未验证 提交 64c1427d 编写于 作者: Y Yibing Liu 提交者: GitHub

Cherry pick 16919 to 1.4 (#16957)

* Check some shapes only in runtime

test=release/1.4

* Follow review comments

test=release/1.4

* Update API spec
上级 e06e8fd6
......@@ -143,7 +143,7 @@ paddle.fluid.layers.group_norm (ArgSpec(args=['input', 'groups', 'epsilon', 'par
paddle.fluid.layers.spectral_norm (ArgSpec(args=['weight', 'dim', 'power_iters', 'eps', 'name'], varargs=None, keywords=None, defaults=(0, 1, 1e-12, None)), ('document', '3f536aafba30d793287b52d231baff1b'))
paddle.fluid.layers.softmax_with_cross_entropy (ArgSpec(args=['logits', 'label', 'soft_label', 'ignore_index', 'numeric_stable_mode', 'return_softmax'], varargs=None, keywords=None, defaults=(False, -100, True, False)), ('document', 'bce1b75e3d95b75cacd1099655cbb3c3'))
paddle.fluid.layers.smooth_l1 (ArgSpec(args=['x', 'y', 'inside_weight', 'outside_weight', 'sigma'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', 'c6b175d253c55baf4b9c0eca9b1dda88'))
paddle.fluid.layers.one_hot (ArgSpec(args=['input', 'depth'], varargs=None, keywords=None, defaults=None), ('document', '6148b6a555cbfb62fdcd030d8982c18c'))
paddle.fluid.layers.one_hot (ArgSpec(args=['input', 'depth'], varargs=None, keywords=None, defaults=None), ('document', 'c87f620c15573442be7c84b50223b567'))
paddle.fluid.layers.autoincreased_step_counter (ArgSpec(args=['counter_name', 'begin', 'step'], varargs=None, keywords=None, defaults=(None, 1, 1)), ('document', '3f6c828594720c9b2da89c464be94478'))
paddle.fluid.layers.reshape (ArgSpec(args=['x', 'shape', 'actual_shape', 'act', 'inplace', 'name'], varargs=None, keywords=None, defaults=(None, None, False, None)), ('document', '323c019f257e55ddea4a824a362de62f'))
paddle.fluid.layers.squeeze (ArgSpec(args=['input', 'axes', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '3229d06517f794e86ca3da14c38b1465'))
......
......@@ -38,9 +38,11 @@ class BilinearTensorProductOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ(y_dims.size(), 2UL, "The input(Y) must be a 2D Tensor.");
PADDLE_ENFORCE_EQ(weight_dims.size(), 3UL,
"The input(Weight) must be a 3D tensor.");
PADDLE_ENFORCE_EQ(x_dims[0], y_dims[0],
"The first dimension(batch_size) of input(X) must be "
"equal to the first dimension of the input(Y).");
if (ctx->IsRuntime() || (x_dims[0] > 0 && y_dims[0] > 0)) {
PADDLE_ENFORCE_EQ(x_dims[0], y_dims[0],
"The first dimension(batch_size) of input(X) must be "
"equal to the first dimension of the input(Y).");
}
PADDLE_ENFORCE_EQ(x_dims[1], weight_dims[1],
"The second dimension of input(X) must be equal to "
"the second dimension of the input(Weight).");
......
......@@ -95,20 +95,23 @@ class CRFDecodingOp : public framework::OperatorWithKernel {
transition_dims[0] - 2, transition_dims[1],
"An invalid dimension for the Input(Transition), which should "
"be a 2-D tensor with shape [(D + 2) x D].");
PADDLE_ENFORCE_EQ(
emission_dims[1], transition_dims[1],
"The 2nd dimension of the Input(Emission) and the Input(Transition) "
"should be equal to the tag number.");
if (ctx->IsRuntime() || (emission_dims[1] > 0 && transition_dims[1] > 0)) {
PADDLE_ENFORCE_EQ(
emission_dims[1], transition_dims[1],
"The 2nd dimension of the Input(Emission) and the Input(Transition) "
"should be equal to the tag number.");
}
if (ctx->HasInput("Label")) {
auto label_dims = ctx->GetInputDim("Label");
PADDLE_ENFORCE(label_dims.size() == 2UL && label_dims[1] == 1UL,
"The Input(Label) should be a 2-D tensor with the 2nd "
"dimensions fixed to 1.");
PADDLE_ENFORCE_EQ(
emission_dims[0], label_dims[0],
"The height of Input(Emission) and the height of Input(Label) "
"should be the same.");
if (ctx->IsRuntime() || (emission_dims[0] > 0 && label_dims[0] > 0)) {
PADDLE_ENFORCE_EQ(
emission_dims[0], label_dims[0],
"The height of Input(Emission) and the height of Input(Label) "
"should be the same.");
}
}
ctx->ShareLoD("Emission", /*->*/ "ViterbiPath");
......
......@@ -31,14 +31,18 @@ class LogLossOp : public framework::OperatorWithKernel {
auto pred_dims = ctx->GetInputDim("Predicted");
auto label_dims = ctx->GetInputDim("Labels");
PADDLE_ENFORCE_EQ(pred_dims, label_dims);
if (ctx->IsRuntime() || (framework::product(pred_dims) > 0 &&
framework::product(label_dims) > 0)) {
PADDLE_ENFORCE_EQ(pred_dims, label_dims);
}
PADDLE_ENFORCE_EQ(pred_dims.size(), 2,
"The rank of Input(Predicted) must be 2 and the shape is "
"[batch_size, 1].");
PADDLE_ENFORCE_EQ(pred_dims[1], 1,
"Each row of Input(Predicted) contains a real value, "
"so the 2nd dimension of Input(X) must be 1.");
if (ctx->IsRuntime()) {
PADDLE_ENFORCE_EQ(pred_dims[1], 1,
"Each row of Input(Predicted) contains a real value, "
"so the 2nd dimension of Input(X) must be 1.");
}
ctx->SetOutputDim("Loss", {pred_dims[0], 1});
ctx->ShareLoD("Predicted", "Loss");
}
......
......@@ -36,7 +36,9 @@ class NCEOp : public framework::OperatorWithKernel {
auto x_dims = ctx->GetInputDim("Input");
auto label_dims = ctx->GetInputDim("Label");
PADDLE_ENFORCE_EQ(x_dims[0], label_dims[0]);
if (ctx->IsRuntime() || (x_dims[0] > 0 && label_dims[0] > 0)) {
PADDLE_ENFORCE_EQ(x_dims[0], label_dims[0]);
}
int num_true_classes = label_dims.size() == 2 ? label_dims[1] : 1;
if (ctx->HasInput("Bias")) {
PADDLE_ENFORCE_EQ(ctx->GetInputDim("Weight")[0],
......@@ -60,7 +62,8 @@ class NCEOp : public framework::OperatorWithKernel {
// set dims of output(SampleOut)
std::vector<int64_t> sample_out_dims;
sample_out_dims.push_back(x_dims[0]);
sample_out_dims.push_back(num_neg_samples + num_true_classes);
sample_out_dims.push_back(
(num_true_classes == -1) ? -1 : (num_neg_samples + num_true_classes));
ctx->SetOutputDim("SampleLogits", framework::make_ddim(sample_out_dims));
ctx->SetOutputDim("SampleLabels", framework::make_ddim(sample_out_dims));
}
......
......@@ -30,9 +30,10 @@ class OneHotOp : public framework::OperatorWithKernel {
auto x_dims = ctx->GetInputDim("X");
PADDLE_ENFORCE_GE(x_dims.size(), 2,
"Rank of Input(X) should be at least 2.");
PADDLE_ENFORCE_GE(x_dims[x_dims.size() - 1], 1U,
"Last dimension of Input(X) should be 1.");
if (ctx->IsRuntime() || x_dims[x_dims.size() - 1] > 0) {
PADDLE_ENFORCE_GE(x_dims[x_dims.size() - 1], 1U,
"Last dimension of Input(X) should be 1.");
}
int depth = ctx->Attrs().Get<int>("depth");
PADDLE_ENFORCE_GT(depth, 0, "Should provide a positive depth (%d).", depth);
......
......@@ -60,7 +60,9 @@ class RandomCropOpInferShape : public framework::InferShapeBase {
for (size_t i = 1; i <= shape.size(); ++i) {
size_t x_i = x_dim.size() - i;
size_t shape_i = shape.size() - i;
PADDLE_ENFORCE_GE(x_dim[x_i], shape[shape_i]);
if (ctx->IsRuntime() || (x_dim[x_i] > 0 && shape[shape_i] > 0)) {
PADDLE_ENFORCE_GE(x_dim[x_i], shape[shape_i]);
}
out_dim[x_i] = shape[shape_i];
}
ctx->SetOutputDim("Out", framework::make_ddim(out_dim));
......
......@@ -6261,7 +6261,7 @@ def one_hot(input, depth):
Examples:
.. code-block:: python
label = layers.data(name="label", shape=[1], dtype="float32")
label = layers.data(name="label", shape=[1], dtype="int64")
one_hot_label = layers.one_hot(input=label, depth=10)
"""
helper = LayerHelper("one_hot", **locals())
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册