framework.py 256.1 KB
Newer Older
G
gouzil 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

import textwrap
Y
Yu Yang 已提交
16
import collections
X
Xin Pan 已提交
17
from collections import defaultdict
H
huzhiqiang 已提交
18
from collections.abc import Iterable
Q
qiaolongfei 已提交
19
import contextlib
20
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
21
import os
F
fengjiayi 已提交
22
import re
23
import traceback
24
import copy
25
from types import MethodType, FunctionType
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
R
risemeup1 已提交
32 33 34

from .proto import framework_pb2, data_feed_pb2

35
from . import core
36
from . import unique_name
37 38
import paddle.version as fluid_version
import warnings
39
import functools
40
from .variable_index import _getitem_impl_, _setitem_impl_
41
import threading
Y
Yu Yang 已提交
42

43
__all__ = [
44 45 46 47
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
48
    'name_scope',
J
jianghaicheng 已提交
49
    'ipu_shard_guard',
50
    'set_ipu_shard',
S
sneaxiy 已提交
51 52
    'cuda_places',
    'cpu_places',
53
    'xpu_places',
S
sneaxiy 已提交
54
    'cuda_pinned_places',
J
Jiabin Yang 已提交
55
    '_non_static_mode',
L
lujun 已提交
56
    'in_dygraph_mode',
57
    'is_compiled_with_cinn',
C
chengduo 已提交
58
    'is_compiled_with_cuda',
59
    'is_compiled_with_rocm',
60
    'is_compiled_with_xpu',
61
    'Variable',
62
    'require_version',
63
    'device_guard',
G
guofei 已提交
64 65
    'set_flags',
    'get_flags',
66
]
Y
Yu Yang 已提交
67

Q
qiaolongfei 已提交
68 69 70 71
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
72 73
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

74

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
# use thread local to create thread save global variables.
class GlobalThreadLocal(threading.local):
    def __init__(self):
        """
        init the thread local data.
        TODO(xiongkun): how to access another thread local data ?
        """
        global _dygraph_tracer_
        self._in_declarative_mode_ = False
        self._functional_dygraph_context_manager = None
        self._dygraph_tracer_ = _dygraph_tracer_
        self._in_eager_mode_ = True

    def __str__(self):
        strings = []
        strings.append(
            "_in_declarative_mode_:" + str(self._in_declarative_mode_)
        )
        strings.append(
            "_functional_dygraph_context_manager:"
            + str(self._functional_dygraph_context_manager)
        )
        strings.append("_dygraph_tracer_:" + str(self._dygraph_tracer_))
        strings.append("_in_eager_mode_:" + str(self._in_eager_mode_))
        return "\n".join(strings)

    def __setattr__(self, name, val):
        if name == '_dygraph_tracer_':
            global _dygraph_tracer_
            _dygraph_tracer_ = val
        self.__dict__[name] = val


L
lujun 已提交
108
_dygraph_tracer_ = None
109 110
global_var = GlobalThreadLocal()

111
_global_expected_place_ = None
112
_current_device = None
113
global_prog_seed = 0
114
_current_pipeline_stage = None
115
_current_cuda_graph_mode = None
116
_global_flags_ = core.globals()
117

J
Jiabin Yang 已提交
118

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
# special_op_attrs, extra_op_attrs are prepared for printing warnings
# when turning on FLAGS_print_extra_attrs
special_op_attrs = {
    "elementwise_add": [{"axis": -1}],
    "elementwise_sub": [{"axis": -1}],
    "elementwise_mul": [{"axis": -1}],
    "elementwise_div": [{"axis": -1}],
    "elementwise_max": [{"axis": -1}],
    "elementwise_min": [{"axis": -1}],
    "elementwise_pow": [{"axis": -1}],
    "elementwise_mod": [{"axis": -1}],
    "elementwise_floordiv": [{"axis": -1}],
    "less_than": [{"axis": -1}],
    "less_equal": [{"axis": -1}],
    "greater_than": [{"axis": -1}],
    "greater_equal": [{"axis": -1}],
    "equal": [{"axis": -1}],
    "not_equal": [{"axis": -1}],
    "amax": [{"reduce_all": False}],
    "amin": [{"reduce_all": False}],
    "any": [{"reduce_all": False}],
    "frobenius_norm": [{"reduce_all": False}],
    "logsumexp": [{"reduce_all": False}],
    "reduce_max": [{"reduce_all": False}],
    "reduce_min": [{"reduce_all": False}],
    "reduce_mean": [{"reduce_all": False}],
    "reduce_prod": [{"reduce_all": False}],
    "reduce_sum": [{"reduce_all": False}],
}

extra_op_attrs = {
    "gather": ["overwrite"],
    "graph_reindex": ["flag_buffer_hashtable"],
    "graph_sample_neighbors": ["flag_perm_buffer"],
    "relu6": ["threshold"],
    "swish": ["beta"],
    "hsigmoid_loss": ["remote_prefetch"],
    "max_pool2d_with_index": ["global_pooling"],
    "uniform": ["diag_num"],
    "unique": ["is_sorted"],
}

J
Jiabin Yang 已提交
161
# Some explanation of our execution system 2022.03
162
# For now we have 3 kinds of execution system, since we refactored dygraph mode to
J
Jiabin Yang 已提交
163
# build a fast execution system for dynamic mode. But we can't just remove all legacy
164
# code once we present the new system for some historical reason. That's why we have
J
Jiabin Yang 已提交
165
# these flags.
166
#
J
Jiabin Yang 已提交
167
# 1. _non_static_mode():
168
# _non_static_mode means  we are now running in legacy dygraph mode or dygraph mode.
J
Jiabin Yang 已提交
169 170 171
# 2. dygraph_mode():
# This flags inidicates we are now running in dygraph mode which called eager mode before.
# 3. _in_legacy_dygraph():
姜永久 已提交
172
# This flags has been deprecated
173
#
J
Jiabin Yang 已提交
174
# They have a relation ship as below:
姜永久 已提交
175
# Since _in_legacy_graph is deprecated, so dygraph_mode is _non_static_mode
176
#
J
Jiabin Yang 已提交
177 178 179 180 181 182 183
# Why we have to make different of _in_legacy_dygraph and dygraph_mode?
# In some performance issue, we find that python if statement cause server performance problem
# and we need our new dygraph mode becomes as fast as it could be. That's why we make these flags
# to make sure in most case, we find new dygraph mode first with only one if statement.


def _in_eager_without_dygraph_check():
184
    return global_var._in_eager_mode_
J
Jiabin Yang 已提交
185 186


K
Kim Yann 已提交
187
# FIXME(dev): We haven't fully verified eager mode on XPU et.al but
188 189 190 191
# only GPU/CPU. Remove this after we improve this feature.
_is_first_import_ = True


J
Jiabin Yang 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
def in_dygraph_mode():
    """

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .

    Returns:
        bool: Whether paddle runs in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
213
            print(paddle.in_dynamic_mode())  # False, Now we are in static graph mode
J
Jiabin Yang 已提交
214 215 216 217 218

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode

    """
219 220 221
    return (
        global_var._dygraph_tracer_ is not None
    ) and global_var._in_eager_mode_
J
Jiabin Yang 已提交
222 223 224


def _non_static_mode():
225
    return global_var._dygraph_tracer_ is not None
226 227


228 229
global_ipu_index = -1
global_ipu_stage = -1
J
jianghaicheng 已提交
230 231 232 233 234
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


@signature_safe_contextmanager
235
def ipu_shard_guard(index=-1, stage=-1):
J
jianghaicheng 已提交
236 237 238 239
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
W
Weilong Wu 已提交
240
        index(int, optional): Specify which ipu the Tensor is computed on, (such as '0, 1, 2, 3').
241
            The default value is -1, which means the Op only run on IPU 0.
W
Weilong Wu 已提交
242
        stage(int, optional): Specify the computation order of the sharded model(such as '0, 1, 2, 3').
243
            The sharded model will be computed from small to large. The default value is -1,
J
jianghaicheng 已提交
244
            which means no pipelining computation order and run Ops in terms of graph.
245

G
gouzil 已提交
246 247 248 249 250 251 252
    Note:
        Only if the enable_manual_shard=True, the 'index' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        Only if the enable_pipelining=True, the 'stage' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        A index is allowed to match none stage or a stage. A stage is only allowed to match a new or
        duplicated index.
J
jianghaicheng 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


287 288 289 290
def set_ipu_shard(call_func, index=-1, stage=-1):
    """
    Shard the ipu with the given call function. Set every ops in call function to the given ipu sharding.

G
gouzil 已提交
291 292 293 294 295
    Note:
        Only when enable_manual_shard=True to set the index to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        Only when enable_pipelining=True to set stage to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        An index supports a corresponding None stage or a stage, and a stage only supports a new index or a duplicate index.

296 297 298 299 300
    Args:
        call_func(Layer|function): Specify the call function to be wrapped.
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is -1, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
301
            The sharded model will be computed from small to large. The default value is -1,
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
            which means no pipelining computation order and run Ops in terms of graph.

    Returns:
        The wrapped call function.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='float32')
            relu = paddle.nn.ReLU()
            relu = paddle.static.set_ipu_shard(relu, index=1, stage=1)
            relu(a)
    """

    def decorate(func):
        def wrapper(*args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return func(*args, **kwargs)

        return wrapper

327
    from paddle.nn import Layer
328

329 330 331 332 333
    if not isinstance(call_func, Layer):
        if callable(call_func):
            return decorate(call_func)
        else:
            raise TypeError(
334 335
                "Unsupported type. Only accept paddle.nn.Layer or function."
            )
336 337 338 339 340 341 342 343 344 345 346 347

    # patch paddle.nn.Layer
    class BlockFn(type(call_func)):
        def __call__(self, *args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return super().__call__(*args, **kwargs)

    BlockFn.__name__ = type(call_func).__name__
    call_func.__class__ = BlockFn
    return call_func


348 349
def require_version(min_version, max_version=None):
    """
350 351 352
    Check if the installed version of PaddlePaddle is in [min_version, max_version],
    if the installed version is lower than ``min_version`` or higher than ``max_version``,
    an exception will be thrown, NO returns if the installed version is satisfied.
353

354 355 356 357
    Args:
        min_version (str): the minimum version required (like '1.4.0').
        max_version (str, optional): the max version required (like '1.6.0'), default is None,
            meaning any version equal or higher than ``min_version`` is acceptable.
358

359 360
    Returns:
        None.
361

362 363 364 365 366 367
    Raises:
        TypeError: if the type of ``min_version`` is not str.
        TypeError: if the type of ``max_version`` is not str or type(None).
        ValueError: if the value of ``min_version`` is not in version format.
        ValueError: if the value of ``max_version`` is not in version format or None.
        Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.
368

369 370
    Examples:
        .. code-block:: python
371

372
            import paddle.fluid as fluid
373

374 375
            # any version >= 0.1.0 is acceptable.
            fluid.require_version('0.1.0')
376

377 378 379
            # if 0.1.0 <= version <= 10.0.0, it is acceptable.
            fluid.require_version(min_version='0.1.0', max_version='10.0.0')
    """
380 381 382
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
383 384
            % (type(min_version))
        )
385 386 387 388

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
389 390
            % (type(max_version))
        )
391 392 393 394 395

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
396 397
            "like '1.5.2.0', but received %s" % min_version
        )
398 399 400 401 402 403

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
404 405
                "like '1.5.2.0', but received %s" % max_version
            )
406 407

    version_installed = [
408 409 410 411
        fluid_version.major,
        fluid_version.minor,
        fluid_version.patch,
        fluid_version.rc,
412 413 414 415
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
416
        for i in range(len(ver_a)):
417 418 419 420 421 422 423 424 425 426 427
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
428 429 430
                "please make sure the version is good with your code."
                % (min_version, max_version, fluid_version.full_version)
            )
431 432 433 434
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
435 436 437
                "please make sure the version is good with your code."
                % (min_version, fluid_version.full_version)
            )
438 439 440
        return

    min_version_split = min_version.split('.')
441 442 443
    min_version_to_check = (
        min_version_split + zero_version[len(min_version_split) :]
    )
444 445 446

    if max_version is not None:
        max_version_split = max_version.split('.')
447 448 449
        max_version_to_check = (
            max_version_split + zero_version[len(max_version_split) :]
        )
450

451 452 453 454
        if (
            version_cmp(version_installed, max_version_to_check) > 0
            or version_cmp(version_installed, min_version_to_check) < 0
        ):
455 456
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
457 458
                % (min_version, max_version, fluid_version.full_version)
            )
459 460 461 462 463
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
464 465
                % (min_version, fluid_version.full_version, min_version)
            )
466 467


468 469
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
470 471 472
        assert not _non_static_mode(), (
            "We don't support %s in dynamic graph mode" % func.__name__
        )
473 474 475 476 477 478 479
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
480 481 482 483
        assert _non_static_mode(), (
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
484 485 486 487 488
        return func(*args, **kwargs)

    return __impl__


489 490 491
def _non_static_only_(func):
    def __impl__(*args, **kwargs):
        from .dygraph.base import in_declarative_mode
492 493 494 495 496

        assert _non_static_mode() or in_declarative_mode(), (
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
497 498 499 500 501
        return func(*args, **kwargs)

    return __impl__


502 503
def _static_only_(func):
    def __impl__(*args, **kwargs):
504 505 506 507
        assert not _non_static_mode(), (
            "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode."
            % func.__name__
        )
508 509 510 511 512
        return func(*args, **kwargs)

    return __impl__


513 514 515 516 517
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


518
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
W
wanghuancoder 已提交
519 520
# used to make Variable and Tensor has same interfaces, like numpy. Since Tensor is not exposed in our
# official docments, logically, we want to keep Tensor and logically consistent. While, actually,
521 522
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
W
wanghuancoder 已提交
523
# TODO(zhiqiu): We should make Tensor consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
524
# same base class.
525 526 527
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
528 529
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
R
Ryan 已提交
530
            "  2. If you are using `@paddle.jit.to_static`, you can call `paddle.jit.enable_to_static(False)`. "
531
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
532 533
            % (func.__name__, func.__name__)
        )
534 535 536 537

    return __impl__


T
tangwei12 已提交
538 539
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
540 541 542 543 544 545 546 547 548
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
549 550
                DeprecationWarning,
            )
551 552 553 554 555 556 557
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


558 559
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
560
static_only = wrap_decorator(_static_only_)
561
fake_interface_only = wrap_decorator(_fake_interface_only_)
562
non_static_only = wrap_decorator(_non_static_only_)
563 564


L
lujun 已提交
565
def _dygraph_tracer():
566
    return global_var._dygraph_tracer_
567

W
Wu Yi 已提交
568

569 570 571 572
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
573
def _current_expected_place():
574 575 576
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
577 578 579 580 581
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
582
                _global_expected_place_ = core.CUDAPlace(_cuda_ids()[0])
583 584 585 586 587
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
588 589 590 591 592 593
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
594
                _global_expected_place_ = core.XPUPlace(_xpu_ids()[0])
595 596 597 598 599
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
        elif core.is_compiled_with_custom_device("npu"):
            # TODO(duanyanhui): Optimize DeviceManager and Return all expected places when device registered in DeviceManager is greater than 1.
            try:
                device_count = core.get_custom_device_count("npu")
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CustomPlace(
                    "npu", _custom_device_ids("npu")[0]
                )
            else:
                warnings.warn(
                    "You are using NPU version Paddle, but your NPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
615 616 617 618 619 620 621
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
622 623
    if global_var._dygraph_tracer_ is not None:
        global_var._dygraph_tracer_._expected_place = place
624 625 626 627 628


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
629
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
630 631


S
sneaxiy 已提交
632
def _cpu_num():
633
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
634 635 636 637 638 639 640
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
641 642 643
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()
                )
            )
C
chengduo 已提交
644
        os.environ['CPU_NUM'] = str(1)
645
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
646 647 648 649 650 651 652 653
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
654
        device_ids = range(core.get_cuda_device_count())
C
chengduo 已提交
655
    return device_ids
S
sneaxiy 已提交
656 657


658 659 660 661 662
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
663
        device_ids = range(core.get_xpu_device_count())
664 665 666
    return device_ids


667 668 669 670 671 672 673 674 675
def _custom_device_ids(device_type):
    custom_devices_env = os.getenv("FLAGS_selected_" + device_type + "s")
    if custom_devices_env:
        device_ids = [int(s) for s in custom_devices_env.split(",")]
    else:
        device_ids = range(core.get_custom_device_count(device_type))
    return device_ids


676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


691 692 693 694 695 696 697
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
698

699 700 701 702 703 704
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

Z
Zman 已提交
705 706
    Returns:
        None
707 708 709 710 711 712 713 714 715 716

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


717 718 719 720 721 722 723 724 725 726 727 728 729 730 731
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

    Returns (bool): `True` if CINN is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
732 733 734 735
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

736
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
737 738 739 740

    Examples:
        .. code-block:: python

741
            import paddle
742
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
743 744 745 746
    """
    return core.is_compiled_with_cuda()


747 748 749 750 751 752 753 754 755 756
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
757
            support_gpu = paddle.device.is_compiled_with_rocm()
758 759 760 761
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
762
def cuda_places(device_ids=None):
L
lujun 已提交
763
    """
764
    Note:
765 766 767
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
768
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
769 770

    If :code:`device_ids` is None, environment variable of
771
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
772
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
773
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
774
    If :code:`FLAGS_selected_gpus` is not set, all visible
775
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
776 777

    If :code:`device_ids` is not None, it should be the device
778
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
779
    the returned list would be
C
Chen Weihang 已提交
780
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
781

782
    Parameters:
783
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
784 785

    Returns:
C
Chen Weihang 已提交
786
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
787 788

    Examples:
789

L
lujun 已提交
790 791
        .. code-block:: python

C
Chen Weihang 已提交
792 793
            import paddle
            import paddle.static as static
T
tangwei12 已提交
794

795
            # required: gpu
796

C
Chen Weihang 已提交
797 798 799
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
800 801

    """
802
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
803
    if device_ids is None:
C
chengduo 已提交
804
        device_ids = _cuda_ids()
S
sneaxiy 已提交
805 806 807 808 809
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


810 811 812 813
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
814 815 816 817 818 819 820 821 822
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
823
        the returned list would be
S
sunzhongkai588 已提交
824
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
825

826 827 828 829 830 831
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
832

833 834
            # required: xpu

835 836
            import paddle
            import paddle.static as static
837

838 839 840
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
841
    assert core.is_compiled_with_xpu(), "Not compiled with XPU"
842 843 844 845 846 847 848
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
849
def cpu_places(device_count=None):
L
lujun 已提交
850
    """
C
Chen Weihang 已提交
851
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
852

S
add doc  
sneaxiy 已提交
853
    If :code:`device_count` is None, the device count would
854
    be determined by environment variable :code:`CPU_NUM`.
C
chengduo 已提交
855 856
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
857 858
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
859

860 861
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
862 863

    Returns:
C
Chen Weihang 已提交
864
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
865 866

    Examples:
867

L
lujun 已提交
868 869
        .. code-block:: python

C
Chen Weihang 已提交
870 871
            import paddle
            import paddle.static as static
T
tangwei12 已提交
872

C
Chen Weihang 已提交
873 874 875
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
876 877
    """

S
sneaxiy 已提交
878 879 880 881 882 883
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
884
    """
885
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
886 887

    If :code:`device_count` is None, the device count would
888
    be determined by environment variable :code:`CPU_NUM`.
889 890 891 892
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
893

894 895
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
896 897

    Returns:
898
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
899 900 901 902

    Examples:
        .. code-block:: python

903
            import paddle.fluid as fluid
L
lujun 已提交
904 905 906 907 908
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
909
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
910
    if device_count is None:
911 912
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
913 914


915
class NameScope:
916 917 918 919 920 921 922 923 924 925
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
926 927 928
            new_child = NameScope(
                prefix + "_%d" % len(self._children[prefix]), self
            )
929 930 931 932 933 934 935 936 937 938 939 940 941
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
942
@signature_safe_contextmanager
943 944
def name_scope(prefix=None):
    """
945

946
    Generate hierarchical name prefix for the operators in Static Graph.
947

948
    Note:
T
Tao Luo 已提交
949 950
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
951
        Don't use it in dygraph, since it will cause memory leak.
952 953

    Args:
T
Tao Luo 已提交
954
        prefix(str, optional): prefix. Default is none.
955 956

    Examples:
957

958
        .. code-block:: python
T
Tink_Y 已提交
959

960 961 962
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
963
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
964
             b = a + 1
965
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
966
                c = b * 1
967
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
968
                d = c / 1
969 970 971
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
972 973
                g = f - 1

974
          # Op are created in the default main program.
975
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
991 992
    """
    # TODO(panyx0718): Only [0-9a-z].
993
    # in dygraph we don't need namescope since it will cause mem leak
J
Jiabin Yang 已提交
994
    if _non_static_mode():
L
Leo Chen 已提交
995 996
        yield
    else:
T
tianshuo78520a 已提交
997
        assert prefix, "namescope prefix can not be empty."
998 999
        global _name_scope
        _name_scope = _name_scope.child(prefix)
1000 1001 1002 1003
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
1016 1017
def generate_control_dev_var_name():
    import random
1018

W
Wu Yi 已提交
1019
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
1020 1021 1022 1023


def grad_var_name(var_name):
    """
1024 1025
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
1026 1027 1028
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
1029

1030
def convert_np_dtype_to_dtype_(np_dtype):
1031
    """
1032
    Convert the data type in numpy to the data type in Paddle.
1033

1034
    Args:
1035 1036
        np_dtype (np.dtype|str): The data type in numpy or valid data type
            string.
1037

1038
    Returns:
1039
        core.VarDesc.VarType: The data type in Paddle.
1040 1041

    """
1042 1043
    # Convert the data type string to numpy data type.
    if isinstance(np_dtype, str) and np_dtype == "bfloat16":
1044 1045 1046
        dtype = np.uint16
    else:
        dtype = np.dtype(np_dtype)
1047

1048
    if dtype == np.float32:
1049
        return core.VarDesc.VarType.FP32
1050
    elif dtype == np.float64:
1051
        return core.VarDesc.VarType.FP64
1052
    elif dtype == np.float16:
1053
        return core.VarDesc.VarType.FP16
1054
    elif dtype == np.int32:
1055
        return core.VarDesc.VarType.INT32
1056
    elif dtype == np.int16:
1057
        return core.VarDesc.VarType.INT16
1058
    elif dtype == np.int64:
1059
        return core.VarDesc.VarType.INT64
1060
    elif dtype == np.bool_:
1061
        return core.VarDesc.VarType.BOOL
1062
    elif dtype == np.uint16:
1063 1064 1065
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
1066 1067
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
1068 1069
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
1070 1071 1072 1073
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
1074
    else:
M
minqiyang 已提交
1075
        raise ValueError("Not supported numpy dtype %s" % dtype)
1076 1077 1078


def dtype_is_floating(dtype):
1079 1080 1081
    """
    Check the data type is floating or not.
    Args:
1082
        dtype(np.dtype|core.VarDesc.VarType): data type.
1083 1084 1085 1086 1087
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1088
    if not isinstance(dtype, core.VarDesc.VarType):
1089 1090
        dtype = convert_np_dtype_to_dtype_(dtype)

1091
    return dtype in [
1092 1093 1094
        core.VarDesc.VarType.FP16,
        core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64,
1095
    ]
1096 1097


Y
Yang Yang(Tony) 已提交
1098
def _debug_string_(proto, throw_on_error=True):
1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1110
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1111
    if not proto.IsInitialized(error_fields) and throw_on_error:
1112 1113
        raise ValueError(
            "{0} are not initialized.\nThe message is {1}:\n".format(
1114 1115 1116
                error_fields, proto
            )
        )
Y
Yu Yang 已提交
1117 1118 1119
    return proto.__str__()


1120
def _create_tensor(
1121 1122 1123 1124 1125
    type=core.VarDesc.VarType.LOD_TENSOR,
    name=None,
    shape=None,
    dtype=None,
    persistable=None,
1126
    **kwargs,
1127
):
1128 1129 1130 1131
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

W
wanghuancoder 已提交
1132 1133 1134 1135 1136 1137 1138 1139 1140
    eager_tensor = core.eager.Tensor(
        dtype if dtype else core.VarDesc.VarType.FP32,
        list(shape) if shape else [],
        name,
        type if type else core.VarDesc.VarType.LOD_TENSOR,
        True if persistable else False,
    )
    eager_tensor.retain_grads()
    return eager_tensor
1141 1142


1143 1144 1145 1146 1147 1148 1149
def _all_is_type(vals, expected_type):
    """
    Return True if type of each element is expected_type.

    NOTE: BuiltIn all() will always return True if vals is empty.
    """
    assert isinstance(vals, (list, tuple))
1150 1151
    if not vals:
        return False
1152 1153 1154
    return all(isinstance(v, expected_type) for v in vals)


1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
def wrap_as_scalar(number):
    """Wrap a number(either python scalar or numpy scalar) as core.Scalar if
    it is not a scalar.


    Args:
        number (Number): number

    Returns:
        Scalar: A Scalar that contains the value.
    """
    if isinstance(number, core.Scalar):
        return number
    if isinstance(number, (bool, int, float, complex)):
        return core.Scalar(number)
    if isinstance(number, np.number):
        # it is a numpy scalar
        return core.Scalar(number.item())
    else:
        raise TypeError("Cannot wrap {} as core.Scalar".format(number))


def wrap_as_scalars(array):
    """This function is used to convert flat list, or numpy array(not
    necesarily flat) to list of core.Scalar, which correspond to
    std::vector<paddle::experimental::Scalar> in operator runtime.

    Args:
        array (List | np.ndarray): array of numbers

    Returns:
        List: list of core.Scalar, of which each element is a Scalar containing
          the corresponding value.
    """
    if isinstance(array, np.ndarray):
        array = array.ravel().tolist()
    return [wrap_as_scalar(item) for item in array]


def extract_plain_list(array):
    """extract value from a list of core.Scalar.

    Args:
        array (list): Scalars

    Returns:
        list: values extracted from the scalars.
    """
    return [item.value() for item in array]


def canonicalize_attrs(attrs, op_proto):
    """This function is used to canonicalize attributes(as a string->any dict)
    according to the type specification in the OpProto. This is especially
    important for operators that has any attributes of type Scalar or Scalars.

    Though various frontends of phi kernels & paddle operators can wrap variables
    of concrete types into Scalars(a tagged union of several numeric types) or
    vector of Scalars. Paddle operator requires strict type matching.

    Args:
        attrs (Dict[str, Any]): attribute dict intended to pass to an operator.
        op_proto (OpProto): Proto (signature) of the operator.

    Returns:
        Dict[str, Any]: canonicalized attributes.
    """
    canonicalized_attrs = attrs.copy()  # shallow copy is enough here
    for attr in op_proto.attrs:
        attr_name = attr.name
        type_index = attr.type
        if (attr_name not in attrs) or (attrs[attr_name] is None):
            continue

        attr_val = attrs[attr_name]

        # VAR and VARS should be skipped
        if isinstance(attr_val, Variable):
            continue
        if isinstance(attr_val, list) and _all_is_type(attr_val, Variable):
            continue

        # wrap
        if type_index == core.AttrType.SCALAR:
            canonicalized_attrs[attr_name] = core.Scalar(attr_val)
        elif type_index == core.AttrType.SCALARS:
            # it should be a list (or a numpy array)
            if len(attr_val) > 0:
                attr_val = np.array(attr_val).ravel().tolist()
                attr_val = [core.Scalar(x) for x in attr_val]
                canonicalized_attrs[attr_name] = attr_val

    return canonicalized_attrs


1250 1251 1252 1253 1254
class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1255
            return issubclass(t, core.eager.Tensor)
1256 1257 1258 1259 1260 1261 1262 1263 1264
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1265
            return issubclass(t, EagerParamBase)
1266 1267 1268 1269
        else:
            return issubclass(t, Parameter)


1270
class Variable(metaclass=VariableMetaClass):
1271
    """
J
Jiabin Yang 已提交
1272

U
ustiniankw 已提交
1273 1274 1275 1276
    Notes:
        The constructor of Variable should not be invoked directly.

        In Static Graph Mode: Please use ** `Block.create_var` ** to create a Static variable which has no data until being feed.
1277

U
ustiniankw 已提交
1278
        In Dygraph Mode: Please use ** :ref:`api_fluid_dygraph_to_variable` ** to create a dygraph variable with real data.
J
Jiabin Yang 已提交
1279 1280

    In Fluid, every input and output of an OP is a variable. In most
1281
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1282 1283
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1284

1285
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1286
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1287

T
tianshuo78520a 已提交
1288
    Most of a Variable's member variables can be set to be None. It mean
1289
    it is not available or will be specified later.
1290

1291
    Examples:
1292 1293
        In Static Graph Mode:

1294 1295
        .. code-block:: python

1296
            import paddle.fluid as fluid
1297
            cur_program = fluid.Program()
1298 1299 1300 1301
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1302

1303
        In Dygraph  Mode:
1304 1305 1306 1307 1308 1309 1310 1311 1312

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1313 1314
    """

1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
    def __init__(
        self,
        block,
        type=core.VarDesc.VarType.LOD_TENSOR,
        name=None,
        shape=None,
        dtype=None,
        lod_level=None,
        capacity=None,
        persistable=None,
        error_clip=None,
        stop_gradient=False,
        is_data=False,
        need_check_feed=False,
        belong_to_optimizer=False,
1330
        **kwargs,
1331
    ):
Y
Yu Yang 已提交
1332 1333
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1334
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1335

Y
Yu Yang 已提交
1336
        if dtype is not None:
1337
            if not isinstance(dtype, core.VarDesc.VarType):
1338
                dtype = convert_np_dtype_to_dtype_(dtype)
1339

S
Steffy-zxf 已提交
1340 1341 1342 1343
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

1344 1345 1346
        if type == core.VarDesc.VarType.SPARSE_COO:
            lod_level = None

H
hong 已提交
1347 1348
        self.belong_to_optimizer = belong_to_optimizer

1349 1350 1351
        self.error_clip = error_clip

        is_new_var = False
1352
        self.desc = self.block.desc.find_var(name.encode())
1353

1354
        if self.desc is None:
1355
            self.desc = self.block.desc.var(name.encode())
1356
            is_new_var = True
1357

1358 1359 1360
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
1361 1362 1363 1364 1365
            raise ValueError(
                "Variable '{0}' has been created before. The "
                "previous type is {1}, the new type is {2}. They"
                " are not matched".format(self.name, self.desc.type(), type)
            )
1366

1367
        if shape is not None:
1368
            if is_new_var:
1369 1370 1371 1372 1373 1374
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1375 1376
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1377 1378
                        "matched.".format(self.name, old_shape, shape)
                    )
1379 1380 1381 1382 1383 1384
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
1385 1386 1387 1388 1389 1390
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous data type is {1}, the new "
                        "data type is {2}. They are not "
                        "matched.".format(self.name, old_dtype, dtype)
                    )
1391 1392 1393 1394 1395 1396

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
1397 1398 1399 1400 1401 1402
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous lod_level is {1}, the new "
                        "lod_level is {2}. They are not "
                        "matched".format(self.name, self.lod_level, lod_level)
                    )
1403 1404 1405 1406 1407 1408
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1409 1410
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1411
                        "persistable is {2}. They are not matched".format(
1412 1413 1414
                            self.name, self.persistable, persistable
                        )
                    )
1415

1416 1417
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1418

1419 1420 1421 1422 1423 1424 1425
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1426

1427 1428
        self.block.vars[name] = self
        self.op = None
1429
        self.stop_gradient = stop_gradient
1430
        self.is_data = is_data
Y
Yu Yang 已提交
1431

1432 1433
    def detach(self):
        """
U
ustiniankw 已提交
1434

1435
        Returns a new Variable, detached from the current graph.
1436 1437
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1438

1439
        Returns:
U
ustiniankw 已提交
1440
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable), The detached Variable.
1441 1442 1443 1444

        Examples:
            .. code-block:: python

1445
                import paddle
1446

1447 1448 1449 1450
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1451

1452 1453
                # create a detached Variable
                y = x.detach()
U
ustiniankw 已提交
1454

1455
        """
1456

1457 1458 1459 1460
        assert (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ), "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"
1461 1462 1463 1464 1465 1466

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
1467 1468
            stop_gradient=True,
        )
1469

1470 1471 1472
        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]}
        )
1473
        return output
1474

1475
    @fake_interface_only
1476
    def numpy(self):
1477
        """
J
Jiabin Yang 已提交
1478
        **Notes**:
T
tianshuo78520a 已提交
1479
            **This API is ONLY available in Dygraph mode**
1480

J
Jiabin Yang 已提交
1481
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1482 1483 1484 1485 1486

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1487
            ndarray: dtype is same as current Variable
1488 1489 1490 1491 1492 1493

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1494
                from paddle.fluid.dygraph import Linear
1495 1496 1497 1498
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1499
                    linear = Linear(32, 64)
1500
                    data = to_variable(data)
1501
                    x = linear(data)
1502 1503 1504
                    print(x.numpy())

        """
1505
        pass
1506

1507
    @non_static_only
1508
    def backward(self, retain_graph=False):
1509
        """
J
Jiabin Yang 已提交
1510
        **Notes**:
T
tianshuo78520a 已提交
1511
            **This API is ONLY available in Dygraph mode**
1512

1513
        Run backward of current Graph which starts from current Tensor.
1514

J
Jiabin Yang 已提交
1515
        Args:
1516 1517 1518 1519
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1520

J
Jiabin Yang 已提交
1521 1522
        Returns:
            NoneType: None
1523 1524 1525 1526 1527

        Examples:
            .. code-block:: python

                import numpy as np
1528 1529
                import paddle
                paddle.disable_static()
1530 1531

                x = np.ones([2, 2], np.float32)
1532 1533 1534 1535 1536 1537 1538
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1539 1540
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1541
                loss.backward()
1542 1543

        """
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
        from .backward import append_backward

        if retain_graph is True:
            raise AssertionError(
                "`retain_graph` == True is not supported in @to_static function."
                "please set retain_graph = False."
            )
        param_grad_list = append_backward(self)
        for param, param_grad in param_grad_list:
            # set grad to simulate dygraph loss.backward() in static mode.
            setattr(param, "grad", param_grad)
1555

1556
    @fake_interface_only
1557
    def gradient(self):
1558
        """
J
Jiabin Yang 已提交
1559
        **Notes**:
T
tianshuo78520a 已提交
1560
            **This API is ONLY available in Dygraph mode**
1561 1562 1563

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1564
        Returns:
1565
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1566 1567 1568 1569

        Examples:
            .. code-block:: python

1570
                import paddle
1571 1572 1573
                import paddle.fluid as fluid
                import numpy as np

1574
                # example1: return ndarray
1575 1576 1577 1578 1579 1580 1581
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
1582
                    ret2 = paddle.add_n(inputs2)
1583
                    loss2 = paddle.sum(ret2)
1584
                    loss2.backward()
1585 1586
                    print(loss2.gradient())

1587 1588
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
1589 1590 1591 1592 1593
                    embedding = paddle.nn.Embedding(
                        20,
                        32,
                        weight_attr='emb.w',
                        sparse=True)
1594 1595 1596 1597 1598 1599 1600
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1601
        """
1602
        pass
1603

1604
    @fake_interface_only
1605
    def clear_gradient(self):
1606
        """
J
Jiabin Yang 已提交
1607
        **Notes**:
T
tianshuo78520a 已提交
1608
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1609 1610

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1611

J
Jiabin Yang 已提交
1612
        Clear  (set to ``0`` ) the Gradient of Current Variable
1613 1614 1615 1616 1617 1618

        Returns:  None

        Examples:
            .. code-block:: python

1619
                import paddle
1620 1621 1622 1623 1624 1625 1626 1627 1628 1629
                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
1630
                    ret2 = paddle.add_n(inputs2)
1631
                    loss2 = paddle.sum(ret2)
1632
                    loss2.backward()
1633 1634 1635 1636 1637
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1638
        pass
X
Xin Pan 已提交
1639

1640 1641 1642 1643
    @fake_interface_only
    def register_hook(self, hook):
        pass

1644
    def __str__(self):
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1661 1662
                import paddle
                import paddle.static as static
1663

1664 1665 1666
                paddle.enable_static()

                cur_program = static.Program()
1667 1668 1669 1670 1671 1672
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1673 1674
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1675 1676 1677 1678
        if (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ):
1679
            dtype_str = str(self.dtype).split('.')[1]
1680 1681 1682 1683 1684 1685 1686
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".format(
                name=self.name,
                type=type_str,
                shape=self.shape,
                dtype=dtype_str,
                stop_gradient=self.stop_gradient,
            )
1687
        else:
1688
            var_str = "{name} : {type})".format(name=self.name, type=type_str)
1689

1690
        if self.is_parameter:
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1701 1702 1703 1704
        from paddle.distributed.auto_parallel.dist_context import (
            get_default_distributed_context,
        )

1705
        dist_context = get_default_distributed_context()
1706 1707
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1708 1709 1710
            var_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_tensor
            )
1711

1712
        return var_str
Y
Yang Yang(Tony) 已提交
1713

F
update  
fengjiayi 已提交
1714
    def to_string(self, throw_on_error, with_details=False):
1715 1716 1717
        """
        Get debug string.

J
Jiabin Yang 已提交
1718 1719 1720 1721 1722
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1723

1724 1725
        Returns:
            str: The debug string.
1726 1727 1728 1729 1730

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1731
                import paddle
1732

1733
                paddle.enable_static()
1734 1735 1736 1737 1738
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1739
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1740
                print("=============with detail===============")
1741
                print(new_variable.to_string(True, True))
1742
        """
1743
        assert isinstance(throw_on_error, bool) and isinstance(
1744 1745
            with_details, bool
        )
1746
        protostr = self.desc.serialize_to_string()
1747
        proto = framework_pb2.VarDesc.FromString(bytes(protostr))
F
update  
fengjiayi 已提交
1748 1749
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1750
            additional_attr = ("error_clip",)
F
update  
fengjiayi 已提交
1751
            for attr_name in additional_attr:
1752
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
1753

F
update  
fengjiayi 已提交
1754
        return res_str
1755 1756 1757

    __repr__ = __str__

1758 1759 1760
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
1761

1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1785
    @property
1786
    def stop_gradient(self):
J
Jiabin Yang 已提交
1787 1788 1789
        """
        Indicating if we stop gradient from current Variable

1790
        **Notes: This Property has default value as** ``True`` **in** Dygraph **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``
J
Jiabin Yang 已提交
1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1802 1803
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1804 1805 1806
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1807 1808
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1809 1810 1811 1812
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1813
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1814 1815
                assert (out1.gradient() == 0).all()
        """
1816
        return self.desc.stop_gradient()
1817

1818 1819
    @stop_gradient.setter
    def stop_gradient(self, s):
1820
        self.desc.set_stop_gradient(s)
1821

1822 1823
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1824 1825 1826 1827 1828 1829 1830 1831
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

1832
            **2. In** Dygraph **mode, this property should not be changed**
J
Jiabin Yang 已提交
1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1845
        return self.desc.persistable()
1846

Y
Yu Yang 已提交
1847 1848
    @persistable.setter
    def persistable(self, p):
1849
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1850

1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1876 1877
    @property
    def name(self):
J
Jiabin Yang 已提交
1878 1879 1880
        """
        Indicating name of current Variable

1881
        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** Dygraph **mode. This is how we achieve Parameter sharing**
J
Jiabin Yang 已提交
1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1894
        return self.desc.name()
Y
Yu Yang 已提交
1895

1896 1897 1898 1899 1900 1901
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1902 1903
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1904

1905 1906 1907
        Examples:
          .. code-block:: python

1908
          import paddle
1909

1910
          x = paddle.static.data(name="x", shape=[-1, 23, 48], dtype='float32')
1911
          print(x.grad_name) # output is ``x@GRAD``
1912 1913 1914 1915

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1916 1917
    @name.setter
    def name(self, new_name):
1918
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1919

Y
Yu Yang 已提交
1920 1921
    @property
    def shape(self):
J
Jiabin Yang 已提交
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1939
        # convert to tuple, make it as same as numpy API.
1940
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1941 1942

    @property
F
fengjiayi 已提交
1943
    def dtype(self):
J
Jiabin Yang 已提交
1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1960
        return self.desc.dtype()
Y
Yu Yang 已提交
1961 1962 1963

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1964 1965 1966 1967 1968 1969 1970 1971
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

1972
            **2. Don't support this property in** Dygraph **mode, it's value should be** ``0(int)``
J
Jiabin Yang 已提交
1973 1974 1975 1976

        Examples:
          .. code-block:: python

1977
            import paddle
J
Jiabin Yang 已提交
1978
            import paddle.fluid as fluid
1979 1980

            paddle.enable_static()
J
Jiabin Yang 已提交
1981 1982 1983 1984 1985 1986 1987
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1988 1989
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
1990 1991
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
1992
        return self.desc.lod_level()
Y
Yu Yang 已提交
1993

Y
Yu Yang 已提交
1994 1995
    @property
    def type(self):
J
Jiabin Yang 已提交
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
2012
        return self.desc.type()
Y
Yu Yang 已提交
2013

2014 2015 2016
    @property
    def T(self):
        """
U
ustiniankw 已提交
2017

2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
U
ustiniankw 已提交
2036

2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
2049 2050
            stop_gradient=False,
        )
2051 2052 2053 2054 2055
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
2056 2057 2058 2059 2060 2061 2062 2063 2064
            stop_gradient=False,
        )

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out], 'XShape': [input_shape]},
            attrs={'axis': perm},
        )
2065 2066
        return out

2067 2068 2069
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
2070
        Variable. It remains in the current graph, that is, the cloned Variable
2071 2072 2073 2074
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
U
ustiniankw 已提交
2075
            Variable, The cloned Variable.
2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
2095 2096
            stop_gradient=self.stop_gradient,
        )
2097

2098 2099 2100
        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]}
        )
2101 2102
        return output

W
Wu Yi 已提交
2103
    def _set_error_clip(self, error_clip):
2104
        """
U
ustiniankw 已提交
2105

2106 2107 2108 2109 2110 2111 2112
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
U
ustiniankw 已提交
2113

2114
        """
2115 2116
        self.error_clip = error_clip

2117 2118
    def _set_info(self, key, value):
        """
U
ustiniankw 已提交
2119

2120 2121 2122 2123 2124 2125
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

2126
        Returns:
2127
            None
U
ustiniankw 已提交
2128

2129 2130 2131 2132 2133 2134 2135
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
U
ustiniankw 已提交
2136

2137 2138 2139 2140 2141
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

2142
        Returns:
2143
            object
U
ustiniankw 已提交
2144

2145 2146 2147 2148 2149
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

2150 2151
    def _slice_indices(self, slice, length):
        """
U
ustiniankw 已提交
2152

2153
        Reference implementation for the slice.indices method.
U
ustiniankw 已提交
2154

2155 2156 2157 2158 2159 2160 2161 2162
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
2163
            raise ValueError("slice step can not be zero")
2164 2165 2166 2167 2168 2169 2170 2171 2172 2173

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
2174 2175 2176
            start = (
                max(start + length, lower) if start < 0 else min(start, upper)
            )
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
2222 2223 2224
                if (index > 0 and index >= self.shape[index]) or (
                    index < 0 and (index + self.shape[index]) < 0
                ):
2225
                    raise IndexError("invalid index")
2226 2227 2228 2229 2230
                start = (
                    max(start + self.shape[index], 0)
                    if start < 0
                    else min(start, self.shape[index])
                )
2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2244
    def _cloneVar(self, copy=False):
2245 2246
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2247
                name=unique_name.generate_with_ignorable_key(self.name),
2248 2249
                dtype=self.dtype,
            )
2250 2251 2252 2253
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2254
        new_var = self._cloneVar()
2255 2256 2257 2258 2259 2260
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes, 'starts': starts, 'ends': ends},
        )
2261 2262 2263
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2264
        new_var = self._cloneVar()
2265 2266 2267 2268 2269 2270 2271 2272
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={
                'axis': axis,
            },
        )
2273 2274 2275 2276 2277
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2278
                return self._cloneVar(True)
2279 2280 2281 2282 2283 2284 2285
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
2286 2287 2288
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2289 2290 2291
                        start += step
                else:
                    while start > stop:
2292 2293 2294
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2295 2296 2297 2298
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2299
                return self._cloneVar(True)
2300
            index = int(item)
2301 2302 2303
            if (index > 0 and index >= self.shape[axis]) or (
                index < 0 and (index + self.shape[axis]) < 0
            ):
2304 2305 2306 2307 2308 2309
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2310
        return _getitem_impl_(self, item)
2311

2312
    def __setitem__(self, item, value):
2313
        return _setitem_impl_(self, item, value)
2314

2315 2316
    def get_value(self, scope=None):
        """
2317
        Get the value of variable in given scope.
2318 2319

        Args:
2320
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2321 2322 2323 2324
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
U
ustiniankw 已提交
2325
            Tensor, the value in given scope.
2326 2327 2328 2329 2330

        Examples:
            .. code-block:: python

                import paddle
2331
                import paddle.static as static
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
2356 2357
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file.
2358 2359
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
2360

2361 2362
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2363 2364 2365 2366
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2367 2368 2369 2370 2371

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
2372 2373 2374
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2375 2376 2377 2378 2379
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
U
ustiniankw 已提交
2380

2381
        Set the value to the tensor in given scope.
2382 2383 2384

        Args:
            value(Tensor/ndarray) : The value to be set.
2385
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2386 2387 2388 2389 2390
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
2391

2392 2393 2394 2395
        Examples:
            .. code-block:: python

                import paddle
2396
                import paddle.static as static
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
U
ustiniankw 已提交
2420

2421 2422 2423
        '''

        # The 'framework' is a low-level module, and 'executor'
2424
        # can not be imported at the begainning of this file.
2425 2426 2427 2428 2429
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
2430 2431 2432 2433
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".format(
                    type(value)
                )
            )
2434 2435 2436

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2437 2438 2439 2440
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2441 2442 2443 2444 2445 2446

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
2447 2448 2449
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2450 2451 2452 2453 2454 2455 2456 2457 2458 2459

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
2460 2461 2462 2463
                    "{} expected a shape {}, but the received shape is {}.".format(
                        self.name, list(t.shape()), list(value_shape)
                    )
                )
2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2481 2482
    def size(self):
        """
U
ustiniankw 已提交
2483

2484 2485 2486
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
U
ustiniankw 已提交
2487
            Variable, the number of elements for current Variable
2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
U
ustiniankw 已提交
2501

2502 2503 2504 2505
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
2506 2507
            dtype=core.VarDesc.VarType.INT64,
        )
2508

2509 2510 2511
        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]}
        )
2512 2513
        return output

2514 2515
    def _set_attr(self, name, val):
        """
U
ustiniankw 已提交
2516

2517 2518 2519 2520 2521
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
U
ustiniankw 已提交
2522

2523 2524 2525 2526 2527
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
U
ustiniankw 已提交
2528

2529 2530 2531 2532 2533 2534
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2535 2536
            bool, True if has this attribute.

2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

2558
    def attr(self, name):
2559 2560 2561 2562 2563 2564 2565
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2566
            int|str|list, The attribute value. The return value
2567 2568 2569 2570 2571
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
2572
    def dist_attr(self):
2573
        """
2574
        Get distributed attribute of this Variable.
2575
        """
2576
        return self.desc.dist_attr
2577

2578 2579
    @dist_attr.setter
    def dist_attr(self, dist_attr):
2580
        """
2581
        Set distributed attribute of this Variable.
2582
        """
2583
        self.desc.dist_attr = dist_attr
2584

Y
Yu Yang 已提交
2585

F
fengjiayi 已提交
2586 2587 2588
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2589

2590 2591
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2592 2593 2594 2595
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2596
        op_proto = framework_pb2.OpProto.FromString(bytes(pbstr))
F
fengjiayi 已提交
2597 2598 2599 2600
        ret_values.append(op_proto)
    return ret_values


2601
class OpProtoHolder:
2602 2603 2604 2605
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2606 2607 2608 2609 2610 2611 2612 2613
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
2614 2615
            self.__class__, '_instance'
        ), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2616 2617 2618 2619 2620 2621
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2622 2623 2624 2625 2626 2627 2628 2629
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2630 2631
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2632 2633
        return self.op_proto_map[type]

2634 2635
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2636
        custom_op_names = []
2637 2638 2639
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2640 2641 2642
                custom_op_names.append(proto.type)

        return custom_op_names
2643

2644 2645 2646
    def has_op_proto(self, type):
        return type in self.op_proto_map

2647 2648 2649 2650
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2651
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2652
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2653
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
2654
            core.op_proto_and_checker_maker.kOpDeviceAttrName(),
2655 2656
        }

F
fengjiayi 已提交
2657

2658
class Operator:
2659
    """
2660 2661 2662 2663 2664 2665 2666
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2667
        type(str): The type of operator. Default None.
2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2688
        Block.append_op or Block._prepend_op instead.
2689 2690 2691 2692

    Examples:
        .. code-block:: python

2693
            import paddle.fluid as fluid
2694
            cur_program = fluid.Program()
2695 2696 2697 2698 2699
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2700
    """
2701

2702
    OP_WITHOUT_KERNEL_SET = {
2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
        'feed',
        'fetch',
        'recurrent',
        'go',
        'rnn_memory_helper_grad',
        'conditional_block',
        'while',
        'send',
        'recv',
        'listen_and_serv',
        'fl_listen_and_serv',
        'ncclInit',
        'select',
        'checkpoint_notify',
        'gen_bkcl_id',
        'c_gen_bkcl_id',
        'gen_nccl_id',
        'c_gen_nccl_id',
        'c_comm_init',
        'c_sync_calc_stream',
        'c_sync_comm_stream',
        'queue_generator',
        'dequeue',
        'enqueue',
        'heter_listen_and_serv',
        'c_wait_comm',
        'c_wait_compute',
        'copy_cross_scope',
2731
    }
2732

2733 2734 2735
    def __init__(
        self, block, desc, type=None, inputs=None, outputs=None, attrs=None
    ):
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745
        # read attr type index from op proto to avoid unexpected type
        # conversions, e.g. narrowing conversion like double to float
        try:
            proto = OpProtoHolder.instance().get_op_proto(type)
            self._attr_types = {}
            for attr in proto.attrs:
                self._attr_types[attr.name] = attr.type
        except ValueError:
            pass

J
Jiabin Yang 已提交
2746
        if _non_static_mode():
2747 2748
            if type is None:
                raise ValueError(
2749 2750
                    "`type` to initialized an Operator can not be None."
                )
J
Jiabin Yang 已提交
2751
            self._type = type
M
minqiyang 已提交
2752
            self.attrs = attrs if attrs else {}
2753
        else:
2754

2755 2756 2757 2758 2759 2760 2761 2762 2763
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

2764
            # attr for static graph mode cuda graph
2765 2766
            self._cuda_graph_attr = _current_cuda_graph_mode

2767 2768 2769
            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
2770
                op_attrs[
2771 2772
                    op_maker.kOpRoleAttrName()
                ] = self.block.program._op_role
2773 2774

            role_var_name = op_maker.kOpRoleVarAttrName()
2775 2776 2777 2778
            if (
                len(self.block.program._op_role_var) != 0
                and role_var_name not in op_attrs
            ):
2779
                op_attrs[role_var_name] = self.block.program._op_role_var
2780 2781 2782 2783 2784

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2785 2786 2787 2788 2789
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2790 2791 2792
                return
            if type is None:
                raise ValueError(
2793 2794
                    "`type` to initialized an Operator can not be None."
                )
2795 2796
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2797 2798 2799
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
2800
                        '  File "{}", line {}, in {}'.format(
2801 2802 2803 2804 2805 2806
                            frame[0], frame[1], frame[2]
                        )
                    )
                    op_attrs[callstack_var_name].append(
                        '    {}'.format(frame[3])
                    )
2807 2808 2809 2810 2811 2812 2813

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2814 2815 2816 2817 2818 2819 2820 2821
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
2822 2823 2824
                    warnings.warn(
                        "The Op(%s) is not support to set device." % type
                    )
2825
                if 'force_cpu' in op_attrs:
2826
                    if (
2827 2828
                        type == 'less_than'
                        and op_attrs['force_cpu'] is not None
2829
                    ) or op_attrs['force_cpu'] != False:
2830 2831 2832
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
2833 2834
                            "used at the same time." % type
                        )
2835
            if _current_pipeline_stage is not None:
2836 2837 2838 2839 2840
                pipeline_attr_name = (
                    'pipeline_stage' + core.kAutoParallelSuffix()
                )
                self._update_desc_attr(
                    pipeline_attr_name, _current_pipeline_stage
2841
                )
2842

2843 2844 2845 2846 2847 2848 2849 2850 2851
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
2852 2853 2854
                    assert (
                        found or in_proto.dispensable
                    ), "Input {} not found".format(in_proto.name)
2855 2856
                    if found:
                        in_args = inputs[in_proto.name]
2857
                        if not isinstance(in_args, (list, tuple)):
2858 2859 2860 2861
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
2862 2863
                                % (in_proto.name, len(in_args))
                            )
2864
                        in_arg_names = []
2865
                        for index, arg in enumerate(in_args):
2866
                            if isinstance(arg, str):
2867
                                in_arg_names.append(arg)
2868
                            elif isinstance(arg, bytes):
2869
                                in_arg_names.append(arg.decode())
W
wanghuancoder 已提交
2870
                            elif isinstance(arg, (Variable, core.eager.Tensor)):
2871
                                in_arg_names.append(arg.name)
2872
                            else:
2873
                                raise TypeError(
2874 2875
                                    f"The type of '%{in_proto.name}' in operator {type} should be "
                                    f"one of [str, bytes, Variable]. but received : {arg}"
2876
                                )
2877 2878 2879 2880 2881 2882 2883 2884
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902

                    # FIXME: The outputs of primitive operator currently
                    # doesn't include intermediate output as it will be dropped
                    # in operator codegen, such as xshape output of reshape2.
                    # It will fixed when the operator codegen support
                    # intermediate output.
                    if core._is_bwd_prim_enabled():
                        if not (
                            (m.name in outputs)
                            or m.dispensable
                            or m.intermediate
                        ):
                            raise ValueError(
                                (
                                    "Incorrect setting for output(s) of "
                                    "operator \"%s\", should set: [%s]."
                                )
                                % (type, m.name)
2903
                            )
2904 2905 2906 2907 2908 2909 2910 2911 2912 2913
                    else:
                        if not ((m.name in outputs) or m.dispensable):
                            raise ValueError(
                                (
                                    "Incorrect setting for output(s) of "
                                    "operator \"%s\", should set: [%s]."
                                )
                                % (type, m.name)
                            )

2914 2915 2916 2917 2918 2919 2920 2921 2922
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
2923 2924
                            % (out_proto.name, len(out_args))
                        )
2925 2926
                    out_arg_names = []
                    for arg in out_args:
2927
                        if isinstance(arg, str):
2928 2929
                            out_arg_names.append(arg)
                        else:
2930
                            out_arg_names.append(arg.name)
2931
                        # TODO(minqiyang): could we remove variable's op in static graph mode?
J
Jiabin Yang 已提交
2932
                        if not _non_static_mode():
2933
                            if isinstance(arg, str):
2934 2935 2936
                                block.var(arg).op = self
                            else:
                                arg.op = self
2937 2938
                    self.desc.set_output(out_proto.name, out_arg_names)

2939
            extra_attrs_map = core.get_op_extra_attrs(type)
2940 2941 2942 2943 2944
            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
2945 2946 2947
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
2948 2949 2950
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)
2951
                for attr_name in extra_attrs_map.keys():
2952 2953 2954 2955 2956
                    if os.environ.get('FLAGS_print_extra_attrs', '0') == '1':
                        warnings.warn(
                            "op %s use extra_attr: %s" % (type, attr_name)
                        )

2957 2958 2959 2960 2961 2962
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
                        self._update_desc_attr(
                            attr_name, extra_attrs_map[attr_name]
                        )
2963 2964
                    else:
                        self._update_desc_attr(attr_name, op_attrs[attr_name])
2965

2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993
                if os.environ.get('FLAGS_print_extra_attrs', '0') == '1':
                    if type in extra_op_attrs:
                        attrs = extra_op_attrs.get(type, [])
                        for attr in attrs:
                            if attr in op_attrs.keys():
                                warnings.warn(
                                    "op %s use extra_attr: %s" % (type, attr)
                                )

                    if type in special_op_attrs:
                        attrs = special_op_attrs.get(type, [])
                        for attr in attrs:
                            a_name = list(attr.keys())[0]
                            default_value = list(attr.values())[0]
                            if (
                                a_name in op_attrs.keys()
                                and default_value != op_attrs[a_name]
                            ):
                                warnings.warn(
                                    "op %s's attr %s = %s is not the default value: %s"
                                    % (
                                        type,
                                        a_name,
                                        op_attrs[a_name],
                                        default_value,
                                    )
                                )

J
jianghaicheng 已提交
2994 2995
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
2996
                if global_ipu_index >= 0:
2997 2998 2999
                    self._update_desc_attr(
                        ipu_index_attr_name, global_ipu_index
                    )
3000
                if global_ipu_stage >= 0:
3001 3002 3003
                    self._update_desc_attr(
                        ipu_stage_attr_name, global_ipu_stage
                    )
J
jianghaicheng 已提交
3004

3005
            self.desc.check_attrs()
3006

3007 3008 3009 3010
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
3011
    def _has_kernel(self, op_type):
3012 3013
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
3014
    def to_string(self, throw_on_error):
3015
        """
3016 3017
        Get debug string.

3018
        Args:
3019 3020
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
3021

3022 3023
        Returns:
            str: The debug string.
3024 3025

        """
3026
        protostr = self.desc.serialize_to_string()
3027
        proto = framework_pb2.OpDesc.FromString(bytes(protostr))
Y
Yang Yang(Tony) 已提交
3028 3029
        return _debug_string_(proto, throw_on_error)

3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3062
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3063 3064
            type(skip_op_callstack)
        )
3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

3091 3092 3093
            attr_type = self.desc.attr_type(name, True)
            if attr_type == core.AttrType.VAR:
                attr_var_name = self.desc.attr(name, True).name()
3094 3095 3096
                a = "{name} = Var['{value}']".format(
                    name=name, type=attr_type, value=attr_var_name
                )
3097 3098 3099 3100 3101 3102 3103 3104 3105 3106
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.VARS:
                attr_var_names = [
                    "'%s'" % var.name() for var in self.desc.attr(name, True)
                ]
                a = "{name} = Vars[{value}]".format(
3107 3108
                    name=name, type=attr_type, value=','.join(attr_var_names)
                )
3109 3110 3111 3112 3113
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3114 3115
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
3116 3117
                    name=name, type=attr_type, value=self._block_attr_id(name)
                )
3118 3119 3120 3121 3122 3123 3124
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
3125 3126
                    name=name, type=attr_type, value=self._blocks_attr_ids(name)
                )
3127 3128 3129 3130 3131
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3132
            # it is bytes of serialized protobuf
3133 3134 3135 3136 3137
            if (
                is_compiled_with_cinn()
                and self.type == 'cinn_launch'
                and name == 'compilation_key'
            ):
3138 3139
                key = self.desc.attr(name)
                v = core.get_serialize_comile_key(key)
3140 3141 3142 3143 3144 3145 3146 3147 3148
                prog = Program()
                prog = prog.parse_from_string(v)
                s = prog._to_readable_code()
                lines = s.split('\n')
                value = '\n'.join(['      ' + line for line in lines])
                value = '\n' + value
            else:
                value = self.desc.attr(name)

3149 3150 3151
            a = "{name} = {value}".format(
                name=name, type=attr_type, value=value
            )
3152

3153 3154 3155 3156
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

3157 3158 3159 3160
        from paddle.distributed.auto_parallel.dist_context import (
            get_default_distributed_context,
        )

3161
        dist_context = get_default_distributed_context()
3162 3163
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
3164 3165 3166
            attrs_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_op
            )
3167

3168
        if outputs_str != "{}":
3169 3170 3171 3172 3173 3174
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".format(
                outputs=outputs_str,
                op_type=self.type,
                inputs=inputs_str,
                attrs=attrs_str,
            )
3175
        else:
3176 3177 3178
            op_str = "{op_type}(inputs={inputs}, {attrs})".format(
                op_type=self.type, inputs=inputs_str, attrs=attrs_str
            )
3179 3180
        return op_str

Y
Yang Yang(Tony) 已提交
3181
    def __str__(self):
3182
        return self._to_readable_code()
3183 3184 3185

    __repr__ = __str__

F
fengjiayi 已提交
3186 3187
    @property
    def type(self):
3188
        return self.desc.type()
F
fengjiayi 已提交
3189 3190

    def input(self, name):
3191
        r"""
U
ustiniankw 已提交
3192

3193
        Get the input arguments according to the input parameter name.
3194

3195 3196
        Args:
            name(str): The input parameter name.
3197

3198
        Returns:
U
ustiniankw 已提交
3199
            list, return the list of argument names that associated with \
3200
                the specific parameter name.
U
ustiniankw 已提交
3201

3202
        """
F
fengjiayi 已提交
3203 3204
        return self.desc.input(name)

W
Wu Yi 已提交
3205
    def _rename_input(self, old_name, new_name):
3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
3216
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
3217

W
Wu Yi 已提交
3218
    def _rename_output(self, old_name, new_name):
3219 3220 3221 3222 3223 3224 3225 3226 3227 3228
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
3229
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
3230

F
fengjiayi 已提交
3231 3232 3233 3234
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
3235 3236 3237 3238 3239 3240 3241 3242
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
3243
    def output(self, name):
3244
        r"""
3245
        Get output arguments by the output parameter name.
3246

3247 3248
        Args:
            name(str): The output parameter name.
3249

3250 3251 3252
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
3253
        """
F
fengjiayi 已提交
3254 3255 3256 3257 3258 3259
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

3260 3261 3262 3263 3264 3265
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
3266 3267
            "Can't find op itself in it's block. It could be a bug of Paddle."
        )
3268

F
fengjiayi 已提交
3269
    def has_attr(self, name):
3270
        """
3271 3272
        Whether this Operator has the attribute with name or not.

3273
        Args:
3274
            name(str): the attribute name.
3275

3276 3277
        Returns:
            bool: True if has this attribute.
3278 3279

        """
F
fengjiayi 已提交
3280 3281 3282
        return self.desc.has_attr(name)

    def attr_type(self, name):
3283
        """
3284
        Get the type of attribute by attribute's name.
3285

3286 3287
        Args:
            name(str): the attribute name.
3288

3289 3290
        Returns:
            core.AttrType: the attribute type.
3291
        """
3292
        return self.desc.attr_type(name, True)
F
fengjiayi 已提交
3293

W
Wu Yi 已提交
3294
    def _set_attr(self, name, val):
3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
3305 3306
        self._update_desc_attr(name, val)

3307 3308 3309
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
3321 3322 3323 3324 3325
        if isinstance(val, Variable):
            self.desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            self.desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
Q
Qiyang Min 已提交
3326
            self.desc.set_block_attr(name, val.desc)
3327
        elif isinstance(val, list) and val and _all_is_type(val, Block):
3328
            self.desc.set_blocks_attr(name, [v.desc for v in val])
3329 3330 3331
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
Q
Qiyang Min 已提交
3332 3333
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
3334 3335 3336 3337 3338 3339 3340 3341 3342
            self._update_desc_plain_attr(name, val)

    def _update_desc_plain_attr(self, name, val):
        desc = self.desc
        if not hasattr(self, "_attr_types") or (name not in self._attr_types):
            desc._set_attr(name, val)
            return

        type_index = self._attr_types[name]
3343 3344 3345 3346 3347 3348
        # if the required attribute is a SCALAR, pass as-is
        if type_index == core.AttrType.SCALAR:
            desc._set_scalar_attr(name, wrap_as_scalar(val))
        elif type_index == core.AttrType.SCALARS:
            desc._set_scalars_attr(name, wrap_as_scalars(val))
        elif type_index == core.AttrType.BOOL:
3349 3350 3351 3352 3353 3354 3355
            desc._set_bool_attr(name, val)
        elif type_index == core.AttrType.INT:
            desc._set_int32_attr(name, val)
        elif type_index == core.AttrType.LONG:
            desc._set_int64_attr(name, val)
        elif type_index == core.AttrType.FLOAT:
            desc._set_float32_attr(name, val)
3356 3357
        elif type_index == core.AttrType.FLOAT64:
            desc._set_float64_attr(name, val)
3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
        elif type_index == core.AttrType.STRING:
            desc._set_str_attr(name, val)
        elif type_index == core.AttrType.BOOLS:
            desc._set_bools_attr(name, val)
        elif type_index == core.AttrType.INTS:
            desc._set_int32s_attr(name, val)
        elif type_index == core.AttrType.LONGS:
            desc._set_int64s_attr(name, val)
        elif type_index == core.AttrType.FLOATS:
            desc._set_float32s_attr(name, val)
        elif type_index == core.AttrType.FLOAT64S:
            desc._set_float64s_attr(name, val)
        elif type_index == core.AttrType.STRINGS:
            desc._set_strs_attr(name, val)
        else:
            # defaults to old methods
            desc._set_attr(name, val)
Y
yuyang18 已提交
3375

F
fengjiayi 已提交
3376 3377
    @property
    def attr_names(self):
3378
        return self.desc.attr_names(True)
F
fengjiayi 已提交
3379 3380

    def attr(self, name):
3381
        """
3382 3383
        Get the attribute by name.

3384
        Args:
3385
            name(str): the attribute name.
3386

3387 3388
        Returns:
            bool|int|str|float|list: The attribute value. The return value
3389 3390
            can be any valid attribute type.
        """
F
fengjiayi 已提交
3391
        return self.desc.attr(name)
Y
Yu Yang 已提交
3392

W
Wu Yi 已提交
3393
    def _block_attr_id(self, name):
3394
        """
G
gongweibao 已提交
3395
        Get the block attribute's id by name.
3396

3397 3398
        Args:
            name(str): the attribute name.
3399

3400 3401
        Returns:
            int: the block index.
3402
        """
W
Wu Yi 已提交
3403
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
3404

W
Wu Yi 已提交
3405
    def _block_attr(self, name):
G
gongweibao 已提交
3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
3416
        id = self._block_attr_id(name)
3417
        assert id >= 0 and id < len(self.block.program.blocks)
G
gongweibao 已提交
3418 3419
        return self.block.program.blocks[id]

W
Wu Yi 已提交
3420
    def _blocks_attr(self, name):
G
gongweibao 已提交
3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
3431
        for i in self._blocks_attr_ids(name):
3432
            assert i >= 0 and i < len(self.block.program.blocks)
G
gongweibao 已提交
3433 3434 3435 3436
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
3437
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
3448
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
3449

3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460
    def _var_attr(self, name):
        """
        Get the Variable attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variable: the Variable attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3461 3462 3463 3464 3465
        assert (
            attr_type == core.AttrType.VAR
        ), "Required type attr({}) is Variable, but received {}".format(
            name, attr_type
        )
3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
        attr_var_name = self.desc.attr(name, True).name()
        return self.block._var_recursive(attr_var_name)

    def _vars_attr(self, name):
        """
        Get the Variables attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variables: the Variables attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3480 3481 3482 3483 3484
        assert (
            attr_type == core.AttrType.VARS
        ), "Required type attr({}) is list[Variable], but received {}".format(
            name, attr_type
        )
3485 3486 3487 3488 3489 3490
        attr_vars = [
            self.block._var_recursive(var.name())
            for var in self.desc.attr(name, True)
        ]
        return attr_vars

J
JiayiFeng 已提交
3491
    def all_attrs(self):
F
fengjiayi 已提交
3492
        """
3493 3494 3495
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3496
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3497 3498 3499 3500
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
3501
            attr_type = self.desc.attr_type(n, True)
G
gongweibao 已提交
3502
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3503
                attr_map[n] = self._block_attr(n)
3504
            elif attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3505
                attr_map[n] = self._blocks_attr(n)
3506 3507 3508 3509 3510 3511
            elif attr_type == core.AttrType.VAR:
                attr_map[n] = self._var_attr(n)
            elif attr_type == core.AttrType.VARS:
                attr_map[n] = self._vars_attr(n)
            else:
                attr_map[n] = self.attr(n)
G
gongweibao 已提交
3512

F
fengjiayi 已提交
3513 3514
        return attr_map

3515 3516 3517
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3518 3519 3520 3521

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3522 3523 3524
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3525 3526 3527 3528 3529 3530 3531 3532

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3533 3534
            return False

3535 3536 3537 3538 3539 3540
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3541
    @property
3542
    def dist_attr(self):
3543
        """
3544
        Get distributed attribute of this Variable.
3545
        """
3546
        return self.desc.dist_attr
3547

3548 3549
    @dist_attr.setter
    def dist_attr(self, dist_attr):
3550
        """
3551
        Set distributed attribute of this Variable.
3552
        """
3553
        self.desc.dist_attr = dist_attr
3554

Y
Yu Yang 已提交
3555

3556
class Block:
3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3571
        use `Program._create_block()` to create a block.
3572 3573 3574 3575

    Examples:
        .. code-block:: python

3576 3577 3578
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3579 3580 3581 3582 3583 3584 3585 3586 3587
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3588
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3589
        self.desc = program.desc.block(idx)
3590
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3591
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3592 3593
        self.program = program

3594
    def __str__(self):
3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3629
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3630 3631
            type(skip_op_callstack)
        )
3632 3633 3634 3635 3636 3637 3638
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
3639 3640
                op._to_readable_code(skip_op_callstack)
            )
3641 3642
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3643

F
fengjiayi 已提交
3644 3645
    def to_string(self, throw_on_error, with_details=False):
        """
3646 3647
        Get debug string.

F
fengjiayi 已提交
3648 3649
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3650
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3651
            with_details(bool): more details about variables and parameters
3652 3653
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3654

3655 3656
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3657
        """
3658
        assert isinstance(throw_on_error, bool) and isinstance(
3659 3660
            with_details, bool
        )
F
fengjiayi 已提交
3661
        if with_details:
F
fengjiayi 已提交
3662
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3663
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
3664 3665 3666
                self.idx,
                self.parent_idx,
            )
3667
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3668
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
3669 3670
                    r"\n    \1", var.to_string(throw_on_error, with_details)
                )
F
fengjiayi 已提交
3671
            for op in self.ops:
F
fengjiayi 已提交
3672
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
3673 3674
                    r"\n    \1", op.to_string(throw_on_error)
                )
F
fengjiayi 已提交
3675 3676 3677
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3678
            proto = framework_pb2.BlockDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
3679 3680
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3681 3682 3683

    __repr__ = __str__

Y
Yu Yang 已提交
3684 3685
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3686
        return self.desc.parent
Y
Yu Yang 已提交
3687

Y
Yu Yang 已提交
3688 3689 3690 3691
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3692
    def _set_forward_block_idx(self, idx):
3693 3694 3695 3696 3697 3698 3699 3700 3701
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3702
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3703

3704 3705 3706 3707 3708 3709 3710 3711
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3712 3713
    @property
    def idx(self):
Y
Yu Yang 已提交
3714
        return self.desc.id
Y
Yu Yang 已提交
3715

Q
Qiao Longfei 已提交
3716
    def var(self, name):
3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3730
        if not isinstance(name, str):
M
minqiyang 已提交
3731
            raise TypeError(
3732 3733 3734
                "var require string as parameter, but get %s instead."
                % (type(name))
            )
Y
Yu Yang 已提交
3735 3736
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3737
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3738
        return v
Q
Qiao Longfei 已提交
3739

X
Xin Pan 已提交
3740
    def _find_var_recursive(self, name):
3741 3742 3743 3744 3745 3746 3747
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3748
            Variable: the Variable with the giving name. Or None if not found.
3749
        """
Y
Yu Yang 已提交
3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3774
        return None
Y
Yu Yang 已提交
3775

X
Xin Pan 已提交
3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3795

Q
Qiao Longfei 已提交
3796
    def all_parameters(self):
3797
        return list(self.iter_parameters())
3798

3799
    def iter_parameters(self):
3800 3801 3802 3803 3804
        return (
            item[1]
            for item in self.vars.items()
            if isinstance(item[1], Parameter)
        )
Q
Qiao Longfei 已提交
3805

Y
Yu Yang 已提交
3806
    def create_var(self, *args, **kwargs):
J
Jiabin Yang 已提交
3807
        if _non_static_mode():
3808
            var = _create_tensor(*args, **kwargs)
L
Leo Chen 已提交
3809
        else:
3810 3811 3812
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3813
        return var
Y
Yu Yang 已提交
3814

Q
Qiao Longfei 已提交
3815 3816 3817
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3818
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3819 3820
        """
        Rename variable in vars and ops' inputs and outputs
3821 3822

        Args:
3823 3824
            name(str|bytes): the name that need to be renamed.
            new_name(str|bytes): the name that need to rename to.
3825 3826 3827 3828 3829 3830 3831 3832

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3833
        """
3834 3835
        # Ensure the type of name and new_name is str
        name = name.decode() if isinstance(name, bytes) else name
3836 3837 3838
        new_name = (
            new_name.decode() if isinstance(new_name, bytes) else new_name
        )
M
minqiyang 已提交
3839

T
typhoonzero 已提交
3840
        if not self.has_var(name):
3841
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3842 3843
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3844
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3845 3846 3847 3848 3849 3850
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3851
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3852 3853 3854 3855
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3856
        orig_var_type = v.type
3857
        self.desc._rename_var(name.encode(), new_name.encode())
W
Wu Yi 已提交
3858
        # NOTE: v is destroyed by C++ after calling _rename_var.
3859
        d = self.desc.find_var(new_name.encode())
T
typhoonzero 已提交
3860
        if var_type == "Parameter":
L
Leo Chen 已提交
3861
            if in_dygraph_mode():
3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872
                var = EagerParamBase(
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
3873
            else:
姜永久 已提交
3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
                var = Parameter(
                    self,
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
T
typhoonzero 已提交
3886
        elif var_type == "Variable":
3887 3888 3889 3890 3891 3892 3893
            var = Variable(
                self,
                type=orig_var_type,
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient,
            )
T
wip  
typhoonzero 已提交
3894

W
Wu Yi 已提交
3895
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3896 3897 3898
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3899
        self._sync_with_cpp()
3900
        return var
T
typhoonzero 已提交
3901

3902 3903 3904
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
3905
        self.desc._remove_var(name.encode())
3906 3907
        del self.vars[name]

Y
Yu Yang 已提交
3908 3909
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3910
        param = None
L
Leo Chen 已提交
3911
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3912
            param = EagerParamBase(*args, **kwargs)
L
Leo Chen 已提交
3913
        else:
姜永久 已提交
3914
            param = Parameter(global_block, *args, **kwargs)
3915 3916 3917
        # NOTE(Aurelius84): we deliver stop_gradient in append_op, so we
        # need recorde it state and reset it back after calling this API
        stop_gradient = param.stop_gradient
3918

3919
        if 'initializer' in kwargs:
3920 3921 3922 3923 3924

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3925
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3926
                        # are treated as initialization ops that cause error.
3927
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3928 3929
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
3930 3931 3932
                            "c_broadcast",
                            "c_sync_comm_stream",
                            "coalesce_tensor",
3933
                        ]:
3934
                            continue
3935 3936 3937 3938 3939 3940 3941
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
3942 3943 3944 3945 3946 3947
                raise RuntimeError(
                    "param "
                    + param.name
                    + " is inited by multiple init ops "
                    + str(init_ops)
                )
3948
            elif init_ops_len == 1:
3949
                # TODO already inited, do nothing, should log a warning
3950 3951 3952
                pass
            else:
                initializer(param, self)
3953
        param.stop_gradient = stop_gradient
Q
Qiao Longfei 已提交
3954
        return param
Y
Yu Yang 已提交
3955

Y
Yu Yang 已提交
3956
    def append_op(self, *args, **kwargs):
3957 3958 3959 3960 3961 3962
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
3963
        op_type = kwargs.get("type", None)
J
Jiabin Yang 已提交
3964
        if _non_static_mode():
3965
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
3966
            inplace_map = kwargs.get("inplace_map", None)
3967 3968 3969
            warnings.warn(
                "Op `%s` is executed through `append_op` under the dynamic mode, "
                "the corresponding API implementation needs to be upgraded to "
3970 3971 3972 3973 3974 3975
                "using `_C_ops` method." % type,
                DeprecationWarning,
            )
            op = Operator(
                block=self,
                desc=None,
3976
                type=op_type,
3977 3978 3979 3980
                inputs=None,
                outputs=None,
                attrs=attrs,
            )
3981

M
minqiyang 已提交
3982 3983
            # record ops in tracer rather than blocks
            #
3984
            # TODO(minqiyang): add op stop_gradient support in static graph mode too.
L
lujun 已提交
3985
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3986

3987
            _dygraph_tracer().trace_op(
3988
                op_type,
3989 3990 3991 3992 3993 3994
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
                inplace_map,
            )
M
minqiyang 已提交
3995
        else:
3996
            from paddle.fluid.dygraph.base import param_guard
3997
            from paddle.utils import flatten
3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011

            def pass_stop_gradient(ins, outs):
                """
                Set out.stop_gradient = True if all inputs stop_gradient is True.
                """
                need_reset = True
                for var in flatten(ins):
                    if getattr(var, 'stop_gradient', None) is False:
                        need_reset = False
                        break
                if need_reset:
                    for var in flatten(outs):
                        if isinstance(var, Variable):
                            var.stop_gradient = True
4012

4013
            op_desc = self.desc.append_op()
4014 4015
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
W
wanghuancoder 已提交
4016
            # NOTE(Aurelius84): In case of @to_static, all Tensor(s) should
4017 4018
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
4019 4020 4021 4022 4023 4024 4025 4026 4027 4028
            ignore_ops = {
                'conditional_block',
                'conditional_block_grad',
                'recurrent',
                'recurrent_grad',
                'while',
                'while_grad',
            }
            if op_type not in ignore_ops:
                pass_stop_gradient(inputs, outputs)
4029
            with param_guard(inputs), param_guard(outputs):
4030 4031 4032
                op = Operator(
                    block=self,
                    desc=op_desc,
4033
                    type=op_type,
4034 4035 4036 4037
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None),
                )
4038

M
minqiyang 已提交
4039
            self.ops.append(op)
M
minqiyang 已提交
4040

4041 4042
        return op

W
Wu Yi 已提交
4043
    def _insert_op(self, index, *args, **kwargs):
4044 4045 4046 4047 4048 4049 4050 4051 4052
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
4053
        self._sync_with_cpp()
F
fangshuixun007 已提交
4054
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
4055

4056 4057
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
4058
        Insert an Operator according to the giving arguments,
4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
4073 4074 4075 4076 4077 4078 4079 4080 4081
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
4082 4083
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
4084
        self.desc._remove_op(index, index + 1)
4085 4086
        del self.ops[index]

W
Wu Yi 已提交
4087
    def _slice_ops(self, start, end):
4088 4089 4090 4091 4092 4093 4094 4095 4096 4097
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
4098
        return self.ops[start:end]
Y
Yancey1989 已提交
4099

W
Wu Yi 已提交
4100
    def _prepend_op(self, *args, **kwargs):
J
Jiabin Yang 已提交
4101
        if _non_static_mode():
J
Jiabin Yang 已提交
4102 4103
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114
            op = Operator(
                self, None, type=type, inputs=None, outputs=None, attrs=attrs
            )

            _dygraph_tracer().trace_op(
                type,
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
            )
M
minqiyang 已提交
4115
        else:
4116
            op_desc = self.desc._prepend_op()
4117 4118 4119 4120 4121 4122 4123 4124
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None),
            )
M
minqiyang 已提交
4125
            self.ops.insert(0, op)
4126

Y
Yu Yang 已提交
4127 4128
        return op

W
Wu Yi 已提交
4129
    def _sync_with_cpp(self):
4130
        """
4131 4132
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
4133
        """
Q
Qiao Longfei 已提交
4134 4135 4136
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
4137 4138 4139 4140
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
4141 4142 4143 4144 4145 4146 4147 4148
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient,
                    )
4149
                else:
4150 4151 4152 4153 4154 4155
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient,
                    )
Q
Qiao Longfei 已提交
4156

4157
        # sync variables removed from c++ end
4158
        for var in list(self.vars.keys()):
4159
            if not self.desc.find_var(var.encode()):
4160 4161
                self.vars.pop(var)

Q
Qiao Longfei 已提交
4162
        # sync operators from cpp
4163 4164 4165 4166
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
4183 4184 4185 4186 4187

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
4188
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
4189 4190 4191 4192 4193 4194 4195

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

4196 4197 4198 4199 4200
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
4201 4202 4203 4204 4205 4206
                self.ops
            ) and ops_in_cpp_index < len(ops_in_cpp):
                if (
                    self.ops[ops_in_python_index].desc
                    != ops_in_cpp[ops_in_cpp_index]
                ):
4207 4208 4209 4210 4211
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
4212 4213 4214 4215
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
4216
    def _copy_param_info_from(self, other):
4217
        """
4218 4219
        Copy the information of parameters from the other block.

4220
        Args:
4221 4222 4223 4224 4225
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
4226 4227 4228 4229 4230

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
4231
            raise TypeError(
4232 4233
                "_copy_param_info_from should be invoked with Block"
            )
4234
        for p in other.iter_parameters():
4235 4236 4237
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
4238 4239
                # if the Parameter is pruned, v may be None
                continue
4240
            assert isinstance(v, Variable)
4241
            new_p = None
L
Leo Chen 已提交
4242
            if in_dygraph_mode():
4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254
                new_p = EagerParamBase(
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4255
            else:
姜永久 已提交
4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270
                new_p = Parameter(
                    block=self,
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR
                    else None,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4271 4272
            self.vars[new_p.name] = new_p

4273
    def _clone_variable(self, var, force_persistable=True):
4274 4275
        """
        Clone a variable into current block.
4276

4277 4278
        Args:
            var: the variable to be cloned.
4279 4280 4281
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
4282 4283

        Returns:
4284
            Variable: the new  variable cloned from 'var' in current block.
4285 4286
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
4287 4288 4289
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
4290 4291 4292
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
tangwei12 已提交
4293
        elif var.type == core.VarDesc.VarType.RAW:
4294 4295 4296
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
typhoonzero 已提交
4297 4298 4299 4300 4301 4302
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
4303
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4304
                is_data=var.is_data,
4305 4306
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4307 4308 4309 4310 4311 4312 4313
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
4314
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4315
                is_data=var.is_data,
4316 4317
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4318
        return ret_var
4319

Y
Yu Yang 已提交
4320

4321 4322 4323 4324
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
4325
# of some old Python Variables(all old Python Operators) may have
4326
# been destructed.
4327 4328 4329
def _apply_pass(
    main_program, startup_program, pass_name, pass_attrs={}, pass_attr_types={}
):
4330 4331 4332 4333
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
4334 4335 4336 4337 4338 4339 4340
    attrs = core.apply_pass(
        tmp_main_program,
        tmp_startup_program,
        pass_name,
        pass_attrs,
        pass_attr_types,
    )
4341 4342 4343 4344 4345
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


4346
class IrNode:
4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4358 4359 4360
        assert isinstance(
            node, core.Node
        ), 'node must be the instance of core.Node.'
4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

4442
    def remove_input_by_id(self, node_id):
4443 4444 4445 4446 4447 4448
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4449
        self.node.remove_input(node_id)
4450

4451
    def remove_input(self, node):
4452 4453 4454 4455
        """
        Remove a node from inputs.

        Args:
4456
            node(IrNode): the node being removed.
4457
        """
4458
        self.node.remove_input(node.node)
4459

4460
    def append_input(self, node):
4461 4462 4463 4464
        """
        Append a node in inputs.

        Args:
4465
            node(IrNode): the node being appended.
4466
        """
4467
        self.node.append_input(node.node)
4468 4469 4470 4471 4472 4473 4474 4475

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

4476
    def remove_output_by_id(self, node_id):
4477 4478 4479 4480 4481 4482
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4483
        self.node.remove_output(node_id)
4484

4485
    def remove_output(self, node):
4486 4487 4488 4489
        """
        Remove a node from outputs.

        Args:
4490
            node(IrNode): the node being removed.
4491
        """
4492
        self.node.remove_output(node.node)
4493

4494
    def append_output(self, node):
4495 4496 4497 4498
        """
        Append a node in outputs.

        Args:
4499
            node(IrNode): the node being appended.
4500
        """
4501
        self.node.append_output(node.node)
4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4536 4537 4538
        assert (
            isinstance(node, core.Node) and node.is_var()
        ), 'node must be the instance of core.Node and it must be a variable node.'
4539
        super().__init__(node)
4540 4541 4542 4543 4544 4545 4546 4547 4548
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
4549 4550 4551
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4552 4553 4554 4555 4556 4557 4558 4559 4560
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
4561 4562 4563
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4564 4565
        return self.node.var().persistable()

4566 4567 4568 4569 4570 4571 4572
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
4573 4574 4575
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4576 4577 4578 4579 4580 4581 4582 4583 4584
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
4585 4586 4587
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4588 4589 4590 4591 4592 4593 4594 4595 4596
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
4597 4598 4599
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4600 4601
        return self.node.var().shape()

4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4635 4636 4637
        assert (
            isinstance(node, core.Node) and node.is_op()
        ), 'node must be the instance of core.Node and it must be a operator node.'
4638
        super().__init__(node)
4639 4640 4641 4642 4643 4644 4645 4646 4647 4648
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
4649 4650 4651
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4652 4653
        self.node.op()._rename_input(old_input_name, new_input_name)

4654 4655 4656 4657 4658 4659 4660 4661
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
4662 4663 4664
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4665 4666
        self.node.op()._rename_output(old_output_name, new_output_name)

4667 4668 4669 4670 4671 4672 4673 4674 4675 4676
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4677 4678 4679
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4692 4693 4694
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4695 4696 4697 4698 4699 4700 4701 4702 4703
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
4704 4705 4706
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4707 4708
        return self.node.op().set_type(new_type)

4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
4723 4724 4725
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4726
        desc = self.node.op()
4727 4728 4729 4730 4731
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
4732
            desc.set_block_attr(name, val.desc)
4733
        elif isinstance(val, list) and val and _all_is_type(val, Block):
4734
            desc.set_blocks_attr(name, [v.desc for v in val])
4735 4736 4737
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
4738 4739 4740 4741
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4742 4743 4744 4745 4746 4747 4748
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
4749 4750 4751
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4752 4753 4754 4755 4756 4757 4758 4759 4760
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
4761 4762 4763
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4764 4765
        return self.node.op().output_arg_names()

4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4787
class IrGraph:
4788
    """
4789
    Python IrGraph. Beneath it is a core.Graph, which is used for
4790
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4791 4792
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4793 4794 4795 4796
    """

    def __init__(self, graph, for_test=False):
        """
4797 4798
        Construct an IrGraph using core.Graph.

4799 4800 4801 4802 4803
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
4804 4805
            graph, core.Graph
        ), 'graph must be the instance of core.Graph.'
4806 4807 4808
        self.graph = graph
        self._for_test = for_test

4809 4810 4811 4812
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4813 4814 4815
        Warns:
            The method only clones the graph structure, not its attributes.

4816 4817 4818
        Returns:
            IrGraph: A new and duplicated graph.
        """
4819
        g = self.graph.clone()
4820 4821
        return IrGraph(g, self._for_test)

4822
    def is_test(self):
4823 4824 4825
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4826 4827
        return self._for_test

W
WangZhen 已提交
4828
    def all_nodes(self):
4829 4830 4831
        """
        Return all nodes included in the graph as a set.
        """
4832
        return {IrNode(node) for node in self.graph.nodes()}
4833

4834
    def all_var_nodes(self):
4835 4836 4837
        """
        Return all variable nodes included in the graph as a set.
        """
4838
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4839

4840
    def all_persistable_nodes(self):
4841 4842 4843
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4844 4845
        persistable_nodes = set()
        for node in self.graph.nodes():
4846 4847 4848 4849 4850
            if (
                node.is_var()
                and node.var() is not None
                and node.var().persistable()
            ):
W
WangZhen 已提交
4851
                persistable_nodes.add(node)
4852
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4853

4854
    def all_op_nodes(self):
4855 4856 4857
        """
        Return all operator nodes included in the graph as a set.
        """
4858
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4859

4860 4861 4862 4863 4864 4865
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
4866
            IrGraph(self.graph.get_sub_graph(i), for_test=for_test)
4867 4868 4869 4870 4871 4872 4873 4874 4875
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4876
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4888
            IrVarNode: the created persistable variable node.
4889
        """
4890 4891 4892 4893 4894
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4895
        return IrVarNode(self.graph.create_var_node(var_desc))
4896 4897

    def create_var_node(self, name, var_type, shape, var_dtype):
4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4909
            IrVarNode: the created variable node.
4910 4911
        """

4912 4913 4914 4915
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4916
        return IrVarNode(self.graph.create_var_node(var_desc))
4917

4918 4919 4920 4921 4922 4923
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4924
    def create_var_node_from_desc(self, var_desc):
4925 4926 4927 4928 4929 4930 4931 4932
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4933
            IrVarNode: the created variable node.
4934
        """
4935
        return IrVarNode(self.graph.create_var_node(var_desc))
4936 4937

    def create_op_node(self, op_type, attrs, inputs, outputs):
4938 4939 4940 4941 4942 4943 4944
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4945
            outputs(dict): the outputs of the operator node.
4946 4947

        Returns:
4948
            IrOpNode: the created operator node.
4949
        """
4950 4951
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4952
        for attr, value in attrs.items():
4953
            self._update_desc_attr(op_desc, attr, value)
4954
        for input_name, var_nodes in inputs.items():
4955 4956
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
4957 4958 4959
            op_desc.set_input(
                input_name, [var_node.name() for var_node in var_nodes]
            )
4960
        for output_name, var_nodes in outputs.items():
4961 4962
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
4963 4964 4965
            op_desc.set_output(
                output_name, [var_node.name() for var_node in var_nodes]
            )
4966
        return IrOpNode(self.graph.create_op_node(op_desc))
4967 4968

    def create_op_node_from_desc(self, op_desc):
4969 4970 4971 4972 4973 4974 4975
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4976
            IrOpNode: the created operator node.
4977
        """
4978
        return IrOpNode(self.graph.create_op_node(op_desc))
4979 4980

    def update_input_link(self, old_input_node, new_input_node, op_node):
4981 4982 4983 4984
        """
        Update the input's link of a operator node.

        Args:
4985 4986 4987
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4988
        """
4989 4990 4991 4992 4993
        assert (
            old_input_node.node in self.graph.nodes()
            and new_input_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4994 4995 4996 4997
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
4998
        op_node.rename_input(old_input_node.name(), new_input_node.name())
4999

5000 5001 5002 5003 5004 5005 5006 5007 5008
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
5009 5010 5011 5012 5013
        assert (
            old_output_node.node in self.graph.nodes()
            and new_output_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
5014 5015 5016 5017 5018 5019
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

5020
    def link_to(self, node_in, node_out):
5021 5022 5023 5024
        """
        Connect two nodes.

        Args:
5025 5026
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
5027
        """
5028
        assert node_in.node in self.graph.nodes(), (
5029 5030
            'node_in(%s) must be in the graph nodes.' % node_in.node.name()
        )
5031
        assert node_out.node in self.graph.nodes(), (
5032 5033
            'node_out(%s) must be in the graph nodes.' % node_out.node.name()
        )
5034 5035
        node_in.append_output(node_out)
        node_out.append_input(node_in)
5036 5037

    def safe_remove_nodes(self, remove_nodes):
5038 5039 5040 5041 5042 5043 5044
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
5045
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
5046 5047 5048 5049
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
5050 5051
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
5052

Z
Zhen Wang 已提交
5053 5054 5055 5056 5057 5058 5059 5060
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5061
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
5062 5063 5064 5065
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5066
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
5067 5068 5069
                        ]
                    else:
                        var_nodes[each_var_name].append(
5070 5071
                            self._find_node_by_name(node.outputs, each_var_name)
                        )
Z
Zhen Wang 已提交
5072 5073
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
5074
    def has_circle(self):
5075 5076 5077 5078 5079 5080
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
5081 5082 5083
        return core.has_circle(self.graph)

    def graph_num(self):
5084 5085 5086 5087 5088 5089
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
5090 5091 5092
        return core.graph_num(self.graph)

    def topology_sort(self):
5093 5094 5095
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
5096
        Notes: the `graph` can not contain a circle.
5097 5098

        Returns:
Z
Zhen Wang 已提交
5099
            list(IrNode): nodes in topology order.
5100
        """
5101
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
5102
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
5103 5104

    def build_adjacency_list(self):
5105 5106 5107 5108
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
5109
            dict{IrNode: set(IrNode)}: the adjacency list.
5110
        """
5111 5112
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
5113
        for k, v in adj_list.items():
5114 5115
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
5116

5117 5118 5119 5120 5121 5122 5123 5124
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
5125
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
5126 5127 5128 5129 5130
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

5131 5132
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
5133 5134 5135 5136
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True,
            )
5137 5138
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
5139 5140 5141
                print(
                    'The {} is saved as the dot filetype.'.format(dot_file_path)
                )
5142

5143
        remove_ctr_vars = set()
5144
        if remove_ctr_var:
5145
            for node in self.all_var_nodes():
5146 5147 5148
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
5149 5150
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

5151 5152
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
5153 5154 5155 5156 5157 5158
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
5159 5160 5161 5162
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
5163 5164
        if not os.path.exists(save_path):
            os.makedirs(save_path)
5165 5166 5167 5168 5169 5170 5171
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
5172 5173 5174
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
5175
        WARN: When the graph includes backward operator nodes, the
5176 5177 5178 5179 5180 5181
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
5182
        convert_pass = core.get_pass('graph_to_program_pass')
5183 5184
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
5185 5186 5187 5188
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

5189 5190 5191 5192 5193 5194 5195 5196
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
5197
        assert target_node is not None, (
5198 5199
            "Cannot find the target node (%s)in the giving set." % node_name
        )
5200 5201
        return target_node

5202 5203 5204 5205
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
5206 5207 5208 5209 5210
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
5211
            desc.set_block_attr(name, val.desc)
5212
        elif isinstance(val, list) and val and _all_is_type(val, Block):
5213
            desc.set_blocks_attr(name, [v.desc for v in val])
5214 5215 5216
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
5217 5218 5219 5220 5221
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


5222
class Program:
D
dzhwinter 已提交
5223
    """
5224
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
5225
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
5226
    it will contain nested block.
5227

J
Jiabin Yang 已提交
5228 5229 5230
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
5231

J
Jiabin Yang 已提交
5232
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
5233
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
5234 5235 5236 5237 5238 5239 5240
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
5241
    **Notes**:
5242 5243 5244
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
5245 5246

    Returns:
J
Jiabin Yang 已提交
5247
        Program: An empty Program.
D
dzhwinter 已提交
5248 5249

    Examples:
5250 5251
        .. code-block:: python

5252 5253 5254 5255
            import paddle
            import paddle.static as static

            paddle.enable_static()
5256

5257 5258 5259 5260 5261
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
5262
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
5263 5264 5265

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
5266 5267 5268

    """

5269 5270
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
5271 5272
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
5273 5274
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
5275
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
5276
        self.__op_role_var = []
T
tangwei12 已提交
5277

5278 5279
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
5280
        self._is_distributed = False
5281
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
5282
        self._is_chief = False
5283 5284 5285
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
5286
        self._endpoints = []
5287 5288 5289
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
5290
        self._trainers_endpoints = []
5291
        # the distributed lookup table names
T
tangwei12 已提交
5292
        self._distributed_lookup_table = None
5293 5294 5295

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
5296 5297
        self._use_lamb = False

5298 5299 5300
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
5301

5302 5303 5304
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
5305
        self._program_config = None
5306

5307 5308
        self._pass_applied = None

H
hutuxian 已提交
5309 5310 5311
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

5312 5313 5314
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

5315 5316 5317
        # appending gradients times
        self._appending_grad_times = 0

5318 5319
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
5320 5321
            "__auto_checkpoint_program__"
        )
5322

5323 5324
        # compiled program, i.e. Graph
        self._graph = None
5325 5326
        # to tag whether is startup_program
        self._is_start_up_program_ = False
5327

5328
    def _find_var_class_kwargs(self, new_desc):
5329 5330 5331 5332 5333 5334 5335 5336
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

5337 5338 5339 5340
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
5341
            if idx > (len(self.blocks) - 1):
5342
                self._create_block()
5343 5344 5345 5346 5347 5348 5349 5350 5351 5352
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
                    'shape': get_var_desc_attr_or_none(
                        new_var_desc,
                        "shape",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'dtype': get_var_desc_attr_or_none(
                        new_var_desc,
                        "dtype",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'lod_level': get_var_desc_attr_or_none(
                        new_var_desc,
                        "lod_level",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'error_clip': old_var.error_clip
                    if old_var is not None
                    else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None
                    else False,
                    'is_data': old_var.is_data
                    if old_var is not None
                    else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None
                    else False,
5394 5395 5396
                }

                if isinstance(old_var, Parameter):
5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413
                    kwargs.update(
                        {
                            'trainable': old_var.trainable,
                            'optimize_attr': old_var.optimize_attr,
                            'regularizer': old_var.regularizer,
                            'do_model_average': old_var.do_model_average,
                            'need_clip': old_var.need_clip,
                            'is_distributed': old_var.is_distributed,
                            'is_parameter': old_var.is_parameter,
                        }
                    )
                    block_new_vars.append(
                        {
                            'class': Parameter,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5414 5415
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
5416 5417 5418 5419 5420 5421
                    block_new_vars.append(
                        {
                            'class': Variable,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5422 5423 5424 5425 5426 5427 5428

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
5429
        assert block_num == self.desc.num_blocks()
5430 5431

        # clear old blocks and desc
5432 5433 5434 5435 5436 5437 5438 5439 5440
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
5441

5442
        del desc
5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

5462 5463 5464 5465 5466 5467 5468 5469 5470 5471
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

5472 5473
                import paddle
                import paddle.static as static
5474

5475 5476 5477
                paddle.enable_static()

                prog = static.default_main_program()
5478 5479 5480 5481 5482
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
5483
                prog1 = static.default_main_program()
5484 5485 5486 5487 5488 5489 5490 5491
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
5492
    @property
5493
    def _op_role(self):
Y
yuyang18 已提交
5494 5495 5496 5497 5498 5499 5500 5501
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
5502
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
5503 5504 5505 5506
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
5507 5508
        return self._current_role

5509 5510
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
5511 5512 5513
        self._current_role = role

    @property
5514
    def _op_role_var(self):
Y
yuyang18 已提交
5515
        """
5516
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
5517

5518
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
5519 5520 5521

        Notes: This is a very low-level API. Users should not use it directly.
        """
5522
        return self.__op_role_var
Y
yuyang18 已提交
5523

5524
    @signature_safe_contextmanager
5525 5526 5527 5528 5529
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
5530 5531 5532 5533
        try:
            yield
        finally:
            self._current_role = tmp_role
5534

S
rename  
sneaxiy 已提交
5535
    @signature_safe_contextmanager
W
Wu Yi 已提交
5536
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
5537 5538 5539 5540 5541 5542 5543
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
5544
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
5545 5546 5547

        Examples:

5548
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
5549
            >>> p, g = backward(...)
W
Wu Yi 已提交
5550
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
5551 5552
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
5553
        tmp_role = self._current_role
5554
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
5555

Y
yuyang18 已提交
5556 5557
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
5558
        self.__op_role_var = [
5559 5560 5561
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
5562 5563 5564 5565 5566
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
5567

S
rename  
sneaxiy 已提交
5568
    @signature_safe_contextmanager
X
Xin Pan 已提交
5569
    def _lr_schedule_guard(self, is_with_opt=False):
5570 5571 5572 5573 5574 5575 5576
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
5577 5578 5579 5580
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
5581 5582 5583

        Examples:

5584
            >>> import paddle.fluid as fluid
5585 5586 5587 5588
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
5589 5590

        tmp_role = self._current_role
5591
        tmp_var = self.__op_role_var
5592

5593 5594
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
5595 5596
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
5597
        # TODO(typhoonzero): how to set target learning rate var
5598
        self.__op_role_var = []
5599 5600 5601 5602 5603
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
5604

5605
    def __str__(self):
Y
yuyang18 已提交
5606 5607 5608 5609 5610 5611 5612 5613 5614
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5635 5636
            import paddle
            import paddle.static as static
5637

5638 5639 5640
            paddle.enable_static()

            cur_program = static.Program()
5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5652
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
5653 5654
            type(skip_op_callstack)
        )
5655 5656 5657
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5658
            program_str += '\n'
5659
        return program_str
Y
Yang Yang(Tony) 已提交
5660

F
fengjiayi 已提交
5661 5662 5663
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5664

J
Jiabin Yang 已提交
5665 5666 5667
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5668

J
Jiabin Yang 已提交
5669
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5670

H
haowang101779990 已提交
5671
        Returns:
J
Jiabin Yang 已提交
5672
            str: The debug string describe current Program.
Y
yuyang18 已提交
5673 5674

        Raises:
J
Jiabin Yang 已提交
5675
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5676

5677 5678 5679
        Examples:
            .. code-block:: python

5680 5681 5682 5683
                import paddle
                import paddle.static as static

                paddle.enable_static()
5684

5685 5686 5687
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5688
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5689
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5690
                print("program string without detail: {}".format(prog_string))
5691
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5692
        """
5693 5694 5695
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
5696 5697
            type(throw_on_error)
        )
5698 5699 5700
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
5701 5702
            type(with_details)
        )
5703

F
fengjiayi 已提交
5704 5705 5706 5707
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723
            protostr = self.desc.serialize_to_string()
            proto = framework_pb2.ProgramDesc.FromString(bytes(protostr))
            res_str += (
                "version {\n  "
                + textwrap.indent(
                    _debug_string_(proto.version, throw_on_error), "  "
                )
                + "}\n"
            )
            res_str += (
                "op_version_map {\n  "
                + textwrap.indent(
                    _debug_string_(proto.op_version_map, throw_on_error), "  "
                )
                + "}\n"
            )
F
fengjiayi 已提交
5724 5725
        else:
            protostr = self.desc.serialize_to_string()
5726
            proto = framework_pb2.ProgramDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
5727 5728
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5729

W
Wu Yi 已提交
5730
    def _get_desc(self):
Y
yuyang18 已提交
5731 5732 5733 5734 5735 5736 5737
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5738 5739
        return self.desc

X
version  
Xin Pan 已提交
5740 5741 5742
    def _version(self):
        return self.desc._version()

5743
    def clone(self, for_test=False):
Y
yuyang18 已提交
5744
        """
5745
        .. note:::
5746 5747
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` .
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` .
5748
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5749

5750
        Create a new Program with forward content of original one when ``for_test=True``.
5751
        Create a new Program as same as the original one when ``for_test=False``.
5752

5753
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5754 5755 5756
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5757

5758 5759
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5760 5761
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
5762
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
5763

J
Jiabin Yang 已提交
5764
        For Example:
5765
          ::
L
Luo Tao 已提交
5766

5767 5768 5769 5770 5771 5772
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
5773
            pred = static.nn.fc(x=img, size=10, actvation='relu')
5774
            loss = paddle.mean(pred)
5775
            # Here we use clone before Momentum
5776 5777
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
5778
            optimizer.minimize(loss)
5779

J
Jiabin Yang 已提交
5780
        Args:
5781

5782 5783
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
5784

J
Jiabin Yang 已提交
5785
        Returns:
5786
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
5787

Y
yuyang18 已提交
5788 5789 5790

        Examples:

5791 5792 5793 5794 5795 5796 5797
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5798 5799
            .. code-block:: python

5800
                import paddle
5801 5802

                def print_prog(prog):
5803
                    for name, value in sorted(prog.block(0).vars.items()):
5804 5805 5806 5807 5808
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
5809
                        for key, value in sorted(op.all_attrs().items()):
5810 5811 5812 5813
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5814
            1. To clone a test program, the sample code is:
5815 5816
                .. code-block:: python

5817 5818 5819 5820 5821 5822
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5823 5824

                    def print_prog(prog):
5825
                        for name, value in sorted(prog.block(0).vars.items()):
5826 5827 5828 5829 5830
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
5831
                            for key, value in sorted(op.all_attrs().items()):
5832 5833 5834
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5835 5836
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5837 5838 5839

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5840 5841 5842
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5843
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5844 5845
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5846
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5847 5848
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5849
                            test_program = train_program.clone(for_test=True)
5850
                    print_prog(test_program)
J
Jiabin Yang 已提交
5851 5852 5853 5854

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5855
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5856 5857 5858 5859
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5860 5861 5862
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5863 5864 5865
                            sgd.minimize(avg_loss)


5866
            2. The clone method can be avoid if you create program for training and program for testing individually.
5867 5868
                .. code-block:: python

5869 5870 5871 5872 5873 5874
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5875 5876

                    def print_prog(prog):
5877
                        for name, value in sorted(prog.block(0).vars.items()):
5878 5879 5880 5881 5882
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
5883
                            for key, value in sorted(op.all_attrs().items()):
5884 5885
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5886

5887
                    def network():
5888
                        img = static.data(name='image', shape=[None, 784])
5889
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5890 5891
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5892
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5893 5894
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5895 5896
                        return avg_loss

5897 5898 5899 5900 5901
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5902
                            avg_loss = network()
5903
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5904
                            sgd.minimize(avg_loss)
5905
                    # the test startup program is not used.
5906 5907
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5908 5909
                            avg_loss = network()
                    print_prog(test_program_2)
5910

5911
            The two code snippets above will generate and print same programs.
5912
        """
5913

T
tangwei12 已提交
5914
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5915 5916 5917
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5918
        pruned_origin_block_id_map = None
5919
        if for_test:
5920 5921
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
5922 5923
                self.desc
            )
5924 5925
            forward_prog.blocks = [
                Block(forward_prog, i)
5926
                for i in range(forward_prog.desc.num_blocks())
5927 5928 5929
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5930
        else:
5931
            p = Program()
G
gongweibao 已提交
5932 5933
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5934
            p.desc = core.ProgramDesc(self.desc)
5935
            p.blocks = [Block(p, i) for i in range(self.desc.num_blocks())]
G
gongweibao 已提交
5936 5937

            p._current_role = self._current_role
5938
            p.__op_role_var = self.__op_role_var
5939
            p._appending_grad_times = self._appending_grad_times
5940 5941
            if hasattr(self, 'lr_scheduler'):
                p.lr_scheduler = self.lr_scheduler
G
gongweibao 已提交
5942

T
tangwei12 已提交
5943
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5944
            # its desc.
W
Wu Yi 已提交
5945
            p._sync_with_cpp()
5946

W
Wu Yi 已提交
5947
        p._copy_param_info_from(self)
5948
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5949
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5950
        return p
5951

5952
    def _prune(self, targets):
Y
yuyang18 已提交
5953 5954 5955 5956 5957 5958 5959 5960
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5961
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5962 5963 5964 5965
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5966
        """
5967
        return self._prune_with_input([], targets)
5968 5969

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5970
        """
5971
        Prune operators and variables which are not needed to generate
5972 5973
        :code:`targets`. Prune operators and variables which are needed
        to generate feeded_var
5974 5975 5976 5977 5978 5979 5980

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5981
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5982 5983 5984 5985 5986 5987
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5988
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5989 5990 5991
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5992 5993
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
5994 5995
        if not isinstance(targets, list):
            targets = [targets]
5996 5997

        for var in feeded_var_names:
5998
            if not isinstance(var, str):
5999 6000
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
6001 6002
                    "str, but received %s." % type(var)
                )
6003

6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

6020 6021 6022 6023
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
6024
                    name = t.name
6025
                elif isinstance(t, str):
6026
                    name = str(t)
6027
                else:
6028 6029
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
6030 6031
                        "Variable or Operator, but received %s." % type(t)
                    )
6032 6033 6034 6035 6036 6037

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
6038 6039 6040
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
6041

6042 6043 6044 6045 6046 6047 6048 6049 6050
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
6051
                        # Skip optimize op except for optimize op in targets,
6052 6053 6054 6055 6056
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
6057

6058
                if target_op is not None:
6059 6060 6061
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
6062

6063
        res = Program()
6064
        res.desc, pruned_origin_block_id_map = core.prune(
6065 6066
            self.desc, set(feeded_var_names), targets_idx
        )
6067
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6068
        res._sync_with_cpp()
6069 6070 6071 6072 6073

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

6074 6075
        return res

X
Xin Pan 已提交
6076
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
6077
        """
F
fengjiayi 已提交
6078 6079 6080 6081 6082
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

6083
        3. change the :code:`is_test`
Y
yuyang18 已提交
6084 6085 6086
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

6087
        Args:
X
Xin Pan 已提交
6088 6089
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
6090

Y
yuyang18 已提交
6091 6092 6093 6094 6095 6096
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
6097
        res = Program()
6098
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
6099 6100 6101 6102

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
6103
        if prune_read_op:
6104
            while True:
6105 6106 6107 6108
                if (
                    read_op_idx >= root_block.op_size()
                    or root_block.op(read_op_idx).type() == 'read'
                ):
6109 6110 6111 6112 6113 6114
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
6115
                    root_block._remove_var(var.name().encode())
F
fengjiayi 已提交
6116 6117

        # change all `is_test` attributes to True
6118
        for i in range(res.desc.num_blocks()):
6119
            block = res.desc.block(i)
6120
            for j in range(block.op_size()):
6121 6122
                op = block.op(j)
                if op.has_attr('is_test'):
6123
                    op._set_bool_attr('is_test', True)
6124 6125 6126
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
6127
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6128
        res._sync_with_cpp()
6129 6130
        return res

6131
    def _remove_training_info(self, clip_extra=True):
6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

6146
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
6147 6148
        res._sync_with_cpp()

6149 6150
        # Note: The op_role and op_role_var cann't be deleted currently,
        # and we will try to remove them in the future.
6151
        common_clipped_attrs_list = ['op_callstack', 'with_quant_attr']
6152

6153
        for i in range(res.desc.num_blocks()):
6154 6155 6156 6157
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
6158 6159
            if not clip_extra:
                continue
6160 6161 6162 6163
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
6164 6165 6166

                extra_attrs_map = core.get_op_extra_attrs(op.type())

6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
6180 6181 6182
                # The extra input of op will be removed in the future
                # for name in remove_input_list:
                #     op.remove_input(name)
6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
6196
                # The extra output of op will be removed in the future
6197 6198
                for name in remove_output_list:
                    op.remove_output(name)
6199

6200 6201 6202 6203 6204 6205 6206
                op_quant_name = (
                    core.op_proto_and_checker_maker.kOpWithQuantAttrName()
                )
                quant = (
                    bool(op.attr(op_quant_name))
                    if op_quant_name in op.attr_names()
                    else False
6207 6208
                )
                quant_attrs = [
6209 6210 6211 6212 6213 6214 6215
                    op_quant_name,
                    "quantization_type",
                    "skip_quant",
                    "activation_bits",
                    "bit_length",
                    "quantize_weight_bits",
                    "weight_quant_scale",
6216
                ]
6217 6218
                for extra_attr_name in extra_attrs_map.keys():
                    op.remove_attr(extra_attr_name)
6219
                remove_attr_list = []
6220 6221 6222 6223 6224 6225
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
6226
                    if len(extra_attrs_map) > 0:
6227
                        if name in common_clipped_attrs_list:
6228
                            op.remove_attr(name)
6229
                        continue
6230 6231 6232 6233 6234 6235 6236 6237 6238 6239
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
6240 6241
        return res

6242 6243
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
6244
        """
6245
        .. note::
6246
            1. All information about parameters will be lost after serialization;
6247
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6248

6249 6250
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
6251

J
Jiabin Yang 已提交
6252
        Args:
Y
yuyang18 已提交
6253

J
Jiabin Yang 已提交
6254
            binary_str_type (str): the binary prootbuf string.
6255

J
Jiabin Yang 已提交
6256 6257
        Returns:
            Program: A deserialized Program.
6258 6259 6260 6261

        Examples:
            .. code-block:: python

6262 6263 6264 6265
                import paddle
                import paddle.static as static

                paddle.enable_static()
6266

6267 6268 6269 6270
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
6271

6272
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
6273

6274
                    z = paddle.matmul(x=x, y=y)
6275

6276 6277
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
6278

6279
                    print(static.default_main_program())
6280
                    print(prog_restored)
Y
yuyang18 已提交
6281
        """
6282 6283
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
6284
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
W
Wu Yi 已提交
6285
        p._sync_with_cpp()
6286
        return p
Y
Yu Yang 已提交
6287

6288
    @staticmethod
6289
    def _construct_from_desc(desc):
6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
6301
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
6302 6303 6304
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
6305 6306
    @property
    def random_seed(self):
Y
yuyang18 已提交
6307
        """
J
Jiabin Yang 已提交
6308
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
6309 6310
        the random seed from random device.

6311
        .. note::
6312
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
6313 6314 6315

        Returns:
            int64: Random seed in current Program
6316

6317 6318 6319 6320

        Examples:
            .. code-block:: python

6321 6322 6323
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
6324

6325 6326 6327
                paddle.enable_static()

                prog = static.default_main_program()
6328
                random_seed = prog.random_seed
6329
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
6330 6331 6332
                print(random_seed)
                ## 0
                ## the default random seed is 0
6333

6334
                # Here we need to set random seed before we use paddle.nn.functional.dropout
6335
                prog.random_seed = 1
6336
                z_var = F.dropout(x_var, 0.7)
6337

6338
                print(prog.random_seed)
6339 6340
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
6341
        """
D
dzhwinter 已提交
6342 6343
        return self._seed

Q
qiaolongfei 已提交
6344 6345
    @property
    def num_blocks(self):
Y
yuyang18 已提交
6346
        """
6347 6348
        The number of :ref:`api_guide_Block_en`  in this Program.

6349
        .. note::
6350
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
6351 6352 6353

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
6354

6355 6356 6357 6358

        Examples:
            .. code-block:: python

6359 6360 6361 6362
                import paddle
                import paddle.static as static

                paddle.enable_static()
6363

6364
                prog = static.default_main_program()
6365 6366
                num_blocks = prog.num_blocks
                print(num_blocks)
6367

6368 6369
                # print result:
                # 1
Y
yuyang18 已提交
6370
        """
Q
qiaolongfei 已提交
6371 6372
        return self.desc.num_blocks()

D
dzhwinter 已提交
6373 6374 6375
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
6376 6377
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
6378 6379
                % type(seed)
            )
D
dzhwinter 已提交
6380 6381
        self._seed = seed

Y
Yu Yang 已提交
6382
    def __repr__(self):
6383
        return self.__str__()
6384

Y
Yu Yang 已提交
6385
    def global_block(self):
Y
yuyang18 已提交
6386
        """
6387 6388
        .. note::
            This API has no effect in Dygraph mode.
6389 6390 6391

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
6392 6393
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
6394

6395 6396 6397 6398

        Examples:
            .. code-block:: python

6399 6400 6401 6402
                import paddle
                import paddle.static as static

                paddle.enable_static()
6403

6404
                prog = static.default_main_program()
6405 6406
                gb_block = prog.global_block()
                print(gb_block)
6407

Y
yuyang18 已提交
6408
        """
Y
Yu Yang 已提交
6409 6410
        return self.blocks[0]

Q
Qiao Longfei 已提交
6411
    def block(self, index):
Y
yuyang18 已提交
6412
        """
6413 6414
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6415

6416 6417
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
6418 6419
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
6420

J
Jiabin Yang 已提交
6421 6422
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
6423 6424 6425 6426

        Examples:
            .. code-block:: python

6427 6428 6429 6430
                import paddle
                import paddle.static as static

                paddle.enable_static()
6431

6432
                prog = static.default_main_program()
6433 6434
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
6435
        """
Q
Qiao Longfei 已提交
6436 6437
        return self.blocks[index]

Y
Yu Yang 已提交
6438
    def current_block(self):
Y
yuyang18 已提交
6439
        """
6440 6441
        .. note::
            This API has no effect in Dygraph mode.
6442

J
Jiabin Yang 已提交
6443 6444
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
6445

J
Jiabin Yang 已提交
6446 6447
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
6448

6449 6450 6451
        Examples:
            .. code-block:: python

6452 6453 6454 6455
                import paddle
                import paddle.static as static

                paddle.enable_static()
6456

6457
                prog = static.default_main_program()
6458 6459
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
6460
        """
Y
Yu Yang 已提交
6461 6462
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
6463
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
6464 6465 6466 6467 6468
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
6469

Y
yuyang18 已提交
6470 6471 6472 6473 6474
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
6475
        new_block_idx = len(self.blocks)
6476 6477 6478 6479 6480
        parent = (
            self.current_block()
            if parent_idx is None
            else self.block(parent_idx)
        )
F
update  
fengjiayi 已提交
6481
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
6482 6483 6484 6485
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
6486
    def _rollback(self):
Y
yuyang18 已提交
6487 6488 6489 6490 6491
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
6492 6493
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
6494
    def _sync_with_cpp(self):
Y
yuyang18 已提交
6495 6496 6497 6498 6499 6500 6501 6502 6503 6504
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
6505 6506 6507
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
6508
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
6509

W
Wu Yi 已提交
6510
    def _copy_param_info_from(self, other):
6511
        """
6512
        Copy the information of parameters from other program.
D
dzhwinter 已提交
6513

Y
yuyang18 已提交
6514 6515 6516
        Notes: This is a very low level API. Users should not invoke it
        directly.

6517 6518 6519 6520 6521 6522 6523
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6524 6525
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6526 6527
                % type(other)
            )
6528

W
Wu Yi 已提交
6529
        self.global_block()._copy_param_info_from(other.global_block())
6530

6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6542 6543
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6544 6545
                % type(other)
            )
6546 6547
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
6548
        self._parameters_on_pservers = other._parameters_on_pservers
6549
        self._endpoints = other._endpoints
6550
        self._ps_endpoint = other._ps_endpoint
6551 6552
        self._distributed_lookup_table = other._distributed_lookup_table

6553
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
6554 6555
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
6556

Y
yuyang18 已提交
6557 6558 6559
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
6560 6561
        Args:
            other(Program): Other program
6562
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
6563 6564
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is
            cloned from block 0 in other, etc. Default is None, which means default mapped,
6565
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
6566 6567 6568 6569 6570

        Returns:
            None
        """
        if not isinstance(other, Program):
6571 6572
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6573 6574
                % type(other)
            )
F
fengjiayi 已提交
6575

6576 6577
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
6578
                i: i for i in range(self.desc.num_blocks())
6579
            }
6580 6581 6582

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
6583 6584
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
6585
            for var in list(block.vars.values()):
6586 6587 6588 6589 6590 6591 6592
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
6593

6594
    def list_vars(self):
Y
yuyang18 已提交
6595
        """
6596
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
6597

J
Jiabin Yang 已提交
6598
        Returns:
6599
            iterable Tensors: The Generator will yield every Tensor in this program.
6600 6601 6602 6603

        Examples:
            .. code-block:: python

6604 6605
                import paddle
                import paddle.static as static
6606

6607 6608 6609 6610 6611
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
6612 6613
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
6614

6615 6616
                # var img : LOD_TENSOR.shape(-1, 1, 28, 28).dtype(float32).stop_gradient(True)
                # var label : LOD_TENSOR.shape(-1, 1).dtype(int64).stop_gradient(True)
Y
yuyang18 已提交
6617
        """
6618
        for each_block in self.blocks:
6619
            for each_var in list(each_block.vars.values()):
6620 6621
                yield each_var

6622 6623 6624 6625 6626 6627 6628 6629 6630 6631
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

6632 6633 6634 6635
                import paddle
                import paddle.static as static

                paddle.enable_static()
6636

6637 6638
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
6639
                hidden = static.nn.fc(x=data, size=10)
6640 6641
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
6642 6643 6644 6645 6646 6647 6648

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
6649 6650
                # persist trainable param fc_0.w_0 : LOD_TENSOR.shape(13, 10).dtype(float32).stop_gradient(False)
                # persist trainable param fc_0.b_0 : LOD_TENSOR.shape(10,).dtype(float32).stop_gradient(False)
6651 6652 6653 6654 6655 6656 6657 6658 6659 6660
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

6661 6662 6663 6664 6665 6666 6667 6668 6669
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
6670 6671 6672
            mode(str, optional): Source of the obtained parameters and buffers.
                    'opt' :  The return value only contains the variable in the optimizer.
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.
6673 6674
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
6675
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
6703
        # can not be imported at the begainning of this file.
6704 6705
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
6706

6707 6708
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
6709 6710 6711 6712
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".format(
                    type(scope)
                )
            )
6713 6714 6715 6716 6717

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
6718 6719
            raise TypeError(
                "Type of `mode` should be string, but received {}.".format(
6720 6721 6722
                    type(mode)
                )
            )
6723 6724 6725 6726 6727

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
6728 6729 6730 6731 6732
            if (
                var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH
                or var.desc.type() == core.VarDesc.VarType.FETCH_LIST
                or var.desc.type() == core.VarDesc.VarType.READER
            ):
6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
6751 6752 6753 6754
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".format(
                        mode
                    )
                )
6755 6756 6757 6758 6759 6760 6761 6762

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
6763 6764 6765 6766
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".format(
                        var.name
                    )
                )
6767 6768 6769 6770 6771 6772
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
6773
        Set parameters and persistable buffers in state_dict to program.
6774
        An exception will throw if shape or dtype of the parameters is not match.
6775

6776 6777 6778 6779
        .. note::
            This function MUST called after run start_up_program

        Args:
6780
            state_dict(dict): the dict store parameters and persistable buffers.
6781 6782
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
6783
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6784 6785
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
6786

6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
6816 6817 6818
                    type(state_dict)
                )
            )
6819 6820

        vars_dict = {var.name: var for var in self.list_vars()}
6821 6822 6823
        condition = (
            True if 'StructuredToParameterName@@' in state_dict else False
        )
6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
6835 6836
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
6837 6838
                except TypeError as err:
                    warnings.warn(
6839 6840
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
6841
            else:
6842
                warnings.warn(
6843 6844 6845 6846 6847 6848
                    (
                        "Skip loading for '{0}'. Because '{0}' not in the program.".format(
                            name
                        )
                    )
                )
6849

Y
Yu Yang 已提交
6850

6851
class Parameter(Variable, metaclass=ParameterMetaClass):
6852
    """
6853
    Parameter is derived from Variable. A parameter is a persistable
6854
    Variable, and will be updated by optimizers after each iteration.
6855
    The training of a neural network is essentially the updating of
6856 6857
    its parameters.

6858
    Relative to a general Variable, a Parameter has several its own
6859 6860
    member variables:

6861 6862 6863 6864 6865 6866 6867 6868 6869 6870
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
6871
        need_clip (bool): Whether the parameter gradient need to be cliped
6872
            in optimizer. Default is True.
6873 6874
    """

6875 6876 6877 6878 6879 6880
    def __init__(
        self,
        block,
        shape,
        dtype,
        type=core.VarDesc.VarType.LOD_TENSOR,
6881
        **kwargs,
6882
    ):
6883 6884 6885 6886 6887
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6888 6889
        for each in shape:
            if each < 0:
6890 6891
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
6892 6893 6894 6895 6896 6897 6898 6899 6900 6901
                    % list(shape)
                )

        Variable.__init__(
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
6902
            **kwargs,
6903
        )
Y
Yu Yang 已提交
6904 6905 6906 6907
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6908 6909
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6910
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6911

6912 6913
        self.need_clip = kwargs.get('need_clip', True)

6914 6915
        self.is_distributed = False

6916 6917
        self.is_parameter = True

F
fengjiayi 已提交
6918
    def __str__(self):
6919
        return self._to_readable_code()
F
fengjiayi 已提交
6920

F
update  
fengjiayi 已提交
6921 6922 6923
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6924

F
update  
fengjiayi 已提交
6925 6926 6927 6928 6929 6930 6931 6932
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6933 6934 6935 6936
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
G
GGBond8488 已提交
6937
                import paddle
6938 6939

                prog = fluid.default_main_program()
G
GGBond8488 已提交
6940
                rlt = paddle.static.data("fake_data", shape=[-1,1,1], dtype='float32')
6941 6942
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6943
        """
6944
        assert isinstance(throw_on_error, bool) and isinstance(
6945 6946
            with_details, bool
        )
F
update  
fengjiayi 已提交
6947 6948
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
6949 6950 6951 6952 6953 6954 6955
            additional_attr = (
                "trainable",
                "optimize_attr",
                "regularizer",
                "do_model_average",
                "need_clip",
            )
F
update  
fengjiayi 已提交
6956
            for attr_name in additional_attr:
6957
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
F
update  
fengjiayi 已提交
6958 6959
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6960 6961 6962 6963
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6964

W
wanghuancoder 已提交
6965
class EagerParamBase(core.eager.Tensor):
6966
    """
6967 6968
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode).
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers
6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
6986
        need_clip (bool): Whether the parameter gradient need to be cliped
6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
7001 7002
                    % list(shape)
                )
7003 7004 7005 7006 7007 7008 7009

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

7010 7011 7012
        if isinstance(shape, core.eager.Tensor):
            shape = shape.numpy()

7013
        super().__init__(
7014 7015 7016 7017 7018 7019
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            core.VarDesc.VarType.LOD_TENSOR,
            True,
        )
7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
7034 7035 7036
        # hook functions for lazy initialization
        self._init_func = None
        self._init_op_creator = None
7037 7038

    def set_init_func(self, obj):
7039
        self._init_func = obj
7040 7041 7042

    @dygraph_only
    def initialize(self):
7043 7044 7045
        assert (
            self._init_func is not None
        ), "Required self._init_func is not None, but received None."
7046
        self._init_func(self, None)
7047
        # clear function handle to release resource
7048
        self._init_func = None
7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
7061 7062
                type(trainable),
            )
7063

7064 7065 7066 7067
    def _create_init_op(self, block):
        """
        Call init_op_creator function to create initializer operation in block.
        """
7068 7069 7070
        assert (
            self._init_op_creator is not None
        ), "Required self._init_op_creator is not None, but received None."
7071
        self._init_op_creator(self, block)
7072

7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091
    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
7092
            tensor=super().__str__()
7093
        )
7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
7123 7124
        new_param._init_func = self._init_func
        new_param._init_op_creator = self._init_op_creator
7125 7126 7127 7128 7129 7130
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
7131 7132
        return new_param

7133 7134 7135
    __repr__ = __str__


Y
Yu Yang 已提交
7136
# program is a global instance.
Y
Yu Yang 已提交
7137 7138
_main_program_ = Program()
_startup_program_ = Program()
7139
_startup_program_._is_start_up_program_ = True
7140

7141

7142
def default_startup_program():
Y
Yu Yang 已提交
7143
    """
Y
yuyang18 已提交
7144 7145
    Get default/global startup program.

7146
    The :code:`paddle.nn` function will append the initialization operators into startup program.
7147
    The :code:`startup_program` will initialize the parameters by the OPs.
T
tangwei12 已提交
7148

7149 7150
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
7151

7152 7153
    Returns:
        Program: current default startup program.
7154

7155
    Returns type:
7156 7157 7158 7159

    Examples:
        .. code-block:: python

7160
            import paddle
7161

7162
            paddle.enable_static()
7163 7164 7165 7166
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
7167
    """
Y
Yu Yang 已提交
7168
    return _startup_program_
7169

7170

7171
def default_main_program():
Y
Yu Yang 已提交
7172
    """
7173
    This API can be used to get ``default main program`` which store the
7174
    descriptions of Ops and tensors.
T
tangwei12 已提交
7175

7176 7177
    For example ``z = paddle.add(x, y)`` will create a new ``add``
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` .
Y
yuyang18 已提交
7178

7179
    The ``default main program`` is the default value for ``Program`` parameter in
7180
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
7181
    :code:`default_main_program` when the program is not specified.
7182

7183
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
7184

Y
Yu Yang 已提交
7185
    Returns:
7186
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
7187 7188 7189 7190

    Examples:
        ..  code-block:: python

7191
            import paddle
7192

7193
            paddle.enable_static()
7194
            # Sample Network:
7195 7196 7197
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
7198

7199 7200 7201
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
7202
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
7203
    """
Y
Yu Yang 已提交
7204
    return _main_program_
Y
Yu Yang 已提交
7205 7206 7207 7208 7209


def switch_main_program(program):
    """
    Switch the main program to a new program.
7210

Y
Yu Yang 已提交
7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
7225
    Switch the startup program to a new program
Y
Yu Yang 已提交
7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
7238
@signature_safe_contextmanager
Y
Yu Yang 已提交
7239 7240
def program_guard(main_program, startup_program=None):
    """
7241 7242
    :api_attr: Static Graph

7243 7244 7245
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
7246

G
guofei 已提交
7247
    Args:
7248
        main_program(Program): New main program inside ``with`` statement.
7249 7250
        startup_program(Program, optional): New startup program inside ``with``
            statement. :code:`None` means not changing startup program,
G
guofei 已提交
7251 7252 7253
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
7254
    Examples:
7255
       .. code-block:: python
T
tangwei12 已提交
7256

7257
          import paddle
Y
yuyang18 已提交
7258

7259 7260 7261 7262 7263
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
7264
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
7265 7266 7267

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
7268

Y
Yu Yang 已提交
7269
    Examples:
7270
       .. code-block:: python
Y
yuyang18 已提交
7271

7272
          import paddle
7273

7274 7275 7276 7277 7278
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
7279

Y
Yu Yang 已提交
7280
    """
7281
    from .data_feeder import check_type
7282 7283 7284 7285

    check_type(
        main_program, 'main_program', Program, 'paddle.static.program_guard'
    )
Y
Yu Yang 已提交
7286 7287
    main_program = switch_main_program(main_program)
    if startup_program is not None:
7288 7289 7290 7291 7292 7293
        check_type(
            startup_program,
            'startup_program',
            Program,
            'paddle.static.program_guard',
        )
7294 7295
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
7296
        startup_program = switch_startup_program(startup_program)
7297 7298 7299 7300 7301 7302
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
7303 7304


W
Wu Yi 已提交
7305
def _get_var(name, program=None):
X
xuwei06 已提交
7306
    """
Y
yuyang18 已提交
7307
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
7308

X
xuwei06 已提交
7309 7310 7311
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
7312
        If None, default_global_program() will be used.
X
xuwei06 已提交
7313 7314 7315 7316 7317 7318 7319

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
7320
    assert isinstance(program, Program)
X
xuwei06 已提交
7321 7322

    return program.global_block().var(name)
7323 7324


7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337
@signature_safe_contextmanager
def dygraph_guard_if_declarative():
    from .dygraph.base import in_declarative_mode
    from .dygraph import Tracer

    if in_declarative_mode():
        # Under @paddle.jit.to_static decorator, we switch back dygraph mode temporarily.
        with _dygraph_guard(tracer=Tracer()):
            yield
    else:
        yield


S
rename  
sneaxiy 已提交
7338
@signature_safe_contextmanager
L
lujun 已提交
7339
def _dygraph_guard(tracer):
7340 7341 7342 7343
    tmp_tracer = global_var._dygraph_tracer_
    global_var._dygraph_tracer_ = tracer
    if tracer is not None:
        core._switch_tracer(tracer)
M
minqiyang 已提交
7344

C
Charles-hit 已提交
7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356
    try:
        yield
    finally:
        if tmp_tracer is not None:
            core._switch_tracer(tmp_tracer)
        global_var._dygraph_tracer_ = tmp_tracer


@signature_safe_contextmanager
def _static_guard():
    tmp_tracer = global_var._dygraph_tracer_
    global_var._dygraph_tracer_ = None
7357 7358 7359
    try:
        yield
    finally:
7360 7361 7362
        if tmp_tracer is not None:
            core._switch_tracer(tmp_tracer)
        global_var._dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
7363 7364


S
rename  
sneaxiy 已提交
7365
@signature_safe_contextmanager
L
lujun 已提交
7366
def _dygraph_place_guard(place):
7367 7368 7369
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
7370 7371
    _set_dygraph_tracer_expected_place(place)

7372 7373 7374
    try:
        yield
    finally:
7375
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
7376
        _set_dygraph_tracer_expected_place(_global_expected_place_)
7377 7378


7379 7380 7381 7382 7383 7384 7385 7386 7387 7388
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
7389

7390
    Note:
7391
        The API only supports static graph mode.
7392 7393 7394 7395

    A context manager that specifies the device on which the OP will be placed.

    Args:
7396
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
7397
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs.
7398 7399 7400 7401 7402 7403 7404
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
7405

7406
        .. code-block:: python
7407

7408
            # required: gpu
Z
Zhang Ting 已提交
7409
            import paddle
7410

Z
Zhang Ting 已提交
7411 7412 7413
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
7414
            if support_gpu:
Z
Zhang Ting 已提交
7415
                place = paddle.CUDAPlace(0)
7416 7417

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
7418 7419 7420
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
7421

Z
Zhang Ting 已提交
7422
            with paddle.static.device_guard("cpu"):
7423
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
7424 7425
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
7426
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
7427
                out = paddle.reshape(data1, shape=shape)
7428

Z
Zhang Ting 已提交
7429 7430
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
7431 7432 7433
            result = exe.run(fetch_list=[out])
    """

7434 7435 7436 7437 7438
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
D
duanyanhui 已提交
7439
    if device not in ['cpu', 'gpu', 'xpu', 'npu', '', None]:
7440
        raise ValueError(
K
Kim Yann 已提交
7441
            "The Attr(device) should be 'cpu' 'npu' or 'gpu', and it can also be empty string or None "
7442 7443
            "when there is no need to specify device. But received %s" % device
        )
7444 7445
    if index:
        device = ":".join([device, index])
7446
    pre_device = switch_device(device)
7447 7448 7449 7450
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
7451 7452


7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464
def _switch_cuda_graph_mode(cuda_graph_attr):
    global _current_cuda_graph_mode
    pre_mode = _current_cuda_graph_mode
    _current_cuda_graph_mode = cuda_graph_attr
    return pre_mode


@signature_safe_contextmanager
def _cuda_graph_guard(cuda_graph_attr=None):
    """

    Note:
7465
        The API only supports static graph mode.
7466

7467
    A context manager that specifies the cuda_graph_mode which indicating the cuda graph capture under static graph mode.
7468 7469 7470 7471 7472

    Args:
        cuda_graph_attr(str|None): The cuda graph attr with the format of:
                                   cuda_graph_capture_mode;memory_pool_id;cuda_graph_id
    """
7473 7474
    assert (
        not _non_static_mode()
7475
    ), "cuda_graph_guard only works under static graph mode"
7476 7477
    assert (
        core.is_compiled_with_cuda()
7478 7479 7480 7481 7482 7483 7484 7485
    ), "cuda_graph_guard context can be only used when Paddle is compiled with cuda"
    pre_mode = _switch_cuda_graph_mode(cuda_graph_attr)
    try:
        yield
    finally:
        _switch_cuda_graph_mode(pre_mode)


G
guofei 已提交
7486 7487 7488
def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
7489
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7490 7491 7492 7493 7494 7495 7496

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

7497 7498
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
7499 7500 7501 7502
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
7503 7504
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
7505 7506
        else:
            raise ValueError(
7507 7508
                "Flag %s cannot set its value through this function." % (key)
            )
G
guofei 已提交
7509 7510 7511 7512 7513


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
7514
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7515 7516 7517 7518 7519 7520 7521 7522 7523 7524

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

7525
            import paddle
G
guofei 已提交
7526 7527

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
7528
            res = paddle.get_flags(flags)
G
guofei 已提交
7529 7530 7531 7532 7533 7534
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
7535
            if _global_flags().is_public(key):
7536
                value = _global_flags()[key]
G
guofei 已提交
7537 7538 7539 7540
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
7541 7542 7543
                    'Flag %s cannot get its value through this function.'
                    % (key)
                )
G
guofei 已提交
7544
    elif isinstance(flags, str):
7545
        if _global_flags().is_public(flags):
7546
            value = _global_flags()[flags]
G
guofei 已提交
7547 7548 7549 7550
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
7551 7552
                'Flag %s cannot get its value through this function.' % (flags)
            )
G
guofei 已提交
7553 7554 7555
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
7556 7557 7558 7559 7560 7561


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573
    if isinstance(
        place,
        (
            core.Place,
            core.XPUPlace,
            core.CPUPlace,
            core.CUDAPinnedPlace,
            core.CUDAPlace,
            core.IPUPlace,
            core.CustomPlace,
        ),
    ):
7574 7575 7576 7577
        return place

    if not isinstance(place, str):
        raise ValueError(
7578 7579
            "place only support string which is 'Place' and so on."
        )
7580 7581

    place = place.lower()
7582
    if place == "cpu":
7583
        return core.CPUPlace()
7584

7585
    if place == "device":
7586 7587
        return core.Place()

7588
    # GPU
7589 7590 7591 7592
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
7593
                "The device should not be {}, since PaddlePaddle is "
7594
                "not compiled with CUDA".format(avaliable_gpu_place.group())
7595
            )
7596 7597 7598 7599 7600 7601 7602 7603 7604
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
7605 7606

    # XPU
7607 7608 7609 7610
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
7611
                "The device should not be {}, since PaddlePaddle is "
7612
                "not compiled with XPU".format(avaliable_xpu_place.group())
7613
            )
7614 7615 7616 7617
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
7618

J
jianghaicheng 已提交
7619 7620 7621 7622 7623
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
7624
                "The device should not be {}, since PaddlePaddle is "
7625
                "not compiled with IPU".format(avaliable_ipu_place.group())
7626
            )
J
jianghaicheng 已提交
7627 7628 7629 7630 7631
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

7632
    raise ValueError(
K
Kim Yann 已提交
7633
        f"Paddle supports CPUPlace, CUDAPlace, CUDAPinnedPlace, XPUPlace and IPUPlace, but received {place}."
7634
    )
7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret