ignore_index": ignore_index})
Y
Yu Yang 已提交
1482 1483 1484
    return out


S
sneaxiy 已提交
1485 1486 1487 1488
def cross_entropy2(input, label, ignore_index=kIgnoreIndex):
    helper = LayerHelper('cross_entropy2', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    xshape = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1489
    match_x = helper.create_variable_for_type_inference(dtype=input.dtype)
S
sneaxiy 已提交
1490 1491 1492 1493 1494
    helper.append_op(
        type='cross_entropy2',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out],
S
sneaxiy 已提交
1495
                 'MatchX': [match_x],
S
sneaxiy 已提交
1496 1497 1498 1499 1500
                 'XShape': [xshape]},
        attrs={'ignore_index': ignore_index})
    return out


F
frankwhzhang 已提交
1501
def bpr_loss(input, label, name=None):
F
frankwhzhang 已提交
1502 1503 1504
    """
    Bayesian Personalized Ranking Loss Operator.

1505
    This operator belongs to pairwise ranking loss. Label is the desired item.
F
frankwhzhang 已提交
1506 1507 1508 1509 1510 1511
    The loss at a given point in one session is defined as:
    $Y[i] = -\frac{1}{N_{i}-1} * \sum_{0\le j<N_{i},~ j\neq Label[i]}\log(\sigma(X[i, Label[i]]-X[i, j]))$

    Learn more details by reading paper <session-based recommendations with recurrent
    neural networks>(https://arxiv.org/abs/1511.06939)

1512 1513 1514 1515 1516 1517
    Args:
        input (Variable|list):  a 2-D tensor with shape [N x D], where N is the
                                batch size and D is the number of classes.
                                This input is not probability but logits.
        label (Variable|list):  the ground truth which is a 2-D tensor.  `label`
                                is a tensor<int64> with shape [N x 1].
F
frankwhzhang 已提交
1518 1519
        name (str|None):        A name for this layer(optional). If set None, the
                                layer will be named automatically. Default: None.
1520 1521 1522
    Returns:
        A 2-D tensor with shape [N x 1], the bpr loss.

F
frankwhzhang 已提交
1523 1524 1525
    Examples:
        .. code-block:: python

1526
          cost = fluid.layers.bpr_loss(input=predict, label=label)
F
frankwhzhang 已提交
1527
    """
1528 1529 1530 1531 1532 1533

    helper = LayerHelper('bpr_loss', **locals())
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type='bpr_loss',
        inputs={'X': [input],
1534
                'Label': [label]},
1535 1536 1537 1538
        outputs={'Y': [out]})
    return out


F
fengjiayi 已提交
1539
def square_error_cost(input, label):
Y
Yu Yang 已提交
1540
    """
1541 1542
    **Square error cost layer**

1543 1544
    This layer accepts input predictions and target label and returns the
    squared error cost.
Y
ying 已提交
1545

1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558
    For predictions, :math:`X`, and target labels, :math:`Y`, the equation is:

    .. math::

        Out = (X - Y)^2

    In the above equation:

        * :math:`X`: Input predictions, a tensor.
        * :math:`Y`: Input labels, a tensor.
        * :math:`Out`: Output value, same shape with :math:`X`.

    Args:
1559 1560
        input (Variable): Input tensor, has predictions.
        label (Variable): Label tensor, has target labels.
1561 1562

    Returns:
G
guosheng 已提交
1563
        Variable: The tensor variable storing the element-wise squared error \
1564
                  difference of input and label.
1565 1566 1567 1568 1569 1570 1571 1572

    Examples:
        .. code-block:: python

          y = layers.data(name='y', shape=[1], dtype='float32')
          y_predict = layers.data(name='y_predict', shape=[1], dtype='float32')
          cost = layers.square_error_cost(input=y_predict, label=y)

Y
Yu Yang 已提交
1573
    """
F
fengjiayi 已提交
1574
    helper = LayerHelper('square_error_cost', **locals())
X
Xin Pan 已提交
1575
    minus_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1576 1577 1578 1579 1580 1581
    helper.append_op(
        type='elementwise_sub',
        inputs={'X': [input],
                'Y': [label]},
        outputs={'Out': [minus_out]})

X
Xin Pan 已提交
1582
    square_out = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
1583
    helper.append_op(
F
fengjiayi 已提交
1584 1585
        type='square', inputs={'X': [minus_out]},
        outputs={'Out': [square_out]})
Y
Yu Yang 已提交
1586 1587 1588
    return square_out


Y
yi.wu 已提交
1589
@templatedoc()
Y
Yu Yang 已提交
1590 1591 1592 1593
def chunk_eval(input,
               label,
               chunk_scheme,
               num_chunk_types,
F
fengjiayi 已提交
1594
               excluded_chunk_types=None):
Y
Yu Yang 已提交
1595
    """
Y
yi.wu 已提交
1596
    **Chunk Evaluator**
Y
yi.wu 已提交
1597

Y
yangyaming 已提交
1598
    This function computes and outputs the precision, recall and
1599
    F1-score of chunk detection.
Y
yi.wu 已提交
1600

M
minqiyang 已提交
1601
    For some basics of chunking, please refer to
H
haowang101779990 已提交
1602
    `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
Y
yi.wu 已提交
1603 1604 1605 1606 1607 1608

    ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
    and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
    Here is a NER example of labeling for these tagging schemes:

    .. code-block:: python
1609

Y
yi.wu 已提交
1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
              Li     Ming    works  at  Agricultural   Bank   of    China  in  Beijing.
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========
       IO     I-PER  I-PER   O      O   I-ORG          I-ORG  I-ORG I-ORG  O   I-LOC
       IOB    B-PER  I-PER   O      O   B-ORG          I-ORG  I-ORG I-ORG  O   B-LOC
       IOE    I-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   E-LOC
       IOBES  B-PER  E-PER   O      O   I-ORG          I-ORG  I-ORG E-ORG  O   S-LOC
       ====== ====== ======  =====  ==  ============   =====  ===== =====  ==  =========

    There are three chunk types(named entity types) including PER(person), ORG(organization)
    and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.

    Since the calculations actually use label ids rather than labels, extra attention
    should be paid when mapping labels to ids to make CheckEvalOp work. The key point
    is that the listed equations are satisfied by ids.

    .. code-block:: python

       tag_type = label % num_tag_type
       chunk_type = label / num_tag_type

    where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
    is the num of chunk types, and `tag_type` get its value from the following table.

    .. code-block:: python
1635

Y
yi.wu 已提交
1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
       Scheme Begin Inside End   Single
        plain   0     -      -     -
        IOB     0     1      -     -
        IOE     -     0      1     -
        IOBES   0     1      2     3

    Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
    PER and LOC. To satisfy the above equations, the label map can be like this:

    .. code-block:: python

       B-ORG  0
       I-ORG  1
       B-PER  2
       I-PER  3
       B-LOC  4
       I-LOC  5
       O      6

    It's not hard to verify the equations noting that the num of chunk types
    is 3 and the num of tag types in IOB scheme is 2. For example, the label
    id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
    I-LOC is 2, which consistent with the results from the equations.

Y
yi.wu 已提交
1660
    Args:
1661 1662 1663 1664 1665
        input (Variable): prediction output of the network.
        label (Variable): label of the test data set.
        chunk_scheme (str): ${chunk_scheme_comment}
        num_chunk_types (int): ${num_chunk_types_comment}
        excluded_chunk_types (list): ${excluded_chunk_types_comment}
F
fengjiayi 已提交
1666

Y
yi.wu 已提交
1667
    Returns:
Y
update  
yi.wu 已提交
1668 1669 1670
        tuple: tuple containing: precision, recall, f1_score,
        num_infer_chunks, num_label_chunks,
        num_correct_chunks
1671

Y
yi.wu 已提交
1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
    Examples:
        .. code-block:: python

            crf = fluid.layers.linear_chain_crf(
                input=hidden, label=label, param_attr=ParamAttr(name="crfw"))
            crf_decode = fluid.layers.crf_decoding(
                input=hidden, param_attr=ParamAttr(name="crfw"))
            fluid.layers.chunk_eval(
                input=crf_decode,
                label=label,
                chunk_scheme="IOB",
                num_chunk_types=(label_dict_len - 1) / 2)
Y
Yu Yang 已提交
1684
    """
F
fengjiayi 已提交
1685
    helper = LayerHelper("chunk_eval", **locals())
Y
Yu Yang 已提交
1686 1687

    # prepare output
X
Xin Pan 已提交
1688 1689 1690 1691 1692 1693 1694
    precision = helper.create_variable_for_type_inference(dtype="float32")
    recall = helper.create_variable_for_type_inference(dtype="float32")
    f1_score = helper.create_variable_for_type_inference(dtype="float32")
    num_infer_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_label_chunks = helper.create_variable_for_type_inference(dtype="int64")
    num_correct_chunks = helper.create_variable_for_type_inference(
        dtype="int64")
Y
Yu Yang 已提交
1695 1696 1697 1698 1699 1700 1701 1702

    helper.append_op(
        type="chunk_eval",
        inputs={"Inference": [input],
                "Label": [label]},
        outputs={
            "Precision": [precision],
            "Recall": [recall],
1703 1704 1705 1706
            "F1-Score": [f1_score],
            "NumInferChunks": [num_infer_chunks],
            "NumLabelChunks": [num_label_chunks],
            "NumCorrectChunks": [num_correct_chunks]
Y
Yu Yang 已提交
1707 1708 1709
        },
        attrs={
            "num_chunk_types": num_chunk_types,
G
guosheng 已提交
1710 1711
            "chunk_scheme": chunk_scheme,
            "excluded_chunk_types": excluded_chunk_types or []
Y
Yu Yang 已提交
1712
        })
1713 1714
    return (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks)
Y
Yu Yang 已提交
1715 1716


1717
@templatedoc()
Y
Yu Yang 已提交
1718 1719 1720 1721 1722 1723 1724
def sequence_conv(input,
                  num_filters,
                  filter_size=3,
                  filter_stride=1,
                  padding=None,
                  bias_attr=None,
                  param_attr=None,
C
chengduo 已提交
1725 1726
                  act=None,
                  name=None):
Y
Yu Yang 已提交
1727 1728 1729 1730
    """
    This function creates the op for sequence_conv, using the inputs and
    other convolutional configurations for the filters and stride as given
    in the input parameters to the function.
1731 1732 1733 1734 1735 1736 1737

    Args:
        input (Variable): ${x_comment}
        num_filters (int): number of filters.
        filter_size (int): the filter size (H and W).
        filter_stride (int): stride of the filter.
        padding (bool): if True, add paddings.
C
chengduo 已提交
1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
F
fengjiayi 已提交
1751

1752 1753
    Returns:
        Variable: output of sequence_conv
Y
Yu Yang 已提交
1754 1755 1756 1757 1758 1759 1760
    """

    helper = LayerHelper('sequence_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [filter_size * input.shape[1], num_filters]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
1761
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
1762 1763 1764 1765 1766 1767 1768 1769 1770 1771

    helper.append_op(
        type='sequence_conv',
        inputs={
            'X': [input],
            'Filter': [filter_param],
        },
        outputs={"Out": pre_bias},
        attrs={
            'contextStride': filter_stride,
M
minqiyang 已提交
1772
            'contextStart': -int(filter_size // 2),
Y
Yu Yang 已提交
1773 1774 1775 1776 1777 1778
            'contextLength': filter_size
        })
    pre_act = helper.append_bias_op(pre_bias)
    return helper.append_activation(pre_act)


C
chengduo 已提交
1779
def sequence_softmax(input, use_cudnn=False, name=None):
1780 1781 1782
    """
    This function computes the softmax activation among all time-steps for each
    sequence. The dimension of each time-step should be 1. Thus, the shape of
1783
    input Tensor can be either :math:`[N, 1]` or :math:`[N]`, where :math:`N`
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
    is the sum of the length of all sequences.

    For i-th sequence in a mini-batch:

    .. math::

        Out(X[lod[i]:lod[i+1]], :) = \\frac{\exp(X[lod[i]:lod[i+1], :])}{\sum(\exp(X[lod[i]:lod[i+1], :]))}

    For example, for a mini-batch of 3 sequences with variable-length,
    each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7],
    then softmax will be computed among :math:`X[0:2, :]`, :math:`X[2:5, :]`,
    :math:`X[5:7, :]`, and :math:`N` turns out to be 7.

    Args:
        input (Variable): The input variable which is a LoDTensor.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
C
chengduo 已提交
1800 1801 1802
            library is installed. Default: False.
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
1803

1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
    Returns:
        Variable: output of sequence_softmax

    Examples:

        .. code-block:: python

             x = fluid.layers.data(name='x', shape=[7, 1],
                              dtype='float32', lod_level=1)
             x_sequence_softmax = fluid.layers.sequence_softmax(input=x)
    """
1815 1816
    helper = LayerHelper('sequence_softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1817
    softmax_out = helper.create_variable_for_type_inference(dtype)
1818 1819 1820 1821 1822 1823 1824 1825
    helper.append_op(
        type="sequence_softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
        attrs={"use_cudnn": use_cudnn})
    return softmax_out


D
dengkaipeng 已提交
1826
def softmax(input, use_cudnn=False, name=None, axis=-1):
Q
qiaolongfei 已提交
1827
    """
1828
    The input of the softmax operator is a tensor of any rank. The output tensor
F
fengjiayi 已提交
1829
    has the same shape as the input.
Q
qiaolongfei 已提交
1830

D
dengkaipeng 已提交
1831
    The dimension :attr:`axis` of the input tensor will be permuted to the last.
D
dengkaipeng 已提交
1832
    Then the input tensor will be logically flattened to a 2-D matrix. The matrix's
D
dengkaipeng 已提交
1833
    second dimension(row length) is the same as the dimension :attr:`axis` of the input
1834 1835 1836
    tensor, and the first dimension(column length) is the product of all other
    dimensions of the input tensor. For each row of the matrix, the softmax operator
    squashes the K-dimensional(K is the width of the matrix, which is also the size
D
dengkaipeng 已提交
1837
    of the input tensor's dimension :attr:`axis`) vector of arbitrary real values to a
F
fengjiayi 已提交
1838
    K-dimensional vector of real values in the range [0, 1] that add up to 1.
Q
qiaolongfei 已提交
1839 1840 1841 1842 1843 1844 1845

    It computes the exponential of the given dimension and the sum of exponential
    values of all the other dimensions in the K-dimensional vector input.
    Then the ratio of the exponential of the given dimension and the sum of
    exponential values of all the other dimensions is the output of the softmax
    operator.

F
fengjiayi 已提交
1846
    For each row :math:`i` and each column :math:`j` in the matrix, we have:
Q
qiaolongfei 已提交
1847 1848 1849 1850 1851 1852 1853 1854

    .. math::

        Out[i, j] = \\frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}

    Args:
        input (Variable): The input variable.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
J
jerrywgz 已提交
1855 1856
            library is installed. To improve numerical stablity, set use_cudnn to \
            False by default. Default: False
C
chengduo 已提交
1857 1858
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None.
D
dengkaipeng 已提交
1859 1860 1861
        axis (int): The index of dimension to perform softmax calculations, it should
            be in range :math:`[-1, rank - 1]`, while :math:`rank` is the rank of
            input variable. Default: -1.
Q
qiaolongfei 已提交
1862 1863 1864 1865 1866 1867 1868 1869 1870

    Returns:
        Variable: output of softmax

    Examples:

        .. code-block:: python

             fc = fluid.layers.fc(input=x, size=10)
D
dengkaipeng 已提交
1871
             # perform softmax in the second dimension
D
dengkaipeng 已提交
1872
             softmax = fluid.layers.softmax(input=fc, axis=1)
D
dengkaipeng 已提交
1873 1874
             # perform softmax in the last dimension
             softmax = fluid.layers.softmax(input=fc, axis=-1)
Q
qiaolongfei 已提交
1875 1876

    """
1877 1878
    helper = LayerHelper('softmax', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1879
    softmax_out = helper.create_variable_for_type_inference(dtype)
1880 1881 1882 1883
    helper.append_op(
        type="softmax",
        inputs={"X": input},
        outputs={"Out": softmax_out},
D
dengkaipeng 已提交
1884 1885
        attrs={"axis": axis,
               "use_cudnn": use_cudnn})
1886 1887 1888
    return softmax_out


Y
Yu Yang 已提交
1889 1890 1891
def conv2d(input,
           num_filters,
           filter_size,
C
chengduoZH 已提交
1892 1893
           stride=1,
           padding=0,
1894
           dilation=1,
Y
Yu Yang 已提交
1895 1896 1897
           groups=None,
           param_attr=None,
           bias_attr=None,
C
chengduoZH 已提交
1898
           use_cudnn=True,
1899 1900
           act=None,
           name=None):
Y
Yu Yang 已提交
1901
    """
C
chengduoZH 已提交
1902
    The convolution2D layer calculates the output based on the input, filter
T
tensor-tang 已提交
1903 1904
    and strides, paddings, dilations, groups parameters. Input and
    Output are in NCHW format, where N is batch size, C is the number of
1905
    channels, H is the height of the feature, and W is the width of the feature.
T
tensor-tang 已提交
1906 1907 1908 1909 1910 1911 1912
    Filter is in MCHW format, where M is the number of output image channels,
    C is the number of input image channels, H is the height of the filter,
    and W is the width of the filter. If the groups is greater than 1,
    C will equal the number of input image channels divided by the groups.
    Please refer to UFLDL's `convolution
    <http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution/>`_
    for more detials.
1913 1914 1915
    If bias attribution and activation type are provided, bias is added to the
    output of the convolution, and the corresponding activation function is
    applied to the final result.
C
chengduoZH 已提交
1916

1917
    For each input :math:`X`, the equation is:
C
refine  
chengduoZH 已提交
1918

C
chengduoZH 已提交
1919 1920
    .. math::

C
refine  
chengduoZH 已提交
1921
        Out = \sigma (W \\ast X + b)
C
chengduoZH 已提交
1922

T
tensor-tang 已提交
1923
    Where:
C
chengduoZH 已提交
1924

1925 1926 1927 1928 1929
    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
T
tensor-tang 已提交
1930
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
1931 1932 1933

    Example:

1934 1935
        - Input:

W
weixing02 已提交
1936
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
C
refine  
chengduoZH 已提交
1937

W
weixing02 已提交
1938
          Filter shape: :math:`(C_{out}, C_{in}, H_f, W_f)`
C
refine  
chengduoZH 已提交
1939

1940
        - Output:
T
tensor-tang 已提交
1941

W
weixing02 已提交
1942
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
C
refine  
chengduoZH 已提交
1943

C
chengduoZH 已提交
1944
        Where
1945 1946

        .. math::
C
chengduoZH 已提交
1947

W
weixing02 已提交
1948 1949
            H_{out}&= \\frac{(H_{in} + 2 * paddings[0] - (dilations[0] * (H_f - 1) + 1))}{strides[0]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[1] - (dilations[1] * (W_f - 1) + 1))}{strides[1]} + 1
C
chengduoZH 已提交
1950 1951

    Args:
1952
        input (Variable): The input image with [N, C, H, W] format.
T
tensor-tang 已提交
1953
        num_filters(int): The number of filter. It is as same as the output
1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv2d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
C
chengduo 已提交
1971 1972 1973 1974 1975
            connected to the second half of the input channels. Default: groups=1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
H
haowang101779990 已提交
1976
            and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
C
chengduo 已提交
1977 1978 1979 1980 1981
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
1982 1983
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
1984 1985
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
1986
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
1987
            will be named automatically. Default: None
C
chengduoZH 已提交
1988 1989

    Returns:
G
guosheng 已提交
1990
        Variable: The tensor variable storing the convolution and \
C
chengduoZH 已提交
1991 1992
                  non-linearity activation result.

C
refine  
chengduoZH 已提交
1993
    Raises:
1994 1995
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
C
refine  
chengduoZH 已提交
1996

C
chengduoZH 已提交
1997 1998 1999
    Examples:
        .. code-block:: python

2000 2001
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d = fluid.layers.conv2d(input=data, num_filters=2, filter_size=3, act="relu")
Y
Yu Yang 已提交
2002 2003 2004
    """

    num_channels = input.shape[1]
C
chengduo 已提交
2005
    assert param_attr is not False, "param_attr should not be False here."
2006
    l_type = 'conv2d'
X
xzl 已提交
2007 2008
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
2009
        l_type = 'depthwise_conv2d'
2010 2011 2012 2013

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

Y
Yu Yang 已提交
2014 2015 2016 2017 2018
    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2019
        num_filter_channels = num_channels // groups
Y
Yu Yang 已提交
2020

C
chengduoZH 已提交
2021 2022 2023
    filter_size = utils.convert_to_list(filter_size, 2, 'filter_size')
    stride = utils.convert_to_list(stride, 2, 'stride')
    padding = utils.convert_to_list(padding, 2, 'padding')
2024
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
C
chengduoZH 已提交
2025

C
chengduoZH 已提交
2026 2027
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2028 2029

    input_shape = input.shape
M
minqiyang 已提交
2030
    filter_shape = [num_filters, int(num_filter_channels)] + filter_size
Y
Yu Yang 已提交
2031 2032

    def _get_default_param_initializer():
C
chengduo 已提交
2033 2034
        filter_elem_num = filter_size[0] * filter_size[1] * num_channels
        std = (2.0 / filter_elem_num)**0.5
Y
Yu Yang 已提交
2035 2036 2037 2038 2039 2040 2041 2042
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2043
    pre_bias = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2044

2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058
    if use_cudnn:
        helper.create_variable(
            name="kCUDNNFwdAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdDataAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)
        helper.create_variable(
            name="kCUDNNBwdFilterAlgoCache",
            persistable=True,
            type=core.VarDesc.VarType.RAW)

Y
Yu Yang 已提交
2059
    helper.append_op(
2060
        type=l_type,
Y
Yu Yang 已提交
2061 2062 2063 2064 2065
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
C
chengduoZH 已提交
2066 2067 2068
        attrs={
            'strides': stride,
            'paddings': padding,
2069
            'dilations': dilation,
C
chengduoZH 已提交
2070
            'groups': groups,
2071
            'use_cudnn': use_cudnn,
2072
            'use_mkldnn': False,
2073
            'fuse_relu_before_depthwise_conv': False
C
chengduoZH 已提交
2074
        })
Y
Yu Yang 已提交
2075 2076 2077 2078 2079 2080

    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)

    return helper.append_activation(pre_act)


C
chengduoZH 已提交
2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097
def conv3d(input,
           num_filters,
           filter_size,
           stride=1,
           padding=0,
           dilation=1,
           groups=None,
           param_attr=None,
           bias_attr=None,
           use_cudnn=True,
           act=None,
           name=None):
    """
    **Convlution3D Layer**

    The convolution3D layer calculates the output based on the input, filter
    and strides, paddings, dilations, groups parameters. Input(Input) and
2098 2099 2100 2101 2102 2103
    Output(Output) are in NCDHW format. Where N is batch size C is the number of
    channels, D is the depth of the feature, H is the height of the feature,
    and W is the width of the feature. Convlution3D is similar with Convlution2D
    but adds one dimension(depth). If bias attribution and activation type are
    provided, bias is added to the output of the convolution, and the
    corresponding activation function is applied to the final result.
C
chengduoZH 已提交
2104 2105 2106 2107 2108 2109 2110 2111 2112

    For each input :math:`X`, the equation is:

    .. math::

        Out = \sigma (W \\ast X + b)

    In the above equation:

2113 2114
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
C
chengduoZH 已提交
2115 2116 2117
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
2118
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
C
chengduoZH 已提交
2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143

    Example:

        - Input:

          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`

          Filter shape: :math:`(C_{out}, C_{in}, D_f, H_f, W_f)`

        - Output:
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`

        Where

        .. math::

            D_{out}&= \\frac{(D_{in} + 2 * paddings[0] - (dilations[0] * (D_f - 1) + 1))}{strides[0]} + 1 \\\\
            H_{out}&= \\frac{(H_{in} + 2 * paddings[1] - (dilations[1] * (H_f - 1) + 1))}{strides[1]} + 1 \\\\
            W_{out}&= \\frac{(W_{in} + 2 * paddings[2] - (dilations[2] * (W_f - 1) + 1))}{strides[2]} + 1

    Args:
        input (Variable): The input image with [N, C, D, H, W] format.
            num_filters(int): The number of filter. It is as same as the output
            image channel.
        filter_size (int|tuple|None): The filter size. If filter_size is a tuple,
2144
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
C
chengduoZH 已提交
2145 2146
            Otherwise, the filter will be a square.
        stride (int|tuple): The stride size. If stride is a tuple, it must
2147
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
C
chengduoZH 已提交
2148 2149
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
2150
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
C
chengduoZH 已提交
2151 2152
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
2153
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
C
chengduoZH 已提交
2154 2155 2156 2157 2158 2159
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups (int): The groups number of the Conv3d Layer. According to grouped
            convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
            the first half of the filters is only connected to the first half
            of the input channels, while the second half of the filters is only
            connected to the second half of the input channels. Default: groups=1
C
chengduo 已提交
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as param_attr. If it is set to None, the parameter
            is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
            :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
C
chengduoZH 已提交
2170 2171
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
2172 2173
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
C
chengduoZH 已提交
2174
        name (str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
2175
            will be named automatically. Default: None.
C
chengduoZH 已提交
2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187

    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.

    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.

    Examples:
        .. code-block:: python

2188 2189
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d = fluid.layers.conv3d(input=data, num_filters=2, filter_size=3, act="relu")
C
chengduoZH 已提交
2190 2191 2192
    """

    l_type = 'conv3d'
C
chengduo 已提交
2193
    assert param_attr is not False, "param_attr should not be False here."
C
chengduoZH 已提交
2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()

    num_channels = input.shape[1]

    if groups is None:
        num_filter_channels = num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
M
minqiyang 已提交
2204
        num_filter_channels = num_channels // groups
C
chengduoZH 已提交
2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217

    filter_size = utils.convert_to_list(filter_size, 3, 'filter_size')
    stride = utils.convert_to_list(stride, 3, 'stride')
    padding = utils.convert_to_list(padding, 3, 'padding')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')

    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

    input_shape = input.shape
    filter_shape = [num_filters, num_filter_channels] + filter_size

    def _get_default_param_initializer():
C
chengduo 已提交
2218 2219 2220
        filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
            2] * num_channels
        std = (2.0 / filter_elem_num)**0.5
C
chengduoZH 已提交
2221 2222 2223 2224 2225 2226 2227 2228
        return Normal(0.0, std, 0)

    filter_param = helper.create_parameter(
        attr=helper.param_attr,
        shape=filter_shape,
        dtype=dtype,
        default_initializer=_get_default_param_initializer())

X
Xin Pan 已提交
2229
    pre_bias = helper.create_variable_for_type_inference(dtype)
C
chengduoZH 已提交
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243

    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter_param,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
X
Xin Pan 已提交
2244
            'use_mkldnn': False
C
chengduoZH 已提交
2245 2246
        })

2247
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
C
chengduoZH 已提交
2248 2249 2250 2251

    return helper.append_activation(pre_act)


J
Jacek Czaja 已提交
2252
def sequence_pool(input, pool_type, is_test=False):
Y
Yu Yang 已提交
2253
    """
Y
yangyaming 已提交
2254 2255 2256
    This function add the operator for sequence pooling.
    It pools features of all time-steps of each instance, and is applied
    on top of the input using pool_type mentioned in the parameters.
L
Luo Tao 已提交
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267

    It supports four pool_type:

    - average: :math:`Out[i] = \\frac{\sum_i X_i}{N}`
    - sum:     :math:`Out[i] = \sum_jX_{ij}`
    - sqrt:    :math:`Out[i] = \\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}`
    - max:     :math:`Out[i] = max(X_i)`

    .. code-block:: text

       x is a 1-level LoDTensor:
2268
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2269 2270 2271 2272 2273
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2274
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2275 2276 2277 2278 2279 2280 2281

       for different pool_type:
         average: out.data = [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
         sum    : out.data = [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
         sqrt   : out.data = [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
                    6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
         max    : out.data = [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
2282 2283
         last   : out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
         first  : out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2284

L
Luo Tao 已提交
2285 2286
    Args:
        input(variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
2287
        pool_type (string): The pooling type of sequence_pool.
L
Luo Tao 已提交
2288
            It supports average, sum, sqrt and max.
J
Jacek Czaja 已提交
2289
        is_test(bool, Default False): Used distinguish training from scoring mode.
L
Luo Tao 已提交
2290 2291 2292 2293 2294 2295 2296

    Returns:
        The sequence pooling variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2297

Y
yangyaming 已提交
2298
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2299 2300 2301 2302 2303
                              dtype='float32', lod_level=1)
             avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
             sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
             sqrt_x = fluid.layers.sequence_pool(input=x, pool_type='sqrt')
             max_x = fluid.layers.sequence_pool(input=x, pool_type='max')
2304 2305
             last_x = fluid.layers.sequence_pool(input=x, pool_type='last')
             first_x = fluid.layers.sequence_pool(input=x, pool_type='first')
Y
Yu Yang 已提交
2306
    """
F
fengjiayi 已提交
2307
    helper = LayerHelper('sequence_pool', **locals())
Y
Yu Yang 已提交
2308
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2309 2310
    pool_out = helper.create_variable_for_type_inference(dtype)
    max_index = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2311 2312 2313 2314 2315 2316

    helper.append_op(
        type="sequence_pool",
        inputs={"X": input},
        outputs={"Out": pool_out,
                 "MaxIndex": max_index},
J
Jacek Czaja 已提交
2317 2318
        attrs={"pooltype": pool_type.upper(),
               "is_test": is_test})
Y
Yu Yang 已提交
2319

Y
yangyaming 已提交
2320 2321 2322 2323 2324
    # when pool_type is max, variable max_index is initialized,
    # so we stop the gradient explicitly here
    if pool_type == 'max':
        max_index.stop_gradient = True

Y
Yu Yang 已提交
2325 2326 2327
    return pool_out


C
add doc  
chengduoZH 已提交
2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346
@templatedoc()
def sequence_concat(input, name=None):
    """
    ${comment}

    Args:
        input(list): List of Variables to be concatenated.
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.

    Returns:
        Variable: Output variable of the concatenation.

    Examples:
        .. code-block:: python

           out = fluid.layers.sequence_concat(input=[seq1, seq2, seq3])
    """
    helper = LayerHelper('sequence_concat', **locals())
X
Xin Pan 已提交
2347
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
C
add doc  
chengduoZH 已提交
2348 2349 2350 2351 2352
    helper.append_op(
        type='sequence_concat', inputs={'X': input}, outputs={'Out': [out]})
    return out


F
fengjiayi 已提交
2353
def sequence_first_step(input):
L
Luo Tao 已提交
2354
    """
L
Luo Tao 已提交
2355
    This function gets the first step of sequence.
L
Luo Tao 已提交
2356 2357 2358 2359

    .. code-block:: text

       x is a 1-level LoDTensor:
2360
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2361 2362 2363 2364 2365
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2366
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2367
         out.data = [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)
F
fengjiayi 已提交
2368

L
Luo Tao 已提交
2369 2370 2371 2372 2373 2374 2375 2376 2377
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's first step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2378

Y
yangyaming 已提交
2379
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2380 2381 2382
                              dtype='float32', lod_level=1)
             x_first_step = fluid.layers.sequence_first_step(input=x)
    """
2383 2384 2385
    return sequence_pool(input=input, pool_type="first")


F
fengjiayi 已提交
2386
def sequence_last_step(input):
L
Luo Tao 已提交
2387
    """
L
Luo Tao 已提交
2388
    This function gets the last step of sequence.
L
Luo Tao 已提交
2389 2390 2391 2392

    .. code-block:: text

       x is a 1-level LoDTensor:
2393
         x.lod = [[2, 3, 2]]
L
Luo Tao 已提交
2394 2395 2396 2397 2398
         x.data = [1, 3, 2, 4, 6, 5, 1]
         x.dims = [7, 1]

       then output is a Tensor:
         out.dim = [3, 1]
2399
         with condition len(x.lod[-1]) == out.dims[0]
L
Luo Tao 已提交
2400
         out.data = [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
F
fengjiayi 已提交
2401

L
Luo Tao 已提交
2402 2403 2404 2405 2406 2407 2408 2409 2410
    Args:
        input(variable): The input variable which is a LoDTensor.

    Returns:
        The sequence's last step variable which is a Tensor.

    Examples:

        .. code-block:: python
F
fengjiayi 已提交
2411

Y
yangyaming 已提交
2412
             x = fluid.layers.data(name='x', shape=[7, 1],
L
Luo Tao 已提交
2413 2414 2415
                              dtype='float32', lod_level=1)
             x_last_step = fluid.layers.sequence_last_step(input=x)
    """
2416 2417 2418
    return sequence_pool(input=input, pool_type="last")


Y
Yibing Liu 已提交
2419 2420 2421 2422
def sequence_slice(input, offset, length, name=None):
    """
    **Sequence Slice Layer**

2423
    The layer crops a subsequence from given sequence with given start
Y
Yibing Liu 已提交
2424 2425 2426 2427 2428
    offset and subsequence length.

    It only supports sequence data (LoDTensor with lod_level equal to 1).

    .. code-block:: text
2429

H
haowang101779990 已提交
2430
              - Case:
Y
Yibing Liu 已提交
2431

2432
            Given the input Variable **input**:
2433

2434 2435 2436
                input.data = [[a1, a2], [b1, b2], [c1, c2], [d1, d2], [e1, e2]],
                input.lod = [[3, 2]],
                input.dims = (5, 2),
Y
Yibing Liu 已提交
2437

2438
            with offset.data = [[0], [1]] and length.data = [[2], [1]],
Y
Yibing Liu 已提交
2439

2440
            the output Variable will be
2441

2442 2443 2444
                out.data = [[a1, a2], [b1, b2], [e1, e2]],
                out.lod = [[2, 1]],
                out.dims = (3, 2).
2445

M
minqiyang 已提交
2446
    Note:
H
haowang101779990 已提交
2447
          The first dimension size of **input**, **offset** and **length**
2448
          should be equal. The **offset** should start from 0.
2449

Y
Yibing Liu 已提交
2450
    Args:
2451
        input(Variable): The input Variable which consists of the complete
Y
Yibing Liu 已提交
2452
                         sequences.
Y
Yibing Liu 已提交
2453 2454 2455 2456 2457 2458
        offset(Variable): The offset to slice each sequence.
        length(Variable): The length of each subsequence.
        name(str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
Y
Yibing Liu 已提交
2459
        Variable: The output subsequences.
Y
Yibing Liu 已提交
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469

    Examples:

        .. code-block:: python

             import numpy as np
             seqs = fluid.layers.data(name='x', shape=[10, 5],
                              dtype='float32', lod_level=1)
             offset = fluid.layers.assign(input=np.array([[0, 1]]).astype("int32"))
             length = fluid.layers.assign(input=np.array([[2, 1]]).astype("int32"))
2470
             subseqs = fluid.layers.sequence_slice(input=seqs, offset=offset,
Y
Yibing Liu 已提交
2471 2472 2473 2474
                                                   length=length)
    """
    helper = LayerHelper("sequence_slice", **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2475
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489

    offset.stop_gradient = True
    length.stop_gradient = True

    helper.append_op(
        type="sequence_slice",
        inputs={"X": input,
                "Offset": offset,
                "Length": length},
        outputs={"Out": out})

    return out


F
fengjiayi 已提交
2490
@templatedoc()
Y
Yu Yang 已提交
2491
def pool2d(input,
C
chengduoZH 已提交
2492 2493
           pool_size=-1,
           pool_type="max",
C
chengduoZH 已提交
2494 2495
           pool_stride=1,
           pool_padding=0,
C
caoying03 已提交
2496
           global_pooling=False,
C
chengduoZH 已提交
2497
           use_cudnn=True,
2498
           ceil_mode=False,
2499 2500
           name=None,
           exclusive=True):
Y
Yu Yang 已提交
2501
    """
F
fengjiayi 已提交
2502
    ${comment}
2503 2504

    Args:
2505 2506 2507
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
F
fengjiayi 已提交
2508
                          feature, and W is the width of the feature.
J
JiabinYang 已提交
2509
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
J
JiabinYang 已提交
2510 2511
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
F
fengjiayi 已提交
2512
        pool_type: ${pooling_type_comment}
J
JiabinYang 已提交
2513 2514 2515 2516 2517 2518
        pool_stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        pool_padding (int|list|tuple): The pool padding size. If pool padding size is a tuple,
            it must contain two integers, (pool_padding_on_Height, pool_padding_on_Width).
            Otherwise, the pool padding size will be a square of an int.
2519 2520 2521
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
2522
        name (str|None): A name for this layer(optional). If set None, the
F
fengjiayi 已提交
2523
                        layer will be named automatically.
2524
        exclusive (bool): Whether to exclude padding points in average pooling
2525
                          mode, default is true
F
fengjiayi 已提交
2526

2527
    Returns:
F
fengjiayi 已提交
2528
        Variable: The pooling result.
F
fengjiayi 已提交
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540

    Raises:
        ValueError: If 'pool_type' is not "max" nor "avg"
        ValueError: If 'global_pooling' is False and 'pool_size' is -1
        ValueError: If 'use_cudnn' is not a bool value.

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2541
          pool2d = fluid.layers.pool2d(
2542 2543 2544 2545
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
F
fengjiayi 已提交
2546
                            global_pooling=False)
Y
Yu Yang 已提交
2547 2548 2549 2550 2551
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2552

C
chengduoZH 已提交
2553 2554 2555 2556 2557
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

C
chengduoZH 已提交
2558 2559 2560 2561
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 2, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 2, 'pool_stride')

C
chengduoZH 已提交
2562 2563
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2564

C
Add doc  
chengduoZH 已提交
2565
    l_type = 'pool2d'
2566 2567

    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2568
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2569
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2570 2571

    helper.append_op(
2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582
        type=l_type,
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
            "paddings": pool_padding,
            "use_cudnn": use_cudnn,
            "ceil_mode": ceil_mode,
2583 2584
            "use_mkldnn": False,
            "exclusive": exclusive,
2585 2586 2587 2588 2589
        })

    return pool_out


D
dengkaipeng 已提交
2590
@templatedoc()
2591 2592 2593 2594 2595 2596 2597 2598
def pool3d(input,
           pool_size=-1,
           pool_type="max",
           pool_stride=1,
           pool_padding=0,
           global_pooling=False,
           use_cudnn=True,
           ceil_mode=False,
2599 2600
           name=None,
           exclusive=True):
2601
    """
2602
    ${comment}
2603 2604

    Args:
D
dengkaipeng 已提交
2605 2606 2607 2608 2609
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width
                          of the feature.
D
dengkaipeng 已提交
2610 2611 2612 2613 2614
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size 
            is a tuple or list, it must contain three integers, 
            (pool_size_Depth, pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        pool_type (string): ${pooling_type_comment}
2615 2616 2617 2618 2619 2620 2621
        pool_stride (int): stride of the pooling layer.
        pool_padding (int): padding size.
        global_pooling (bool): ${global_pooling_comment}
        use_cudnn (bool): ${use_cudnn_comment}
        ceil_mode (bool): ${ceil_mode_comment}
        name (str): A name for this layer(optional). If set None, the layer
            will be named automatically.
2622
        exclusive (bool): Whether to exclude padding points in average pooling
2623
                          mode, default is true
2624

2625
    Returns:
2626
        Variable: output of pool3d layer.
D
dengkaipeng 已提交
2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639

    Examples:

        .. code-block:: python

          data = fluid.layers.data(
              name='data', shape=[3, 32, 32, 32], dtype='float32')
          pool3d = fluid.layers.pool3d(
                            input=data,
                            pool_size=2,
                            pool_type='max',
                            pool_stride=1,
                            global_pooling=False)
Y
Yu Yang 已提交
2640 2641 2642 2643 2644
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))
C
chengduoZH 已提交
2645

C
chengduoZH 已提交
2646 2647 2648 2649 2650
    if global_pooling is False and pool_size == -1:
        raise ValueError(
            "When the global_pooling is False, pool_size must be passed "
            "and be a valid value. Received pool_size: " + str(pool_size))

2651 2652 2653
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
    pool_padding = utils.convert_to_list(pool_padding, 3, 'pool_padding')
    pool_stride = utils.convert_to_list(pool_stride, 3, 'pool_stride')
C
chengduoZH 已提交
2654

C
chengduoZH 已提交
2655 2656
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
Y
Yu Yang 已提交
2657

2658 2659
    l_type = "pool3d"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
2660
    dtype = helper.input_dtype()
X
Xin Pan 已提交
2661
    pool_out = helper.create_variable_for_type_inference(dtype)
Y
Yu Yang 已提交
2662 2663

    helper.append_op(
2664
        type=l_type,
Y
Yu Yang 已提交
2665 2666 2667 2668 2669 2670 2671
        inputs={"X": input},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "global_pooling": global_pooling,
            "strides": pool_stride,
C
chengduoZH 已提交
2672
            "paddings": pool_padding,
2673
            "use_cudnn": use_cudnn,
2674
            "ceil_mode": ceil_mode,
2675 2676
            "use_mkldnn": False,
            "exclusive": exclusive,
Y
Yu Yang 已提交
2677 2678 2679 2680 2681
        })

    return pool_out


2682 2683 2684 2685 2686 2687 2688
@templatedoc(op_type="pool2d")
def adaptive_pool2d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2689 2690 2691 2692 2693 2694 2695
    **Adaptive Pool2d Operator**
    The adaptive_pool2d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCHW format, where N is batch
    size, C is the number of channels, H is the height of the feature, and W is
    the width of the feature. Parameters(pool_size) should contain two elements which
    represent height and width, respectively. Also the H and W dimensions of output(Out)
    is same as Parameter(pool_size).
2696

2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
    For average adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
2710 2711 2712 2713 2714 2715 2716 2717 2718

    Args:
        input (Variable): The input tensor of pooling operator. The format of
                          input tensor is NCHW, where N is batch size, C is
                          the number of channels, H is the height of the
                          feature, and W is the width of the feature.
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2719 2720
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

M
minqiyang 已提交
2735
          # suppose input data in shape of [N, C, H, W], `pool_size` is [m, n],
2736
          # output shape is [N, C, m, n], adaptive pool divide H and W dimentions
M
minqiyang 已提交
2737
          # of input data into m * n grids averagely and performs poolings in each
2738 2739
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2740
          #
2741 2742 2743 2744 2745 2746 2747 2748
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
          #
2749 2750
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2751
          pool_out = fluid.layers.adaptive_pool2d(
2752 2753
                            input=data,
                            pool_size=[3, 3],
2754
                            pool_type='avg')
2755 2756 2757 2758 2759 2760 2761 2762 2763 2764
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2765
    pool_size = utils.convert_to_list(pool_size, 2, 'pool_size')
2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790

    if pool_type == "max":
        l_type = 'max_pool2d_with_index'
    else:
        l_type = "pool2d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2791
    return (pool_out, mask) if require_index else pool_out
2792 2793 2794 2795 2796 2797 2798 2799 2800


@templatedoc(op_type="pool3d")
def adaptive_pool3d(input,
                    pool_size,
                    pool_type="max",
                    require_index=False,
                    name=None):
    """
D
dengkaipeng 已提交
2801 2802 2803 2804 2805 2806 2807
    **Adaptive Pool3d Operator**
    The adaptive_pool3d operation calculates the output based on the input, pool_size,
    pool_type parameters. Input(X) and output(Out) are in NCDHW format, where N is batch
    size, C is the number of channels, D is the depth of the feature, H is the height of
    the feature, and W is the width of the feature. Parameters(pool_size) should contain
    three elements which represent height and width, respectively. Also the D, H and W
    dimensions of output(Out) is same as Parameter(pool_size).
2808

2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825
    For average adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}
2826 2827 2828

    Args:
        input (Variable): The input tensor of pooling operator. The format of
D
dengkaipeng 已提交
2829 2830 2831
                          input tensor is NCDHW, where N is batch size, C is
                          the number of channels, D is the depth of the feature,
                          H is the height of the feature, and W is the width of the feature.
2832
        pool_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
D
dengkaipeng 已提交
2833
            it must contain three integers, (Depth, Height, Width).
2834
        pool_type: ${pooling_type_comment}
D
dengkaipeng 已提交
2835 2836
        require_index (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type.
2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850
        name (str|None): A name for this layer(optional). If set None, the
                        layer will be named automatically.

    Returns:
        Variable: The pooling result.

    Raises:
        ValueError: 'pool_type' is not 'max' nor 'avg'.
        ValueError: invalid setting 'require_index' true when 'pool_type' is 'avg'.
        ValueError: 'pool_size' should be a list or tuple with length as 2.

    Examples:
        .. code-block:: python

2851 2852
          # suppose input data in shape of [N, C, D, H, W], `pool_size` is [l, m, n],
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimentions
M
minqiyang 已提交
2853
          # of input data into l * m * n grids averagely and performs poolings in each
2854 2855
          # grid to get output.
          # adaptive average pool performs calculations as follow:
M
minqiyang 已提交
2856
          #
2857 2858 2859 2860 2861 2862 2863 2864 2865
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(j * H / m)
          #                 hend = ceil((j + 1) * H / m)
          #                 wstart = floor(k * W / n)
          #                 wend = ceil((k + 1) * W / n)
M
minqiyang 已提交
2866
          #                 output[:, :, i, j, k] =
2867 2868
          #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
          #
2869 2870
          data = fluid.layers.data(
              name='data', shape=[3, 32, 32], dtype='float32')
D
dengkaipeng 已提交
2871
          pool_out, mask = fluid.layers.adaptive_pool3d(
2872
                            input=data,
D
dengkaipeng 已提交
2873
                            pool_size=[3, 3, 3],
2874
                            pool_type='avg')
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
    """
    if pool_type not in ["max", "avg"]:
        raise ValueError(
            "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.",
            str(pool_type))

    if pool_type == "avg" and require_index:
        raise ValueError(
            "invalid setting 'require_index' true when 'pool_type' is 'avg'.")

2885
    pool_size = utils.convert_to_list(pool_size, 3, 'pool_size')
2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910

    if pool_type == "max":
        l_type = 'max_pool3d_with_index'
    else:
        l_type = "pool3d"

    helper = LayerHelper(l_type, **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}
    if pool_type == "max":
        mask = helper.create_variable_for_type_inference(dtype)
        outputs["Mask"] = mask

    helper.append_op(
        type=l_type,
        inputs={"X": input},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        })

D
dengkaipeng 已提交
2911
    return (pool_out, mask) if require_index else pool_out
2912 2913


Y
Yu Yang 已提交
2914 2915 2916 2917 2918 2919 2920
def batch_norm(input,
               act=None,
               is_test=False,
               momentum=0.9,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
C
caoying03 已提交
2921
               data_layout='NCHW',
Y
Yang Yang 已提交
2922
               in_place=False,
2923 2924
               name=None,
               moving_mean_name=None,
W
wanghaoshuang 已提交
2925
               moving_variance_name=None,
2926
               do_model_average_for_mean_and_var=False,
2927 2928
               fuse_with_relu=False,
               use_global_stats=False):
Y
Yu Yang 已提交
2929
    """
Q
qiaolongfei 已提交
2930 2931 2932 2933
    **Batch Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:
Q
qiaolongfei 已提交
2934

Q
qiaolongfei 已提交
2935
    1. NHWC `[batch, in_height, in_width, in_channels]`
Q
qiaolongfei 已提交
2936

Q
qiaolongfei 已提交
2937 2938
    2. NCHW `[batch, in_channels, in_height, in_width]`

Q
qiaolongfei 已提交
2939 2940 2941
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.
Q
qiaolongfei 已提交
2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift
2954

2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967

    When use_global_stats = True, the :math:`\\mu_{\\beta}`
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global (or running) statistics. (It usually got from the
    pre-trained model.)
    The training and testing (or inference) have the same behavior:

    ..  math::

        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}}  \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta

2968
    Args:
Q
qingqing01 已提交
2969
        input(variable): The rank of input variable can be 2, 3, 4, 5.
Q
qiaolongfei 已提交
2970
        act(string, Default None): Activation type, linear|relu|prelu|...
Q
qingqing01 已提交
2971 2972 2973 2974 2975 2976 2977 2978 2979
        is_test (bool, Default False): A flag indicating whether it is in
            test phrase or not.
        momentum(float, Default 0.9): The value used for the moving_mean and
            moving_var computation. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        epsilon(float, Default 1e-05): A value added to the denominator for
            numerical stability. Default is 1e-5.
C
chengduo 已提交
2980 2981 2982 2983 2984 2985 2986 2987
        param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
             of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
             If it is set to None or one attribute of ParamAttr, batch_norm
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
Q
qiaolongfei 已提交
2988
        data_layout(string, default NCHW): NCHW|NHWC
2989
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
Q
qiaolongfei 已提交
2990 2991 2992 2993
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
Q
qiaolongfei 已提交
2994
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.
2995
        fuse_with_relu (bool): if True, this OP performs relu after batch norm.
2996 2997 2998 2999 3000
        use_global_stats(bool, Default False): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period.
3001 3002

    Returns:
Q
qiaolongfei 已提交
3003
        Variable: A tensor variable which is the result after applying batch normalization on the input.
Q
qiaolongfei 已提交
3004 3005 3006 3007 3008 3009 3010

    Examples:

        .. code-block:: python

            hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.batch_norm(input=hidden1)
Y
Yu Yang 已提交
3011
    """
C
chengduo 已提交
3012
    assert bias_attr is not False, "bias_attr should not be False in batch_norm."
Y
Yu Yang 已提交
3013 3014 3015
    helper = LayerHelper('batch_norm', **locals())
    dtype = helper.input_dtype()

W
Wu Yi 已提交
3016 3017 3018 3019
    # use fp32 for bn parameter
    if dtype == core.VarDesc.VarType.FP16:
        dtype = core.VarDesc.VarType.FP32

Y
Yu Yang 已提交
3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037
    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    # create parameter
    scale = helper.create_parameter(
        attr=helper.param_attr,
        shape=param_shape,
        dtype=dtype,
        default_initializer=Constant(1.0))
    bias = helper.create_parameter(
3038
        attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
Y
Yu Yang 已提交
3039

3040 3041
    mean = helper.create_parameter(
        attr=ParamAttr(
W
wanghaoshuang 已提交
3042 3043 3044
            name=moving_mean_name,
            initializer=Constant(0.0),
            trainable=False,
W
wanghaoshuang 已提交
3045
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3046
        shape=param_shape,
W
Wu Yi 已提交
3047
        dtype=dtype)
3048 3049 3050 3051 3052 3053
    mean.stop_gradient = True

    variance = helper.create_parameter(
        attr=ParamAttr(
            name=moving_variance_name,
            initializer=Constant(1.0),
W
wanghaoshuang 已提交
3054
            trainable=False,
W
wanghaoshuang 已提交
3055
            do_model_average=do_model_average_for_mean_and_var),
Q
QI JUN 已提交
3056
        shape=param_shape,
W
Wu Yi 已提交
3057
        dtype=dtype)
3058
    variance.stop_gradient = True
Y
Yu Yang 已提交
3059 3060 3061 3062 3063 3064

    # create output
    # mean and mean_out share the same memory
    mean_out = mean
    # variance and variance out share the same memory
    variance_out = variance
X
Xin Pan 已提交
3065 3066 3067 3068
    saved_mean = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    saved_variance = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
Y
Yu Yang 已提交
3069

X
Xin Pan 已提交
3070 3071
    batch_norm_out = input if in_place else helper.create_variable_for_type_inference(
        dtype)
Y
Yu Yang 已提交
3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088

    helper.append_op(
        type="batch_norm",
        inputs={
            "X": input,
            "Scale": scale,
            "Bias": bias,
            "Mean": mean,
            "Variance": variance
        },
        outputs={
            "Y": batch_norm_out,
            "MeanOut": mean_out,
            "VarianceOut": variance_out,
            "SavedMean": saved_mean,
            "SavedVariance": saved_variance
        },
3089 3090 3091 3092
        attrs={
            "momentum": momentum,
            "epsilon": epsilon,
            "is_test": is_test,
3093
            "data_layout": data_layout,
X
Xin Pan 已提交
3094
            "use_mkldnn": False,
3095 3096
            "fuse_with_relu": fuse_with_relu,
            "use_global_stats": use_global_stats
3097
        })
Y
Yu Yang 已提交
3098 3099 3100 3101

    return helper.append_activation(batch_norm_out)


H
heqiaozhi 已提交
3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
def data_norm(input,
              act=None,
              epsilon=1e-05,
              param_attr=None,
              data_layout='NCHW',
              in_place=False,
              name=None,
              moving_mean_name=None,
              moving_variance_name=None,
              do_model_average_for_mean_and_var=False):
    """
    **Data Normalization Layer**

    Can be used as a normalizer function for conv2d and fully_connected operations.
    The required data format for this layer is one of the following:

    1. NHWC `[batch, in_height, in_width, in_channels]`

    2. NCHW `[batch, in_channels, in_height, in_width]`

    :math:`input` is the input features over a mini-batch.

    ..  math::

        \\mu_{\\beta} &\\gets \\frac{1}{m} \\sum_{i=1}^{m} x_i \\qquad &//\\
        \ mini-batch\ mean \\\\
        \\sigma_{\\beta}^{2} &\\gets \\frac{1}{m} \\sum_{i=1}^{m}(x_i - \\
        \\mu_{\\beta})^2 \\qquad &//\ mini-batch\ variance \\\\
        \\hat{x_i} &\\gets \\frac{x_i - \\mu_\\beta} {\\sqrt{\\
        \\sigma_{\\beta}^{2} + \\epsilon}} \\qquad &//\ normalize \\\\
        y_i &\\gets \\gamma \\hat{x_i} + \\beta \\qquad &//\ scale\ and\ shift

    Args:
        input(variable): The input variable which is a LoDTensor.
        act(string, Default None): Activation type, linear|relu|prelu|...
        epsilon(float, Default 1e-05):
        param_attr(ParamAttr): The parameter attribute for Parameter `scale`.
        data_layout(string, default NCHW): NCHW|NHWC
        in_place(bool, Default False): Make the input and output of batch norm reuse memory.
        name(string, Default None): A name for this layer(optional). If set None, the layer
            will be named automatically.
        moving_mean_name(string, Default None): The name of moving_mean which store the global Mean.
        moving_variance_name(string, Default None): The name of the moving_variance which store the global Variance.
        do_model_average_for_mean_and_var(bool, Default False): Do model average for mean and variance or not.

    Returns:
        Variable: A tensor variable which is the result after applying data normalization on the input.

    Examples:

        .. code-block:: python

            data = fluid.layers.data(input=x, size=200, param_attr='fc1.w')
            hidden2 = fluid.layers.data_norm(input=hidden1)
    """
    helper = LayerHelper('data_norm', **locals())
    dtype = helper.input_dtype()

    input_shape = input.shape
    if data_layout == 'NCHW':
        channel_num = input_shape[1]
    else:
        if data_layout == 'NHWC':
            channel_num = input_shape[-1]
        else:
            raise ValueError("unsupported data layout:" + data_layout)

    param_shape = [channel_num]

    batch_size_default = 1e4
    batch_sum_default = 0.0
    batch_square_sum_default = 1e4

    if param_attr and isinstance(param_attr, dict):
        batch_size_default = param_attr.get("batch_size", 1e4)
        batch_sum_default = param_attr.get("batch_sum", 0.0)
        batch_square_sum_default = param_attr.get("batch_square", 1e4)

    # create parameter
    batch_size = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_size',
            initializer=Constant(value=float(batch_size_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_sum',
            initializer=Constant(value=float(batch_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    batch_square_sum = helper.create_parameter(
        attr=ParamAttr(
            name=name + '.batch_square_sum',
            initializer=Constant(value=float(batch_square_sum_default)),
            trainable=True),
        shape=param_shape,
        dtype=input.dtype)

    means = helper.create_variable(dtype=dtype, stop_gradient=True)
    scales = helper.create_variable(dtype=dtype, stop_gradient=True)

    data_norm_out = input if in_place else helper.create_variable(dtype=dtype)

    helper.append_op(
        type="data_norm",
        inputs={
            "X": input,
            "BatchSize": batch_size,
            "BatchSum": batch_sum,
            "BatchSquareSum": batch_square_sum
        },
        outputs={"Y": data_norm_out,
                 "Means": means,
                 "Scales": scales},
H
heqiaozhi 已提交
3221
        attrs={"epsilon": epsilon})
H
heqiaozhi 已提交
3222 3223 3224 3225

    return helper.append_activation(data_norm_out)


Y
yuyang18 已提交
3226
@templatedoc()
G
guosheng 已提交
3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
def layer_norm(input,
               scale=True,
               shift=True,
               begin_norm_axis=1,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               name=None):
    """
Y
yuyang18 已提交
3237
    ${comment}
G
guosheng 已提交
3238 3239 3240

    The formula is as follows:

Y
yuyang18 已提交
3241
    ..  math::
G
guosheng 已提交
3242 3243 3244 3245 3246 3247 3248

        \\mu & = \\frac{1}{H}\\sum_{i=1}^{H} a_i

        \\sigma & = \\sqrt{\\frac{1}{H}\sum_{i=1}^{H}(a_i - \\mu)^2}

        h & = f(\\frac{g}{\\sigma}(a - \\mu) + b)

Y
yuyang18 已提交
3249 3250 3251 3252 3253 3254 3255 3256
    * :math:`a`: the vector representation of the summed inputs to the neurons
    in that layer.

    * :math:`H`: the number of hidden units in a layers

    * :math:`g`: the trainable scale parameter.

    * :math:`b`: the trainable bias parameter.
Y
yuyang18 已提交
3257

G
guosheng 已提交
3258 3259
    Args:
        input(Variable): The input tensor variable.
3260
        scale(bool): Whether to learn the adaptive gain :math:`g` after
S
sneaxiy 已提交
3261
            normalization. Default True.
3262
        shift(bool): Whether to learn the adaptive bias :math:`b` after
S
sneaxiy 已提交
3263 3264
            normalization. Default True.
        begin_norm_axis(int): The normalization will be performed along
G
guosheng 已提交
3265
            dimensions from :attr:`begin_norm_axis` to :attr:`rank(input)`.
S
sneaxiy 已提交
3266
            Default 1.
3267
        epsilon(float): The small value added to the variance to prevent
S
sneaxiy 已提交
3268
            division by zero. Default 1e-05.
G
guosheng 已提交
3269
        param_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3270 3271
            gain :math:`g`. If :attr:`scale` is False, :attr:`param_attr` is
            omitted. If :attr:`scale` is True and :attr:`param_attr` is None,
3272 3273
            a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default None.
G
guosheng 已提交
3274
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
S
sneaxiy 已提交
3275 3276
            bias :math:`b`. If :attr:`shift` is False, :attr:`bias_attr` is
            omitted. If :attr:`shift` is True and :attr:`param_attr` is None,
3277
            a default :code:`ParamAttr` would be added as bias. The
S
sneaxiy 已提交
3278
            :attr:`bias_attr` is initialized as 0 if it is added. Default None.
G
guosheng 已提交
3279
        act(str): Activation to be applied to the output of layer normalizaiton.
S
sneaxiy 已提交
3280 3281 3282
                  Default None.
        name(str): The name of this layer. It is optional. Default None, and a
                   unique name would be generated automatically.
G
guosheng 已提交
3283 3284

    Returns:
Y
yuyang18 已提交
3285
        ${y_comment}
G
guosheng 已提交
3286 3287 3288

    Examples:

Y
yuyang18 已提交
3289 3290 3291
        >>> data = fluid.layers.data(name='data', shape=[3, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.layer_norm(input=data, begin_norm_axis=1)
G
guosheng 已提交
3292
    """
L
lujun 已提交
3293
    assert in_dygraph_mode(
L
lujun 已提交
3294
    ) is not True, "please use FC instead of fc in dygraph mode!"
G
guosheng 已提交
3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308
    helper = LayerHelper('layer_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    param_shape = [reduce(lambda x, y: x * y, input_shape[begin_norm_axis:])]
    if scale:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
G
guosheng 已提交
3309
    if shift:
G
guosheng 已提交
3310 3311 3312 3313 3314 3315
        assert bias_attr is not False
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
X
Xin Pan 已提交
3316 3317 3318 3319 3320
    mean_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    layer_norm_out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335

    helper.append_op(
        type="layer_norm",
        inputs=inputs,
        outputs={
            "Y": layer_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "begin_norm_axis": begin_norm_axis})

    return helper.append_activation(layer_norm_out)


D
Dun 已提交
3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347
@templatedoc()
def group_norm(input,
               groups,
               epsilon=1e-05,
               param_attr=None,
               bias_attr=None,
               act=None,
               data_layout='NCHW',
               name=None):
    """
    **Group Normalization Layer**

H
haowang101779990 已提交
3348
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
D
Dun 已提交
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395

    Args:
        input(Variable): The input tensor variable.
        groups(int): The number of groups that divided from channels.
        epsilon(float): The small value added to the variance to prevent
            division by zero.
        param_attr(ParamAttr|None): The parameter attribute for the learnable
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
        bias_attr(ParamAttr|None): The parameter attribute for the learnable
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
        act(str): Activation to be applied to the output of group normalizaiton.
        data_layout(string|NCHW): Only NCHW is supported.
        name (str): The name of this layer. It is optional.

    Returns:
        Variable: A tensor variable which is the result after applying group normalization on the input.

    Examples:

        >>> data = fluid.layers.data(name='data', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.group_norm(input=data, groups=4)
    """
    helper = LayerHelper('group_norm', **locals())
    dtype = helper.input_dtype()

    # create intput and parameters
    inputs = {'X': input}
    input_shape = input.shape
    if data_layout != 'NCHW':
        raise ValueError("unsupported data layout:" + data_layout)
    param_shape = [input_shape[1]]
    if param_attr:
        scale = helper.create_parameter(
            attr=helper.param_attr,
            shape=param_shape,
            dtype=dtype,
            default_initializer=Constant(1.0))
        inputs['Scale'] = scale
    if bias_attr:
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
        inputs['Bias'] = bias

    # create output
H
heqiaozhi 已提交
3396 3397
    mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
    variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
D
dengkaipeng 已提交
3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414
    group_norm_out = helper.create_variable(dtype=dtype)

    helper.append_op(
        type="group_norm",
        inputs=inputs,
        outputs={
            "Y": group_norm_out,
            "Mean": mean_out,
            "Variance": variance_out,
        },
        attrs={"epsilon": epsilon,
               "groups": groups})

    return helper.append_activation(group_norm_out)


@templatedoc()
3415
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
D
dengkaipeng 已提交
3416 3417 3418
    """
    **Spectral Normalization Layer**

D
dengkaipeng 已提交
3419
    This layer calculates the spectral normalization value of weight parameters of
3420
    fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
D
dengkaipeng 已提交
3421
    Parameters. Calculations are showed as follows.
3422

D
dengkaipeng 已提交
3423 3424 3425
    Step 1:
    Generate vector U in shape of [H], and V in shape of [W].
    While H is the :attr:`dim` th dimension of the input weights,
D
dengkaipeng 已提交
3426
    and W is the product result of remaining dimensions.
D
dengkaipeng 已提交
3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438

    Step 2:
    :attr:`power_iters` shoule be a positive interger, do following
    calculations with U and V for :attr:`power_iters` rounds.

    .. math:: 

        \mathbf{v} := \\frac{\mathbf{W}^{T} \mathbf{u}}{\|\mathbf{W}^{T} \mathbf{u}\|_2}

        \mathbf{u} := \\frac{\mathbf{W}^{T} \mathbf{v}}{\|\mathbf{W}^{T} \mathbf{v}\|_2}

    Step 3:
D
dengkaipeng 已提交
3439
    Calculate :math:`\sigma(\mathbf{W})` and normalize weight values.
D
dengkaipeng 已提交
3440 3441 3442 3443

    .. math::

        \sigma(\mathbf{W}) = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
3444

D
dengkaipeng 已提交
3445
        \mathbf{W} = \\frac{\mathbf{W}}{\sigma(\mathbf{W})}
3446 3447
                

D
dengkaipeng 已提交
3448 3449 3450 3451
    Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .

    Args:
        weight(${weight_type}): ${weight_comment}
D
dengkaipeng 已提交
3452 3453 3454
        dim(int): ${dim_comment}
        power_iters(int): ${power_iters_comment}
        eps(float): ${eps_comment}
D
dengkaipeng 已提交
3455 3456 3457
        name (str): The name of this layer. It is optional.

    Returns:
D
dengkaipeng 已提交
3458
        Variable: A tensor variable of weight parameters after spectral normalization.
D
dengkaipeng 已提交
3459 3460 3461 3462 3463 3464 3465 3466

    Examples:

        >>> weight = fluid.layers.data(name='weight', shape=[8, 32, 32],
        >>>                          dtype='float32')
        >>> x = fluid.layers.spectral_norm(weight=data, dim=1, power_iters=2)
    """
    helper = LayerHelper('spectral_norm', **locals())
3467
    dtype = weight.dtype
D
dengkaipeng 已提交
3468 3469 3470

    # create intput and parameters
    inputs = {'Weight': weight}
3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488
    input_shape = weight.shape
    h = input_shape[dim]
    w = np.prod(input_shape) // h

    u = helper.create_parameter(
        attr=ParamAttr(),
        shape=[h],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    u.stop_gradient = True
    inputs['U'] = u
    v = helper.create_parameter(
        attr=ParamAttr(),
        shape=[w],
        dtype=dtype,
        default_initializer=Normal(0., 1.))
    inputs['V'] = v
    v.stop_gradient = True
D
dengkaipeng 已提交
3489 3490

    # create output
3491
    out = helper.create_variable(dtype=dtype)
D
Dun 已提交
3492 3493

    helper.append_op(
3494
        type="spectral_norm",
D
Dun 已提交
3495
        inputs=inputs,
3496 3497 3498 3499 3500 3501
        outputs={"Out": out, },
        attrs={
            "dim": dim,
            "power_iters": power_iters,
            "eps": eps,
        })
D
Dun 已提交
3502

3503
    return out
D
Dun 已提交
3504 3505


Y
Yu Yang 已提交
3506 3507 3508 3509
def conv2d_transpose(input,
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3510 3511 3512
                     padding=0,
                     stride=1,
                     dilation=1,
3513
                     groups=None,
C
caoying03 已提交
3514
                     param_attr=None,
3515
                     bias_attr=None,
C
chengduoZH 已提交
3516
                     use_cudnn=True,
3517
                     act=None,
C
caoying03 已提交
3518
                     name=None):
Y
Yu Yang 已提交
3519
    """
3520 3521 3522 3523 3524 3525 3526 3527
    **Convlution2D transpose layer**

    The convolution2D transpose layer calculates the output based on the input,
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
    are in NCHW format. Where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
    Parameters(dilations, strides, paddings) are two elements. These two elements
    represent height and width, respectively. The details of convolution transpose
3528 3529
    layer, please refer to the following explanation and references
    `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3530 3531 3532
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3533 3534 3535 3536 3537

    For each input :math:`X`, the equation is:

    .. math::

3538
        Out = \sigma (W \\ast X + b)
3539

3540
    Where:
3541 3542 3543

    * :math:`X`: Input value, a tensor with NCHW format.
    * :math:`W`: Filter value, a tensor with MCHW format.
3544 3545 3546 3547
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3548

3549 3550 3551 3552
    Example:

        - Input:

3553
          Input shape: :math:`(N, C_{in}, H_{in}, W_{in})`
3554

3555
          Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)`
3556 3557 3558

        - Output:

3559
          Output shape: :math:`(N, C_{out}, H_{out}, W_{out})`
3560 3561

        Where
Y
Yu Yang 已提交
3562

3563 3564
        .. math::

3565 3566
           H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
           W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H
haowang101779990 已提交
3567 3568
           H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
           W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Y
Yu Yang 已提交
3569 3570

    Args:
3571 3572 3573 3574
        input(Variable): The input image with [N, C, H, W] format.
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3575 3576 3577 3578
            tuple, it must contain two integers, (image_H, image_W). None if use
            filter_size, padding, and stride to calculate output_size.
            if output_size and filter_size are specified at the same time, They
            should follow the formula above.
3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv2d transpose layer. Inspired by
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
C
chengduo 已提交
3597 3598 3599 3600 3601 3602 3603 3604 3605 3606
            Default: groups = 1.
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3607
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
C
chengduo 已提交
3608 3609 3610
            library is installed. Default: True.
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3611
        name(str|None): A name for this layer(optional). If set None, the layer
C
chengduo 已提交
3612
            will be named automatically. Default: True.
Y
Yu Yang 已提交
3613 3614

    Returns:
3615
        Variable: The tensor variable storing the convolution transpose result.
3616 3617

    Raises:
3618 3619
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3620 3621 3622 3623

    Examples:
       .. code-block:: python

3624 3625
          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3626
    """
C
chengduo 已提交
3627
    assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
3628 3629 3630 3631 3632 3633 3634 3635
    input_channel = input.shape[1]

    op_type = 'conv2d_transpose'
    if (input_channel == groups and num_filters == input_channel and
            not use_cudnn):
        op_type = 'depthwise_conv2d_transpose'

    helper = LayerHelper(op_type, **locals())
Y
Yu Yang 已提交
3636 3637 3638
    if not isinstance(input, Variable):
        raise TypeError("Input of conv2d_transpose must be Variable")

C
chengduoZH 已提交
3639 3640 3641
    padding = utils.convert_to_list(padding, 2, 'padding')
    stride = utils.convert_to_list(stride, 2, 'stride')
    dilation = utils.convert_to_list(dilation, 2, 'dilation')
G
guosheng 已提交
3642

C
chengduoZH 已提交
3643 3644
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
G
guosheng 已提交
3645

Y
Yu Yang 已提交
3646 3647 3648 3649 3650
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]
G
guosheng 已提交
3651

Y
Yu Yang 已提交
3652 3653
        h_in = input.shape[2]
        w_in = input.shape[3]
G
guosheng 已提交
3654

C
chengduoZH 已提交
3655
        filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3656
                         padding[0] - 1) // dilation[0] + 1
C
chengduoZH 已提交
3657
        filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3658
                         padding[1] - 1) // dilation[1] + 1
Y
Yu Yang 已提交
3659
        filter_size = [filter_size_h, filter_size_w]
C
chengduoZH 已提交
3660 3661 3662
    else:
        filter_size = utils.convert_to_list(filter_size, 2,
                                            'conv2d_transpose.filter_size')
C
chengduo 已提交
3663

3664 3665 3666 3667 3668 3669 3670
    if output_size is None:
        output_size = []
    elif isinstance(output_size, list) or isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
        raise ValueError("output_size should be list or int")
    padding = utils.convert_to_list(padding, 2, 'padding')
3671
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3672
    filter_shape = [input_channel, num_filters // groups] + filter_size
C
chengduo 已提交
3673

Y
Yu Yang 已提交
3674 3675 3676
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3677
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3678
    helper.append_op(
3679
        type=op_type,
Y
Yu Yang 已提交
3680 3681
        inputs={'Input': [input],
                'Filter': [img_filter]},
3682
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3683
        attrs={
3684
            'output_size': output_size,
3685 3686 3687 3688 3689
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn
Y
Yu Yang 已提交
3690 3691
        })

3692 3693 3694
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
    return out
Y
Yu Yang 已提交
3695 3696


3697
def conv3d_transpose(input,
Y
Yu Yang 已提交
3698 3699 3700
                     num_filters,
                     output_size=None,
                     filter_size=None,
C
chengduoZH 已提交
3701 3702 3703
                     padding=0,
                     stride=1,
                     dilation=1,
3704
                     groups=None,
C
caoying03 已提交
3705
                     param_attr=None,
3706
                     bias_attr=None,
C
chengduoZH 已提交
3707
                     use_cudnn=True,
3708
                     act=None,
C
caoying03 已提交
3709
                     name=None):
Y
Yu Yang 已提交
3710
    """
3711
    **Convlution3D transpose layer**
3712

3713
    The convolution3D transpose layer calculates the output based on the input,
3714
    filter, and dilations, strides, paddings. Input(Input) and output(Output)
3715 3716 3717 3718 3719 3720
    are in NCDHW format. Where N is batch size, C is the number of channels,
    D is the depth of the feature, H is the height of the feature, and W
    is the width of the feature. Parameters(dilations, strides, paddings) are
    two elements. These two elements represent height and width, respectively.
    The details of convolution transpose layer, please refer to the following
    explanation and references `therein <http://www.matthewzeiler.com/wp-content/uploads/2017/07/cvpr2010.pdf>`_.
3721 3722 3723
    If bias attribution and activation type are provided, bias is added to
    the output of the convolution, and the corresponding activation function
    is applied to the final result.
3724 3725 3726 3727 3728

    For each input :math:`X`, the equation is:

    .. math::

3729
        Out = \sigma (W \\ast X + b)
3730 3731 3732

    In the above equation:

3733 3734
    * :math:`X`: Input value, a tensor with NCDHW format.
    * :math:`W`: Filter value, a tensor with MCDHW format.
3735 3736 3737 3738
    * :math:`\\ast`: Convolution operation.
    * :math:`b`: Bias value, a 2-D tensor with shape [M, 1].
    * :math:`\\sigma`: Activation function.
    * :math:`Out`: Output value, the shape of :math:`Out` and :math:`X` may be different.
Y
Yu Yang 已提交
3739

3740 3741 3742 3743
    Example:

        - Input:

3744
          Input shape: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})`
3745

3746
          Filter shape: :math:`(C_{in}, C_{out}, D_f, H_f, W_f)`
3747 3748 3749

        - Output:

3750
          Output shape: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})`
3751 3752

        Where
Y
Yu Yang 已提交
3753

3754 3755
        .. math::

3756 3757 3758
           D_{out} &= (D_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (D_f - 1) + 1 \\\\
           H_{out} &= (H_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (H_f - 1) + 1 \\\\
           W_{out} &= (W_{in} - 1) * strides[2] - 2 * paddings[2] + dilations[2] * (W_f - 1) + 1
Y
Yu Yang 已提交
3759 3760

    Args:
3761
        input(Variable): The input image with [N, C, D, H, W] format.
3762 3763 3764
        num_filters(int): The number of the filter. It is as same as the output
            image channel.
        output_size(int|tuple|None): The output image size. If output size is a
3765
            tuple, it must contain three integers, (image_D, image_H, image_W). This
3766 3767
            parameter only works when filter_size is None.
        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
3768
            it must contain three integers, (filter_size_D, filter_size_H, filter_size_W).
3769 3770 3771
            Otherwise, the filter will be a square. None if use output size to
            calculate filter_size.
        padding(int|tuple): The padding size. If padding is a tuple, it must
3772 3773
            contain three integers, (padding_D, padding_H, padding_W). Otherwise, the
            padding_D = padding_H = padding_W = padding. Default: padding = 0.
3774
        stride(int|tuple): The stride size. If stride is a tuple, it must
3775 3776
            contain three integers, (stride_D, stride_H, stride_W). Otherwise, the
            stride_D = stride_H = stride_W = stride. Default: stride = 1.
3777
        dilation(int|tuple): The dilation size. If dilation is a tuple, it must
3778 3779 3780
            contain three integers, (dilation_D, dilation_H, dilation_W). Otherwise, the
            dilation_D = dilation_H = dilation_W = dilation. Default: dilation = 1.
        groups(int): The groups number of the Conv3d transpose layer. Inspired by
3781 3782 3783 3784 3785
            grouped convolution in Alex Krizhevsky's Deep CNN paper, in which
            when group=2, the first half of the filters is only connected to the
            first half of the input channels, while the second half of the
            filters is only connected to the second half of the input channels.
            Default: groups=1
C
chengduo 已提交
3786 3787 3788 3789 3790 3791 3792 3793 3794
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as param_attr. If the Initializer of the param_attr
            is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv3d_transpose
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
3795 3796
        use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
C
chengduo 已提交
3797 3798
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None.
3799 3800
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yu Yang 已提交
3801 3802

    Returns:
3803
        Variable: The tensor variable storing the convolution transpose result.
3804 3805

    Raises:
3806 3807
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
3808 3809 3810 3811

    Examples:
       .. code-block:: python

3812 3813
          data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
          conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
Y
Yu Yang 已提交
3814
    """
C
chengduo 已提交
3815
    assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
3816 3817
    l_type = "conv3d_transpose"
    helper = LayerHelper(l_type, **locals())
Y
Yu Yang 已提交
3818
    if not isinstance(input, Variable):
3819
        raise TypeError("Input of conv3d_transpose must be Variable")
Y
Yu Yang 已提交
3820 3821
    input_channel = input.shape[1]

3822 3823 3824
    padding = utils.convert_to_list(padding, 3, 'padding')
    stride = utils.convert_to_list(stride, 3, 'stride')
    dilation = utils.convert_to_list(dilation, 3, 'dilation')
C
chengduoZH 已提交
3825

C
chengduoZH 已提交
3826 3827 3828
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")

Y
Yu Yang 已提交
3829 3830 3831 3832 3833 3834
    if filter_size is None:
        if output_size is None:
            raise ValueError("output_size must be set when filter_size is None")
        if isinstance(output_size, int):
            output_size = [output_size, output_size]

3835 3836 3837
        d_in = input.shape[2]
        h_in = input.shape[3]
        w_in = input.shape[4]
C
chengduoZH 已提交
3838

3839
        filter_size_d = (output_size[0] - (d_in - 1) * stride[0] + 2 *
M
minqiyang 已提交
3840
                         padding[0] - 1) // dilation[0] + 1
3841
        filter_size_h = (output_size[1] - (h_in - 1) * stride[1] + 2 *
M
minqiyang 已提交
3842
                         padding[1] - 1) // dilation[1] + 1
3843
        filter_size_w = (output_size[2] - (w_in - 1) * stride[2] + 2 *
M
minqiyang 已提交
3844
                         padding[2] - 1) // dilation[2] + 1
3845
        filter_size = [filter_size_d, filter_size_h, filter_size_w]
C
chengduoZH 已提交
3846
    else:
3847 3848
        filter_size = utils.convert_to_list(filter_size, 3,
                                            'conv3d_transpose.filter_size')
Y
Yu Yang 已提交
3849

3850
    groups = 1 if groups is None else groups
M
minqiyang 已提交
3851
    filter_shape = [input_channel, num_filters // groups] + filter_size
Y
Yu Yang 已提交
3852 3853 3854
    img_filter = helper.create_parameter(
        dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)

X
Xin Pan 已提交
3855
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yu Yang 已提交
3856
    helper.append_op(
3857
        type=l_type,
Y
Yu Yang 已提交
3858 3859
        inputs={'Input': [input],
                'Filter': [img_filter]},
3860
        outputs={'Output': pre_bias},
C
chengduoZH 已提交
3861 3862 3863 3864
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
3865
            'groups': groups,
C
chengduoZH 已提交
3866 3867
            'use_cudnn': use_cudnn
        })
Y
Yu Yang 已提交
3868

3869 3870
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    out = helper.append_activation(pre_act)
Y
Yu Yang 已提交
3871
    return out
Y
yangyaming 已提交
3872 3873


Y
yangyaming 已提交
3874
def sequence_expand(x, y, ref_level=-1, name=None):
3875
    """Sequence Expand Layer. This layer will expand the input variable **x**
Y
yangyaming 已提交
3876 3877 3878 3879
    according to specified level lod of **y**. Please note that lod level of
    **x** is at most 1 and rank of **x** is at least 2. When rank of **x**
    is greater than 2, then it would be viewed as a 2-D tensor.
    Following examples will explain how sequence_expand works:
3880 3881 3882 3883 3884

    .. code-block:: text

        * Case 1
            x is a LoDTensor:
3885
                x.lod  = [[2,        2]]
Y
yangyaming 已提交
3886
                x.data = [[a], [b], [c], [d]]
3887 3888 3889
                x.dims = [4, 1]

            y is a LoDTensor:
3890 3891
                y.lod = [[2,    2],
                         [3, 3, 1, 1]]
3892

Y
yangyaming 已提交
3893
            ref_level: 0
3894

Y
yangyaming 已提交
3895
            then output is a 1-level LoDTensor:
3896
                out.lod =  [[2,        2,        2,        2]]
Y
yangyaming 已提交
3897
                out.data = [[a], [b], [a], [b], [c], [d], [c], [d]]
3898 3899 3900 3901
                out.dims = [8, 1]

        * Case 2
            x is a Tensor:
Y
yangyaming 已提交
3902
                x.data = [[a], [b], [c]]
3903 3904 3905
                x.dims = [3, 1]

            y is a LoDTensor:
3906
                y.lod = [[2, 0, 3]]
3907

Y
yangyaming 已提交
3908
            ref_level: -1
3909

Y
yangyaming 已提交
3910 3911 3912
            then output is a Tensor:
                out.data = [[a], [a], [c], [c], [c]]
                out.dims = [5, 1]
3913 3914 3915
    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
Y
yangyaming 已提交
3916 3917
        ref_level (int): Lod level of `y` to be referred by `x`. If set to -1,
                         refer the last level of lod.
C
caoying03 已提交
3918
        name(str|None): A name for this layer(optional). If set None, the layer
Y
yangyaming 已提交
3919
                        will be named automatically.
3920 3921 3922 3923 3924 3925 3926 3927 3928 3929

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
Y
yangyaming 已提交
3930
            out = layers.sequence_expand(x=x, y=y, ref_level=0)
3931
    """
Y
yangyaming 已提交
3932
    helper = LayerHelper('sequence_expand', input=x, **locals())
3933
    dtype = helper.input_dtype()
X
Xin Pan 已提交
3934
    tmp = helper.create_variable_for_type_inference(dtype)
3935
    helper.append_op(
Y
yangyaming 已提交
3936 3937 3938 3939 3940
        type='sequence_expand',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp},
        attrs={'ref_level': ref_level})
3941
    return tmp
3942 3943


C
chengduo 已提交
3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
def sequence_expand_as(x, y, name=None):
    """Sequence Expand As Layer. This layer will expand the input variable **x**
    according to the zeroth level lod of **y**. Current implementation requires
    the level number of Input(Y)'s lod must be 1, and the first dimension of
    Input(X) should be equal to the size of Input(Y)'s zeroth level lod, and
    lod of Input(X) is not considered.

    Following examples will explain how sequence_expand_as works:

    .. code-block:: text

        * Case 1:

            Given a 1-level LoDTensor input(X)
                X.data = [[a], [b], [c], [d]]
                X.dims = [4, 1]
            and input(Y)
                Y.lod = [[0, 3, 6, 7, 8]]
            ref_level: 0
            then we get 1-level LoDTensor
                Out.lod =  [[0,            3,              6,  7,  8]]
                Out.data = [[a], [a], [a], [b], [b], [b], [c], [d]]
                Out.dims = [8, 1]

        * Case 2:

            Given a common Tensor input(X)
                X.data = [[a, b], [c, d], [e, f]]
                X.dims = [3, 2]
            and input(Y)
                Y.lod = [[0, 2, 3, 6]]
            ref_level: 0
            then we get a common LoDTensor
                Out.lod =  [[0,             2,     3,                    6]]
                Out.data = [[a, b], [a, b] [c, d], [e, f], [e, f], [e, f]]
                Out.dims = [6, 2]

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
        y (Variable): The input variable which is a LoDTensor.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The expanded variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            y = fluid.layers.data(name='y', shape=[10, 20],
                             dtype='float32', lod_level=1)
            out = layers.sequence_expand_as(x=x, y=y)
    """
    helper = LayerHelper('sequence_expand_as', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4000
    tmp = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
4001 4002 4003 4004 4005 4006 4007 4008
    helper.append_op(
        type='sequence_expand_as',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': tmp})
    return tmp


F
fengjiayi 已提交
4009
@templatedoc()
4010
def sequence_pad(x, pad_value, maxlen=None, name=None):
F
fengjiayi 已提交
4011 4012 4013 4014 4015
    """
    ${comment}

    Args:
        x(Variable): Input variable which should contain lod information.
M
minqiyang 已提交
4016 4017 4018
        pad_value(Variable): The Variable that holds values that will be fill
            into padded steps. It can be a scalar or a tensor whose shape
            equals to time steps in sequences. If it's a scalar, it will be
F
fengjiayi 已提交
4019
            automatically broadcasted to the shape of time step.
M
minqiyang 已提交
4020 4021 4022 4023
        maxlen(int, default None): The length of padded sequences. It can be
            None or any positive int. When it is None, all sequences will be
            padded up to the length of the longest one among them; when it a
            certain positive value, it must be greater than the length of the
4024 4025 4026
            longest original sequence.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
M
minqiyang 已提交
4027

F
fengjiayi 已提交
4028
    Returns:
M
minqiyang 已提交
4029
        Variable: The padded sequence batch and the original lengths before
4030
                  padding. All sequences has the same length.
M
minqiyang 已提交
4031

F
fengjiayi 已提交
4032 4033 4034 4035 4036 4037 4038
    Examples:
        .. code-block:: python

            import numpy

            x = fluid.layers.data(name='y', shape=[10, 5],
                             dtype='float32', lod_level=1)
G
gmcather 已提交
4039
            pad_value = fluid.layers.assign(
D
dongzhihong 已提交
4040
                input=numpy.array([0.0], dtype=numpy.float32))
F
fengjiayi 已提交
4041 4042 4043 4044 4045
            out = fluid.layers.sequence_pad(x=x, pad_value=pad_value)
    """

    helper = LayerHelper('sequence_pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4046 4047
    out = helper.create_variable_for_type_inference(dtype)
    length = helper.create_variable_for_type_inference(dtype)
4048 4049 4050 4051

    pad_value.stop_gradient = True
    length.stop_gradient = True

F
fengjiayi 已提交
4052 4053 4054 4055 4056 4057
    if maxlen is None:
        maxlen = -1
    helper.append_op(
        type='sequence_pad',
        inputs={'X': x,
                'PadValue': pad_value},
4058 4059
        outputs={'Out': out,
                 'Length': length},
F
fengjiayi 已提交
4060
        attrs={'padded_length': maxlen})
4061
    return out, length
F
fengjiayi 已提交
4062 4063


4064
def sequence_unpad(x, length, name=None):
Y
Yibing Liu 已提交
4065
    """
4066
    **Sequence Unpad Layer**
Y
Yibing Liu 已提交
4067

4068 4069
    This layer removes the padding data in the input sequences and convert
    them into sequences with actual length as output, identitied by lod
Y
Yibing Liu 已提交
4070 4071 4072 4073 4074 4075 4076 4077 4078
    information.

    .. code-block:: text

	Example:

	Given input Variable **x**:
	    x.data = [[ 1.0,  2.0,  3.0,  4.0,  5.0],
		      [ 6.0,  7.0,  8.0,  9.0, 10.0],
4079 4080 4081
		      [11.0, 12.0, 13.0, 14.0, 15.0]],

	in which there are 3 sequences padded to length 5, and the acutal length
4082
	specified by input Variable **length**:
Y
Yibing Liu 已提交
4083 4084 4085 4086 4087 4088

	    length.data = [[2], [3], [4]],

	after unpadding, the output Variable will be:

	    out.data = [[1.0, 2.0, 6.0, 7.0, 8.0, 11.0, 12.0, 13.0, 14.0]]
4089
	    out.lod = [[2, 3, 4]]
Y
Yibing Liu 已提交
4090 4091 4092 4093 4094 4095

    Args:
        x(Variable): Input Variable which contains the padded sequences with
            equal length.
        length(Variable): The Variable that specifies the actual ength of
            sequences after unpadding.
4096 4097
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.
Y
Yibing Liu 已提交
4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111

    Returns:
        Variable: The Variable contains the unpadded sequences.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10, 5], dtype='float32')
            len = fluid.layers.data(name='length', shape=[1], dtype='int64')
            out = fluid.layers.sequence_unpad(x=x, length=len)
    """

    helper = LayerHelper('sequence_unpad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
4112
    out = helper.create_variable_for_type_inference(dtype)
Y
Yibing Liu 已提交
4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123

    length.stop_gradient = True

    helper.append_op(
        type='sequence_unpad',
        inputs={'X': x,
                'Length': length},
        outputs={'Out': out})
    return out


4124 4125 4126 4127 4128 4129 4130
def beam_search(pre_ids,
                pre_scores,
                ids,
                scores,
                beam_size,
                end_id,
                level=0,
4131
                is_accumulated=True,
4132 4133
                name=None,
                return_parent_idx=False):
4134
    """
4135 4136
    Beam search is a classical algorithm for selecting candidate words in a
    machine translation task.
Y
Yan Chunwei 已提交
4137 4138 4139

    Refer to `Beam search <https://en.wikipedia.org/wiki/Beam_search>`_
    for more details.
M
minqiyang 已提交
4140 4141

    This layer does the search in beams for one time step. Specifically, it
4142 4143 4144
    selects the top-K candidate word ids of current step from :attr:`ids`
    according to their :attr:`scores` for all source sentences, where K is
    :attr:`beam_size` and :attr:`ids, scores` are predicted results from the
4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155
    computation cell. If :attr:`ids` is not set, it will be calculated out
    according to :attr:`scores`. Additionally, :attr:`pre_ids` and
    :attr:`pre_scores` are the output of beam_search at previous step, they
    are needed for special use to handle ended candidate translations.

    Note that if :attr:`is_accumulated` is :attr:`True`, the :attr:`scores`
    passed in should be accumulated scores. Else, the :attr:`scores` are
    considered as the straightforward scores and will be transformed to the
    log field and accumulated the :attr:`pre_scores` in this operator.
    Length penalty should be done with extra operators before calculating the
    accumulated scores if needed.
4156 4157 4158 4159

    Please see the following demo for a fully beam search usage example:

        fluid/tests/book/test_machine_translation.py
Y
Yan Chunwei 已提交
4160

4161
    Args:
4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184
        pre_ids(Variable): The LodTensor variable which is the output of
            beam_search at previous step. It should be a LodTensor with shape
            :math:`(batch_size, 1)` and lod
            :math:`[[0, 1, ... , batch_size], [0, 1, ..., batch_size]]` at the
            first step.
        pre_scores(Variable): The LodTensor variable which is the output of
            beam_search at previous step.
        ids(Variable): The LodTensor variable containing the candidates ids.
            Its shape should be :math:`(batch_size \\times beam_size, K)`,
            where :math:`K` supposed to be :attr:`beam_size`.
        scores(Variable): The LodTensor variable containing the accumulated
            scores corresponding to :attr:`ids` and its shape is the same as
            the shape of :attr:`ids`.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        level(int, default 0): It can be ignored and mustn't change currently.
            It means the source level of lod, which is explained as following.
            The lod level of :attr:`ids` should be 2. The first level is source
            level which describes how many prefixes (branchs) for each source
            sentece (beam), and the second level is sentence level which
            describes how these candidates belong to the prefix. The paths
            linking prefixes and selected candidates are organized and reserved
            in lod.
4185 4186
        is_accumulated(bool, default True): Whether the input :attr:`score` is
             accumulated scores.
4187 4188
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
4189 4190 4191 4192
        return_parent_idx(bool): Whether to return an extra Tensor variable 
                        preserving the selected_ids' parent indice in pre_ids
                        in output, which can be used to gather cell states at
                        the next time step.
F
fengjiayi 已提交
4193

4194
    Returns:
4195 4196 4197 4198
        Variable: The LodTensor tuple containing the selected ids and the \
            corresponding scores. If :attr:`return_parent_idx` is :attr:`True`, \
            an extra Tensor variable preserving the selected_ids' parent indice \
            is included.
Y
Yan Chunwei 已提交
4199 4200 4201 4202

    Examples:
        .. code-block:: python

4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219
            # Suppose `probs` contains predicted results from the computation
            # cell and `pre_ids` and `pre_scores` is the output of beam_search
            # at previous step.
            topk_scores, topk_indices = layers.topk(probs, k=beam_size)
            accu_scores = layers.elementwise_add(
                x=layers.log(x=topk_scores)),
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=end_id)
    """
Q
Qiao Longfei 已提交
4220
    helper = LayerHelper('beam_search', **locals())
4221 4222 4223 4224 4225 4226
    score_type = pre_scores.dtype
    id_type = pre_ids.dtype

    inputs = {"pre_ids": pre_ids, "pre_scores": pre_scores, "scores": scores}
    if ids is not None:
        inputs["ids"] = ids
Q
Qiao Longfei 已提交
4227

X
Xin Pan 已提交
4228 4229 4230
    selected_scores = helper.create_variable_for_type_inference(
        dtype=score_type)
    selected_ids = helper.create_variable_for_type_inference(dtype=id_type)
4231 4232 4233 4234 4235
    # parent_idx is a tensor used to gather cell states at the next time
    # step. Though lod in selected_ids can also be used to gather by
    # sequence_expand, it is not efficient.
    # gather_op's index input only supports int32 dtype currently
    parent_idx = helper.create_variable_for_type_inference(dtype="int32")
Q
Qiao Longfei 已提交
4236 4237 4238

    helper.append_op(
        type='beam_search',
4239
        inputs=inputs,
Q
Qiao Longfei 已提交
4240 4241 4242
        outputs={
            'selected_ids': selected_ids,
            'selected_scores': selected_scores,
4243
            'parent_idx': parent_idx
Q
Qiao Longfei 已提交
4244 4245 4246 4247 4248 4249
        },
        attrs={
            # TODO(ChunweiYan) to assure other value support
            'level': level,
            'beam_size': beam_size,
            'end_id': end_id,
4250
            'is_accumulated': is_accumulated,
Q
Qiao Longfei 已提交
4251
        })
4252 4253 4254 4255
    if return_parent_idx:
        return selected_ids, selected_scores, parent_idx
    else:
        return selected_ids, selected_scores
Q
Qiao Longfei 已提交
4256 4257


4258 4259 4260 4261 4262 4263 4264
def beam_search_decode(ids, scores, beam_size, end_id, name=None):
    """
    Beam Search Decode Layer. This layer constructs the full hypotheses for
    each source sentence by walking back along the LoDTensorArray :attr:`ids`
    whose lods can be used to restore the path in the beam search tree.
    Please see the following demo for a fully beam search usage example:
        fluid/tests/book/test_machine_translation.py
G
guosheng 已提交
4265

4266 4267 4268 4269 4270 4271 4272 4273 4274
    Args:
        ids(Variable): The LodTensorArray variable containing the selected ids
            of all steps.
        scores(Variable): The LodTensorArray variable containing the selected
            scores of all steps.
        beam_size(int): The beam width used in beam search.
        end_id(int): The id of end token.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
G
guosheng 已提交
4275

4276 4277 4278 4279 4280 4281
    Returns:
        Variable: The LodTensor pair containing the generated id sequences \
            and the corresponding scores. The shapes and lods of the two \
            LodTensor are same. The lod level is 2 and the two levels \
            separately indicate how many hypotheses each source sentence has \
            and how many ids each hypothesis has.
G
guosheng 已提交
4282

4283 4284
    Examples:
        .. code-block:: python
T
Tink_Y 已提交
4285

4286 4287 4288 4289 4290 4291
            # Suppose `ids` and `scores` are LodTensorArray variables reserving
            # the selected ids and scores of all steps
            finished_ids, finished_scores = layers.beam_search_decode(
                ids, scores, beam_size=5, end_id=0)
    """
    helper = LayerHelper('beam_search_decode', **locals())
X
Xin Pan 已提交
4292 4293
    sentence_ids = helper.create_variable_for_type_inference(dtype=ids.dtype)
    sentence_scores = helper.create_variable_for_type_inference(dtype=ids.dtype)
4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308

    helper.append_op(
        type="beam_search_decode",
        inputs={"Ids": ids,
                "Scores": scores},
        outputs={
            "SentenceIds": sentence_ids,
            "SentenceScores": sentence_scores
        },
        attrs={"beam_size": beam_size,
               "end_id": end_id})

    return sentence_ids, sentence_scores


Y
yangyaming 已提交
4309 4310 4311 4312
def lstm_unit(x_t,
              hidden_t_prev,
              cell_t_prev,
              forget_bias=0.0,
Y
yangyaming 已提交
4313
              param_attr=None,
C
caoying03 已提交
4314 4315
              bias_attr=None,
              name=None):
Y
yangyaming 已提交
4316 4317 4318 4319
    """Lstm unit layer. The equation of a lstm step is:

        .. math::

4320
            i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
Y
yangyaming 已提交
4321

4322
            f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
Y
yangyaming 已提交
4323

4324
            c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
Y
yangyaming 已提交
4325

4326
            o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
Y
yangyaming 已提交
4327 4328 4329

            h_t & = o_t tanh(c_t)

4330 4331 4332 4333 4334 4335
    The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
    :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
    should be same. The implementation separates the linear transformation and
    non-linear transformation apart. Here, we take :math:`i_t` as an example.
    The linear transformation is applied by calling a `fc` layer and the
    equation is:
Y
yangyaming 已提交
4336 4337 4338

        .. math::

4339
            L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
Y
yangyaming 已提交
4340 4341 4342 4343 4344 4345 4346 4347

    The non-linear transformation is applied by calling `lstm_unit_op` and the
    equation is:

        .. math::

            i_t = \sigma(L_{i_t})

Y
yangyaming 已提交
4348
    This layer has two outputs including :math:`h_t` and :math:`o_t`.
Y
yangyaming 已提交
4349 4350

    Args:
Y
yangyaming 已提交
4351 4352 4353 4354 4355 4356
        x_t (Variable): The input value of current step, a 2-D tensor with shape
            M x N, M for batch size and N for input size.
        hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
            with shape M x S, M for batch size and S for size of lstm unit.
        cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
            shape M x S, M for batch size and S for size of lstm unit.
Y
yangyaming 已提交
4357
        forget_bias (float): The forget bias of lstm unit.
C
chengduo 已提交
4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369
        param_attr(ParamAttr|None): The parameter attribute for the learnable
                               hidden-hidden weights.
                               If it is set to None or one attribute of ParamAttr,
                               lstm_unit will create ParamAttr as param_attr.
                               If the Initializer of the param_attr is not set, the
                               parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The bias attribute for the learnable bias
                              weights. If it is set to False, no bias will be added
                              to the output units. If it is set to None or one attribute of ParamAttr,
                              lstm_unit will create ParamAttr as bias_attr.
                              If the Initializer of the bias_attr is not set,
                              the bias is initialized zero. Default: None.
C
caoying03 已提交
4370 4371
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
Y
yangyaming 已提交
4372 4373

    Returns:
Y
yangyaming 已提交
4374
        tuple: The hidden value and cell value of lstm unit.
Y
yangyaming 已提交
4375 4376

    Raises:
4377 4378 4379 4380
        ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**
                    not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev**
                    and **cell_t_prev** not be the same or the 2nd dimensions of
                    **hidden_t_prev** and **cell_t_prev** not be the same.
Y
yangyaming 已提交
4381 4382 4383 4384 4385 4386

    Examples:

        .. code-block:: python

             x_t = fluid.layers.fc(input=x_t_data, size=10)
4387
             prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
Y
yangyaming 已提交
4388
             prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
Y
yangyaming 已提交
4389
             hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
Y
yangyaming 已提交
4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405
                                                    hidden_t_prev=prev_hidden,
                                                    cell_t_prev=prev_cell)
    """
    helper = LayerHelper('lstm_unit', **locals())

    if len(x_t.shape) != 2:
        raise ValueError("Rank of x_t must be 2.")

    if len(hidden_t_prev.shape) != 2:
        raise ValueError("Rank of hidden_t_prev must be 2.")

    if len(cell_t_prev.shape) != 2:
        raise ValueError("Rank of cell_t_prev must be 2.")

    if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
            0] != cell_t_prev.shape[0]:
Y
yangyaming 已提交
4406
        raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
4407 4408 4409 4410
                         "cell_t_prev must be the same.")

    if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
        raise ValueError("The 2nd dimensions of hidden_t_prev and "
Y
yangyaming 已提交
4411 4412
                         "cell_t_prev must be the same.")

Y
yangyaming 已提交
4413 4414 4415
    if bias_attr is None:
        bias_attr = ParamAttr()

Y
yangyaming 已提交
4416
    size = cell_t_prev.shape[1]
4417
    concat_out = concat(input=[x_t, hidden_t_prev], axis=1)
Y
yangyaming 已提交
4418 4419
    fc_out = fc(input=concat_out,
                size=4 * size,
Y
yangyaming 已提交
4420
                param_attr=param_attr,
4421
                bias_attr=bias_attr)
Y
yangyaming 已提交
4422
    dtype = x_t.dtype
X
Xin Pan 已提交
4423 4424
    c = helper.create_variable_for_type_inference(dtype)
    h = helper.create_variable_for_type_inference(dtype)
Y
yangyaming 已提交
4425 4426 4427 4428 4429 4430 4431 4432 4433

    helper.append_op(
        type='lstm_unit',
        inputs={"X": fc_out,
                "C_prev": cell_t_prev},
        outputs={"C": c,
                 "H": h},
        attrs={"forget_bias": forget_bias})

Y
yangyaming 已提交
4434
    return h, c
G
guosheng 已提交
4435 4436


C
caoying03 已提交
4437
def reduce_sum(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4438
    """
Y
yangyaming 已提交
4439
    Computes the sum of tensor elements over the given dimension.
G
guosheng 已提交
4440 4441 4442

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4443
        dim (list|int|None): The dimensions along which the sum is performed. If
Y
yangyaming 已提交
4444 4445
            :attr:`None`, sum all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4446 4447
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4448
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
Y
yangyaming 已提交
4449
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4450
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4451 4452
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4453 4454 4455

    Returns:
        Variable: The reduced Tensor variable.
F
fengjiayi 已提交
4456

G
guosheng 已提交
4457 4458 4459 4460 4461 4462
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
Q
qiaolongfei 已提交
4463
            # Each example is followed by the corresponding output tensor.
G
guosheng 已提交
4464 4465 4466 4467
            fluid.layers.reduce_sum(x)  # [3.5]
            fluid.layers.reduce_sum(x, dim=0)  # [0.3, 0.5, 1.1, 1.6]
            fluid.layers.reduce_sum(x, dim=-1)  # [1.9, 1.6]
            fluid.layers.reduce_sum(x, dim=1, keep_dim=True)  # [[1.9], [1.6]]
W
whs 已提交
4468 4469 4470 4471

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1, 2], [3, 4]],
            #      [[5, 6], [7, 8]]]
Q
qiaolongfei 已提交
4472
            # Each example is followed by the corresponding output tensor.
W
whs 已提交
4473 4474 4475
            fluid.layers.reduce_sum(x, dim=[1, 2]) # [10, 26]
            fluid.layers.reduce_sum(x, dim=[0, 1]) # [16, 20]

G
guosheng 已提交
4476 4477
    """
    helper = LayerHelper('reduce_sum', **locals())
X
Xin Pan 已提交
4478
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4479 4480
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4481 4482 4483 4484 4485
    helper.append_op(
        type='reduce_sum',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4486
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4487 4488 4489 4490
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4491 4492


C
caoying03 已提交
4493
def reduce_mean(input, dim=None, keep_dim=False, name=None):
G
guosheng 已提交
4494
    """
Y
Yibing Liu 已提交
4495
    Computes the mean of the input tensor's elements along the given dimension.
G
guosheng 已提交
4496 4497 4498

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
Y
Yibing Liu 已提交
4499 4500 4501
        dim (list|int|None): The dimension along which the mean is computed. If
            `None`, compute the mean over all elements of :attr:`input`
            and return a variable with a single element, otherwise it
Y
yangyaming 已提交
4502
            must be in the range :math:`[-rank(input), rank(input))`. If
4503
            :math:`dim[i] < 0`, the dimension to reduce is
Y
Yibing Liu 已提交
4504
            :math:`rank(input) + dim[i]`.
Y
yangyaming 已提交
4505 4506
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
G
guosheng 已提交
4507
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
Yibing Liu 已提交
4508
        name(str|None): A name for this layer(optional). If set `None`, the layer
C
caoying03 已提交
4509
                       will be named automatically.
G
guosheng 已提交
4510 4511

    Returns:
Y
Yibing Liu 已提交
4512
        Variable: The reduced mean Variable.
F
fengjiayi 已提交
4513

G
guosheng 已提交
4514 4515 4516 4517 4518 4519 4520 4521 4522 4523
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x)  # [0.4375]
            fluid.layers.reduce_mean(x, dim=0)  # [0.15, 0.25, 0.55, 0.8]
            fluid.layers.reduce_mean(x, dim=-1)  # [0.475, 0.4]
F
stash  
fengjiayi 已提交
4524 4525
            fluid.layers.reduce_mean(
                x, dim=1, keep_dim=True)  # [[0.475], [0.4]]
W
whs 已提交
4526 4527 4528 4529 4530 4531 4532

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_mean(x, dim=[1, 2]) # [2.5, 6.5]
            fluid.layers.reduce_mean(x, dim=[0, 1]) # [4.0, 5.0]
G
guosheng 已提交
4533 4534
    """
    helper = LayerHelper('reduce_mean', **locals())
X
Xin Pan 已提交
4535
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4536 4537
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
G
guosheng 已提交
4538 4539 4540 4541 4542
    helper.append_op(
        type='reduce_mean',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4543
            'dim': dim if dim != None else [0],
G
guosheng 已提交
4544 4545 4546 4547
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
4548 4549


C
caoying03 已提交
4550
def reduce_max(input, dim=None, keep_dim=False, name=None):
4551
    """
Y
yangyaming 已提交
4552
    Computes the maximum of tensor elements over the given dimension.
4553 4554 4555

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4556
        dim (list|int|None): The dimension along which the maximum is computed.
Y
yangyaming 已提交
4557 4558 4559
            If :attr:`None`, compute the maximum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4560
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4561 4562
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4563
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4564 4565
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4566 4567 4568

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4569

4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x)  # [0.9]
            fluid.layers.reduce_max(x, dim=0)  # [0.2, 0.3, 0.6, 0.9]
            fluid.layers.reduce_max(x, dim=-1)  # [0.9, 0.7]
            fluid.layers.reduce_max(x, dim=1, keep_dim=True)  # [[0.9], [0.7]]
W
whs 已提交
4581 4582 4583 4584 4585 4586 4587

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_max(x, dim=[1, 2]) # [4.0, 8.0]
            fluid.layers.reduce_max(x, dim=[0, 1]) # [7.0, 8.0]
4588 4589
    """
    helper = LayerHelper('reduce_max', **locals())
X
Xin Pan 已提交
4590
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4591 4592
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4593 4594 4595 4596 4597
    helper.append_op(
        type='reduce_max',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4598
            'dim': dim if dim != None else [0],
4599 4600 4601 4602 4603 4604
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4605
def reduce_min(input, dim=None, keep_dim=False, name=None):
4606
    """
Y
yangyaming 已提交
4607
    Computes the minimum of tensor elements over the given dimension.
4608 4609 4610

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4611
        dim (list|int|None): The dimensions along which the minimum is computed.
Y
yangyaming 已提交
4612 4613 4614
            If :attr:`None`, compute the minimum over all elements of
            :attr:`input` and return a Tensor variable with a single element,
            otherwise must be in the range :math:`[-rank(input), rank(input))`.
W
whs 已提交
4615
            If :math:`dim[i] < 0`, the dimension to reduce is :math:`rank + dim[i]`.
Y
yangyaming 已提交
4616 4617
        keep_dim (bool): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
4618
            than the :attr:`input` unless :attr:`keep_dim` is true.
C
caoying03 已提交
4619 4620
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
4621 4622 4623

    Returns:
        Variable: The reduced Tensor variable.
Y
yangyaming 已提交
4624

4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635
    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x)  # [0.1]
            fluid.layers.reduce_min(x, dim=0)  # [0.1, 0.2, 0.5, 0.7]
            fluid.layers.reduce_min(x, dim=-1)  # [0.2, 0.1]
            fluid.layers.reduce_min(x, dim=1, keep_dim=True)  # [[0.2], [0.1]]
W
whs 已提交
4636 4637 4638 4639 4640 4641 4642

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_min(x, dim=[1, 2]) # [1.0, 5.0]
            fluid.layers.reduce_min(x, dim=[0, 1]) # [1.0, 2.0]
4643 4644
    """
    helper = LayerHelper('reduce_min', **locals())
X
Xin Pan 已提交
4645
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4646 4647
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4648 4649 4650 4651 4652
    helper.append_op(
        type='reduce_min',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4653
            'dim': dim if dim != None else [0],
4654 4655 4656 4657
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out
G
guosheng 已提交
4658 4659


4660 4661 4662 4663 4664 4665
def reduce_prod(input, dim=None, keep_dim=False, name=None):
    """
    Computes the product of tensor elements over the given dimension.

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
W
whs 已提交
4666
        dim (list|int|None): The dimensions along which the product is performed. If
4667 4668
            :attr:`None`, multipy all elements of :attr:`input` and return a
            Tensor variable with a single element, otherwise must be in the
W
whs 已提交
4669 4670
            range :math:`[-rank(input), rank(input))`. If :math:`dim[i] < 0`,
            the dimension to reduce is :math:`rank + dim[i]`.
4671 4672 4673
        keep_dim (bool|False): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have one fewer dimension
            than the :attr:`input` unless :attr:`keep_dim` is true.
Y
yangyaming 已提交
4674
        name(str|None): A name for this layer(optional). If set None, the
Z
zhouhanqing 已提交
4675
            layer will be named automatically.
4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689

    Returns:
        Variable: The reduced Tensor variable.

    Examples:
        .. code-block:: python

            # x is a Tensor variable with following elements:
            #    [[0.2, 0.3, 0.5, 0.9]
            #     [0.1, 0.2, 0.6, 0.7]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x)  # [0.0002268]
            fluid.layers.reduce_prod(x, dim=0)  # [0.02, 0.06, 0.3, 0.63]
            fluid.layers.reduce_prod(x, dim=-1)  # [0.027, 0.0084]
Y
yangyaming 已提交
4690
            fluid.layers.reduce_prod(x, dim=1,
Z
zhouhanqing 已提交
4691
                                     keep_dim=True)  # [[0.027], [0.0084]]
W
whs 已提交
4692 4693 4694 4695 4696 4697 4698

            # x is a Tensor variable with shape [2, 2, 2] and elements as below:
            #      [[[1.0, 2.0], [3.0, 4.0]],
            #      [[5.0, 6.0], [7.0, 8.0]]]
            # Each example is followed by the correspending output tensor.
            fluid.layers.reduce_prod(x, dim=[1, 2]) # [24.0, 1680.0]
            fluid.layers.reduce_prod(x, dim=[0, 1]) # [105.0, 384.0]
4699 4700
    """
    helper = LayerHelper('reduce_prod', **locals())
X
Xin Pan 已提交
4701
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
W
whs 已提交
4702 4703
    if dim is not None and not isinstance(dim, list):
        dim = [dim]
4704 4705 4706 4707 4708
    helper.append_op(
        type='reduce_prod',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={
W
whs 已提交
4709
            'dim': dim if dim != None else [0],
4710 4711 4712 4713 4714 4715
            'keep_dim': keep_dim,
            'reduce_all': True if dim == None else False
        })
    return out


C
caoying03 已提交
4716
def split(input, num_or_sections, dim=-1, name=None):
G
guosheng 已提交
4717
    """
C
caoying03 已提交
4718
    Split the input tensor into multiple sub-tensors.
G
guosheng 已提交
4719 4720 4721

    Args:
        input (Variable): The input variable which is a Tensor or LoDTensor.
C
caoying03 已提交
4722 4723 4724 4725 4726
        num_or_sections (int|list): If :attr:`num_or_sections` is an integer,
            then the integer indicates the number of equal sized sub-tensors
            that the tensor will be divided into. If :attr:`num_or_sections`
            is a list of integers, the length of list indicates the number of
            sub-tensors and the integers indicate the sizes of sub-tensors'
G
guosheng 已提交
4727
            :attr:`dim` dimension orderly.
C
caoying03 已提交
4728
        dim (int): The dimension along which to split. If :math:`dim < 0`, the
G
guosheng 已提交
4729
            dimension to split along is :math:`rank(input) + dim`.
C
caoying03 已提交
4730 4731
        name(str|None): A name for this layer(optional). If set None, the layer
                       will be named automatically.
G
guosheng 已提交
4732 4733

    Returns:
D
dzhwinter 已提交
4734
        list(Variable): The list of segmented tensor variables.
G
guosheng 已提交
4735 4736 4737 4738 4739 4740 4741 4742 4743

    Examples:
        .. code-block:: python

            # x is a Tensor variable with shape [3, 9, 5]:
            x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
            x0.shape  # [3, 3, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 3, 5]
F
stash  
fengjiayi 已提交
4744 4745
            x0, x1, x2 = fluid.layers.split(
                x, num_or_sections=[2, 3, 4], dim=1)
G
guosheng 已提交
4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760
            x0.shape  # [3, 2, 5]
            x1.shape  # [3, 3, 5]
            x2.shape  # [3, 4, 5]
    """
    helper = LayerHelper('split', **locals())
    input_shape = input.shape
    dim = (len(input_shape) + dim) if dim < 0 else dim
    if isinstance(num_or_sections, int):
        assert num_or_sections > 1, 'num_or_sections must be more than 1.'
        num = num_or_sections
    else:
        assert len(num_or_sections) < input_shape[
            dim], 'len(num_or_sections) must not be more than input.shape[dim].'
        num = len(num_or_sections)
    outs = [
X
Xin Pan 已提交
4761
        helper.create_variable_for_type_inference(dtype=helper.input_dtype())
G
guosheng 已提交
4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774
        for i in range(num)
    ]
    helper.append_op(
        type='split',
        inputs={'X': input},
        outputs={'Out': outs},
        attrs={
            'num': num_or_sections if isinstance(num_or_sections, int) else 0,
            'sections': num_or_sections
            if isinstance(num_or_sections, list) else [],
            'axis': dim
        })
    return outs
C
caoying03 已提交
4775 4776 4777 4778 4779 4780 4781 4782 4783


def l2_normalize(x, axis, epsilon=1e-12, name=None):
    """
    **L2 normalize Layer**

    The l2 normalize layer normalizes `x` along dimension `axis` using an L2
    norm. For a 1-D tensor (`dim` is fixed to 0), this layer computes

4784
    .. math::
4785 4786

        y = \\frac{x}{ \sqrt{\sum {x^2} + epsion }}
C
caoying03 已提交
4787 4788 4789 4790 4791

    For `x` with more dimensions, this layer independently normalizes each 1-D
    slice along dimension `axis`.

    Args:
4792
        x(Variable|list): The input tensor to l2_normalize layer.
4793
        axis(int): The axis on which to apply normalization. If `axis < 0`, \
4794 4795
            the dimension to normalization is rank(X) + axis. -1 is the
            last dimension.
4796
        epsilon(float): The epsilon value is used to avoid division by zero, \
R
ruri 已提交
4797
            the defalut value is 1e-12.
4798
        name(str|None): A name for this layer(optional). If set None, the layer \
4799
            will be named automatically.
C
caoying03 已提交
4800 4801

    Returns:
4802
        Variable: The output tensor variable is the same shape with `x`.
C
caoying03 已提交
4803 4804

    Examples:
4805

C
caoying03 已提交
4806 4807
        .. code-block:: python

4808 4809 4810 4811
            data = fluid.layers.data(name="data",
                                     shape=(3, 17, 13),
                                     dtype="float32")
            normed = fluid.layers.l2_normalize(x=data, axis=1)
C
caoying03 已提交
4812 4813
    """

F
fengjiayi 已提交
4814 4815
    if len(x.shape) == 1:
        axis = 0
C
caoying03 已提交
4816 4817
    helper = LayerHelper("l2_normalize", **locals())

X
Xin Pan 已提交
4818 4819
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    norm = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
4820
    helper.append_op(
4821 4822 4823 4824
        type="norm",
        inputs={"X": x},
        outputs={"Out": out,
                 "Norm": norm},
C
caoying03 已提交
4825
        attrs={
4826 4827
            "axis": 1 if axis is None else axis,
            "epsilon": epsilon,
C
caoying03 已提交
4828 4829
        })
    return out
4830 4831


S
sneaxiy 已提交
4832
def matmul(x, y, transpose_x=False, transpose_y=False, alpha=1.0, name=None):
G
guosheng 已提交
4833
    """
Y
ying 已提交
4834 4835 4836 4837
    Applies matrix multiplication to two tensors.

    Currently, the input tensors' rank can be any, but when the rank of any
    inputs is bigger than 3, this two inputs' rank should be equal.
G
guosheng 已提交
4838

C
chengduoZH 已提交
4839
    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
4840
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
G
guosheng 已提交
4841

4842 4843 4844 4845 4846
    - If a transpose flag is specified, the last two dimensions of the tensor
      are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
      :math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
      :math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
      opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
4847
      :math:`[1, D]` in transposed form.
G
guosheng 已提交
4848

C
chengduoZH 已提交
4849
    - After transpose, the two tensors are 2-D or n-D and matrix multiplication
4850
      performs in the following way.
G
guosheng 已提交
4851

4852
      - If both are 2-D, they are multiplied like conventional matrices.
C
chengduoZH 已提交
4853
      - If either is n-D, it is treated as a stack of matrices residing in the
Y
ying 已提交
4854
        last two dimensions and a batched matrix multiply supporting broadcast
4855
        applies on the two tensors.
G
guosheng 已提交
4856

Y
ying 已提交
4857 4858
    Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
    nontransposed, the prepended or appended dimension :math:`1` will be
C
chengduoZH 已提交
4859
    removed after matrix multiplication.
G
guosheng 已提交
4860 4861 4862

    Args:
        x (Variable): The input variable which is a Tensor or LoDTensor.
4863 4864 4865
        y (Variable): The input variable which is a Tensor or LoDTensor.
        transpose_x (bool): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool): Whether to transpose :math:`y` before multiplication.
S
sneaxiy 已提交
4866
        alpha (float): The scale of output. Default 1.0.
4867
        name(str|None): A name for this layer(optional). If set None, the layer
4868
            will be named automatically.
G
guosheng 已提交
4869 4870

    Returns:
4871
        Variable: The product Tensor variable.
G
guosheng 已提交
4872

G
guosheng 已提交
4873 4874 4875
    Examples:
        .. code-block:: python

4876
            # Examples to clarify shapes of the inputs and output
C
chengduoZH 已提交
4877 4878
            # x: [B, ..., M, K], y: [B, ..., K, N]
            fluid.layers.matmul(x, y)  # out: [B, ..., M, N]
Y
ying 已提交
4879

4880 4881
            # x: [B, M, K], y: [B, K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4882

4883 4884
            # x: [B, M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [B, M, N]
Y
ying 已提交
4885

4886 4887
            # x: [M, K], y: [K, N]
            fluid.layers.matmul(x, y)  # out: [M, N]
Y
ying 已提交
4888 4889 4890 4891

            # x: [B, M, K], y: [K]
            fluid.layers.matmul(x, y)  # out: [B, M]

4892 4893
            # x: [K], y: [K]
            fluid.layers.matmul(x, y)  # out: [1]
4894

Y
ying 已提交
4895
            # x: [M], y: [N]
4896
            fluid.layers.matmul(x, y, True, True)  # out: [M, N]
G
guosheng 已提交
4897
    """
Y
ying 已提交
4898 4899 4900 4901 4902 4903 4904

    def __check_input(x, y):
        x_shape = list(x.shape)
        y_shape = list(y.shape)
        if len(x_shape) == 1:
            x_shape = [1] + x_shape
        if len(y_shape) == 1:
Y
ying 已提交
4905
            y_shape = y_shape + [1]
Y
ying 已提交
4906 4907 4908 4909 4910 4911 4912

        # check the inner 2 dimensions
        if transpose_x:
            x_shape[-2], x_shape[-1] = x_shape[-1], x_shape[-2]
        if transpose_y:
            y_shape[-2], y_shape[-1] = y_shape[-1], y_shape[-2]
        if x_shape[-1] != y_shape[-2]:
4913 4914
            raise ValueError("Invalid inputs for matmul. x: %s, y: %s\n" %
                             (x_shape, y_shape))
Y
ying 已提交
4915

C
chengduo 已提交
4916
        if len(y_shape) > 2 and len(x_shape) > 2:
Y
ying 已提交
4917
            for i, dim_x in enumerate(x_shape[:-2]):
P
phlrain 已提交
4918 4919 4920
                # don't check neg shape
                if dim_x < 0 or y_shape[i] < 0:
                    continue
Y
ying 已提交
4921
                if dim_x != y_shape[i]:
C
chengduo 已提交
4922 4923
                    raise ValueError("Invalid inputs for matmul. x(%s), y(%s)" %
                                     (x.shape, y.shape))
Y
ying 已提交
4924 4925 4926

    __check_input(x, y)

4927
    helper = LayerHelper('matmul', **locals())
X
Xin Pan 已提交
4928
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
G
guosheng 已提交
4929
    helper.append_op(
4930 4931 4932 4933
        type='matmul',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
S
sneaxiy 已提交
4934 4935 4936
        attrs={
            'transpose_X': transpose_x,
            'transpose_Y': transpose_y,
S
sneaxiy 已提交
4937
            'alpha': float(alpha),
S
sneaxiy 已提交
4938
        })
4939
    return out
4940 4941


4942
def topk(input, k, name=None):
Q
qingqing01 已提交
4943 4944 4945 4946
    """
    This operator is used to find values and indices of the k largest entries
    for the last dimension.

F
fengjiayi 已提交
4947
    If the input is a vector (1-D Tensor), finds the k largest entries in the vector
Q
qingqing01 已提交
4948 4949 4950 4951 4952 4953
    and outputs their values and indices as vectors. Thus values[j] is the j-th
    largest entry in input, and its index is indices[j].

    If the input is a Tensor with higher rank, this operator computes the top k
    entries along the last dimension.

F
fengjiayi 已提交
4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974
    For example:

    .. code-block:: text

        If:
            input = [[5, 4, 2, 3],
                     [9, 7, 10, 25],
                     [6, 2, 10, 1]]
            k = 2

        Then:
            The first output:
            values = [[5, 4],
                      [10, 25],
                      [6, 10]]

            The second output:
            indices = [[0, 1],
                       [2, 3],
                       [0, 2]]

Q
qingqing01 已提交
4975 4976 4977
    Args:
        input(Variable): The input variable which can be a vector or Tensor with
            higher rank.
W
whs 已提交
4978
        k(int | Variable):  The number of top elements to look for along the last dimension
F
fengjiayi 已提交
4979
                 of input.
4980
        name(str|None): A name for this layer(optional). If set None, the layer
4981
                       will be named automatically.
F
fengjiayi 已提交
4982
                       Default: None
Q
qingqing01 已提交
4983 4984

    Returns:
4985 4986 4987
        Tuple[Variable]: A tuple with two elements. Each element is a Variable.
        The first one is k largest elements along each last
        dimensional slice. The second one is indices of values
F
fengjiayi 已提交
4988
        within the last dimension of input.
Q
qingqing01 已提交
4989

F
fengjiayi 已提交
4990 4991
    Raises:
        ValueError: If k < 1 or k is not less than the last dimension of input
Q
qingqing01 已提交
4992 4993 4994 4995 4996 4997 4998

    Examples:
        .. code-block:: python

            top5_values, top5_indices = layers.topk(input, k=5)
    """
    helper = LayerHelper("top_k", **locals())
X
Xin Pan 已提交
4999 5000
    values = helper.create_variable_for_type_inference(dtype=input.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")
W
whs 已提交
5001 5002 5003 5004 5005 5006
    inputs = {"X": [input]}
    attrs = None
    if isinstance(k, Variable):
        inputs['K'] = k
    else:
        attrs = {'k': k}
Q
qingqing01 已提交
5007 5008
    helper.append_op(
        type="top_k",
W
whs 已提交
5009
        inputs=inputs,
Q
qingqing01 已提交
5010 5011
        outputs={"Out": [values],
                 "Indices": [indices]},
W
whs 已提交
5012
        attrs=attrs)
Q
qingqing01 已提交
5013 5014 5015 5016 5017
    values.stop_gradient = True
    indices.stop_gradient = True
    return values, indices


5018
def edit_distance(input, label, normalized=True, ignored_tokens=None):
5019
    """
Y
ying 已提交
5020 5021 5022 5023 5024 5025 5026 5027 5028
    EditDistance operator computes the edit distances between a batch of
    hypothesis strings and their references. Edit distance, also called
    Levenshtein distance, measures how dissimilar two strings are by counting
    the minimum number of operations to transform one string into anthor.
    Here the operations include insertion, deletion, and substitution.

    For example, given hypothesis string A = "kitten" and reference
    B = "sitting", the edit distance is 3 for A will be transformed into B
    at least after two substitutions and one insertion:
W
wanghaoshuang 已提交
5029

Y
ying 已提交
5030
    "kitten" -> "sitten" -> "sittin" -> "sitting"
W
wanghaoshuang 已提交
5031

5032
    The input is a LoDTensor consisting of all the hypothesis strings with
Y
ying 已提交
5033 5034
    the total number denoted by `batch_size`, and the separation is specified
    by the LoD information. And the `batch_size` reference strings are arranged
5035
    in order in the same way in the input LoDTensor.
W
wanghaoshuang 已提交
5036

5037
    The output contains the `batch_size` results and each stands for the edit
Y
ying 已提交
5038 5039
    distance for a pair of strings respectively. If Attr(normalized) is true,
    the edit distance will be divided by the length of reference string.
W
wanghaoshuang 已提交
5040

5041 5042 5043
    Args:
        input(Variable): The indices for hypothesis strings.
        label(Variable): The indices for reference strings.
5044
        normalized(bool, default True): Indicated whether to normalize the edit distance by
Y
ying 已提交
5045
                          the length of reference string.
5046
        ignored_tokens(list<int>, default None): Tokens that should be removed before
Y
ying 已提交
5047
                                     calculating edit distance.
5048
        name (str): The name of this layer. It is optional.
5049

W
wanghaoshuang 已提交
5050
    Returns:
W
wanghaoshuang 已提交
5051
        Variable: sequence-to-sequence edit distance in shape [batch_size, 1].
W
wanghaoshuang 已提交
5052 5053 5054 5055

    Examples:
        .. code-block:: python

T
tink2123 已提交
5056 5057
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='float32')
5058
            cost = fluid.layers.edit_distance(input=x,label=y)
5059
    """
5060
    helper = LayerHelper("edit_distance", **locals())
5061

5062
    # remove some tokens from input and labels
W
wanghaoshuang 已提交
5063
    if ignored_tokens is not None and len(ignored_tokens) > 0:
X
Xin Pan 已提交
5064 5065
        erased_input = helper.create_variable_for_type_inference(dtype="int64")
        erased_label = helper.create_variable_for_type_inference(dtype="int64")
5066 5067 5068 5069 5070

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [input]},
            outputs={"Out": [erased_input]},
W
wanghaoshuang 已提交
5071
            attrs={"tokens": ignored_tokens})
5072 5073 5074 5075 5076
        input = erased_input

        helper.append_op(
            type="sequence_erase",
            inputs={"X": [label]},
W
whs 已提交
5077
            outputs={"Out": [erased_label]},
W
wanghaoshuang 已提交
5078
            attrs={"tokens": ignored_tokens})
5079 5080
        label = erased_label

5081
    # edit distance op
X
Xin Pan 已提交
5082 5083
    edit_distance_out = helper.create_variable_for_type_inference(dtype="int64")
    sequence_num = helper.create_variable_for_type_inference(dtype="int64")
5084 5085 5086 5087
    helper.append_op(
        type="edit_distance",
        inputs={"Hyps": [input],
                "Refs": [label]},
5088 5089
        outputs={"Out": [edit_distance_out],
                 "SequenceNum": [sequence_num]},
5090 5091
        attrs={"normalized": normalized})

5092
    return edit_distance_out, sequence_num
5093 5094 5095 5096 5097


def ctc_greedy_decoder(input, blank, name=None):
    """
    This op is used to decode sequences by greedy policy by below steps:
Y
yi.wu 已提交
5098

Y
ying 已提交
5099 5100 5101 5102
    1. Get the indexes of max value for each row in input. a.k.a.
       numpy.argmax(input, axis=0).
    2. For each sequence in result of step1, merge repeated tokens between two
       blanks and delete all blanks.
5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119

    A simple example as below:

    .. code-block:: text

        Given:

        input.data = [[0.6, 0.1, 0.3, 0.1],
                      [0.3, 0.2, 0.4, 0.1],
                      [0.1, 0.5, 0.1, 0.3],
                      [0.5, 0.1, 0.3, 0.1],

                      [0.5, 0.1, 0.3, 0.1],
                      [0.2, 0.2, 0.2, 0.4],
                      [0.2, 0.2, 0.1, 0.5],
                      [0.5, 0.1, 0.3, 0.1]]

5120
        input.lod = [[4, 4]]
M
minqiyang 已提交
5121

W
whs 已提交
5122
        Computation:
5123

W
whs 已提交
5124 5125 5126 5127 5128 5129
        step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
               [[0], [2], [1], [0]]
        step2: merge repeated tokens and remove blank which is 0. Then we get first output sequence:
               [[2], [1]]

        Finally:
5130 5131 5132 5133 5134

        output.data = [[2],
                       [1],
                       [3]]

5135
        output.lod = [[2, 1]]
5136

W
whs 已提交
5137

5138 5139
    Args:

Y
ying 已提交
5140 5141 5142 5143 5144 5145 5146 5147 5148
        input(Variable): (LoDTensor<float>), the probabilities of
                         variable-length sequences, which is a 2-D Tensor with
                         LoD information. It's shape is [Lp, num_classes + 1],
                         where Lp is the sum of all input sequences' length and
                         num_classes is the true number of classes. (not
                         including the blank label).
        blank(int): the blank label index of Connectionist Temporal
                    Classification (CTC) loss, which is in thehalf-opened
                    interval [0, num_classes + 1).
5149
        name (str): The name of this layer. It is optional.
5150 5151

    Returns:
H
haowang101779990 已提交
5152 5153 5154
        Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
                  'Lp' is the sum if all output sequences' length. If all the sequences \
                  in result were empty, the result LoDTensor will be [-1] with  \
M
minqiyang 已提交
5155
                  LoD [[]] and dims [1, 1].
5156 5157 5158 5159 5160

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[8], dtype='float32')
W
wanghaoshuang 已提交
5161

5162
            cost = fluid.layers.ctc_greedy_decoder(input=x, blank=0)
W
wanghaoshuang 已提交
5163
    """
5164
    helper = LayerHelper("ctc_greedy_decoder", **locals())
Q
qingqing01 已提交
5165
    _, topk_indices = topk(input, k=1)
5166 5167

    # ctc align op
X
Xin Pan 已提交
5168
    ctc_out = helper.create_variable_for_type_inference(dtype="int64")
5169 5170 5171
    helper.append_op(
        type="ctc_align",
        inputs={"Input": [topk_indices]},
W
wanghaoshuang 已提交
5172
        outputs={"Output": [ctc_out]},
5173 5174
        attrs={"merge_repeated": True,
               "blank": blank})
5175
    return ctc_out
5176 5177


W
Wu Yi 已提交
5178
def warpctc(input, label, blank=0, norm_by_times=False, use_cudnn=False):
W
wanghaoshuang 已提交
5179
    """
5180 5181
    An operator integrating the open source Warp-CTC library
    (https://github.com/baidu-research/warp-ctc)
W
wanghaoshuang 已提交
5182
    to compute Connectionist Temporal Classification (CTC) loss.
5183 5184
    It can be aliased as softmax with CTC, since a native softmax activation is
    interated to the Warp-CTC library, to to normlize values for each row of the
W
wanghaoshuang 已提交
5185 5186 5187
    input tensor.

    Args:
5188
       input (Variable): The unscaled probabilities of variable-length sequences,
W
wanghaoshuang 已提交
5189 5190 5191 5192
         which is a 2-D Tensor with LoD information.
         It's shape is [Lp, num_classes + 1], where Lp is the sum of all input
         sequences' length and num_classes is the true number of classes.
         (not including the blank label).
5193
       label (Variable): The ground truth of variable-length sequence,
5194 5195 5196
         which is a 2-D Tensor with LoD information. It is of the shape [Lg, 1],
         where Lg is th sum of all labels' length.
       blank (int, default 0): The blank label index of Connectionist
W
wanghaoshuang 已提交
5197 5198
         Temporal Classification (CTC) loss, which is in the
         half-opened interval [0, num_classes + 1).
5199 5200 5201
       norm_by_times(bool, default false): Whether to normalize the gradients
         by the number of time-step, which is also the sequence's length.
         There is no need to normalize the gradients if warpctc layer was
5202
         follewed by a mean_op.
W
Wu Yi 已提交
5203
       use_cudnn (bool, default false): Whether to use cudnn.
W
wanghaoshuang 已提交
5204 5205

    Returns:
5206 5207
        Variable: The Connectionist Temporal Classification (CTC) loss,
        which is a 2-D Tensor of the shape [batch_size, 1].
W
wanghaoshuang 已提交
5208 5209

    Examples:
5210

W
wanghaoshuang 已提交
5211
        .. code-block:: python
5212

5213 5214 5215
            label = fluid.layers.data(shape=[11, 8], dtype='float32', lod_level=1)
            predict = fluid.layers.data(shape=[11, 1], dtype='float32')
            cost = fluid.layers.warpctc(input=predict, label=label)
W
wanghaoshuang 已提交
5216 5217

    """
F
fengjiayi 已提交
5218
    helper = LayerHelper('warpctc', **locals())
X
Xin Pan 已提交
5219 5220
    loss_out = helper.create_variable_for_type_inference(dtype=input.dtype)
    grad_out = helper.create_variable_for_type_inference(dtype=input.dtype)
W
wanghaoshuang 已提交
5221 5222 5223 5224 5225 5226
    helper.append_op(
        type='warpctc',
        inputs={'Logits': [input],
                'Label': [label]},
        outputs={'WarpCTCGrad': [grad_out],
                 'Loss': [loss_out]},
W
Wu Yi 已提交
5227 5228 5229 5230 5231
        attrs={
            'blank': blank,
            'norm_by_times': norm_by_times,
            'use_cudnn': use_cudnn
        })
W
wanghaoshuang 已提交
5232
    return loss_out
5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247


def sequence_reshape(input, new_dim):
    """
    **Sequence Reshape Layer**

    This layer will rearrange the input sequences. The new dimension is set by
    user. Length of each sequence is computed according to original length,
    original dimension and new dimension. The following example will help to
    illustrate the function of this layer:

    .. code-block:: text

        x is a LoDTensor:
            x.lod  = [[0, 2, 6]]
5248 5249 5250
            x.data = [[1,  2], [3,  4],
                      [5,  6], [7,  8],
                      [9, 10], [11, 12]]
5251 5252 5253 5254 5255
            x.dims = [6, 2]

        set new_dim = 4

        then out is a LoDTensor:
5256

5257
            out.lod  = [[0, 1, 3]]
5258 5259 5260 5261

            out.data = [[1,  2,  3,  4],
                        [5,  6,  7,  8],
                        [9, 10, 11, 12]]
5262 5263 5264 5265 5266 5267 5268
            out.dims = [3, 4]

    Currently, only 1-level LoDTensor is supported and please make sure
    (original length * original dimension) can be divided by new dimension with
    no remainder for each sequence.

    Args:
5269 5270 5271

       input (Variable): A 2-D LoDTensor with shape being [N, M] where M for dimension.
       new_dim (int): New dimension that the input LoDTensor is reshaped to.
5272 5273

    Returns:
5274

5275 5276 5277 5278 5279
        Variable: Reshaped LoDTensor according to new dimension.

    Examples:
        .. code-block:: python

5280
            x = fluid.layers.data(shape=[5, 20], dtype='float32', lod_level=1)
5281
            x_reshaped = fluid.layers.sequence_reshape(input=x, new_dim=10)
5282 5283
    """
    helper = LayerHelper('sequence_reshape', **locals())
X
Xin Pan 已提交
5284
    out = helper.create_variable_for_type_inference(helper.input_dtype())
5285 5286 5287 5288 5289 5290
    helper.append_op(
        type='sequence_reshape',
        inputs={'X': [input]},
        outputs={'Out': [out]},
        attrs={'new_dim': new_dim})
    return out
Y
ying 已提交
5291 5292


5293 5294 5295 5296
# FIXME(wuyi): let docstring_checker.py understand @autodoc.
# For now, the comments in c++ use types like Tensor, but in python side
# the type is often "Variable", and arguments may vary.
@templatedoc(op_type="nce")
Y
Yang Yu 已提交
5297 5298 5299 5300 5301 5302
def nce(input,
        label,
        num_total_classes,
        sample_weight=None,
        param_attr=None,
        bias_attr=None,
C
chengduo 已提交
5303
        num_neg_samples=None,
5304 5305 5306
        name=None,
        sampler="uniform",
        custom_dist=None,
5307 5308
        seed=0,
        is_sparse=False):
5309 5310 5311 5312 5313 5314 5315
    """
    ${comment}

    Args:
        input (Variable): input variable.
        label (Variable): label.
        num_total_classes (int):${num_total_classes_comment}
5316 5317
        sample_weight (Variable|None): A Variable of shape [batch_size, 1]
            storing a weight for each sample. The default weight for each
5318
            sample is 1.0.
C
chengduo 已提交
5319 5320 5321 5322 5323 5324 5325 5326 5327
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of nce. If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, nce
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
5328
        num_neg_samples (int): ${num_neg_samples_comment}
C
chengduo 已提交
5329 5330
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
5331 5332 5333
        sampler (str): The sampler used to sample class from negtive classes.
                       It can be 'uniform', 'log_uniform' or 'custom_dist'.
                       default: 'uniform'.
5334
        custom_dist (float[]): A float[] with size=num_total_classes.
5335 5336 5337 5338
                       It is used when sampler is set to 'custom_dist'.
                       custom_dist[i] is the probsbility of i-th class to be sampled.
                       default: None.
        seed (int): The seed used in sampler. default: 0.
5339
        is_sparse(bool): The flag indicating whether to use sparse update, the weight@GRAD and bias@GRAD will be changed to SelectedRows.
F
fengjiayi 已提交
5340

5341
    Returns:
Y
Yibing Liu 已提交
5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368
        Variable: The output nce loss.

    Examples:
        .. code-block:: python

            window_size = 5
            words = []
            for i in xrange(window_size):
                words.append(layers.data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'))

            dict_size = 10000
            label_word = int(window_size / 2) + 1

            embs = []
            for i in xrange(window_size):
                if i == label_word:
                    continue

                emb = layers.embedding(input=words[i], size=[dict_size, 32],
                                       param_attr='emb.w', is_sparse=True)
                embs.append(emb)

            embs = layers.concat(input=embs, axis=1)
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=dict_size, param_attr='nce.w',
                          bias_attr='nce.b')
5369 5370 5371 5372 5373 5374 5375 5376 5377

            #or use custom distribution
            dist = fluid.layers.assign(input=np.array([0.05,0.5,0.1,0.3,0.05]).astype("float32"))
            loss = layers.nce(input=embs, label=words[label_word],
                          num_total_classes=5, param_attr='nce.w',
                          bias_attr='nce.b',
                          num_neg_samples=3,
                          sampler="custom_dist",
                          custom_dist=dist)
5378

5379
    """
Y
Yang Yu 已提交
5380 5381 5382
    helper = LayerHelper('nce', **locals())
    assert isinstance(input, Variable)
    assert isinstance(label, Variable)
C
chengduo 已提交
5383 5384

    dim = input.shape[1]
Y
Yang Yu 已提交
5385 5386 5387 5388 5389 5390
    num_true_class = label.shape[1]
    w = helper.create_parameter(
        attr=helper.param_attr,
        shape=[num_total_classes, dim],
        is_bias=False,
        dtype=input.dtype)
5391
    inputs = {}
C
chengduo 已提交
5392 5393 5394 5395 5396 5397 5398
    if helper.bias_attr:
        b = helper.create_parameter(
            attr=helper.bias_attr,
            shape=[num_total_classes, 1],
            is_bias=True,
            dtype=input.dtype)
        inputs['Bias'] = b
X
Xin Pan 已提交
5399 5400 5401
    cost = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_logits = helper.create_variable_for_type_inference(dtype=input.dtype)
    sample_labels = helper.create_variable_for_type_inference(dtype=label.dtype)
Y
Yang Yu 已提交
5402

5403 5404 5405 5406
    inputs['Input'] = input
    inputs['Label'] = label
    inputs['Weight'] = w
    inputs['SampleWeight'] = sample_weight if sample_weight is not None else []
5407 5408 5409 5410 5411 5412 5413

    if sampler == "uniform":
        sampler = 0
    elif sampler == "log_uniform":
        sampler = 1
    elif sampler == "custom_dist":
        assert custom_dist is not None
5414 5415 5416 5417 5418 5419 5420 5421 5422
        # assert isinstance(custom_dist, Variable)

        custom_dist_len = len(custom_dist)
        alias_probs_ = [0] * custom_dist_len
        alias_ = [0] * custom_dist_len
        bigs = []
        littles = []
        for i in range(custom_dist_len):
            normal_prob = custom_dist[i] * custom_dist_len
5423
            if normal_prob - 1.0 > 0:
5424
                bigs.append((i, normal_prob))
5425
            elif 1.0 - normal_prob > 0:
5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440
                littles.append((i, normal_prob))
            else:
                alias_probs_[i] = normal_prob
                alias_[i] = -1

        while len(bigs) and len(littles):
            big = bigs.pop(0)
            little = littles.pop(0)

            big_idx = big[0]
            big_prob = big[1]

            alias_probs_[little[0]] = little[1]
            alias_[little[0]] = big_idx
            big_left = big[1] + little[1] - 1
5441
            if big_left - 1.0 > 0:
5442
                bigs.append((big_idx, big_left))
5443
            elif 1.0 - big_left > 0:
5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457
                littles.append((big_idx, big_left))
            else:
                alias_probs_[big_idx] = big_left
                alias_[big_idx] = -1

        if len(bigs):
            big = bigs.pop(0)
            alias_probs_[big[0]] = 1.0
            alias_[big[0]] = -1
        if len(littles):
            little = littles.pop(0)
            alias_probs_[little[0]] = 1.0
            alias_[little[0]] = -1

5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472
        def _init_by_numpy_array(numpy_array):
            ret = helper.create_parameter(
                attr=ParamAttr(),
                shape=numpy_array.shape,
                dtype=numpy_array.dtype,
                default_initializer=NumpyArrayInitializer(numpy_array))
            ret.stop_gradient = True
            return ret

        inputs['CustomDistProbs'] = _init_by_numpy_array(
            np.array(custom_dist).astype('float32'))
        inputs['CustomDistAlias'] = _init_by_numpy_array(
            np.array(alias_).astype('int32'))
        inputs['CustomDistAliasProbs'] = _init_by_numpy_array(
            np.array(alias_probs_).astype('float32'))
5473 5474 5475 5476
        sampler = 2
    else:
        raise Exception("Unsupported sampler type.")

5477 5478 5479 5480 5481
    if num_neg_samples is None:
        num_neg_samples = 10
    else:
        num_neg_samples = int(num_neg_samples)

5482 5483 5484 5485
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5486

Y
Yang Yu 已提交
5487 5488
    attrs = {
        'num_total_classes': int(num_total_classes),
5489 5490
        'num_neg_samples': num_neg_samples,
        'seed': seed,
5491
        'sampler': sampler,
5492 5493
        'is_sparse': is_sparse,
        'remote_prefetch': remote_prefetch
Y
Yang Yu 已提交
5494
    }
Y
Yang Yu 已提交
5495 5496 5497

    helper.append_op(
        type='nce',
C
chengduo 已提交
5498
        inputs=inputs,
Y
Yang Yu 已提交
5499 5500 5501 5502 5503 5504
        outputs={
            'Cost': cost,
            'SampleLogits': sample_logits,
            'SampleLabels': sample_labels
        },
        attrs=attrs)
Y
Yang Yu 已提交
5505
    return cost / (num_neg_samples + 1)
5506 5507


C
chengduo 已提交
5508 5509
def hsigmoid(input,
             label,
5510
             num_classes,
C
chengduo 已提交
5511 5512
             param_attr=None,
             bias_attr=None,
J
JiabinYang 已提交
5513
             name=None,
5514 5515 5516
             path_table=None,
             path_code=None,
             is_custom=False,
J
JiabinYang 已提交
5517
             is_sparse=False):
W
weixing02 已提交
5518 5519
    """
    The hierarchical sigmoid operator is used to accelerate the training
M
minqiyang 已提交
5520
    process of language model. This operator organizes the classes into a
M
minqiyang 已提交
5521
    complete binary tree, or you can use is_custom to pass your own tree to
5522
    implement hierarchical. Each leaf node represents a class(a word) and each
G
guosheng 已提交
5523 5524 5525 5526 5527 5528
    internal node acts as a binary classifier. For each word there's a unique
    path from root to it's leaf node, hsigmoid calculate the cost for each
    internal node on the path, and sum them to get a total cost. hsigmoid can
    achive a acceleration from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the size of word dict.

5529
    Using default tree you can Refer to `Hierarchical Probabilistic Neural Network Language Model
G
guosheng 已提交
5530
    <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
M
minqiyang 已提交
5531

5532 5533
    And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:

H
haowang101779990 已提交
5534 5535 5536 5537
    1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
    2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
    3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
       means label of each binary classification, using 1 indicate true, 0 indicate false.
M
minqiyang 已提交
5538
    4. now, each word should has its path and code along the path, you can pass a batch of path and code
H
haowang101779990 已提交
5539
       related to the same batch of inputs.
5540

W
weixing02 已提交
5541
    Args:
M
minqiyang 已提交
5542
        input (Variable): The input tensor variable with shape
G
guosheng 已提交
5543 5544 5545 5546
            :math:`[N \\times D]`, where :math:`N` is the size of mini-batch,
            and :math:`D` is the feature size.
        label (Variable): The tensor variable contains labels of training data.
            It's a tensor with shape is :math:`[N \\times 1]`.
M
minqiyang 已提交
5547 5548
        num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
            it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
5549
            which indicates the num of classes using by binary classify.
C
chengduo 已提交
5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560
        param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
             of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as param_attr. If the Initializer of the param_attr
             is not set, the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
             If it is set to False, no bias will be added to the output units.
             If it is set to None or one attribute of ParamAttr, hsigmoid
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
             is not set, the bias is initialized zero. Default: None.
        name (str|None): A name for this layer(optional). If set None, the layer
             will be named automatically. Default: None.
M
minqiyang 已提交
5561
        path_table: (Variable|None) this variable can store each batch of samples' path to root,
5562
            it should be in leaf -> root order
M
minqiyang 已提交
5563 5564 5565
            path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
            structure and each element in this array is indexes in parent nodes' Weight Matrix.
        path_code:  (Variable|None) this variable can store each batch of samples' code,
5566
            each code consist with every code of parent nodes. it should be in leaf -> root order
M
minqiyang 已提交
5567
        is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
5568
             set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
M
minqiyang 已提交
5569
        is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
5570
             of W and input will be sparse.
W
weixing02 已提交
5571 5572

    Returns:
J
JiabinYang 已提交
5573
        Out: (LodTensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
W
weixing02 已提交
5574 5575 5576 5577 5578

    Examples:

        .. code-block:: python

G
guosheng 已提交
5579 5580 5581
            x = fluid.layers.data(name='x', shape=[2], dtype='float32')
            y = fluid.layers.data(name='y', shape=[1], dtype='int64')
            out = fluid.layers.hsigmoid(input=x, label=y, num_classes=6)
W
weixing02 已提交
5582 5583 5584 5585
    """

    helper = LayerHelper('hierarchical_sigmoid', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
5586 5587
    out = helper.create_variable_for_type_inference(dtype)
    pre_out = helper.create_variable_for_type_inference(dtype)
W
weixing02 已提交
5588
    dim = input.shape[1]
5589
    if ((num_classes is None) or (num_classes < 2)) and (not is_custom):
J
JiabinYang 已提交
5590 5591 5592
        raise ValueError(
            "num_classes must not be less than 2 with default tree")

5593 5594 5595 5596 5597 5598 5599 5600 5601
    if (not is_custom) and (is_sparse):
        print("Sparse mode should not be used without custom tree")
        is_sparse = False

    if (not is_custom) and ((path_table is not None) or
                            (path_code is not None)):
        raise ValueError(
            "only num_classes should be passed without custom tree")

5602
    if (is_custom) and (path_code is None):
5603
        raise ValueError("path_code should not be None with custom tree")
5604
    elif (is_custom) and (path_table is None):
5605
        raise ValueError("path_table should not be None with custom tree")
5606
    elif (is_custom) and (num_classes is None):
5607
        raise ValueError("num_classes should not be None with custom tree")
5608 5609 5610
    else:
        pass

J
JiabinYang 已提交
5611
    weights = None
5612 5613 5614 5615
    remote_prefetch = is_sparse
    print(
        "With sparse mode, if your models has only small parameter prefetch may cause speed down"
    )
5616
    if not is_custom:
J
JiabinYang 已提交
5617 5618 5619 5620 5621 5622 5623 5624
        weights = helper.create_parameter(
            attr=helper.param_attr,
            shape=[num_classes - 1, dim],
            is_bias=False,
            dtype=input.dtype)
    else:
        weights = helper.create_parameter(
            attr=helper.param_attr,
5625
            shape=[num_classes, dim],
J
JiabinYang 已提交
5626 5627
            is_bias=False,
            dtype=input.dtype)
5628 5629 5630
    inputs = {
        "X": input,
        "W": weights,
5631
        "PathTable": path_table,
5632
        "PathCode": path_code,
5633 5634
        "Label": label
    }
W
weixing02 已提交
5635
    if helper.bias_attr:
5636
        if not is_custom:
J
JiabinYang 已提交
5637 5638
            bias = helper.create_parameter(
                attr=helper.bias_attr,
J
JiabinYang 已提交
5639
                shape=[num_classes - 1, 1],
J
JiabinYang 已提交
5640 5641 5642 5643 5644 5645
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
        else:
            bias = helper.create_parameter(
                attr=helper.bias_attr,
5646
                shape=[num_classes, 1],
J
JiabinYang 已提交
5647 5648 5649
                is_bias=True,
                dtype=input.dtype)
            inputs['Bias'] = bias
W
weixing02 已提交
5650 5651
    helper.append_op(
        type="hierarchical_sigmoid",
W
weixing02 已提交
5652
        inputs=inputs,
W
weixing02 已提交
5653
        outputs={"Out": out,
5654 5655 5656 5657 5658 5659 5660
                 "PreOut": pre_out,
                 "W_Out": weights},
        attrs={
            "num_classes": num_classes,
            "is_sparse": is_sparse,
            "remote_prefetch": remote_prefetch
        })
W
weixing02 已提交
5661 5662 5663
    return out


Y
fix ci.  
ying 已提交
5664
def transpose(x, perm, name=None):
Y
ying 已提交
5665 5666 5667 5668 5669 5670 5671
    """
    Permute the dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
5672 5673 5674
        x (Variable): The input Tensor.
        perm (list): A permutation of the dimensions of `input`.
        name (str): The name of this layer. It is optional.
Y
ying 已提交
5675 5676 5677 5678 5679 5680 5681

    Returns:
        Variable: A transposed Tensor.

    Examples:
        .. code-block:: python

5682
            # use append_batch_size=False to avoid prepending extra
5683
            # batch size in shape
5684
            x = fluid.layers.data(name='x', shape=[5, 10, 15],
5685
                            dtype='float32', append_batch_size=False)
Y
fix ci.  
ying 已提交
5686
            x_transposed = layers.transpose(x, perm=[1, 0, 2])
Y
ying 已提交
5687 5688
    """

Y
fix ci.  
ying 已提交
5689
    if len(perm) != len(x.shape):
Y
ying 已提交
5690 5691 5692
        raise ValueError(
            "Input(perm) is the permutation of dimensions of Input(input). "
            "It's length shoud be equal to Input(input)'s rank.")
Y
ying 已提交
5693 5694 5695 5696 5697 5698
    for idx, dim in enumerate(perm):
        if dim >= len(x.shape):
            raise ValueError(
                "Each element in perm should be less than x's rank. "
                "%d-th element in perm is %d which accesses x's rank %d." %
                (idx, perm[idx], len(x.shape)))
Y
ying 已提交
5699 5700

    helper = LayerHelper('transpose', **locals())
X
Xin Pan 已提交
5701 5702
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
Y
ying 已提交
5703
    helper.append_op(
5704
        type='transpose2',
Y
fix ci.  
ying 已提交
5705
        inputs={'X': [x]},
5706 5707
        outputs={'Out': [out],
                 'XShape': [x_shape]},
Y
ying 已提交
5708 5709
        attrs={'axis': perm})
    return out
5710 5711


5712 5713 5714 5715 5716 5717 5718
def im2sequence(input,
                filter_size=1,
                stride=1,
                padding=0,
                input_image_size=None,
                out_stride=1,
                name=None):
5719
    """
5720 5721 5722 5723 5724 5725 5726
    Extracts image patches from the input tensor to form a tensor of shape
    {input.batch_size * output_height * output_width, filter_size_H *
    filter_size_W * input.channels} which is similar with im2col.
    This op use filter / kernel to scan images and convert these images to
    sequences. After expanding, the number of time step are
    output_height * output_width for an image, in which output_height and
    output_width are calculated by below equation:
5727 5728 5729 5730 5731 5732 5733 5734 5735 5736

    .. math::

        output\_size = 1 + \
            (2 * padding + img\_size - block\_size + stride - 1) / stride

    And the dimension of each time step is block_y * block_x * input.channels.

    Args:
        input (Variable): The input should be a tensor in NCHW format.
W
wanghaoshuang 已提交
5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754

        filter_size(int|tuple|None): The filter size. If filter_size is a tuple,
            it must contain two integers, (filter_size_H, filter_size_W).
            Otherwise, the filter will be a square.

        stride(int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.

        padding(int|tuple): The padding size. If padding is a tuple, it can
            contain two integers like (padding_H, padding_W) which means
            padding_up = padding_down = padding_H and
            padding_left = padding_right = padding_W. Or it can use
            (padding_up, padding_left, padding_down, padding_right) to indicate
            paddings of four direction. Otherwise, a scalar padding means
            padding_up = padding_down = padding_left = padding_right = padding
            Default: padding = 0.

5755 5756 5757 5758 5759 5760 5761 5762 5763
        input_image_size(Variable): the input contains image real size.It's dim
            is [batchsize, 2]. It is dispensable.It is just for batch inference.

        out_stride(int|tuple): The scaling of image through CNN. It is
            dispensable. It is valid only when input_image_size is not null.
            If out_stride is tuple,  it must contain two intergers,
            (out_stride_H, out_stride_W). Otherwise,
            the out_stride_H = out_stride_W = out_stride.

5764 5765 5766
        name (int): The name of this layer. It is optional.

    Returns:
W
wanghaoshuang 已提交
5767 5768 5769 5770 5771
        output: The output is a LoDTensor with shape
        {input.batch_size * output_height * output_width,
        filter_size_H * filter_size_W * input.channels}.
        If we regard output as a matrix, each row of this matrix is
        a step of a sequence.
5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798

    Examples:

        .. code-block:: text

            Given:

            x = [[[[ 6.  2.  1.]
                   [ 8.  3.  5.]
                   [ 0.  2.  6.]]

                  [[ 2.  4.  4.]
                   [ 6.  3.  0.]
                   [ 6.  4.  7.]]]

                 [[[ 6.  7.  1.]
                   [ 5.  7.  9.]
                   [ 2.  4.  8.]]

                  [[ 1.  2.  1.]
                   [ 1.  3.  5.]
                   [ 9.  0.  8.]]]]

            x.dims = {2, 2, 3, 3}

            And:

W
wanghaoshuang 已提交
5799 5800 5801
            filter = [2, 2]
            stride = [1, 1]
            padding = [0, 0]
5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813

            Then:

            output.data = [[ 6.  2.  8.  3.  2.  4.  6.  3.]
                           [ 2.  1.  3.  5.  4.  4.  3.  0.]
                           [ 8.  3.  0.  2.  6.  3.  6.  4.]
                           [ 3.  5.  2.  6.  3.  0.  4.  7.]
                           [ 6.  7.  5.  7.  1.  2.  1.  3.]
                           [ 7.  1.  7.  9.  2.  1.  3.  5.]
                           [ 5.  7.  2.  4.  1.  3.  9.  0.]
                           [ 7.  9.  4.  8.  3.  5.  0.  8.]]

5814
            output.dims = {8, 8}
5815

5816
            output.lod = [[4, 4]]
5817

T
Tink_Y 已提交
5818
    Examples:
5819 5820 5821

        .. code-block:: python

5822 5823
            output = fluid.layers.im2sequence(
                input=layer, stride=[1, 1], filter_size=[2, 2])
5824 5825

    """
W
wanghaoshuang 已提交
5826 5827 5828 5829 5830 5831 5832 5833 5834 5835

    if isinstance(filter_size, int):
        filter_size = [filter_size, filter_size]
    if isinstance(stride, int):
        stride = [stride, stride]
    if isinstance(padding, int):
        padding = [padding, padding]
    if len(padding) == 2:
        padding.append(padding[0])
        padding.append(padding[1])
5836 5837 5838 5839 5840 5841 5842
    inputs = {"X": input}
    attrs = {"kernels": filter_size, "strides": stride, "padding": padding}
    if input_image_size:
        if isinstance(out_stride, int):
            out_stride = [out_stride, out_stride]
        inputs["Y"] = input_image_size
        attrs["out_stride"] = out_stride
5843
    helper = LayerHelper('im2sequence', **locals())
X
Xin Pan 已提交
5844
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
5845
    helper.append_op(
5846
        type='im2sequence', inputs=inputs, outputs={'Out': out}, attrs=attrs)
5847
    return out
5848 5849


Y
yuyang18 已提交
5850
@templatedoc()
5851
def row_conv(input, future_context_size, param_attr=None, act=None):
Y
yuyang18 已提交
5852 5853
    """
    ${comment}
5854 5855

    Args:
Y
yuyang18 已提交
5856
        input (${x_type}): ${x_comment}.
Y
yangyaming 已提交
5857 5858
        future_context_size (int): Future context size. Please note, the shape
            of convolution kernel is [future_context_size + 1, D].
5859 5860 5861 5862 5863
        param_attr (ParamAttr): Attributes of parameters, including
            name, initializer etc.
        act (str): Non-linear activation to be applied to output variable.

    Returns:
Y
yuyang18 已提交
5864
        ${out_comment}.
5865 5866

    Examples:
Y
yuyang18 已提交
5867 5868 5869 5870
        >>> import paddle.fluid as fluid
        >>> x = fluid.layers.data(name='x', shape=[16],
        >>>                        dtype='float32', lod_level=1)
        >>> out = fluid.layers.row_conv(input=x, future_context_size=2)
5871 5872 5873 5874 5875 5876
    """
    helper = LayerHelper('row_conv', **locals())
    dtype = helper.input_dtype()
    filter_shape = [future_context_size + 1, input.shape[1]]
    filter_param = helper.create_parameter(
        attr=helper.param_attr, shape=filter_shape, dtype=dtype)
X
Xin Pan 已提交
5877
    out = helper.create_variable_for_type_inference(dtype)
5878 5879 5880 5881 5882
    helper.append_op(
        type='row_conv',
        inputs={'X': [input],
                'Filter': [filter_param]},
        outputs={'Out': [out]})
Y
yangyaming 已提交
5883
    return helper.append_activation(out)
5884 5885


Y
yuyang18 已提交
5886
@templatedoc()
5887 5888
def multiplex(inputs, index):
    """
Y
yuyang18 已提交
5889 5890
    ${comment}

L
lujun 已提交
5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933
    For Example:

    .. code-block:: text

        case 1:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]],
             [[2,0,3,4], [2,1,7,8], [2,2,4,2], [2,3,3,4]],
             [[3,0,3,4], [3,1,7,8], [3,2,4,2], [3,3,3,4]]]

        index = [3,0,1,2]

        out:[[3 0 3 4]    // X[3,0] (3 = index[i], 0 = i); i=0
             [0 1 3 4]    // X[0,1] (0 = index[i], 1 = i); i=1
             [1 2 4 2]    // X[1,2] (0 = index[i], 2 = i); i=2
             [2 3 3 4]]   // X[2,3] (0 = index[i], 3 = i); i=3

        case 2:

        Given:

        X = [[[0,0,3,4], [0,1,3,4], [0,2,4,4], [0,3,3,4]],
             [[1,0,3,4], [1,1,7,8], [1,2,4,2], [1,3,3,4]]]

        index = [1,0]

        out:[[1 0 3 4]    // X[1,0] (3 = index[0], 0 = i); i=1
             [0 1 3 4]    // X[0,1] (0 = index[1], 1 = i); i=2
             [0 2 4 4]    // X[0,2] (0 = 0, 2 = i); i=3
             [0 3 3 4]]   // X[0,3] (0 = 0, 3 = i); i=4

    Examples:

    .. code-block:: python

        import paddle.fluid as fluid
        x1 = fluid.layers.data(name='x1', shape=[4], dtype='float32')
        x2 = fluid.layers.data(name='x2', shape=[4], dtype='float32')
        index = fluid.layers.data(name='index', shape=[1], dtype='int32')
        out = fluid.layers.multiplex(inputs=[x1, x2], index=index)
5934 5935

    Args:
Y
yuyang18 已提交
5936 5937
       inputs (list): ${x_comment}.
       index (${ids_type}): ${ids_comment}.
5938 5939

    Returns:
Y
yuyang18 已提交
5940
        ${out_comment}.
5941 5942
    """
    helper = LayerHelper('multiplex', **locals())
Y
yangyaming 已提交
5943 5944 5945 5946 5947

    if not isinstance(inputs, list) and len(inputs) < 2:
        raise ValueError("inputs should be a list object and contains at least "
                         "2 elements.")

X
Xin Pan 已提交
5948
    out = helper.create_variable_for_type_inference(inputs[0].dtype)
5949 5950 5951 5952 5953 5954
    helper.append_op(
        type='multiplex',
        inputs={'X': inputs,
                'Ids': index},
        outputs={'Out': [out]})
    return out
5955 5956


5957 5958 5959
def softmax_with_cross_entropy(logits,
                               label,
                               soft_label=False,
J
jerrywgz 已提交
5960
                               ignore_index=kIgnoreIndex,
5961
                               numeric_stable_mode=True,
5962
                               return_softmax=False):
5963 5964
    """
    **Softmax With Cross Entropy Operator.**
5965

5966 5967 5968 5969
    Cross entropy loss with softmax is used as the output layer extensively. This
    operator computes the softmax normalized values for each row of the input
    tensor, after which cross-entropy loss is computed. This provides a more
    numerically stable gradient.
5970

5971 5972 5973
    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
5974

5975 5976 5977
    When the attribute soft_label is set false, this operators expects mutually
    exclusive hard labels, each sample in a batch is in exactly one class with a
    probability of 1.0. Each sample in the batch will have a single label.
5978

5979
    The equation is as follows:
5980

5981
    1) Hard label (one-hot label, so every sample has exactly one class)
5982

5983 5984 5985 5986
    .. math::

        loss_j =  -\\text{logit}_{label_j} +
        \\log\\left(\\sum_{i=0}^{K}\\exp(\\text{logit}_i)\\right), j = 1,..., K
5987

5988 5989 5990
    2) Soft label (each sample can have a distribution over all classes)

    .. math::
5991

5992 5993 5994 5995
        loss_j =  -\\sum_{i=0}^{K}\\text{label}_i
        \\left(\\text{logit}_i - \\log\\left(\\sum_{i=0}^{K}
        \\exp(\\text{logit}_i)\\right)\\right), j = 1,...,K

S
sneaxiy 已提交
5996 5997 5998
    3) If numeric_stable_mode is True, softmax is calculated first by:

    .. math::
5999

H
haowang101779990 已提交
6000
        max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
S
sneaxiy 已提交
6001

H
haowang101779990 已提交
6002
        log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
S
sneaxiy 已提交
6003

H
haowang101779990 已提交
6004
        softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
S
sneaxiy 已提交
6005 6006 6007

    and then cross entropy loss is calculated by softmax and label.

6008 6009 6010 6011 6012 6013 6014 6015
    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. If soft_label
            is set to false, Label is a Tensor<int64> with shape [N x 1]. If
            soft_label is set to true, Label is a Tensor<float/double> with
        soft_label (bool): A flag to indicate whether to interpretate the given
            labels as soft labels. By default, `soft_label` is set to False.
M
minqiyang 已提交
6016 6017
        ignore_index (int): Specifies a target value that is ignored and does
                            not contribute to the input gradient. Only valid
J
jerrywgz 已提交
6018
                            if soft_label is set to False. Default: kIgnoreIndex
S
sneaxiy 已提交
6019 6020 6021
        numeric_stable_mode (bool): A flag to indicate whether to use a more
                                    numerically stable algorithm. Only valid
                                    when soft_label is False and GPU is used.
6022 6023 6024
                                    When soft_label is True or CPU is used,
                                    the algorithm is always numerically stable.
                                    Note that the speed may be slower when use
6025
                                    stable algorithm. Default: True
6026
        return_softmax (bool): A flag indicating whether to return the softmax
6027
                               along with the cross entropy loss. Default: False
6028

6029
    Returns:
H
haowang101779990 已提交
6030 6031 6032 6033 6034
        Variable or Tuple of two Variables: Return the cross entropy loss if \
                                            `return_softmax` is False, otherwise the tuple \
                                            (loss, softmax), where the cross entropy loss is \
                                            a 2-D tensor with shape [N x 1], and softmax is a \
                                            2-D tensor with shape [N x K].
6035 6036 6037 6038 6039 6040 6041

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
F
stash  
fengjiayi 已提交
6042 6043
            out = fluid.layers.softmax_with_cross_entropy(
                logits=fc, label=label)
6044 6045
    """
    helper = LayerHelper('softmax_with_cross_entropy', **locals())
X
Xin Pan 已提交
6046 6047
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
6048 6049 6050 6051 6052 6053
    helper.append_op(
        type='softmax_with_cross_entropy',
        inputs={'Logits': logits,
                'Label': label},
        outputs={'Softmax': softmax,
                 'Loss': loss},
S
sneaxiy 已提交
6054 6055 6056 6057 6058
        attrs={
            'soft_label': soft_label,
            'ignore_index': ignore_index,
            'numeric_stable_mode': numeric_stable_mode
        })
6059 6060 6061 6062

    if return_softmax:
        return loss, softmax

6063 6064 6065
    return loss


6066 6067 6068
def sampled_softmax_with_cross_entropy(logits,
                                       label,
                                       num_samples,
X
xuezhong 已提交
6069
                                       num_true=1,
6070
                                       remove_accidental_hits=True,
X
xuezhong 已提交
6071 6072 6073
                                       use_customized_samples=False,
                                       customized_samples=None,
                                       customized_probabilities=None,
6074
                                       seed=0):
X
xuezhong 已提交
6075 6076 6077 6078 6079
    """
    **Sampled Softmax With Cross Entropy Operator.**

    Cross entropy loss with sampled softmax is used as the output layer for 
    larger output classes extensively. This operator samples a number of samples
6080
    for all examples, and computes the softmax normalized values for each 
X
xuezhong 已提交
6081 6082 6083 6084 6085 6086 6087 6088
    row of the sampled tensor, after which cross-entropy loss is computed. 

    Because this operator performs a softmax on logits internally, it expects
    unscaled logits. This operator should not be used with the output of
    softmax operator since that would produce incorrect results.
    
    For examples with T true labels (T >= 1), we assume that each true label has
    a probability of 1/T. For each sample, S samples are generated using a
X
xuezhong 已提交
6089
    log uniform distribution. True labels are concatenated with these samples to
X
xuezhong 已提交
6090 6091 6092 6093 6094 6095 6096 6097
    form T + S samples for each example. So, assume the shape of logits is
    [N x K], the shape for samples is [N x (T+S)]. For each sampled label, a 
    probability is calculated, which corresponds to the Q(y|x) in 
    [Jean et al., 2014](http://arxiv.org/abs/1412.2007).
    
    Logits are sampled according to the sampled labels. Then if 
    remove_accidental_hits is True, if a sample[i, j] accidentally hits true 
    labels, then the corresponding sampled_logits[i, j] is minus by 1e20 to 
X
xuezhong 已提交
6098
    make its softmax result close to zero. Then sampled logits are subtracted by
X
xuezhong 已提交
6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109
    logQ(y|x), these sampled logits and re-indexed labels are used to compute 
    a softmax with cross entropy.

    Args:
        logits (Variable): The unscaled log probabilities, which is a 2-D tensor
            with shape [N x K]. N is the batch_size, and K is the class number.
        label (Variable): The ground truth which is a 2-D tensor. Label is a 
            Tensor<int64> with shape [N x T], where T is the number of true 
            labels per example. 
        num_samples (int): The number for each example, num_samples should be 
            less than the number of class.
6110
        num_true(int): The number of target classes per training example.
X
xuezhong 已提交
6111 6112 6113 6114 6115
        remove_accidental_hits (bool): A flag indicating whether to remove 
            accidental hits when sampling. If True and if a sample[i, j] 
            accidentally hits true labels, then the corresponding 
            sampled_logits[i, j] is minus by 1e20 to make its softmax result 
            close to zero. Default is True.
X
xuezhong 已提交
6116
        use_customized_samples (bool): Whether to use custom samples and probabities to sample
6117
            logits.
X
xuezhong 已提交
6118 6119 6120 6121 6122
        customized_samples (Variable): User defined samples, which is a 2-D tensor
            with shape [N, T + S]. S is the num_samples, and T is the number of true 
            labels per example. 
        customized_probabilities (Variable): User defined probabilities of samples, 
            a 2-D tensor which has the same shape with customized_samples.
6123 6124 6125
        seed (int): The random seed for generating random number, which is used
            in the process of sampling. Default is 0.

X
xuezhong 已提交
6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145
    Returns:
        Variable: Return the cross entropy loss which is a 2-D tensor with shape
                  [N x 1].

    Examples:
        .. code-block:: python

            logits = fluid.layers.data(name='data', shape=[256], dtype='float32')
            label = fluid.layers.data(name='label', shape=[5], dtype='int64')
            fc = fluid.layers.fc(input=data, size=100)
            out = fluid.layers.sampled_softmax_with_cross_entropy(
                logits=fc, label=label, num_samples=25)
    """
    helper = LayerHelper('sample_logits', **locals())
    samples = helper.create_variable_for_type_inference(dtype='int64')
    probabilities = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
    sampled_logits \
        = helper.create_variable_for_type_inference(dtype=logits.dtype)
    sampled_label = helper.create_variable_for_type_inference(dtype='int64')
X
xuezhong 已提交
6146 6147
    sampled_softlabel = helper.create_variable_for_type_inference(
        dtype=logits.dtype)
6148 6149
    logits_dim = helper.create_variable_for_type_inference(dtype=logits.dtype)
    labels_dim = helper.create_variable_for_type_inference(dtype=label.type)
X
xuezhong 已提交
6150 6151 6152 6153 6154

    helper.append_op(
        type='sample_logits',
        inputs={
            'Logits': logits,
X
xuezhong 已提交
6155
            'Labels': label,
X
xuezhong 已提交
6156 6157
            'CustomizedSamples': customized_samples,
            'CustomizedProbabilities': customized_probabilities
X
xuezhong 已提交
6158 6159 6160 6161
        },
        outputs={
            'Samples': samples,
            'Probabilities': probabilities,
X
xuezhong 已提交
6162
            'SampledLabels': sampled_label,
6163 6164 6165
            'SampledLogits': sampled_logits,
            'LogitsDim': logits_dim,
            'LabelsDim': labels_dim
X
xuezhong 已提交
6166 6167
        },
        attrs={
X
xuezhong 已提交
6168
            'use_customized_samples': use_customized_samples,
6169
            'uniq': True,
X
xuezhong 已提交
6170 6171 6172 6173
            'remove_accidental_hits': remove_accidental_hits,
            'num_samples': num_samples,
            'seed': seed
        })
X
xuezhong 已提交
6174 6175
    loss = helper.create_variable_for_type_inference(dtype=logits.dtype)
    softmax = helper.create_variable_for_type_inference(dtype=logits.dtype)
X
xuezhong 已提交
6176 6177 6178 6179 6180 6181
    helper.append_op(
        type='one_hot',
        inputs={'X': sampled_label},
        attrs={'depth': num_samples + 1},
        outputs={'Out': sampled_softlabel})

6182 6183
    helper.append_op(
        type='softmax_with_cross_entropy',
X
xuezhong 已提交
6184
        inputs={'Logits': sampled_logits,
X
xuezhong 已提交
6185
                'Label': sampled_softlabel},
X
xuezhong 已提交
6186 6187 6188
        outputs={'Softmax': softmax,
                 'Loss': loss},
        attrs={
X
xuezhong 已提交
6189
            'soft_label': True,
X
xuezhong 已提交
6190 6191 6192
            'ignore_index': False,
            'numeric_stable_mode': False
        })
X
xuezhong 已提交
6193
    return loss / num_true
X
xuezhong 已提交
6194 6195


6196 6197
def smooth_l1(x, y, inside_weight=None, outside_weight=None, sigma=None):
    """
Y
Yibing Liu 已提交
6198 6199
    This layer computes the smooth L1 loss for Variable :attr:`x` and :attr:`y`.
    It takes the first dimension of :attr:`x` and :attr:`y` as batch size.
Q
qingqing01 已提交
6200
    For each instance, it computes the smooth L1 loss element by element first
6201
    and then sums all the losses. So the shape of ouput Variable is
6202
    [batch_size, 1].
6203

6204 6205
    Args:
        x (Variable): A tensor with rank at least 2. The input value of smooth
Q
qingqing01 已提交
6206
            L1 loss op with shape [batch_size, dim1, ..., dimN].
6207
        y (Variable): A tensor with rank at least 2. The target value of smooth
Y
Yibing Liu 已提交
6208
            L1 loss op with same shape as :attr:`x`.
6209
        inside_weight (Variable|None):  A tensor with rank at least 2. This
6210 6211
            input is optional and should have same shape with :attr:`x`. If
            provided, the result of (:attr:`x` - :attr:`y`) will be multiplied
Y
Yibing Liu 已提交
6212
            by this tensor element by element.
6213
        outside_weight (Variable|None): A tensor with rank at least 2. This
6214 6215
            input is optional and should have same shape with :attr:`x`. If
            provided, the out smooth L1 loss will be multiplied by this tensor
Y
Yibing Liu 已提交
6216
            element by element.
6217
        sigma (float|None): Hyper parameter of smooth L1 loss layer. A float
6218 6219
           scalar with default value 1.0.

6220
    Returns:
6221
        Variable: The output smooth L1 loss with shape [batch_size, 1].
6222 6223 6224 6225 6226

    Examples:
        .. code-block:: python

            data = fluid.layers.data(name='data', shape=[128], dtype='float32')
F
stash  
fengjiayi 已提交
6227 6228
            label = fluid.layers.data(
                name='label', shape=[100], dtype='float32')
6229
            fc = fluid.layers.fc(input=data, size=100)
F
fengjiayi 已提交
6230
            out = fluid.layers.smooth_l1(x=fc, y=label)
6231
    """
6232

6233
    helper = LayerHelper('smooth_l1_loss', **locals())
X
Xin Pan 已提交
6234 6235
    diff = helper.create_variable_for_type_inference(dtype=x.dtype)
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247
    helper.append_op(
        type='smooth_l1_loss',
        inputs={
            'X': x,
            'Y': y,
            'InsideWeight': inside_weight,
            'OutsideWeight': outside_weight
        },
        outputs={'Diff': diff,
                 'Out': loss},
        attrs={'sigma': sigma})
    return loss
6248 6249 6250 6251


def one_hot(input, depth):
    """
Y
Yibing Liu 已提交
6252
    This layer creates the one-hot representations for input indices.
6253 6254

    Args:
Y
Yibing Liu 已提交
6255 6256
        input(Variable): Input indices, last dimension must be 1.
        depth(scalar): An interger defining the depth of the one-hot dimension.
6257 6258

    Returns:
Y
Yibing Liu 已提交
6259
        Variable: The one-hot representations of input.
6260 6261

    Examples:
C
caoying03 已提交
6262
        .. code-block:: python
6263

Y
Yibing Liu 已提交
6264
            label = layers.data(name="label", shape=[1], dtype="int64")
Y
Yibing Liu 已提交
6265
            one_hot_label = layers.one_hot(input=label, depth=10)
6266 6267
    """
    helper = LayerHelper("one_hot", **locals())
X
Xin Pan 已提交
6268
    one_hot_out = helper.create_variable_for_type_inference(dtype='float32')
6269 6270 6271 6272
    helper.append_op(
        type="one_hot",
        inputs={'X': input},
        attrs={'depth': depth},
6273 6274
        outputs={'Out': one_hot_out},
        stop_gradient=True)
6275
    return one_hot_out
Y
Yu Yang 已提交
6276 6277


Y
Yu Yang 已提交
6278
def autoincreased_step_counter(counter_name=None, begin=1, step=1):
Y
Yu Yang 已提交
6279
    """
Y
yi.wu 已提交
6280 6281 6282
    Create an auto-increase variable
    which will be automatically increased by 1 every mini-batch
    Return the run counter of the main program, default is started from 1.
Y
Yu Yang 已提交
6283 6284 6285 6286 6287 6288

    Args:
        counter_name(str): The counter name, default is '@STEP_COUNTER@'.
        begin(int): The first value of this counter.
        step(int): The increment step between each execution.

6289 6290
    Returns:
        Variable: The global run counter.
Y
yi.wu 已提交
6291 6292 6293 6294 6295 6296

    Examples:
        .. code-block:: python

           global_step = fluid.layers.autoincreased_step_counter(
               counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1)
Y
Yu Yang 已提交
6297 6298
    """
    helper = LayerHelper('global_step_counter')
Y
Yu Yang 已提交
6299 6300
    if counter_name is None:
        counter_name = '@STEP_COUNTER@'
Y
Yu Yang 已提交
6301 6302 6303 6304 6305
    counter, is_new_var = helper.create_or_get_global_variable(
        name=counter_name, dtype='int64', shape=[1], persistable=True)
    if is_new_var:
        helper.set_variable_initializer(
            counter, initializer=Constant(
Y
Yu Yang 已提交
6306
                value=begin - 1, force_cpu=True))
W
Wu Yi 已提交
6307
        helper.main_program.global_block()._prepend_op(
Y
Yu Yang 已提交
6308 6309
            type='increment',
            inputs={'X': [counter]},
Y
Yu Yang 已提交
6310
            outputs={'Out': [counter]},
M
minqiyang 已提交
6311 6312
            attrs={'step': float(step)},
            stop_gradient=True)
Y
Yu Yang 已提交
6313 6314 6315
        counter.stop_gradient = True

    return counter
Y
yangyaming 已提交
6316 6317


6318
def reshape(x, shape, actual_shape=None, act=None, inplace=False, name=None):
C
caoying03 已提交
6319
    """
C
caoying03 已提交
6320 6321
    Gives a new shape to the input Tensor without changing its data.

6322 6323 6324 6325 6326
    The target shape can be given by :attr:`shape` or :attr:`actual_shape`.
    :attr:`shape` is a list of integer while :attr:`actual_shape` is a tensor
    variable. :attr:`actual_shape` has a higher priority than :attr:`shape`
    if it is provided, while :attr:`shape` still should be set correctly to
    gurantee shape inference in compile-time.
C
caoying03 已提交
6327

6328
    Some tricks exist when specifying the target shape.
C
caoying03 已提交
6329

6330 6331 6332 6333
    1. -1 means the value of this dimension is inferred from the total element
    number of x and remaining dimensions. Thus one and only one dimension can
    be set -1.

6334
    2. 0 means the actual dimension value is going to be copied from the
6335 6336 6337 6338
    corresponding dimension of x. The indice of 0s in shape can not exceed
    Rank(X).

    Here are some examples to explain it.
C
caoying03 已提交
6339 6340

    1. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
W
wanghaoshuang 已提交
6341
    is [6, 8], the reshape operator will transform x into a 2-D tensor with
6342
    shape [6, 8] and leaving x's data unchanged.
C
caoying03 已提交
6343

6344
    2. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6345 6346
    specified is [2, 3, -1, 2], the reshape operator will transform x into a
    4-D tensor with shape [2, 3, 4, 2] and leaving x's data unchanged. In this
W
wanghaoshuang 已提交
6347 6348
    case, one dimension of the target shape is set to -1, the value of this
    dimension is inferred from the total element number of x and remaining
6349
    dimensions.
C
caoying03 已提交
6350

6351
    3. Given a 3-D tensor x with a shape [2, 4, 6], and the target shape
6352 6353 6354 6355
    is [-1, 0, 3, 2], the reshape operator will transform x into a 4-D tensor
    with shape [2, 4, 3, 2] and leaving x's data unchanged. In this case,
    besides -1, 0 means the actual dimension value is going to be copied from
    the corresponding dimension of x.
C
caoying03 已提交
6356 6357

    Args:
6358
        x(variable): The input tensor.
C
caoying03 已提交
6359 6360
        shape(list): The new shape. At most one dimension of the new shape can
                     be -1.
6361 6362 6363 6364 6365
        actual_shape(variable): An optional input. If provided, reshape
                                according to this given shape rather than
                                :attr:`shape` specifying shape. That is to
                                say :attr:`actual_shape` has a higher priority
                                than :attr:`shape`.
6366 6367
        act (str): The non-linear activation to be applied to the reshaped tensor
                   variable.
C
chengduozh 已提交
6368 6369 6370
        inplace(bool): If ``inplace`` is `True`, the input and output of ``layers.reshape``
                       are the same variable, otherwise, the input and output of
                       ``layers.reshape`` are different variables. Note that if :attr:`x`
C
chengduozh 已提交
6371
                       is more than one layer's input, ``inplace`` must be :attr:`False`.
6372
        name (str): The name of this layer. It is optional.
C
caoying03 已提交
6373

6374
    Returns:
G
guosheng 已提交
6375 6376 6377 6378
        Variable: The reshaped tensor variable if :attr:`act` is None. It is a \
                  new tensor variable if :attr:`inplace` is :attr:`False`, \
                  otherwise it is :attr:`x`. If :attr:`act` is not None, return \
                  the activated tensor variable.
C
caoying03 已提交
6379

X
Xin Pan 已提交
6380 6381 6382
    Raises:
        TypeError: if actual_shape is neither Variable nor None.

C
caoying03 已提交
6383 6384
    Examples:
        .. code-block:: python
G
guosheng 已提交
6385

6386
            data = fluid.layers.data(
6387
                name='data', shape=[2, 4, 6], dtype='float32')
C
caoying03 已提交
6388
            reshaped = fluid.layers.reshape(
G
guosheng 已提交
6389
                x=data, shape=[-1, 0, 3, 2], inplace=True)
C
caoying03 已提交
6390 6391 6392
    """

    if not (isinstance(shape, list) or isinstance(shape, tuple)):
L
luotao1 已提交
6393
        raise ValueError("Input shape must be a python list or tuple.")
X
Xin Pan 已提交
6394 6395 6396 6397 6398
    inputs = {"X": x}
    if isinstance(actual_shape, Variable):
        inputs["Shape"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None")
C
caoying03 已提交
6399

6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414
    # Validate the shape
    unk_dim_idx = -1
    for dim_idx, dim_size in enumerate(shape):
        if dim_size == -1:
            assert unk_dim_idx == -1, (
                "Only one dimension in shape can be unknown.")
            unk_dim_idx = dim_idx
        elif dim_size == 0:
            assert dim_idx < len(x.shape), (
                "The indice of 0s in shape can not exceed Rank(X).")
        else:
            assert dim_size > 0, (
                "Each dimension size given in shape must not be negtive "
                "except one unknown dimension.")

6415
    helper = LayerHelper("reshape2", **locals())
6416 6417
    out = x if inplace else helper.create_variable_for_type_inference(
        dtype=x.dtype)
X
Xin Pan 已提交
6418
    x_shape = helper.create_variable_for_type_inference(dtype=x.dtype)
C
caoying03 已提交
6419
    helper.append_op(
6420
        type="reshape2",
X
Xin Pan 已提交
6421
        inputs=inputs,
D
dzhwinter 已提交
6422
        attrs={"shape": shape},
6423 6424
        outputs={"Out": out,
                 "XShape": x_shape})
C
caoying03 已提交
6425

D
dzhwinter 已提交
6426
    return helper.append_activation(out)
6427

6428

6429
def squeeze(input, axes, name=None):
Y
Yibing Liu 已提交
6430
    """
M
minqiyang 已提交
6431 6432 6433
    Remove single-dimensional entries from the shape of a tensor. Takes a
    parameter axes with a list of axes to squeeze. If axes is not provided, all
    the single dimensions will be removed from the shape. If an axis is
Y
Yibing Liu 已提交
6434
    selected with shape entry not equal to one, an error is raised.
M
minqiyang 已提交
6435

H
haowang101779990 已提交
6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456
    For example:

    .. code-block:: text

        Case 1:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = [0]
          we get:
            Out.shape = (3, 1, 5)

        Case 2:

          Given
            X.shape = (1, 3, 1, 5)
          and
            axes = []
          we get:
            Out.shape = (3, 5)
M
minqiyang 已提交
6457

Y
Yibing Liu 已提交
6458
    Args:
6459
        input (Variable): The input variable to be squeezed.
Y
Yibing Liu 已提交
6460
        axes (list): List of integers, indicating the dimensions to be squeezed.
6461
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6462 6463 6464 6465 6466 6467 6468 6469

    Returns:
        Variable: Output squeezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 1, 10])
6470
            y = layers.sequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6471
    """
L
lujun 已提交
6472
    assert not in_dygraph_mode(), (
L
lujun 已提交
6473
        "squeeze layer is not supported in dygraph mode yet.")
Y
Yibing Liu 已提交
6474
    helper = LayerHelper("squeeze", **locals())
X
Xin Pan 已提交
6475 6476
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6477
    helper.append_op(
6478
        type="squeeze2",
6479
        inputs={"X": input},
Y
Yibing Liu 已提交
6480
        attrs={"axes": axes},
6481 6482
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6483

6484 6485 6486
    return out


6487
def unsqueeze(input, axes, name=None):
Y
Yibing Liu 已提交
6488
    """
M
minqiyang 已提交
6489 6490 6491
    Insert single-dimensional entries to the shape of a tensor. Takes one
    required argument axes, a list of dimensions that will be inserted.
    Dimension indices in axes are as seen in the output tensor.
Y
Yibing Liu 已提交
6492

M
minqiyang 已提交
6493
    For example:
H
haowang101779990 已提交
6494 6495 6496

    .. code-block:: text

M
minqiyang 已提交
6497
      Given a tensor such that tensor with shape [3, 4, 5],
Y
Yibing Liu 已提交
6498
      then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
M
minqiyang 已提交
6499

Y
Yibing Liu 已提交
6500
    Args:
6501
        input (Variable): The input variable to be unsqueezed.
Y
Yibing Liu 已提交
6502
        axes (list): List of integers, indicating the dimensions to be inserted.
6503
        name (str|None): Name for this layer.
Y
Yibing Liu 已提交
6504 6505 6506 6507 6508 6509 6510 6511

    Returns:
        Variable: Output unsqueezed variable.

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[5, 10])
6512
            y = layers.unsequeeze(input=x, axes=[1])
Y
Yibing Liu 已提交
6513 6514
    """
    helper = LayerHelper("unsqueeze", **locals())
X
Xin Pan 已提交
6515 6516
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    x_shape = helper.create_variable_for_type_inference(dtype=input.dtype)
Y
Yibing Liu 已提交
6517
    helper.append_op(
6518
        type="unsqueeze2",
6519
        inputs={"X": input},
Y
Yibing Liu 已提交
6520
        attrs={"axes": axes},
6521 6522
        outputs={"Out": out,
                 "XShape": x_shape})
Y
Yibing Liu 已提交
6523

6524 6525
    return out

6526

Y
yangyaming 已提交
6527
def lod_reset(x, y=None, target_lod=None):
Y
yangyaming 已提交
6528
    """
Y
Yibing Liu 已提交
6529
    Set LoD of :attr:`x` to a new one specified by :attr:`y` or
6530 6531 6532 6533
    :attr:`target_lod`. When :attr:`y` provided, :attr:`y.lod` would be
    considered as target LoD first, otherwise :attr:`y.data` would be
    considered as target LoD. If :attr:`y` is not provided, target LoD should
    be specified by :attr:`target_lod`. If target LoD is specified by
Y
Yibing Liu 已提交
6534
    :attr:`Y.data` or :attr:`target_lod`, only one level LoD is supported.
Y
yangyaming 已提交
6535 6536 6537 6538 6539 6540

    .. code-block:: text

        * Example 1:

            Given a 1-level LoDTensor x:
6541
                x.lod =  [[ 2,           3,                   1 ]]
Y
yangyaming 已提交
6542 6543 6544
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

6545
            target_lod: [4, 2]
Y
yangyaming 已提交
6546 6547

            then we get a 1-level LoDTensor:
6548
                out.lod =  [[4,                          2]]
Y
yangyaming 已提交
6549 6550 6551 6552 6553 6554
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 2:

            Given a 1-level LoDTensor x:
6555
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6556 6557 6558 6559
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a Tensor:
6560
                y.data = [[2, 4]]
Y
yangyaming 已提交
6561 6562 6563
                y.dims = [1, 3]

            then we get a 1-level LoDTensor:
6564
                out.lod =  [[2,            4]]
Y
yangyaming 已提交
6565 6566 6567 6568 6569 6570
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

        * Example 3:

            Given a 1-level LoDTensor x:
6571
                x.lod =  [[2,            3,                   1]]
Y
yangyaming 已提交
6572 6573 6574 6575
                x.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                x.dims = [6, 1]

            y is a 2-level LoDTensor:
6576
                y.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6577 6578 6579 6580
                y.data = [[1.1], [2.1], [3.1], [4.1], [5.1], [6.1]]
                y.dims = [6, 1]

            then we get a 2-level LoDTensor:
6581
                out.lod =  [[2, 2], [2, 2, 1, 1]]
Y
yangyaming 已提交
6582 6583 6584 6585 6586
                out.data = [[1.0], [2.0], [3.0], [4.0], [5.0], [6.0]]
                out.dims = [6, 1]

    Args:
        x (Variable): Input variable which could be a Tensor or LodTensor.
6587
        y (Variable|None): If provided, output's LoD would be derived
Y
Yibing Liu 已提交
6588
                           from :attr:`y`.
Y
yangyaming 已提交
6589
        target_lod (list|tuple|None): One level LoD which should be considered
Y
Yibing Liu 已提交
6590
                                      as target LoD when :attr:`y` not provided.
Y
yangyaming 已提交
6591 6592

    Returns:
Y
Yibing Liu 已提交
6593
        Variable: Output variable with LoD specified by this layer.
Y
yangyaming 已提交
6594 6595

    Raises:
Y
Yibing Liu 已提交
6596
        ValueError: If :attr:`y` and :attr:`target_lod` are both None.
Y
yangyaming 已提交
6597 6598 6599 6600 6601 6602 6603 6604 6605

    Examples:
        .. code-block:: python

            x = layers.data(name='x', shape=[10])
            y = layers.data(name='y', shape=[10, 20], lod_level=2)
            out = layers.lod_reset(x=x, y=y)
    """
    helper = LayerHelper("lod_reset", **locals())
X
Xin Pan 已提交
6606
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
yangyaming 已提交
6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620
    if y is not None:
        helper.append_op(
            type="lod_reset", inputs={'X': x,
                                      'Y': y}, outputs={'Out': out})
    elif target_lod is not None:
        helper.append_op(
            type="lod_reset",
            inputs={'X': x},
            attrs={'target_lod': target_lod},
            outputs={'Out': out})
    else:
        raise ValueError("y and target_lod should not be both None.")

    return out
D
dragonwarrior 已提交
6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631


def lrn(input, n=5, k=1.0, alpha=1e-4, beta=0.75, name=None):
    """
    Local Response Normalization Layer. This layer performs a type of
    "lateral inhibition" by normalizing over local input regions.

    The formula is as follows:

    .. math::

D
dzhwinter 已提交
6632
      Output(i, x, y) = Input(i, x, y) / \\left(k + \\alpha \\sum\\limits^{\\min(C, c + n/2)}_{j = \\max(0, c - n/2)}(Input(j, x, y))^2\\right)^{\\beta}
D
dragonwarrior 已提交
6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660

    In the above equation:

    * :math:`n`: The number of channels to sum over.
    * :math:`k`: The offset (avoid being divided by 0).
    * :math:`alpha`: The scaling parameter.
    * :math:`beta`: The exponent parameter.

    Refer to `ImageNet Classification with Deep Convolutional Neural Networks
    <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_

    Args:
        input (Variable): The input tensor of this layer, and the dimension of input tensor must be 4.
        n (int, default 5): The number of channels to sum over.
        k (float, default 1.0): An offset (usually positive to avoid dividing by 0).
        alpha (float, default 1e-4): The scaling parameter.
        beta (float, default 0.75): The exponent.
        name (str, default None): A name for this operation.

    Raises:
        ValueError: If rank of the input tensor is not 4.

    Returns:
        A tensor variable storing the transformation result.

    Examples:
        .. code-block:: python

F
stash  
fengjiayi 已提交
6661 6662
          data = fluid.layers.data(
              name="data", shape=[3, 112, 112], dtype="float32")
D
dragonwarrior 已提交
6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674
          lrn = fluid.layers.lrn(input=data)
    """
    helper = LayerHelper('lrn', **locals())
    dtype = helper.input_dtype()
    input_shape = input.shape
    dims = len(input_shape)

    if dims != 4:
        raise ValueError(
            "dims of input must be 4(not %d), and it's order must be NCHW" %
            (dims))

X
Xin Pan 已提交
6675 6676 6677
    mid_out = helper.create_variable_for_type_inference(
        dtype=dtype, stop_gradient=True)
    lrn_out = helper.create_variable_for_type_inference(dtype)
D
dragonwarrior 已提交
6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690
    helper.append_op(
        type="lrn",
        inputs={"X": input},
        outputs={
            "Out": lrn_out,
            "MidOut": mid_out,
        },
        attrs={"n": n,
               "k": k,
               "alpha": alpha,
               "beta": beta})

    return lrn_out
G
guosheng 已提交
6691 6692 6693 6694


def pad(x, paddings, pad_value=0., name=None):
    """
G
guosheng 已提交
6695
    Pads a tensor with a constant value given by :attr:`pad_value`, and the
W
wanghaoshuang 已提交
6696
    padded width is specified by :attr:`paddings`.
G
guosheng 已提交
6697

G
guosheng 已提交
6698 6699 6700 6701
    Specifically, the number of values padded before the contents of :attr:`x`
    in dimension :attr:`i` is indicated by :attr:`paddings[i]`, and the number
    of values padded after the contents of :attr:`x` in dimension :attr:`i` is
    indicated by :attr:`paddings[i+1]`.
G
guosheng 已提交
6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723

    See below for an example.

    .. code-block:: text

        Given:
            x = [[1, 2], [3, 4]]

            paddings = [0, 1, 1, 2]

            pad_value = 0

        Return:

            out = [[0, 1, 2, 0, 0]
                   [0, 3, 4, 0, 0]
                   [0, 0, 0, 0, 0]]

    Args:
        x (Variable): The input tensor variable.
        paddings (list): A list of integers. Its elements specify the padded
                         width before and after for each dimension in turn.
W
wanghaoshuang 已提交
6724
                         The length of :attr:paddings must be
G
guosheng 已提交
6725 6726 6727 6728 6729 6730 6731 6732 6733 6734
                         :math:`rank(x) \\times 2`.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python
G
guosheng 已提交
6735

G
guosheng 已提交
6736 6737 6738 6739 6740 6741
            # x is a rank 2 tensor variable.
            out = fluid.layers.pad(
                x=x, paddings=[0, 1, 1, 2], pad_value=0.)
    """
    helper = LayerHelper('pad', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6742
    out = helper.create_variable_for_type_inference(dtype)
G
guosheng 已提交
6743 6744 6745 6746 6747 6748 6749
    helper.append_op(
        type='pad',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'paddings': paddings,
               'pad_value': float(pad_value)})
    return out
6750 6751


C
chengduo 已提交
6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782
def pad_constant_like(x, y, pad_value=0., name=None):
    """
    Pad input(Y) with :attr:`pad_value`, the number of values padded to
    the edges of each axis is specified by the difference of the shape
    of X and Y. ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n))
    unique pad widths for each axis. The input should be a k-D
    tensor(k > 0 and k < 7).

    See below for an example.

    .. code-block:: text

        Given:
            X = [[[[ 0,  1,  2],
                   [ 3,  4,  5]],
                  [[ 6,  7,  8],
                   [ 9, 10, 11]],
                  [[12, 13, 14],
                   [15, 16, 17]]],
                 [[[18, 19, 20],
                   [21, 22, 23]],
                  [[24, 25, 26],
                   [27, 28, 29]],
                  [[30, 31, 32],
                   [33, 34, 35]]]]
            X.shape = (2, 3, 2, 3)

            Y = [[[[35, 36, 37]],
                  [[38, 39, 40]],
                  [[41, 42, 43]]]]
            Y.shape = (1, 3, 1, 3)
T
Tink_Y 已提交
6783 6784
		And
            pad_value = -1,
C
chengduo 已提交
6785

T
Tink_Y 已提交
6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799
        Return:
            Out = [[[[35, 36, 37],
                     [-1, -1, -1]],
                    [[38, 39, 40],
                     [-1, -1, -1]],
                    [[41, 42, 43],
                     [-1, -1, -1]]],
                  [[[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]],
                   [[-1, -1, -1],
                    [-1, -1, -1]]]]
            Out.shape = (2, 3, 2, 3)
C
chengduo 已提交
6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820

    Args:
        x (Variable): The input tensor variable.
        y (Variable): The input tensor variable.
        pad_value (float): The constant value used to pad.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The padded tensor variable.

    Examples:
        .. code-block:: python

            # x is a rank 4 tensor variable, x.shape = (2, 3, 2, 3)
            # y is a rank 4 tensor variable, y.shape = (1, 3, 1, 3)
            out = fluid.layers.pad_constant_like(x=x, y=y, pad_value=0.)
            # out is a rank 4 tensor variable, and out.shape = [2, 3 ,2 , 3]
    """
    helper = LayerHelper('pad_constant_like', input=x, **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6821
    out = helper.create_variable_for_type_inference(dtype)
C
chengduo 已提交
6822 6823 6824 6825 6826 6827 6828 6829 6830
    helper.append_op(
        type='pad_constant_like',
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'pad_value': float(pad_value)})
    return out


6831 6832 6833 6834 6835 6836 6837
def label_smooth(label,
                 prior_dist=None,
                 epsilon=0.1,
                 dtype="float32",
                 name=None):
    """
    Label smoothing is a mechanism to regularize the classifier layer and is
6838 6839
    called label-smoothing regularization (LSR).

6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862
    Label smoothing is proposed to encourage the model to be less confident,
    since optimizing the log-likelihood of the correct label directly may
    cause overfitting and reduce the ability of the model to adapt. Label
    smoothing replaces the ground-truth label :math:`y` with the weighted sum
    of itself and some fixed distribution :math:`\mu`. For class :math:`k`,
    i.e.

    .. math::

        \\tilde{y_k} = (1 - \epsilon) * y_k + \epsilon * \mu_k,

    where :math:`1 - \epsilon` and :math:`\epsilon` are the weights
    respectively, and :math:`\\tilde{y}_k` is the smoothed label. Usually
    uniform distribution is used for :math:`\mu`.

    See more details about label smoothing in https://arxiv.org/abs/1512.00567.

    Args:
        label(Variable): The input variable containing the label data. The
                          label data should use one-hot representation.
        prior_dist(Variable): The prior distribution to be used to smooth
                              labels. If not provided, an uniform distribution
                              is used. The shape of :attr:`prior_dist` should
6863
                              be :math:`(1, class\_num)`.
6864 6865
        epsilon(float): The weight used to mix up the original ground-truth
                        distribution and the fixed distribution.
6866
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32,
6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885
                                                  float_64, int etc.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The tensor variable containing the smoothed labels.

    Examples:
        .. code-block:: python

            label = layers.data(name="label", shape=[1], dtype="float32")
            one_hot_label = layers.one_hot(input=label, depth=10)
            smooth_label = layers.label_smooth(
                label=one_hot_label, epsilon=0.1, dtype="float32")
    """
    if epsilon > 1. or epsilon < 0.:
        raise ValueError("The value of epsilon must be between 0 and 1.")
    helper = LayerHelper("label_smooth", **locals())
    label.stop_gradient = True
X
Xin Pan 已提交
6886
    smooth_label = helper.create_variable_for_type_inference(dtype)
6887 6888 6889 6890 6891 6892 6893
    helper.append_op(
        type="label_smooth",
        inputs={"X": label,
                "PriorDist": prior_dist} if prior_dist else {"X": label},
        outputs={"Out": smooth_label},
        attrs={"epsilon": float(epsilon)})
    return smooth_label
6894 6895


W
wopeizl 已提交
6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931
@templatedoc()
def roi_pool(input, rois, pooled_height=1, pooled_width=1, spatial_scale=1.0):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.roi_pool(input=x, rois=rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_pool', **locals())
    dtype = helper.input_dtype()
    pool_out = helper.create_variable_for_type_inference(dtype)
    argmaxes = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type="roi_pool",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": pool_out,
                 "Argmax": argmaxes},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale
        })
    return pool_out
W
whs 已提交
6932 6933


J
jerrywgz 已提交
6934 6935 6936 6937 6938 6939
@templatedoc()
def roi_align(input,
              rois,
              pooled_height=1,
              pooled_width=1,
              spatial_scale=1.0,
J
jerrywgz 已提交
6940 6941
              sampling_ratio=-1,
              name=None):
J
jerrywgz 已提交
6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        sampling_ratio(intger): ${sampling_ratio_comment} Default: -1

    Returns:
        Variable: ${out_comment}.
    Examples:
        .. code-block:: python

6958 6959 6960
            align_out = fluid.layers.roi_align(input=x,
                                               rois=rois,
                                               pooled_height=7,
J
jerrywgz 已提交
6961 6962 6963 6964 6965 6966
                                               pooled_width=7,
                                               spatial_scale=0.5,
                                               sampling_ratio=-1)
    """
    helper = LayerHelper('roi_align', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
6967
    align_out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981
    helper.append_op(
        type="roi_align",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": align_out},
        attrs={
            "pooled_height": pooled_height,
            "pooled_width": pooled_width,
            "spatial_scale": spatial_scale,
            "sampling_ratio": sampling_ratio
        })
    return align_out


W
whs 已提交
6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007
def dice_loss(input, label, epsilon=0.00001):
    """
    Dice loss for comparing the similarity of two batch of data,
    usually is used for binary image segmentation i.e. labels are binary.
    The dice loss can be defined as below equation:

    .. math::

        dice\_loss &= 1 - \\frac{2 * intersection\_area}{total\_area} \\\\
                  &= \\frac{(total\_area - intersection\_area) - intersection\_area}{total\_area} \\\\
                  &= \\frac{(union\_area - intersection\_area)}{total\_area}


    Args:
        input (Variable): The predictions with rank>=2. The first dimension is batch size,
                          and the last dimension is class number.
        label (Variable): The groud truth with the same rank with input. The first dimension
                          is batch size, and the last dimension is 1.
        epsilon (float): The epsilon will be added to the numerator and denominator.
                         If both input and label are empty, it makes sure dice is 1.
                         Default: 0.00001

    Returns:
        dice_loss (Variable): The dice loss with shape [1].

    Examples:
7008 7009
        .. code-block:: python

W
whs 已提交
7010 7011 7012 7013
            predictions = fluid.layers.softmax(x)
            loss = fluid.layers.dice_loss(input=predictions, label=label, 2)
    """
    label = one_hot(label, depth=input.shape[-1])
7014
    reduce_dim = list(range(1, len(input.shape)))
W
whs 已提交
7015 7016 7017 7018 7019 7020
    inse = reduce_sum(input * label, dim=reduce_dim)
    dice_denominator = reduce_sum(
        input, dim=reduce_dim) + reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    return reduce_mean(dice_score)
7021 7022


7023 7024 7025 7026
def image_resize(input,
                 out_shape=None,
                 scale=None,
                 name=None,
7027
                 resample='BILINEAR',
7028 7029
                 actual_shape=None,
                 align_corners=True,
T
tink2123 已提交
7030
                 align_mode=1):
7031
    """
Q
qiaolongfei 已提交
7032
    **Resize a Batch of Images**
F
stash  
fengjiayi 已提交
7033

7034
    The input must be a tensor of the shape (num_batches, channels, in_h, in_w),
7035 7036 7037
    and the resizing only applies on the last two dimensions(hight and width).

    Supporting resample methods:
Q
update  
qiaolongfei 已提交
7038

7039
        'BILINEAR' : Bilinear interpolation
T
Tink_Y 已提交
7040

7041
        'NEAREST' : Nearest neighbor interpolation
F
stash  
fengjiayi 已提交
7042

7043 7044 7045 7046 7047 7048 7049 7050 7051 7052
    Nearest neighbor interpolation is to perform nearest neighbor interpolation
    in both the 3rd dimention(in height direction) and the 4th dimention(in width 
    direction) on input tensor.
            
    Bilinear interpolation is an extension of linear interpolation for 
    interpolating functions of two variables (e.g. H-direction and 
    W-direction in this op) on a rectilinear 2D grid. The key idea is 
    to perform linear interpolation first in one direction, and then 
    again in the other direction.

T
tink2123 已提交
7053
    Align_corners and align_mode are optinal parameters,the calculation method 
7054 7055 7056 7057
    of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7058
    .. code-block:: text
7059

T
Tink_Y 已提交
7060
        For scale:
7061
          
T
Tink_Y 已提交
7062
            if align_corners = True && out_size > 1 :
7063

T
Tink_Y 已提交
7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
          
          if:
              align_corners = False
7075

T
Tink_Y 已提交
7076 7077
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7078

T
Tink_Y 已提交
7079 7080
              H_out = floor (H_{in} * scale_{factor})
              W_out = floor (W_{in} * scale_{factor})
7081

T
Tink_Y 已提交
7082 7083
          else:
              align_corners = True
7084

T
Tink_Y 已提交
7085 7086
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7087

T
Tink_Y 已提交
7088 7089
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7090

T
Tink_Y 已提交
7091 7092 7093 7094 7095 7096 7097 7098 7099 7100
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7101

T
Tink_Y 已提交
7102 7103 7104 7105
          else:
           
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7106

T
Tink_Y 已提交
7107 7108
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7109 7110 7111 7112 7113 7114 7115 7116 7117

    For details of nearest neighbor interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation.

    For details of bilinear interpolation, please refer to Wikipedia: 
    https://en.wikipedia.org/wiki/Bilinear_interpolation.



7118
    Args:
7119
        input (Variable): The input tensor of image resize layer,
7120 7121
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
7122
        out_shape(list|tuple|Variable|None): Output shape of image resize
7123 7124
                                    layer, the shape is (out_h, out_w).
                                    Default: None
B
baiyf 已提交
7125
        scale(float|None): The multiplier for the input height or width.
7126 7127 7128
                         At least one of out_shape or scale must be set.
                         And out_shape has a higher priority than scale.
                         Default: None
7129 7130
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
7131
        resample(str): The resample method. It supports 'BILINEAR' and 'NEAREST'
7132
                       currently.
7133
                       Default: 'BILINEAR'
7134 7135 7136
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7137
                                :attr:`out_shape` and :attr:`scale` specifying
7138 7139 7140 7141 7142 7143 7144
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7145 7146
                                constructing stage.
                                Default: None
7147 7148 7149 7150
        align_corners(bool) :  An optional bool, If True, the centers of the 4 corner pixels of the 
                               input and output tensors are aligned, preserving the values at the 
                               corner pixels.
                               Default: True
T
tink2123 已提交
7151
        align_mode(int)  :  An optional for bilinear interpolation. can be \'0\' 
T
tink2123 已提交
7152 7153
                            for src_idx = scale*(dst_indx+0.5)-0.5 , can be \'1\' for 
                            src_idx = scale*dst_index .
7154 7155

    Returns:
Q
update  
qiaolongfei 已提交
7156 7157
        Variable: The output is a 4-D tensor of the shape
        (num_batches, channls, out_h, out_w).
F
stash  
fengjiayi 已提交
7158

7159 7160 7161
    Raises:
        TypeError: out_shape should be a list or tuple or Variable.
        TypeError: actual_shape should either be Variable or None.
7162
        ValueError: The 'resample' of image_resize can only be 'BILINEAR'
7163 7164 7165
                    or 'NEAREST' currently.
        ValueError: One of out_shape and scale must not be None.
        ValueError: out_shape length should be 2.
7166 7167
        TypeError: align_corners shoule be a bool value
        ValueError: align_mode can only be '0' or '1'
7168

7169 7170 7171
    Examples:
        .. code-block:: python

7172
            out = fluid.layers.image_resize(input, out_shape=[12, 12], resample="NEAREST")
7173
    """
7174 7175 7176 7177
    resample_methods = {
        'BILINEAR': 'bilinear',
        'NEAREST': 'nearest',
    }
7178 7179
    if resample not in resample_methods:
        raise ValueError(
7180
            "The 'resample' of image_resize can only be 'BILINEAR' or 'NEAREST' currently."
7181
        )
7182
    resample_type = resample_methods[resample]
7183 7184 7185 7186 7187 7188

    if not isinstance(align_corners, bool):
        raise TypeError("Attr align_corners should be a bool value")
    if align_mode != 0 and align_mode != 1:
        raise ValueError("align_mode can only be 0 or 1")

7189
    if out_shape is None and scale is None:
7190
        raise ValueError("One of out_shape and scale must not be None.")
7191
    helper = LayerHelper('{}_interp'.format(resample_type), **locals())
7192
    dtype = helper.input_dtype()
7193 7194 7195 7196

    def _is_list_or_turple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

7197 7198 7199
    out_h = 0
    out_w = 0
    inputs = {"X": input}
7200
    if out_shape is not None:
7201 7202 7203 7204
        if isinstance(out_shape, Variable):
            warnings.warn("out_shape as Variable type is deprecated, \
                    it is recommended to use actual_shape instead of \
                    out_shape to specify output shape dynamically.")
7205
            inputs['OutSize'] = out_shape
7206 7207 7208 7209 7210 7211 7212 7213
        elif not (_is_list_or_turple_(out_shape)):
            raise TypeError("out_shape should be a list or tuple or Variable.")
        elif len(out_shape) != 2:
            raise ValueError("out_shape length should be 2.")

        out_shape = list(map(int, out_shape))
        out_h = out_shape[0]
        out_w = out_shape[1]
7214 7215 7216 7217
    else:
        out_h = int(input.shape[2] * scale)
        out_w = int(input.shape[3] * scale)

7218 7219 7220 7221 7222
    if isinstance(actual_shape, Variable):
        inputs["OutSize"] = actual_shape
    elif actual_shape is not None:
        raise TypeError("actual_shape should either be Variable or None.")

X
Xin Pan 已提交
7223
    out = helper.create_variable_for_type_inference(dtype)
7224
    helper.append_op(
7225
        type='{}_interp'.format(resample_type),
7226
        inputs=inputs,
7227
        outputs={"Out": out},
7228 7229 7230 7231 7232 7233 7234
        attrs={
            "out_h": out_h,
            "out_w": out_w,
            "interp_method": resample_type,
            "align_corners": align_corners,
            "align_mode": align_mode
        })
7235
    return out
F
stash  
fengjiayi 已提交
7236 7237


7238
@templatedoc(op_type="bilinear_interp")
7239 7240 7241 7242
def resize_bilinear(input,
                    out_shape=None,
                    scale=None,
                    name=None,
7243 7244
                    actual_shape=None,
                    align_corners=True,
T
tink2123 已提交
7245
                    align_mode=1):
7246
    """
7247 7248
    Resize input by performing bilinear interpolation based on given
    output shape which specified by actual_shape, out_shape and scale
7249 7250
    in priority order.

7251 7252 7253 7254
    Bilinear interpolation is an extension of linear interpolation for
    interpolating functions of two variables (e.g. H-direction and
    W-direction in this op) on a rectilinear 2D grid. The key idea is
    to perform linear interpolation first in one direction, and then
7255 7256
    again in the other direction.

7257
    For details of bilinear interpolation, please refer to Wikipedia:
7258
    https://en.wikipedia.org/wiki/Bilinear_interpolation
Y
yuyang18 已提交
7259

T
tink2123 已提交
7260
    Align_corners and align_mode are optinal parameters,the calculation 
7261 7262 7263 7264
    method of interpolation can be selected by them.

    Example:

T
Tink_Y 已提交
7265
    .. code-block:: text
7266

T
Tink_Y 已提交
7267
        For scale:
7268
          
T
Tink_Y 已提交
7269
            if align_corners = True && out_size > 1 :
7270

T
Tink_Y 已提交
7271 7272 7273 7274 7275
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)     
7276

T
Tink_Y 已提交
7277 7278 7279 7280 7281 7282 7283 7284 7285 7286
        Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
              
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
7287 7288


T
Tink_Y 已提交
7289
          else:
T
tink2123 已提交
7290

T
Tink_Y 已提交
7291 7292
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7293

T
Tink_Y 已提交
7294 7295
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}
7296 7297 7298



Y
yuyang18 已提交
7299 7300 7301 7302
    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
7303

Y
yuyang18 已提交
7304 7305 7306 7307 7308
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
7309 7310 7311
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7312
                                :attr:`out_shape` and :attr:`scale` specifying
7313 7314 7315 7316 7317 7318 7319
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7320 7321
                                constructing stage.
                                Default: None
7322 7323
        align_corners(bool): ${align_corners_comment}
        align_mode(bool): ${align_mode_comment}
Y
yuyang18 已提交
7324 7325 7326

    Returns:
        ${out_comment}.
7327 7328 7329 7330 7331

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_bilinear(input, out_shape=[12, 12])
7332 7333
    """

7334 7335
    return image_resize(input, out_shape, scale, name, 'BILINEAR', actual_shape,
                        align_corners, align_mode)
7336 7337


7338
@templatedoc(op_type="nearest_interp")
7339 7340 7341 7342
def resize_nearest(input,
                   out_shape=None,
                   scale=None,
                   name=None,
7343 7344
                   actual_shape=None,
                   align_corners=True):
7345
    """
7346
    Resize input by performing nearest neighbor interpolation in both the
T
Tink_Y 已提交
7347 7348
    3rd dimension(in height direction) and the 4th dimension(in width
    direction) based on given output shape which is specified by actual_shape,
7349 7350
    out_shape and scale in priority order.

7351 7352
    Example:

T
Tink_Y 已提交
7353 7354 7355 7356 7357
    .. code-block:: text

        For scale:
          
            if align_corners = True && out_size > 1 :
7358

T
Tink_Y 已提交
7359 7360 7361 7362 7363 7364 7365 7366
              scale_factor = (in_size-1.0)/(out_size-1.0)
            
            else:
              
              scale_factor = float(in_size/out_size)
            
          
        Nearest neighbor interpolation:
7367
          
T
Tink_Y 已提交
7368 7369
          if:
              align_corners = False
7370

T
Tink_Y 已提交
7371 7372
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7373

T
Tink_Y 已提交
7374 7375
              H_out = floor(H_{in} * scale_{factor})
              W_out = floor(W_{in} * scale_{factor})
7376

T
Tink_Y 已提交
7377 7378
          else:
              align_corners = True
7379

T
Tink_Y 已提交
7380 7381
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
7382

T
Tink_Y 已提交
7383 7384
              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})
7385 7386


7387
    For details of nearest neighbor interpolation, please refer to Wikipedia:
7388
    https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation
Y
yuyang18 已提交
7389 7390 7391 7392 7393

    Args:
        input(${x_type}): ${x_comment}.

        out_shape(${out_size_type}): ${out_size_comment}.
7394

Y
yuyang18 已提交
7395 7396 7397 7398 7399
        scale(float|None): The multiplier for the input height or width. At
             least one of out_shape or scale must be set. And out_shape has
             a higher priority than scale. Default: None.

        name(str|None): The output variable name.
7400 7401 7402
        actual_shape(Variable): An optional input to specify output shape
                                dynamically. If provided, image resize
                                according to this given shape rather than
7403
                                :attr:`out_shape` and :attr:`scale` specifying
7404 7405 7406 7407 7408 7409 7410
                                shape. That is to say actual_shape has the
                                highest priority. It is recommended to use
                                actual_shape instead of :attr:`out_shape` if you
                                want to specify output shape dynamically. When
                                using actual_shape to specify output shape, one of
                                :attr:`out_shape` and :attr:`scale` should also be
                                set, otherwise errors would be occured in graph
7411 7412
                                constructing stage.
                                Default: None
7413
        align_corners(bool): ${align_corners_comment}
Y
yuyang18 已提交
7414 7415 7416

    Returns:
        ${out_comment}.
7417 7418 7419 7420 7421

    Examples:
        .. code-block:: python

            out = fluid.layers.resize_nearest(input, out_shape=[12, 12])
7422 7423
    """

7424 7425
    return image_resize(input, out_shape, scale, name, 'NEAREST', actual_shape,
                        align_corners)
7426 7427 7428 7429


def image_resize_short(input, out_short_len, resample='BILINEAR'):
    """
7430 7431 7432
    Resize a batch of images. The short edge of input images will be
    resized to the given 'out_short_len'. The long edge of input images
    will be resized proportionately to make images' length-width ratio
7433 7434 7435 7436 7437 7438 7439
    constant.

    Args:
        input (Variable): The input tensor of image resize layer,
                          This is a 4-D tensor of the shape
                          (num_batches, channels, in_h, in_w).
        out_short_len(int): The length of output images' short edge.
7440
        resample (str): resample method, default: BILINEAR.
F
fengjiayi 已提交
7441

7442
    Returns:
Q
update  
qiaolongfei 已提交
7443
        Variable: The output is a 4-D tensor of the shape
7444
        (num_batches, channls, out_h, out_w).
7445 7446 7447 7448 7449 7450 7451 7452 7453 7454
    """
    in_shape = input.shape
    if len(in_shape) != 4:
        raise ValueError(
            "The rank of input must be 4 (num_batches, channels, in_h, in_w).")
    hw = in_shape[2:4]
    short_idx = hw.index(min(hw))
    long_idx = 1 - short_idx
    out_shape = list(hw)
    out_shape[short_idx] = out_short_len
F
fengjiayi 已提交
7455 7456 7457
    out_shape[long_idx] = int(
        float(out_shape[long_idx]) * (float(out_short_len) / float(hw[
            short_idx])) + 0.5)
7458 7459 7460
    return image_resize(input=input, out_shape=out_shape, resample=resample)


W
whs 已提交
7461 7462
def gather(input, index):
    """
Q
qiaolongfei 已提交
7463 7464
    **Gather Layer**

7465
    Output is obtained by gathering entries of the outer-most dimension
W
whs 已提交
7466 7467 7468 7469
    of X indexed by `index` and concatenate them together.

    .. math::

7470
        Out = X[Index]
W
whs 已提交
7471 7472 7473 7474 7475 7476 7477


    .. code-block:: text


                Given:

7478 7479
                X = [[1, 2],
                     [3, 4],
W
whs 已提交
7480 7481 7482 7483 7484 7485 7486 7487 7488 7489
                     [5, 6]]

                Index = [1, 2]

                Then:

                Out = [[3, 4],
                       [5, 6]]

    Args:
7490
        input (Variable): The source input with rank>=1.
W
whs 已提交
7491 7492 7493 7494 7495 7496
        index (Variable): The index input with rank=1.

    Returns:
        output (Variable): The output is a tensor with the same rank as input.

    Examples:
W
whs 已提交
7497

W
whs 已提交
7498 7499 7500 7501 7502 7503
        .. code-block:: python

            output = fluid.layers.gather(x, index)
    """
    helper = LayerHelper('gather', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7504
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
7505 7506 7507 7508 7509 7510 7511 7512
    helper.append_op(
        type="gather",
        inputs={"X": input,
                "Index": index},
        outputs={"Out": out})
    return out


7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543
def scatter(input, index, updates, name=None):
    """
    **Scatter Layer**

    Output is obtained by updating the input on selected indices on the first
    axis.

    .. math::

        Out = X
        Out[Ids] = Updates

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): The index input with rank=1. Its dtype should be
                          int32 or int64 as it is used as indexes.
        updates (Variable): The updated value of scatter op.
        name (str|None): The output variable name. Default None.

    Returns:
        output (Variable): The output is a tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.scatter(input, index, updates)

    """
    helper = LayerHelper('scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7544
    out = helper.create_variable_for_type_inference(dtype)
7545 7546 7547 7548 7549 7550 7551 7552 7553
    helper.append_op(
        type="scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Q
Qingsheng Li 已提交
7554 7555 7556 7557 7558 7559 7560 7561 7562
def sequence_scatter(input, index, updates, name=None):
    """
    **Sequence Scatter Layer**

    This operator scatters the Updates tensor to the input X. It uses the LoD
    information of Ids to select the rows to update, and use the values in Ids as
    the columns to update in each row of X.

    Here is an example:
H
haowang101779990 已提交
7563

Q
Qingsheng Li 已提交
7564
    Given the following input:
H
haowang101779990 已提交
7565

Q
Qingsheng Li 已提交
7566
    .. code-block:: text
H
haowang101779990 已提交
7567

Q
Qingsheng Li 已提交
7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579
        input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
        input.dims = [3, 6]

        index.data = [[0], [1], [2], [5], [4], [3], [2], [1], [3], [2], [5], [4]]
        index.lod =  [[0,        3,                       8,                 12]]

        updates.data = [[0.3], [0.3], [0.4], [0.1], [0.2], [0.3], [0.4], [0.0], [0.2], [0.3], [0.1], [0.4]]
        updates.lod =  [[  0,            3,                                 8,                         12]]

    Then we have the output:
H
haowang101779990 已提交
7580

Q
Qingsheng Li 已提交
7581
    .. code-block:: text
H
haowang101779990 已提交
7582

Q
Qingsheng Li 已提交
7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597
        out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
                    [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
                    [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
        out.dims = X.dims = [3, 6]

    Args:
        input (Variable): The source input with rank>=1.
        index (Variable): A LoD Tensor. The index input of sequence scatter op
            where input will be  updated. The index input with rank=1. Its dtype
            should be int32 or int64 as it is used as indexes.
        updates (Variable): A LoD Tensor. The values to scatter to the input
            tensor X, must be a LoDTensor with the same LoD information as index.
        name (str|None): The output variable name. Default None.

    Returns:
H
haowang101779990 已提交
7598
        Variable: The output is a tensor with the same shape as input.
Q
Qingsheng Li 已提交
7599 7600 7601 7602 7603 7604 7605 7606 7607 7608

    Examples:

        .. code-block:: python

            output = fluid.layers.sequence_scatter(input, index, updates)

    """
    helper = LayerHelper('sequence_scatter', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7609
    out = helper.create_variable_for_type_inference(dtype)
Q
Qingsheng Li 已提交
7610 7611 7612 7613 7614 7615 7616 7617 7618
    helper.append_op(
        type="sequence_scatter",
        inputs={"X": input,
                "Ids": index,
                "Updates": updates},
        outputs={"Out": out})
    return out


Y
yuyang18 已提交
7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631
@templatedoc()
def random_crop(x, shape, seed=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        shape(${shape_type}): ${shape_comment}
        seed(int|${seed_type}|None): ${seed_comment} By default, the seed will
            get from `random.randint(-65536, 65535)`.

    Returns:
        ${out_comment}
7632

7633 7634 7635
    Examples:
        >>> img = fluid.layers.data("img", [3, 256, 256])
        >>> cropped_img = fluid.layers.random_crop(img, shape=[3, 224, 224])
Y
yuyang18 已提交
7636
    """
F
stash  
fengjiayi 已提交
7637
    helper = LayerHelper("random_crop", **locals())
F
fengjiayi 已提交
7638
    dtype = x.dtype
X
Xin Pan 已提交
7639
    out = helper.create_variable_for_type_inference(dtype)
Y
yuyang18 已提交
7640
    if seed is None:
7641
        seed = np.random.randint(-65536, 65536)
F
fengjiayi 已提交
7642
    op_attrs = {"shape": shape}
F
stash  
fengjiayi 已提交
7643
    if isinstance(seed, int):
F
fengjiayi 已提交
7644 7645 7646 7647 7648
        op_attrs["startup_seed"] = seed
        seed = helper.create_variable(
            name=unique_name.generate("random_crop_seed"),
            dtype="int64",
            persistable=True)
F
stash  
fengjiayi 已提交
7649 7650 7651 7652
    elif not isinstance(seed, Variable):
        raise ValueError("'seed' must be a Variable or an int.")
    helper.append_op(
        type="random_crop",
F
fix  
fengjiayi 已提交
7653
        inputs={"X": x,
F
stash  
fengjiayi 已提交
7654 7655
                "Seed": seed},
        outputs={"Out": out,
F
fengjiayi 已提交
7656 7657
                 "SeedOut": seed},
        attrs=op_attrs)
F
stash  
fengjiayi 已提交
7658
    return out
W
whs 已提交
7659 7660


7661
def log(x, name=None):
W
wanghaoshuang 已提交
7662 7663 7664 7665 7666
    """
    Calculates the natural log of the given input tensor, element-wise.

    .. math::

7667
        Out = \\ln(x)
W
wanghaoshuang 已提交
7668 7669

    Args:
7670
        x (Variable): Input tensor.
7671 7672
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7673 7674 7675 7676 7677 7678 7679 7680

    Returns:
        Variable: The natural log of the input tensor computed element-wise.

    Examples:

        .. code-block:: python

7681
            output = fluid.layers.log(x)
W
wanghaoshuang 已提交
7682 7683
    """
    helper = LayerHelper('log', **locals())
W
wanghaoshuang 已提交
7684
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7685
    out = helper.create_variable_for_type_inference(dtype)
W
wanghaoshuang 已提交
7686
    helper.append_op(type="log", inputs={"X": x}, outputs={"Out": out})
W
wanghaoshuang 已提交
7687 7688 7689
    return out


7690
def relu(x, name=None):
W
wanghaoshuang 已提交
7691 7692
    """
    Relu takes one input data (Tensor) and produces one output data (Tensor)
7693
    where the rectified linear function, y = max(0, x), is applied to
W
wanghaoshuang 已提交
7694 7695 7696 7697
    the tensor elementwise.

    .. math::

7698
        Out = \\max(0, x)
W
wanghaoshuang 已提交
7699 7700

    Args:
7701
        x (Variable): The input tensor.
7702 7703
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.
W
wanghaoshuang 已提交
7704 7705 7706 7707 7708 7709 7710 7711

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

7712
            output = fluid.layers.relu(x)
W
wanghaoshuang 已提交
7713 7714
    """
    helper = LayerHelper('relu', **locals())
W
wanghaoshuang 已提交
7715
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
7716
    out = helper.create_variable_for_type_inference(dtype)
X
Xin Pan 已提交
7717 7718
    helper.append_op(
        type="relu", inputs={"X": helper.input('x')}, outputs={"Out": out})
W
wanghaoshuang 已提交
7719
    return out
7720 7721


C
chengduo 已提交
7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762
@templatedoc()
def selu(x, scale=None, alpha=None, name=None):
    """
    ${comment}

    Args:
        x (Variable): The input tensor.
        scale(float, None): If the scale is not set,
            the default value is 1.0507009873554804934193349852946.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        alpha(float, None): If the alpha is not set,
            the default value is 1.6732632423543772848170429916717.
            For more information about this value, please refer
            to: https://arxiv.org/abs/1706.02515.
        name (str|None, default None): A name for this layer If set None,
            the layer will be named automatically.

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

            output = fluid.layers.selu(x)
    """
    helper = LayerHelper('selu', **locals())
    dtype = helper.input_dtype(input_param_name='x')
    out = helper.create_variable_for_type_inference(dtype)
    attrs = {}
    if scale is not None:
        attrs["scale"] = scale
    if alpha is not None:
        attrs["alpha"] = alpha

    helper.append_op(
        type="selu", inputs={"X": x}, outputs={"Out": out}, attrs=attrs)
    return out


W
whs 已提交
7763 7764 7765
def mean_iou(input, label, num_classes):
    """
    Mean Intersection-Over-Union is a common evaluation metric for
7766 7767 7768 7769
    semantic image segmentation, which first computes the IOU for each
    semantic class and then computes the average over classes.
    IOU is defined as follows:

W
whs 已提交
7770
    .. math::
7771

H
haowang101779990 已提交
7772
        IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
W
whs 已提交
7773

7774
    The predictions are accumulated in a confusion matrix and mean-IOU
W
whs 已提交
7775 7776 7777 7778 7779
    is then calculated from it.


    Args:
        input (Variable): A Tensor of prediction results for semantic labels with type int32 or int64.
7780
        label (Variable): A Tensor of ground truth labels with type int32 or int64.
W
whs 已提交
7781
                           Its shape should be the same as input.
7782
        num_classes (int): The possible number of labels.
W
whs 已提交
7783 7784

    Returns:
M
minqiyang 已提交
7785 7786
        mean_iou (Variable),out_wrong(Variable),out_correct(Variable):

H
haowang101779990 已提交
7787
                     Three variables:
M
minqiyang 已提交
7788

H
haowang101779990 已提交
7789 7790 7791
                     - mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
                     - out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
                     - out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
W
whs 已提交
7792 7793 7794 7795

    Examples:

        .. code-block:: python
7796

W
whs 已提交
7797 7798 7799 7800
            iou, wrongs, corrects = fluid.layers.mean_iou(predict, label, num_classes)
    """
    helper = LayerHelper('mean_iou', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
7801 7802 7803
    out_mean_iou = helper.create_variable_for_type_inference(dtype='float32')
    out_wrong = helper.create_variable_for_type_inference(dtype='int32')
    out_correct = helper.create_variable_for_type_inference(dtype='int32')
W
whs 已提交
7804 7805
    helper.append_op(
        type="mean_iou",
W
whs 已提交
7806 7807
        inputs={"Predictions": input,
                "Labels": label},
W
whs 已提交
7808
        outputs={
W
whs 已提交
7809 7810 7811
            "OutMeanIou": out_mean_iou,
            "OutWrong": out_wrong,
            "OutCorrect": out_correct
W
whs 已提交
7812 7813 7814
        },
        attrs={"num_classes": num_classes})
    return out_mean_iou, out_wrong, out_correct
7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882


def crop(x, shape=None, offsets=None, name=None):
    """
    Crop input into output, as specified by offsets and shape.

    .. code-block:: text

        * Case 1:
            Given
                X = [[0, 1, 2, 0, 0]
                     [0, 3, 4, 0, 0]
                     [0, 0, 0, 0, 0]],
            and
                shape = [2, 2],
                offsets = [0, 1],
            output is:
                Out = [[1, 2],
                       [3, 4]].
        * Case 2:
            Given
                X = [[0, 1, 2, 5, 0]
                     [0, 3, 4, 6, 0]
                     [0, 0, 0, 0, 0]],
            and shape is tensor
                shape = [[0, 0, 0]
                         [0, 0, 0]]
            and
                offsets = [0, 1],

            output is:
                Out = [[1, 2, 5],
                       [3, 4, 6]].

    Args:
        x (Variable): The input tensor variable.
        shape (Variable|list/tuple of integer): The output shape is specified
            by `shape`, which can a Variable or a list/tupe of integer.
            If a tensor Variable, it's rank must be the same as `x`. This way
            is suitable for the case that the output shape may be changed each
            iteration. If a list/tupe of integer, it's length must be the same
            as the rank of `x`
        offsets (Variable|list/tuple of integer|None): Specifies the copping
            offsets at each dimension. It can be a Variable or or a list/tupe
            of integer. If a tensor Variable, it's rank must be the same as `x`.
            This way is suitable for the case that the offsets may be changed
            each iteration. If a list/tupe of integer, it's length must be the
            same as the rank of `x`. If None, the offsets are 0 at each
            dimension.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The cropped tensor variable.

    Raises:
        ValueError: If shape is not a list, tuple or Variable.

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[3, 5], dtype="float32")
            y = fluid.layers.data(name="y", shape=[2, 3], dtype="float32")
            crop = fluid.layers.crop(x, shape=y)

            # or
            z = fluid.layers.data(name="z", shape=[3, 5], dtype="float32")
T
Tink_Y 已提交
7883
            crop = fluid.layers.crop(z, shape=[-1, 2, 3])
7884 7885 7886 7887 7888

    """
    helper = LayerHelper('crop', **locals())

    if not (isinstance(shape, list) or isinstance(shape, tuple) or \
7889
            isinstance(shape, Variable)):
7890 7891 7892 7893 7894
        raise ValueError("The shape should be a list, tuple or Variable.")

    if offsets is None:
        offsets = [0] * len(x.shape)

X
Xin Pan 已提交
7895
    out = helper.create_variable_for_type_inference(x.dtype)
7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912
    ipts = {'X': x}
    attrs = {}
    if isinstance(shape, Variable):
        ipts['Y'] = shape
    else:
        attrs['shape'] = shape
    if isinstance(offsets, Variable):
        ipts['Offsets'] = offsets
    else:
        attrs['offsets'] = offsets

    helper.append_op(
        type='crop',
        inputs=ipts,
        outputs={'Out': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out
7913 7914


W
whs 已提交
7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931
def affine_grid(theta, out_shape, name=None):
    """
    It generates a grid of (x,y) coordinates using the parameters of
    the affine transformation that correspond to a set of points where
    the input feature map should be sampled to produce the transformed
    output feature map.

    .. code-block:: text

        * Case 1:

          Given:

              theta = [[[x_11, x_12, x_13]
                        [x_14, x_15, x_16]]
                       [[x_21, x_22, x_23]
                        [x_24, x_25, x_26]]]
7932

W
whs 已提交
7933
              out_shape = [2, 3, 5, 5]
7934

W
whs 已提交
7935
          Step 1:
7936

W
whs 已提交
7937 7938 7939
              Generate normalized coordinates according to out_shape.
              The values of the normalized coordinates are in the interval between -1 and 1.
              The shape of the normalized coordinates is [2, H, W] as below:
7940

W
whs 已提交
7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985
              C = [[[-1.  -1.  -1.  -1.  -1. ]
                    [-0.5 -0.5 -0.5 -0.5 -0.5]
                    [ 0.   0.   0.   0.   0. ]
                    [ 0.5  0.5  0.5  0.5  0.5]
                    [ 1.   1.   1.   1.   1. ]]
                   [[-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]
                    [-1.  -0.5  0.   0.5  1. ]]]
              C[0] is the coordinates in height axis and  C[1] is the coordinates in width axis.

          Step2:

              Tanspose and reshape C to shape [H * W, 2] and append ones to last dimension. The we get:
              C_ = [[-1.  -1.   1. ]
                    [-0.5 -1.   1. ]
                    [ 0.  -1.   1. ]
                    [ 0.5 -1.   1. ]
                    [ 1.  -1.   1. ]
                    [-1.  -0.5  1. ]
                    [-0.5 -0.5  1. ]
                    [ 0.  -0.5  1. ]
                    [ 0.5 -0.5  1. ]
                    [ 1.  -0.5  1. ]
                    [-1.   0.   1. ]
                    [-0.5  0.   1. ]
                    [ 0.   0.   1. ]
                    [ 0.5  0.   1. ]
                    [ 1.   0.   1. ]
                    [-1.   0.5  1. ]
                    [-0.5  0.5  1. ]
                    [ 0.   0.5  1. ]
                    [ 0.5  0.5  1. ]
                    [ 1.   0.5  1. ]
                    [-1.   1.   1. ]
                    [-0.5  1.   1. ]
                    [ 0.   1.   1. ]
                    [ 0.5  1.   1. ]
                    [ 1.   1.   1. ]]
          Step3:
              Compute output by equation $$Output[i] = C_ * Theta[i]^T$$

    Args:
        theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
M
minqiyang 已提交
7986
        out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
H
haowang101779990 已提交
7987
                                             ``out_shape`` can be a Variable or a list or tuple.
W
whs 已提交
7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        Variable: The output with shape [N, H, W, 2].

    Raises:
        ValueError: If the type of arguments is not supported.

    Examples:

        .. code-block:: python
H
haowang101779990 已提交
8000

W
whs 已提交
8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011
            theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
            out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
            data = fluid.layers.affine_grid(theta, out_shape)

            # or
            data = fluid.layers.affine_grid(theta, [5, 3, 28, 28])

    """
    helper = LayerHelper('affine_grid')

    if not (isinstance(out_shape, list) or isinstance(out_shape, tuple) or \
8012
            isinstance(out_shape, Variable)):
W
whs 已提交
8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033
        raise ValueError("The out_shape should be a list, tuple or Variable.")

    if not isinstance(theta, Variable):
        raise ValueError("The theta should be a Variable.")

    out = helper.create_variable_for_type_inference(theta.dtype)
    ipts = {'Theta': theta}
    attrs = {}
    if isinstance(out_shape, Variable):
        ipts['OutputShape'] = out_shape
    else:
        attrs['output_shape'] = out_shape

    helper.append_op(
        type='affine_grid',
        inputs=ipts,
        outputs={'Output': out},
        attrs=None if len(attrs) == 0 else attrs)
    return out


8034 8035
def rank_loss(label, left, right, name=None):
    """
H
haowang101779990 已提交
8036

8037 8038
    **Rank loss layer for RankNet**

H
haowang101779990 已提交
8039
    `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
8040 8041 8042
    is a pairwise ranking model with a training sample consisting of a pair
    of documents, A and B. Label P indicates whether A is ranked higher than B
    or not:
M
minqiyang 已提交
8043

8044 8045
    P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
    about the rank of the input pair.
M
minqiyang 已提交
8046

H
haowang101779990 已提交
8047 8048
    Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
    label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
8049 8050
    for documents A and B and the value of label P. The following equation
    computes rank loss C_{i,j} from the inputs:
M
minqiyang 已提交
8051

H
haowang101779990 已提交
8052 8053 8054 8055 8056 8057 8058 8059
    .. math::

      C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\

      o_{i,j} &=  o_i - o_j  \\\\

      \\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}

M
minqiyang 已提交
8060 8061 8062

    Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).

8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096
    Args:
        label (Variable): Indicats whether A ranked higher than B or not.
        left (Variable): RankNet's output score for doc A.
        right (Variable): RankNet's output score for doc B.
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        list: The value of rank loss.

    Raises:
        ValueError: Any of label, left, and right is not a variable.

    Examples:

        .. code-block:: python

            label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
            left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
            right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
            out = fluid.layers.rank_loss(label, left, right)

    """
    helper = LayerHelper('rank_loss', **locals())

    if not (isinstance(label, Variable)):
        raise ValueError("The label should be a Variable")

    if not (isinstance(left, Variable)):
        raise ValueError("The left should be a Variable")

    if not (isinstance(right, Variable)):
        raise ValueError("The right should be a Variable")

X
Xin Pan 已提交
8097
    out = helper.create_variable_for_type_inference("float32")
8098 8099 8100 8101 8102 8103 8104 8105

    helper.append_op(
        type='rank_loss',
        inputs={"Label": label,
                "Left": left,
                "Right": right},
        outputs={'Out': out})
    return out
8106 8107


M
minqiyang 已提交
8108 8109
def margin_rank_loss(label, left, right, margin=0.1, name=None):
    """
M
minqiyang 已提交
8110
    Margin Ranking Loss Layer for ranking problem,
M
minqiyang 已提交
8111
    which compares left score and right score passed in.
M
minqiyang 已提交
8112
    The ranking loss can be defined as following equation:
M
minqiyang 已提交
8113 8114 8115

    .. math::

H
haowang101779990 已提交
8116
        rank\_loss = max(0, -label * (left - right) + margin)
M
minqiyang 已提交
8117 8118

    Args:
M
minqiyang 已提交
8119
       label (Variable): Indicates whether the left is ranked higher than the right or not.
M
minqiyang 已提交
8120 8121
       left (Variable): Ranking score for left.
       right (Variable): Ranking score for right.
M
minqiyang 已提交
8122
       margin (float): Indicates the given margin.
M
minqiyang 已提交
8123 8124
       name (str|None): A name for this layer (optional). If set None, the layer
                       will be named automatically.
H
haowang101779990 已提交
8125

M
minqiyang 已提交
8126
    Returns:
M
minqiyang 已提交
8127
       Variable: The ranking loss.
H
haowang101779990 已提交
8128

M
minqiyang 已提交
8129
    Raises:
M
minqiyang 已提交
8130
       ValueError: Any of label, left, and right is not a Variable.
H
haowang101779990 已提交
8131

M
minqiyang 已提交
8132
    Examples:
H
haowang101779990 已提交
8133

M
minqiyang 已提交
8134
        .. code-block:: python
H
haowang101779990 已提交
8135

M
minqiyang 已提交
8136 8137 8138 8139 8140
           label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
           left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
           right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
           out = fluid.layers.margin_rank_loss(label, left, right)
    """
M
minqiyang 已提交
8141
    helper = LayerHelper('margin_rank_loss', **locals())
M
minqiyang 已提交
8142 8143 8144 8145 8146 8147
    if not isinstance(label, Variable):
        raise ValueError("The label should be a Variable.")
    if not isinstance(left, Variable):
        raise ValueError("The left should be a Variable.")
    if not isinstance(right, Variable):
        raise ValueError("The right should be a Variable.")
X
Xin Pan 已提交
8148 8149
    out = helper.create_variable_for_type_inference(left.dtype)
    act = helper.create_variable_for_type_inference(left.dtype)
M
minqiyang 已提交
8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160
    helper.append_op(
        type='margin_rank_loss',
        inputs={"Label": label,
                "X1": left,
                "X2": right},
        outputs={'Out': out,
                 'Activated': act},
        attrs={'margin': margin})
    return out


W
whs 已提交
8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172
def pad2d(input,
          paddings=[0, 0, 0, 0],
          mode='constant',
          pad_value=0.0,
          data_format="NCHW",
          name=None):
    """
    Pad 2-d images accordding to 'paddings' and 'mode'.
    If mode is 'reflect', paddings[0] and paddings[1] must be no greater
    than height-1. And the width dimension has the same condition.

    Example:
T
Tink_Y 已提交
8173
        .. code-block:: text
W
whs 已提交
8174

T
Tink_Y 已提交
8175
	      Given that X is a channel of image from input:
M
minqiyang 已提交
8176

T
Tink_Y 已提交
8177 8178
	      X = [[1, 2, 3],
		   [4, 5, 6]]
M
minqiyang 已提交
8179

T
Tink_Y 已提交
8180
	      Case 0:
M
minqiyang 已提交
8181

T
Tink_Y 已提交
8182 8183 8184
		paddings = [0, 1, 2, 3],
		mode = 'constant'
		pad_value = 0
M
minqiyang 已提交
8185

T
Tink_Y 已提交
8186 8187 8188
		Out = [[0, 0, 1, 2, 3, 0, 0, 0]
		       [0, 0, 4, 5, 6, 0, 0, 0]
		       [0, 0, 0, 0, 0, 0, 0, 0]]
M
minqiyang 已提交
8189

T
Tink_Y 已提交
8190
	      Case 1:
M
minqiyang 已提交
8191

T
Tink_Y 已提交
8192 8193
		paddings = [0, 1, 2, 1],
		mode = 'reflect'
M
minqiyang 已提交
8194

T
Tink_Y 已提交
8195 8196 8197
		Out = [[3, 2, 1, 2, 3, 2]
		       [6, 5, 4, 5, 6, 5]
		       [3, 2, 1, 2, 3, 2]]
M
minqiyang 已提交
8198

T
Tink_Y 已提交
8199
	      Case 2:
M
minqiyang 已提交
8200

T
Tink_Y 已提交
8201 8202
		paddings = [0, 1, 2, 1],
		mode = 'edge'
M
minqiyang 已提交
8203

T
Tink_Y 已提交
8204 8205 8206
		Out = [[1, 1, 1, 2, 3, 3]
		       [4, 4, 4, 5, 6, 6]
		       [4, 4, 4, 5, 6, 6]]
M
minqiyang 已提交
8207 8208


W
whs 已提交
8209 8210
    Args:
        input (Variable): The input image with [N, C, H, W] format or [N, H, W, C] format.
8211
        paddings (tuple|list|Variable): The padding size. If padding is a tuple, it must
W
whs 已提交
8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234
            contain four integers, (padding_top, padding_bottom, padding_left, padding_right).
            Default: padding = [0, 0, 0, 0].
        mode (str): Three modes: constant(default), reflect, edge. Default: constant
        pad_value (float32): The value to fill the padded areas in constant mode. Default: 0
        data_format (str): An optional string from: "NHWC", "NCHW". Specify the data format of
                           the input data.
                           Default: "NCHW"
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Variable: The tensor variable padded accordding to paddings and mode.


    Examples:
        .. code-block:: python

          data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
          result = fluid.layers.pad2d(input=data, padding=[1,2,3,4], mode='reflect')
    """

    helper = LayerHelper('pad2d', **locals())
    dtype = helper.input_dtype(input_param_name='input')
X
Xin Pan 已提交
8235
    out = helper.create_variable_for_type_inference(dtype)
8236 8237 8238 8239 8240 8241 8242 8243 8244
    inputs = {'X': input}
    attrs = {'mode': mode, 'pad_value': pad_value, 'data_format': data_format}

    if isinstance(paddings, Variable):
        inputs['Paddings'] = paddings
        attrs['paddings'] = []
    else:
        attrs['paddings'] = paddings

W
whs 已提交
8245
    helper.append_op(
8246
        type='pad2d', inputs=inputs, outputs={"Out": out}, attrs=attrs)
W
whs 已提交
8247 8248 8249 8250

    return out


8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262
@templatedoc()
def elu(x, alpha=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|1.0): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8263 8264 8265 8266 8267

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8268 8269
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.elu(x, alpha=0.2)
8270 8271
    """
    helper = LayerHelper('elu', **locals())
X
Xin Pan 已提交
8272
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292
    helper.append_op(
        type='elu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def relu6(x, threshold=6.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|6.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8293 8294 8295 8296 8297

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8298 8299
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.relu6(x, threshold=6.0)
8300 8301
    """
    helper = LayerHelper('relu6', **locals())
X
Xin Pan 已提交
8302
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322
    helper.append_op(
        type='relu6',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


@templatedoc()
def pow(x, factor=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        factor(${factor_type}|1.0): ${factor_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8323 8324 8325 8326 8327

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8328 8329
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.pow(x, factor=2.0)
8330 8331
    """
    helper = LayerHelper('pow', **locals())
X
Xin Pan 已提交
8332
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353
    helper.append_op(
        type='pow',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'factor': factor})
    return out


@templatedoc()
def stanh(x, scale_a=2.0 / 3.0, scale_b=1.7159, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        scale_a(${scale_a_type}|2.0 / 3.0): ${scale_a_comment}
        scale_b(${scale_b_type}|1.7159): ${scale_b_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8354 8355 8356 8357 8358

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8359
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
Z
ZhenWang 已提交
8360
            y = fluid.layers.stanh(x, scale_a=0.67, scale_b=1.72)
8361 8362
    """
    helper = LayerHelper('stanh', **locals())
X
Xin Pan 已提交
8363
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385
    helper.append_op(
        type='stanh',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'scale_a': scale_a,
               'scale_b': scale_b})
    return out


@templatedoc()
def hard_sigmoid(x, slope=0.2, offset=0.5, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        slope(${slope_type}|0.2): ${slope_comment}
        offset(${offset_type}|0.5): ${offset_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8386 8387 8388 8389 8390

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8391 8392
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.hard_sigmoid(x, slope=0.3, offset=0.8)
8393 8394
    """
    helper = LayerHelper('hard_sigmoid', **locals())
X
Xin Pan 已提交
8395
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416
    helper.append_op(
        type='hard_sigmoid',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': slope,
               'offset': offset})
    return out


@templatedoc()
def swish(x, beta=1.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        beta(${beta_type}|1.0): ${beta_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
        output(${out_type}): ${out_comment}
Z
ZhenWang 已提交
8417 8418 8419 8420 8421

    Examples:

        .. code-block:: python

Z
ZhenWang 已提交
8422 8423
            x = fluid.layers.data(name="x", shape=[3,10,32,32], dtype="float32")
            y = fluid.layers.swish(x, beta=2.0)
8424 8425
    """
    helper = LayerHelper('swish', **locals())
X
Xin Pan 已提交
8426
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8427 8428 8429 8430 8431 8432 8433 8434
    helper.append_op(
        type='swish',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'slope': beta})
    return out


J
jerrywgz 已提交
8435 8436 8437 8438
def prelu(x, mode, param_attr=None, name=None):
    """
    Equation:

H
haowang101779990 已提交
8439 8440
    .. math::
        y = \max(0, x) + \\alpha * \min(0, x)
J
jerrywgz 已提交
8441 8442 8443

    Args:
        x (Variable): The input tensor.
J
jerrywgz 已提交
8444
        param_attr(ParamAttr|None): The parameter attribute for the learnable
T
Tink_Y 已提交
8445
          weight (alpha).
J
jerrywgz 已提交
8446
        mode (string): The mode for weight sharing. It supports all, channel
T
Tink_Y 已提交
8447 8448 8449
          and element. all: all elements share same weight
          channel:elements in a channel share same weight
          element:each element has a weight
J
jerrywgz 已提交
8450
        name(str|None): A name for this layer(optional). If set None, the layer
T
Tink_Y 已提交
8451
          will be named automatically.
J
jerrywgz 已提交
8452 8453 8454 8455 8456 8457 8458 8459

    Returns:
        Variable: The output tensor with the same shape as input.

    Examples:

        .. code-block:: python

J
jerrywgz 已提交
8460
            x = fluid.layers.data(name="x", shape=[10,10], dtype="float32")
J
jerrywgz 已提交
8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473
            mode = 'channel'
            output = fluid.layers.prelu(x,mode)
    """
    helper = LayerHelper('prelu', **locals())
    if mode not in ['all', 'channel', 'element']:
        raise ValueError('mode should be one of all, channel, element.')
    alpha_shape = [1]
    if mode == 'channel':
        alpha_shape = [1, x.shape[1], 1, 1]
    elif mode == 'element':
        alpha_shape = x.shape
    dtype = helper.input_dtype(input_param_name='x')
    alpha = helper.create_parameter(
Q
Qiao Longfei 已提交
8474
        attr=helper.param_attr,
J
jerrywgz 已提交
8475 8476 8477 8478
        shape=alpha_shape,
        dtype='float32',
        is_bias=False,
        default_initializer=Constant(1.0))
X
Xin Pan 已提交
8479
    out = helper.create_variable_for_type_inference(dtype)
J
jerrywgz 已提交
8480 8481 8482 8483 8484 8485 8486 8487 8488
    helper.append_op(
        type="prelu",
        inputs={"X": x,
                'Alpha': alpha},
        attrs={"mode": mode},
        outputs={"Out": out})
    return out


8489 8490 8491 8492 8493 8494 8495 8496 8497 8498
@templatedoc()
def brelu(x, t_min=0.0, t_max=24.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        t_min(${t_min_type}|0.0): ${t_min_comment}
        t_max(${t_max_type}|24.0): ${t_max_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8499
    Returns:
8500
        output(${out_type}): ${out_comment}
8501 8502 8503

    Examples:

8504
    .. code-block:: python
8505

H
haowang101779990 已提交
8506 8507
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
8508 8509
    """
    helper = LayerHelper('brelu', **locals())
X
Xin Pan 已提交
8510
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528
    helper.append_op(
        type='brelu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'t_min': t_min,
               't_max': t_max})
    return out


@templatedoc()
def leaky_relu(x, alpha=0.02, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        alpha(${alpha_type}|0.02): ${alpha_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8529
    Returns:
8530
        output(${out_type}): ${out_comment}
8531 8532 8533 8534 8535

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8536 8537
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.leaky_relu(x, alpha=0.01)
8538 8539
    """
    helper = LayerHelper('leaky_relu', **locals())
X
Xin Pan 已提交
8540
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557
    helper.append_op(
        type='leaky_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'alpha': alpha})
    return out


@templatedoc()
def soft_relu(x, threshold=40.0, name=None):
    """
    ${comment}
    Args:
        x(${x_type}): ${x_comment}
        threshold(${threshold_type}|40.0): ${threshold_comment}
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.
8558
    Returns:
8559
        output(${out_type}): ${out_comment}
8560 8561 8562 8563 8564

    Examples:

        .. code-block:: python

H
haowang101779990 已提交
8565 8566
            x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
            y = fluid.layers.soft_relu(x, threshold=20.0)
8567 8568
    """
    helper = LayerHelper('soft_relu', **locals())
X
Xin Pan 已提交
8569
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
8570 8571 8572 8573 8574 8575 8576 8577
    helper.append_op(
        type='soft_relu',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'threshold': threshold})
    return out


8578 8579 8580 8581
def flatten(x, axis=1, name=None):
    """
    **Flatten layer**
    Flattens the input tensor into a 2D matrix.
M
minqiyang 已提交
8582

H
haowang101779990 已提交
8583
    For Example:
M
minqiyang 已提交
8584

H
haowang101779990 已提交
8585
    .. code-block:: text
8586

H
haowang101779990 已提交
8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607
        Case 1:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 2

          We get:
            Out.shape = (3 * 100, 4 * 100)

        Case 2:

          Given
            X.shape = (3, 100, 100, 4)

          and
            axis = 0

          We get:
            Out.shape = (1, 3 * 100 * 100 * 4)
8608 8609 8610

    Args:
        x (Variable): A tensor of rank >= axis.
8611 8612
        axis (int): Indicate up to which input dimensions (exclusive) should
                    be flattened to the outer dimension of the output.
8613 8614 8615 8616 8617 8618 8619 8620
                    The value for axis must be in the range [0, R], where R
                    is the rank of the input tensor. When axis = 0, the shape
                    of the output tensor is (1, (d_0 X d_1 ... d_n), where the
                    shape of the input tensor is (d_0, d_1, ... d_n).
        name(str|None): A name for this layer(optional). If set None, the layer
                        will be named automatically.

    Returns:
H
haowang101779990 已提交
8621 8622 8623
        Variable: A 2D tensor with the contents of the input tensor, with input \
                  dimensions up to axis flattened to the outer dimension of \
                  the output and remaining input dimensions flattened into the \
8624 8625 8626 8627
                  inner dimension of the output.

    Raises:
        ValueError: If x is not a variable.
8628
        ValueError: If axis is not in range [0, rank(x)].
8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644

    Examples:

        .. code-block:: python

            x = fluid.layers.data(name="x", shape=[4, 4, 3], dtype="float32")
            out = fluid.layers.flatten(x=x, axis=2)
    """
    helper = LayerHelper('flatten', **locals())

    if not (isinstance(x, Variable)):
        raise ValueError("The input x should be a Variable")

    if not (isinstance(axis, int)) or axis > len(x.shape) or axis < 0:
        raise ValueError("The axis should be a int, and in range [0, rank(x)]")

X
Xin Pan 已提交
8645 8646
    out = helper.create_variable_for_type_inference(x.dtype)
    x_shape = helper.create_variable_for_type_inference(x.dtype)
8647
    helper.append_op(
8648
        type='flatten2',
8649
        inputs={"X": x},
8650 8651
        outputs={'Out': out,
                 'XShape': x_shape},
8652 8653
        attrs={"axis": axis})
    return out
X
Xin Pan 已提交
8654 8655


C
chenweihang 已提交
8656
def sequence_enumerate(input, win_size, pad_value=0, name=None):
C
chenweihang 已提交
8657
    """
C
chenweihang 已提交
8658
    Generate a new sequence for the input index sequence, which enumerates all the
M
minqiyang 已提交
8659
    sub-sequences with length `win_size` of the input.
C
chenweihang 已提交
8660 8661
    The enumerated sequence has the same 1st dimension with variable `input`, and
    the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
M
minqiyang 已提交
8662

H
haowang101779990 已提交
8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679
    .. code-block:: text

        Case 1:

          Input:
            X.lod = [[0, 3, 5]]
            X.data = [[1], [2], [3], [4], [5]]
            X.dims = [5, 1]

          Attrs:
            win_size = 2
            pad_value = 0

          Output:
            Out.lod = [[0, 3, 5]]
            Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
            Out.dims = [5, 2]
C
chenweihang 已提交
8680 8681

    Args:
C
chenweihang 已提交
8682 8683 8684
        input (Variable): The input variable which is a index sequence.
        win_size (int): The window size for enumerating all sub-sequences.
        pad_value (int): The padding value, default 0.
C
chenweihang 已提交
8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695

    Returns:
        Variable: The enumerate sequence variable which is a LoDTensor.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(shape[30, 1], dtype='int32', lod_level=1)
            out = fluid.layers.sequence_enumerate(input=x, win_size=3, pad_value=0)
    """
    helper = LayerHelper('sequence_enumerate', **locals())
X
Xin Pan 已提交
8696 8697
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
C
chenweihang 已提交
8698 8699 8700 8701 8702 8703
    helper.append_op(
        type='sequence_enumerate',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'win_size': win_size,
               'pad_value': pad_value})
M
minqiyang 已提交
8704
    return out
8705

8706

S
sneaxiy 已提交
8707 8708 8709 8710 8711 8712 8713 8714 8715
def sequence_mask(x, maxlen=None, dtype='int64', name=None):
    """
    **SequenceMask Layer**

    This layer outputs a mask according to the input :code:`x` and
    :code:`maxlen` with data type of :code:`dtype`.

    Supposing :code:`x` is a Tensor with shape [d_1, d_2, ..., d_n], the
    :code:`y` is a mask with shape [d_1, d_2, ..., d_n, maxlen], where:
8716

S
sneaxiy 已提交
8717
    .. math::
8718

S
sneaxiy 已提交
8719 8720 8721
        y(i_1, i_2,..., i_n, j) = (j < x(i_1, i_2,..., i_n))

    Args:
8722
        x (Variable): Input tensor of sequence_mask layer,
S
sneaxiy 已提交
8723 8724 8725 8726
                      whose elements are integers less than :code:`maxlen`.
        maxlen (int|None): Maximum length of the sequence. If :code:`maxlen`
                           is None, it would be replace with :math:`max(x)`.
        dtype (np.dtype|core.VarDesc.VarType|str): Data type of the output.
8727 8728 8729
        name (str|None): A name for this layer(optional). If set None, the
                         layer will be named automatically.

S
sneaxiy 已提交
8730 8731
    Returns:
        Variable: The output sequence mask.
8732

S
sneaxiy 已提交
8733 8734
    """

Q
qingqing01 已提交
8735
    helper = LayerHelper('sequence_mask', **locals())
S
sneaxiy 已提交
8736
    if name is None:
X
Xin Pan 已提交
8737
        out = helper.create_variable_for_type_inference(dtype=dtype)
S
sneaxiy 已提交
8738
    else:
X
Xin Pan 已提交
8739
        out = helper.create_variable_for_type_inference(dtype=dtype, name=name)
S
sneaxiy 已提交
8740

Q
qingqing01 已提交
8741 8742 8743
    helper.append_op(
        type='sequence_mask',
        inputs={'X': [x]},
S
sneaxiy 已提交
8744 8745
        outputs={'Y': out},
        attrs={
8746
            'maxlen': maxlen if maxlen is not None else -1,
S
sneaxiy 已提交
8747 8748 8749
            'out_dtype': out.dtype
        })
    return out
S
sneaxiy 已提交
8750 8751


X
Xin Pan 已提交
8752
def stack(x, axis=0):
S
sneaxiy 已提交
8753 8754 8755 8756
    """
    **Stack Layer**

    This layer stacks all of the input :code:`x` along axis.
8757 8758 8759 8760 8761 8762 8763

    Input :code:`x` can be a single variable, a :code:`list` of variables,
    or a :code:`tuple` of variables. If :code:`x` is a :code:`list` or
    :code:`tuple`, the shapes of all these variables must be the same.
    Supposing the shape of each input is :math:`[d_0, d_1, ..., d_{n-1}]`,
    the shape of the output variable would be
    :math:`[d_0, d_1, ..., d_{axis}=len(x), ..., d_{n-1}]`.
S
sneaxiy 已提交
8764
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x[0])+1`.
8765
    If :code:`axis` is None, it would be replaced with 0.
S
sneaxiy 已提交
8766

C
chengduozh 已提交
8767 8768
    For Example:

C
chengduozh 已提交
8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806
    .. code-block:: text

        Case 1:
          Input:
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 0

          Output:
            Out.data =[ [ [1.0, 2.0] ],
                        [ [3.0, 4.0] ],
                        [ [5.0, 6.0] ] ]
            Out.dims = [3, 1, 2]

        Case 2:
          Given
            x[0].data = [ [1.0 , 2.0 ] ]
            x[0].dims = [1, 2]
            x[1].data = [ [3.0 , 4.0 ] ]
            x[1].dims = [1, 2]
            x[2].data = [ [5.0 , 6.0 ] ]
            x[2].dims = [1, 2]

          Attrs:
            axis = 1 or axis = -2

          Output:
            Out.data =[ [ [1.0, 2.0]
                          [3.0, 4.0]
                          [5.0, 6.0] ] ]
            Out.dims = [1, 3, 2]

S
sneaxiy 已提交
8807
    Args:
8808
        x (Variable|list(Variable)|tuple(Variable)): Input variables.
S
sneaxiy 已提交
8809
        axis (int|None): The axis along which all inputs are stacked.
8810

S
sneaxiy 已提交
8811 8812
    Returns:
        Variable: The stacked variable.
8813

S
sneaxiy 已提交
8814 8815
    """

X
Xin Pan 已提交
8816 8817 8818 8819 8820 8821
    helper = LayerHelper('stack', **locals())
    axis = 0 if axis is None else axis

    if not isinstance(x, list) and not isinstance(x, tuple):
        x = [x]

X
Xin Pan 已提交
8822
    out = helper.create_variable_for_type_inference(x[0].dtype)
X
Xin Pan 已提交
8823
    helper.append_op(
S
sneaxiy 已提交
8824 8825
        type='stack', inputs={'X': x}, outputs={'Y': out},
        attrs={'axis': axis})
8826

X
Xin Pan 已提交
8827
    return out
D
dzhwinter 已提交
8828 8829 8830 8831 8832 8833 8834


def unstack(x, axis=0, num=None):
    """
    **UnStack Layer**

    This layer unstacks input :code:`x` into several tensors along axis.
M
minqiyang 已提交
8835

D
dzhwinter 已提交
8836 8837 8838
    If :code:`axis` < 0, it would be replaced with :code:`axis+rank(x)`.
    If :code:`num` is None, it would be inferred from :code:`x.shape[axis]`,
    and if :code:`x.shape[axis]` <= 0 or is unknown, :code:`ValueError` is
M
minqiyang 已提交
8839
    raised.
D
dzhwinter 已提交
8840 8841

    Args:
M
minqiyang 已提交
8842
        x (Variable): Input variable.
D
dzhwinter 已提交
8843 8844
        axis (int): The axis along which the input is unstacked.
        num (int|None): The number of output variables.
M
minqiyang 已提交
8845

D
dzhwinter 已提交
8846 8847
    Returns:
        list(Variable): The unstacked variables.
M
minqiyang 已提交
8848

D
dzhwinter 已提交
8849 8850 8851 8852 8853 8854 8855 8856 8857 8858
    """

    helper = LayerHelper('unstack', **locals())
    if num is None:
        if axis is None or x.shape[axis] <= 0:
            raise ValueError('unknown unstack number')
        else:
            num = x.shape[axis]

    outs = []
Y
Yibing Liu 已提交
8859
    for _ in range(num):
X
Xin Pan 已提交
8860
        outs.append(helper.create_variable_for_type_inference(x.dtype))
D
dzhwinter 已提交
8861 8862 8863 8864 8865 8866 8867 8868

    helper.append_op(
        type='unstack',
        inputs={'X': [x]},
        outputs={'Y': outs},
        attrs={'axis': axis,
               'num': num})
    return outs
W
whs 已提交
8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880


def expand(x, expand_times, name=None):
    """Expand operator tiles the input by given times number. You should set times
    number for each dimension by providing attribute 'expand_times'. The rank of X
    should be in [1, 6]. Please note that size of 'expand_times' must be the same
    with X's rank. Following is a using case:


    .. code-block:: text

        Input(X) is a 3-D tensor with shape [2, 3, 1]:
M
minqiyang 已提交
8881

W
whs 已提交
8882 8883 8884 8885
                [
                   [[1], [2], [3]],
                   [[4], [5], [6]]
                ]
M
minqiyang 已提交
8886

W
whs 已提交
8887
        Attr(expand_times):  [1, 2, 2]
M
minqiyang 已提交
8888

W
whs 已提交
8889
        Output(Out) is a 3-D tensor with shape [2, 6, 2]:
M
minqiyang 已提交
8890

W
whs 已提交
8891 8892 8893 8894
                [
                    [[1, 1], [2, 2], [3, 3], [1, 1], [2, 2], [3, 3]],
                    [[4, 4], [5, 5], [6, 6], [4, 4], [5, 5], [6, 6]]
                ]
M
minqiyang 已提交
8895

W
whs 已提交
8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911
    Args:
        x (Variable): A tensor with rank in [1, 6].
        expand_times (list|tuple): Expand times number for each dimension.

    Returns:
        Variable: The expanded variable which is a LoDTensor. After expanding, size of each dimension of Output(Out) is equal to ithe size of the corresponding dimension of Input(X) multiplying the corresponding value given by expand_times.


    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10], dtype='float32')
            out = fluid.layers.expand(x=x, expand_times=[1, 2, 2])
    """
    helper = LayerHelper('expand', input=x, **locals())
    dtype = helper.input_dtype(input_param_name='x')
X
Xin Pan 已提交
8912
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
8913 8914 8915 8916 8917 8918
    helper.append_op(
        type='expand',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'expand_times': expand_times})
    return out
S
sneaxiy 已提交
8919 8920


G
fix  
gongweibao 已提交
8921 8922 8923
from paddle.fluid.framework import convert_np_dtype_to_dtype_


G
gongweibao 已提交
8924
@templatedoc()
G
fix  
gongweibao 已提交
8925 8926 8927 8928 8929 8930 8931 8932 8933
def uniform_random_batch_size_like(input,
                                   shape,
                                   dtype='float32',
                                   input_dim_idx=0,
                                   output_dim_idx=0,
                                   min=-1.0,
                                   max=1.0,
                                   seed=0):
    """
G
gongweibao 已提交
8934
    ${comment}
G
fix  
gongweibao 已提交
8935 8936

    Args:
G
gongweibao 已提交
8937 8938 8939
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
8940
        output_dim_idx (Int): ${output_dim_idx_comment}
G
gongweibao 已提交
8941 8942 8943
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8944 8945
        dtype(np.dtype|core.VarDesc.VarType|str): The type of data : float32, float_16, int etc
    Returns:
G
gongweibao 已提交
8946
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8947

8948 8949 8950 8951 8952
    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.uniform_random_batch_size_like(input, [-1, 11])
G
fix  
gongweibao 已提交
8953 8954 8955
    """

    helper = LayerHelper('uniform_random_batch_size_like', **locals())
X
Xin Pan 已提交
8956
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='uniform_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'min': min,
            'max': max,
            'seed': seed,
            'dtype': c_dtype
        })

    return out
G
fix  
gongweibao 已提交
8973 8974


G
gongweibao 已提交
8975
@templatedoc()
X
Xin Pan 已提交
8976
def gaussian_random(shape, mean=0.0, std=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
8977
    """
G
gongweibao 已提交
8978
    ${comment}
G
fix  
gongweibao 已提交
8979 8980

    Args:
G
gongweibao 已提交
8981 8982 8983 8984
        shape (tuple|list): ${shape_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
8985 8986 8987
        dtype(np.dtype|core.VarDesc.VarType|str): Output data type.

    Returns:
G
gongweibao 已提交
8988
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
8989

8990 8991 8992 8993
    Examples:
        .. code-block:: python

            out = layers.gaussian_random(shape=[20, 30])
G
fix  
gongweibao 已提交
8994 8995 8996
    """

    helper = LayerHelper('gaussian_random', **locals())
X
Xin Pan 已提交
8997
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
8998 8999 9000 9001 9002 9003 9004 9005 9006 9007
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random',
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype,
X
Xin Pan 已提交
9008
            'use_mkldnn': False
G
fix  
gongweibao 已提交
9009 9010 9011 9012 9013
        })

    return out


G
gongweibao 已提交
9014
@templatedoc()
G
fix  
gongweibao 已提交
9015
def sampling_id(x, min=0.0, max=1.0, seed=0, dtype='float32'):
G
fix  
gongweibao 已提交
9016
    """
G
gongweibao 已提交
9017
    ${comment}
G
fix  
gongweibao 已提交
9018 9019

    Args:
G
gongweibao 已提交
9020 9021 9022 9023
        x (Variable): ${x_comment}
        min (Float): ${min_comment}
        max (Float): ${max_comment}
        seed (Float): ${seed_comment}
G
fix  
gongweibao 已提交
9024
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9025 9026

    Returns:
G
gongweibao 已提交
9027
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9028

9029 9030 9031 9032 9033 9034 9035 9036 9037 9038
    Examples:
        .. code-block:: python

            x = layers.data(
                name="X",
                shape=[13, 11],
                dtype='float32',
                append_batch_size=False)

            out = layers.sampling_id(x)
G
fix  
gongweibao 已提交
9039 9040 9041
    """

    helper = LayerHelper('sampling_id', **locals())
X
Xin Pan 已提交
9042
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053
    helper.append_op(
        type='sampling_id',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={'min': min,
               'max': max,
               'seed': seed})

    return out


G
gongweibao 已提交
9054
@templatedoc()
G
fix  
gongweibao 已提交
9055 9056 9057 9058 9059 9060 9061 9062 9063
def gaussian_random_batch_size_like(input,
                                    shape,
                                    input_dim_idx=0,
                                    output_dim_idx=0,
                                    mean=0.0,
                                    std=1.0,
                                    seed=0,
                                    dtype='float32'):
    """
G
gongweibao 已提交
9064
    ${comment}
G
fix  
gongweibao 已提交
9065 9066

    Args:
G
gongweibao 已提交
9067 9068
        input (Variable): ${input_comment}
        shape (tuple|list): ${shape_comment}
G
gongweibao 已提交
9069
        input_dim_idx (Int): ${input_dim_idx_comment}
G
gongweibao 已提交
9070 9071 9072 9073
        output_dim_idx (Int): ${output_dim_idx_comment}
        mean (Float): ${mean_comment}
        std (Float): ${std_comment}
        seed (Int): ${seed_comment}
G
fix  
gongweibao 已提交
9074
        dtype(np.dtype|core.VarDesc.VarType|str): The type of output data : float32, float_16, int etc
G
fix  
gongweibao 已提交
9075 9076

    Returns:
G
gongweibao 已提交
9077
        out (Variable): ${out_comment}
9078 9079 9080 9081 9082 9083 9084 9085

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')

            out = layers.gaussian_random_batch_size_like(
                input, shape=[-1, 11], mean=1.0, std=2.0)
G
fix  
gongweibao 已提交
9086 9087 9088
    """

    helper = LayerHelper('gaussian_random_batch_size_like', **locals())
X
Xin Pan 已提交
9089
    out = helper.create_variable_for_type_inference(dtype)
G
fix  
gongweibao 已提交
9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107
    c_dtype = convert_np_dtype_to_dtype_(dtype)
    helper.append_op(
        type='gaussian_random_batch_size_like',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={
            'shape': shape,
            'input_dim_idx': input_dim_idx,
            'output_dim_idx': output_dim_idx,
            'mean': mean,
            'std': std,
            'seed': seed,
            'dtype': c_dtype
        })

    return out


G
gongweibao 已提交
9108
@templatedoc()
X
Xin Pan 已提交
9109
def sum(x):
G
fix  
gongweibao 已提交
9110
    """
G
gongweibao 已提交
9111
    ${comment}
G
fix  
gongweibao 已提交
9112 9113

    Args:
G
gongweibao 已提交
9114
        x (Variable): ${x_comment}
G
fix  
gongweibao 已提交
9115 9116

    Returns:
G
gongweibao 已提交
9117
        out (Variable): ${out_comment}
9118 9119 9120 9121 9122 9123

    Examples:
        .. code-block:: python

            input = layers.data(name="input", shape=[13, 11], dtype='float32')
            out = layers.sum(input)
G
fix  
gongweibao 已提交
9124 9125 9126
    """

    helper = LayerHelper('sum', **locals())
X
Xin Pan 已提交
9127 9128
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('x'))
G
fix  
gongweibao 已提交
9129 9130 9131 9132
    helper.append_op(
        type='sum',
        inputs={'X': x},
        outputs={'Out': out},
X
Xin Pan 已提交
9133
        attrs={'use_mkldnn': False})
G
fix  
gongweibao 已提交
9134 9135 9136 9137

    return out


G
gongweibao 已提交
9138
@templatedoc()
G
fix  
gongweibao 已提交
9139 9140
def slice(input, axes, starts, ends):
    """
G
gongweibao 已提交
9141
    ${comment}
G
fix  
gongweibao 已提交
9142 9143

    Args:
G
gongweibao 已提交
9144 9145 9146 9147
        input (Variable): ${input_comment}.
        axes (List): ${axes_comment}
        starts (List): ${starts_comment}
        ends (List): ${ends_comment}
G
fix  
gongweibao 已提交
9148 9149

    Returns:
G
gongweibao 已提交
9150
        out (Variable): ${out_comment}
G
fix  
gongweibao 已提交
9151

9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162
    Examples:
        .. code-block:: python

            starts = [1, 0, 2]
            ends = [3, 3, 4]
            axes = [0, 1, 2]

            input = layers.data(
                name="input", shape=[3, 4, 5, 6], dtype='float32')

            out = layers.slice(input, axes=axes, starts=starts, ends=ends)
G
fix  
gongweibao 已提交
9163 9164 9165
    """

    helper = LayerHelper('slice', **locals())
X
Xin Pan 已提交
9166 9167
    out = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype('input'))
G
fix  
gongweibao 已提交
9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180
    helper.append_op(
        type='slice',
        inputs={'Input': input},
        outputs={'Out': out},
        attrs={'axes': axes,
               'starts': starts,
               'ends': ends})

    return out


def shape(input):
    """
C
chengduozh 已提交
9181 9182
    **Shape Layer**

C
fix doc  
chengduozh 已提交
9183
    Get the shape of the input.
G
fix  
gongweibao 已提交
9184 9185

    Args:
C
chengduozh 已提交
9186
        input (Variable): The input variable.
G
fix  
gongweibao 已提交
9187 9188

    Returns:
C
fix doc  
chengduozh 已提交
9189
        Variable: The shape of the input variable.
G
fix  
gongweibao 已提交
9190

9191 9192 9193 9194 9195 9196
    Examples:
        .. code-block:: python

            input = layers.data(
                name="input", shape=[3, 100, 100], dtype="float32")
            out = layers.shape(input)
G
fix  
gongweibao 已提交
9197 9198 9199
    """

    helper = LayerHelper('shape', **locals())
9200
    out = helper.create_variable_for_type_inference(dtype='int32')
G
fix  
gongweibao 已提交
9201
    helper.append_op(
G
fix  
gongweibao 已提交
9202
        type='shape', inputs={'Input': input}, outputs={'Out': out})
G
fix  
gongweibao 已提交
9203 9204

    return out
G
merge  
gongweibao 已提交
9205 9206


S
sneaxiy 已提交
9207 9208 9209 9210
def _elementwise_op(helper):
    op_type = helper.layer_type
    x = helper.kwargs.get('x', None)
    y = helper.kwargs.get('y', None)
L
lujun 已提交
9211
    if in_dygraph_mode():
X
Xin Pan 已提交
9212 9213 9214
        x = base.to_variable(x)
        y = base.to_variable(y)

S
sneaxiy 已提交
9215 9216 9217 9218
    assert x is not None, 'x cannot be None in {}'.format(op_type)
    assert y is not None, 'y cannot be None in {}'.format(op_type)
    axis = helper.kwargs.get('axis', -1)
    use_mkldnn = helper.kwargs.get('use_mkldnn', False)
S
sneaxiy 已提交
9219 9220
    name = helper.kwargs.get('name', None)
    if name is None:
X
Xin Pan 已提交
9221
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9222 9223 9224
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9225

S
sneaxiy 已提交
9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236
    helper.append_op(
        type=op_type,
        inputs={'X': x,
                'Y': y},
        outputs={'Out': out},
        attrs={'axis': axis,
               'use_mkldnn': use_mkldnn})
    return helper.append_activation(out)


@templatedoc()
S
sneaxiy 已提交
9237
def scale(x, scale=1.0, bias=0.0, bias_after_scale=True, act=None, name=None):
S
sneaxiy 已提交
9238 9239 9240 9241 9242 9243 9244 9245
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        scale(${scale_type}): ${scale_comment}
        bias(${bias_type}): ${bias_comment}
        bias_after_scale(${bias_after_scale_type}): ${bias_after_scale_comment}
S
sneaxiy 已提交
9246
        act(basestring|None): Activation applied to the output.
M
minqiyang 已提交
9247
        name(basestring|None): Name of the output.
S
sneaxiy 已提交
9248 9249 9250 9251 9252 9253

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('scale', **locals())
S
sneaxiy 已提交
9254
    if name is None:
X
Xin Pan 已提交
9255
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9256 9257 9258
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)
S
sneaxiy 已提交
9259 9260 9261 9262 9263 9264 9265 9266 9267 9268

    helper.append_op(
        type='scale',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={
            'scale': float(scale),
            'bias': float(bias),
            'bias_after_scale': bias_after_scale
        })
S
sneaxiy 已提交
9269
    return helper.append_activation(out)
S
sneaxiy 已提交
9270 9271


X
Xin Pan 已提交
9272
def elementwise_add(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9273 9274 9275
    return _elementwise_op(LayerHelper('elementwise_add', **locals()))


X
Xin Pan 已提交
9276
def elementwise_div(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9277 9278 9279
    return _elementwise_op(LayerHelper('elementwise_div', **locals()))


X
Xin Pan 已提交
9280
def elementwise_sub(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9281 9282 9283
    return _elementwise_op(LayerHelper('elementwise_sub', **locals()))


X
Xin Pan 已提交
9284
def elementwise_mul(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9285 9286 9287
    return _elementwise_op(LayerHelper('elementwise_mul', **locals()))


X
Xin Pan 已提交
9288
def elementwise_max(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9289 9290 9291
    return _elementwise_op(LayerHelper('elementwise_max', **locals()))


X
Xin Pan 已提交
9292
def elementwise_min(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9293 9294 9295
    return _elementwise_op(LayerHelper('elementwise_min', **locals()))


X
Xin Pan 已提交
9296
def elementwise_pow(x, y, axis=-1, act=None, name=None):
S
sneaxiy 已提交
9297 9298 9299
    return _elementwise_op(LayerHelper('elementwise_pow', **locals()))


9300 9301 9302 9303 9304 9305 9306 9307
def elementwise_mod(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_mod', **locals()))


def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
    return _elementwise_op(LayerHelper('elementwise_floordiv', **locals()))


S
sneaxiy 已提交
9308
for func in [
9309 9310 9311 9312 9313 9314 9315 9316 9317
        elementwise_add,
        elementwise_div,
        elementwise_sub,
        elementwise_mul,
        elementwise_max,
        elementwise_min,
        elementwise_pow,
        elementwise_mod,
        elementwise_floordiv,
S
sneaxiy 已提交
9318 9319 9320 9321 9322
]:
    op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
S
sneaxiy 已提交
9323 9324
            "act (basestring|None): Activation applied to the output.",
            "name (basestring|None): Name of the output."
S
sneaxiy 已提交
9325
        ])
M
minqiyang 已提交
9326 9327


9328
def _logical_op(op_name, x, y, out=None, name=None, binary_op=True):
M
minqiyang 已提交
9329 9330
    helper = LayerHelper(op_name, **locals())

M
minqiyang 已提交
9331 9332
    if binary_op:
        assert x.dtype == y.dtype
M
minqiyang 已提交
9333 9334 9335

    if out is None:
        if name is None:
X
Xin Pan 已提交
9336
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
M
minqiyang 已提交
9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False)

    if binary_op:
        helper.append_op(
            type=op_name, inputs={"X": x,
                                  "Y": y}, outputs={"Out": out})
    else:
        helper.append_op(type=op_name, inputs={"X": x}, outputs={"Out": out})

    return out


@templatedoc()
9352
def logical_and(x, y, out=None, name=None):
M
minqiyang 已提交
9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9364 9365 9366 9367 9368 9369 9370 9371 9372

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_and(x=left, y=right)
M
minqiyang 已提交
9373 9374 9375 9376 9377 9378 9379
    """

    return _logical_op(
        op_name="logical_and", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9380
def logical_or(x, y, out=None, name=None):
M
minqiyang 已提交
9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9392 9393 9394 9395 9396 9397 9398 9399 9400

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_or(x=left, y=right)
M
minqiyang 已提交
9401 9402 9403 9404 9405 9406 9407
    """

    return _logical_op(
        op_name="logical_or", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9408
def logical_xor(x, y, out=None, name=None):
M
minqiyang 已提交
9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9420 9421 9422 9423 9424 9425 9426 9427 9428

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            right = fluid.layers.data(
                name='right', shape=[1], dtype='int32')
            result = fluid.layers.logical_xor(x=left, y=right)
M
minqiyang 已提交
9429 9430 9431 9432 9433 9434 9435
    """

    return _logical_op(
        op_name="logical_xor", x=x, y=y, name=name, out=out, binary_op=True)


@templatedoc()
9436
def logical_not(x, out=None, name=None):
M
minqiyang 已提交
9437 9438 9439 9440 9441 9442 9443 9444 9445 9446
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        out(Tensor): Output tensor of logical operation.
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9447 9448 9449 9450 9451 9452 9453

    Examples:
        .. code-block:: python

            left = fluid.layers.data(
                name='left', shape=[1], dtype='int32')
            result = fluid.layers.logical_not(x=left)
M
minqiyang 已提交
9454 9455 9456 9457
    """

    return _logical_op(
        op_name="logical_not", x=x, y=None, name=name, out=out, binary_op=False)
9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472


@templatedoc()
def clip(x, min, max, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        min(${min_type}): ${min_comment}
        max(${max_type}): ${max_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9473 9474 9475 9476 9477 9478 9479

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip(x=input, min=-1.0, max=1.0)
9480 9481 9482 9483 9484
    """

    helper = LayerHelper("clip", **locals())

    if name is None:
S
sneaxiy 已提交
9485 9486 9487 9488
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511

    helper.append_op(
        type="clip",
        inputs={"X": x},
        attrs={"min": min,
               "max": max},
        outputs={"Out": out})

    return out


@templatedoc()
def clip_by_norm(x, max_norm, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        max_norm(${max_norm_type}): ${max_norm_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
9512 9513 9514 9515 9516 9517 9518

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[1], dtype='float32')
            reward = fluid.layers.clip_by_norm(x=input, max_norm=1.0)
9519 9520 9521 9522 9523
    """

    helper = LayerHelper("clip_by_norm", **locals())

    if name is None:
S
sneaxiy 已提交
9524 9525 9526 9527
        name = unique_name.generate(".".join([helper.name, 'tmp']))

    out = helper.create_variable(
        type=x.type, name=name, dtype=x.dtype, persistable=False)
9528 9529 9530 9531 9532 9533 9534 9535

    helper.append_op(
        type="clip_by_norm",
        inputs={"X": x},
        attrs={"max_norm": max_norm},
        outputs={"Out": out})

    return out
X
Xin Pan 已提交
9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553


@templatedoc()
def mean(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mean", **locals())

    if name is None:
X
Xin Pan 已提交
9554
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9555 9556 9557 9558 9559 9560 9561 9562 9563 9564
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mean", inputs={"X": x}, attrs={}, outputs={"Out": out})

    return out


C
chengduo 已提交
9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587
@templatedoc()
def merge_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("merge_selected_rows", **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type="merge_selected_rows",
        inputs={"X": x},
        attrs={},
        outputs={"Out": out})
    return out


X
Xin Pan 已提交
9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606
@templatedoc()
def mul(x, y, x_num_col_dims=1, y_num_col_dims=1, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}
        x_num_col_dims(${x_num_col_dims_type}): ${x_num_col_dims_comment}
        y_num_col_dims(${y_num_col_dims_type}): ${y_num_col_dims_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper("mul", **locals())

    if name is None:
X
Xin Pan 已提交
9607
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9608 9609 9610 9611 9612 9613 9614 9615 9616
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="mul",
        inputs={"X": x,
                "Y": y},
        attrs={
X
fix  
Xin Pan 已提交
9617 9618
            "x_num_col_dims": x_num_col_dims,
            "y_num_col_dims": y_num_col_dims
X
Xin Pan 已提交
9619 9620 9621 9622 9623 9624
        },
        outputs={"Out": out})
    return out


@templatedoc()
J
jerrywgz 已提交
9625 9626 9627
def sigmoid_cross_entropy_with_logits(x,
                                      label,
                                      ignore_index=kIgnoreIndex,
9628 9629
                                      name=None,
                                      normalize=False):
X
Xin Pan 已提交
9630 9631 9632 9633 9634 9635
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        label(${label_type}): ${label_comment}
9636
        ignore_index(&{ignore_index}): ${ignore_index_comment}
X
Xin Pan 已提交
9637
        name(basestring|None): Name of the output.
9638 9639
        normalize(bool): If true, divide the output by the number of
            targets != ignore_index.
X
Xin Pan 已提交
9640 9641 9642

    Returns:
        out(${out_type}): ${out_comment}
9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656

    Examples:
        .. code-block:: python

            input = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            label = fluid.layers.data(
                name='data', shape=[10], dtype='float32')
            loss = fluid.layers.sigmoid_cross_entropy_with_logits(
                x=input,
                label=label,
                ignore_index=-1,
                normalize=True) # or False
            # loss = fluid.layers.reduce_sum(loss) # summation of loss
X
Xin Pan 已提交
9657 9658 9659 9660 9661
    """

    helper = LayerHelper("sigmoid_cross_entropy_with_logits", **locals())

    if name is None:
X
Xin Pan 已提交
9662
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9663 9664 9665 9666 9667 9668 9669 9670
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sigmoid_cross_entropy_with_logits",
        inputs={"X": x,
                "Label": label},
9671 9672
        attrs={"ignore_index": ignore_index,
               'normalize': normalize},
X
Xin Pan 已提交
9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692
        outputs={"Out": out})
    return out


@templatedoc()
def maxout(x, groups, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        groups(${groups_type}): ${groups_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("maxout", **locals())

    if name is None:
X
Xin Pan 已提交
9693
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
9694 9695 9696 9697 9698 9699 9700 9701 9702 9703
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="maxout",
        inputs={"X": x},
        attrs={"groups": groups},
        outputs={"Out": out})
    return out
9704 9705


J
JiabinYang 已提交
9706
def space_to_depth(x, blocksize, name=None):
J
JiabinYang 已提交
9707
    """
J
JiabinYang 已提交
9708
    Gives a blocksize to space_to_depth the input LoDtensor with Layout: [batch, channel, height, width]
9709 9710 9711

    This op rearranges blocks of spatial data, into depth. More specifically, this op outputs a copy of the
    input LoDtensor where values from the height and width dimensions are moved to the channel dimension.
J
JiabinYang 已提交
9712
    The attr blocksize indicates the input block size.
9713 9714

    space_to_depth will reorgnize the elements of input with shape[batch, channel, height, width] according
J
JiabinYang 已提交
9715
    to blocksize to construct output with shape [batch, channel * blocksize * blocksize, height/blocksize, width/blocksize]:
9716 9717

    space_to_depth is used to This operation is useful for resizing the activations between convolutions
J
JiabinYang 已提交
9718
    (but keeping all data)
J
JiabinYang 已提交
9719

J
JiabinYang 已提交
9720
    - Non-overlapping blocks of size block_size x block size are rearranged into depth at each location.
9721
    - The depth of the output tensor is block_size * block_size * input channel
J
JiabinYang 已提交
9722 9723 9724 9725 9726
    - The Y, X coordinates within each block of the input become the high order component of the output channel index
    - channel should be divisible by square of blocksize
    - height, width should be divsible by blocksize


J
JiabinYang 已提交
9727
    Args:
J
JiabinYang 已提交
9728
        x(variable): The input LoDtensor.
J
JiabinYang 已提交
9729
        blocksize(variable): The blocksize to select the element on each feature map should be > 2
J
JiabinYang 已提交
9730 9731

    Returns:
J
JiabinYang 已提交
9732
        Variable: The output LoDtensor.
J
JiabinYang 已提交
9733 9734

    Raises:
J
JiabinYang 已提交
9735
        TypeError: blocksize type must be a long.
J
JiabinYang 已提交
9736 9737 9738 9739 9740

    Examples:
        .. code-block:: python

            data = fluid.layers.data(
9741
                name='data', shape=[1, 4, 2, 2], dtype='float32', append_batch_size=False)
J
JiabinYang 已提交
9742
            space_to_depthed = fluid.layers.space_to_depth(
J
JiabinYang 已提交
9743
                x=data, blocksize=2)
9744 9745 9746 9747 9748 9749

            exe = fluid.Executor(fluid.CUDAPlace(0))
            data_np = np.arange(0,16).reshape((1,4,2,2)).astype('float32')
            out_main = exe.run(fluid.default_main_program(),
                          feed={'data': data_np},
                          fetch_list=[space_to_depthed])
J
JiabinYang 已提交
9750 9751
    """

J
JiabinYang 已提交
9752
    helper = LayerHelper("space_to_depth", **locals())
J
JiabinYang 已提交
9753

J
JiabinYang 已提交
9754 9755
    if not (isinstance(blocksize, int)):
        raise ValueError("blocksize must be a python Int")
J
JiabinYang 已提交
9756 9757

    if name is None:
J
JiabinYang 已提交
9758 9759
        out = helper.create_variable_for_type_inference(
            dtype=x.dtype)  #fix create
J
JiabinYang 已提交
9760 9761 9762 9763 9764
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
J
JiabinYang 已提交
9765
        type="space_to_depth",
J
JiabinYang 已提交
9766
        inputs={"X": x},
J
JiabinYang 已提交
9767
        attrs={"blocksize": blocksize},
J
JiabinYang 已提交
9768
        outputs={"Out": out})
J
JiabinYang 已提交
9769 9770
    return out

J
JiabinYang 已提交
9771

S
sneaxiy 已提交
9772 9773
@templatedoc()
def sequence_reverse(x, name=None):
9774
    """
S
sneaxiy 已提交
9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${y_type}): ${y_comment}
    """
    helper = LayerHelper("sequence_reverse", **locals())
    if name is None:
S
sneaxiy 已提交
9786
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
sneaxiy 已提交
9787 9788 9789 9790 9791 9792 9793 9794 9795 9796
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="sequence_reverse",
        inputs={"X": x},
        outputs={"Y": out},
        attrs=dict())
    return out
S
sneaxiy 已提交
9797 9798


9799 9800 9801 9802 9803 9804
def affine_channel(x,
                   scale=None,
                   bias=None,
                   data_layout='NCHW',
                   name=None,
                   act=None):
9805 9806 9807 9808 9809
    """
    Applies a separate affine transformation to each channel of the input.
    Useful for replacing spatial batch norm with its equivalent fixed
    transformation. The input also can be 2D tensor and applies a affine
    transformation in second dimension.
9810

9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822
    Args:
        x (Variable): Feature map input can be a 4D tensor with order NCHW
            or NHWC. It also can be a 2D tensor and the affine transformation
            is applied in the second dimension.
        scale (Variable): 1D input of shape (C), the c-th element is the scale
            factor of the affine transformation for the c-th channel of
            the input.
        bias (Variable): 1D input of shape (C), the c-th element is the bias
            of the affine transformation for the c-th channel of the input.
        data_layout (string, default NCHW): NCHW or NHWC. If input is 2D
            tensor, you can ignore data_layout.
        name (str, default None): The name of this layer.
9823
        act (str, default None): Activation to be applied to the output of this layer.
9824 9825 9826 9827 9828 9829 9830

    Returns:
        out (Variable): A tensor of the same shape and data layout with x.
    """
    helper = LayerHelper("affine_channel", **locals())

    if name is None:
X
Xin Pan 已提交
9831
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="affine_channel",
        inputs={"X": x,
                'Scale': scale,
                'Bias': bias},
        attrs={"data_layout": data_layout},
        outputs={"Out": out})
9843
    return helper.append_activation(out)
9844 9845


B
barrierye 已提交
9846
def similarity_focus(input, axis, indexes, name=None):
9847
    """
B
barrierye 已提交
9848
    SimilarityFocus Operator
B
barrierye 已提交
9849 9850

    Generate a similarity focus mask with the same shape of input using the following method:
M
minqiyang 已提交
9851

9852 9853 9854
    1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
       to the axis according to the indexes. For example, if axis=1 and indexes=[a],
       it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
B
barrierye 已提交
9855
       is (BatchSize, A, B, C), the shape of tensor T is (BatchSize, B, C).
9856 9857 9858 9859 9860 9861 9862
    2. For each index, find the largest numbers in the tensor T, so that the same
       row and same column has at most one number(what it means is that if the
       largest number has been found in the i-th row and the j-th column, then
       the numbers in the i-th row or j-th column will be skipped. And then the
       next largest number will be selected from the remaining numbers. Obviously
       there will be min(B, C) numbers), and mark the corresponding position of the
       3-D similarity focus mask as 1, otherwise as 0. Do elementwise-or for
B
barrierye 已提交
9863
       each index.
B
barrierye 已提交
9864 9865 9866 9867
    3. Broadcast the 3-D similarity focus mask to the same shape of input X.

    Refer to `Similarity Focus Layer <http://www.aclweb.org/anthology/N16-1108>`_

B
barrierye 已提交
9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916
    .. code-block:: text

        * Example :

            Given a 4-D tensor x with the shape (BatchSize, C, A, B), where C is
            the number of channels and the shape of feature map is (A, B):
                x.shape = (2, 3, 2, 2)
                x.data = [[[[0.8, 0.1],
                            [0.4, 0.5]],

                           [[0.9, 0.7],
                            [0.9, 0.9]],

                           [[0.8, 0.9],
                            [0.1, 0.2]]],


                          [[[0.2, 0.5],
                            [0.3, 0.4]],

                           [[0.9, 0.7],
                            [0.8, 0.4]],

                           [[0.0, 0.2],
                            [0.4, 0.7]]]]

            Given axis: 1 (the axis of the channel)
            Given indexes: [0]

            then we get a 4-D tensor out with the same shape of input x:
                out.shape = (2, 3, 2, 2)
                out.data = [[[[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]],

                             [[1.0, 0.0],
                              [0.0, 1.0]]],

                            [[[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]],

                             [[0.0, 1.0],
                              [1.0, 0.0]]]]

B
barrierye 已提交
9917
    Args:
9918
        input(Variable): The input tensor variable(default float). It should
B
barrierye 已提交
9919
            be a 4-D tensor with shape [BatchSize, A, B, C].
B
barrierye 已提交
9920
        axis(int): Indicating the dimension to be selected. It can only be
B
barrierye 已提交
9921
            1, 2 or 3.
B
barrierye 已提交
9922
        indexes(list): Indicating the indexes of the selected dimension.
B
barrierye 已提交
9923 9924

    Returns:
H
haowang101779990 已提交
9925 9926
        Variable: A tensor variable with the same shape and same type \
                  as the input.
9927

B
barrierye 已提交
9928 9929
    Examples:
        .. code-block:: python
H
haowang101779990 已提交
9930

B
barrierye 已提交
9931
            data = fluid.layers.data(
B
barrierye 已提交
9932 9933
              name='data', shape=[2, 3, 2, 2], dtype='float32')
            x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
H
haowang101779990 已提交
9934

B
barrierye 已提交
9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946
    """
    helper = LayerHelper('similarity_focus', **locals())
    # check attrs
    if isinstance(axis, int) is False:
        raise TypeError("axis must be int type.")
    if isinstance(indexes, list) is False:
        raise TypeError("indexes must be list type.")
    if axis != 1 and axis != 2 and axis != 3:
        raise ValueError("axis must be 1, 2 or 3.")
    if len(indexes) == 0:
        raise ValueError("indexes can not be empty.")

B
barrierye 已提交
9947 9948 9949 9950 9951
    if name is None:
        out = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        out = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)
B
barrierye 已提交
9952 9953 9954 9955 9956 9957 9958
    helper.append_op(
        type='similarity_focus',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={"axis": axis,
               "indexes": indexes})
    return out
B
barrierye 已提交
9959 9960


M
minqiyang 已提交
9961 9962
def hash(input, hash_size, num_hash=1, name=None):
    """
M
minqiyang 已提交
9963 9964
    Hash the input to an integer whose value is less than the given hash size.

M
minqiyang 已提交
9965 9966
    The hash algorithm we used was xxHash - Extremely fast hash algorithm
    (https://github.com/Cyan4973/xxHash/tree/v0.6.5)
M
minqiyang 已提交
9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004

    A simple example as below:

    .. code-block:: text

        Given:

        # shape [2, 2]
        input.data = [
            [[1], [2]],
            [[3], [4]],
        ]

        input.lod = [[0, 2]]

        hash_size = 10000

        num_hash = 4

        Then:

        Hash op will take all number in input's 2nd dimension as hash algorithm's
        input for each time. Each input will be hashed for 4 times, and get an
        array whose length is 4. Each value in the array ranges from 0 to 9999.

        # shape [2, 4]
        output.data = [
            [[9662], [9217], [1129], [8487]],
            [[8310], [1327], [1654], [4567]],
        ]

        output.lod = [[0, 2]]

    Args:
        input (Variable): The input variable which is a one-hot word. The
            dimensions of the input variable must be 2.
        hash_size (int): The space size for hash algorithm. The output value
            will keep in the range:math:`[0, hash_size - 1]`.
M
minqiyang 已提交
10005
        num_hash (int): The times of hash, default 1.
M
minqiyang 已提交
10006
        name (str, default None): The name of this layer.
M
minqiyang 已提交
10007 10008 10009 10010 10011 10012

    Returns:
       Variable: The hash result variable which is a LoDTensor.

    Examples:
       .. code-block:: python
H
haowang101779990 已提交
10013

M
minqiyang 已提交
10014 10015 10016
           word_dict = paddle.dataset.imdb.word_dict()
           x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
           out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
M
minqiyang 已提交
10017 10018
    """
    helper = LayerHelper('hash', **locals())
M
minqiyang 已提交
10019 10020
    out = helper.create_variable_for_type_inference(
        helper.input_dtype(), stop_gradient=True)
M
minqiyang 已提交
10021 10022 10023 10024 10025 10026 10027
    helper.append_op(
        type='hash',
        inputs={'X': input},
        outputs={'Out': out},
        attrs={'num_hash': num_hash,
               'mod_by': hash_size})
    return out
G
gmcather 已提交
10028 10029


D
dengkaipeng 已提交
10030
@templatedoc()
10031 10032
def grid_sampler(x, grid, name=None):
    """
10033
    This operation samples input X by using bilinear interpolation based on
H
haowang101779990 已提交
10034
    flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
10035 10036 10037 10038
    shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
    with shape [N, H, W] each, where grid_x is indexing the 4th dimension
    (in width dimension) of input data x and grid_y is indexng the 3rd
    dimention (in height dimension), finally results is the bilinear
10039
    interpolation value of 4 nearest corner points.
10040

H
haowang101779990 已提交
10041
    .. code-block:: text
10042

H
haowang101779990 已提交
10043 10044
        Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].
10045

H
haowang101779990 已提交
10046 10047
        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
10048

H
haowang101779990 已提交
10049 10050 10051
        Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
        interpolate point value by 4 nearest points.
10052

H
haowang101779990 已提交
10053 10054 10055 10056 10057 10058 10059 10060 10061
          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn
10062

H
haowang101779990 已提交
10063 10064 10065 10066
        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord
10067

H
haowang101779990 已提交
10068 10069 10070 10071
        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side
10072

H
haowang101779990 已提交
10073 10074 10075 10076
        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value
10077

H
haowang101779990 已提交
10078 10079
        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
D
dengkaipeng 已提交
10080 10081

    Args:
10082 10083 10084
        x(Variable): Input data of shape [N, C, H, W].
        grid(Variable): Input grid tensor of shape [N, H, W, 2].
        name (str, default None): The name of this layer.
D
dengkaipeng 已提交
10085 10086

    Returns:
H
haowang101779990 已提交
10087
        Variable: Output of shape [N, C, H, W] data samples input X
10088 10089
        using bilnear interpolation based on input grid.

H
haowang101779990 已提交
10090 10091 10092 10093 10094 10095 10096 10097
    Examples:

        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
            theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
            grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
            out = fluid.layers.grid_sampler(x=x, grid=grid)
10098

D
dengkaipeng 已提交
10099 10100 10101 10102 10103 10104 10105 10106 10107
    """
    helper = LayerHelper("grid_sampler", **locals())

    if not isinstance(x, Variable):
        return ValueError("The x should be a Variable")

    if not isinstance(grid, Variable):
        return ValueError("The grid should be a Variable")

10108
    out = helper.create_variable_for_type_inference(x.dtype)
D
dengkaipeng 已提交
10109 10110
    ipts = {'X': x, 'Grid': grid}

10111
    helper.append_op(type='grid_sampler', inputs=ipts, outputs={'Output': out})
10112 10113 10114
    return out


G
gmcather 已提交
10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161
def log_loss(input, label, epsilon=1e-4, name=None):
    """
    **Negative Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    negative log loss.

    .. math::

        Out = -label * \\log{(input + \\epsilon)}
              - (1 - label) * \\log{(1 - input + \\epsilon)}

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
        epsilon (float): epsilon
        name (string): the name of log_loss

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the negative log loss.

    Examples:
        .. code-block:: python

          prob = fluid.layers.sigmoid(net)
          cost = fluid.layers.log_loss(input=prob, label=label)
    """
    helper = LayerHelper('log_loss', **locals())

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=input.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=input.dtype, persistable=False)

    helper.append_op(
        type='log_loss',
        inputs={'Predicted': [input],
                'Labels': [label]},
        outputs={'Loss': [loss]},
        attrs={'epsilon': epsilon})
    return loss


H
heqiaozhi 已提交
10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180
def teacher_student_sigmoid_loss(input,
                                 label,
                                 soft_max_up_bound=15.0,
                                 soft_max_lower_bound=-15.0):
    """
    **Teacher Student Log Loss Layer**

    This layer accepts input predictions and target label and returns the
    teacher_student loss.

    .. math::
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))

    Args:
        input (Variable|list):  a 2-D tensor with shape [N x 1], where N is the
                                batch size. This input is a probability computed
                                by the previous operator.
        label (Variable|list):  the ground truth which is a 2-D tensor with
                                shape [N x 1], where N is the batch size.
M
minqiyang 已提交
10181
        soft_max_up_bound  (float):  if input > soft_max_up_bound, will be bound
H
heqiaozhi 已提交
10182 10183 10184 10185 10186 10187 10188
        soft_max_lower_bound (float): if input < soft_max_lower_bound, will be bound

    Returns:
        Variable: A 2-D tensor with shape [N x 1], the teacher_student_sigmoid_loss.

    Examples:
        .. code-block:: python
H
heqiaozhi 已提交
10189

H
heqiaozhi 已提交
10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203
          cost = fluid.layers.teacher_student_sigmoid_loss(input=similarity, label=label)
    """
    helper = LayerHelper('teacher_student_sigmoid_loss', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='teacher_student_sigmoid_loss',
        inputs={'X': [input],
                'Label': [label]},
        outputs={'Y': [out]},
        attrs={"soft_max_lower_bound": float(soft_max_lower_bound), \
                "soft_max_up_bound": float(soft_max_up_bound)})
    return out


G
gmcather 已提交
10204 10205 10206 10207
def add_position_encoding(input, alpha, beta, name=None):
    """
    **Add Position Encoding Layer**

H
haowang101779990 已提交
10208
    This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
G
gmcather 已提交
10209 10210
    output Tensor of shape [N x M x P] with positional encoding value.

H
haowang101779990 已提交
10211
    Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
G
gmcather 已提交
10212 10213

    .. math::
H
haowang101779990 已提交
10214 10215 10216
        PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})}   \\\\
        PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})}  \\\\
        Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
G
gmcather 已提交
10217 10218

    Where:
H
haowang101779990 已提交
10219 10220
      - :math:`PE(pos, 2i)` : the increment for the number at even position
      - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
G
gmcather 已提交
10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234

    Args:
        input (Variable): 3-D input tensor with shape [N x M x P]
        alpha (float): multiple of Input Tensor
        beta (float): multiple of Positional Encoding Tensor
        name (string): the name of position encoding layer

    Returns:
        Variable: A 3-D Tensor of shape [N x M x P] with positional encoding.

    Examples:
        .. code-block:: python

          position_tensor = fluid.layers.add_position_encoding(input=tensor)
H
haowang101779990 已提交
10235

G
gmcather 已提交
10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251
    """
    helper = LayerHelper('add_position_encoding', **locals())
    dtype = helper.input_dtype()

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    helper.append_op(
        type="add_position_encoding",
        inputs={"X": input},
        outputs={"Out": out},
        attrs={"alpha": alpha,
               "beta": beta})
    return out
Q
Qiao Longfei 已提交
10252 10253 10254 10255 10256 10257 10258 10259 10260 10261


def bilinear_tensor_product(x,
                            y,
                            size,
                            act=None,
                            name=None,
                            param_attr=None,
                            bias_attr=None):
    """
Q
Qiao Longfei 已提交
10262
    **Add Bilinear Tensor Product Layer**
Q
Qiao Longfei 已提交
10263

Q
Qiao Longfei 已提交
10264
    This layer performs bilinear tensor product on two inputs.
Q
Qiao Longfei 已提交
10265 10266 10267
    For example:

    .. math::
H
haowang101779990 已提交
10268
       out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
Q
Qiao Longfei 已提交
10269

Q
Qiao Longfei 已提交
10270
    In this formula:
10271 10272
      - :math:`x`: the first input contains M elements, shape is [batch_size, M].
      - :math:`y`: the second input contains N elements, shape is [batch_size, N].
Q
Qiao Longfei 已提交
10273
      - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
H
haowang101779990 已提交
10274
      - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
Q
Qiao Longfei 已提交
10275 10276 10277
      - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.

    Args:
10278 10279
        x (Variable): 2-D input tensor with shape [batch_size, M]
        y (Variable): 2-D input tensor with shape [batch_size, N]
Q
Qiao Longfei 已提交
10280 10281 10282
        size (int): The dimension of this layer.
        act (str, default None): Activation to be applied to the output of this layer.
        name (str, default None): The name of this layer.
Q
Qiao Longfei 已提交
10283
        param_attr (ParamAttr, default None): The parameter attribute for the learnable w.
Q
Qiao Longfei 已提交
10284
            parameters/weights of this layer.
Q
Qiao Longfei 已提交
10285
        bias_attr (ParamAttr, default None): The parameter attribute for the bias
Q
Qiao Longfei 已提交
10286 10287 10288 10289
            of this layer. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.

    Returns:
Q
Qiao Longfei 已提交
10290
        Variable: A 2-D Tensor of shape [batch_size, size].
Q
Qiao Longfei 已提交
10291 10292 10293 10294

    Examples:
        .. code-block:: python

Q
Qiao Longfei 已提交
10295
          tensor = bilinear_tensor_product(x=layer1, y=layer2, size=1000)
Q
Qiao Longfei 已提交
10296 10297
    """
    helper = LayerHelper('bilinear_tensor_product', **locals())
Q
Qiao Longfei 已提交
10298
    dtype = helper.input_dtype('x')
Q
Qiao Longfei 已提交
10299 10300 10301 10302

    param_shape = [size, x.shape[1], y.shape[1]]

    w = helper.create_parameter(
Q
Qiao Longfei 已提交
10303
        attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=False)
Q
Qiao Longfei 已提交
10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320

    if name is None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)

    inputs = {"X": x, "Y": y, "Weight": w}
    if helper.bias_attr:
        bias_size = [1, size]
        bias = helper.create_parameter(
            attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True)
        inputs["Bias"] = bias
    helper.append_op(
        type="bilinear_tensor_product", inputs=inputs, outputs={"Out": out})

    # add activation
    return helper.append_activation(out)
C
chengduo 已提交
10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343


@templatedoc()
def get_tensor_from_selected_rows(x, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        name(basestring|None): Name of the output.

    Returns:
        out(${out_type}): ${out_comment}
    """

    helper = LayerHelper('get_tensor_from_selected_rows', **locals())
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='get_tensor_from_selected_rows',
        inputs={'X': x},
        outputs={'Out': out},
        attrs={})
    return out
10344 10345


S
shippingwang 已提交
10346
def shuffle_channel(x, group, name=None):
S
shippingwang 已提交
10347 10348
    """
    **Shuffle Channel Operator**
10349

S
shippingwang 已提交
10350 10351 10352 10353 10354 10355
    This operator shuffles the channels of input x.
    It divide the input channels in each group into :attr:`group` subgroups,
    and obtain a new order by selecting element from every subgroup one by one.

    Please refer to the paper
    https://arxiv.org/pdf/1707.01083.pdf
S
shippingwang 已提交
10356
    
S
shippingwang 已提交
10357
    .. code-block:: text
10358

S
shippingwang 已提交
10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386
        Given a 4-D tensor input with the shape (N, C, H, W):
            input.shape = (1, 4, 2, 2)
            input.data =[[[[0.1, 0.2],
                           [0.2, 0.3]],

                          [[0.3, 0.4],
                           [0.4, 0.5]],

                          [[0.5, 0.6],
                           [0.6, 0.7]],

                          [[0.7, 0.8],
                           [0.8, 0.9]]]]
            Given group: 2
            then we get a 4-D tensor out whth the same shape of input:
            out.shape = (1, 4, 2, 2)
            out.data = [[[[0.1, 0.2],
                          [0.2, 0.3]],
                          
                         [[0.5, 0.6],
                          [0.6, 0.7]],
                          
                         [[0.3, 0.4],
                          [0.4, 0.5]],
                          
                         [[0.7, 0.8],
                          [0.8, 0.9]]]]
                        
S
shippingwang 已提交
10387
    Args: 
S
shippingwang 已提交
10388 10389
        x(Variable): The input tensor variable. It should be a 4-D tensor with shape [N, C, H, W]
        group(int): Indicating the conuts of subgroups, It should divide the number of channels.
S
shippingwang 已提交
10390 10391

    Returns:
S
shippingwang 已提交
10392 10393
        out(Variable): the channels shuffling result is a tensor variable with the 
        same shape and same type as the input.
S
shippingwang 已提交
10394 10395

    Raises:
S
shippingwang 已提交
10396
        ValueError: If group is not an int type variable.
S
shippingwang 已提交
10397 10398 10399

    Examples:
        .. code-block:: python
10400 10401

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
S
shippingwang 已提交
10402
            out = fluid.layers.shuffle_channel(x=input, group=2)
S
shippingwang 已提交
10403 10404 10405
    """
    helper = LayerHelper("shuffle_channel", **locals())

S
shippingwang 已提交
10406
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
S
shippingwang 已提交
10407 10408 10409 10410 10411 10412 10413 10414 10415

    if not isinstance(group, int):
        raise TypeError("group must be int type")

    helper.append_op(
        type="shuffle_channel",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"group": group})
S
shippingwang 已提交
10416
    return out
S
Add  
shippingwang 已提交
10417 10418


10419
@templatedoc()
D
dengkaipeng 已提交
10420
def temporal_shift(x, seg_num, shift_ratio=0.25, name=None):
10421 10422 10423 10424 10425 10426 10427 10428
    """
    **Temporal Shift Operator**
    
    ${comment}
                        
    Args: 
        x(Variable): ${x_comment}
        seg_num(int): ${seg_num_comment}
D
dengkaipeng 已提交
10429
        shift_ratio(float): ${shift_ratio_comment}
D
dengkaipeng 已提交
10430
        name (str, default None): The name of this layer.
10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442

    Returns:
        out(Variable): The temporal shifting result is a tensor variable with the 
        same shape and same type as the input.

    Raises:
        TypeError: seg_num must be int type.

    Examples:
        .. code-block:: python

            input = fluid.layers.data(name='input', shape=[4,2,2], dtype='float32')
D
dengkaipeng 已提交
10443
            out = fluid.layers.temporal_shift(x=input, seg_num=2, shift_ratio=0.2)
10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455
    """
    helper = LayerHelper("temporal_shift", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(seg_num, int):
        raise TypeError("seg_num must be int type.")

    helper.append_op(
        type="temporal_shift",
        inputs={"X": x},
        outputs={"Out": out},
D
dengkaipeng 已提交
10456 10457
        attrs={"seg_num": seg_num,
               "shift_ratio": shift_ratio})
10458 10459 10460
    return out


S
sneaxiy 已提交
10461
class PyFuncRegistry(object):
S
sneaxiy 已提交
10462 10463 10464
    _register_funcs = []

    def __init__(self, func):
S
sneaxiy 已提交
10465
        if func is None or not callable(func):
S
sneaxiy 已提交
10466 10467 10468
            raise TypeError('func must be a Python function')

        self._func = func
M
minqiyang 已提交
10469
        # find named args using reflection
S
sneaxiy 已提交
10470 10471 10472 10473 10474 10475 10476
        args = inspect.getargspec(self._func)
        if len(args[0]) == 0 and args[1] is None and args[2] is None:
            # Function with no inputs
            self._named_args = None
        else:
            self._named_args = args[0]
        self._id = core._append_python_callable_object_and_return_id(self)
S
sneaxiy 已提交
10477 10478 10479
        '''
        Why record self here?

M
minqiyang 已提交
10480 10481
        1. For debug usage. Users can call
           :code:`py_func.registered_func(idx)` method
S
sneaxiy 已提交
10482
           to find the registered function corresponding
M
minqiyang 已提交
10483
           to :code:`idx`.
S
sneaxiy 已提交
10484

M
minqiyang 已提交
10485 10486
        2. For increasing reference count of self.
           It seems that to release Python object
S
sneaxiy 已提交
10487
           whose reference count is 1 would cause
M
minqiyang 已提交
10488
           segmentation fault error in C++ side.
S
sneaxiy 已提交
10489 10490
           May be lack of Python GC in C++ side?
        '''
S
sneaxiy 已提交
10491
        PyFuncRegistry._register_funcs.append(self)
S
sneaxiy 已提交
10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505

    @classmethod
    def registered_func(cls, idx):
        return cls._register_funcs[idx]._func

    @classmethod
    def registered_func_num(cls):
        return len(cls._register_funcs)

    @property
    def id(self):
        return self._id

    def __call__(self, *args):
S
sneaxiy 已提交
10506 10507 10508 10509 10510 10511 10512 10513 10514
        if self._named_args is None:
            func_ret = self._func()
        else:
            kwargs = dict()
            idx = 0
            for arg in self._named_args:
                kwargs[arg] = args[idx]
                idx += 1
            func_ret = self._func(*args[idx:], **kwargs)
S
sneaxiy 已提交
10515

S
sneaxiy 已提交
10516 10517
        if not isinstance(func_ret, (list, tuple)):
            func_ret = (func_ret, )
S
sneaxiy 已提交
10518 10519

        ret = []
S
sneaxiy 已提交
10520 10521 10522
        for each_ret in func_ret:
            if each_ret is None or isinstance(each_ret, core.LoDTensor):
                ret.append(each_ret)
S
sneaxiy 已提交
10523 10524
                continue

S
sneaxiy 已提交
10525 10526
            if not isinstance(each_ret, np.ndarray):
                each_ret = np.array(each_ret)
S
sneaxiy 已提交
10527

S
sneaxiy 已提交
10528 10529 10530
            tensor = core.LoDTensor()
            tensor.set(each_ret, core.CPUPlace())
            ret.append(tensor)
S
sneaxiy 已提交
10531

S
sneaxiy 已提交
10532
        return tuple(ret)
S
sneaxiy 已提交
10533 10534


S
sneaxiy 已提交
10535 10536 10537 10538
@templatedoc()
def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
    """
    PyFunc Operator.
M
minqiyang 已提交
10539

S
sneaxiy 已提交
10540 10541 10542 10543 10544 10545 10546 10547
    User can use :code:`py_func` to register operators in Python side.
    The inputs of :code:`func` is :code:`LoDTensor` and outputs can be
    numpy array or :code:`LoDTensor`. Paddle would call the registered
    :code:`func` in forward part, and call :code:`backward_func` in
    backward part (if :code:`backward_func` is not None).

    User should set the right data type and shape of :code:`out` before
    calling this function. However, data types and shapes of gradients of
S
sneaxiy 已提交
10548
    :code:`out` and :code:`x` would be inferred automatically.
S
sneaxiy 已提交
10549

S
sneaxiy 已提交
10550 10551
    Input orders of :code:`backward_func` would be: forward inputs
    :code:`x`, forward outputs :code:`out` and backward input gradients of
S
sneaxiy 已提交
10552 10553 10554 10555
    :code:`out`. If some variables of :code:`out` have no gradient, the input
    tensor would be None in Python side. If some variables of :code:`in` have
    no gradient, users should return None.

S
sneaxiy 已提交
10556
    This function can also be used to debug the running network. User can
M
minqiyang 已提交
10557
    add a :code:`py_func` operator without output, and print input
S
sneaxiy 已提交
10558 10559
    :code:`x` inside :code:`func`.

S
sneaxiy 已提交
10560 10561 10562 10563 10564
    Args:
        func (callable): forward Python function.
        x (Variable|list(Variable)|tuple(Variable)): inputs of :code:`func`.
        out (Variable|list(Variable)|tuple(Variable)): outputs of :code:`func`.
            Paddle cannot infer shapes and data types of :code:`out`. Users
M
minqiyang 已提交
10565
            should create :code:`out` beforehand.
S
sneaxiy 已提交
10566
        backward_func (callable|None): backward Python function.
M
minqiyang 已提交
10567
                                       None means no backward. Default None.
S
sneaxiy 已提交
10568
        skip_vars_in_backward_input (Variable|list(Variable)|tuple(Variable)):
M
minqiyang 已提交
10569
            Variables that are not needed in :code:`backward_func` inputs.
S
sneaxiy 已提交
10570 10571
            These variables must be any of :code:`x` and :code:`out`.
            If set, these vars would not be inputs of :code:`backward_func`,
M
minqiyang 已提交
10572
            Only useful when :code:`backward_func` is not None. Default None.
S
sneaxiy 已提交
10573 10574 10575

    Returns:
        out (Variable|list(Variable)|tuple(Variable)): input :code:`out`
S
sneaxiy 已提交
10576 10577

    Examples:
M
minqiyang 已提交
10578

S
sneaxiy 已提交
10579 10580 10581 10582 10583
        >>> import paddle.fluid as fluid
        >>> import six
        >>>
        >>> def create_tmp_var(name, dtype, shape):
        >>>     return fluid.default_main_program().current_block().create_var(
M
minqiyang 已提交
10584
        >>>         name=name, dtype=dtype, shape=shape)
S
sneaxiy 已提交
10585 10586
        >>>
        >>> # tanh activation has been provided by Paddle C++ op
M
minqiyang 已提交
10587
        >>> # Here, we only use tanh to be an example to show the usage
S
sneaxiy 已提交
10588 10589 10590
        >>> # of py_func
        >>> def tanh(x):
        >>>     return np.tanh(x)
M
minqiyang 已提交
10591
        >>>
S
sneaxiy 已提交
10592 10593 10594 10595 10596
        >>> # forward input x is skipped
        >>> def tanh_grad(y, dy):
        >>>     return np.array(dy) * (1 - np.square(np.array(y)))
        >>>
        >>> def debug_func(x):
M
minqiyang 已提交
10597
        >>>     print(x)
S
sneaxiy 已提交
10598 10599 10600 10601 10602 10603
        >>>
        >>> def simple_net(img, label):
        >>>     hidden = img
        >>>     for idx in six.moves.range(4):
        >>>         hidden = fluid.layers.fc(hidden, size=200)
        >>>         new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
M
minqiyang 已提交
10604
        >>>             dtype=hidden.dtype, shape=hidden.shape)
S
sneaxiy 已提交
10605 10606
        >>>
        >>>         # user-defined layers with forward and backward
M
minqiyang 已提交
10607 10608
        >>>         hidden = fluid.layers.py_func(func=tanh, x=hidden,
        >>>             out=new_hidden, backward_func=tanh_grad,
S
sneaxiy 已提交
10609 10610 10611 10612 10613 10614 10615 10616
        >>>             skip_vars_in_backward_input=hidden)
        >>>
        >>>         # user-defined debug layers to print variables
        >>>         fluid.layers.py_func(func=debug_func, x=hidden, out=None)
        >>>
        >>>     prediction = fluid.layers.fc(hidden, size=10, act='softmax')
        >>>     loss = fluid.layers.cross_entropy(input=prediction, label=label)
        >>>     return fluid.layers.mean(loss)
S
sneaxiy 已提交
10617
    """
S
sneaxiy 已提交
10618
    helper = LayerHelper('py_func', **locals())
S
sneaxiy 已提交
10619 10620 10621
    if x is None:
        x = []
    elif isinstance(x, Variable):
S
sneaxiy 已提交
10622
        x = [x]
S
sneaxiy 已提交
10623 10624
    elif not isinstance(x, (list, tuple)):
        raise TypeError('Input must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10625

S
sneaxiy 已提交
10626 10627 10628
    if out is None:
        out_list = []
    elif isinstance(out, Variable):
S
sneaxiy 已提交
10629
        out_list = [out]
S
sneaxiy 已提交
10630
    elif isinstance(out, (list, tuple)):
S
sneaxiy 已提交
10631
        out_list = out
S
sneaxiy 已提交
10632 10633 10634
    else:
        raise TypeError(
            'Output must be Variable/list(Variable)/tuple(Variable)')
S
sneaxiy 已提交
10635

S
sneaxiy 已提交
10636 10637
    fwd_func_id = PyFuncRegistry(func).id
    bwd_func_id = PyFuncRegistry(
S
sneaxiy 已提交
10638
        backward_func).id if backward_func is not None else -1
S
sneaxiy 已提交
10639 10640

    for each_out in out_list:
S
sneaxiy 已提交
10641 10642
        if len(each_out.shape) == 0:
            raise ValueError(
S
sneaxiy 已提交
10643 10644
                'Output shapes of py_func op should be provided by users manually'
            )
S
sneaxiy 已提交
10645

S
sneaxiy 已提交
10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660
    backward_skip_vars = set()
    if backward_func is not None and skip_vars_in_backward_input is not None:
        if isinstance(skip_vars_in_backward_input, Variable):
            skip_vars_in_backward_input = [skip_vars_in_backward_input]

        fwd_in_out = [v.name for v in x]
        fwd_in_out.extend([v.name for v in out_list])
        fwd_in_out = set(fwd_in_out)
        backward_skip_vars = set()
        for v in skip_vars_in_backward_input:
            if not v.name in fwd_in_out:
                raise ValueError(
                    'Variable {} is not found in forward inputs and outputs'
                    .format(v.name))
            backward_skip_vars.add(v.name)
S
sneaxiy 已提交
10661 10662 10663 10664

    helper.append_op(
        type='py_func',
        inputs={'X': x},
S
sneaxiy 已提交
10665 10666
        outputs={'Out': out_list},
        attrs={
S
sneaxiy 已提交
10667 10668 10669
            'forward_callable_id': fwd_func_id,
            'backward_callable_id': bwd_func_id,
            'backward_skip_vars': list(backward_skip_vars)
S
sneaxiy 已提交
10670
        })
S
sneaxiy 已提交
10671
    return out
S
sneaxiy 已提交
10672 10673 10674


# For debug usage
S
sneaxiy 已提交
10675 10676 10677 10678
py_func.registered_func = PyFuncRegistry.registered_func
py_func.registered_func_num = PyFuncRegistry.registered_func_num


10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730
@templatedoc()
def psroi_pool(input,
               rois,
               output_channels,
               spatial_scale,
               pooled_height,
               pooled_width,
               name=None):
    """
    ${comment}

    Args:
        input (Variable): ${x_comment}
        rois (Variable): ROIs (Regions of Interest) to pool over.
        output_channels (integer): ${output_channels_comment}
        spatial_scale (float): ${spatial_scale_comment} Default: 1.0
        pooled_height (integer): ${pooled_height_comment} Default: 1
        pooled_width (integer): ${pooled_width_comment} Default: 1
        name (str, default None): The name of this layer.

    Returns:
        Variable: ${out_comment}.

    Examples:
        .. code-block:: python

            pool_out = fluid.layers.psroi_pool(input=x, rois=rois, 490, 1.0, 7, 7)
    """
    helper = LayerHelper('psroi_pool', **locals())
    # check attrs
    if not isinstance(output_channels, int):
        raise TypeError("output_channels must be int type")
    if not isinstance(spatial_scale, float):
        raise TypeError("spatial_scale must be float type")
    if not isinstance(pooled_height, int):
        raise TypeError("pooled_height must be int type")
    if not isinstance(pooled_width, int):
        raise TypeError("pooled_width must be int type")
    dtype = helper.input_dtype()
    out = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type='psroi_pool',
        inputs={'X': input,
                'ROIs': rois},
        outputs={'Out': out},
        attrs={
            'output_channels': output_channels,
            'spatial_scale': spatial_scale,
            'pooled_height': pooled_height,
            'pooled_width': pooled_width
        })
    return out
10731

M
minqiyang 已提交
10732

M
minqiyang 已提交
10733
def huber_loss(input, label, delta):
10734
    """
M
minqiyang 已提交
10735 10736 10737
    Huber loss is a loss function used in robust.
    Huber loss can evaluate the fitness of input to label.
    Different from MSE loss, Huber loss is more robust for outliers.
10738 10739 10740 10741

    When the difference between input and label is large than delta
    .. math::

M
minqiyang 已提交
10742
        huber\_loss = delta * (label - input) - 0.5 * delta * delta
10743 10744 10745 10746

    When the difference between input and label is less than delta
    .. math::

M
minqiyang 已提交
10747
        huber\_loss = 0.5 * (label - input) * (label - input)
10748 10749 10750 10751 10752 10753 10754


    Args:
        input (Variable): This input is a probability computed by the previous operator.
                          The first dimension is batch size, and the last dimension is 1.
        label (Variable): The groud truth whose first dimension is batch size
                          and last dimension is 1.
M
minqiyang 已提交
10755
        delta (float): The parameter of huber loss, which controls
10756 10757 10758
                       the range of outliers

    Returns:
M
minqiyang 已提交
10759
        huber\_loss (Variable): The huber loss with shape [batch_size, 1].
10760 10761 10762 10763 10764

    Examples:
        .. code-block:: python

            predictions = fluid.layers.softmax(x)
M
minqiyang 已提交
10765
            loss = fluid.layers.huber_loss(input=predictions, label=label, 1.0)
10766
    """
M
minqiyang 已提交
10767
    helper = LayerHelper('huber_loss', **locals())
10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778
    residual = helper.create_variable_for_type_inference(
        dtype=helper.input_dtype())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype())
    helper.append_op(
        type='huber_loss',
        inputs={'X': input,
                'Y': label},
        outputs={'Out': out,
                 'Residual': residual},
        attrs={'delta': delta})
    return out
Z
zhaozhehao 已提交
10779 10780


D
dengkaipeng 已提交
10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812
@templatedoc()
def kldiv_loss(x, target, reduction='mean', name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
        target (Variable): ${target_comment}
        reduction (Variable): ${reduction_comment}
        name (str, default None): The name of this layer.

    Returns:
        kldiv\_loss (Variable): The KL divergence loss.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[4,2,2], dtype='float32')
            target = fluid.layers.data(name='target', shape=[4,2,2], dtype='float32')
            loss = fluid.layers.kldiv_loss(x=x, target=target, reduction='batchmean')
    """
    helper = LayerHelper('kldiv_loss', **locals())
    loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='kldiv_loss',
        inputs={'X': x,
                'Target': target},
        outputs={'Loss': loss},
        attrs={'reduction': reduction})
    return loss


Z
zhaozhehao 已提交
10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880
@templatedoc()
def tree_conv(nodes_vector,
              edge_set,
              output_size,
              num_filters=1,
              max_depth=2,
              act='tanh',
              param_attr=None,
              bias_attr=None,
              name=None):
    """ 
    ${comment}
    		
    Args:
        nodes_vector(${nodes_vector_type}): ${nodes_vector_comment}
        edge_set(${edge_set_type}): ${edge_set_comment}
        output_size(int): output feature width
        num_filters(int): number of filters, Default 1
        max_depth(int): max depth of filters, Default 2
        act(str): activation function, Default tanh
        param_attr(ParamAttr): the parameter attribute for the filters, Default None
        bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
        name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None

    Returns:
        out(${out_type}): ${out_comment}

    Examples:
        .. code-block:: python

          nodes_vector = layers.data(name='vectors', shape=[None, 10, 5], dtype='float32)
          # None for batch size, 10 for max_node_size of dataset, 5 for vector width
          edge_set = layers.data(name='edge_set', shape=[None, 10, 2], dtype='float32')
          # None for batch size, 10 for max_node_size of dataset, 2 for every edge has two nodes
          # edges must be directional
          out_vector = layers.tree_conv(nodes_vector, edge_set, 6, 1, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # the shape of output will be [None, 10, 6, 1],
          # None for batch size, 10 for max_node_size of dataset, 6 for output size, 1 for 1 filter
          out_vector = layers.reshape(out_vector, shape=[None, 10, 6])
          # After reshape, output tensor could be nodes_vector for next tree convolution
          out_vector_2 = layers.tree_conv(out_vector, edge_set, 3, 4, 2, 'tanh',
              ParamAttr(initializer=Constant(1.0), ParamAttr(initializer=Constant(1.0))
          # also output tensor could be pooling(the pooling in paper called global pooling)
          pooled = layers.reduce_max(out_vector, dims=2) # global pooling
    """
    helper = LayerHelper("tree_conv", **locals())
    dtype = helper.input_dtype('nodes_vector')
    feature_size = nodes_vector.shape[2]
    W_shape = [feature_size, 3, output_size, num_filters]
    W = helper.create_parameter(
        attr=param_attr, shape=W_shape, dtype=dtype, is_bias=False)
    if name == None:
        out = helper.create_variable_for_type_inference(dtype=dtype)
    else:
        out = helper.create_variable(name=name, dtype=dtype, persistable=False)
    helper.append_op(
        type='tree_conv',
        inputs={'NodesVector': nodes_vector,
                'EdgeSet': edge_set,
                'Filter': W},
        outputs={'Out': out, },
        attrs={'max_depth': max_depth})
    if helper.bias_attr:
        pre_activation = helper.append_bias_op(out)
    else:
        pre_activation = out
    return helper.append_activation(pre_activation)
C
ceci3 已提交
10881 10882


C
ceci3 已提交
10883
from .ops import square
C
ceci3 已提交
10884
from .control_flow import equal
C
ceci3 已提交
10885 10886


C
ceci3 已提交
10887 10888 10889
def npair_loss(anchor, positive, labels, l2_reg=0.002):
    '''
  **Npair Loss Layer**
C
ceci3 已提交
10890

C
ceci3 已提交
10891
  Read `Improved Deep Metric Learning with Multi class N pair Loss Objective <http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf>`_ .
C
ceci3 已提交
10892 10893

  Npair loss requires paired data. Npair loss has two parts: the first part is L2
C
ceci3 已提交
10894
  regularizer on the embedding vector; the second part is cross entropy loss which
C
ceci3 已提交
10895 10896 10897 10898 10899
  takes the similarity matrix of anchor and positive as logits.

  Args:
    anchor(Variable): embedding vector for the anchor image. shape=[batch_size, embedding_dims]
    positive(Variable): embedding vector for the positive image. shape=[batch_size, embedding_dims]
C
ceci3 已提交
10900 10901
    labels(Variable): 1-D tensor. shape=[batch_size]
    l2_reg(float32): L2 regularization term on embedding vector, default: 0.002
C
ceci3 已提交
10902 10903 10904 10905 10906 10907 10908

  Returns:
    npair loss(Variable): return npair loss, shape=[1]

  Examples:
    .. code-block:: python

C
ceci3 已提交
10909 10910 10911 10912 10913 10914 10915 10916
       anchor = fluid.layers.data(
                     name = 'anchor', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       positive = fluid.layers.data(
                     name = 'positive', shape = [18, 6], dtype = 'float32', append_batch_size=False)
       labels = fluid.layers.data(
                     name = 'labels', shape = [18], dtype = 'float32', append_batch_size=False)

       npair_loss = fluid.layers.npair_loss(anchor, positive, labels, l2_reg = 0.002)
C
ceci3 已提交
10917 10918 10919 10920 10921 10922 10923
  '''
    Beta = 0.25
    batch_size = labels.shape[0]

    labels = reshape(labels, shape=[batch_size, 1], inplace=True)
    labels = expand(labels, expand_times=[1, batch_size])

C
ceci3 已提交
10924
    labels = equal(labels, transpose(labels, perm=[1, 0])).astype('float32')
C
ceci3 已提交
10925 10926
    labels = labels / reduce_sum(labels, dim=1, keep_dim=True)

C
ceci3 已提交
10927 10928
    l2loss = reduce_mean(reduce_sum(square(anchor), 1)) \
             + reduce_mean(reduce_sum(square(positive), 1))
C
ceci3 已提交
10929 10930 10931 10932
    l2loss = l2loss * Beta * l2_reg

    similarity_matrix = matmul(
        anchor, positive, transpose_x=False, transpose_y=True)
C
ceci3 已提交
10933 10934 10935
    softmax_ce = softmax_with_cross_entropy(
        logits=similarity_matrix, label=labels, soft_label=True)
    cross_entropy = reduce_sum(labels * softmax_ce, 0)
C
ceci3 已提交
10936 10937 10938
    celoss = reduce_mean(cross_entropy)

    return l2loss + celoss
10939 10940


R
ruri 已提交
10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999
def pixel_shuffle(x, upscale_factor):
    """

    **Pixel Shuffle Layer**

    This layer rearranges elements in a tensor of shape [N, C, H, W]
    to a tensor of shape [N, C/r**2, H*r, W*r].
    This is useful for implementing efficient sub-pixel convolution
    with a stride of 1/r.
    Please refer to the paper: `Real-Time Single Image and Video Super-Resolution 
    Using an Efficient Sub-Pixel Convolutional Neural Network <https://arxiv.org/abs/1609.05158v2>`_ .
    by Shi et. al (2016) for more details.

        .. code-block:: text
        
            Given a 4-D tensor with the shape:
                x.shape = [1, 9, 4, 4]
            Given upscale_factor:
                upscale_factor= 3
            output shape is:
                [1, 1, 12, 12]
    
    Args:

        x(Variable): The input tensor variable.
        upscale_factor(int): factor to increase spatial resolution

    Returns:

        Out(Variable): Reshaped tensor according to the new dimension.

    Raises:

        ValueError: If the square of upscale_factor cannot divide the channels of input.

    Examples:

        .. code-block:: python

            input = fluid.layers.data(shape=[9,4,4])
            output = fluid.layers.pixel_shuffle(x=input, upscale_factor=3)

    """

    helper = LayerHelper("pixel_shuffle", **locals())

    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    if not isinstance(upscale_factor, int):
        raise TypeError("upscale factor must be int type")

    helper.append_op(
        type="pixel_shuffle",
        inputs={"X": x},
        outputs={"Out": out},
        attrs={"upscale_factor": upscale_factor})
    return out


11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040
def fsp_matrix(x, y):
    """

    **FSP matrix op**

    This op is used to calculate the flow of solution procedure (FSP) matrix of two feature maps.
    Given feature map x with shape [x_channel, h, w] and feature map y with shape
    [y_channel, h, w], we can get the fsp matrix of x and y in two steps:

    1. reshape x into matrix with shape [x_channel, h * w] and reshape and
       transpose y into matrix with shape [h * w, y_channel].
    2. multiply x and y to get fsp matrix with shape [x_channel, y_channel].

    The output is a batch of fsp matrices.

    Args:

        x (Variable): A feature map with shape [batch_size, x_channel, height, width].
        y (Variable): A feature map with shape [batch_size, y_channel, height, width].
                      The y_channel can be different with the x_channel of Input(X)
                      while the other dimensions must be the same with Input(X)'s.

    Returns:

        fsp matrix (Variable): The output of FSP op with shape [batch_size, x_channel, y_channel].
        The x_channel is the channel of x and the y_channel is the channel of y.

    Examples:

        .. code-block:: python

            feature_map_0 = fluid.layers.conv2d(x)
            feature_map_1 = fluid.layers.conv2d(feature_map_0)
            loss = fluid.layers.fsp_matrix(feature_map_0, feature_map_1)

    """
    helper = LayerHelper('fsp_matrix', **locals())
    out = helper.create_variable_for_type_inference(dtype=helper.input_dtype(
        input_param_name='x'))
    helper.append_op(type='fsp', inputs={'X': x, 'Y': y}, outputs={'Out': out})
    return out
11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091


def continuous_value_model(input, cvm, use_cvm=True):
    """

    **continuous_value_model layers**

    continuous value model(cvm). Now, it only considers show and click value in CTR project.
    We assume that input is an embedding vector with cvm_feature, whose shape is [N * D] (D is 2 + embedding dim).
    If use_cvm is True, it will log(cvm_feature), and output shape is [N * D].
    If use_cvm is False, it will remove cvm_feature from input, and output shape is [N * (D - 2)].
    
    This layer accepts a tensor named input which is ID after embedded(lod level is 1), cvm is a show_click info.

    Args:

        input (Variable): a 2-D LodTensor with shape [N x D], where N is the batch size, D is 2 + the embedding dim. lod level = 1.
        cvm (Variable):   a 2-D Tensor with shape [N x 2], where N is the batch size, 2 is show and click.
        use_cvm  (bool):  use cvm or not. if use cvm, the output dim is the same as input
                          if don't use cvm, the output dim is input dim - 2(remove show and click)
                          (cvm op is a customized op, which input is a sequence has embedd_with_cvm default, so we need an op named cvm to decided whever use it or not.)

    Returns:

        Variable: A 2-D LodTensor with shape [N x D], if use cvm, D is equal to input dim, if don't use cvm, D is equal to input dim - 2. 

    Examples:

        .. code-block:: python

          input = fluid.layers.data(name="input", shape=[-1, 1], lod_level=1, append_batch_size=False, dtype="int64")#, stop_gradient=False)
          label = fluid.layers.data(name="label", shape=[-1, 1], append_batch_size=False, dtype="int64")
          embed = fluid.layers.embedding(
                            input=input,
                            size=[100, 11],
                            dtype='float32')
          ones = fluid.layers.fill_constant_batch_size_like(input=label, shape=[-1, 1], dtype="int64", value=1)
          show_clk = fluid.layers.cast(fluid.layers.concat([ones, label], axis=1), dtype='float32')
          show_clk.stop_gradient = True
          input_with_cvm = fluid.layers.continuous_value_model(embed, show_clk, True)

    """
    helper = LayerHelper('cvm', **locals())
    out = helper.create_variable(dtype=input.dtype)
    helper.append_op(
        type='cvm',
        inputs={'X': [input],
                'CVM': [cvm]},
        outputs={'Y': [out]},
        attrs={"use_cvm": use_cvm})
    return out