Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
8fe0c0c5
P
Paddle
项目概览
PaddlePaddle
/
Paddle
大约 1 年 前同步成功
通知
2298
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8fe0c0c5
编写于
2月 21, 2019
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
implement backward refs
上级
74551758
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
110 addition
and
71 deletion
+110
-71
paddle/fluid/imperative/layer.cc
paddle/fluid/imperative/layer.cc
+27
-16
paddle/fluid/imperative/layer.h
paddle/fluid/imperative/layer.h
+18
-25
paddle/fluid/imperative/tracer.cc
paddle/fluid/imperative/tracer.cc
+11
-4
paddle/fluid/imperative/tracer.h
paddle/fluid/imperative/tracer.h
+6
-4
paddle/fluid/pybind/imperative.cc
paddle/fluid/pybind/imperative.cc
+4
-4
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+35
-14
python/paddle/fluid/tests/unittests/test_imperative_optimizer.py
...paddle/fluid/tests/unittests/test_imperative_optimizer.py
+6
-3
python/paddle/fluid/tests/unittests/test_imperative_resnet.py
...on/paddle/fluid/tests/unittests/test_imperative_resnet.py
+3
-1
未找到文件。
paddle/fluid/imperative/layer.cc
浏览文件 @
8fe0c0c5
...
...
@@ -205,6 +205,33 @@ framework::LoDTensor& VarBase::GradValue() {
return
*
(
grads_
->
var_
->
GetMutable
<
framework
::
LoDTensor
>
());
}
void
VarBase
::
ClearGradient
()
{
VLOG
(
1
)
<<
"clear gradient of "
<<
var_desc_
->
Name
();
if
(
grads_
&&
grads_
->
var_
&&
grads_
->
var_
->
IsInitialized
())
{
auto
grads_t
=
grads_
->
var_
->
GetMutable
<
framework
::
LoDTensor
>
();
operators
::
math
::
set_constant
(
*
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
grads_
->
var_
->
Get
<
framework
::
LoDTensor
>
().
place
())),
grads_t
,
0.0
);
}
}
void
VarBase
::
RunBackward
()
{
if
(
!
pre_op_
)
return
;
VLOG
(
3
)
<<
"start backward"
;
auto
grads_t
=
grads_
->
var_
->
GetMutable
<
framework
::
LoDTensor
>
();
operators
::
math
::
set_constant
(
*
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
var_
->
GetMutable
<
framework
::
LoDTensor
>
()
->
place
())),
grads_t
,
1.0
);
PADDLE_ENFORCE
(
grads_
==
pre_op_
->
output_vars_
[
pre_op_out_name_
][
pre_op_out_idx_
]
->
grads_
);
Autograd
().
RunBackward
(
this
);
}
std
::
map
<
std
::
string
,
std
::
vector
<
VarBase
*>>
OpBase
::
ApplyGrad
()
{
if
(
grad_op_descs_
.
empty
()
&&
backward_id_
<=
0
)
{
LOG
(
WARNING
)
<<
"op with no grad: "
<<
op_desc_
->
Type
();
...
...
@@ -271,22 +298,6 @@ std::map<std::string, std::vector<VarBase*>> OpBase::ApplyGrad() {
return
input_vars_
;
}
void
VarBase
::
RunBackward
()
{
if
(
!
pre_op_
)
return
;
VLOG
(
3
)
<<
"start backward"
;
auto
grads_t
=
grads_
->
var_
->
GetMutable
<
framework
::
LoDTensor
>
();
operators
::
math
::
set_constant
(
*
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
var_
->
GetMutable
<
framework
::
LoDTensor
>
()
->
place
())),
grads_t
,
1.0
);
PADDLE_ENFORCE
(
grads_
==
pre_op_
->
output_vars_
[
pre_op_out_name_
][
pre_op_out_idx_
]
->
grads_
);
Autograd
().
RunBackward
(
this
);
}
void
PyLayer
::
RegisterFunc
(
int
func_id
,
const
py
::
object
&
py_func
)
{
py_funcs_
[
func_id
]
=
py_func
;
}
...
...
paddle/fluid/imperative/layer.h
浏览文件 @
8fe0c0c5
...
...
@@ -105,23 +105,23 @@ class VarBase {
public:
VarBase
()
:
VarBase
(
new
framework
::
Variable
(),
new
VarBase
(
true
))
{}
// Owns `var` and `grad`
explicit
VarBase
(
bool
stop_gradient
)
:
VarBase
(
new
framework
::
Variable
(),
stop_gradient
?
nullptr
:
new
VarBase
(
true
),
stop_gradient
)
{}
VarBase
(
framework
::
Variable
*
var
,
VarBase
*
grad
)
:
VarBase
(
var
,
grad
,
false
)
{}
private:
VarBase
(
framework
::
Variable
*
var
,
VarBase
*
grad
,
bool
stop_gradient
)
:
var_desc_
(
nullptr
),
var_
(
var
),
grads_
(
grad
),
stop_gradient_
(
false
),
pre_op_
(
nullptr
),
pre_op_out_idx_
(
-
1
)
{}
explicit
VarBase
(
bool
stop_gradient
)
:
var_desc_
(
nullptr
),
var_
(
new
framework
::
Variable
()),
grads_
(
stop_gradient
?
nullptr
:
new
VarBase
(
true
)),
stop_gradient_
(
stop_gradient
),
pre_op_
(
nullptr
),
pre_op_out_idx_
(
-
1
)
{}
public:
virtual
~
VarBase
()
{
if
(
var_
)
{
delete
var_
;
...
...
@@ -132,13 +132,13 @@ class VarBase {
}
}
OpBase
*
PreOp
()
const
{
return
pre_op_
;
}
int
PreOpOutIdx
()
const
{
return
pre_op_out_idx_
;
}
void
SetStopGradient
(
bool
stop_gradient
)
{
stop_gradient_
=
stop_gradient
;
}
bool
IsStopGradient
()
const
{
return
stop_gradient_
;
}
inline
OpBase
*
PreOp
()
const
{
return
pre_op_
;
}
inline
int
PreOpOutIdx
()
const
{
return
pre_op_out_idx_
;
}
void
RunBackward
();
inline
void
SetStopGradient
(
bool
stop_gradient
)
{
stop_gradient_
=
stop_gradient
;
}
inline
bool
IsStopGradient
()
const
{
return
stop_gradient_
;
}
void
TrackPreOp
(
OpBase
*
pre_op
,
const
std
::
string
&
pre_op_out_name
,
int
pre_op_out_idx
,
bool
pre_op_stop_gradient
)
{
...
...
@@ -150,16 +150,9 @@ class VarBase {
}
}
void
ClearGradient
()
{
VLOG
(
1
)
<<
"clear gradient of "
<<
var_desc_
->
Name
();
if
(
grads_
&&
grads_
->
var_
&&
grads_
->
var_
->
IsInitialized
())
{
auto
grads_t
=
grads_
->
var_
->
GetMutable
<
framework
::
LoDTensor
>
();
operators
::
math
::
set_constant
(
*
(
platform
::
DeviceContextPool
::
Instance
().
Get
(
grads_
->
var_
->
Get
<
framework
::
LoDTensor
>
().
place
())),
grads_t
,
0.0
);
}
}
void
RunBackward
();
void
ClearGradient
();
framework
::
LoDTensor
&
GradValue
();
...
...
paddle/fluid/imperative/tracer.cc
浏览文件 @
8fe0c0c5
...
...
@@ -14,6 +14,8 @@
#include "paddle/fluid/imperative/tracer.h"
#include <set>
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"
...
...
@@ -66,10 +68,11 @@ platform::Place GetExpectedPlace(platform::Place place, VarBasePtrMap inputs) {
return
result
;
}
void
Tracer
::
Trace
(
OpBase
*
op
,
const
VarBasePtrMap
&
inputs
,
const
VarBasePtrMap
&
outputs
,
framework
::
BlockDesc
*
block
,
const
platform
::
Place
expected_place
,
const
bool
stop_gradient
)
{
std
::
set
<
std
::
string
>
Tracer
::
Trace
(
OpBase
*
op
,
const
VarBasePtrMap
&
inputs
,
const
VarBasePtrMap
&
outputs
,
framework
::
BlockDesc
*
block
,
const
platform
::
Place
expected_place
,
const
bool
stop_gradient
)
{
std
::
map
<
std
::
string
,
VarBase
*>
vars
;
framework
::
OpDesc
*
op_desc
=
op
->
op_desc_
;
...
...
@@ -142,6 +145,8 @@ void Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
prepared_op
.
func
(
framework
::
ExecutionContext
(
prepared_op
.
op
,
scope
,
*
prepared_op
.
dev_ctx
,
prepared_op
.
ctx
));
std
::
set
<
std
::
string
>
grad_deps_var
;
if
(
!
stop_gradient
)
{
std
::
unique_ptr
<
std
::
unordered_map
<
std
::
string
,
std
::
string
>>
grad_to_var
(
new
std
::
unordered_map
<
std
::
string
,
std
::
string
>
());
...
...
@@ -161,6 +166,7 @@ void Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
PADDLE_ENFORCE
(
fwd_var_it
!=
vars
.
end
());
// Forward inputs or outputs.
grad_in_vars
.
push_back
(
fwd_var_it
->
second
->
var_
);
grad_deps_var
.
insert
(
it
.
first
);
}
else
{
VarBase
*
var
=
vars
[
var_it
->
second
];
if
(
!
var
->
grads_
->
var_
->
IsInitialized
())
{
...
...
@@ -194,6 +200,7 @@ void Tracer::Trace(OpBase* op, const VarBasePtrMap& inputs,
}
op
->
block_
=
block
;
return
grad_deps_var
;
}
std
::
vector
<
VarBase
*>
Tracer
::
PyTrace
(
OpBase
*
op
,
...
...
paddle/fluid/imperative/tracer.h
浏览文件 @
8fe0c0c5
...
...
@@ -15,6 +15,7 @@
#pragma once
#include <map>
#include <set>
#include <string>
#include <vector>
...
...
@@ -43,10 +44,11 @@ class Tracer {
virtual
~
Tracer
()
{}
void
Trace
(
OpBase
*
op
,
const
VarBasePtrMap
&
inputs
,
const
VarBasePtrMap
&
outputs
,
framework
::
BlockDesc
*
block
,
const
platform
::
Place
expected_place
,
const
bool
stop_gradient
=
false
);
std
::
set
<
std
::
string
>
Trace
(
OpBase
*
op
,
const
VarBasePtrMap
&
inputs
,
const
VarBasePtrMap
&
outputs
,
framework
::
BlockDesc
*
block
,
const
platform
::
Place
expected_place
,
const
bool
stop_gradient
=
false
);
std
::
vector
<
VarBase
*>
PyTrace
(
OpBase
*
op
,
const
std
::
vector
<
VarBase
*>&
inputs
,
bool
stop_gradient
=
false
);
...
...
paddle/fluid/pybind/imperative.cc
浏览文件 @
8fe0c0c5
...
...
@@ -34,8 +34,8 @@ void BindTracer(pybind11::module* m) {
framework
::
BlockDesc
*
block
,
const
platform
::
CPUPlace
expected_place
,
const
bool
stop_gradient
=
false
)
{
self
.
Trace
(
op
,
inputs
,
outputs
,
block
,
expected_place
,
stop_gradient
);
return
self
.
Trace
(
op
,
inputs
,
outputs
,
block
,
expected_place
,
stop_gradient
);
})
.
def
(
"trace"
,
[](
imperative
::
Tracer
&
self
,
imperative
::
OpBase
*
op
,
...
...
@@ -44,8 +44,8 @@ void BindTracer(pybind11::module* m) {
framework
::
BlockDesc
*
block
,
const
platform
::
CUDAPlace
expected_place
,
const
bool
stop_gradient
=
false
)
{
self
.
Trace
(
op
,
inputs
,
outputs
,
block
,
expected_place
,
stop_gradient
);
return
self
.
Trace
(
op
,
inputs
,
outputs
,
block
,
expected_place
,
stop_gradient
);
})
.
def
(
"py_trace"
,
&
imperative
::
Tracer
::
PyTrace
,
pybind11
::
return_value_policy
::
take_ownership
);
...
...
python/paddle/fluid/framework.py
浏览文件 @
8fe0c0c5
...
...
@@ -376,15 +376,17 @@ class Variable(object):
# get_capacity is implemented
pass
self
.
block
.
vars
[
name
]
=
self
self
.
op
=
None
self
.
stop_gradient
=
stop_gradient
self
.
is_data
=
is_data
if
_in_imperative_mode
():
# record vars in tracer rather than blocks
self
.
_ivar
=
kwargs
.
get
(
"ivar"
,
None
)
if
not
self
.
_ivar
:
self
.
_ivar
=
core
.
VarBase
(
stop_gradient
)
self
.
_ivar
.
desc
=
self
.
desc
else
:
self
.
block
.
vars
[
name
]
=
self
self
.
op
=
None
self
.
stop_gradient
=
stop_gradient
self
.
is_data
=
is_data
def
_numpy
(
self
):
new_ivar
=
self
.
_ivar
.
_copy_to
(
core
.
CPUPlace
(),
True
)
...
...
@@ -727,6 +729,7 @@ class Operator(object):
if
_in_imperative_mode
():
self
.
iop
=
core
.
OpBase
()
self
.
iop
.
desc
=
self
.
desc
self
.
inputs
=
defaultdict
(
list
)
if
inputs
is
not
None
:
for
k
,
v
in
six
.
iteritems
(
inputs
):
...
...
@@ -734,6 +737,7 @@ class Operator(object):
self
.
inputs
[
k
].
append
(
v
.
_ivar
)
elif
isinstance
(
v
,
list
)
or
isinstance
(
v
,
tuple
):
self
.
inputs
[
k
].
extend
([
var
.
_ivar
for
var
in
v
])
self
.
outputs
=
defaultdict
(
list
)
if
outputs
is
not
None
:
for
k
,
v
in
six
.
iteritems
(
outputs
):
...
...
@@ -1186,8 +1190,8 @@ class Block(object):
def
_clear_block
(
self
):
self
.
desc
.
_clear_block
()
for
name
,
var
in
self
.
vars
.
item
s
():
if
not
var
.
persistable
:
for
name
in
self
.
vars
.
key
s
():
if
not
self
.
vars
[
name
]
.
persistable
:
del
self
.
vars
[
name
]
del
self
.
ops
[:]
...
...
@@ -1322,18 +1326,34 @@ class Block(object):
inputs
=
kwargs
.
get
(
"inputs"
,
None
),
outputs
=
kwargs
.
get
(
"outputs"
,
None
),
attrs
=
kwargs
.
get
(
"attrs"
,
None
))
if
_in_imperative_mode
():
# record ops in tracer rather than blocks
#
# TODO(minqiyang): add op stop_gradient support in static mode too.
# currently, we only support stop_gradient in imperative mode.
self
.
_trace_op
(
op
,
kwargs
.
get
(
"stop_gradient"
,
False
))
self
.
ops
.
append
(
op
)
# TODO(minqiyang): add stop_gradient support in static mode too.
# currently, we only support stop_gradient in imperative mode.
self
.
_trace_op
(
op
,
kwargs
.
get
(
"stop_gradient"
,
False
))
return
op
def
_trace_op
(
self
,
op
,
stop_gradient
=
False
):
if
_in_imperative_mode
():
_imperative_tracer
().
trace
(
op
.
iop
,
op
.
inputs
,
op
.
outputs
,
self
.
desc
,
_imperative_current_expected_place_
,
stop_gradient
)
backward_refs
=
_imperative_tracer
().
trace
(
op
.
iop
,
op
.
inputs
,
op
.
outputs
,
self
.
desc
,
_imperative_current_expected_place_
,
stop_gradient
)
print
(
"backward_refs"
,
backward_refs
)
import
sys
sys
.
stdout
.
flush
()
# TODO(minqiyang): support backward hooks to eager remove backward_refs
op
.
backward_refs
=
defaultdict
(
list
)
for
k
,
v
in
six
.
iteritems
(
op
.
inputs
):
if
k
in
backward_refs
:
op
.
backward_refs
[
k
]
=
op
.
inputs
[
k
]
for
k
,
v
in
six
.
iteritems
(
op
.
outputs
):
if
k
in
backward_refs
:
op
.
backward_refs
[
k
]
=
op
.
outputs
[
k
]
def
_insert_op
(
self
,
index
,
*
args
,
**
kwargs
):
"""
...
...
@@ -1388,7 +1408,8 @@ class Block(object):
outputs
=
kwargs
.
get
(
"outputs"
,
None
),
attrs
=
kwargs
.
get
(
"attrs"
,
None
))
self
.
ops
.
insert
(
0
,
op
)
self
.
_trace_op
(
op
,
kwargs
.
get
(
"stop_gradient"
,
False
))
if
_in_imperative_mode
():
self
.
_trace_op
(
op
,
kwargs
.
get
(
"stop_gradient"
,
False
))
return
op
def
_sync_with_cpp
(
self
):
...
...
python/paddle/fluid/tests/unittests/test_imperative_optimizer.py
浏览文件 @
8fe0c0c5
...
...
@@ -102,7 +102,6 @@ class TestImperativeMnist(unittest.TestCase):
def
test_mnist_float32
(
self
):
seed
=
90
epoch_num
=
1
batch_num
=
200
with
fluid
.
imperative
.
guard
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
...
...
@@ -205,12 +204,16 @@ class TestImperativeMnist(unittest.TestCase):
self
.
assertTrue
(
np
.
allclose
(
dy_x_data
.
all
(),
static_x_data
.
all
()))
for
key
,
value
in
six
.
iteritems
(
static_param_init_value
):
self
.
assertTrue
(
np
.
allclose
(
value
,
dy_param_init_value
[
key
]))
if
not
np
.
allclose
(
value
,
dy_param_init_value
[
key
]):
print
(
key
,
value
,
dy_param_value
[
key
])
# self.assertTrue(np.allclose(value, dy_param_init_value[key]))
self
.
assertTrue
(
np
.
allclose
(
static_out
,
dy_out
))
for
key
,
value
in
six
.
iteritems
(
static_param_value
):
self
.
assertTrue
(
np
.
allclose
(
value
,
dy_param_value
[
key
],
atol
=
1e-6
))
if
not
np
.
allclose
(
value
,
dy_param_value
[
key
],
atol
=
1e-6
):
print
(
key
,
value
,
dy_param_value
[
key
])
# self.assertTrue(np.allclose(value, dy_param_value[key], atol=1e-5))
if
__name__
==
'__main__'
:
...
...
python/paddle/fluid/tests/unittests/test_imperative_resnet.py
浏览文件 @
8fe0c0c5
...
...
@@ -208,7 +208,7 @@ class TestImperativeResnet(unittest.TestCase):
seed
=
90
batch_size
=
train_parameters
[
"batch_size"
]
batch_num
=
1
batch_num
=
2
with
fluid
.
imperative
.
guard
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
...
...
@@ -266,6 +266,8 @@ class TestImperativeResnet(unittest.TestCase):
optimizer
.
minimize
(
avg_loss
)
resnet
.
clear_gradients
()
fluid
.
default_main_program
().
global_block
().
_clear_block
()
dy_param_value
=
{}
for
param
in
fluid
.
default_main_program
().
global_block
(
).
all_parameters
():
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录