framework.py 256.2 KB
Newer Older
G
gouzil 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

import textwrap
Y
Yu Yang 已提交
16
import collections
X
Xin Pan 已提交
17
from collections import defaultdict
H
huzhiqiang 已提交
18
from collections.abc import Iterable
Q
qiaolongfei 已提交
19
import contextlib
20
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
21
import os
F
fengjiayi 已提交
22
import re
23
import traceback
24
import copy
25
from types import MethodType, FunctionType
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
R
risemeup1 已提交
32 33 34

from .proto import framework_pb2, data_feed_pb2

35
from . import core
36
from . import unique_name
37 38
import paddle.version as fluid_version
import warnings
39
import functools
40
from .variable_index import _getitem_impl_, _setitem_impl_
41
import threading
Y
Yu Yang 已提交
42

43
__all__ = [
44 45 46 47
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
48
    'name_scope',
J
jianghaicheng 已提交
49
    'ipu_shard_guard',
50
    'set_ipu_shard',
S
sneaxiy 已提交
51 52
    'cuda_places',
    'cpu_places',
53
    'xpu_places',
S
sneaxiy 已提交
54
    'cuda_pinned_places',
L
lujun 已提交
55
    'in_dygraph_mode',
56
    'is_compiled_with_cinn',
C
chengduo 已提交
57
    'is_compiled_with_cuda',
58
    'is_compiled_with_rocm',
59
    'is_compiled_with_xpu',
60
    'Variable',
61
    'require_version',
62
    'device_guard',
G
guofei 已提交
63 64
    'set_flags',
    'get_flags',
65
]
Y
Yu Yang 已提交
66

Q
qiaolongfei 已提交
67 68 69 70
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
71 72
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

73

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
# use thread local to create thread save global variables.
class GlobalThreadLocal(threading.local):
    def __init__(self):
        """
        init the thread local data.
        TODO(xiongkun): how to access another thread local data ?
        """
        global _dygraph_tracer_
        self._in_declarative_mode_ = False
        self._functional_dygraph_context_manager = None
        self._dygraph_tracer_ = _dygraph_tracer_

    def __str__(self):
        strings = []
        strings.append(
            "_in_declarative_mode_:" + str(self._in_declarative_mode_)
        )
        strings.append(
            "_functional_dygraph_context_manager:"
            + str(self._functional_dygraph_context_manager)
        )
        strings.append("_dygraph_tracer_:" + str(self._dygraph_tracer_))
        return "\n".join(strings)

    def __setattr__(self, name, val):
        if name == '_dygraph_tracer_':
            global _dygraph_tracer_
            _dygraph_tracer_ = val
        self.__dict__[name] = val


L
lujun 已提交
105
_dygraph_tracer_ = None
106 107
global_var = GlobalThreadLocal()

108
_global_expected_place_ = None
109
_current_device = None
110
global_prog_seed = 0
111
_current_pipeline_stage = None
112
_current_cuda_graph_mode = None
113
_global_flags_ = core.globals()
114

J
Jiabin Yang 已提交
115

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
# special_op_attrs, extra_op_attrs are prepared for printing warnings
# when turning on FLAGS_print_extra_attrs
special_op_attrs = {
    "elementwise_add": [{"axis": -1}],
    "elementwise_sub": [{"axis": -1}],
    "elementwise_mul": [{"axis": -1}],
    "elementwise_div": [{"axis": -1}],
    "elementwise_max": [{"axis": -1}],
    "elementwise_min": [{"axis": -1}],
    "elementwise_pow": [{"axis": -1}],
    "elementwise_mod": [{"axis": -1}],
    "elementwise_floordiv": [{"axis": -1}],
    "less_than": [{"axis": -1}],
    "less_equal": [{"axis": -1}],
    "greater_than": [{"axis": -1}],
    "greater_equal": [{"axis": -1}],
    "equal": [{"axis": -1}],
    "not_equal": [{"axis": -1}],
    "amax": [{"reduce_all": False}],
    "amin": [{"reduce_all": False}],
    "any": [{"reduce_all": False}],
    "frobenius_norm": [{"reduce_all": False}],
    "logsumexp": [{"reduce_all": False}],
    "reduce_max": [{"reduce_all": False}],
    "reduce_min": [{"reduce_all": False}],
    "reduce_mean": [{"reduce_all": False}],
    "reduce_prod": [{"reduce_all": False}],
    "reduce_sum": [{"reduce_all": False}],
}

extra_op_attrs = {
    "gather": ["overwrite"],
    "graph_reindex": ["flag_buffer_hashtable"],
    "graph_sample_neighbors": ["flag_perm_buffer"],
    "relu6": ["threshold"],
    "swish": ["beta"],
    "hsigmoid_loss": ["remote_prefetch"],
    "max_pool2d_with_index": ["global_pooling"],
    "uniform": ["diag_num"],
    "unique": ["is_sorted"],
}

K
Kim Yann 已提交
158
# FIXME(dev): We haven't fully verified eager mode on XPU et.al but
159 160 161 162
# only GPU/CPU. Remove this after we improve this feature.
_is_first_import_ = True


J
Jiabin Yang 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
def in_dygraph_mode():
    """

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .

    Returns:
        bool: Whether paddle runs in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
184
            print(paddle.in_dynamic_mode())  # False, Now we are in static graph mode
J
Jiabin Yang 已提交
185 186 187 188 189

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode

    """
190
    return global_var._dygraph_tracer_ is not None
J
Jiabin Yang 已提交
191 192


193 194
global_ipu_index = -1
global_ipu_stage = -1
J
jianghaicheng 已提交
195 196 197 198 199
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


@signature_safe_contextmanager
200
def ipu_shard_guard(index=-1, stage=-1):
J
jianghaicheng 已提交
201 202 203 204
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
W
Weilong Wu 已提交
205
        index(int, optional): Specify which ipu the Tensor is computed on, (such as '0, 1, 2, 3').
206
            The default value is -1, which means the Op only run on IPU 0.
W
Weilong Wu 已提交
207
        stage(int, optional): Specify the computation order of the sharded model(such as '0, 1, 2, 3').
208
            The sharded model will be computed from small to large. The default value is -1,
J
jianghaicheng 已提交
209
            which means no pipelining computation order and run Ops in terms of graph.
210

G
gouzil 已提交
211 212 213 214 215 216 217
    Note:
        Only if the enable_manual_shard=True, the 'index' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        Only if the enable_pipelining=True, the 'stage' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        A index is allowed to match none stage or a stage. A stage is only allowed to match a new or
        duplicated index.
J
jianghaicheng 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


252 253 254 255
def set_ipu_shard(call_func, index=-1, stage=-1):
    """
    Shard the ipu with the given call function. Set every ops in call function to the given ipu sharding.

G
gouzil 已提交
256 257 258 259 260
    Note:
        Only when enable_manual_shard=True to set the index to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        Only when enable_pipelining=True to set stage to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        An index supports a corresponding None stage or a stage, and a stage only supports a new index or a duplicate index.

261 262 263 264 265
    Args:
        call_func(Layer|function): Specify the call function to be wrapped.
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is -1, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
266
            The sharded model will be computed from small to large. The default value is -1,
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
            which means no pipelining computation order and run Ops in terms of graph.

    Returns:
        The wrapped call function.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='float32')
            relu = paddle.nn.ReLU()
            relu = paddle.static.set_ipu_shard(relu, index=1, stage=1)
            relu(a)
    """

    def decorate(func):
        def wrapper(*args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return func(*args, **kwargs)

        return wrapper

292
    from paddle.nn import Layer
293

294 295 296 297 298
    if not isinstance(call_func, Layer):
        if callable(call_func):
            return decorate(call_func)
        else:
            raise TypeError(
299 300
                "Unsupported type. Only accept paddle.nn.Layer or function."
            )
301 302 303 304 305 306 307 308 309 310 311 312

    # patch paddle.nn.Layer
    class BlockFn(type(call_func)):
        def __call__(self, *args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return super().__call__(*args, **kwargs)

    BlockFn.__name__ = type(call_func).__name__
    call_func.__class__ = BlockFn
    return call_func


313 314
def require_version(min_version, max_version=None):
    """
315 316 317
    Check if the installed version of PaddlePaddle is in [min_version, max_version],
    if the installed version is lower than ``min_version`` or higher than ``max_version``,
    an exception will be thrown, NO returns if the installed version is satisfied.
318

319 320 321 322
    Args:
        min_version (str): the minimum version required (like '1.4.0').
        max_version (str, optional): the max version required (like '1.6.0'), default is None,
            meaning any version equal or higher than ``min_version`` is acceptable.
323

324 325
    Returns:
        None.
326

327 328 329 330 331 332
    Raises:
        TypeError: if the type of ``min_version`` is not str.
        TypeError: if the type of ``max_version`` is not str or type(None).
        ValueError: if the value of ``min_version`` is not in version format.
        ValueError: if the value of ``max_version`` is not in version format or None.
        Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.
333

334 335
    Examples:
        .. code-block:: python
336

337
            import paddle.fluid as fluid
338

339 340
            # any version >= 0.1.0 is acceptable.
            fluid.require_version('0.1.0')
341

342 343 344
            # if 0.1.0 <= version <= 10.0.0, it is acceptable.
            fluid.require_version(min_version='0.1.0', max_version='10.0.0')
    """
345 346 347
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
348 349
            % (type(min_version))
        )
350 351 352 353

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
354 355
            % (type(max_version))
        )
356 357 358 359 360

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
361 362
            "like '1.5.2.0', but received %s" % min_version
        )
363 364 365 366 367 368

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
369 370
                "like '1.5.2.0', but received %s" % max_version
            )
371 372

    version_installed = [
373 374 375 376
        fluid_version.major,
        fluid_version.minor,
        fluid_version.patch,
        fluid_version.rc,
377 378 379 380
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
381
        for i in range(len(ver_a)):
382 383 384 385 386 387 388 389 390 391 392
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
393 394 395
                "please make sure the version is good with your code."
                % (min_version, max_version, fluid_version.full_version)
            )
396 397 398 399
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
400 401 402
                "please make sure the version is good with your code."
                % (min_version, fluid_version.full_version)
            )
403 404 405
        return

    min_version_split = min_version.split('.')
406 407 408
    min_version_to_check = (
        min_version_split + zero_version[len(min_version_split) :]
    )
409 410 411

    if max_version is not None:
        max_version_split = max_version.split('.')
412 413 414
        max_version_to_check = (
            max_version_split + zero_version[len(max_version_split) :]
        )
415

416 417 418 419
        if (
            version_cmp(version_installed, max_version_to_check) > 0
            or version_cmp(version_installed, min_version_to_check) < 0
        ):
420 421
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
422 423
                % (min_version, max_version, fluid_version.full_version)
            )
424 425 426 427 428
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
429 430
                % (min_version, fluid_version.full_version, min_version)
            )
431 432


433 434
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
435
        assert not in_dygraph_mode(), (
436 437
            "We don't support %s in dynamic graph mode" % func.__name__
        )
438 439 440 441 442 443 444
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
445
        assert in_dygraph_mode(), (
446 447 448
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
449 450 451 452 453
        return func(*args, **kwargs)

    return __impl__


454 455 456
def _non_static_only_(func):
    def __impl__(*args, **kwargs):
        from .dygraph.base import in_declarative_mode
457

458
        assert in_dygraph_mode() or in_declarative_mode(), (
459 460 461
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
462 463 464 465 466
        return func(*args, **kwargs)

    return __impl__


467 468
def _static_only_(func):
    def __impl__(*args, **kwargs):
469
        assert not in_dygraph_mode(), (
470 471 472
            "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode."
            % func.__name__
        )
473 474 475 476 477
        return func(*args, **kwargs)

    return __impl__


478 479 480 481 482
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


483
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
W
wanghuancoder 已提交
484 485
# used to make Variable and Tensor has same interfaces, like numpy. Since Tensor is not exposed in our
# official docments, logically, we want to keep Tensor and logically consistent. While, actually,
486 487
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
W
wanghuancoder 已提交
488
# TODO(zhiqiu): We should make Tensor consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
489
# same base class.
490 491 492
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
493 494
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
R
Ryan 已提交
495
            "  2. If you are using `@paddle.jit.to_static`, you can call `paddle.jit.enable_to_static(False)`. "
496
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
497 498
            % (func.__name__, func.__name__)
        )
499 500 501 502

    return __impl__


T
tangwei12 已提交
503 504
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
505 506 507 508 509 510 511 512 513
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
514 515
                DeprecationWarning,
            )
516 517 518 519 520 521 522
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


523 524
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
525
static_only = wrap_decorator(_static_only_)
526
fake_interface_only = wrap_decorator(_fake_interface_only_)
527
non_static_only = wrap_decorator(_non_static_only_)
528 529


L
lujun 已提交
530
def _dygraph_tracer():
531
    return global_var._dygraph_tracer_
532

W
Wu Yi 已提交
533

534 535 536 537
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
538
def _current_expected_place():
539 540 541
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
542 543 544 545 546
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
547
                _global_expected_place_ = core.CUDAPlace(_cuda_ids()[0])
548 549 550 551 552
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
553 554 555 556 557 558
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
559
                _global_expected_place_ = core.XPUPlace(_xpu_ids()[0])
560 561 562 563 564
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
        elif len(core.get_all_custom_device_type()) > 0:
            dev_type = core.get_all_custom_device_type()[0]
            try:
                device_count = core.get_custom_device_count(dev_type)
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CustomPlace(
                    dev_type, _custom_device_ids(dev_type)[0]
                )
            else:
                warnings.warn(
                    "You are using CUSTOM_DEVICE version Paddle, but your custom device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
580 581 582 583 584 585 586
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
587 588
    if global_var._dygraph_tracer_ is not None:
        global_var._dygraph_tracer_._expected_place = place
589 590 591 592 593


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
594
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
595 596


S
sneaxiy 已提交
597
def _cpu_num():
598
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
599 600 601 602 603 604 605
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
606 607 608
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()
                )
            )
C
chengduo 已提交
609
        os.environ['CPU_NUM'] = str(1)
610
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
611 612 613 614 615 616 617 618
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
619
        device_ids = range(core.get_cuda_device_count())
C
chengduo 已提交
620
    return device_ids
S
sneaxiy 已提交
621 622


623 624 625 626 627
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
628
        device_ids = range(core.get_xpu_device_count())
629 630 631
    return device_ids


632 633 634 635 636 637 638 639 640
def _custom_device_ids(device_type):
    custom_devices_env = os.getenv("FLAGS_selected_" + device_type + "s")
    if custom_devices_env:
        device_ids = [int(s) for s in custom_devices_env.split(",")]
    else:
        device_ids = range(core.get_custom_device_count(device_type))
    return device_ids


641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


656 657 658 659 660 661 662
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
663

664 665 666 667 668 669
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

Z
Zman 已提交
670 671
    Returns:
        None
672 673 674 675 676 677 678 679 680 681

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


682 683 684 685
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

686 687
    Returns:
        Bool: `True` if CINN is currently available, otherwise `False`.
688 689 690 691 692 693 694 695 696 697

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
698 699 700 701
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

702 703
    Returns:
        Bool: `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
704 705 706 707

    Examples:
        .. code-block:: python

708
            import paddle
709
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
710 711 712 713
    """
    return core.is_compiled_with_cuda()


714 715 716 717
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

718 719
    Returns:
        Bool: `True` if ROCm is currently available, otherwise `False`.
720 721 722 723 724

    Examples:
        .. code-block:: python

            import paddle
725
            support_gpu = paddle.device.is_compiled_with_rocm()
726 727 728 729
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
730
def cuda_places(device_ids=None):
L
lujun 已提交
731
    """
732
    Note:
733 734 735
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
736
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
737 738

    If :code:`device_ids` is None, environment variable of
739
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
740
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
741
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
742
    If :code:`FLAGS_selected_gpus` is not set, all visible
743
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
744 745

    If :code:`device_ids` is not None, it should be the device
746
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
747
    the returned list would be
C
Chen Weihang 已提交
748
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
749

750
    Parameters:
751
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
752 753

    Returns:
C
Chen Weihang 已提交
754
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
755 756

    Examples:
757

L
lujun 已提交
758 759
        .. code-block:: python

C
Chen Weihang 已提交
760 761
            import paddle
            import paddle.static as static
T
tangwei12 已提交
762

763
            # required: gpu
764

C
Chen Weihang 已提交
765 766 767
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
768 769

    """
770
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
771
    if device_ids is None:
C
chengduo 已提交
772
        device_ids = _cuda_ids()
S
sneaxiy 已提交
773 774 775 776 777
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


778 779 780 781
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
782 783 784 785 786 787 788 789 790
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
791
        the returned list would be
S
sunzhongkai588 已提交
792
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
793

794 795 796 797 798 799
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
800

801 802
            # required: xpu

803 804
            import paddle
            import paddle.static as static
805

806 807 808
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
809
    assert core.is_compiled_with_xpu(), "Not compiled with XPU"
810 811 812 813 814 815 816
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
817
def cpu_places(device_count=None):
L
lujun 已提交
818
    """
C
Chen Weihang 已提交
819
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
820

S
add doc  
sneaxiy 已提交
821
    If :code:`device_count` is None, the device count would
822
    be determined by environment variable :code:`CPU_NUM`.
C
chengduo 已提交
823 824
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
825 826
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
827

828 829
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
830 831

    Returns:
C
Chen Weihang 已提交
832
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
833 834

    Examples:
835

L
lujun 已提交
836 837
        .. code-block:: python

C
Chen Weihang 已提交
838 839
            import paddle
            import paddle.static as static
T
tangwei12 已提交
840

C
Chen Weihang 已提交
841 842 843
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
844 845
    """

S
sneaxiy 已提交
846 847 848 849 850 851
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
852
    """
853
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
854 855

    If :code:`device_count` is None, the device count would
856
    be determined by environment variable :code:`CPU_NUM`.
857 858 859 860
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
861

862 863
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
864 865

    Returns:
866
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
867 868 869 870

    Examples:
        .. code-block:: python

871
            import paddle.fluid as fluid
L
lujun 已提交
872 873 874 875 876
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
877
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
878
    if device_count is None:
879 880
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
881 882


883
class NameScope:
884 885 886 887 888 889 890 891 892 893
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
894 895 896
            new_child = NameScope(
                prefix + "_%d" % len(self._children[prefix]), self
            )
897 898 899 900 901 902 903 904 905 906 907 908 909
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
910
@signature_safe_contextmanager
911 912
def name_scope(prefix=None):
    """
913

914
    Generate hierarchical name prefix for the operators in Static Graph.
915

916
    Note:
T
Tao Luo 已提交
917 918
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
919
        Don't use it in dygraph, since it will cause memory leak.
920 921

    Args:
T
Tao Luo 已提交
922
        prefix(str, optional): prefix. Default is none.
923 924

    Examples:
925

926
        .. code-block:: python
T
Tink_Y 已提交
927

928 929 930
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
931
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
932
             b = a + 1
933
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
934
                c = b * 1
935
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
936
                d = c / 1
937 938 939
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
940 941
                g = f - 1

942
          # Op are created in the default main program.
943
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
959 960
    """
    # TODO(panyx0718): Only [0-9a-z].
961
    # in dygraph we don't need namescope since it will cause mem leak
962
    if in_dygraph_mode():
L
Leo Chen 已提交
963 964
        yield
    else:
T
tianshuo78520a 已提交
965
        assert prefix, "namescope prefix can not be empty."
966 967
        global _name_scope
        _name_scope = _name_scope.child(prefix)
968 969 970 971
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
972 973 974 975 976 977 978 979 980 981 982 983


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
984 985
def generate_control_dev_var_name():
    import random
986

W
Wu Yi 已提交
987
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
988 989 990 991


def grad_var_name(var_name):
    """
992 993
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
994 995 996
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
997

998
def convert_np_dtype_to_dtype_(np_dtype):
999
    """
1000
    Convert the data type in numpy to the data type in Paddle.
1001

1002
    Args:
1003 1004
        np_dtype (np.dtype|str): The data type in numpy or valid data type
            string.
1005

1006
    Returns:
1007
        core.VarDesc.VarType: The data type in Paddle.
1008 1009

    """
1010 1011
    # Convert the data type string to numpy data type.
    if isinstance(np_dtype, str) and np_dtype == "bfloat16":
1012 1013 1014
        dtype = np.uint16
    else:
        dtype = np.dtype(np_dtype)
1015

1016
    if dtype == np.float32:
1017
        return core.VarDesc.VarType.FP32
1018
    elif dtype == np.float64:
1019
        return core.VarDesc.VarType.FP64
1020
    elif dtype == np.float16:
1021
        return core.VarDesc.VarType.FP16
1022
    elif dtype == np.int32:
1023
        return core.VarDesc.VarType.INT32
1024
    elif dtype == np.int16:
1025
        return core.VarDesc.VarType.INT16
1026
    elif dtype == np.int64:
1027
        return core.VarDesc.VarType.INT64
1028
    elif dtype == np.bool_:
1029
        return core.VarDesc.VarType.BOOL
1030
    elif dtype == np.uint16:
1031 1032 1033
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
1034 1035
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
1036 1037
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
1038 1039 1040 1041
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
1042
    else:
M
minqiyang 已提交
1043
        raise ValueError("Not supported numpy dtype %s" % dtype)
1044 1045 1046


def dtype_is_floating(dtype):
1047 1048 1049
    """
    Check the data type is floating or not.
    Args:
1050
        dtype(np.dtype|core.VarDesc.VarType): data type.
1051 1052 1053 1054 1055
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1056
    if not isinstance(dtype, core.VarDesc.VarType):
1057 1058
        dtype = convert_np_dtype_to_dtype_(dtype)

1059
    return dtype in [
1060 1061 1062
        core.VarDesc.VarType.FP16,
        core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64,
1063
    ]
1064 1065


Y
Yang Yang(Tony) 已提交
1066
def _debug_string_(proto, throw_on_error=True):
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1078
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1079
    if not proto.IsInitialized(error_fields) and throw_on_error:
1080 1081
        raise ValueError(
            "{0} are not initialized.\nThe message is {1}:\n".format(
1082 1083 1084
                error_fields, proto
            )
        )
Y
Yu Yang 已提交
1085 1086 1087
    return proto.__str__()


1088
def _create_tensor(
1089 1090 1091 1092 1093
    type=core.VarDesc.VarType.LOD_TENSOR,
    name=None,
    shape=None,
    dtype=None,
    persistable=None,
1094
    **kwargs,
1095
):
1096 1097 1098 1099
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

W
wanghuancoder 已提交
1100 1101 1102 1103 1104 1105 1106 1107 1108
    eager_tensor = core.eager.Tensor(
        dtype if dtype else core.VarDesc.VarType.FP32,
        list(shape) if shape else [],
        name,
        type if type else core.VarDesc.VarType.LOD_TENSOR,
        True if persistable else False,
    )
    eager_tensor.retain_grads()
    return eager_tensor
1109 1110


1111 1112 1113 1114 1115 1116 1117
def _all_is_type(vals, expected_type):
    """
    Return True if type of each element is expected_type.

    NOTE: BuiltIn all() will always return True if vals is empty.
    """
    assert isinstance(vals, (list, tuple))
1118 1119
    if not vals:
        return False
1120 1121 1122
    return all(isinstance(v, expected_type) for v in vals)


1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
def wrap_as_scalar(number):
    """Wrap a number(either python scalar or numpy scalar) as core.Scalar if
    it is not a scalar.


    Args:
        number (Number): number

    Returns:
        Scalar: A Scalar that contains the value.
    """
    if isinstance(number, core.Scalar):
        return number
    if isinstance(number, (bool, int, float, complex)):
        return core.Scalar(number)
    if isinstance(number, np.number):
        # it is a numpy scalar
        return core.Scalar(number.item())
    else:
        raise TypeError("Cannot wrap {} as core.Scalar".format(number))


def wrap_as_scalars(array):
    """This function is used to convert flat list, or numpy array(not
    necesarily flat) to list of core.Scalar, which correspond to
    std::vector<paddle::experimental::Scalar> in operator runtime.

    Args:
        array (List | np.ndarray): array of numbers

    Returns:
        List: list of core.Scalar, of which each element is a Scalar containing
          the corresponding value.
    """
    if isinstance(array, np.ndarray):
        array = array.ravel().tolist()
    return [wrap_as_scalar(item) for item in array]


def extract_plain_list(array):
    """extract value from a list of core.Scalar.

    Args:
        array (list): Scalars

    Returns:
        list: values extracted from the scalars.
    """
    return [item.value() for item in array]


def canonicalize_attrs(attrs, op_proto):
    """This function is used to canonicalize attributes(as a string->any dict)
    according to the type specification in the OpProto. This is especially
    important for operators that has any attributes of type Scalar or Scalars.

    Though various frontends of phi kernels & paddle operators can wrap variables
    of concrete types into Scalars(a tagged union of several numeric types) or
    vector of Scalars. Paddle operator requires strict type matching.

    Args:
        attrs (Dict[str, Any]): attribute dict intended to pass to an operator.
        op_proto (OpProto): Proto (signature) of the operator.

    Returns:
        Dict[str, Any]: canonicalized attributes.
    """
    canonicalized_attrs = attrs.copy()  # shallow copy is enough here
    for attr in op_proto.attrs:
        attr_name = attr.name
        type_index = attr.type
        if (attr_name not in attrs) or (attrs[attr_name] is None):
            continue

        attr_val = attrs[attr_name]

        # VAR and VARS should be skipped
        if isinstance(attr_val, Variable):
            continue
        if isinstance(attr_val, list) and _all_is_type(attr_val, Variable):
            continue

        # wrap
        if type_index == core.AttrType.SCALAR:
            canonicalized_attrs[attr_name] = core.Scalar(attr_val)
        elif type_index == core.AttrType.SCALARS:
            # it should be a list (or a numpy array)
            if len(attr_val) > 0:
                attr_val = np.array(attr_val).ravel().tolist()
                attr_val = [core.Scalar(x) for x in attr_val]
                canonicalized_attrs[attr_name] = attr_val

    return canonicalized_attrs


1218 1219 1220 1221 1222
class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1223
            return issubclass(t, core.eager.Tensor)
1224 1225 1226 1227 1228 1229 1230 1231 1232
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1233
            return issubclass(t, EagerParamBase)
1234 1235 1236 1237
        else:
            return issubclass(t, Parameter)


1238
class Variable(metaclass=VariableMetaClass):
1239
    """
J
Jiabin Yang 已提交
1240

U
ustiniankw 已提交
1241 1242 1243 1244
    Notes:
        The constructor of Variable should not be invoked directly.

        In Static Graph Mode: Please use ** `Block.create_var` ** to create a Static variable which has no data until being feed.
1245

U
ustiniankw 已提交
1246
        In Dygraph Mode: Please use ** :ref:`api_fluid_dygraph_to_variable` ** to create a dygraph variable with real data.
J
Jiabin Yang 已提交
1247 1248

    In Fluid, every input and output of an OP is a variable. In most
1249
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1250 1251
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1252

1253
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1254
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1255

T
tianshuo78520a 已提交
1256
    Most of a Variable's member variables can be set to be None. It mean
1257
    it is not available or will be specified later.
1258

1259
    Examples:
1260 1261
        In Static Graph Mode:

1262
        .. code-block:: python
C
cyberslack_lee 已提交
1263
            :name: code-example-1
1264

1265
            import paddle.fluid as fluid
1266
            cur_program = fluid.Program()
1267 1268 1269 1270
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1271

1272
        In Dygraph  Mode:
1273 1274

        .. code-block:: python
C
cyberslack_lee 已提交
1275
            :name: code-example-2
1276 1277 1278 1279 1280 1281 1282

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1283 1284
    """

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
    def __init__(
        self,
        block,
        type=core.VarDesc.VarType.LOD_TENSOR,
        name=None,
        shape=None,
        dtype=None,
        lod_level=None,
        capacity=None,
        persistable=None,
        error_clip=None,
        stop_gradient=False,
        is_data=False,
        need_check_feed=False,
        belong_to_optimizer=False,
1300
        **kwargs,
1301
    ):
Y
Yu Yang 已提交
1302 1303
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1304
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1305

Y
Yu Yang 已提交
1306
        if dtype is not None:
1307
            if not isinstance(dtype, core.VarDesc.VarType):
1308
                dtype = convert_np_dtype_to_dtype_(dtype)
1309

S
Steffy-zxf 已提交
1310 1311 1312 1313
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

1314 1315 1316
        if type == core.VarDesc.VarType.SPARSE_COO:
            lod_level = None

H
hong 已提交
1317 1318
        self.belong_to_optimizer = belong_to_optimizer

1319 1320 1321
        self.error_clip = error_clip

        is_new_var = False
1322
        self.desc = self.block.desc.find_var(name.encode())
1323

1324
        if self.desc is None:
1325
            self.desc = self.block.desc.var(name.encode())
1326
            is_new_var = True
1327

1328 1329 1330
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
1331 1332 1333 1334 1335
            raise ValueError(
                "Variable '{0}' has been created before. The "
                "previous type is {1}, the new type is {2}. They"
                " are not matched".format(self.name, self.desc.type(), type)
            )
1336

1337
        if shape is not None:
1338
            if is_new_var:
1339 1340 1341 1342 1343 1344
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1345 1346
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1347 1348
                        "matched.".format(self.name, old_shape, shape)
                    )
1349 1350 1351 1352 1353 1354
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
1355 1356 1357 1358 1359 1360
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous data type is {1}, the new "
                        "data type is {2}. They are not "
                        "matched.".format(self.name, old_dtype, dtype)
                    )
1361 1362 1363 1364 1365 1366

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
1367 1368 1369 1370 1371 1372
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous lod_level is {1}, the new "
                        "lod_level is {2}. They are not "
                        "matched".format(self.name, self.lod_level, lod_level)
                    )
1373 1374 1375 1376 1377 1378
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1379 1380
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1381
                        "persistable is {2}. They are not matched".format(
1382 1383 1384
                            self.name, self.persistable, persistable
                        )
                    )
1385

1386 1387
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1388

1389 1390 1391 1392 1393 1394 1395
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1396

1397 1398
        self.block.vars[name] = self
        self.op = None
1399
        self.stop_gradient = stop_gradient
1400
        self.is_data = is_data
Y
Yu Yang 已提交
1401

1402 1403
    def detach(self):
        """
U
ustiniankw 已提交
1404

1405
        Returns a new Variable, detached from the current graph.
1406 1407
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1408

1409
        Returns:
U
ustiniankw 已提交
1410
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable), The detached Variable.
1411 1412 1413 1414

        Examples:
            .. code-block:: python

1415
                import paddle
1416

1417 1418 1419 1420
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1421

1422 1423
                # create a detached Variable
                y = x.detach()
U
ustiniankw 已提交
1424

1425
        """
1426

1427 1428 1429 1430
        assert (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ), "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"
1431 1432 1433 1434 1435 1436

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
1437 1438
            stop_gradient=True,
        )
1439

1440 1441 1442
        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]}
        )
1443
        return output
1444

1445
    @fake_interface_only
1446
    def numpy(self):
1447
        """
J
Jiabin Yang 已提交
1448
        **Notes**:
T
tianshuo78520a 已提交
1449
            **This API is ONLY available in Dygraph mode**
1450

J
Jiabin Yang 已提交
1451
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1452 1453 1454 1455 1456

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1457
            ndarray: dtype is same as current Variable
1458 1459 1460 1461 1462 1463

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1464
                from paddle.fluid.dygraph import Linear
1465 1466 1467 1468
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1469
                    linear = Linear(32, 64)
1470
                    data = to_variable(data)
1471
                    x = linear(data)
1472 1473 1474
                    print(x.numpy())

        """
1475
        pass
1476

1477
    @non_static_only
1478
    def backward(self, retain_graph=False):
1479
        """
J
Jiabin Yang 已提交
1480
        **Notes**:
T
tianshuo78520a 已提交
1481
            **This API is ONLY available in Dygraph mode**
1482

1483
        Run backward of current Graph which starts from current Tensor.
1484

J
Jiabin Yang 已提交
1485
        Args:
1486 1487 1488 1489
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1490

J
Jiabin Yang 已提交
1491 1492
        Returns:
            NoneType: None
1493 1494 1495 1496 1497

        Examples:
            .. code-block:: python

                import numpy as np
1498 1499
                import paddle
                paddle.disable_static()
1500 1501

                x = np.ones([2, 2], np.float32)
1502 1503 1504 1505 1506 1507 1508
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1509 1510
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1511
                loss.backward()
1512 1513

        """
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
        from .backward import append_backward

        if retain_graph is True:
            raise AssertionError(
                "`retain_graph` == True is not supported in @to_static function."
                "please set retain_graph = False."
            )
        param_grad_list = append_backward(self)
        for param, param_grad in param_grad_list:
            # set grad to simulate dygraph loss.backward() in static mode.
            setattr(param, "grad", param_grad)
1525

1526
    @fake_interface_only
1527
    def gradient(self):
1528
        """
J
Jiabin Yang 已提交
1529
        **Notes**:
T
tianshuo78520a 已提交
1530
            **This API is ONLY available in Dygraph mode**
1531 1532 1533

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1534
        Returns:
1535
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1536 1537 1538 1539

        Examples:
            .. code-block:: python

1540
                import paddle
1541 1542 1543
                import paddle.fluid as fluid
                import numpy as np

1544
                # example1: return ndarray
1545 1546 1547 1548 1549 1550 1551
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
1552
                    ret2 = paddle.add_n(inputs2)
1553
                    loss2 = paddle.sum(ret2)
1554
                    loss2.backward()
1555 1556
                    print(loss2.gradient())

1557 1558
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
1559 1560 1561 1562 1563
                    embedding = paddle.nn.Embedding(
                        20,
                        32,
                        weight_attr='emb.w',
                        sparse=True)
1564 1565 1566 1567 1568 1569 1570
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1571
        """
1572
        pass
1573

1574
    @fake_interface_only
1575
    def clear_gradient(self):
1576
        """
J
Jiabin Yang 已提交
1577
        **Notes**:
T
tianshuo78520a 已提交
1578
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1579 1580

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1581

J
Jiabin Yang 已提交
1582
        Clear  (set to ``0`` ) the Gradient of Current Variable
1583 1584 1585 1586 1587 1588

        Returns:  None

        Examples:
            .. code-block:: python

1589
                import paddle
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
1600
                    ret2 = paddle.add_n(inputs2)
1601
                    loss2 = paddle.sum(ret2)
1602
                    loss2.backward()
1603 1604 1605 1606 1607
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1608
        pass
X
Xin Pan 已提交
1609

1610
    def register_hook(self, hook):
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
        import paddle

        def backward_hook_wrapper(dy):
            """call the backward hook in ."""
            return hook(np.array(dy))

        def forward_hook_wrapper(x):
            """do nothing but return a new variable."""
            return x

        paddle.static.py_func(
            func=forward_hook_wrapper,
            x=self,
            out=self,
            backward_func=backward_hook_wrapper,
            skip_vars_in_backward_input=[self],
        )
1628

1629
    def __str__(self):
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1646 1647
                import paddle
                import paddle.static as static
1648

1649 1650 1651
                paddle.enable_static()

                cur_program = static.Program()
1652 1653 1654 1655 1656 1657
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1658 1659
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1660 1661 1662 1663
        if (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ):
1664
            dtype_str = str(self.dtype).split('.')[1]
1665 1666 1667 1668 1669 1670 1671
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".format(
                name=self.name,
                type=type_str,
                shape=self.shape,
                dtype=dtype_str,
                stop_gradient=self.stop_gradient,
            )
1672
        else:
1673
            var_str = "{name} : {type})".format(name=self.name, type=type_str)
1674

1675
        if self.is_parameter:
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1686
        from paddle.distributed.auto_parallel.static.dist_context import (
1687 1688 1689
            get_default_distributed_context,
        )

1690
        dist_context = get_default_distributed_context()
1691 1692
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1693 1694 1695
            var_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_tensor
            )
1696

1697
        return var_str
Y
Yang Yang(Tony) 已提交
1698

F
update  
fengjiayi 已提交
1699
    def to_string(self, throw_on_error, with_details=False):
1700 1701 1702
        """
        Get debug string.

J
Jiabin Yang 已提交
1703 1704 1705 1706 1707
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1708

1709 1710
        Returns:
            str: The debug string.
1711 1712 1713 1714 1715

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1716
                import paddle
1717

1718
                paddle.enable_static()
1719 1720 1721 1722 1723
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1724
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1725
                print("=============with detail===============")
1726
                print(new_variable.to_string(True, True))
1727
        """
1728
        assert isinstance(throw_on_error, bool) and isinstance(
1729 1730
            with_details, bool
        )
1731
        protostr = self.desc.serialize_to_string()
1732
        proto = framework_pb2.VarDesc.FromString(bytes(protostr))
F
update  
fengjiayi 已提交
1733 1734
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1735
            additional_attr = ("error_clip",)
F
update  
fengjiayi 已提交
1736
            for attr_name in additional_attr:
1737
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
1738

F
update  
fengjiayi 已提交
1739
        return res_str
1740 1741 1742

    __repr__ = __str__

1743 1744 1745
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
1746

1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1770
    @property
1771
    def stop_gradient(self):
J
Jiabin Yang 已提交
1772 1773 1774
        """
        Indicating if we stop gradient from current Variable

1775
        **Notes: This Property has default value as** ``True`` **in** Dygraph **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``
J
Jiabin Yang 已提交
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1787 1788
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1789 1790 1791
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1792 1793
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1794 1795 1796 1797
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1798
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1799 1800
                assert (out1.gradient() == 0).all()
        """
1801
        return self.desc.stop_gradient()
1802

1803 1804
    @stop_gradient.setter
    def stop_gradient(self, s):
1805
        self.desc.set_stop_gradient(s)
1806

1807 1808
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1809 1810 1811 1812 1813 1814 1815 1816
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

1817
            **2. In** Dygraph **mode, this property should not be changed**
J
Jiabin Yang 已提交
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1830
        return self.desc.persistable()
1831

Y
Yu Yang 已提交
1832 1833
    @persistable.setter
    def persistable(self, p):
1834
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1835

1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1861 1862
    @property
    def name(self):
J
Jiabin Yang 已提交
1863 1864 1865
        """
        Indicating name of current Variable

1866
        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** Dygraph **mode. This is how we achieve Parameter sharing**
J
Jiabin Yang 已提交
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1879
        return self.desc.name()
Y
Yu Yang 已提交
1880

1881 1882 1883 1884 1885 1886
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1887 1888
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1889

1890 1891 1892
        Examples:
          .. code-block:: python

1893
          import paddle
1894

1895
          x = paddle.static.data(name="x", shape=[-1, 23, 48], dtype='float32')
1896
          print(x.grad_name) # output is ``x@GRAD``
1897 1898 1899 1900

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1901 1902
    @name.setter
    def name(self, new_name):
1903
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1904

Y
Yu Yang 已提交
1905 1906
    @property
    def shape(self):
J
Jiabin Yang 已提交
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1924
        # convert to tuple, make it as same as numpy API.
1925
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1926 1927

    @property
F
fengjiayi 已提交
1928
    def dtype(self):
J
Jiabin Yang 已提交
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1945
        return self.desc.dtype()
Y
Yu Yang 已提交
1946 1947 1948

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1949 1950 1951 1952 1953 1954 1955 1956
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

1957
            **2. Don't support this property in** Dygraph **mode, it's value should be** ``0(int)``
J
Jiabin Yang 已提交
1958 1959 1960 1961

        Examples:
          .. code-block:: python

1962
            import paddle
J
Jiabin Yang 已提交
1963
            import paddle.fluid as fluid
1964 1965

            paddle.enable_static()
J
Jiabin Yang 已提交
1966 1967 1968 1969 1970 1971 1972
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1973 1974
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
1975 1976
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
1977
        return self.desc.lod_level()
Y
Yu Yang 已提交
1978

Y
Yu Yang 已提交
1979 1980
    @property
    def type(self):
J
Jiabin Yang 已提交
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1997
        return self.desc.type()
Y
Yu Yang 已提交
1998

1999 2000 2001
    @property
    def T(self):
        """
U
ustiniankw 已提交
2002

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
U
ustiniankw 已提交
2021

2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
2034 2035
            stop_gradient=False,
        )
2036 2037 2038 2039 2040
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
2041 2042 2043 2044 2045 2046 2047 2048 2049
            stop_gradient=False,
        )

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out], 'XShape': [input_shape]},
            attrs={'axis': perm},
        )
2050 2051
        return out

2052 2053 2054
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
2055
        Variable. It remains in the current graph, that is, the cloned Variable
2056 2057 2058 2059
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
U
ustiniankw 已提交
2060
            Variable, The cloned Variable.
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
2080 2081
            stop_gradient=self.stop_gradient,
        )
2082

2083 2084 2085
        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]}
        )
2086 2087
        return output

W
Wu Yi 已提交
2088
    def _set_error_clip(self, error_clip):
2089
        """
U
ustiniankw 已提交
2090

2091 2092 2093 2094 2095 2096 2097
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
U
ustiniankw 已提交
2098

2099
        """
2100 2101
        self.error_clip = error_clip

2102 2103
    def _set_info(self, key, value):
        """
U
ustiniankw 已提交
2104

2105 2106 2107 2108 2109 2110
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

2111
        Returns:
2112
            None
U
ustiniankw 已提交
2113

2114 2115 2116 2117 2118 2119 2120
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
U
ustiniankw 已提交
2121

2122 2123 2124 2125 2126
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

2127
        Returns:
2128
            object
U
ustiniankw 已提交
2129

2130 2131 2132 2133 2134
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

2135 2136
    def _slice_indices(self, slice, length):
        """
U
ustiniankw 已提交
2137

2138
        Reference implementation for the slice.indices method.
U
ustiniankw 已提交
2139

2140 2141 2142 2143 2144 2145 2146 2147
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
2148
            raise ValueError("slice step can not be zero")
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
2159 2160 2161
            start = (
                max(start + length, lower) if start < 0 else min(start, upper)
            )
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
2207 2208 2209
                if (index > 0 and index >= self.shape[index]) or (
                    index < 0 and (index + self.shape[index]) < 0
                ):
2210
                    raise IndexError("invalid index")
2211 2212 2213 2214 2215
                start = (
                    max(start + self.shape[index], 0)
                    if start < 0
                    else min(start, self.shape[index])
                )
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2229
    def _cloneVar(self, copy=False):
2230 2231
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2232
                name=unique_name.generate_with_ignorable_key(self.name),
2233 2234
                dtype=self.dtype,
            )
2235 2236 2237 2238
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2239
        new_var = self._cloneVar()
2240 2241 2242 2243 2244 2245
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes, 'starts': starts, 'ends': ends},
        )
2246 2247 2248
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2249
        new_var = self._cloneVar()
2250 2251 2252 2253 2254 2255 2256 2257
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={
                'axis': axis,
            },
        )
2258 2259 2260 2261 2262
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2263
                return self._cloneVar(True)
2264 2265 2266 2267 2268 2269 2270
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
2271 2272 2273
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2274 2275 2276
                        start += step
                else:
                    while start > stop:
2277 2278 2279
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2280 2281 2282 2283
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2284
                return self._cloneVar(True)
2285
            index = int(item)
2286 2287 2288
            if (index > 0 and index >= self.shape[axis]) or (
                index < 0 and (index + self.shape[axis]) < 0
            ):
2289 2290 2291 2292 2293 2294
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2295
        return _getitem_impl_(self, item)
2296

2297
    def __setitem__(self, item, value):
2298
        return _setitem_impl_(self, item, value)
2299

2300 2301
    def get_value(self, scope=None):
        """
2302
        Get the value of variable in given scope.
2303 2304

        Args:
2305
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2306 2307 2308 2309
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
U
ustiniankw 已提交
2310
            Tensor, the value in given scope.
2311 2312 2313 2314 2315

        Examples:
            .. code-block:: python

                import paddle
2316
                import paddle.static as static
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
2341 2342
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file.
2343 2344
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
2345

2346 2347
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2348 2349 2350 2351
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2352 2353 2354 2355 2356

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
2357 2358 2359
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2360 2361 2362 2363 2364
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
U
ustiniankw 已提交
2365

2366
        Set the value to the tensor in given scope.
2367 2368 2369

        Args:
            value(Tensor/ndarray) : The value to be set.
2370
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2371 2372 2373 2374 2375
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
2376

2377 2378 2379 2380
        Examples:
            .. code-block:: python

                import paddle
2381
                import paddle.static as static
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
U
ustiniankw 已提交
2405

2406 2407 2408
        '''

        # The 'framework' is a low-level module, and 'executor'
2409
        # can not be imported at the begainning of this file.
2410 2411 2412 2413 2414
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
2415 2416 2417 2418
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".format(
                    type(value)
                )
            )
2419 2420 2421

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2422 2423 2424 2425
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2426 2427 2428 2429 2430 2431

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
2432 2433 2434
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
2445 2446 2447 2448
                    "{} expected a shape {}, but the received shape is {}.".format(
                        self.name, list(t.shape()), list(value_shape)
                    )
                )
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2459 2460 2461 2462 2463 2464
        elif p.is_custom_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.CustomPlace(
                p.custom_device_type(), p.custom_device_id()
            )
2465 2466 2467 2468 2469 2470 2471
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2472 2473
    def size(self):
        """
U
ustiniankw 已提交
2474

2475
        Returns the number of elements for current Variable, which is a int64 Variable with shape [] .
2476 2477

        Returns:
U
ustiniankw 已提交
2478
            Variable, the number of elements for current Variable
2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
U
ustiniankw 已提交
2492

2493 2494 2495 2496
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
2497 2498
            dtype=core.VarDesc.VarType.INT64,
        )
2499

2500 2501 2502
        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]}
        )
2503 2504
        return output

2505 2506
    def _set_attr(self, name, val):
        """
U
ustiniankw 已提交
2507

2508 2509 2510 2511 2512
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
U
ustiniankw 已提交
2513

2514 2515 2516 2517 2518
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
U
ustiniankw 已提交
2519

2520 2521 2522 2523 2524 2525
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2526 2527
            bool, True if has this attribute.

2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

2549
    def attr(self, name):
2550 2551 2552 2553 2554 2555 2556
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2557
            int|str|list, The attribute value. The return value
2558 2559 2560 2561 2562
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
2563
    def dist_attr(self):
2564
        """
2565
        Get distributed attribute of this Variable.
2566
        """
2567
        return self.desc.dist_attr
2568

2569 2570
    @dist_attr.setter
    def dist_attr(self, dist_attr):
2571
        """
2572
        Set distributed attribute of this Variable.
2573
        """
2574
        self.desc.dist_attr = dist_attr
2575

Y
Yu Yang 已提交
2576

F
fengjiayi 已提交
2577 2578 2579
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2580

2581 2582
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2583 2584 2585 2586
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2587
        op_proto = framework_pb2.OpProto.FromString(bytes(pbstr))
F
fengjiayi 已提交
2588 2589 2590 2591
        ret_values.append(op_proto)
    return ret_values


2592
class OpProtoHolder:
2593 2594 2595 2596
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2597 2598 2599 2600 2601 2602 2603 2604
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
2605 2606
            self.__class__, '_instance'
        ), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2607 2608 2609 2610 2611 2612
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2613 2614 2615 2616 2617 2618 2619 2620
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2621 2622
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2623 2624
        return self.op_proto_map[type]

2625 2626
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2627
        custom_op_names = []
2628 2629 2630
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2631 2632 2633
                custom_op_names.append(proto.type)

        return custom_op_names
2634

2635 2636 2637
    def has_op_proto(self, type):
        return type in self.op_proto_map

2638 2639 2640 2641
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2642
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2643
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2644
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
2645
            core.op_proto_and_checker_maker.kOpDeviceAttrName(),
2646 2647
        }

F
fengjiayi 已提交
2648

2649
class Operator:
2650
    """
2651 2652 2653 2654 2655 2656 2657
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2658
        type(str): The type of operator. Default None.
2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2679
        Block.append_op or Block._prepend_op instead.
2680 2681 2682 2683

    Examples:
        .. code-block:: python

2684
            import paddle.fluid as fluid
2685
            cur_program = fluid.Program()
2686 2687 2688 2689 2690
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2691
    """
2692

2693
    OP_WITHOUT_KERNEL_SET = {
2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721
        'feed',
        'fetch',
        'recurrent',
        'go',
        'rnn_memory_helper_grad',
        'conditional_block',
        'while',
        'send',
        'recv',
        'listen_and_serv',
        'fl_listen_and_serv',
        'ncclInit',
        'select',
        'checkpoint_notify',
        'gen_bkcl_id',
        'c_gen_bkcl_id',
        'gen_nccl_id',
        'c_gen_nccl_id',
        'c_comm_init',
        'c_sync_calc_stream',
        'c_sync_comm_stream',
        'queue_generator',
        'dequeue',
        'enqueue',
        'heter_listen_and_serv',
        'c_wait_comm',
        'c_wait_compute',
        'copy_cross_scope',
2722
    }
2723

2724 2725 2726
    def __init__(
        self, block, desc, type=None, inputs=None, outputs=None, attrs=None
    ):
2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
        # read attr type index from op proto to avoid unexpected type
        # conversions, e.g. narrowing conversion like double to float
        try:
            proto = OpProtoHolder.instance().get_op_proto(type)
            self._attr_types = {}
            for attr in proto.attrs:
                self._attr_types[attr.name] = attr.type
        except ValueError:
            pass

2737
        if in_dygraph_mode():
2738 2739
            if type is None:
                raise ValueError(
2740 2741
                    "`type` to initialized an Operator can not be None."
                )
J
Jiabin Yang 已提交
2742
            self._type = type
M
minqiyang 已提交
2743
            self.attrs = attrs if attrs else {}
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

2754
            # attr for static graph mode cuda graph
2755 2756
            self._cuda_graph_attr = _current_cuda_graph_mode

2757 2758 2759
            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
2760
                op_attrs[
2761 2762
                    op_maker.kOpRoleAttrName()
                ] = self.block.program._op_role
2763 2764

            role_var_name = op_maker.kOpRoleVarAttrName()
2765 2766 2767 2768
            if (
                len(self.block.program._op_role_var) != 0
                and role_var_name not in op_attrs
            ):
2769
                op_attrs[role_var_name] = self.block.program._op_role_var
2770 2771 2772 2773 2774

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2775 2776 2777 2778 2779
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2780 2781 2782
                return
            if type is None:
                raise ValueError(
2783 2784
                    "`type` to initialized an Operator can not be None."
                )
2785 2786
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2787 2788 2789
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
2790
                        '  File "{}", line {}, in {}'.format(
2791 2792 2793 2794 2795 2796
                            frame[0], frame[1], frame[2]
                        )
                    )
                    op_attrs[callstack_var_name].append(
                        '    {}'.format(frame[3])
                    )
2797 2798 2799 2800 2801 2802 2803

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2804 2805 2806 2807 2808 2809 2810 2811
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
2812 2813 2814
                    warnings.warn(
                        "The Op(%s) is not support to set device." % type
                    )
2815
                if 'force_cpu' in op_attrs:
2816
                    if (
2817 2818
                        type == 'less_than'
                        and op_attrs['force_cpu'] is not None
2819
                    ) or op_attrs['force_cpu'] != False:
2820 2821 2822
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
2823 2824
                            "used at the same time." % type
                        )
2825
            if _current_pipeline_stage is not None:
2826 2827 2828 2829 2830
                pipeline_attr_name = (
                    'pipeline_stage' + core.kAutoParallelSuffix()
                )
                self._update_desc_attr(
                    pipeline_attr_name, _current_pipeline_stage
2831
                )
2832

2833 2834 2835 2836 2837 2838 2839 2840 2841
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
2842 2843 2844
                    assert (
                        found or in_proto.dispensable
                    ), "Input {} not found".format(in_proto.name)
2845 2846
                    if found:
                        in_args = inputs[in_proto.name]
2847
                        if not isinstance(in_args, (list, tuple)):
2848 2849 2850 2851
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
2852 2853
                                % (in_proto.name, len(in_args))
                            )
2854
                        in_arg_names = []
2855
                        for index, arg in enumerate(in_args):
2856
                            if isinstance(arg, str):
2857
                                in_arg_names.append(arg)
2858
                            elif isinstance(arg, bytes):
2859
                                in_arg_names.append(arg.decode())
W
wanghuancoder 已提交
2860
                            elif isinstance(arg, (Variable, core.eager.Tensor)):
2861
                                in_arg_names.append(arg.name)
2862
                            else:
2863
                                raise TypeError(
2864 2865
                                    f"The type of '%{in_proto.name}' in operator {type} should be "
                                    f"one of [str, bytes, Variable]. but received : {arg}"
2866
                                )
2867 2868 2869 2870 2871 2872 2873 2874
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892

                    # FIXME: The outputs of primitive operator currently
                    # doesn't include intermediate output as it will be dropped
                    # in operator codegen, such as xshape output of reshape2.
                    # It will fixed when the operator codegen support
                    # intermediate output.
                    if core._is_bwd_prim_enabled():
                        if not (
                            (m.name in outputs)
                            or m.dispensable
                            or m.intermediate
                        ):
                            raise ValueError(
                                (
                                    "Incorrect setting for output(s) of "
                                    "operator \"%s\", should set: [%s]."
                                )
                                % (type, m.name)
2893
                            )
2894 2895 2896 2897 2898 2899 2900 2901 2902 2903
                    else:
                        if not ((m.name in outputs) or m.dispensable):
                            raise ValueError(
                                (
                                    "Incorrect setting for output(s) of "
                                    "operator \"%s\", should set: [%s]."
                                )
                                % (type, m.name)
                            )

2904 2905 2906 2907 2908 2909 2910 2911 2912
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
2913 2914
                            % (out_proto.name, len(out_args))
                        )
2915 2916
                    out_arg_names = []
                    for arg in out_args:
2917
                        if isinstance(arg, str):
2918 2919
                            out_arg_names.append(arg)
                        else:
2920
                            out_arg_names.append(arg.name)
2921
                        # TODO(minqiyang): could we remove variable's op in static graph mode?
2922
                        if not in_dygraph_mode():
2923
                            if isinstance(arg, str):
2924 2925 2926
                                block.var(arg).op = self
                            else:
                                arg.op = self
2927 2928
                    self.desc.set_output(out_proto.name, out_arg_names)

2929
            extra_attrs_map = core.get_op_extra_attrs(type)
2930 2931 2932 2933 2934
            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
2935 2936 2937
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
2938 2939 2940
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)
2941
                for attr_name in extra_attrs_map.keys():
2942 2943 2944 2945 2946
                    if os.environ.get('FLAGS_print_extra_attrs', '0') == '1':
                        warnings.warn(
                            "op %s use extra_attr: %s" % (type, attr_name)
                        )

2947 2948 2949 2950 2951 2952
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
                        self._update_desc_attr(
                            attr_name, extra_attrs_map[attr_name]
                        )
2953 2954
                    else:
                        self._update_desc_attr(attr_name, op_attrs[attr_name])
2955

2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
                if os.environ.get('FLAGS_print_extra_attrs', '0') == '1':
                    if type in extra_op_attrs:
                        attrs = extra_op_attrs.get(type, [])
                        for attr in attrs:
                            if attr in op_attrs.keys():
                                warnings.warn(
                                    "op %s use extra_attr: %s" % (type, attr)
                                )

                    if type in special_op_attrs:
                        attrs = special_op_attrs.get(type, [])
                        for attr in attrs:
                            a_name = list(attr.keys())[0]
                            default_value = list(attr.values())[0]
                            if (
                                a_name in op_attrs.keys()
                                and default_value != op_attrs[a_name]
                            ):
                                warnings.warn(
                                    "op %s's attr %s = %s is not the default value: %s"
                                    % (
                                        type,
                                        a_name,
                                        op_attrs[a_name],
                                        default_value,
                                    )
                                )

J
jianghaicheng 已提交
2984 2985
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
2986
                if global_ipu_index >= 0:
2987 2988 2989
                    self._update_desc_attr(
                        ipu_index_attr_name, global_ipu_index
                    )
2990
                if global_ipu_stage >= 0:
2991 2992 2993
                    self._update_desc_attr(
                        ipu_stage_attr_name, global_ipu_stage
                    )
J
jianghaicheng 已提交
2994

2995
            self.desc.check_attrs()
2996

2997 2998 2999 3000
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
3001
    def _has_kernel(self, op_type):
3002 3003
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
3004
    def to_string(self, throw_on_error):
3005
        """
3006 3007
        Get debug string.

3008
        Args:
3009 3010
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
3011

3012 3013
        Returns:
            str: The debug string.
3014 3015

        """
3016
        protostr = self.desc.serialize_to_string()
3017
        proto = framework_pb2.OpDesc.FromString(bytes(protostr))
Y
Yang Yang(Tony) 已提交
3018 3019
        return _debug_string_(proto, throw_on_error)

3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3052
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3053 3054
            type(skip_op_callstack)
        )
3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

3081 3082 3083
            attr_type = self.desc.attr_type(name, True)
            if attr_type == core.AttrType.VAR:
                attr_var_name = self.desc.attr(name, True).name()
3084 3085 3086
                a = "{name} = Var['{value}']".format(
                    name=name, type=attr_type, value=attr_var_name
                )
3087 3088 3089 3090 3091 3092 3093 3094 3095 3096
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.VARS:
                attr_var_names = [
                    "'%s'" % var.name() for var in self.desc.attr(name, True)
                ]
                a = "{name} = Vars[{value}]".format(
3097 3098
                    name=name, type=attr_type, value=','.join(attr_var_names)
                )
3099 3100 3101 3102 3103
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3104 3105
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
3106 3107
                    name=name, type=attr_type, value=self._block_attr_id(name)
                )
3108 3109 3110 3111 3112 3113 3114
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
3115 3116
                    name=name, type=attr_type, value=self._blocks_attr_ids(name)
                )
3117 3118 3119 3120 3121
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3122
            # it is bytes of serialized protobuf
3123 3124 3125 3126 3127
            if (
                is_compiled_with_cinn()
                and self.type == 'cinn_launch'
                and name == 'compilation_key'
            ):
3128 3129
                key = self.desc.attr(name)
                v = core.get_serialize_comile_key(key)
3130 3131 3132 3133 3134 3135 3136 3137 3138
                prog = Program()
                prog = prog.parse_from_string(v)
                s = prog._to_readable_code()
                lines = s.split('\n')
                value = '\n'.join(['      ' + line for line in lines])
                value = '\n' + value
            else:
                value = self.desc.attr(name)

3139 3140 3141
            a = "{name} = {value}".format(
                name=name, type=attr_type, value=value
            )
3142

3143 3144 3145 3146
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

3147
        from paddle.distributed.auto_parallel.static.dist_context import (
3148 3149 3150
            get_default_distributed_context,
        )

3151
        dist_context = get_default_distributed_context()
3152 3153
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
3154 3155 3156
            attrs_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_op
            )
3157

3158
        if outputs_str != "{}":
3159 3160 3161 3162 3163 3164
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".format(
                outputs=outputs_str,
                op_type=self.type,
                inputs=inputs_str,
                attrs=attrs_str,
            )
3165
        else:
3166 3167 3168
            op_str = "{op_type}(inputs={inputs}, {attrs})".format(
                op_type=self.type, inputs=inputs_str, attrs=attrs_str
            )
3169 3170
        return op_str

Y
Yang Yang(Tony) 已提交
3171
    def __str__(self):
3172
        return self._to_readable_code()
3173 3174 3175

    __repr__ = __str__

F
fengjiayi 已提交
3176 3177
    @property
    def type(self):
3178
        return self.desc.type()
F
fengjiayi 已提交
3179 3180

    def input(self, name):
3181
        r"""
U
ustiniankw 已提交
3182

3183
        Get the input arguments according to the input parameter name.
3184

3185 3186
        Args:
            name(str): The input parameter name.
3187

3188
        Returns:
U
ustiniankw 已提交
3189
            list, return the list of argument names that associated with \
3190
                the specific parameter name.
U
ustiniankw 已提交
3191

3192
        """
F
fengjiayi 已提交
3193 3194
        return self.desc.input(name)

W
Wu Yi 已提交
3195
    def _rename_input(self, old_name, new_name):
3196 3197 3198 3199 3200 3201 3202 3203 3204 3205
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
3206
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
3207

W
Wu Yi 已提交
3208
    def _rename_output(self, old_name, new_name):
3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
3219
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
3220

F
fengjiayi 已提交
3221 3222 3223 3224
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
3225 3226 3227 3228 3229 3230 3231 3232
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
3233
    def output(self, name):
3234
        r"""
3235
        Get output arguments by the output parameter name.
3236

3237 3238
        Args:
            name(str): The output parameter name.
3239

3240 3241 3242
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
3243
        """
F
fengjiayi 已提交
3244 3245 3246 3247 3248 3249
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

3250 3251 3252 3253 3254 3255
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
3256 3257
            "Can't find op itself in it's block. It could be a bug of Paddle."
        )
3258

F
fengjiayi 已提交
3259
    def has_attr(self, name):
3260
        """
3261 3262
        Whether this Operator has the attribute with name or not.

3263
        Args:
3264
            name(str): the attribute name.
3265

3266 3267
        Returns:
            bool: True if has this attribute.
3268 3269

        """
F
fengjiayi 已提交
3270 3271 3272
        return self.desc.has_attr(name)

    def attr_type(self, name):
3273
        """
3274
        Get the type of attribute by attribute's name.
3275

3276 3277
        Args:
            name(str): the attribute name.
3278

3279 3280
        Returns:
            core.AttrType: the attribute type.
3281
        """
3282
        return self.desc.attr_type(name, True)
F
fengjiayi 已提交
3283

W
Wu Yi 已提交
3284
    def _set_attr(self, name, val):
3285 3286 3287 3288 3289 3290 3291 3292 3293 3294
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
3295 3296
        self._update_desc_attr(name, val)

3297 3298 3299
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
3311 3312 3313 3314 3315
        if isinstance(val, Variable):
            self.desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            self.desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
Q
Qiyang Min 已提交
3316
            self.desc.set_block_attr(name, val.desc)
3317
        elif isinstance(val, list) and val and _all_is_type(val, Block):
3318
            self.desc.set_blocks_attr(name, [v.desc for v in val])
3319 3320 3321
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
Q
Qiyang Min 已提交
3322 3323
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
3324 3325 3326 3327 3328 3329 3330 3331 3332
            self._update_desc_plain_attr(name, val)

    def _update_desc_plain_attr(self, name, val):
        desc = self.desc
        if not hasattr(self, "_attr_types") or (name not in self._attr_types):
            desc._set_attr(name, val)
            return

        type_index = self._attr_types[name]
3333 3334 3335 3336 3337 3338
        # if the required attribute is a SCALAR, pass as-is
        if type_index == core.AttrType.SCALAR:
            desc._set_scalar_attr(name, wrap_as_scalar(val))
        elif type_index == core.AttrType.SCALARS:
            desc._set_scalars_attr(name, wrap_as_scalars(val))
        elif type_index == core.AttrType.BOOL:
3339 3340 3341 3342 3343 3344 3345
            desc._set_bool_attr(name, val)
        elif type_index == core.AttrType.INT:
            desc._set_int32_attr(name, val)
        elif type_index == core.AttrType.LONG:
            desc._set_int64_attr(name, val)
        elif type_index == core.AttrType.FLOAT:
            desc._set_float32_attr(name, val)
3346 3347
        elif type_index == core.AttrType.FLOAT64:
            desc._set_float64_attr(name, val)
3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364
        elif type_index == core.AttrType.STRING:
            desc._set_str_attr(name, val)
        elif type_index == core.AttrType.BOOLS:
            desc._set_bools_attr(name, val)
        elif type_index == core.AttrType.INTS:
            desc._set_int32s_attr(name, val)
        elif type_index == core.AttrType.LONGS:
            desc._set_int64s_attr(name, val)
        elif type_index == core.AttrType.FLOATS:
            desc._set_float32s_attr(name, val)
        elif type_index == core.AttrType.FLOAT64S:
            desc._set_float64s_attr(name, val)
        elif type_index == core.AttrType.STRINGS:
            desc._set_strs_attr(name, val)
        else:
            # defaults to old methods
            desc._set_attr(name, val)
Y
yuyang18 已提交
3365

F
fengjiayi 已提交
3366 3367
    @property
    def attr_names(self):
3368
        return self.desc.attr_names(True)
F
fengjiayi 已提交
3369 3370

    def attr(self, name):
3371
        """
3372 3373
        Get the attribute by name.

3374
        Args:
3375
            name(str): the attribute name.
3376

3377 3378
        Returns:
            bool|int|str|float|list: The attribute value. The return value
3379 3380
            can be any valid attribute type.
        """
F
fengjiayi 已提交
3381
        return self.desc.attr(name)
Y
Yu Yang 已提交
3382

W
Wu Yi 已提交
3383
    def _block_attr_id(self, name):
3384
        """
G
gongweibao 已提交
3385
        Get the block attribute's id by name.
3386

3387 3388
        Args:
            name(str): the attribute name.
3389

3390 3391
        Returns:
            int: the block index.
3392
        """
W
Wu Yi 已提交
3393
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
3394

W
Wu Yi 已提交
3395
    def _block_attr(self, name):
G
gongweibao 已提交
3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
3406
        id = self._block_attr_id(name)
3407
        assert id >= 0 and id < len(self.block.program.blocks)
G
gongweibao 已提交
3408 3409
        return self.block.program.blocks[id]

W
Wu Yi 已提交
3410
    def _blocks_attr(self, name):
G
gongweibao 已提交
3411 3412 3413 3414 3415 3416 3417 3418 3419 3420
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
3421
        for i in self._blocks_attr_ids(name):
3422
            assert i >= 0 and i < len(self.block.program.blocks)
G
gongweibao 已提交
3423 3424 3425 3426
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
3427
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
3428 3429 3430 3431 3432 3433 3434 3435 3436 3437
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
3438
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
3439

3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450
    def _var_attr(self, name):
        """
        Get the Variable attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variable: the Variable attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3451 3452 3453 3454 3455
        assert (
            attr_type == core.AttrType.VAR
        ), "Required type attr({}) is Variable, but received {}".format(
            name, attr_type
        )
3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
        attr_var_name = self.desc.attr(name, True).name()
        return self.block._var_recursive(attr_var_name)

    def _vars_attr(self, name):
        """
        Get the Variables attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variables: the Variables attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3470 3471 3472 3473 3474
        assert (
            attr_type == core.AttrType.VARS
        ), "Required type attr({}) is list[Variable], but received {}".format(
            name, attr_type
        )
3475 3476 3477 3478 3479 3480
        attr_vars = [
            self.block._var_recursive(var.name())
            for var in self.desc.attr(name, True)
        ]
        return attr_vars

J
JiayiFeng 已提交
3481
    def all_attrs(self):
F
fengjiayi 已提交
3482
        """
3483 3484 3485
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3486
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3487 3488 3489 3490
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
3491
            attr_type = self.desc.attr_type(n, True)
G
gongweibao 已提交
3492
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3493
                attr_map[n] = self._block_attr(n)
3494
            elif attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3495
                attr_map[n] = self._blocks_attr(n)
3496 3497 3498 3499 3500 3501
            elif attr_type == core.AttrType.VAR:
                attr_map[n] = self._var_attr(n)
            elif attr_type == core.AttrType.VARS:
                attr_map[n] = self._vars_attr(n)
            else:
                attr_map[n] = self.attr(n)
G
gongweibao 已提交
3502

F
fengjiayi 已提交
3503 3504
        return attr_map

3505 3506 3507
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3508 3509 3510 3511

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3512 3513 3514
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3515 3516 3517 3518 3519 3520 3521 3522

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3523 3524
            return False

3525 3526 3527 3528 3529 3530
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3531
    @property
3532
    def dist_attr(self):
3533
        """
3534
        Get distributed attribute of this Variable.
3535
        """
3536
        return self.desc.dist_attr
3537

3538 3539
    @dist_attr.setter
    def dist_attr(self, dist_attr):
3540
        """
3541
        Set distributed attribute of this Variable.
3542
        """
3543
        self.desc.dist_attr = dist_attr
3544

Y
Yu Yang 已提交
3545

3546
class Block:
3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3561
        use `Program._create_block()` to create a block.
3562 3563 3564 3565

    Examples:
        .. code-block:: python

3566 3567 3568
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3569 3570 3571 3572 3573 3574 3575 3576 3577
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3578
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3579
        self.desc = program.desc.block(idx)
3580
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3581
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3582 3583
        self.program = program

3584
    def __str__(self):
3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3619
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3620 3621
            type(skip_op_callstack)
        )
3622 3623 3624 3625 3626 3627 3628
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
3629 3630
                op._to_readable_code(skip_op_callstack)
            )
3631 3632
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3633

F
fengjiayi 已提交
3634 3635
    def to_string(self, throw_on_error, with_details=False):
        """
3636 3637
        Get debug string.

F
fengjiayi 已提交
3638 3639
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3640
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3641
            with_details(bool): more details about variables and parameters
3642 3643
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3644

3645 3646
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3647
        """
3648
        assert isinstance(throw_on_error, bool) and isinstance(
3649 3650
            with_details, bool
        )
F
fengjiayi 已提交
3651
        if with_details:
F
fengjiayi 已提交
3652
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3653
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
3654 3655 3656
                self.idx,
                self.parent_idx,
            )
3657
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3658
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
3659 3660
                    r"\n    \1", var.to_string(throw_on_error, with_details)
                )
F
fengjiayi 已提交
3661
            for op in self.ops:
F
fengjiayi 已提交
3662
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
3663 3664
                    r"\n    \1", op.to_string(throw_on_error)
                )
F
fengjiayi 已提交
3665 3666 3667
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3668
            proto = framework_pb2.BlockDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
3669 3670
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3671 3672 3673

    __repr__ = __str__

Y
Yu Yang 已提交
3674 3675
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3676
        return self.desc.parent
Y
Yu Yang 已提交
3677

Y
Yu Yang 已提交
3678 3679 3680 3681
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3682
    def _set_forward_block_idx(self, idx):
3683 3684 3685 3686 3687 3688 3689 3690 3691
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3692
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3693

3694 3695 3696 3697 3698 3699 3700 3701
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3702 3703
    @property
    def idx(self):
Y
Yu Yang 已提交
3704
        return self.desc.id
Y
Yu Yang 已提交
3705

Q
Qiao Longfei 已提交
3706
    def var(self, name):
3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3720
        if not isinstance(name, str):
M
minqiyang 已提交
3721
            raise TypeError(
3722 3723 3724
                "var require string as parameter, but get %s instead."
                % (type(name))
            )
Y
Yu Yang 已提交
3725 3726
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3727
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3728
        return v
Q
Qiao Longfei 已提交
3729

X
Xin Pan 已提交
3730
    def _find_var_recursive(self, name):
3731 3732 3733 3734 3735 3736 3737
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3738
            Variable: the Variable with the giving name. Or None if not found.
3739
        """
Y
Yu Yang 已提交
3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3764
        return None
Y
Yu Yang 已提交
3765

X
Xin Pan 已提交
3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3785

Q
Qiao Longfei 已提交
3786
    def all_parameters(self):
3787
        return list(self.iter_parameters())
3788

3789
    def iter_parameters(self):
3790 3791 3792 3793 3794
        return (
            item[1]
            for item in self.vars.items()
            if isinstance(item[1], Parameter)
        )
Q
Qiao Longfei 已提交
3795

Y
Yu Yang 已提交
3796
    def create_var(self, *args, **kwargs):
3797
        if in_dygraph_mode():
3798
            var = _create_tensor(*args, **kwargs)
L
Leo Chen 已提交
3799
        else:
3800 3801 3802
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3803
        return var
Y
Yu Yang 已提交
3804

Q
Qiao Longfei 已提交
3805 3806 3807
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3808
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3809 3810
        """
        Rename variable in vars and ops' inputs and outputs
3811 3812

        Args:
3813 3814
            name(str|bytes): the name that need to be renamed.
            new_name(str|bytes): the name that need to rename to.
3815 3816 3817 3818 3819 3820 3821 3822

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3823
        """
3824 3825
        # Ensure the type of name and new_name is str
        name = name.decode() if isinstance(name, bytes) else name
3826 3827 3828
        new_name = (
            new_name.decode() if isinstance(new_name, bytes) else new_name
        )
M
minqiyang 已提交
3829

T
typhoonzero 已提交
3830
        if not self.has_var(name):
3831
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3832 3833
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3834
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3835 3836 3837 3838 3839 3840
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3841
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3842 3843 3844 3845
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3846
        orig_var_type = v.type
3847
        self.desc._rename_var(name.encode(), new_name.encode())
W
Wu Yi 已提交
3848
        # NOTE: v is destroyed by C++ after calling _rename_var.
3849
        d = self.desc.find_var(new_name.encode())
T
typhoonzero 已提交
3850
        if var_type == "Parameter":
L
Leo Chen 已提交
3851
            if in_dygraph_mode():
3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862
                var = EagerParamBase(
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
3863
            else:
姜永久 已提交
3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
                var = Parameter(
                    self,
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
T
typhoonzero 已提交
3876
        elif var_type == "Variable":
3877 3878 3879 3880 3881 3882 3883
            var = Variable(
                self,
                type=orig_var_type,
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient,
            )
T
wip  
typhoonzero 已提交
3884

W
Wu Yi 已提交
3885
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3886 3887 3888
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3889
        self._sync_with_cpp()
3890
        return var
T
typhoonzero 已提交
3891

3892 3893 3894
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
3895
        self.desc._remove_var(name.encode())
3896 3897
        del self.vars[name]

Y
Yu Yang 已提交
3898 3899
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3900
        param = None
L
Leo Chen 已提交
3901
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3902
            param = EagerParamBase(*args, **kwargs)
L
Leo Chen 已提交
3903
        else:
姜永久 已提交
3904
            param = Parameter(global_block, *args, **kwargs)
3905 3906 3907
        # NOTE(Aurelius84): we deliver stop_gradient in append_op, so we
        # need recorde it state and reset it back after calling this API
        stop_gradient = param.stop_gradient
3908

3909
        if 'initializer' in kwargs:
3910 3911 3912 3913 3914

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3915
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3916
                        # are treated as initialization ops that cause error.
3917
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3918 3919
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
3920 3921 3922
                            "c_broadcast",
                            "c_sync_comm_stream",
                            "coalesce_tensor",
3923
                        ]:
3924
                            continue
3925 3926 3927 3928 3929 3930 3931
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
3932 3933 3934 3935 3936 3937
                raise RuntimeError(
                    "param "
                    + param.name
                    + " is inited by multiple init ops "
                    + str(init_ops)
                )
3938
            elif init_ops_len == 1:
3939
                # TODO already inited, do nothing, should log a warning
3940 3941 3942
                pass
            else:
                initializer(param, self)
3943
        param.stop_gradient = stop_gradient
Q
Qiao Longfei 已提交
3944
        return param
Y
Yu Yang 已提交
3945

Y
Yu Yang 已提交
3946
    def append_op(self, *args, **kwargs):
3947 3948 3949 3950 3951 3952
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
3953
        op_type = kwargs.get("type", None)
3954
        if in_dygraph_mode():
3955
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
3956
            inplace_map = kwargs.get("inplace_map", None)
3957 3958 3959
            warnings.warn(
                "Op `%s` is executed through `append_op` under the dynamic mode, "
                "the corresponding API implementation needs to be upgraded to "
3960 3961 3962 3963 3964 3965
                "using `_C_ops` method." % type,
                DeprecationWarning,
            )
            op = Operator(
                block=self,
                desc=None,
3966
                type=op_type,
3967 3968 3969 3970
                inputs=None,
                outputs=None,
                attrs=attrs,
            )
3971

M
minqiyang 已提交
3972 3973
            # record ops in tracer rather than blocks
            #
3974
            # TODO(minqiyang): add op stop_gradient support in static graph mode too.
L
lujun 已提交
3975
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3976

3977
            _dygraph_tracer().trace_op(
3978
                op_type,
3979 3980 3981 3982 3983 3984
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
                inplace_map,
            )
M
minqiyang 已提交
3985
        else:
3986
            from paddle.fluid.dygraph.base import param_guard
3987
            from paddle.utils import flatten
3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001

            def pass_stop_gradient(ins, outs):
                """
                Set out.stop_gradient = True if all inputs stop_gradient is True.
                """
                need_reset = True
                for var in flatten(ins):
                    if getattr(var, 'stop_gradient', None) is False:
                        need_reset = False
                        break
                if need_reset:
                    for var in flatten(outs):
                        if isinstance(var, Variable):
                            var.stop_gradient = True
4002

4003
            op_desc = self.desc.append_op()
4004 4005
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
W
wanghuancoder 已提交
4006
            # NOTE(Aurelius84): In case of @to_static, all Tensor(s) should
4007 4008
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
4009 4010 4011 4012 4013 4014 4015 4016 4017 4018
            ignore_ops = {
                'conditional_block',
                'conditional_block_grad',
                'recurrent',
                'recurrent_grad',
                'while',
                'while_grad',
            }
            if op_type not in ignore_ops:
                pass_stop_gradient(inputs, outputs)
4019
            with param_guard(inputs), param_guard(outputs):
4020 4021 4022
                op = Operator(
                    block=self,
                    desc=op_desc,
4023
                    type=op_type,
4024 4025 4026 4027
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None),
                )
4028

M
minqiyang 已提交
4029
            self.ops.append(op)
M
minqiyang 已提交
4030

4031 4032
        return op

W
Wu Yi 已提交
4033
    def _insert_op(self, index, *args, **kwargs):
4034 4035 4036 4037 4038 4039 4040 4041 4042
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
4043
        self._sync_with_cpp()
F
fangshuixun007 已提交
4044
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
4045

4046 4047
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
4048
        Insert an Operator according to the giving arguments,
4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
4063 4064 4065 4066 4067 4068 4069 4070 4071
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
4072 4073
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
4074
        self.desc._remove_op(index, index + 1)
4075 4076
        del self.ops[index]

W
Wu Yi 已提交
4077
    def _slice_ops(self, start, end):
4078 4079 4080 4081 4082 4083 4084 4085 4086 4087
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
4088
        return self.ops[start:end]
Y
Yancey1989 已提交
4089

W
Wu Yi 已提交
4090
    def _prepend_op(self, *args, **kwargs):
4091
        if in_dygraph_mode():
J
Jiabin Yang 已提交
4092 4093
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104
            op = Operator(
                self, None, type=type, inputs=None, outputs=None, attrs=attrs
            )

            _dygraph_tracer().trace_op(
                type,
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
            )
M
minqiyang 已提交
4105
        else:
4106
            op_desc = self.desc._prepend_op()
4107 4108 4109 4110 4111 4112 4113 4114
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None),
            )
M
minqiyang 已提交
4115
            self.ops.insert(0, op)
4116

Y
Yu Yang 已提交
4117 4118
        return op

W
Wu Yi 已提交
4119
    def _sync_with_cpp(self):
4120
        """
4121 4122
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
4123
        """
Q
Qiao Longfei 已提交
4124 4125 4126
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
4127 4128 4129 4130
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
4131 4132 4133 4134 4135 4136 4137 4138
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient,
                    )
4139
                else:
4140 4141 4142 4143 4144 4145
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient,
                    )
Q
Qiao Longfei 已提交
4146

4147
        # sync variables removed from c++ end
4148
        for var in list(self.vars.keys()):
4149
            if not self.desc.find_var(var.encode()):
4150 4151
                self.vars.pop(var)

Q
Qiao Longfei 已提交
4152
        # sync operators from cpp
4153 4154 4155 4156
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
4173 4174 4175 4176 4177

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
4178
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
4179 4180 4181 4182 4183 4184 4185

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

4186 4187 4188 4189 4190
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
4191 4192 4193 4194 4195 4196
                self.ops
            ) and ops_in_cpp_index < len(ops_in_cpp):
                if (
                    self.ops[ops_in_python_index].desc
                    != ops_in_cpp[ops_in_cpp_index]
                ):
4197 4198 4199 4200 4201
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
4202 4203 4204 4205
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
4206
    def _copy_param_info_from(self, other):
4207
        """
4208 4209
        Copy the information of parameters from the other block.

4210
        Args:
4211 4212 4213 4214 4215
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
4216 4217 4218 4219 4220

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
4221
            raise TypeError(
4222 4223
                "_copy_param_info_from should be invoked with Block"
            )
4224
        for p in other.iter_parameters():
4225 4226 4227
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
4228 4229
                # if the Parameter is pruned, v may be None
                continue
4230
            assert isinstance(v, Variable)
4231
            new_p = None
L
Leo Chen 已提交
4232
            if in_dygraph_mode():
4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244
                new_p = EagerParamBase(
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4245
            else:
姜永久 已提交
4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260
                new_p = Parameter(
                    block=self,
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR
                    else None,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4261 4262
            self.vars[new_p.name] = new_p

4263
    def _clone_variable(self, var, force_persistable=True):
4264 4265
        """
        Clone a variable into current block.
4266

4267 4268
        Args:
            var: the variable to be cloned.
4269 4270 4271
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
4272 4273

        Returns:
4274
            Variable: the new  variable cloned from 'var' in current block.
4275 4276
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
4277 4278 4279
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
4280 4281 4282
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
tangwei12 已提交
4283
        elif var.type == core.VarDesc.VarType.RAW:
4284 4285 4286
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
typhoonzero 已提交
4287 4288 4289 4290 4291 4292
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
4293
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4294
                is_data=var.is_data,
4295 4296
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4297 4298 4299 4300 4301 4302 4303
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
4304
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4305
                is_data=var.is_data,
4306 4307
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4308
        return ret_var
4309

Y
Yu Yang 已提交
4310

4311 4312 4313 4314
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
4315
# of some old Python Variables(all old Python Operators) may have
4316
# been destructed.
4317 4318 4319
def _apply_pass(
    main_program, startup_program, pass_name, pass_attrs={}, pass_attr_types={}
):
4320 4321 4322 4323
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
4324 4325 4326 4327 4328 4329 4330
    attrs = core.apply_pass(
        tmp_main_program,
        tmp_startup_program,
        pass_name,
        pass_attrs,
        pass_attr_types,
    )
4331 4332 4333 4334 4335
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


4336
class IrNode:
4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4348 4349 4350
        assert isinstance(
            node, core.Node
        ), 'node must be the instance of core.Node.'
4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

4432
    def remove_input_by_id(self, node_id):
4433 4434 4435 4436 4437 4438
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4439
        self.node.remove_input(node_id)
4440

4441
    def remove_input(self, node):
4442 4443 4444 4445
        """
        Remove a node from inputs.

        Args:
4446
            node(IrNode): the node being removed.
4447
        """
4448
        self.node.remove_input(node.node)
4449

4450
    def append_input(self, node):
4451 4452 4453 4454
        """
        Append a node in inputs.

        Args:
4455
            node(IrNode): the node being appended.
4456
        """
4457
        self.node.append_input(node.node)
4458 4459 4460 4461 4462 4463 4464 4465

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

4466
    def remove_output_by_id(self, node_id):
4467 4468 4469 4470 4471 4472
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4473
        self.node.remove_output(node_id)
4474

4475
    def remove_output(self, node):
4476 4477 4478 4479
        """
        Remove a node from outputs.

        Args:
4480
            node(IrNode): the node being removed.
4481
        """
4482
        self.node.remove_output(node.node)
4483

4484
    def append_output(self, node):
4485 4486 4487 4488
        """
        Append a node in outputs.

        Args:
4489
            node(IrNode): the node being appended.
4490
        """
4491
        self.node.append_output(node.node)
4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4526 4527 4528
        assert (
            isinstance(node, core.Node) and node.is_var()
        ), 'node must be the instance of core.Node and it must be a variable node.'
4529
        super().__init__(node)
4530 4531 4532 4533 4534 4535 4536 4537 4538
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
4539 4540 4541
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4542 4543 4544 4545 4546 4547 4548 4549 4550
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
4551 4552 4553
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4554 4555
        return self.node.var().persistable()

4556 4557 4558 4559 4560 4561 4562
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
4563 4564 4565
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4566 4567 4568 4569 4570 4571 4572 4573 4574
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
4575 4576 4577
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4578 4579 4580 4581 4582 4583 4584 4585 4586
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
4587 4588 4589
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4590 4591
        return self.node.var().shape()

4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4625 4626 4627
        assert (
            isinstance(node, core.Node) and node.is_op()
        ), 'node must be the instance of core.Node and it must be a operator node.'
4628
        super().__init__(node)
4629 4630 4631 4632 4633 4634 4635 4636 4637 4638
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
4639 4640 4641
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4642 4643
        self.node.op()._rename_input(old_input_name, new_input_name)

4644 4645 4646 4647 4648 4649 4650 4651
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
4652 4653 4654
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4655 4656
        self.node.op()._rename_output(old_output_name, new_output_name)

4657 4658 4659 4660 4661 4662 4663 4664 4665 4666
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4667 4668 4669
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4682 4683 4684
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4685 4686 4687 4688 4689 4690 4691 4692 4693
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
4694 4695 4696
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4697 4698
        return self.node.op().set_type(new_type)

4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
4713 4714 4715
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4716
        desc = self.node.op()
4717 4718 4719 4720 4721
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
4722
            desc.set_block_attr(name, val.desc)
4723
        elif isinstance(val, list) and val and _all_is_type(val, Block):
4724
            desc.set_blocks_attr(name, [v.desc for v in val])
4725 4726 4727
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
4728 4729 4730 4731
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4732 4733 4734 4735 4736 4737 4738
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
4739 4740 4741
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4742 4743 4744 4745 4746 4747 4748 4749 4750
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
4751 4752 4753
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4754 4755
        return self.node.op().output_arg_names()

4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4777
class IrGraph:
4778
    """
4779
    Python IrGraph. Beneath it is a core.Graph, which is used for
4780
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4781 4782
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4783 4784 4785 4786
    """

    def __init__(self, graph, for_test=False):
        """
4787 4788
        Construct an IrGraph using core.Graph.

4789 4790 4791 4792 4793
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
4794 4795
            graph, core.Graph
        ), 'graph must be the instance of core.Graph.'
4796 4797 4798
        self.graph = graph
        self._for_test = for_test

4799 4800 4801 4802
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4803 4804 4805
        Warns:
            The method only clones the graph structure, not its attributes.

4806 4807 4808
        Returns:
            IrGraph: A new and duplicated graph.
        """
4809
        g = self.graph.clone()
4810 4811
        return IrGraph(g, self._for_test)

4812
    def is_test(self):
4813 4814 4815
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4816 4817
        return self._for_test

W
WangZhen 已提交
4818
    def all_nodes(self):
4819 4820 4821
        """
        Return all nodes included in the graph as a set.
        """
4822
        return {IrNode(node) for node in self.graph.nodes()}
4823

4824
    def all_var_nodes(self):
4825 4826 4827
        """
        Return all variable nodes included in the graph as a set.
        """
4828
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4829

4830
    def all_persistable_nodes(self):
4831 4832 4833
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4834 4835
        persistable_nodes = set()
        for node in self.graph.nodes():
4836 4837 4838 4839 4840
            if (
                node.is_var()
                and node.var() is not None
                and node.var().persistable()
            ):
W
WangZhen 已提交
4841
                persistable_nodes.add(node)
4842
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4843

4844
    def all_op_nodes(self):
4845 4846 4847
        """
        Return all operator nodes included in the graph as a set.
        """
4848
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4849

4850 4851 4852 4853 4854 4855
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
4856
            IrGraph(self.graph.get_sub_graph(i), for_test=for_test)
4857 4858 4859 4860 4861 4862 4863 4864 4865
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4866
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4878
            IrVarNode: the created persistable variable node.
4879
        """
4880 4881 4882 4883 4884
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4885
        return IrVarNode(self.graph.create_var_node(var_desc))
4886 4887

    def create_var_node(self, name, var_type, shape, var_dtype):
4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4899
            IrVarNode: the created variable node.
4900 4901
        """

4902 4903 4904 4905
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4906
        return IrVarNode(self.graph.create_var_node(var_desc))
4907

4908 4909 4910 4911 4912 4913
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4914
    def create_var_node_from_desc(self, var_desc):
4915 4916 4917 4918 4919 4920 4921 4922
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4923
            IrVarNode: the created variable node.
4924
        """
4925
        return IrVarNode(self.graph.create_var_node(var_desc))
4926 4927

    def create_op_node(self, op_type, attrs, inputs, outputs):
4928 4929 4930 4931 4932 4933 4934
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4935
            outputs(dict): the outputs of the operator node.
4936 4937

        Returns:
4938
            IrOpNode: the created operator node.
4939
        """
4940 4941
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4942
        for attr, value in attrs.items():
4943
            self._update_desc_attr(op_desc, attr, value)
4944
        for input_name, var_nodes in inputs.items():
4945 4946
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
4947 4948 4949
            op_desc.set_input(
                input_name, [var_node.name() for var_node in var_nodes]
            )
4950
        for output_name, var_nodes in outputs.items():
4951 4952
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
4953 4954 4955
            op_desc.set_output(
                output_name, [var_node.name() for var_node in var_nodes]
            )
4956
        return IrOpNode(self.graph.create_op_node(op_desc))
4957 4958

    def create_op_node_from_desc(self, op_desc):
4959 4960 4961 4962 4963 4964 4965
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4966
            IrOpNode: the created operator node.
4967
        """
4968
        return IrOpNode(self.graph.create_op_node(op_desc))
4969 4970

    def update_input_link(self, old_input_node, new_input_node, op_node):
4971 4972 4973 4974
        """
        Update the input's link of a operator node.

        Args:
4975 4976 4977
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4978
        """
4979 4980 4981 4982 4983
        assert (
            old_input_node.node in self.graph.nodes()
            and new_input_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4984 4985 4986 4987
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
4988
        op_node.rename_input(old_input_node.name(), new_input_node.name())
4989

4990 4991 4992 4993 4994 4995 4996 4997 4998
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
4999 5000 5001 5002 5003
        assert (
            old_output_node.node in self.graph.nodes()
            and new_output_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
5004 5005 5006 5007 5008 5009
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

5010
    def link_to(self, node_in, node_out):
5011 5012 5013 5014
        """
        Connect two nodes.

        Args:
5015 5016
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
5017
        """
5018
        assert node_in.node in self.graph.nodes(), (
5019 5020
            'node_in(%s) must be in the graph nodes.' % node_in.node.name()
        )
5021
        assert node_out.node in self.graph.nodes(), (
5022 5023
            'node_out(%s) must be in the graph nodes.' % node_out.node.name()
        )
5024 5025
        node_in.append_output(node_out)
        node_out.append_input(node_in)
5026 5027

    def safe_remove_nodes(self, remove_nodes):
5028 5029 5030 5031 5032 5033 5034
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
5035
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
5036 5037 5038 5039
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
5040 5041
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
5042

Z
Zhen Wang 已提交
5043 5044 5045 5046 5047 5048 5049 5050
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5051
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
5052 5053 5054 5055
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5056
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
5057 5058 5059
                        ]
                    else:
                        var_nodes[each_var_name].append(
5060 5061
                            self._find_node_by_name(node.outputs, each_var_name)
                        )
Z
Zhen Wang 已提交
5062 5063
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
5064
    def has_circle(self):
5065 5066 5067 5068 5069 5070
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
5071 5072 5073
        return core.has_circle(self.graph)

    def graph_num(self):
5074 5075 5076 5077 5078 5079
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
5080 5081 5082
        return core.graph_num(self.graph)

    def topology_sort(self):
5083 5084 5085
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
5086
        Notes: the `graph` can not contain a circle.
5087 5088

        Returns:
Z
Zhen Wang 已提交
5089
            list(IrNode): nodes in topology order.
5090
        """
5091
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
5092
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
5093 5094

    def build_adjacency_list(self):
5095 5096 5097 5098
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
5099
            dict{IrNode: set(IrNode)}: the adjacency list.
5100
        """
5101 5102
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
5103
        for k, v in adj_list.items():
5104 5105
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
5106

5107 5108 5109 5110 5111 5112 5113 5114
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
5115
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
5116 5117 5118 5119 5120
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

5121 5122
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
5123 5124 5125 5126
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True,
            )
5127 5128
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
5129 5130 5131
                print(
                    'The {} is saved as the dot filetype.'.format(dot_file_path)
                )
5132

5133
        remove_ctr_vars = set()
5134
        if remove_ctr_var:
5135
            for node in self.all_var_nodes():
5136 5137 5138
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
5139 5140
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

5141 5142
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
5143 5144 5145 5146 5147 5148
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
5149 5150 5151 5152
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
5153 5154
        if not os.path.exists(save_path):
            os.makedirs(save_path)
5155 5156 5157 5158 5159 5160 5161
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
5162 5163 5164
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
5165
        WARN: When the graph includes backward operator nodes, the
5166 5167 5168 5169 5170 5171
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
5172
        convert_pass = core.get_pass('graph_to_program_pass')
5173 5174
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
5175 5176 5177 5178
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

5179 5180 5181 5182 5183 5184 5185 5186
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
5187
        assert target_node is not None, (
5188 5189
            "Cannot find the target node (%s)in the giving set." % node_name
        )
5190 5191
        return target_node

5192 5193 5194 5195
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
5196 5197 5198 5199 5200
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
5201
            desc.set_block_attr(name, val.desc)
5202
        elif isinstance(val, list) and val and _all_is_type(val, Block):
5203
            desc.set_blocks_attr(name, [v.desc for v in val])
5204 5205 5206
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
5207 5208 5209 5210 5211
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


5212
class Program:
D
dzhwinter 已提交
5213
    """
5214
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
5215
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
5216
    it will contain nested block.
5217

J
Jiabin Yang 已提交
5218 5219 5220
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
5221

J
Jiabin Yang 已提交
5222
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
5223
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
5224 5225 5226 5227 5228 5229 5230
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
5231
    **Notes**:
5232 5233 5234
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
5235 5236

    Returns:
J
Jiabin Yang 已提交
5237
        Program: An empty Program.
D
dzhwinter 已提交
5238 5239

    Examples:
5240 5241
        .. code-block:: python

5242 5243 5244 5245
            import paddle
            import paddle.static as static

            paddle.enable_static()
5246

5247 5248 5249 5250 5251
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
5252
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
5253 5254 5255

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
5256 5257 5258

    """

5259 5260
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
5261 5262
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
5263 5264
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
5265
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
5266
        self.__op_role_var = []
T
tangwei12 已提交
5267

5268 5269
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
5270
        self._is_distributed = False
5271
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
5272
        self._is_chief = False
5273 5274 5275
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
5276
        self._endpoints = []
5277 5278 5279
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
5280
        self._trainers_endpoints = []
5281
        # the distributed lookup table names
T
tangwei12 已提交
5282
        self._distributed_lookup_table = None
5283 5284 5285

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
5286 5287
        self._use_lamb = False

5288 5289 5290
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
5291

5292 5293 5294
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
5295
        self._program_config = None
5296

5297 5298
        self._pass_applied = None

H
hutuxian 已提交
5299 5300 5301
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

5302 5303 5304
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

5305 5306 5307
        # appending gradients times
        self._appending_grad_times = 0

5308 5309
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
5310 5311
            "__auto_checkpoint_program__"
        )
5312

5313 5314
        # compiled program, i.e. Graph
        self._graph = None
5315 5316
        # to tag whether is startup_program
        self._is_start_up_program_ = False
5317

5318
    def _find_var_class_kwargs(self, new_desc):
5319 5320 5321 5322 5323 5324 5325 5326
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

5327 5328 5329 5330
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
5331
            if idx > (len(self.blocks) - 1):
5332
                self._create_block()
5333 5334 5335 5336 5337 5338 5339 5340 5341 5342
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
                    'shape': get_var_desc_attr_or_none(
                        new_var_desc,
                        "shape",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'dtype': get_var_desc_attr_or_none(
                        new_var_desc,
                        "dtype",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'lod_level': get_var_desc_attr_or_none(
                        new_var_desc,
                        "lod_level",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'error_clip': old_var.error_clip
                    if old_var is not None
                    else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None
                    else False,
                    'is_data': old_var.is_data
                    if old_var is not None
                    else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None
                    else False,
5384 5385 5386
                }

                if isinstance(old_var, Parameter):
5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403
                    kwargs.update(
                        {
                            'trainable': old_var.trainable,
                            'optimize_attr': old_var.optimize_attr,
                            'regularizer': old_var.regularizer,
                            'do_model_average': old_var.do_model_average,
                            'need_clip': old_var.need_clip,
                            'is_distributed': old_var.is_distributed,
                            'is_parameter': old_var.is_parameter,
                        }
                    )
                    block_new_vars.append(
                        {
                            'class': Parameter,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5404 5405
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
5406 5407 5408 5409 5410 5411
                    block_new_vars.append(
                        {
                            'class': Variable,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5412 5413 5414 5415 5416 5417 5418

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
5419
        assert block_num == self.desc.num_blocks()
5420 5421

        # clear old blocks and desc
5422 5423 5424 5425 5426 5427 5428 5429 5430
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
5431

5432
        del desc
5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

5452 5453 5454 5455 5456 5457 5458 5459 5460 5461
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

5462 5463
                import paddle
                import paddle.static as static
5464

5465 5466 5467
                paddle.enable_static()

                prog = static.default_main_program()
5468 5469 5470 5471 5472
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
5473
                prog1 = static.default_main_program()
5474 5475 5476 5477 5478 5479 5480 5481
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
5482
    @property
5483
    def _op_role(self):
Y
yuyang18 已提交
5484 5485 5486 5487 5488 5489 5490 5491
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
5492
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
5493 5494 5495 5496
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
5497 5498
        return self._current_role

5499 5500
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
5501 5502 5503
        self._current_role = role

    @property
5504
    def _op_role_var(self):
Y
yuyang18 已提交
5505
        """
5506
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
5507

5508
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
5509 5510 5511

        Notes: This is a very low-level API. Users should not use it directly.
        """
5512
        return self.__op_role_var
Y
yuyang18 已提交
5513

5514
    @signature_safe_contextmanager
5515 5516 5517 5518 5519
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
5520 5521 5522 5523
        try:
            yield
        finally:
            self._current_role = tmp_role
5524

S
rename  
sneaxiy 已提交
5525
    @signature_safe_contextmanager
W
Wu Yi 已提交
5526
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
5527 5528 5529 5530 5531 5532 5533
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
5534
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
5535 5536 5537

        Examples:

5538
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
5539
            >>> p, g = backward(...)
W
Wu Yi 已提交
5540
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
5541 5542
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
5543
        tmp_role = self._current_role
5544
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
5545

Y
yuyang18 已提交
5546 5547
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
5548
        self.__op_role_var = [
5549 5550 5551
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
5552 5553 5554 5555 5556
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
5557

S
rename  
sneaxiy 已提交
5558
    @signature_safe_contextmanager
X
Xin Pan 已提交
5559
    def _lr_schedule_guard(self, is_with_opt=False):
5560 5561 5562 5563 5564 5565 5566
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
5567 5568 5569 5570
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
5571 5572 5573

        Examples:

5574
            >>> import paddle.fluid as fluid
5575 5576 5577 5578
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
5579 5580

        tmp_role = self._current_role
5581
        tmp_var = self.__op_role_var
5582

5583 5584
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
5585 5586
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
5587
        # TODO(typhoonzero): how to set target learning rate var
5588
        self.__op_role_var = []
5589 5590 5591 5592 5593
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
5594

5595
    def __str__(self):
Y
yuyang18 已提交
5596 5597 5598 5599 5600 5601 5602 5603 5604
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5625 5626
            import paddle
            import paddle.static as static
5627

5628 5629 5630
            paddle.enable_static()

            cur_program = static.Program()
5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5642
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
5643 5644
            type(skip_op_callstack)
        )
5645 5646 5647
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5648
            program_str += '\n'
5649
        return program_str
Y
Yang Yang(Tony) 已提交
5650

F
fengjiayi 已提交
5651 5652 5653
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5654

J
Jiabin Yang 已提交
5655 5656 5657
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5658

J
Jiabin Yang 已提交
5659
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5660

H
haowang101779990 已提交
5661
        Returns:
J
Jiabin Yang 已提交
5662
            str: The debug string describe current Program.
Y
yuyang18 已提交
5663 5664

        Raises:
J
Jiabin Yang 已提交
5665
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5666

5667 5668 5669
        Examples:
            .. code-block:: python

5670 5671 5672 5673
                import paddle
                import paddle.static as static

                paddle.enable_static()
5674

5675 5676 5677
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5678
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5679
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5680
                print("program string without detail: {}".format(prog_string))
5681
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5682
        """
5683 5684 5685
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
5686 5687
            type(throw_on_error)
        )
5688 5689 5690
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
5691 5692
            type(with_details)
        )
5693

F
fengjiayi 已提交
5694 5695 5696 5697
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713
            protostr = self.desc.serialize_to_string()
            proto = framework_pb2.ProgramDesc.FromString(bytes(protostr))
            res_str += (
                "version {\n  "
                + textwrap.indent(
                    _debug_string_(proto.version, throw_on_error), "  "
                )
                + "}\n"
            )
            res_str += (
                "op_version_map {\n  "
                + textwrap.indent(
                    _debug_string_(proto.op_version_map, throw_on_error), "  "
                )
                + "}\n"
            )
F
fengjiayi 已提交
5714 5715
        else:
            protostr = self.desc.serialize_to_string()
5716
            proto = framework_pb2.ProgramDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
5717 5718
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5719

W
Wu Yi 已提交
5720
    def _get_desc(self):
Y
yuyang18 已提交
5721 5722 5723 5724 5725 5726 5727
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5728 5729
        return self.desc

X
version  
Xin Pan 已提交
5730 5731 5732
    def _version(self):
        return self.desc._version()

5733
    def clone(self, for_test=False):
Y
yuyang18 已提交
5734
        """
5735
        .. note:::
5736 5737
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` .
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` .
5738
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5739

5740
        Create a new Program with forward content of original one when ``for_test=True``.
5741
        Create a new Program as same as the original one when ``for_test=False``.
5742

5743
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5744 5745 5746
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5747

5748 5749
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5750 5751
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
5752
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
5753

C
cyberslack_lee 已提交
5754 5755 5756
        Examples:
            .. code-block:: python
                :name: code-example-1
L
Luo Tao 已提交
5757

C
cyberslack_lee 已提交
5758 5759
                import paddle
                import paddle.static as static
5760

C
cyberslack_lee 已提交
5761
                paddle.enable_static()
5762

C
cyberslack_lee 已提交
5763 5764 5765 5766 5767 5768 5769
                img = static.data(name='image', shape=[None, 784])
                pred = static.nn.fc(x=img, size=10, actvation='relu')
                loss = paddle.mean(pred)
                # Here we use clone before Momentum
                test_program = static.default_main_program().clone(for_test=True)
                optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
                optimizer.minimize(loss)
5770

J
Jiabin Yang 已提交
5771
        Args:
5772

5773 5774
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
5775

J
Jiabin Yang 已提交
5776
        Returns:
5777
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
5778

Y
yuyang18 已提交
5779 5780 5781

        Examples:

5782 5783 5784 5785 5786 5787 5788
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5789
            .. code-block:: python
C
cyberslack_lee 已提交
5790
                :name: code-example-2
5791

5792
                import paddle
5793 5794

                def print_prog(prog):
5795
                    for name, value in sorted(prog.block(0).vars.items()):
5796 5797 5798 5799 5800
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
5801
                        for key, value in sorted(op.all_attrs().items()):
5802 5803 5804 5805
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5806
            1. To clone a test program, the sample code is:
5807
                .. code-block:: python
C
cyberslack_lee 已提交
5808
                    :name: code-example-3
5809

5810 5811 5812 5813 5814 5815
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5816 5817

                    def print_prog(prog):
5818
                        for name, value in sorted(prog.block(0).vars.items()):
5819 5820 5821 5822 5823
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
5824
                            for key, value in sorted(op.all_attrs().items()):
5825 5826 5827
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5828 5829
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5830 5831 5832

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5833 5834 5835
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5836
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5837 5838
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5839
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5840 5841
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5842
                            test_program = train_program.clone(for_test=True)
5843
                    print_prog(test_program)
J
Jiabin Yang 已提交
5844 5845 5846 5847

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5848
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5849 5850 5851 5852
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5853 5854 5855
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5856 5857 5858
                            sgd.minimize(avg_loss)


5859
            2. The clone method can be avoid if you create program for training and program for testing individually.
5860
                .. code-block:: python
C
cyberslack_lee 已提交
5861
                    :name: code-example-4
5862

5863 5864 5865 5866 5867 5868
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5869 5870

                    def print_prog(prog):
5871
                        for name, value in sorted(prog.block(0).vars.items()):
5872 5873 5874 5875 5876
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
5877
                            for key, value in sorted(op.all_attrs().items()):
5878 5879
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5880

5881
                    def network():
5882
                        img = static.data(name='image', shape=[None, 784])
5883
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5884 5885
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5886
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5887 5888
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5889 5890
                        return avg_loss

5891 5892 5893 5894 5895
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5896
                            avg_loss = network()
5897
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5898
                            sgd.minimize(avg_loss)
5899
                    # the test startup program is not used.
5900 5901
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5902 5903
                            avg_loss = network()
                    print_prog(test_program_2)
5904

5905
            The two code snippets above will generate and print same programs.
5906
        """
5907

T
tangwei12 已提交
5908
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5909 5910 5911
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5912
        pruned_origin_block_id_map = None
5913
        if for_test:
5914 5915
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
5916 5917
                self.desc
            )
5918 5919
            forward_prog.blocks = [
                Block(forward_prog, i)
5920
                for i in range(forward_prog.desc.num_blocks())
5921 5922 5923
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5924
        else:
5925
            p = Program()
G
gongweibao 已提交
5926 5927
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5928
            p.desc = core.ProgramDesc(self.desc)
5929
            p.blocks = [Block(p, i) for i in range(self.desc.num_blocks())]
G
gongweibao 已提交
5930 5931

            p._current_role = self._current_role
5932
            p.__op_role_var = self.__op_role_var
5933
            p._appending_grad_times = self._appending_grad_times
5934 5935
            if hasattr(self, 'lr_scheduler'):
                p.lr_scheduler = self.lr_scheduler
5936 5937
            if hasattr(self, '_pipeline_opt'):
                p._pipeline_opt = self._pipeline_opt
G
gongweibao 已提交
5938

T
tangwei12 已提交
5939
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5940
            # its desc.
W
Wu Yi 已提交
5941
            p._sync_with_cpp()
5942

W
Wu Yi 已提交
5943
        p._copy_param_info_from(self)
5944
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5945
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5946
        return p
5947

5948
    def _prune(self, targets):
Y
yuyang18 已提交
5949 5950 5951 5952 5953 5954 5955 5956
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5957
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5958 5959 5960 5961
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5962
        """
5963
        return self._prune_with_input([], targets)
5964 5965

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5966
        """
5967
        Prune operators and variables which are not needed to generate
5968 5969
        :code:`targets`. Prune operators and variables which are needed
        to generate feeded_var
5970 5971 5972 5973 5974 5975 5976

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5977
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5978 5979 5980 5981 5982 5983
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5984
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5985 5986 5987
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5988 5989
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
5990 5991
        if not isinstance(targets, list):
            targets = [targets]
5992 5993

        for var in feeded_var_names:
5994
            if not isinstance(var, str):
5995 5996
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
5997 5998
                    "str, but received %s." % type(var)
                )
5999

6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

6016 6017 6018 6019
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
6020
                    name = t.name
6021
                elif isinstance(t, str):
6022
                    name = str(t)
6023
                else:
6024 6025
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
6026 6027
                        "Variable or Operator, but received %s." % type(t)
                    )
6028 6029 6030 6031 6032 6033

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
6034 6035 6036
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
6037

6038 6039 6040 6041 6042 6043 6044 6045 6046
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
6047
                        # Skip optimize op except for optimize op in targets,
6048 6049 6050 6051 6052
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
6053

6054
                if target_op is not None:
6055 6056 6057
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
6058

6059
        res = Program()
6060
        res.desc, pruned_origin_block_id_map = core.prune(
6061 6062
            self.desc, set(feeded_var_names), targets_idx
        )
6063
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6064
        res._sync_with_cpp()
6065 6066 6067 6068 6069

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

6070 6071
        return res

X
Xin Pan 已提交
6072
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
6073
        """
F
fengjiayi 已提交
6074 6075 6076 6077 6078
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

6079
        3. change the :code:`is_test`
Y
yuyang18 已提交
6080 6081 6082
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

6083
        Args:
X
Xin Pan 已提交
6084 6085
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
6086

Y
yuyang18 已提交
6087 6088 6089 6090 6091 6092
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
6093
        res = Program()
6094
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
6095 6096 6097 6098

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
6099
        if prune_read_op:
6100
            while True:
6101 6102 6103 6104
                if (
                    read_op_idx >= root_block.op_size()
                    or root_block.op(read_op_idx).type() == 'read'
                ):
6105 6106 6107 6108 6109 6110
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
6111
                    root_block._remove_var(var.name().encode())
F
fengjiayi 已提交
6112 6113

        # change all `is_test` attributes to True
6114
        for i in range(res.desc.num_blocks()):
6115
            block = res.desc.block(i)
6116
            for j in range(block.op_size()):
6117 6118
                op = block.op(j)
                if op.has_attr('is_test'):
6119
                    op._set_bool_attr('is_test', True)
6120 6121 6122
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
6123
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6124
        res._sync_with_cpp()
6125 6126
        return res

6127
    def _remove_training_info(self, clip_extra=True):
6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

6142
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
6143 6144
        res._sync_with_cpp()

6145 6146
        # Note: The op_role and op_role_var cann't be deleted currently,
        # and we will try to remove them in the future.
6147
        common_clipped_attrs_list = ['op_callstack', 'with_quant_attr']
6148

6149
        for i in range(res.desc.num_blocks()):
6150 6151 6152 6153
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
6154 6155
            if not clip_extra:
                continue
6156 6157 6158 6159
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
6160 6161 6162

                extra_attrs_map = core.get_op_extra_attrs(op.type())

6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
6176 6177 6178
                # The extra input of op will be removed in the future
                # for name in remove_input_list:
                #     op.remove_input(name)
6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
6192
                # The extra output of op will be removed in the future
6193 6194
                for name in remove_output_list:
                    op.remove_output(name)
6195

6196 6197 6198 6199 6200 6201 6202
                op_quant_name = (
                    core.op_proto_and_checker_maker.kOpWithQuantAttrName()
                )
                quant = (
                    bool(op.attr(op_quant_name))
                    if op_quant_name in op.attr_names()
                    else False
6203 6204
                )
                quant_attrs = [
6205 6206 6207 6208 6209 6210 6211
                    op_quant_name,
                    "quantization_type",
                    "skip_quant",
                    "activation_bits",
                    "bit_length",
                    "quantize_weight_bits",
                    "weight_quant_scale",
6212
                ]
6213 6214
                for extra_attr_name in extra_attrs_map.keys():
                    op.remove_attr(extra_attr_name)
6215
                remove_attr_list = []
6216 6217 6218 6219 6220 6221
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
6222
                    if len(extra_attrs_map) > 0:
6223
                        if name in common_clipped_attrs_list:
6224
                            op.remove_attr(name)
6225
                        continue
6226 6227 6228 6229 6230 6231 6232 6233 6234 6235
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
6236 6237
        return res

6238 6239
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
6240
        """
6241
        .. note::
6242
            1. All information about parameters will be lost after serialization;
6243
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6244

6245 6246
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
6247

J
Jiabin Yang 已提交
6248
        Args:
Y
yuyang18 已提交
6249

J
Jiabin Yang 已提交
6250
            binary_str_type (str): the binary prootbuf string.
6251

J
Jiabin Yang 已提交
6252 6253
        Returns:
            Program: A deserialized Program.
6254 6255 6256 6257

        Examples:
            .. code-block:: python

6258 6259 6260 6261
                import paddle
                import paddle.static as static

                paddle.enable_static()
6262

6263 6264 6265 6266
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
6267

6268
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
6269

6270
                    z = paddle.matmul(x=x, y=y)
6271

6272 6273
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
6274

6275
                    print(static.default_main_program())
6276
                    print(prog_restored)
Y
yuyang18 已提交
6277
        """
6278 6279
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
6280
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
W
Wu Yi 已提交
6281
        p._sync_with_cpp()
6282
        return p
Y
Yu Yang 已提交
6283

6284
    @staticmethod
6285
    def _construct_from_desc(desc):
6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
6297
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
6298 6299 6300
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
6301 6302
    @property
    def random_seed(self):
Y
yuyang18 已提交
6303
        """
J
Jiabin Yang 已提交
6304
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
6305 6306
        the random seed from random device.

6307
        .. note::
6308
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
6309 6310 6311

        Returns:
            int64: Random seed in current Program
6312

6313 6314 6315 6316

        Examples:
            .. code-block:: python

6317 6318 6319
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
6320

6321 6322 6323
                paddle.enable_static()

                prog = static.default_main_program()
6324
                random_seed = prog.random_seed
6325
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
6326 6327 6328
                print(random_seed)
                ## 0
                ## the default random seed is 0
6329

6330
                # Here we need to set random seed before we use paddle.nn.functional.dropout
6331
                prog.random_seed = 1
6332
                z_var = F.dropout(x_var, 0.7)
6333

6334
                print(prog.random_seed)
6335 6336
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
6337
        """
D
dzhwinter 已提交
6338 6339
        return self._seed

Q
qiaolongfei 已提交
6340 6341
    @property
    def num_blocks(self):
Y
yuyang18 已提交
6342
        """
6343 6344
        The number of :ref:`api_guide_Block_en`  in this Program.

6345
        .. note::
6346
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
6347 6348 6349

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
6350

6351 6352 6353 6354

        Examples:
            .. code-block:: python

6355 6356 6357 6358
                import paddle
                import paddle.static as static

                paddle.enable_static()
6359

6360
                prog = static.default_main_program()
6361 6362
                num_blocks = prog.num_blocks
                print(num_blocks)
6363

6364 6365
                # print result:
                # 1
Y
yuyang18 已提交
6366
        """
Q
qiaolongfei 已提交
6367 6368
        return self.desc.num_blocks()

D
dzhwinter 已提交
6369 6370 6371
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
6372 6373
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
6374 6375
                % type(seed)
            )
D
dzhwinter 已提交
6376 6377
        self._seed = seed

Y
Yu Yang 已提交
6378
    def __repr__(self):
6379
        return self.__str__()
6380

Y
Yu Yang 已提交
6381
    def global_block(self):
Y
yuyang18 已提交
6382
        """
6383 6384
        .. note::
            This API has no effect in Dygraph mode.
6385 6386 6387

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
6388 6389
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
6390

6391 6392 6393 6394

        Examples:
            .. code-block:: python

6395 6396 6397 6398
                import paddle
                import paddle.static as static

                paddle.enable_static()
6399

6400
                prog = static.default_main_program()
6401 6402
                gb_block = prog.global_block()
                print(gb_block)
6403

Y
yuyang18 已提交
6404
        """
Y
Yu Yang 已提交
6405 6406
        return self.blocks[0]

Q
Qiao Longfei 已提交
6407
    def block(self, index):
Y
yuyang18 已提交
6408
        """
6409 6410
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6411

6412 6413
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
6414 6415
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
6416

J
Jiabin Yang 已提交
6417 6418
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
6419 6420 6421 6422

        Examples:
            .. code-block:: python

6423 6424 6425 6426
                import paddle
                import paddle.static as static

                paddle.enable_static()
6427

6428
                prog = static.default_main_program()
6429 6430
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
6431
        """
Q
Qiao Longfei 已提交
6432 6433
        return self.blocks[index]

Y
Yu Yang 已提交
6434
    def current_block(self):
Y
yuyang18 已提交
6435
        """
6436 6437
        .. note::
            This API has no effect in Dygraph mode.
6438

J
Jiabin Yang 已提交
6439 6440
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
6441

J
Jiabin Yang 已提交
6442 6443
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
6444

6445 6446 6447
        Examples:
            .. code-block:: python

6448 6449 6450 6451
                import paddle
                import paddle.static as static

                paddle.enable_static()
6452

6453
                prog = static.default_main_program()
6454 6455
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
6456
        """
Y
Yu Yang 已提交
6457 6458
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
6459
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
6460 6461 6462 6463 6464
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
6465

Y
yuyang18 已提交
6466 6467 6468 6469 6470
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
6471
        new_block_idx = len(self.blocks)
6472 6473 6474 6475 6476
        parent = (
            self.current_block()
            if parent_idx is None
            else self.block(parent_idx)
        )
F
update  
fengjiayi 已提交
6477
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
6478 6479 6480 6481
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
6482
    def _rollback(self):
Y
yuyang18 已提交
6483 6484 6485 6486 6487
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
6488 6489
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
6490
    def _sync_with_cpp(self):
Y
yuyang18 已提交
6491 6492 6493 6494 6495 6496 6497 6498 6499 6500
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
6501 6502 6503
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
6504
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
6505

W
Wu Yi 已提交
6506
    def _copy_param_info_from(self, other):
6507
        """
6508
        Copy the information of parameters from other program.
D
dzhwinter 已提交
6509

Y
yuyang18 已提交
6510 6511 6512
        Notes: This is a very low level API. Users should not invoke it
        directly.

6513 6514 6515 6516 6517 6518 6519
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6520 6521
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6522 6523
                % type(other)
            )
6524

W
Wu Yi 已提交
6525
        self.global_block()._copy_param_info_from(other.global_block())
6526

6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6538 6539
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6540 6541
                % type(other)
            )
6542 6543
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
6544
        self._parameters_on_pservers = other._parameters_on_pservers
6545
        self._endpoints = other._endpoints
6546
        self._ps_endpoint = other._ps_endpoint
6547 6548
        self._distributed_lookup_table = other._distributed_lookup_table

6549
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
6550 6551
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
6552

Y
yuyang18 已提交
6553 6554 6555
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
6556 6557
        Args:
            other(Program): Other program
6558
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
6559 6560
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is
            cloned from block 0 in other, etc. Default is None, which means default mapped,
6561
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
6562 6563 6564 6565 6566

        Returns:
            None
        """
        if not isinstance(other, Program):
6567 6568
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6569 6570
                % type(other)
            )
F
fengjiayi 已提交
6571

6572 6573
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
6574
                i: i for i in range(self.desc.num_blocks())
6575
            }
6576 6577 6578

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
6579 6580
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
6581
            for var in list(block.vars.values()):
6582 6583 6584 6585 6586 6587 6588
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
6589

6590
    def list_vars(self):
Y
yuyang18 已提交
6591
        """
6592
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
6593

J
Jiabin Yang 已提交
6594
        Returns:
6595
            iterable Tensors: The Generator will yield every Tensor in this program.
6596 6597 6598 6599

        Examples:
            .. code-block:: python

6600 6601
                import paddle
                import paddle.static as static
6602

6603 6604 6605 6606 6607
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
6608 6609
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
6610

6611 6612
                # var img : LOD_TENSOR.shape(-1, 1, 28, 28).dtype(float32).stop_gradient(True)
                # var label : LOD_TENSOR.shape(-1, 1).dtype(int64).stop_gradient(True)
Y
yuyang18 已提交
6613
        """
6614
        for each_block in self.blocks:
6615
            for each_var in list(each_block.vars.values()):
6616 6617
                yield each_var

6618 6619 6620 6621 6622 6623 6624 6625 6626 6627
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

6628 6629 6630 6631
                import paddle
                import paddle.static as static

                paddle.enable_static()
6632

6633 6634
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
6635
                hidden = static.nn.fc(x=data, size=10)
6636 6637
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
6638 6639 6640 6641 6642 6643 6644

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
6645 6646
                # persist trainable param fc_0.w_0 : LOD_TENSOR.shape(13, 10).dtype(float32).stop_gradient(False)
                # persist trainable param fc_0.b_0 : LOD_TENSOR.shape(10,).dtype(float32).stop_gradient(False)
6647 6648 6649 6650 6651 6652 6653 6654 6655 6656
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

6657 6658 6659 6660 6661 6662 6663 6664 6665
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
6666 6667 6668
            mode(str, optional): Source of the obtained parameters and buffers.
                    'opt' :  The return value only contains the variable in the optimizer.
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.
6669 6670
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
6671
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
6699
        # can not be imported at the begainning of this file.
6700 6701
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
6702

6703 6704
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
6705 6706 6707 6708
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".format(
                    type(scope)
                )
            )
6709 6710 6711 6712 6713

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
6714 6715
            raise TypeError(
                "Type of `mode` should be string, but received {}.".format(
6716 6717 6718
                    type(mode)
                )
            )
6719 6720 6721 6722 6723

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
6724 6725 6726 6727 6728
            if (
                var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH
                or var.desc.type() == core.VarDesc.VarType.FETCH_LIST
                or var.desc.type() == core.VarDesc.VarType.READER
            ):
6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):
            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
6746 6747 6748 6749
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".format(
                        mode
                    )
                )
6750 6751 6752 6753 6754 6755 6756 6757

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
6758 6759 6760 6761
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".format(
                        var.name
                    )
                )
6762 6763 6764 6765 6766 6767
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
6768
        Set parameters and persistable buffers in state_dict to program.
6769
        An exception will throw if shape or dtype of the parameters is not match.
6770

6771 6772 6773 6774
        .. note::
            This function MUST called after run start_up_program

        Args:
6775
            state_dict(dict): the dict store parameters and persistable buffers.
6776 6777
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
6778
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6779 6780
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
6781

6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
6811 6812 6813
                    type(state_dict)
                )
            )
6814 6815

        vars_dict = {var.name: var for var in self.list_vars()}
6816 6817 6818
        condition = (
            True if 'StructuredToParameterName@@' in state_dict else False
        )
6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
6830 6831
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
6832 6833
                except TypeError as err:
                    warnings.warn(
6834 6835
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
6836
            else:
6837
                warnings.warn(
6838 6839 6840 6841 6842 6843
                    (
                        "Skip loading for '{0}'. Because '{0}' not in the program.".format(
                            name
                        )
                    )
                )
6844

Y
Yu Yang 已提交
6845

6846
class Parameter(Variable, metaclass=ParameterMetaClass):
6847
    """
6848
    Parameter is derived from Variable. A parameter is a persistable
6849
    Variable, and will be updated by optimizers after each iteration.
6850
    The training of a neural network is essentially the updating of
6851 6852
    its parameters.

6853
    Relative to a general Variable, a Parameter has several its own
6854 6855
    member variables:

6856 6857 6858 6859 6860 6861 6862 6863 6864 6865
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
6866
        need_clip (bool): Whether the parameter gradient need to be cliped
6867
            in optimizer. Default is True.
6868 6869
    """

6870 6871 6872 6873 6874 6875
    def __init__(
        self,
        block,
        shape,
        dtype,
        type=core.VarDesc.VarType.LOD_TENSOR,
6876
        **kwargs,
6877
    ):
6878 6879 6880 6881 6882
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6883 6884
        for each in shape:
            if each < 0:
6885 6886
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
6887 6888 6889 6890 6891 6892 6893 6894 6895 6896
                    % list(shape)
                )

        Variable.__init__(
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
6897
            **kwargs,
6898
        )
Y
Yu Yang 已提交
6899 6900 6901 6902
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6903 6904
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6905
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6906

6907 6908
        self.need_clip = kwargs.get('need_clip', True)

6909 6910
        self.is_distributed = False

6911 6912
        self.is_parameter = True

F
fengjiayi 已提交
6913
    def __str__(self):
6914
        return self._to_readable_code()
F
fengjiayi 已提交
6915

F
update  
fengjiayi 已提交
6916 6917 6918
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6919

F
update  
fengjiayi 已提交
6920 6921 6922 6923 6924 6925 6926 6927
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6928 6929 6930 6931
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
G
GGBond8488 已提交
6932
                import paddle
6933 6934

                prog = fluid.default_main_program()
G
GGBond8488 已提交
6935
                rlt = paddle.static.data("fake_data", shape=[-1,1,1], dtype='float32')
6936 6937
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6938
        """
6939
        assert isinstance(throw_on_error, bool) and isinstance(
6940 6941
            with_details, bool
        )
F
update  
fengjiayi 已提交
6942 6943
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
6944 6945 6946 6947 6948 6949 6950
            additional_attr = (
                "trainable",
                "optimize_attr",
                "regularizer",
                "do_model_average",
                "need_clip",
            )
F
update  
fengjiayi 已提交
6951
            for attr_name in additional_attr:
6952
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
F
update  
fengjiayi 已提交
6953 6954
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6955 6956 6957 6958
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6959

W
wanghuancoder 已提交
6960
class EagerParamBase(core.eager.Tensor):
6961
    """
6962 6963
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode).
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers
6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
6981
        need_clip (bool): Whether the parameter gradient need to be cliped
6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
6996 6997
                    % list(shape)
                )
6998 6999 7000 7001 7002 7003 7004

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

7005 7006 7007
        if isinstance(shape, core.eager.Tensor):
            shape = shape.numpy()

7008
        super().__init__(
7009 7010 7011 7012 7013 7014
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            core.VarDesc.VarType.LOD_TENSOR,
            True,
        )
7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
7029 7030 7031
        # hook functions for lazy initialization
        self._init_func = None
        self._init_op_creator = None
7032 7033

    def set_init_func(self, obj):
7034
        self._init_func = obj
7035 7036 7037

    @dygraph_only
    def initialize(self):
7038 7039 7040
        assert (
            self._init_func is not None
        ), "Required self._init_func is not None, but received None."
7041
        self._init_func(self, None)
7042
        # clear function handle to release resource
7043
        self._init_func = None
7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
7056 7057
                type(trainable),
            )
7058

7059 7060 7061 7062
    def _create_init_op(self, block):
        """
        Call init_op_creator function to create initializer operation in block.
        """
7063 7064 7065
        assert (
            self._init_op_creator is not None
        ), "Required self._init_op_creator is not None, but received None."
7066
        self._init_op_creator(self, block)
7067

7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086
    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
7087
            tensor=super().__str__()
7088
        )
7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
7118 7119
        new_param._init_func = self._init_func
        new_param._init_op_creator = self._init_op_creator
7120 7121 7122 7123 7124 7125
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
7126 7127
        return new_param

7128 7129 7130
    __repr__ = __str__


Y
Yu Yang 已提交
7131
# program is a global instance.
Y
Yu Yang 已提交
7132 7133
_main_program_ = Program()
_startup_program_ = Program()
7134
_startup_program_._is_start_up_program_ = True
7135

7136

7137
def default_startup_program():
Y
Yu Yang 已提交
7138
    """
Y
yuyang18 已提交
7139 7140
    Get default/global startup program.

7141
    The :code:`paddle.nn` function will append the initialization operators into startup program.
7142
    The :code:`startup_program` will initialize the parameters by the OPs.
T
tangwei12 已提交
7143

7144 7145
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
7146

7147 7148
    Returns:
        Program: current default startup program.
7149

7150
    Returns type:
7151 7152 7153 7154

    Examples:
        .. code-block:: python

7155
            import paddle
7156

7157
            paddle.enable_static()
7158 7159 7160 7161
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
7162
    """
Y
Yu Yang 已提交
7163
    return _startup_program_
7164

7165

7166
def default_main_program():
Y
Yu Yang 已提交
7167
    """
7168
    This API can be used to get ``default main program`` which store the
7169
    descriptions of Ops and tensors.
T
tangwei12 已提交
7170

7171 7172
    For example ``z = paddle.add(x, y)`` will create a new ``add``
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` .
Y
yuyang18 已提交
7173

7174
    The ``default main program`` is the default value for ``Program`` parameter in
7175
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
7176
    :code:`default_main_program` when the program is not specified.
7177

7178
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
7179

Y
Yu Yang 已提交
7180
    Returns:
7181
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
7182 7183 7184 7185

    Examples:
        ..  code-block:: python

7186
            import paddle
7187

7188
            paddle.enable_static()
7189
            # Sample Network:
7190 7191 7192
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
7193

7194 7195 7196
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
7197
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
7198
    """
Y
Yu Yang 已提交
7199
    return _main_program_
Y
Yu Yang 已提交
7200 7201 7202 7203 7204


def switch_main_program(program):
    """
    Switch the main program to a new program.
7205

Y
Yu Yang 已提交
7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
7220
    Switch the startup program to a new program
Y
Yu Yang 已提交
7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
7233
@signature_safe_contextmanager
Y
Yu Yang 已提交
7234 7235
def program_guard(main_program, startup_program=None):
    """
7236 7237
    :api_attr: Static Graph

7238 7239 7240
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
7241

G
guofei 已提交
7242
    Args:
7243
        main_program(Program): New main program inside ``with`` statement.
7244 7245
        startup_program(Program, optional): New startup program inside ``with``
            statement. :code:`None` means not changing startup program,
G
guofei 已提交
7246 7247 7248
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
7249
    Examples:
C
cyberslack_lee 已提交
7250 7251
        .. code-block:: python
            :name: code-example-1
T
tangwei12 已提交
7252

C
cyberslack_lee 已提交
7253
            import paddle
Y
yuyang18 已提交
7254

C
cyberslack_lee 已提交
7255 7256 7257 7258 7259 7260
            paddle.enable_static()
            main_program = paddle.static.Program()
            startup_program = paddle.static.Program()
            with paddle.static.program_guard(main_program, startup_program):
                data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
                hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
7261 7262 7263

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
7264

Y
Yu Yang 已提交
7265
    Examples:
C
cyberslack_lee 已提交
7266 7267
        .. code-block:: python
            :name: code-example-2
Y
yuyang18 已提交
7268

C
cyberslack_lee 已提交
7269
            import paddle
7270

C
cyberslack_lee 已提交
7271 7272 7273 7274 7275
            paddle.enable_static()
            main_program = paddle.static.Program()
            # does not care about startup program. Just pass a temporary value.
            with paddle.static.program_guard(main_program, paddle.static.Program()):
                data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
7276

Y
Yu Yang 已提交
7277
    """
7278
    from .data_feeder import check_type
7279 7280 7281 7282

    check_type(
        main_program, 'main_program', Program, 'paddle.static.program_guard'
    )
Y
Yu Yang 已提交
7283 7284
    main_program = switch_main_program(main_program)
    if startup_program is not None:
7285 7286 7287 7288 7289 7290
        check_type(
            startup_program,
            'startup_program',
            Program,
            'paddle.static.program_guard',
        )
7291 7292
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
7293
        startup_program = switch_startup_program(startup_program)
7294 7295 7296 7297 7298 7299
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
7300 7301


W
Wu Yi 已提交
7302
def _get_var(name, program=None):
X
xuwei06 已提交
7303
    """
Y
yuyang18 已提交
7304
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
7305

X
xuwei06 已提交
7306 7307 7308
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
7309
        If None, default_global_program() will be used.
X
xuwei06 已提交
7310 7311 7312 7313 7314 7315 7316

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
7317
    assert isinstance(program, Program)
X
xuwei06 已提交
7318 7319

    return program.global_block().var(name)
7320 7321


7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334
@signature_safe_contextmanager
def dygraph_guard_if_declarative():
    from .dygraph.base import in_declarative_mode
    from .dygraph import Tracer

    if in_declarative_mode():
        # Under @paddle.jit.to_static decorator, we switch back dygraph mode temporarily.
        with _dygraph_guard(tracer=Tracer()):
            yield
    else:
        yield


S
rename  
sneaxiy 已提交
7335
@signature_safe_contextmanager
L
lujun 已提交
7336
def _dygraph_guard(tracer):
7337 7338 7339 7340
    tmp_tracer = global_var._dygraph_tracer_
    global_var._dygraph_tracer_ = tracer
    if tracer is not None:
        core._switch_tracer(tracer)
M
minqiyang 已提交
7341

C
Charles-hit 已提交
7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353
    try:
        yield
    finally:
        if tmp_tracer is not None:
            core._switch_tracer(tmp_tracer)
        global_var._dygraph_tracer_ = tmp_tracer


@signature_safe_contextmanager
def _static_guard():
    tmp_tracer = global_var._dygraph_tracer_
    global_var._dygraph_tracer_ = None
7354 7355 7356
    try:
        yield
    finally:
7357 7358 7359
        if tmp_tracer is not None:
            core._switch_tracer(tmp_tracer)
        global_var._dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
7360 7361


S
rename  
sneaxiy 已提交
7362
@signature_safe_contextmanager
L
lujun 已提交
7363
def _dygraph_place_guard(place):
7364 7365 7366
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
7367 7368
    _set_dygraph_tracer_expected_place(place)

7369 7370 7371
    try:
        yield
    finally:
7372
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
7373
        _set_dygraph_tracer_expected_place(_global_expected_place_)
7374 7375


7376 7377 7378 7379 7380 7381 7382 7383 7384 7385
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
7386

7387
    Note:
7388
        The API only supports static graph mode.
7389 7390 7391 7392

    A context manager that specifies the device on which the OP will be placed.

    Args:
7393
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
7394
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs.
7395 7396 7397 7398 7399 7400 7401
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
7402

7403
        .. code-block:: python
7404

7405
            # required: gpu
Z
Zhang Ting 已提交
7406
            import paddle
7407

Z
Zhang Ting 已提交
7408 7409 7410
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
7411
            if support_gpu:
Z
Zhang Ting 已提交
7412
                place = paddle.CUDAPlace(0)
7413 7414

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
7415 7416 7417
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
7418

Z
Zhang Ting 已提交
7419
            with paddle.static.device_guard("cpu"):
7420
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
7421 7422
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
7423
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
7424
                out = paddle.reshape(data1, shape=shape)
7425

Z
Zhang Ting 已提交
7426 7427
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
7428 7429 7430
            result = exe.run(fetch_list=[out])
    """

7431 7432 7433 7434 7435
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
7436 7437 7438 7439
    if (
        device not in ['cpu', 'gpu', 'xpu', '', None]
        and device not in core.get_all_custom_device_type()
    ):
7440
        raise ValueError(
7441
            "The Attr(device) should be 'cpu', 'xpu', 'gpu' or custom device, and it can also be empty string or None "
7442 7443
            "when there is no need to specify device. But received %s" % device
        )
7444 7445
    if index:
        device = ":".join([device, index])
7446
    pre_device = switch_device(device)
7447 7448 7449 7450
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
7451 7452


7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464
def _switch_cuda_graph_mode(cuda_graph_attr):
    global _current_cuda_graph_mode
    pre_mode = _current_cuda_graph_mode
    _current_cuda_graph_mode = cuda_graph_attr
    return pre_mode


@signature_safe_contextmanager
def _cuda_graph_guard(cuda_graph_attr=None):
    """

    Note:
7465
        The API only supports static graph mode.
7466

7467
    A context manager that specifies the cuda_graph_mode which indicating the cuda graph capture under static graph mode.
7468 7469 7470 7471 7472

    Args:
        cuda_graph_attr(str|None): The cuda graph attr with the format of:
                                   cuda_graph_capture_mode;memory_pool_id;cuda_graph_id
    """
7473
    assert (
7474
        not in_dygraph_mode()
7475
    ), "cuda_graph_guard only works under static graph mode"
7476 7477
    assert (
        core.is_compiled_with_cuda()
7478 7479 7480 7481 7482 7483 7484 7485
    ), "cuda_graph_guard context can be only used when Paddle is compiled with cuda"
    pre_mode = _switch_cuda_graph_mode(cuda_graph_attr)
    try:
        yield
    finally:
        _switch_cuda_graph_mode(pre_mode)


G
guofei 已提交
7486 7487 7488
def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
7489
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7490 7491 7492 7493 7494 7495 7496

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

7497 7498
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
7499 7500 7501 7502
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
7503 7504
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
7505 7506
        else:
            raise ValueError(
7507 7508
                "Flag %s cannot set its value through this function." % (key)
            )
G
guofei 已提交
7509 7510 7511 7512 7513


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
7514
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7515 7516 7517 7518 7519 7520 7521 7522 7523 7524

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

7525
            import paddle
G
guofei 已提交
7526 7527

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
7528
            res = paddle.get_flags(flags)
G
guofei 已提交
7529 7530 7531 7532 7533 7534
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
7535
            if _global_flags().is_public(key):
7536
                value = _global_flags()[key]
G
guofei 已提交
7537 7538 7539 7540
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
7541 7542 7543
                    'Flag %s cannot get its value through this function.'
                    % (key)
                )
G
guofei 已提交
7544
    elif isinstance(flags, str):
7545
        if _global_flags().is_public(flags):
7546
            value = _global_flags()[flags]
G
guofei 已提交
7547 7548 7549 7550
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
7551 7552
                'Flag %s cannot get its value through this function.' % (flags)
            )
G
guofei 已提交
7553 7554 7555
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
7556 7557 7558 7559 7560 7561


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573
    if isinstance(
        place,
        (
            core.Place,
            core.XPUPlace,
            core.CPUPlace,
            core.CUDAPinnedPlace,
            core.CUDAPlace,
            core.IPUPlace,
            core.CustomPlace,
        ),
    ):
7574 7575 7576 7577
        return place

    if not isinstance(place, str):
        raise ValueError(
7578 7579
            "place only support string which is 'Place' and so on."
        )
7580 7581

    place = place.lower()
7582
    if place == "cpu":
7583
        return core.CPUPlace()
7584

7585
    if place == "device":
7586 7587
        return core.Place()

7588
    # GPU
7589 7590 7591 7592
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
7593
                "The device should not be {}, since PaddlePaddle is "
7594
                "not compiled with CUDA".format(avaliable_gpu_place.group())
7595
            )
7596 7597 7598 7599 7600 7601 7602 7603 7604
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
7605 7606

    # XPU
7607 7608 7609 7610
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
7611
                "The device should not be {}, since PaddlePaddle is "
7612
                "not compiled with XPU".format(avaliable_xpu_place.group())
7613
            )
7614 7615 7616 7617
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
7618

J
jianghaicheng 已提交
7619 7620 7621 7622 7623
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
7624
                "The device should not be {}, since PaddlePaddle is "
7625
                "not compiled with IPU".format(avaliable_ipu_place.group())
7626
            )
J
jianghaicheng 已提交
7627 7628 7629 7630 7631
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

7632 7633 7634 7635 7636 7637 7638
    place_info_list = place.split(':', 1)
    device_type = place_info_list[0]
    if device_type in core.get_all_custom_device_type():
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.CustomPlace(device_type, device_id)

7639
    raise ValueError(
7640
        f"Paddle supports CPUPlace, CUDAPlace, CUDAPinnedPlace, XPUPlace, IPUPlace and CustomPlace, but received {place}."
7641
    )
7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653


def _get_paddle_place_list(places):
    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret