framework.py 255.2 KB
Newer Older
G
gouzil 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

import textwrap
Y
Yu Yang 已提交
16
import collections
X
Xin Pan 已提交
17
from collections import defaultdict
H
huzhiqiang 已提交
18
from collections.abc import Iterable
Q
qiaolongfei 已提交
19
import contextlib
20
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
21
import os
F
fengjiayi 已提交
22
import re
23
import traceback
24
import copy
25
from types import MethodType, FunctionType
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
R
risemeup1 已提交
32 33 34

from .proto import framework_pb2, data_feed_pb2

35
from . import core
36
from . import unique_name
37 38
import paddle.version as fluid_version
import warnings
39
import functools
40
from .variable_index import _getitem_impl_, _setitem_impl_
41
import threading
Y
Yu Yang 已提交
42

43
__all__ = [
44 45 46 47
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
48
    'name_scope',
J
jianghaicheng 已提交
49
    'ipu_shard_guard',
50
    'set_ipu_shard',
S
sneaxiy 已提交
51 52
    'cuda_places',
    'cpu_places',
53
    'xpu_places',
S
sneaxiy 已提交
54
    'cuda_pinned_places',
L
lujun 已提交
55
    'in_dygraph_mode',
56
    'is_compiled_with_cinn',
C
chengduo 已提交
57
    'is_compiled_with_cuda',
58
    'is_compiled_with_rocm',
59
    'is_compiled_with_xpu',
60
    'Variable',
61
    'require_version',
62
    'device_guard',
G
guofei 已提交
63 64
    'set_flags',
    'get_flags',
65
]
Y
Yu Yang 已提交
66

Q
qiaolongfei 已提交
67 68 69 70
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
71 72
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

73

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
# use thread local to create thread save global variables.
class GlobalThreadLocal(threading.local):
    def __init__(self):
        """
        init the thread local data.
        TODO(xiongkun): how to access another thread local data ?
        """
        global _dygraph_tracer_
        self._in_declarative_mode_ = False
        self._functional_dygraph_context_manager = None
        self._dygraph_tracer_ = _dygraph_tracer_

    def __str__(self):
        strings = []
        strings.append(
            "_in_declarative_mode_:" + str(self._in_declarative_mode_)
        )
        strings.append(
            "_functional_dygraph_context_manager:"
            + str(self._functional_dygraph_context_manager)
        )
        strings.append("_dygraph_tracer_:" + str(self._dygraph_tracer_))
        return "\n".join(strings)

    def __setattr__(self, name, val):
        if name == '_dygraph_tracer_':
            global _dygraph_tracer_
            _dygraph_tracer_ = val
        self.__dict__[name] = val


L
lujun 已提交
105
_dygraph_tracer_ = None
106 107
global_var = GlobalThreadLocal()

108
_global_expected_place_ = None
109
_current_device = None
110
global_prog_seed = 0
111
_current_pipeline_stage = None
112
_current_cuda_graph_mode = None
113
_global_flags_ = core.globals()
114

J
Jiabin Yang 已提交
115

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
# special_op_attrs, extra_op_attrs are prepared for printing warnings
# when turning on FLAGS_print_extra_attrs
special_op_attrs = {
    "elementwise_add": [{"axis": -1}],
    "elementwise_sub": [{"axis": -1}],
    "elementwise_mul": [{"axis": -1}],
    "elementwise_div": [{"axis": -1}],
    "elementwise_max": [{"axis": -1}],
    "elementwise_min": [{"axis": -1}],
    "elementwise_pow": [{"axis": -1}],
    "elementwise_mod": [{"axis": -1}],
    "elementwise_floordiv": [{"axis": -1}],
    "less_than": [{"axis": -1}],
    "less_equal": [{"axis": -1}],
    "greater_than": [{"axis": -1}],
    "greater_equal": [{"axis": -1}],
    "equal": [{"axis": -1}],
    "not_equal": [{"axis": -1}],
    "amax": [{"reduce_all": False}],
    "amin": [{"reduce_all": False}],
    "any": [{"reduce_all": False}],
    "frobenius_norm": [{"reduce_all": False}],
    "logsumexp": [{"reduce_all": False}],
    "reduce_max": [{"reduce_all": False}],
    "reduce_min": [{"reduce_all": False}],
    "reduce_mean": [{"reduce_all": False}],
    "reduce_prod": [{"reduce_all": False}],
    "reduce_sum": [{"reduce_all": False}],
}

extra_op_attrs = {
    "gather": ["overwrite"],
    "graph_reindex": ["flag_buffer_hashtable"],
    "graph_sample_neighbors": ["flag_perm_buffer"],
    "relu6": ["threshold"],
    "swish": ["beta"],
    "hsigmoid_loss": ["remote_prefetch"],
    "max_pool2d_with_index": ["global_pooling"],
    "uniform": ["diag_num"],
    "unique": ["is_sorted"],
}

K
Kim Yann 已提交
158
# FIXME(dev): We haven't fully verified eager mode on XPU et.al but
159 160 161 162
# only GPU/CPU. Remove this after we improve this feature.
_is_first_import_ = True


J
Jiabin Yang 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
def in_dygraph_mode():
    """

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .

    Returns:
        bool: Whether paddle runs in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
184
            print(paddle.in_dynamic_mode())  # False, Now we are in static graph mode
J
Jiabin Yang 已提交
185 186 187 188 189

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode

    """
190
    return global_var._dygraph_tracer_ is not None
J
Jiabin Yang 已提交
191 192


193 194
global_ipu_index = -1
global_ipu_stage = -1
J
jianghaicheng 已提交
195 196 197 198 199
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


@signature_safe_contextmanager
200
def ipu_shard_guard(index=-1, stage=-1):
J
jianghaicheng 已提交
201 202 203 204
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
W
Weilong Wu 已提交
205
        index(int, optional): Specify which ipu the Tensor is computed on, (such as '0, 1, 2, 3').
206
            The default value is -1, which means the Op only run on IPU 0.
W
Weilong Wu 已提交
207
        stage(int, optional): Specify the computation order of the sharded model(such as '0, 1, 2, 3').
208
            The sharded model will be computed from small to large. The default value is -1,
J
jianghaicheng 已提交
209
            which means no pipelining computation order and run Ops in terms of graph.
210

G
gouzil 已提交
211 212 213 214 215 216 217
    Note:
        Only if the enable_manual_shard=True, the 'index' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        Only if the enable_pipelining=True, the 'stage' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        A index is allowed to match none stage or a stage. A stage is only allowed to match a new or
        duplicated index.
J
jianghaicheng 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


252 253 254 255
def set_ipu_shard(call_func, index=-1, stage=-1):
    """
    Shard the ipu with the given call function. Set every ops in call function to the given ipu sharding.

G
gouzil 已提交
256 257 258 259 260
    Note:
        Only when enable_manual_shard=True to set the index to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        Only when enable_pipelining=True to set stage to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        An index supports a corresponding None stage or a stage, and a stage only supports a new index or a duplicate index.

261 262 263 264 265
    Args:
        call_func(Layer|function): Specify the call function to be wrapped.
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is -1, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
266
            The sharded model will be computed from small to large. The default value is -1,
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
            which means no pipelining computation order and run Ops in terms of graph.

    Returns:
        The wrapped call function.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='float32')
            relu = paddle.nn.ReLU()
            relu = paddle.static.set_ipu_shard(relu, index=1, stage=1)
            relu(a)
    """

    def decorate(func):
        def wrapper(*args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return func(*args, **kwargs)

        return wrapper

292
    from paddle.nn import Layer
293

294 295 296 297 298
    if not isinstance(call_func, Layer):
        if callable(call_func):
            return decorate(call_func)
        else:
            raise TypeError(
299 300
                "Unsupported type. Only accept paddle.nn.Layer or function."
            )
301 302 303 304 305 306 307 308 309 310 311 312

    # patch paddle.nn.Layer
    class BlockFn(type(call_func)):
        def __call__(self, *args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return super().__call__(*args, **kwargs)

    BlockFn.__name__ = type(call_func).__name__
    call_func.__class__ = BlockFn
    return call_func


313 314
def require_version(min_version, max_version=None):
    """
315 316 317
    Check if the installed version of PaddlePaddle is in [min_version, max_version],
    if the installed version is lower than ``min_version`` or higher than ``max_version``,
    an exception will be thrown, NO returns if the installed version is satisfied.
318

319 320 321 322
    Args:
        min_version (str): the minimum version required (like '1.4.0').
        max_version (str, optional): the max version required (like '1.6.0'), default is None,
            meaning any version equal or higher than ``min_version`` is acceptable.
323

324 325
    Returns:
        None.
326

327 328 329 330 331 332
    Raises:
        TypeError: if the type of ``min_version`` is not str.
        TypeError: if the type of ``max_version`` is not str or type(None).
        ValueError: if the value of ``min_version`` is not in version format.
        ValueError: if the value of ``max_version`` is not in version format or None.
        Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.
333

334 335
    Examples:
        .. code-block:: python
336

337
            import paddle.fluid as fluid
338

339 340
            # any version >= 0.1.0 is acceptable.
            fluid.require_version('0.1.0')
341

342 343 344
            # if 0.1.0 <= version <= 10.0.0, it is acceptable.
            fluid.require_version(min_version='0.1.0', max_version='10.0.0')
    """
345 346 347
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
348 349
            % (type(min_version))
        )
350 351 352 353

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
354 355
            % (type(max_version))
        )
356 357 358 359 360

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
361 362
            "like '1.5.2.0', but received %s" % min_version
        )
363 364 365 366 367 368

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
369 370
                "like '1.5.2.0', but received %s" % max_version
            )
371 372

    version_installed = [
373 374 375 376
        fluid_version.major,
        fluid_version.minor,
        fluid_version.patch,
        fluid_version.rc,
377 378 379 380
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
381
        for i in range(len(ver_a)):
382 383 384 385 386 387 388 389 390 391 392
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
393 394 395
                "please make sure the version is good with your code."
                % (min_version, max_version, fluid_version.full_version)
            )
396 397 398 399
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
400 401 402
                "please make sure the version is good with your code."
                % (min_version, fluid_version.full_version)
            )
403 404 405
        return

    min_version_split = min_version.split('.')
406 407 408
    min_version_to_check = (
        min_version_split + zero_version[len(min_version_split) :]
    )
409 410 411

    if max_version is not None:
        max_version_split = max_version.split('.')
412 413 414
        max_version_to_check = (
            max_version_split + zero_version[len(max_version_split) :]
        )
415

416 417 418 419
        if (
            version_cmp(version_installed, max_version_to_check) > 0
            or version_cmp(version_installed, min_version_to_check) < 0
        ):
420 421
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
422 423
                % (min_version, max_version, fluid_version.full_version)
            )
424 425 426 427 428
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
429 430
                % (min_version, fluid_version.full_version, min_version)
            )
431 432


433 434
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
435
        assert not in_dygraph_mode(), (
436 437
            "We don't support %s in dynamic graph mode" % func.__name__
        )
438 439 440 441 442 443 444
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
445
        assert in_dygraph_mode(), (
446 447 448
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
449 450 451 452 453
        return func(*args, **kwargs)

    return __impl__


454 455 456
def _non_static_only_(func):
    def __impl__(*args, **kwargs):
        from .dygraph.base import in_declarative_mode
457

458
        assert in_dygraph_mode() or in_declarative_mode(), (
459 460 461
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
462 463 464 465 466
        return func(*args, **kwargs)

    return __impl__


467 468
def _static_only_(func):
    def __impl__(*args, **kwargs):
469
        assert not in_dygraph_mode(), (
470 471 472
            "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode."
            % func.__name__
        )
473 474 475 476 477
        return func(*args, **kwargs)

    return __impl__


478 479 480 481 482
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


483
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
W
wanghuancoder 已提交
484 485
# used to make Variable and Tensor has same interfaces, like numpy. Since Tensor is not exposed in our
# official docments, logically, we want to keep Tensor and logically consistent. While, actually,
486 487
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
W
wanghuancoder 已提交
488
# TODO(zhiqiu): We should make Tensor consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
489
# same base class.
490 491 492
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
493 494
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
R
Ryan 已提交
495
            "  2. If you are using `@paddle.jit.to_static`, you can call `paddle.jit.enable_to_static(False)`. "
496
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
497 498
            % (func.__name__, func.__name__)
        )
499 500 501 502

    return __impl__


T
tangwei12 已提交
503 504
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
505 506 507 508 509 510 511 512 513
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
514 515
                DeprecationWarning,
            )
516 517 518 519 520 521 522
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


523 524
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
525
static_only = wrap_decorator(_static_only_)
526
fake_interface_only = wrap_decorator(_fake_interface_only_)
527
non_static_only = wrap_decorator(_non_static_only_)
528 529


L
lujun 已提交
530
def _dygraph_tracer():
531
    return global_var._dygraph_tracer_
532

W
Wu Yi 已提交
533

534 535 536 537
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
538
def _current_expected_place():
539 540 541
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
542 543 544 545 546
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
547
                _global_expected_place_ = core.CUDAPlace(_cuda_ids()[0])
548 549 550 551 552
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
553 554 555 556 557 558
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
559
                _global_expected_place_ = core.XPUPlace(_xpu_ids()[0])
560 561 562 563 564
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
        elif len(core.get_all_custom_device_type()) > 0:
            dev_type = core.get_all_custom_device_type()[0]
            try:
                device_count = core.get_custom_device_count(dev_type)
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CustomPlace(
                    dev_type, _custom_device_ids(dev_type)[0]
                )
            else:
                warnings.warn(
                    "You are using CUSTOM_DEVICE version Paddle, but your custom device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
580 581 582 583 584 585 586
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
587 588
    if global_var._dygraph_tracer_ is not None:
        global_var._dygraph_tracer_._expected_place = place
589 590 591 592 593


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
594
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
595 596


S
sneaxiy 已提交
597
def _cpu_num():
598
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
599 600 601 602 603 604 605
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
606 607 608
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()
                )
            )
C
chengduo 已提交
609
        os.environ['CPU_NUM'] = str(1)
610
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
611 612 613 614 615 616 617 618
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
619
        device_ids = range(core.get_cuda_device_count())
C
chengduo 已提交
620
    return device_ids
S
sneaxiy 已提交
621 622


623 624 625 626 627
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
628
        device_ids = range(core.get_xpu_device_count())
629 630 631
    return device_ids


632 633 634 635 636 637 638 639 640
def _custom_device_ids(device_type):
    custom_devices_env = os.getenv("FLAGS_selected_" + device_type + "s")
    if custom_devices_env:
        device_ids = [int(s) for s in custom_devices_env.split(",")]
    else:
        device_ids = range(core.get_custom_device_count(device_type))
    return device_ids


641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


656 657 658 659 660 661 662
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
663

664 665 666 667 668 669
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

Z
Zman 已提交
670 671
    Returns:
        None
672 673 674 675 676 677 678 679 680 681

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


682 683 684 685
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

686 687
    Returns:
        Bool: `True` if CINN is currently available, otherwise `False`.
688 689 690 691 692 693 694 695 696 697

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
698 699 700 701
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

702 703
    Returns:
        Bool: `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
704 705 706 707

    Examples:
        .. code-block:: python

708
            import paddle
709
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
710 711 712 713
    """
    return core.is_compiled_with_cuda()


714 715 716 717
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

718 719
    Returns:
        Bool: `True` if ROCm is currently available, otherwise `False`.
720 721 722 723 724

    Examples:
        .. code-block:: python

            import paddle
725
            support_gpu = paddle.device.is_compiled_with_rocm()
726 727 728 729
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
730
def cuda_places(device_ids=None):
L
lujun 已提交
731
    """
732
    Note:
733 734 735
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
736
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
737 738

    If :code:`device_ids` is None, environment variable of
739
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
740
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
741
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
742
    If :code:`FLAGS_selected_gpus` is not set, all visible
743
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
744 745

    If :code:`device_ids` is not None, it should be the device
746
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
747
    the returned list would be
C
Chen Weihang 已提交
748
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
749

750
    Parameters:
751
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
752 753

    Returns:
C
Chen Weihang 已提交
754
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
755 756

    Examples:
757

L
lujun 已提交
758 759
        .. code-block:: python

C
Chen Weihang 已提交
760 761
            import paddle
            import paddle.static as static
T
tangwei12 已提交
762

763
            # required: gpu
764

C
Chen Weihang 已提交
765 766 767
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
768 769

    """
770
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
771
    if device_ids is None:
C
chengduo 已提交
772
        device_ids = _cuda_ids()
S
sneaxiy 已提交
773 774 775 776 777
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


778 779 780 781
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
782 783 784 785 786 787 788 789 790
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
791
        the returned list would be
S
sunzhongkai588 已提交
792
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
793

794 795 796 797 798 799
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
800

801 802
            # required: xpu

803 804
            import paddle
            import paddle.static as static
805

806 807 808
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
809
    assert core.is_compiled_with_xpu(), "Not compiled with XPU"
810 811 812 813 814 815 816
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
817
def cpu_places(device_count=None):
L
lujun 已提交
818
    """
C
Chen Weihang 已提交
819
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
820

S
add doc  
sneaxiy 已提交
821
    If :code:`device_count` is None, the device count would
822
    be determined by environment variable :code:`CPU_NUM`.
C
chengduo 已提交
823 824
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
825 826
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
827

828 829
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
830 831

    Returns:
C
Chen Weihang 已提交
832
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
833 834

    Examples:
835

L
lujun 已提交
836 837
        .. code-block:: python

C
Chen Weihang 已提交
838 839
            import paddle
            import paddle.static as static
T
tangwei12 已提交
840

C
Chen Weihang 已提交
841 842 843
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
844 845
    """

S
sneaxiy 已提交
846 847 848 849 850 851
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
852
    """
853
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
854 855

    If :code:`device_count` is None, the device count would
856
    be determined by environment variable :code:`CPU_NUM`.
857 858 859 860
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
861

862 863
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
864 865

    Returns:
866
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
867 868 869 870

    Examples:
        .. code-block:: python

871
            import paddle.fluid as fluid
L
lujun 已提交
872 873 874 875 876
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
877
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
878
    if device_count is None:
879 880
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
881 882


883
class NameScope:
884 885 886 887 888 889 890 891 892 893
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
894 895 896
            new_child = NameScope(
                prefix + "_%d" % len(self._children[prefix]), self
            )
897 898 899 900 901 902 903 904 905 906 907 908 909
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
910
@signature_safe_contextmanager
911 912
def name_scope(prefix=None):
    """
913

914
    Generate hierarchical name prefix for the operators in Static Graph.
915

916
    Note:
T
Tao Luo 已提交
917 918
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
919
        Don't use it in dygraph, since it will cause memory leak.
920 921

    Args:
T
Tao Luo 已提交
922
        prefix(str, optional): prefix. Default is none.
923 924

    Examples:
925

926
        .. code-block:: python
T
Tink_Y 已提交
927

928 929 930
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
931
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
932
             b = a + 1
933
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
934
                c = b * 1
935
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
936
                d = c / 1
937 938 939
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
940 941
                g = f - 1

942
          # Op are created in the default main program.
943
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
959 960
    """
    # TODO(panyx0718): Only [0-9a-z].
961
    # in dygraph we don't need namescope since it will cause mem leak
962
    if in_dygraph_mode():
L
Leo Chen 已提交
963 964
        yield
    else:
T
tianshuo78520a 已提交
965
        assert prefix, "namescope prefix can not be empty."
966 967
        global _name_scope
        _name_scope = _name_scope.child(prefix)
968 969 970 971
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
972 973 974 975 976 977 978 979 980 981 982 983


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
984 985
def generate_control_dev_var_name():
    import random
986

W
Wu Yi 已提交
987
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
988 989 990 991


def grad_var_name(var_name):
    """
992 993
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
994 995 996
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
997

998
def convert_np_dtype_to_dtype_(np_dtype):
999
    """
1000
    Convert the data type in numpy to the data type in Paddle.
1001

1002
    Args:
1003 1004
        np_dtype (np.dtype|str): The data type in numpy or valid data type
            string.
1005

1006
    Returns:
1007
        core.VarDesc.VarType: The data type in Paddle.
1008 1009

    """
1010 1011
    # Convert the data type string to numpy data type.
    if isinstance(np_dtype, str) and np_dtype == "bfloat16":
1012 1013 1014
        dtype = np.uint16
    else:
        dtype = np.dtype(np_dtype)
1015

1016
    if dtype == np.float32:
1017
        return core.VarDesc.VarType.FP32
1018
    elif dtype == np.float64:
1019
        return core.VarDesc.VarType.FP64
1020
    elif dtype == np.float16:
1021
        return core.VarDesc.VarType.FP16
1022
    elif dtype == np.int32:
1023
        return core.VarDesc.VarType.INT32
1024
    elif dtype == np.int16:
1025
        return core.VarDesc.VarType.INT16
1026
    elif dtype == np.int64:
1027
        return core.VarDesc.VarType.INT64
1028
    elif dtype == np.bool_:
1029
        return core.VarDesc.VarType.BOOL
1030
    elif dtype == np.uint16:
1031 1032 1033
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
1034 1035
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
1036 1037
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
1038 1039 1040 1041
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
1042
    else:
M
minqiyang 已提交
1043
        raise ValueError("Not supported numpy dtype %s" % dtype)
1044 1045 1046


def dtype_is_floating(dtype):
1047 1048 1049
    """
    Check the data type is floating or not.
    Args:
1050
        dtype(np.dtype|core.VarDesc.VarType): data type.
1051 1052 1053 1054 1055
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1056
    if not isinstance(dtype, core.VarDesc.VarType):
1057 1058
        dtype = convert_np_dtype_to_dtype_(dtype)

1059
    return dtype in [
1060 1061 1062
        core.VarDesc.VarType.FP16,
        core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64,
1063
    ]
1064 1065


Y
Yang Yang(Tony) 已提交
1066
def _debug_string_(proto, throw_on_error=True):
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1078
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1079
    if not proto.IsInitialized(error_fields) and throw_on_error:
1080 1081
        raise ValueError(
            "{0} are not initialized.\nThe message is {1}:\n".format(
1082 1083 1084
                error_fields, proto
            )
        )
Y
Yu Yang 已提交
1085 1086 1087
    return proto.__str__()


1088
def _create_tensor(
1089 1090 1091 1092 1093
    type=core.VarDesc.VarType.LOD_TENSOR,
    name=None,
    shape=None,
    dtype=None,
    persistable=None,
1094
    **kwargs,
1095
):
1096 1097 1098 1099
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

W
wanghuancoder 已提交
1100 1101 1102 1103 1104 1105 1106 1107 1108
    eager_tensor = core.eager.Tensor(
        dtype if dtype else core.VarDesc.VarType.FP32,
        list(shape) if shape else [],
        name,
        type if type else core.VarDesc.VarType.LOD_TENSOR,
        True if persistable else False,
    )
    eager_tensor.retain_grads()
    return eager_tensor
1109 1110


1111 1112 1113 1114 1115 1116 1117
def _all_is_type(vals, expected_type):
    """
    Return True if type of each element is expected_type.

    NOTE: BuiltIn all() will always return True if vals is empty.
    """
    assert isinstance(vals, (list, tuple))
1118 1119
    if not vals:
        return False
1120 1121 1122
    return all(isinstance(v, expected_type) for v in vals)


1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
def wrap_as_scalar(number):
    """Wrap a number(either python scalar or numpy scalar) as core.Scalar if
    it is not a scalar.


    Args:
        number (Number): number

    Returns:
        Scalar: A Scalar that contains the value.
    """
    if isinstance(number, core.Scalar):
        return number
    if isinstance(number, (bool, int, float, complex)):
        return core.Scalar(number)
    if isinstance(number, np.number):
        # it is a numpy scalar
        return core.Scalar(number.item())
    else:
        raise TypeError("Cannot wrap {} as core.Scalar".format(number))


def wrap_as_scalars(array):
    """This function is used to convert flat list, or numpy array(not
    necesarily flat) to list of core.Scalar, which correspond to
    std::vector<paddle::experimental::Scalar> in operator runtime.

    Args:
        array (List | np.ndarray): array of numbers

    Returns:
        List: list of core.Scalar, of which each element is a Scalar containing
          the corresponding value.
    """
    if isinstance(array, np.ndarray):
        array = array.ravel().tolist()
    return [wrap_as_scalar(item) for item in array]


def extract_plain_list(array):
    """extract value from a list of core.Scalar.

    Args:
        array (list): Scalars

    Returns:
        list: values extracted from the scalars.
    """
    return [item.value() for item in array]


def canonicalize_attrs(attrs, op_proto):
    """This function is used to canonicalize attributes(as a string->any dict)
    according to the type specification in the OpProto. This is especially
    important for operators that has any attributes of type Scalar or Scalars.

    Though various frontends of phi kernels & paddle operators can wrap variables
    of concrete types into Scalars(a tagged union of several numeric types) or
    vector of Scalars. Paddle operator requires strict type matching.

    Args:
        attrs (Dict[str, Any]): attribute dict intended to pass to an operator.
        op_proto (OpProto): Proto (signature) of the operator.

    Returns:
        Dict[str, Any]: canonicalized attributes.
    """
    canonicalized_attrs = attrs.copy()  # shallow copy is enough here
    for attr in op_proto.attrs:
        attr_name = attr.name
        type_index = attr.type
        if (attr_name not in attrs) or (attrs[attr_name] is None):
            continue

        attr_val = attrs[attr_name]

        # VAR and VARS should be skipped
        if isinstance(attr_val, Variable):
            continue
        if isinstance(attr_val, list) and _all_is_type(attr_val, Variable):
            continue

        # wrap
        if type_index == core.AttrType.SCALAR:
            canonicalized_attrs[attr_name] = core.Scalar(attr_val)
        elif type_index == core.AttrType.SCALARS:
            # it should be a list (or a numpy array)
            if len(attr_val) > 0:
                attr_val = np.array(attr_val).ravel().tolist()
                attr_val = [core.Scalar(x) for x in attr_val]
                canonicalized_attrs[attr_name] = attr_val

    return canonicalized_attrs


1218 1219 1220 1221 1222
class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1223
            return issubclass(t, core.eager.Tensor)
1224 1225 1226 1227 1228 1229 1230 1231 1232
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1233
            return issubclass(t, EagerParamBase)
1234 1235 1236 1237
        else:
            return issubclass(t, Parameter)


1238
class Variable(metaclass=VariableMetaClass):
1239
    """
J
Jiabin Yang 已提交
1240

U
ustiniankw 已提交
1241 1242 1243 1244
    Notes:
        The constructor of Variable should not be invoked directly.

        In Static Graph Mode: Please use ** `Block.create_var` ** to create a Static variable which has no data until being feed.
1245

U
ustiniankw 已提交
1246
        In Dygraph Mode: Please use ** :ref:`api_fluid_dygraph_to_variable` ** to create a dygraph variable with real data.
J
Jiabin Yang 已提交
1247 1248

    In Fluid, every input and output of an OP is a variable. In most
1249
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1250 1251
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1252

1253
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1254
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1255

T
tianshuo78520a 已提交
1256
    Most of a Variable's member variables can be set to be None. It mean
1257
    it is not available or will be specified later.
1258

1259
    Examples:
1260 1261
        In Static Graph Mode:

1262 1263
        .. code-block:: python

1264
            import paddle.fluid as fluid
1265
            cur_program = fluid.Program()
1266 1267 1268 1269
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1270

1271
        In Dygraph  Mode:
1272 1273 1274 1275 1276 1277 1278 1279 1280

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1281 1282
    """

1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297
    def __init__(
        self,
        block,
        type=core.VarDesc.VarType.LOD_TENSOR,
        name=None,
        shape=None,
        dtype=None,
        lod_level=None,
        capacity=None,
        persistable=None,
        error_clip=None,
        stop_gradient=False,
        is_data=False,
        need_check_feed=False,
        belong_to_optimizer=False,
1298
        **kwargs,
1299
    ):
Y
Yu Yang 已提交
1300 1301
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1302
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1303

Y
Yu Yang 已提交
1304
        if dtype is not None:
1305
            if not isinstance(dtype, core.VarDesc.VarType):
1306
                dtype = convert_np_dtype_to_dtype_(dtype)
1307

S
Steffy-zxf 已提交
1308 1309 1310 1311
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

1312 1313 1314
        if type == core.VarDesc.VarType.SPARSE_COO:
            lod_level = None

H
hong 已提交
1315 1316
        self.belong_to_optimizer = belong_to_optimizer

1317 1318 1319
        self.error_clip = error_clip

        is_new_var = False
1320
        self.desc = self.block.desc.find_var(name.encode())
1321

1322
        if self.desc is None:
1323
            self.desc = self.block.desc.var(name.encode())
1324
            is_new_var = True
1325

1326 1327 1328
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
1329 1330 1331 1332 1333
            raise ValueError(
                "Variable '{0}' has been created before. The "
                "previous type is {1}, the new type is {2}. They"
                " are not matched".format(self.name, self.desc.type(), type)
            )
1334

1335
        if shape is not None:
1336
            if is_new_var:
1337 1338 1339 1340 1341 1342
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1343 1344
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1345 1346
                        "matched.".format(self.name, old_shape, shape)
                    )
1347 1348 1349 1350 1351 1352
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
1353 1354 1355 1356 1357 1358
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous data type is {1}, the new "
                        "data type is {2}. They are not "
                        "matched.".format(self.name, old_dtype, dtype)
                    )
1359 1360 1361 1362 1363 1364

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
1365 1366 1367 1368 1369 1370
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous lod_level is {1}, the new "
                        "lod_level is {2}. They are not "
                        "matched".format(self.name, self.lod_level, lod_level)
                    )
1371 1372 1373 1374 1375 1376
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1377 1378
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1379
                        "persistable is {2}. They are not matched".format(
1380 1381 1382
                            self.name, self.persistable, persistable
                        )
                    )
1383

1384 1385
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1386

1387 1388 1389 1390 1391 1392 1393
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1394

1395 1396
        self.block.vars[name] = self
        self.op = None
1397
        self.stop_gradient = stop_gradient
1398
        self.is_data = is_data
Y
Yu Yang 已提交
1399

1400 1401
    def detach(self):
        """
U
ustiniankw 已提交
1402

1403
        Returns a new Variable, detached from the current graph.
1404 1405
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1406

1407
        Returns:
U
ustiniankw 已提交
1408
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable), The detached Variable.
1409 1410 1411 1412

        Examples:
            .. code-block:: python

1413
                import paddle
1414

1415 1416 1417 1418
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1419

1420 1421
                # create a detached Variable
                y = x.detach()
U
ustiniankw 已提交
1422

1423
        """
1424

1425 1426 1427 1428
        assert (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ), "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"
1429 1430 1431 1432 1433 1434

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
1435 1436
            stop_gradient=True,
        )
1437

1438 1439 1440
        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]}
        )
1441
        return output
1442

1443
    @fake_interface_only
1444
    def numpy(self):
1445
        """
J
Jiabin Yang 已提交
1446
        **Notes**:
T
tianshuo78520a 已提交
1447
            **This API is ONLY available in Dygraph mode**
1448

J
Jiabin Yang 已提交
1449
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1450 1451 1452 1453 1454

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1455
            ndarray: dtype is same as current Variable
1456 1457 1458 1459 1460 1461

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1462
                from paddle.fluid.dygraph import Linear
1463 1464 1465 1466
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1467
                    linear = Linear(32, 64)
1468
                    data = to_variable(data)
1469
                    x = linear(data)
1470 1471 1472
                    print(x.numpy())

        """
1473
        pass
1474

1475
    @non_static_only
1476
    def backward(self, retain_graph=False):
1477
        """
J
Jiabin Yang 已提交
1478
        **Notes**:
T
tianshuo78520a 已提交
1479
            **This API is ONLY available in Dygraph mode**
1480

1481
        Run backward of current Graph which starts from current Tensor.
1482

J
Jiabin Yang 已提交
1483
        Args:
1484 1485 1486 1487
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1488

J
Jiabin Yang 已提交
1489 1490
        Returns:
            NoneType: None
1491 1492 1493 1494 1495

        Examples:
            .. code-block:: python

                import numpy as np
1496 1497
                import paddle
                paddle.disable_static()
1498 1499

                x = np.ones([2, 2], np.float32)
1500 1501 1502 1503 1504 1505 1506
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1507 1508
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1509
                loss.backward()
1510 1511

        """
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
        from .backward import append_backward

        if retain_graph is True:
            raise AssertionError(
                "`retain_graph` == True is not supported in @to_static function."
                "please set retain_graph = False."
            )
        param_grad_list = append_backward(self)
        for param, param_grad in param_grad_list:
            # set grad to simulate dygraph loss.backward() in static mode.
            setattr(param, "grad", param_grad)
1523

1524
    @fake_interface_only
1525
    def gradient(self):
1526
        """
J
Jiabin Yang 已提交
1527
        **Notes**:
T
tianshuo78520a 已提交
1528
            **This API is ONLY available in Dygraph mode**
1529 1530 1531

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1532
        Returns:
1533
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1534 1535 1536 1537

        Examples:
            .. code-block:: python

1538
                import paddle
1539 1540 1541
                import paddle.fluid as fluid
                import numpy as np

1542
                # example1: return ndarray
1543 1544 1545 1546 1547 1548 1549
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
1550
                    ret2 = paddle.add_n(inputs2)
1551
                    loss2 = paddle.sum(ret2)
1552
                    loss2.backward()
1553 1554
                    print(loss2.gradient())

1555 1556
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
1557 1558 1559 1560 1561
                    embedding = paddle.nn.Embedding(
                        20,
                        32,
                        weight_attr='emb.w',
                        sparse=True)
1562 1563 1564 1565 1566 1567 1568
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1569
        """
1570
        pass
1571

1572
    @fake_interface_only
1573
    def clear_gradient(self):
1574
        """
J
Jiabin Yang 已提交
1575
        **Notes**:
T
tianshuo78520a 已提交
1576
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1577 1578

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1579

J
Jiabin Yang 已提交
1580
        Clear  (set to ``0`` ) the Gradient of Current Variable
1581 1582 1583 1584 1585 1586

        Returns:  None

        Examples:
            .. code-block:: python

1587
                import paddle
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
1598
                    ret2 = paddle.add_n(inputs2)
1599
                    loss2 = paddle.sum(ret2)
1600
                    loss2.backward()
1601 1602 1603 1604 1605
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1606
        pass
X
Xin Pan 已提交
1607

1608
    def register_hook(self, hook):
1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625
        import paddle

        def backward_hook_wrapper(dy):
            """call the backward hook in ."""
            return hook(np.array(dy))

        def forward_hook_wrapper(x):
            """do nothing but return a new variable."""
            return x

        paddle.static.py_func(
            func=forward_hook_wrapper,
            x=self,
            out=self,
            backward_func=backward_hook_wrapper,
            skip_vars_in_backward_input=[self],
        )
1626

1627
    def __str__(self):
1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1644 1645
                import paddle
                import paddle.static as static
1646

1647 1648 1649
                paddle.enable_static()

                cur_program = static.Program()
1650 1651 1652 1653 1654 1655
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1656 1657
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1658 1659 1660 1661
        if (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ):
1662
            dtype_str = str(self.dtype).split('.')[1]
1663 1664 1665 1666 1667 1668 1669
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".format(
                name=self.name,
                type=type_str,
                shape=self.shape,
                dtype=dtype_str,
                stop_gradient=self.stop_gradient,
            )
1670
        else:
1671
            var_str = "{name} : {type})".format(name=self.name, type=type_str)
1672

1673
        if self.is_parameter:
1674 1675 1676 1677 1678 1679 1680 1681 1682 1683
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1684 1685 1686 1687
        from paddle.distributed.auto_parallel.dist_context import (
            get_default_distributed_context,
        )

1688
        dist_context = get_default_distributed_context()
1689 1690
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1691 1692 1693
            var_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_tensor
            )
1694

1695
        return var_str
Y
Yang Yang(Tony) 已提交
1696

F
update  
fengjiayi 已提交
1697
    def to_string(self, throw_on_error, with_details=False):
1698 1699 1700
        """
        Get debug string.

J
Jiabin Yang 已提交
1701 1702 1703 1704 1705
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1706

1707 1708
        Returns:
            str: The debug string.
1709 1710 1711 1712 1713

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1714
                import paddle
1715

1716
                paddle.enable_static()
1717 1718 1719 1720 1721
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1722
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1723
                print("=============with detail===============")
1724
                print(new_variable.to_string(True, True))
1725
        """
1726
        assert isinstance(throw_on_error, bool) and isinstance(
1727 1728
            with_details, bool
        )
1729
        protostr = self.desc.serialize_to_string()
1730
        proto = framework_pb2.VarDesc.FromString(bytes(protostr))
F
update  
fengjiayi 已提交
1731 1732
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1733
            additional_attr = ("error_clip",)
F
update  
fengjiayi 已提交
1734
            for attr_name in additional_attr:
1735
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
1736

F
update  
fengjiayi 已提交
1737
        return res_str
1738 1739 1740

    __repr__ = __str__

1741 1742 1743
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
1744

1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1768
    @property
1769
    def stop_gradient(self):
J
Jiabin Yang 已提交
1770 1771 1772
        """
        Indicating if we stop gradient from current Variable

1773
        **Notes: This Property has default value as** ``True`` **in** Dygraph **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``
J
Jiabin Yang 已提交
1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1785 1786
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1787 1788 1789
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1790 1791
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1792 1793 1794 1795
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1796
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1797 1798
                assert (out1.gradient() == 0).all()
        """
1799
        return self.desc.stop_gradient()
1800

1801 1802
    @stop_gradient.setter
    def stop_gradient(self, s):
1803
        self.desc.set_stop_gradient(s)
1804

1805 1806
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1807 1808 1809 1810 1811 1812 1813 1814
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

1815
            **2. In** Dygraph **mode, this property should not be changed**
J
Jiabin Yang 已提交
1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1828
        return self.desc.persistable()
1829

Y
Yu Yang 已提交
1830 1831
    @persistable.setter
    def persistable(self, p):
1832
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1833

1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1859 1860
    @property
    def name(self):
J
Jiabin Yang 已提交
1861 1862 1863
        """
        Indicating name of current Variable

1864
        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** Dygraph **mode. This is how we achieve Parameter sharing**
J
Jiabin Yang 已提交
1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1877
        return self.desc.name()
Y
Yu Yang 已提交
1878

1879 1880 1881 1882 1883 1884
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1885 1886
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1887

1888 1889 1890
        Examples:
          .. code-block:: python

1891
          import paddle
1892

1893
          x = paddle.static.data(name="x", shape=[-1, 23, 48], dtype='float32')
1894
          print(x.grad_name) # output is ``x@GRAD``
1895 1896 1897 1898

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1899 1900
    @name.setter
    def name(self, new_name):
1901
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1902

Y
Yu Yang 已提交
1903 1904
    @property
    def shape(self):
J
Jiabin Yang 已提交
1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1922
        # convert to tuple, make it as same as numpy API.
1923
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1924 1925

    @property
F
fengjiayi 已提交
1926
    def dtype(self):
J
Jiabin Yang 已提交
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1943
        return self.desc.dtype()
Y
Yu Yang 已提交
1944 1945 1946

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1947 1948 1949 1950 1951 1952 1953 1954
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

1955
            **2. Don't support this property in** Dygraph **mode, it's value should be** ``0(int)``
J
Jiabin Yang 已提交
1956 1957 1958 1959

        Examples:
          .. code-block:: python

1960
            import paddle
J
Jiabin Yang 已提交
1961
            import paddle.fluid as fluid
1962 1963

            paddle.enable_static()
J
Jiabin Yang 已提交
1964 1965 1966 1967 1968 1969 1970
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1971 1972
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
1973 1974
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
1975
        return self.desc.lod_level()
Y
Yu Yang 已提交
1976

Y
Yu Yang 已提交
1977 1978
    @property
    def type(self):
J
Jiabin Yang 已提交
1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1995
        return self.desc.type()
Y
Yu Yang 已提交
1996

1997 1998 1999
    @property
    def T(self):
        """
U
ustiniankw 已提交
2000

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
U
ustiniankw 已提交
2019

2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
2032 2033
            stop_gradient=False,
        )
2034 2035 2036 2037 2038
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
2039 2040 2041 2042 2043 2044 2045 2046 2047
            stop_gradient=False,
        )

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out], 'XShape': [input_shape]},
            attrs={'axis': perm},
        )
2048 2049
        return out

2050 2051 2052
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
2053
        Variable. It remains in the current graph, that is, the cloned Variable
2054 2055 2056 2057
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
U
ustiniankw 已提交
2058
            Variable, The cloned Variable.
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
2078 2079
            stop_gradient=self.stop_gradient,
        )
2080

2081 2082 2083
        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]}
        )
2084 2085
        return output

W
Wu Yi 已提交
2086
    def _set_error_clip(self, error_clip):
2087
        """
U
ustiniankw 已提交
2088

2089 2090 2091 2092 2093 2094 2095
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
U
ustiniankw 已提交
2096

2097
        """
2098 2099
        self.error_clip = error_clip

2100 2101
    def _set_info(self, key, value):
        """
U
ustiniankw 已提交
2102

2103 2104 2105 2106 2107 2108
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

2109
        Returns:
2110
            None
U
ustiniankw 已提交
2111

2112 2113 2114 2115 2116 2117 2118
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
U
ustiniankw 已提交
2119

2120 2121 2122 2123 2124
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

2125
        Returns:
2126
            object
U
ustiniankw 已提交
2127

2128 2129 2130 2131 2132
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

2133 2134
    def _slice_indices(self, slice, length):
        """
U
ustiniankw 已提交
2135

2136
        Reference implementation for the slice.indices method.
U
ustiniankw 已提交
2137

2138 2139 2140 2141 2142 2143 2144 2145
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
2146
            raise ValueError("slice step can not be zero")
2147 2148 2149 2150 2151 2152 2153 2154 2155 2156

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
2157 2158 2159
            start = (
                max(start + length, lower) if start < 0 else min(start, upper)
            )
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
2205 2206 2207
                if (index > 0 and index >= self.shape[index]) or (
                    index < 0 and (index + self.shape[index]) < 0
                ):
2208
                    raise IndexError("invalid index")
2209 2210 2211 2212 2213
                start = (
                    max(start + self.shape[index], 0)
                    if start < 0
                    else min(start, self.shape[index])
                )
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2227
    def _cloneVar(self, copy=False):
2228 2229
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2230
                name=unique_name.generate_with_ignorable_key(self.name),
2231 2232
                dtype=self.dtype,
            )
2233 2234 2235 2236
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2237
        new_var = self._cloneVar()
2238 2239 2240 2241 2242 2243
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes, 'starts': starts, 'ends': ends},
        )
2244 2245 2246
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2247
        new_var = self._cloneVar()
2248 2249 2250 2251 2252 2253 2254 2255
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={
                'axis': axis,
            },
        )
2256 2257 2258 2259 2260
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2261
                return self._cloneVar(True)
2262 2263 2264 2265 2266 2267 2268
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
2269 2270 2271
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2272 2273 2274
                        start += step
                else:
                    while start > stop:
2275 2276 2277
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2278 2279 2280 2281
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2282
                return self._cloneVar(True)
2283
            index = int(item)
2284 2285 2286
            if (index > 0 and index >= self.shape[axis]) or (
                index < 0 and (index + self.shape[axis]) < 0
            ):
2287 2288 2289 2290 2291 2292
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2293
        return _getitem_impl_(self, item)
2294

2295
    def __setitem__(self, item, value):
2296
        return _setitem_impl_(self, item, value)
2297

2298 2299
    def get_value(self, scope=None):
        """
2300
        Get the value of variable in given scope.
2301 2302

        Args:
2303
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2304 2305 2306 2307
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
U
ustiniankw 已提交
2308
            Tensor, the value in given scope.
2309 2310 2311 2312 2313

        Examples:
            .. code-block:: python

                import paddle
2314
                import paddle.static as static
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
2339 2340
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file.
2341 2342
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
2343

2344 2345
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2346 2347 2348 2349
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2350 2351 2352 2353 2354

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
2355 2356 2357
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2358 2359 2360 2361 2362
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
U
ustiniankw 已提交
2363

2364
        Set the value to the tensor in given scope.
2365 2366 2367

        Args:
            value(Tensor/ndarray) : The value to be set.
2368
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2369 2370 2371 2372 2373
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
2374

2375 2376 2377 2378
        Examples:
            .. code-block:: python

                import paddle
2379
                import paddle.static as static
2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
U
ustiniankw 已提交
2403

2404 2405 2406
        '''

        # The 'framework' is a low-level module, and 'executor'
2407
        # can not be imported at the begainning of this file.
2408 2409 2410 2411 2412
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
2413 2414 2415 2416
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".format(
                    type(value)
                )
            )
2417 2418 2419

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2420 2421 2422 2423
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2424 2425 2426 2427 2428 2429

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
2430 2431 2432
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2433 2434 2435 2436 2437 2438 2439 2440 2441 2442

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
2443 2444 2445 2446
                    "{} expected a shape {}, but the received shape is {}.".format(
                        self.name, list(t.shape()), list(value_shape)
                    )
                )
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2464 2465
    def size(self):
        """
U
ustiniankw 已提交
2466

2467
        Returns the number of elements for current Variable, which is a int64 Variable with shape [] .
2468 2469

        Returns:
U
ustiniankw 已提交
2470
            Variable, the number of elements for current Variable
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
U
ustiniankw 已提交
2484

2485 2486 2487 2488
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
2489 2490
            dtype=core.VarDesc.VarType.INT64,
        )
2491

2492 2493 2494
        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]}
        )
2495 2496
        return output

2497 2498
    def _set_attr(self, name, val):
        """
U
ustiniankw 已提交
2499

2500 2501 2502 2503 2504
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
U
ustiniankw 已提交
2505

2506 2507 2508 2509 2510
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
U
ustiniankw 已提交
2511

2512 2513 2514 2515 2516 2517
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2518 2519
            bool, True if has this attribute.

2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

2541
    def attr(self, name):
2542 2543 2544 2545 2546 2547 2548
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2549
            int|str|list, The attribute value. The return value
2550 2551 2552 2553 2554
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
2555
    def dist_attr(self):
2556
        """
2557
        Get distributed attribute of this Variable.
2558
        """
2559
        return self.desc.dist_attr
2560

2561 2562
    @dist_attr.setter
    def dist_attr(self, dist_attr):
2563
        """
2564
        Set distributed attribute of this Variable.
2565
        """
2566
        self.desc.dist_attr = dist_attr
2567

Y
Yu Yang 已提交
2568

F
fengjiayi 已提交
2569 2570 2571
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2572

2573 2574
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2575 2576 2577 2578
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2579
        op_proto = framework_pb2.OpProto.FromString(bytes(pbstr))
F
fengjiayi 已提交
2580 2581 2582 2583
        ret_values.append(op_proto)
    return ret_values


2584
class OpProtoHolder:
2585 2586 2587 2588
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2589 2590 2591 2592 2593 2594 2595 2596
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
2597 2598
            self.__class__, '_instance'
        ), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2599 2600 2601 2602 2603 2604
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2605 2606 2607 2608 2609 2610 2611 2612
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2613 2614
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2615 2616
        return self.op_proto_map[type]

2617 2618
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2619
        custom_op_names = []
2620 2621 2622
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2623 2624 2625
                custom_op_names.append(proto.type)

        return custom_op_names
2626

2627 2628 2629
    def has_op_proto(self, type):
        return type in self.op_proto_map

2630 2631 2632 2633
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2634
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2635
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2636
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
2637
            core.op_proto_and_checker_maker.kOpDeviceAttrName(),
2638 2639
        }

F
fengjiayi 已提交
2640

2641
class Operator:
2642
    """
2643 2644 2645 2646 2647 2648 2649
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2650
        type(str): The type of operator. Default None.
2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2671
        Block.append_op or Block._prepend_op instead.
2672 2673 2674 2675

    Examples:
        .. code-block:: python

2676
            import paddle.fluid as fluid
2677
            cur_program = fluid.Program()
2678 2679 2680 2681 2682
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2683
    """
2684

2685
    OP_WITHOUT_KERNEL_SET = {
2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713
        'feed',
        'fetch',
        'recurrent',
        'go',
        'rnn_memory_helper_grad',
        'conditional_block',
        'while',
        'send',
        'recv',
        'listen_and_serv',
        'fl_listen_and_serv',
        'ncclInit',
        'select',
        'checkpoint_notify',
        'gen_bkcl_id',
        'c_gen_bkcl_id',
        'gen_nccl_id',
        'c_gen_nccl_id',
        'c_comm_init',
        'c_sync_calc_stream',
        'c_sync_comm_stream',
        'queue_generator',
        'dequeue',
        'enqueue',
        'heter_listen_and_serv',
        'c_wait_comm',
        'c_wait_compute',
        'copy_cross_scope',
2714
    }
2715

2716 2717 2718
    def __init__(
        self, block, desc, type=None, inputs=None, outputs=None, attrs=None
    ):
2719 2720 2721 2722 2723 2724 2725 2726 2727 2728
        # read attr type index from op proto to avoid unexpected type
        # conversions, e.g. narrowing conversion like double to float
        try:
            proto = OpProtoHolder.instance().get_op_proto(type)
            self._attr_types = {}
            for attr in proto.attrs:
                self._attr_types[attr.name] = attr.type
        except ValueError:
            pass

2729
        if in_dygraph_mode():
2730 2731
            if type is None:
                raise ValueError(
2732 2733
                    "`type` to initialized an Operator can not be None."
                )
J
Jiabin Yang 已提交
2734
            self._type = type
M
minqiyang 已提交
2735
            self.attrs = attrs if attrs else {}
2736
        else:
2737

2738 2739 2740 2741 2742 2743 2744 2745 2746
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

2747
            # attr for static graph mode cuda graph
2748 2749
            self._cuda_graph_attr = _current_cuda_graph_mode

2750 2751 2752
            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
2753
                op_attrs[
2754 2755
                    op_maker.kOpRoleAttrName()
                ] = self.block.program._op_role
2756 2757

            role_var_name = op_maker.kOpRoleVarAttrName()
2758 2759 2760 2761
            if (
                len(self.block.program._op_role_var) != 0
                and role_var_name not in op_attrs
            ):
2762
                op_attrs[role_var_name] = self.block.program._op_role_var
2763 2764 2765 2766 2767

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2768 2769 2770 2771 2772
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2773 2774 2775
                return
            if type is None:
                raise ValueError(
2776 2777
                    "`type` to initialized an Operator can not be None."
                )
2778 2779
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2780 2781 2782
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
2783
                        '  File "{}", line {}, in {}'.format(
2784 2785 2786 2787 2788 2789
                            frame[0], frame[1], frame[2]
                        )
                    )
                    op_attrs[callstack_var_name].append(
                        '    {}'.format(frame[3])
                    )
2790 2791 2792 2793 2794 2795 2796

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2797 2798 2799 2800 2801 2802 2803 2804
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
2805 2806 2807
                    warnings.warn(
                        "The Op(%s) is not support to set device." % type
                    )
2808
                if 'force_cpu' in op_attrs:
2809
                    if (
2810 2811
                        type == 'less_than'
                        and op_attrs['force_cpu'] is not None
2812
                    ) or op_attrs['force_cpu'] != False:
2813 2814 2815
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
2816 2817
                            "used at the same time." % type
                        )
2818
            if _current_pipeline_stage is not None:
2819 2820 2821 2822 2823
                pipeline_attr_name = (
                    'pipeline_stage' + core.kAutoParallelSuffix()
                )
                self._update_desc_attr(
                    pipeline_attr_name, _current_pipeline_stage
2824
                )
2825

2826 2827 2828 2829 2830 2831 2832 2833 2834
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
2835 2836 2837
                    assert (
                        found or in_proto.dispensable
                    ), "Input {} not found".format(in_proto.name)
2838 2839
                    if found:
                        in_args = inputs[in_proto.name]
2840
                        if not isinstance(in_args, (list, tuple)):
2841 2842 2843 2844
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
2845 2846
                                % (in_proto.name, len(in_args))
                            )
2847
                        in_arg_names = []
2848
                        for index, arg in enumerate(in_args):
2849
                            if isinstance(arg, str):
2850
                                in_arg_names.append(arg)
2851
                            elif isinstance(arg, bytes):
2852
                                in_arg_names.append(arg.decode())
W
wanghuancoder 已提交
2853
                            elif isinstance(arg, (Variable, core.eager.Tensor)):
2854
                                in_arg_names.append(arg.name)
2855
                            else:
2856
                                raise TypeError(
2857 2858
                                    f"The type of '%{in_proto.name}' in operator {type} should be "
                                    f"one of [str, bytes, Variable]. but received : {arg}"
2859
                                )
2860 2861 2862 2863 2864 2865 2866 2867
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885

                    # FIXME: The outputs of primitive operator currently
                    # doesn't include intermediate output as it will be dropped
                    # in operator codegen, such as xshape output of reshape2.
                    # It will fixed when the operator codegen support
                    # intermediate output.
                    if core._is_bwd_prim_enabled():
                        if not (
                            (m.name in outputs)
                            or m.dispensable
                            or m.intermediate
                        ):
                            raise ValueError(
                                (
                                    "Incorrect setting for output(s) of "
                                    "operator \"%s\", should set: [%s]."
                                )
                                % (type, m.name)
2886
                            )
2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
                    else:
                        if not ((m.name in outputs) or m.dispensable):
                            raise ValueError(
                                (
                                    "Incorrect setting for output(s) of "
                                    "operator \"%s\", should set: [%s]."
                                )
                                % (type, m.name)
                            )

2897 2898 2899 2900 2901 2902 2903 2904 2905
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
2906 2907
                            % (out_proto.name, len(out_args))
                        )
2908 2909
                    out_arg_names = []
                    for arg in out_args:
2910
                        if isinstance(arg, str):
2911 2912
                            out_arg_names.append(arg)
                        else:
2913
                            out_arg_names.append(arg.name)
2914
                        # TODO(minqiyang): could we remove variable's op in static graph mode?
2915
                        if not in_dygraph_mode():
2916
                            if isinstance(arg, str):
2917 2918 2919
                                block.var(arg).op = self
                            else:
                                arg.op = self
2920 2921
                    self.desc.set_output(out_proto.name, out_arg_names)

2922
            extra_attrs_map = core.get_op_extra_attrs(type)
2923 2924 2925 2926 2927
            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
2928 2929 2930
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
2931 2932 2933
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)
2934
                for attr_name in extra_attrs_map.keys():
2935 2936 2937 2938 2939
                    if os.environ.get('FLAGS_print_extra_attrs', '0') == '1':
                        warnings.warn(
                            "op %s use extra_attr: %s" % (type, attr_name)
                        )

2940 2941 2942 2943 2944 2945
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
                        self._update_desc_attr(
                            attr_name, extra_attrs_map[attr_name]
                        )
2946 2947
                    else:
                        self._update_desc_attr(attr_name, op_attrs[attr_name])
2948

2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976
                if os.environ.get('FLAGS_print_extra_attrs', '0') == '1':
                    if type in extra_op_attrs:
                        attrs = extra_op_attrs.get(type, [])
                        for attr in attrs:
                            if attr in op_attrs.keys():
                                warnings.warn(
                                    "op %s use extra_attr: %s" % (type, attr)
                                )

                    if type in special_op_attrs:
                        attrs = special_op_attrs.get(type, [])
                        for attr in attrs:
                            a_name = list(attr.keys())[0]
                            default_value = list(attr.values())[0]
                            if (
                                a_name in op_attrs.keys()
                                and default_value != op_attrs[a_name]
                            ):
                                warnings.warn(
                                    "op %s's attr %s = %s is not the default value: %s"
                                    % (
                                        type,
                                        a_name,
                                        op_attrs[a_name],
                                        default_value,
                                    )
                                )

J
jianghaicheng 已提交
2977 2978
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
2979
                if global_ipu_index >= 0:
2980 2981 2982
                    self._update_desc_attr(
                        ipu_index_attr_name, global_ipu_index
                    )
2983
                if global_ipu_stage >= 0:
2984 2985 2986
                    self._update_desc_attr(
                        ipu_stage_attr_name, global_ipu_stage
                    )
J
jianghaicheng 已提交
2987

2988
            self.desc.check_attrs()
2989

2990 2991 2992 2993
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2994
    def _has_kernel(self, op_type):
2995 2996
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2997
    def to_string(self, throw_on_error):
2998
        """
2999 3000
        Get debug string.

3001
        Args:
3002 3003
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
3004

3005 3006
        Returns:
            str: The debug string.
3007 3008

        """
3009
        protostr = self.desc.serialize_to_string()
3010
        proto = framework_pb2.OpDesc.FromString(bytes(protostr))
Y
Yang Yang(Tony) 已提交
3011 3012
        return _debug_string_(proto, throw_on_error)

3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3045
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3046 3047
            type(skip_op_callstack)
        )
3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

3074 3075 3076
            attr_type = self.desc.attr_type(name, True)
            if attr_type == core.AttrType.VAR:
                attr_var_name = self.desc.attr(name, True).name()
3077 3078 3079
                a = "{name} = Var['{value}']".format(
                    name=name, type=attr_type, value=attr_var_name
                )
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.VARS:
                attr_var_names = [
                    "'%s'" % var.name() for var in self.desc.attr(name, True)
                ]
                a = "{name} = Vars[{value}]".format(
3090 3091
                    name=name, type=attr_type, value=','.join(attr_var_names)
                )
3092 3093 3094 3095 3096
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3097 3098
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
3099 3100
                    name=name, type=attr_type, value=self._block_attr_id(name)
                )
3101 3102 3103 3104 3105 3106 3107
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
3108 3109
                    name=name, type=attr_type, value=self._blocks_attr_ids(name)
                )
3110 3111 3112 3113 3114
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3115
            # it is bytes of serialized protobuf
3116 3117 3118 3119 3120
            if (
                is_compiled_with_cinn()
                and self.type == 'cinn_launch'
                and name == 'compilation_key'
            ):
3121 3122
                key = self.desc.attr(name)
                v = core.get_serialize_comile_key(key)
3123 3124 3125 3126 3127 3128 3129 3130 3131
                prog = Program()
                prog = prog.parse_from_string(v)
                s = prog._to_readable_code()
                lines = s.split('\n')
                value = '\n'.join(['      ' + line for line in lines])
                value = '\n' + value
            else:
                value = self.desc.attr(name)

3132 3133 3134
            a = "{name} = {value}".format(
                name=name, type=attr_type, value=value
            )
3135

3136 3137 3138 3139
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

3140 3141 3142 3143
        from paddle.distributed.auto_parallel.dist_context import (
            get_default_distributed_context,
        )

3144
        dist_context = get_default_distributed_context()
3145 3146
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
3147 3148 3149
            attrs_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_op
            )
3150

3151
        if outputs_str != "{}":
3152 3153 3154 3155 3156 3157
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".format(
                outputs=outputs_str,
                op_type=self.type,
                inputs=inputs_str,
                attrs=attrs_str,
            )
3158
        else:
3159 3160 3161
            op_str = "{op_type}(inputs={inputs}, {attrs})".format(
                op_type=self.type, inputs=inputs_str, attrs=attrs_str
            )
3162 3163
        return op_str

Y
Yang Yang(Tony) 已提交
3164
    def __str__(self):
3165
        return self._to_readable_code()
3166 3167 3168

    __repr__ = __str__

F
fengjiayi 已提交
3169 3170
    @property
    def type(self):
3171
        return self.desc.type()
F
fengjiayi 已提交
3172 3173

    def input(self, name):
3174
        r"""
U
ustiniankw 已提交
3175

3176
        Get the input arguments according to the input parameter name.
3177

3178 3179
        Args:
            name(str): The input parameter name.
3180

3181
        Returns:
U
ustiniankw 已提交
3182
            list, return the list of argument names that associated with \
3183
                the specific parameter name.
U
ustiniankw 已提交
3184

3185
        """
F
fengjiayi 已提交
3186 3187
        return self.desc.input(name)

W
Wu Yi 已提交
3188
    def _rename_input(self, old_name, new_name):
3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
3199
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
3200

W
Wu Yi 已提交
3201
    def _rename_output(self, old_name, new_name):
3202 3203 3204 3205 3206 3207 3208 3209 3210 3211
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
3212
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
3213

F
fengjiayi 已提交
3214 3215 3216 3217
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
3218 3219 3220 3221 3222 3223 3224 3225
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
3226
    def output(self, name):
3227
        r"""
3228
        Get output arguments by the output parameter name.
3229

3230 3231
        Args:
            name(str): The output parameter name.
3232

3233 3234 3235
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
3236
        """
F
fengjiayi 已提交
3237 3238 3239 3240 3241 3242
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

3243 3244 3245 3246 3247 3248
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
3249 3250
            "Can't find op itself in it's block. It could be a bug of Paddle."
        )
3251

F
fengjiayi 已提交
3252
    def has_attr(self, name):
3253
        """
3254 3255
        Whether this Operator has the attribute with name or not.

3256
        Args:
3257
            name(str): the attribute name.
3258

3259 3260
        Returns:
            bool: True if has this attribute.
3261 3262

        """
F
fengjiayi 已提交
3263 3264 3265
        return self.desc.has_attr(name)

    def attr_type(self, name):
3266
        """
3267
        Get the type of attribute by attribute's name.
3268

3269 3270
        Args:
            name(str): the attribute name.
3271

3272 3273
        Returns:
            core.AttrType: the attribute type.
3274
        """
3275
        return self.desc.attr_type(name, True)
F
fengjiayi 已提交
3276

W
Wu Yi 已提交
3277
    def _set_attr(self, name, val):
3278 3279 3280 3281 3282 3283 3284 3285 3286 3287
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
3288 3289
        self._update_desc_attr(name, val)

3290 3291 3292
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
3304 3305 3306 3307 3308
        if isinstance(val, Variable):
            self.desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            self.desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
Q
Qiyang Min 已提交
3309
            self.desc.set_block_attr(name, val.desc)
3310
        elif isinstance(val, list) and val and _all_is_type(val, Block):
3311
            self.desc.set_blocks_attr(name, [v.desc for v in val])
3312 3313 3314
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
Q
Qiyang Min 已提交
3315 3316
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
3317 3318 3319 3320 3321 3322 3323 3324 3325
            self._update_desc_plain_attr(name, val)

    def _update_desc_plain_attr(self, name, val):
        desc = self.desc
        if not hasattr(self, "_attr_types") or (name not in self._attr_types):
            desc._set_attr(name, val)
            return

        type_index = self._attr_types[name]
3326 3327 3328 3329 3330 3331
        # if the required attribute is a SCALAR, pass as-is
        if type_index == core.AttrType.SCALAR:
            desc._set_scalar_attr(name, wrap_as_scalar(val))
        elif type_index == core.AttrType.SCALARS:
            desc._set_scalars_attr(name, wrap_as_scalars(val))
        elif type_index == core.AttrType.BOOL:
3332 3333 3334 3335 3336 3337 3338
            desc._set_bool_attr(name, val)
        elif type_index == core.AttrType.INT:
            desc._set_int32_attr(name, val)
        elif type_index == core.AttrType.LONG:
            desc._set_int64_attr(name, val)
        elif type_index == core.AttrType.FLOAT:
            desc._set_float32_attr(name, val)
3339 3340
        elif type_index == core.AttrType.FLOAT64:
            desc._set_float64_attr(name, val)
3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357
        elif type_index == core.AttrType.STRING:
            desc._set_str_attr(name, val)
        elif type_index == core.AttrType.BOOLS:
            desc._set_bools_attr(name, val)
        elif type_index == core.AttrType.INTS:
            desc._set_int32s_attr(name, val)
        elif type_index == core.AttrType.LONGS:
            desc._set_int64s_attr(name, val)
        elif type_index == core.AttrType.FLOATS:
            desc._set_float32s_attr(name, val)
        elif type_index == core.AttrType.FLOAT64S:
            desc._set_float64s_attr(name, val)
        elif type_index == core.AttrType.STRINGS:
            desc._set_strs_attr(name, val)
        else:
            # defaults to old methods
            desc._set_attr(name, val)
Y
yuyang18 已提交
3358

F
fengjiayi 已提交
3359 3360
    @property
    def attr_names(self):
3361
        return self.desc.attr_names(True)
F
fengjiayi 已提交
3362 3363

    def attr(self, name):
3364
        """
3365 3366
        Get the attribute by name.

3367
        Args:
3368
            name(str): the attribute name.
3369

3370 3371
        Returns:
            bool|int|str|float|list: The attribute value. The return value
3372 3373
            can be any valid attribute type.
        """
F
fengjiayi 已提交
3374
        return self.desc.attr(name)
Y
Yu Yang 已提交
3375

W
Wu Yi 已提交
3376
    def _block_attr_id(self, name):
3377
        """
G
gongweibao 已提交
3378
        Get the block attribute's id by name.
3379

3380 3381
        Args:
            name(str): the attribute name.
3382

3383 3384
        Returns:
            int: the block index.
3385
        """
W
Wu Yi 已提交
3386
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
3387

W
Wu Yi 已提交
3388
    def _block_attr(self, name):
G
gongweibao 已提交
3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
3399
        id = self._block_attr_id(name)
3400
        assert id >= 0 and id < len(self.block.program.blocks)
G
gongweibao 已提交
3401 3402
        return self.block.program.blocks[id]

W
Wu Yi 已提交
3403
    def _blocks_attr(self, name):
G
gongweibao 已提交
3404 3405 3406 3407 3408 3409 3410 3411 3412 3413
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
3414
        for i in self._blocks_attr_ids(name):
3415
            assert i >= 0 and i < len(self.block.program.blocks)
G
gongweibao 已提交
3416 3417 3418 3419
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
3420
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
3421 3422 3423 3424 3425 3426 3427 3428 3429 3430
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
3431
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
3432

3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443
    def _var_attr(self, name):
        """
        Get the Variable attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variable: the Variable attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3444 3445 3446 3447 3448
        assert (
            attr_type == core.AttrType.VAR
        ), "Required type attr({}) is Variable, but received {}".format(
            name, attr_type
        )
3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
        attr_var_name = self.desc.attr(name, True).name()
        return self.block._var_recursive(attr_var_name)

    def _vars_attr(self, name):
        """
        Get the Variables attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variables: the Variables attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3463 3464 3465 3466 3467
        assert (
            attr_type == core.AttrType.VARS
        ), "Required type attr({}) is list[Variable], but received {}".format(
            name, attr_type
        )
3468 3469 3470 3471 3472 3473
        attr_vars = [
            self.block._var_recursive(var.name())
            for var in self.desc.attr(name, True)
        ]
        return attr_vars

J
JiayiFeng 已提交
3474
    def all_attrs(self):
F
fengjiayi 已提交
3475
        """
3476 3477 3478
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3479
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3480 3481 3482 3483
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
3484
            attr_type = self.desc.attr_type(n, True)
G
gongweibao 已提交
3485
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3486
                attr_map[n] = self._block_attr(n)
3487
            elif attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3488
                attr_map[n] = self._blocks_attr(n)
3489 3490 3491 3492 3493 3494
            elif attr_type == core.AttrType.VAR:
                attr_map[n] = self._var_attr(n)
            elif attr_type == core.AttrType.VARS:
                attr_map[n] = self._vars_attr(n)
            else:
                attr_map[n] = self.attr(n)
G
gongweibao 已提交
3495

F
fengjiayi 已提交
3496 3497
        return attr_map

3498 3499 3500
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3501 3502 3503 3504

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3505 3506 3507
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3508 3509 3510 3511 3512 3513 3514 3515

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3516 3517
            return False

3518 3519 3520 3521 3522 3523
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3524
    @property
3525
    def dist_attr(self):
3526
        """
3527
        Get distributed attribute of this Variable.
3528
        """
3529
        return self.desc.dist_attr
3530

3531 3532
    @dist_attr.setter
    def dist_attr(self, dist_attr):
3533
        """
3534
        Set distributed attribute of this Variable.
3535
        """
3536
        self.desc.dist_attr = dist_attr
3537

Y
Yu Yang 已提交
3538

3539
class Block:
3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3554
        use `Program._create_block()` to create a block.
3555 3556 3557 3558

    Examples:
        .. code-block:: python

3559 3560 3561
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3562 3563 3564 3565 3566 3567 3568 3569 3570
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3571
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3572
        self.desc = program.desc.block(idx)
3573
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3574
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3575 3576
        self.program = program

3577
    def __str__(self):
3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3612
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3613 3614
            type(skip_op_callstack)
        )
3615 3616 3617 3618 3619 3620 3621
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
3622 3623
                op._to_readable_code(skip_op_callstack)
            )
3624 3625
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3626

F
fengjiayi 已提交
3627 3628
    def to_string(self, throw_on_error, with_details=False):
        """
3629 3630
        Get debug string.

F
fengjiayi 已提交
3631 3632
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3633
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3634
            with_details(bool): more details about variables and parameters
3635 3636
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3637

3638 3639
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3640
        """
3641
        assert isinstance(throw_on_error, bool) and isinstance(
3642 3643
            with_details, bool
        )
F
fengjiayi 已提交
3644
        if with_details:
F
fengjiayi 已提交
3645
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3646
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
3647 3648 3649
                self.idx,
                self.parent_idx,
            )
3650
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3651
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
3652 3653
                    r"\n    \1", var.to_string(throw_on_error, with_details)
                )
F
fengjiayi 已提交
3654
            for op in self.ops:
F
fengjiayi 已提交
3655
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
3656 3657
                    r"\n    \1", op.to_string(throw_on_error)
                )
F
fengjiayi 已提交
3658 3659 3660
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3661
            proto = framework_pb2.BlockDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
3662 3663
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3664 3665 3666

    __repr__ = __str__

Y
Yu Yang 已提交
3667 3668
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3669
        return self.desc.parent
Y
Yu Yang 已提交
3670

Y
Yu Yang 已提交
3671 3672 3673 3674
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3675
    def _set_forward_block_idx(self, idx):
3676 3677 3678 3679 3680 3681 3682 3683 3684
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3685
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3686

3687 3688 3689 3690 3691 3692 3693 3694
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3695 3696
    @property
    def idx(self):
Y
Yu Yang 已提交
3697
        return self.desc.id
Y
Yu Yang 已提交
3698

Q
Qiao Longfei 已提交
3699
    def var(self, name):
3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3713
        if not isinstance(name, str):
M
minqiyang 已提交
3714
            raise TypeError(
3715 3716 3717
                "var require string as parameter, but get %s instead."
                % (type(name))
            )
Y
Yu Yang 已提交
3718 3719
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3720
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3721
        return v
Q
Qiao Longfei 已提交
3722

X
Xin Pan 已提交
3723
    def _find_var_recursive(self, name):
3724 3725 3726 3727 3728 3729 3730
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3731
            Variable: the Variable with the giving name. Or None if not found.
3732
        """
Y
Yu Yang 已提交
3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3757
        return None
Y
Yu Yang 已提交
3758

X
Xin Pan 已提交
3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3778

Q
Qiao Longfei 已提交
3779
    def all_parameters(self):
3780
        return list(self.iter_parameters())
3781

3782
    def iter_parameters(self):
3783 3784 3785 3786 3787
        return (
            item[1]
            for item in self.vars.items()
            if isinstance(item[1], Parameter)
        )
Q
Qiao Longfei 已提交
3788

Y
Yu Yang 已提交
3789
    def create_var(self, *args, **kwargs):
3790
        if in_dygraph_mode():
3791
            var = _create_tensor(*args, **kwargs)
L
Leo Chen 已提交
3792
        else:
3793 3794 3795
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3796
        return var
Y
Yu Yang 已提交
3797

Q
Qiao Longfei 已提交
3798 3799 3800
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3801
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3802 3803
        """
        Rename variable in vars and ops' inputs and outputs
3804 3805

        Args:
3806 3807
            name(str|bytes): the name that need to be renamed.
            new_name(str|bytes): the name that need to rename to.
3808 3809 3810 3811 3812 3813 3814 3815

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3816
        """
3817 3818
        # Ensure the type of name and new_name is str
        name = name.decode() if isinstance(name, bytes) else name
3819 3820 3821
        new_name = (
            new_name.decode() if isinstance(new_name, bytes) else new_name
        )
M
minqiyang 已提交
3822

T
typhoonzero 已提交
3823
        if not self.has_var(name):
3824
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3825 3826
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3827
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3828 3829 3830 3831 3832 3833
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3834
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3835 3836 3837 3838
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3839
        orig_var_type = v.type
3840
        self.desc._rename_var(name.encode(), new_name.encode())
W
Wu Yi 已提交
3841
        # NOTE: v is destroyed by C++ after calling _rename_var.
3842
        d = self.desc.find_var(new_name.encode())
T
typhoonzero 已提交
3843
        if var_type == "Parameter":
L
Leo Chen 已提交
3844
            if in_dygraph_mode():
3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
                var = EagerParamBase(
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
3856
            else:
姜永久 已提交
3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868
                var = Parameter(
                    self,
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
T
typhoonzero 已提交
3869
        elif var_type == "Variable":
3870 3871 3872 3873 3874 3875 3876
            var = Variable(
                self,
                type=orig_var_type,
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient,
            )
T
wip  
typhoonzero 已提交
3877

W
Wu Yi 已提交
3878
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3879 3880 3881
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3882
        self._sync_with_cpp()
3883
        return var
T
typhoonzero 已提交
3884

3885 3886 3887
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
3888
        self.desc._remove_var(name.encode())
3889 3890
        del self.vars[name]

Y
Yu Yang 已提交
3891 3892
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3893
        param = None
L
Leo Chen 已提交
3894
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3895
            param = EagerParamBase(*args, **kwargs)
L
Leo Chen 已提交
3896
        else:
姜永久 已提交
3897
            param = Parameter(global_block, *args, **kwargs)
3898 3899 3900
        # NOTE(Aurelius84): we deliver stop_gradient in append_op, so we
        # need recorde it state and reset it back after calling this API
        stop_gradient = param.stop_gradient
3901

3902
        if 'initializer' in kwargs:
3903 3904 3905 3906 3907

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3908
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3909
                        # are treated as initialization ops that cause error.
3910
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3911 3912
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
3913 3914 3915
                            "c_broadcast",
                            "c_sync_comm_stream",
                            "coalesce_tensor",
3916
                        ]:
3917
                            continue
3918 3919 3920 3921 3922 3923 3924
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
3925 3926 3927 3928 3929 3930
                raise RuntimeError(
                    "param "
                    + param.name
                    + " is inited by multiple init ops "
                    + str(init_ops)
                )
3931
            elif init_ops_len == 1:
3932
                # TODO already inited, do nothing, should log a warning
3933 3934 3935
                pass
            else:
                initializer(param, self)
3936
        param.stop_gradient = stop_gradient
Q
Qiao Longfei 已提交
3937
        return param
Y
Yu Yang 已提交
3938

Y
Yu Yang 已提交
3939
    def append_op(self, *args, **kwargs):
3940 3941 3942 3943 3944 3945
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
3946
        op_type = kwargs.get("type", None)
3947
        if in_dygraph_mode():
3948
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
3949
            inplace_map = kwargs.get("inplace_map", None)
3950 3951 3952
            warnings.warn(
                "Op `%s` is executed through `append_op` under the dynamic mode, "
                "the corresponding API implementation needs to be upgraded to "
3953 3954 3955 3956 3957 3958
                "using `_C_ops` method." % type,
                DeprecationWarning,
            )
            op = Operator(
                block=self,
                desc=None,
3959
                type=op_type,
3960 3961 3962 3963
                inputs=None,
                outputs=None,
                attrs=attrs,
            )
3964

M
minqiyang 已提交
3965 3966
            # record ops in tracer rather than blocks
            #
3967
            # TODO(minqiyang): add op stop_gradient support in static graph mode too.
L
lujun 已提交
3968
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3969

3970
            _dygraph_tracer().trace_op(
3971
                op_type,
3972 3973 3974 3975 3976 3977
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
                inplace_map,
            )
M
minqiyang 已提交
3978
        else:
3979
            from paddle.fluid.dygraph.base import param_guard
3980
            from paddle.utils import flatten
3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994

            def pass_stop_gradient(ins, outs):
                """
                Set out.stop_gradient = True if all inputs stop_gradient is True.
                """
                need_reset = True
                for var in flatten(ins):
                    if getattr(var, 'stop_gradient', None) is False:
                        need_reset = False
                        break
                if need_reset:
                    for var in flatten(outs):
                        if isinstance(var, Variable):
                            var.stop_gradient = True
3995

3996
            op_desc = self.desc.append_op()
3997 3998
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
W
wanghuancoder 已提交
3999
            # NOTE(Aurelius84): In case of @to_static, all Tensor(s) should
4000 4001
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
4002 4003 4004 4005 4006 4007 4008 4009 4010 4011
            ignore_ops = {
                'conditional_block',
                'conditional_block_grad',
                'recurrent',
                'recurrent_grad',
                'while',
                'while_grad',
            }
            if op_type not in ignore_ops:
                pass_stop_gradient(inputs, outputs)
4012
            with param_guard(inputs), param_guard(outputs):
4013 4014 4015
                op = Operator(
                    block=self,
                    desc=op_desc,
4016
                    type=op_type,
4017 4018 4019 4020
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None),
                )
4021

M
minqiyang 已提交
4022
            self.ops.append(op)
M
minqiyang 已提交
4023

4024 4025
        return op

W
Wu Yi 已提交
4026
    def _insert_op(self, index, *args, **kwargs):
4027 4028 4029 4030 4031 4032 4033 4034 4035
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
4036
        self._sync_with_cpp()
F
fangshuixun007 已提交
4037
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
4038

4039 4040
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
4041
        Insert an Operator according to the giving arguments,
4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
4056 4057 4058 4059 4060 4061 4062 4063 4064
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
4065 4066
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
4067
        self.desc._remove_op(index, index + 1)
4068 4069
        del self.ops[index]

W
Wu Yi 已提交
4070
    def _slice_ops(self, start, end):
4071 4072 4073 4074 4075 4076 4077 4078 4079 4080
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
4081
        return self.ops[start:end]
Y
Yancey1989 已提交
4082

W
Wu Yi 已提交
4083
    def _prepend_op(self, *args, **kwargs):
4084
        if in_dygraph_mode():
J
Jiabin Yang 已提交
4085 4086
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097
            op = Operator(
                self, None, type=type, inputs=None, outputs=None, attrs=attrs
            )

            _dygraph_tracer().trace_op(
                type,
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
            )
M
minqiyang 已提交
4098
        else:
4099
            op_desc = self.desc._prepend_op()
4100 4101 4102 4103 4104 4105 4106 4107
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None),
            )
M
minqiyang 已提交
4108
            self.ops.insert(0, op)
4109

Y
Yu Yang 已提交
4110 4111
        return op

W
Wu Yi 已提交
4112
    def _sync_with_cpp(self):
4113
        """
4114 4115
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
4116
        """
Q
Qiao Longfei 已提交
4117 4118 4119
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
4120 4121 4122 4123
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
4124 4125 4126 4127 4128 4129 4130 4131
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient,
                    )
4132
                else:
4133 4134 4135 4136 4137 4138
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient,
                    )
Q
Qiao Longfei 已提交
4139

4140
        # sync variables removed from c++ end
4141
        for var in list(self.vars.keys()):
4142
            if not self.desc.find_var(var.encode()):
4143 4144
                self.vars.pop(var)

Q
Qiao Longfei 已提交
4145
        # sync operators from cpp
4146 4147 4148 4149
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
4166 4167 4168 4169 4170

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
4171
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
4172 4173 4174 4175 4176 4177 4178

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

4179 4180 4181 4182 4183
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
4184 4185 4186 4187 4188 4189
                self.ops
            ) and ops_in_cpp_index < len(ops_in_cpp):
                if (
                    self.ops[ops_in_python_index].desc
                    != ops_in_cpp[ops_in_cpp_index]
                ):
4190 4191 4192 4193 4194
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
4195 4196 4197 4198
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
4199
    def _copy_param_info_from(self, other):
4200
        """
4201 4202
        Copy the information of parameters from the other block.

4203
        Args:
4204 4205 4206 4207 4208
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
4209 4210 4211 4212 4213

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
4214
            raise TypeError(
4215 4216
                "_copy_param_info_from should be invoked with Block"
            )
4217
        for p in other.iter_parameters():
4218 4219 4220
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
4221 4222
                # if the Parameter is pruned, v may be None
                continue
4223
            assert isinstance(v, Variable)
4224
            new_p = None
L
Leo Chen 已提交
4225
            if in_dygraph_mode():
4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237
                new_p = EagerParamBase(
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4238
            else:
姜永久 已提交
4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253
                new_p = Parameter(
                    block=self,
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR
                    else None,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4254 4255
            self.vars[new_p.name] = new_p

4256
    def _clone_variable(self, var, force_persistable=True):
4257 4258
        """
        Clone a variable into current block.
4259

4260 4261
        Args:
            var: the variable to be cloned.
4262 4263 4264
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
4265 4266

        Returns:
4267
            Variable: the new  variable cloned from 'var' in current block.
4268 4269
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
4270 4271 4272
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
4273 4274 4275
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
tangwei12 已提交
4276
        elif var.type == core.VarDesc.VarType.RAW:
4277 4278 4279
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
typhoonzero 已提交
4280 4281 4282 4283 4284 4285
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
4286
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4287
                is_data=var.is_data,
4288 4289
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4290 4291 4292 4293 4294 4295 4296
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
4297
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4298
                is_data=var.is_data,
4299 4300
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4301
        return ret_var
4302

Y
Yu Yang 已提交
4303

4304 4305 4306 4307
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
4308
# of some old Python Variables(all old Python Operators) may have
4309
# been destructed.
4310 4311 4312
def _apply_pass(
    main_program, startup_program, pass_name, pass_attrs={}, pass_attr_types={}
):
4313 4314 4315 4316
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
4317 4318 4319 4320 4321 4322 4323
    attrs = core.apply_pass(
        tmp_main_program,
        tmp_startup_program,
        pass_name,
        pass_attrs,
        pass_attr_types,
    )
4324 4325 4326 4327 4328
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


4329
class IrNode:
4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4341 4342 4343
        assert isinstance(
            node, core.Node
        ), 'node must be the instance of core.Node.'
4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

4425
    def remove_input_by_id(self, node_id):
4426 4427 4428 4429 4430 4431
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4432
        self.node.remove_input(node_id)
4433

4434
    def remove_input(self, node):
4435 4436 4437 4438
        """
        Remove a node from inputs.

        Args:
4439
            node(IrNode): the node being removed.
4440
        """
4441
        self.node.remove_input(node.node)
4442

4443
    def append_input(self, node):
4444 4445 4446 4447
        """
        Append a node in inputs.

        Args:
4448
            node(IrNode): the node being appended.
4449
        """
4450
        self.node.append_input(node.node)
4451 4452 4453 4454 4455 4456 4457 4458

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

4459
    def remove_output_by_id(self, node_id):
4460 4461 4462 4463 4464 4465
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4466
        self.node.remove_output(node_id)
4467

4468
    def remove_output(self, node):
4469 4470 4471 4472
        """
        Remove a node from outputs.

        Args:
4473
            node(IrNode): the node being removed.
4474
        """
4475
        self.node.remove_output(node.node)
4476

4477
    def append_output(self, node):
4478 4479 4480 4481
        """
        Append a node in outputs.

        Args:
4482
            node(IrNode): the node being appended.
4483
        """
4484
        self.node.append_output(node.node)
4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4519 4520 4521
        assert (
            isinstance(node, core.Node) and node.is_var()
        ), 'node must be the instance of core.Node and it must be a variable node.'
4522
        super().__init__(node)
4523 4524 4525 4526 4527 4528 4529 4530 4531
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
4532 4533 4534
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4535 4536 4537 4538 4539 4540 4541 4542 4543
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
4544 4545 4546
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4547 4548
        return self.node.var().persistable()

4549 4550 4551 4552 4553 4554 4555
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
4556 4557 4558
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4559 4560 4561 4562 4563 4564 4565 4566 4567
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
4568 4569 4570
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4571 4572 4573 4574 4575 4576 4577 4578 4579
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
4580 4581 4582
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4583 4584
        return self.node.var().shape()

4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4618 4619 4620
        assert (
            isinstance(node, core.Node) and node.is_op()
        ), 'node must be the instance of core.Node and it must be a operator node.'
4621
        super().__init__(node)
4622 4623 4624 4625 4626 4627 4628 4629 4630 4631
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
4632 4633 4634
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4635 4636
        self.node.op()._rename_input(old_input_name, new_input_name)

4637 4638 4639 4640 4641 4642 4643 4644
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
4645 4646 4647
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4648 4649
        self.node.op()._rename_output(old_output_name, new_output_name)

4650 4651 4652 4653 4654 4655 4656 4657 4658 4659
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4660 4661 4662
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4675 4676 4677
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4678 4679 4680 4681 4682 4683 4684 4685 4686
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
4687 4688 4689
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4690 4691
        return self.node.op().set_type(new_type)

4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
4706 4707 4708
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4709
        desc = self.node.op()
4710 4711 4712 4713 4714
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
4715
            desc.set_block_attr(name, val.desc)
4716
        elif isinstance(val, list) and val and _all_is_type(val, Block):
4717
            desc.set_blocks_attr(name, [v.desc for v in val])
4718 4719 4720
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
4721 4722 4723 4724
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4725 4726 4727 4728 4729 4730 4731
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
4732 4733 4734
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4735 4736 4737 4738 4739 4740 4741 4742 4743
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
4744 4745 4746
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4747 4748
        return self.node.op().output_arg_names()

4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4770
class IrGraph:
4771
    """
4772
    Python IrGraph. Beneath it is a core.Graph, which is used for
4773
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4774 4775
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4776 4777 4778 4779
    """

    def __init__(self, graph, for_test=False):
        """
4780 4781
        Construct an IrGraph using core.Graph.

4782 4783 4784 4785 4786
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
4787 4788
            graph, core.Graph
        ), 'graph must be the instance of core.Graph.'
4789 4790 4791
        self.graph = graph
        self._for_test = for_test

4792 4793 4794 4795
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4796 4797 4798
        Warns:
            The method only clones the graph structure, not its attributes.

4799 4800 4801
        Returns:
            IrGraph: A new and duplicated graph.
        """
4802
        g = self.graph.clone()
4803 4804
        return IrGraph(g, self._for_test)

4805
    def is_test(self):
4806 4807 4808
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4809 4810
        return self._for_test

W
WangZhen 已提交
4811
    def all_nodes(self):
4812 4813 4814
        """
        Return all nodes included in the graph as a set.
        """
4815
        return {IrNode(node) for node in self.graph.nodes()}
4816

4817
    def all_var_nodes(self):
4818 4819 4820
        """
        Return all variable nodes included in the graph as a set.
        """
4821
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4822

4823
    def all_persistable_nodes(self):
4824 4825 4826
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4827 4828
        persistable_nodes = set()
        for node in self.graph.nodes():
4829 4830 4831 4832 4833
            if (
                node.is_var()
                and node.var() is not None
                and node.var().persistable()
            ):
W
WangZhen 已提交
4834
                persistable_nodes.add(node)
4835
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4836

4837
    def all_op_nodes(self):
4838 4839 4840
        """
        Return all operator nodes included in the graph as a set.
        """
4841
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4842

4843 4844 4845 4846 4847 4848
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
4849
            IrGraph(self.graph.get_sub_graph(i), for_test=for_test)
4850 4851 4852 4853 4854 4855 4856 4857 4858
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4859
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4871
            IrVarNode: the created persistable variable node.
4872
        """
4873 4874 4875 4876 4877
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4878
        return IrVarNode(self.graph.create_var_node(var_desc))
4879 4880

    def create_var_node(self, name, var_type, shape, var_dtype):
4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4892
            IrVarNode: the created variable node.
4893 4894
        """

4895 4896 4897 4898
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4899
        return IrVarNode(self.graph.create_var_node(var_desc))
4900

4901 4902 4903 4904 4905 4906
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4907
    def create_var_node_from_desc(self, var_desc):
4908 4909 4910 4911 4912 4913 4914 4915
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4916
            IrVarNode: the created variable node.
4917
        """
4918
        return IrVarNode(self.graph.create_var_node(var_desc))
4919 4920

    def create_op_node(self, op_type, attrs, inputs, outputs):
4921 4922 4923 4924 4925 4926 4927
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4928
            outputs(dict): the outputs of the operator node.
4929 4930

        Returns:
4931
            IrOpNode: the created operator node.
4932
        """
4933 4934
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4935
        for attr, value in attrs.items():
4936
            self._update_desc_attr(op_desc, attr, value)
4937
        for input_name, var_nodes in inputs.items():
4938 4939
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
4940 4941 4942
            op_desc.set_input(
                input_name, [var_node.name() for var_node in var_nodes]
            )
4943
        for output_name, var_nodes in outputs.items():
4944 4945
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
4946 4947 4948
            op_desc.set_output(
                output_name, [var_node.name() for var_node in var_nodes]
            )
4949
        return IrOpNode(self.graph.create_op_node(op_desc))
4950 4951

    def create_op_node_from_desc(self, op_desc):
4952 4953 4954 4955 4956 4957 4958
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4959
            IrOpNode: the created operator node.
4960
        """
4961
        return IrOpNode(self.graph.create_op_node(op_desc))
4962 4963

    def update_input_link(self, old_input_node, new_input_node, op_node):
4964 4965 4966 4967
        """
        Update the input's link of a operator node.

        Args:
4968 4969 4970
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4971
        """
4972 4973 4974 4975 4976
        assert (
            old_input_node.node in self.graph.nodes()
            and new_input_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4977 4978 4979 4980
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
4981
        op_node.rename_input(old_input_node.name(), new_input_node.name())
4982

4983 4984 4985 4986 4987 4988 4989 4990 4991
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
4992 4993 4994 4995 4996
        assert (
            old_output_node.node in self.graph.nodes()
            and new_output_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
4997 4998 4999 5000 5001 5002
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

5003
    def link_to(self, node_in, node_out):
5004 5005 5006 5007
        """
        Connect two nodes.

        Args:
5008 5009
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
5010
        """
5011
        assert node_in.node in self.graph.nodes(), (
5012 5013
            'node_in(%s) must be in the graph nodes.' % node_in.node.name()
        )
5014
        assert node_out.node in self.graph.nodes(), (
5015 5016
            'node_out(%s) must be in the graph nodes.' % node_out.node.name()
        )
5017 5018
        node_in.append_output(node_out)
        node_out.append_input(node_in)
5019 5020

    def safe_remove_nodes(self, remove_nodes):
5021 5022 5023 5024 5025 5026 5027
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
5028
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
5029 5030 5031 5032
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
5033 5034
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
5035

Z
Zhen Wang 已提交
5036 5037 5038 5039 5040 5041 5042 5043
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5044
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
5045 5046 5047 5048
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5049
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
5050 5051 5052
                        ]
                    else:
                        var_nodes[each_var_name].append(
5053 5054
                            self._find_node_by_name(node.outputs, each_var_name)
                        )
Z
Zhen Wang 已提交
5055 5056
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
5057
    def has_circle(self):
5058 5059 5060 5061 5062 5063
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
5064 5065 5066
        return core.has_circle(self.graph)

    def graph_num(self):
5067 5068 5069 5070 5071 5072
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
5073 5074 5075
        return core.graph_num(self.graph)

    def topology_sort(self):
5076 5077 5078
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
5079
        Notes: the `graph` can not contain a circle.
5080 5081

        Returns:
Z
Zhen Wang 已提交
5082
            list(IrNode): nodes in topology order.
5083
        """
5084
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
5085
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
5086 5087

    def build_adjacency_list(self):
5088 5089 5090 5091
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
5092
            dict{IrNode: set(IrNode)}: the adjacency list.
5093
        """
5094 5095
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
5096
        for k, v in adj_list.items():
5097 5098
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
5099

5100 5101 5102 5103 5104 5105 5106 5107
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
5108
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
5109 5110 5111 5112 5113
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

5114 5115
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
5116 5117 5118 5119
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True,
            )
5120 5121
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
5122 5123 5124
                print(
                    'The {} is saved as the dot filetype.'.format(dot_file_path)
                )
5125

5126
        remove_ctr_vars = set()
5127
        if remove_ctr_var:
5128
            for node in self.all_var_nodes():
5129 5130 5131
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
5132 5133
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

5134 5135
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
5136 5137 5138 5139 5140 5141
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
5142 5143 5144 5145
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
5146 5147
        if not os.path.exists(save_path):
            os.makedirs(save_path)
5148 5149 5150 5151 5152 5153 5154
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
5155 5156 5157
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
5158
        WARN: When the graph includes backward operator nodes, the
5159 5160 5161 5162 5163 5164
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
5165
        convert_pass = core.get_pass('graph_to_program_pass')
5166 5167
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
5168 5169 5170 5171
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

5172 5173 5174 5175 5176 5177 5178 5179
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
5180
        assert target_node is not None, (
5181 5182
            "Cannot find the target node (%s)in the giving set." % node_name
        )
5183 5184
        return target_node

5185 5186 5187 5188
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
5189 5190 5191 5192 5193
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
5194
            desc.set_block_attr(name, val.desc)
5195
        elif isinstance(val, list) and val and _all_is_type(val, Block):
5196
            desc.set_blocks_attr(name, [v.desc for v in val])
5197 5198 5199
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
5200 5201 5202 5203 5204
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


5205
class Program:
D
dzhwinter 已提交
5206
    """
5207
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
5208
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
5209
    it will contain nested block.
5210

J
Jiabin Yang 已提交
5211 5212 5213
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
5214

J
Jiabin Yang 已提交
5215
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
5216
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
5217 5218 5219 5220 5221 5222 5223
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
5224
    **Notes**:
5225 5226 5227
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
5228 5229

    Returns:
J
Jiabin Yang 已提交
5230
        Program: An empty Program.
D
dzhwinter 已提交
5231 5232

    Examples:
5233 5234
        .. code-block:: python

5235 5236 5237 5238
            import paddle
            import paddle.static as static

            paddle.enable_static()
5239

5240 5241 5242 5243 5244
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
5245
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
5246 5247 5248

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
5249 5250 5251

    """

5252 5253
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
5254 5255
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
5256 5257
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
5258
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
5259
        self.__op_role_var = []
T
tangwei12 已提交
5260

5261 5262
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
5263
        self._is_distributed = False
5264
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
5265
        self._is_chief = False
5266 5267 5268
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
5269
        self._endpoints = []
5270 5271 5272
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
5273
        self._trainers_endpoints = []
5274
        # the distributed lookup table names
T
tangwei12 已提交
5275
        self._distributed_lookup_table = None
5276 5277 5278

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
5279 5280
        self._use_lamb = False

5281 5282 5283
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
5284

5285 5286 5287
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
5288
        self._program_config = None
5289

5290 5291
        self._pass_applied = None

H
hutuxian 已提交
5292 5293 5294
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

5295 5296 5297
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

5298 5299 5300
        # appending gradients times
        self._appending_grad_times = 0

5301 5302
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
5303 5304
            "__auto_checkpoint_program__"
        )
5305

5306 5307
        # compiled program, i.e. Graph
        self._graph = None
5308 5309
        # to tag whether is startup_program
        self._is_start_up_program_ = False
5310

5311
    def _find_var_class_kwargs(self, new_desc):
5312 5313 5314 5315 5316 5317 5318 5319
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

5320 5321 5322 5323
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
5324
            if idx > (len(self.blocks) - 1):
5325
                self._create_block()
5326 5327 5328 5329 5330 5331 5332 5333 5334 5335
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
                    'shape': get_var_desc_attr_or_none(
                        new_var_desc,
                        "shape",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'dtype': get_var_desc_attr_or_none(
                        new_var_desc,
                        "dtype",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'lod_level': get_var_desc_attr_or_none(
                        new_var_desc,
                        "lod_level",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'error_clip': old_var.error_clip
                    if old_var is not None
                    else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None
                    else False,
                    'is_data': old_var.is_data
                    if old_var is not None
                    else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None
                    else False,
5377 5378 5379
                }

                if isinstance(old_var, Parameter):
5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396
                    kwargs.update(
                        {
                            'trainable': old_var.trainable,
                            'optimize_attr': old_var.optimize_attr,
                            'regularizer': old_var.regularizer,
                            'do_model_average': old_var.do_model_average,
                            'need_clip': old_var.need_clip,
                            'is_distributed': old_var.is_distributed,
                            'is_parameter': old_var.is_parameter,
                        }
                    )
                    block_new_vars.append(
                        {
                            'class': Parameter,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5397 5398
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
5399 5400 5401 5402 5403 5404
                    block_new_vars.append(
                        {
                            'class': Variable,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5405 5406 5407 5408 5409 5410 5411

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
5412
        assert block_num == self.desc.num_blocks()
5413 5414

        # clear old blocks and desc
5415 5416 5417 5418 5419 5420 5421 5422 5423
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
5424

5425
        del desc
5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

5445 5446 5447 5448 5449 5450 5451 5452 5453 5454
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

5455 5456
                import paddle
                import paddle.static as static
5457

5458 5459 5460
                paddle.enable_static()

                prog = static.default_main_program()
5461 5462 5463 5464 5465
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
5466
                prog1 = static.default_main_program()
5467 5468 5469 5470 5471 5472 5473 5474
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
5475
    @property
5476
    def _op_role(self):
Y
yuyang18 已提交
5477 5478 5479 5480 5481 5482 5483 5484
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
5485
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
5486 5487 5488 5489
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
5490 5491
        return self._current_role

5492 5493
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
5494 5495 5496
        self._current_role = role

    @property
5497
    def _op_role_var(self):
Y
yuyang18 已提交
5498
        """
5499
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
5500

5501
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
5502 5503 5504

        Notes: This is a very low-level API. Users should not use it directly.
        """
5505
        return self.__op_role_var
Y
yuyang18 已提交
5506

5507
    @signature_safe_contextmanager
5508 5509 5510 5511 5512
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
5513 5514 5515 5516
        try:
            yield
        finally:
            self._current_role = tmp_role
5517

S
rename  
sneaxiy 已提交
5518
    @signature_safe_contextmanager
W
Wu Yi 已提交
5519
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
5520 5521 5522 5523 5524 5525 5526
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
5527
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
5528 5529 5530

        Examples:

5531
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
5532
            >>> p, g = backward(...)
W
Wu Yi 已提交
5533
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
5534 5535
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
5536
        tmp_role = self._current_role
5537
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
5538

Y
yuyang18 已提交
5539 5540
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
5541
        self.__op_role_var = [
5542 5543 5544
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
5545 5546 5547 5548 5549
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
5550

S
rename  
sneaxiy 已提交
5551
    @signature_safe_contextmanager
X
Xin Pan 已提交
5552
    def _lr_schedule_guard(self, is_with_opt=False):
5553 5554 5555 5556 5557 5558 5559
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
5560 5561 5562 5563
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
5564 5565 5566

        Examples:

5567
            >>> import paddle.fluid as fluid
5568 5569 5570 5571
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
5572 5573

        tmp_role = self._current_role
5574
        tmp_var = self.__op_role_var
5575

5576 5577
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
5578 5579
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
5580
        # TODO(typhoonzero): how to set target learning rate var
5581
        self.__op_role_var = []
5582 5583 5584 5585 5586
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
5587

5588
    def __str__(self):
Y
yuyang18 已提交
5589 5590 5591 5592 5593 5594 5595 5596 5597
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5618 5619
            import paddle
            import paddle.static as static
5620

5621 5622 5623
            paddle.enable_static()

            cur_program = static.Program()
5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5635
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
5636 5637
            type(skip_op_callstack)
        )
5638 5639 5640
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5641
            program_str += '\n'
5642
        return program_str
Y
Yang Yang(Tony) 已提交
5643

F
fengjiayi 已提交
5644 5645 5646
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5647

J
Jiabin Yang 已提交
5648 5649 5650
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5651

J
Jiabin Yang 已提交
5652
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5653

H
haowang101779990 已提交
5654
        Returns:
J
Jiabin Yang 已提交
5655
            str: The debug string describe current Program.
Y
yuyang18 已提交
5656 5657

        Raises:
J
Jiabin Yang 已提交
5658
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5659

5660 5661 5662
        Examples:
            .. code-block:: python

5663 5664 5665 5666
                import paddle
                import paddle.static as static

                paddle.enable_static()
5667

5668 5669 5670
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5671
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5672
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5673
                print("program string without detail: {}".format(prog_string))
5674
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5675
        """
5676 5677 5678
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
5679 5680
            type(throw_on_error)
        )
5681 5682 5683
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
5684 5685
            type(with_details)
        )
5686

F
fengjiayi 已提交
5687 5688 5689 5690
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706
            protostr = self.desc.serialize_to_string()
            proto = framework_pb2.ProgramDesc.FromString(bytes(protostr))
            res_str += (
                "version {\n  "
                + textwrap.indent(
                    _debug_string_(proto.version, throw_on_error), "  "
                )
                + "}\n"
            )
            res_str += (
                "op_version_map {\n  "
                + textwrap.indent(
                    _debug_string_(proto.op_version_map, throw_on_error), "  "
                )
                + "}\n"
            )
F
fengjiayi 已提交
5707 5708
        else:
            protostr = self.desc.serialize_to_string()
5709
            proto = framework_pb2.ProgramDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
5710 5711
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5712

W
Wu Yi 已提交
5713
    def _get_desc(self):
Y
yuyang18 已提交
5714 5715 5716 5717 5718 5719 5720
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5721 5722
        return self.desc

X
version  
Xin Pan 已提交
5723 5724 5725
    def _version(self):
        return self.desc._version()

5726
    def clone(self, for_test=False):
Y
yuyang18 已提交
5727
        """
5728
        .. note:::
5729 5730
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` .
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` .
5731
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5732

5733
        Create a new Program with forward content of original one when ``for_test=True``.
5734
        Create a new Program as same as the original one when ``for_test=False``.
5735

5736
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5737 5738 5739
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5740

5741 5742
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5743 5744
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
5745
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
5746

J
Jiabin Yang 已提交
5747
        For Example:
5748
          ::
L
Luo Tao 已提交
5749

5750 5751 5752 5753 5754 5755
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
5756
            pred = static.nn.fc(x=img, size=10, actvation='relu')
5757
            loss = paddle.mean(pred)
5758
            # Here we use clone before Momentum
5759 5760
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
5761
            optimizer.minimize(loss)
5762

J
Jiabin Yang 已提交
5763
        Args:
5764

5765 5766
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
5767

J
Jiabin Yang 已提交
5768
        Returns:
5769
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
5770

Y
yuyang18 已提交
5771 5772 5773

        Examples:

5774 5775 5776 5777 5778 5779 5780
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5781 5782
            .. code-block:: python

5783
                import paddle
5784 5785

                def print_prog(prog):
5786
                    for name, value in sorted(prog.block(0).vars.items()):
5787 5788 5789 5790 5791
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
5792
                        for key, value in sorted(op.all_attrs().items()):
5793 5794 5795 5796
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5797
            1. To clone a test program, the sample code is:
5798 5799
                .. code-block:: python

5800 5801 5802 5803 5804 5805
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5806 5807

                    def print_prog(prog):
5808
                        for name, value in sorted(prog.block(0).vars.items()):
5809 5810 5811 5812 5813
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
5814
                            for key, value in sorted(op.all_attrs().items()):
5815 5816 5817
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5818 5819
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5820 5821 5822

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5823 5824 5825
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5826
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5827 5828
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5829
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5830 5831
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5832
                            test_program = train_program.clone(for_test=True)
5833
                    print_prog(test_program)
J
Jiabin Yang 已提交
5834 5835 5836 5837

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5838
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5839 5840 5841 5842
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5843 5844 5845
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5846 5847 5848
                            sgd.minimize(avg_loss)


5849
            2. The clone method can be avoid if you create program for training and program for testing individually.
5850 5851
                .. code-block:: python

5852 5853 5854 5855 5856 5857
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5858 5859

                    def print_prog(prog):
5860
                        for name, value in sorted(prog.block(0).vars.items()):
5861 5862 5863 5864 5865
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
5866
                            for key, value in sorted(op.all_attrs().items()):
5867 5868
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5869

5870
                    def network():
5871
                        img = static.data(name='image', shape=[None, 784])
5872
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5873 5874
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5875
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5876 5877
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5878 5879
                        return avg_loss

5880 5881 5882 5883 5884
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5885
                            avg_loss = network()
5886
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5887
                            sgd.minimize(avg_loss)
5888
                    # the test startup program is not used.
5889 5890
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5891 5892
                            avg_loss = network()
                    print_prog(test_program_2)
5893

5894
            The two code snippets above will generate and print same programs.
5895
        """
5896

T
tangwei12 已提交
5897
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5898 5899 5900
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5901
        pruned_origin_block_id_map = None
5902
        if for_test:
5903 5904
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
5905 5906
                self.desc
            )
5907 5908
            forward_prog.blocks = [
                Block(forward_prog, i)
5909
                for i in range(forward_prog.desc.num_blocks())
5910 5911 5912
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5913
        else:
5914
            p = Program()
G
gongweibao 已提交
5915 5916
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5917
            p.desc = core.ProgramDesc(self.desc)
5918
            p.blocks = [Block(p, i) for i in range(self.desc.num_blocks())]
G
gongweibao 已提交
5919 5920

            p._current_role = self._current_role
5921
            p.__op_role_var = self.__op_role_var
5922
            p._appending_grad_times = self._appending_grad_times
5923 5924
            if hasattr(self, 'lr_scheduler'):
                p.lr_scheduler = self.lr_scheduler
G
gongweibao 已提交
5925

T
tangwei12 已提交
5926
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5927
            # its desc.
W
Wu Yi 已提交
5928
            p._sync_with_cpp()
5929

W
Wu Yi 已提交
5930
        p._copy_param_info_from(self)
5931
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5932
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5933
        return p
5934

5935
    def _prune(self, targets):
Y
yuyang18 已提交
5936 5937 5938 5939 5940 5941 5942 5943
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5944
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5945 5946 5947 5948
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5949
        """
5950
        return self._prune_with_input([], targets)
5951 5952

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5953
        """
5954
        Prune operators and variables which are not needed to generate
5955 5956
        :code:`targets`. Prune operators and variables which are needed
        to generate feeded_var
5957 5958 5959 5960 5961 5962 5963

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5964
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5965 5966 5967 5968 5969 5970
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5971
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5972 5973 5974
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5975 5976
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
5977 5978
        if not isinstance(targets, list):
            targets = [targets]
5979 5980

        for var in feeded_var_names:
5981
            if not isinstance(var, str):
5982 5983
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
5984 5985
                    "str, but received %s." % type(var)
                )
5986

5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

6003 6004 6005 6006
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
6007
                    name = t.name
6008
                elif isinstance(t, str):
6009
                    name = str(t)
6010
                else:
6011 6012
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
6013 6014
                        "Variable or Operator, but received %s." % type(t)
                    )
6015 6016 6017 6018 6019 6020

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
6021 6022 6023
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
6024

6025 6026 6027 6028 6029 6030 6031 6032 6033
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
6034
                        # Skip optimize op except for optimize op in targets,
6035 6036 6037 6038 6039
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
6040

6041
                if target_op is not None:
6042 6043 6044
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
6045

6046
        res = Program()
6047
        res.desc, pruned_origin_block_id_map = core.prune(
6048 6049
            self.desc, set(feeded_var_names), targets_idx
        )
6050
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6051
        res._sync_with_cpp()
6052 6053 6054 6055 6056

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

6057 6058
        return res

X
Xin Pan 已提交
6059
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
6060
        """
F
fengjiayi 已提交
6061 6062 6063 6064 6065
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

6066
        3. change the :code:`is_test`
Y
yuyang18 已提交
6067 6068 6069
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

6070
        Args:
X
Xin Pan 已提交
6071 6072
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
6073

Y
yuyang18 已提交
6074 6075 6076 6077 6078 6079
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
6080
        res = Program()
6081
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
6082 6083 6084 6085

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
6086
        if prune_read_op:
6087
            while True:
6088 6089 6090 6091
                if (
                    read_op_idx >= root_block.op_size()
                    or root_block.op(read_op_idx).type() == 'read'
                ):
6092 6093 6094 6095 6096 6097
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
6098
                    root_block._remove_var(var.name().encode())
F
fengjiayi 已提交
6099 6100

        # change all `is_test` attributes to True
6101
        for i in range(res.desc.num_blocks()):
6102
            block = res.desc.block(i)
6103
            for j in range(block.op_size()):
6104 6105
                op = block.op(j)
                if op.has_attr('is_test'):
6106
                    op._set_bool_attr('is_test', True)
6107 6108 6109
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
6110
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6111
        res._sync_with_cpp()
6112 6113
        return res

6114
    def _remove_training_info(self, clip_extra=True):
6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

6129
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
6130 6131
        res._sync_with_cpp()

6132 6133
        # Note: The op_role and op_role_var cann't be deleted currently,
        # and we will try to remove them in the future.
6134
        common_clipped_attrs_list = ['op_callstack', 'with_quant_attr']
6135

6136
        for i in range(res.desc.num_blocks()):
6137 6138 6139 6140
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
6141 6142
            if not clip_extra:
                continue
6143 6144 6145 6146
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
6147 6148 6149

                extra_attrs_map = core.get_op_extra_attrs(op.type())

6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
6163 6164 6165
                # The extra input of op will be removed in the future
                # for name in remove_input_list:
                #     op.remove_input(name)
6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
6179
                # The extra output of op will be removed in the future
6180 6181
                for name in remove_output_list:
                    op.remove_output(name)
6182

6183 6184 6185 6186 6187 6188 6189
                op_quant_name = (
                    core.op_proto_and_checker_maker.kOpWithQuantAttrName()
                )
                quant = (
                    bool(op.attr(op_quant_name))
                    if op_quant_name in op.attr_names()
                    else False
6190 6191
                )
                quant_attrs = [
6192 6193 6194 6195 6196 6197 6198
                    op_quant_name,
                    "quantization_type",
                    "skip_quant",
                    "activation_bits",
                    "bit_length",
                    "quantize_weight_bits",
                    "weight_quant_scale",
6199
                ]
6200 6201
                for extra_attr_name in extra_attrs_map.keys():
                    op.remove_attr(extra_attr_name)
6202
                remove_attr_list = []
6203 6204 6205 6206 6207 6208
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
6209
                    if len(extra_attrs_map) > 0:
6210
                        if name in common_clipped_attrs_list:
6211
                            op.remove_attr(name)
6212
                        continue
6213 6214 6215 6216 6217 6218 6219 6220 6221 6222
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
6223 6224
        return res

6225 6226
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
6227
        """
6228
        .. note::
6229
            1. All information about parameters will be lost after serialization;
6230
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6231

6232 6233
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
6234

J
Jiabin Yang 已提交
6235
        Args:
Y
yuyang18 已提交
6236

J
Jiabin Yang 已提交
6237
            binary_str_type (str): the binary prootbuf string.
6238

J
Jiabin Yang 已提交
6239 6240
        Returns:
            Program: A deserialized Program.
6241 6242 6243 6244

        Examples:
            .. code-block:: python

6245 6246 6247 6248
                import paddle
                import paddle.static as static

                paddle.enable_static()
6249

6250 6251 6252 6253
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
6254

6255
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
6256

6257
                    z = paddle.matmul(x=x, y=y)
6258

6259 6260
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
6261

6262
                    print(static.default_main_program())
6263
                    print(prog_restored)
Y
yuyang18 已提交
6264
        """
6265 6266
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
6267
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
W
Wu Yi 已提交
6268
        p._sync_with_cpp()
6269
        return p
Y
Yu Yang 已提交
6270

6271
    @staticmethod
6272
    def _construct_from_desc(desc):
6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
6284
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
6285 6286 6287
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
6288 6289
    @property
    def random_seed(self):
Y
yuyang18 已提交
6290
        """
J
Jiabin Yang 已提交
6291
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
6292 6293
        the random seed from random device.

6294
        .. note::
6295
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
6296 6297 6298

        Returns:
            int64: Random seed in current Program
6299

6300 6301 6302 6303

        Examples:
            .. code-block:: python

6304 6305 6306
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
6307

6308 6309 6310
                paddle.enable_static()

                prog = static.default_main_program()
6311
                random_seed = prog.random_seed
6312
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
6313 6314 6315
                print(random_seed)
                ## 0
                ## the default random seed is 0
6316

6317
                # Here we need to set random seed before we use paddle.nn.functional.dropout
6318
                prog.random_seed = 1
6319
                z_var = F.dropout(x_var, 0.7)
6320

6321
                print(prog.random_seed)
6322 6323
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
6324
        """
D
dzhwinter 已提交
6325 6326
        return self._seed

Q
qiaolongfei 已提交
6327 6328
    @property
    def num_blocks(self):
Y
yuyang18 已提交
6329
        """
6330 6331
        The number of :ref:`api_guide_Block_en`  in this Program.

6332
        .. note::
6333
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
6334 6335 6336

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
6337

6338 6339 6340 6341

        Examples:
            .. code-block:: python

6342 6343 6344 6345
                import paddle
                import paddle.static as static

                paddle.enable_static()
6346

6347
                prog = static.default_main_program()
6348 6349
                num_blocks = prog.num_blocks
                print(num_blocks)
6350

6351 6352
                # print result:
                # 1
Y
yuyang18 已提交
6353
        """
Q
qiaolongfei 已提交
6354 6355
        return self.desc.num_blocks()

D
dzhwinter 已提交
6356 6357 6358
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
6359 6360
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
6361 6362
                % type(seed)
            )
D
dzhwinter 已提交
6363 6364
        self._seed = seed

Y
Yu Yang 已提交
6365
    def __repr__(self):
6366
        return self.__str__()
6367

Y
Yu Yang 已提交
6368
    def global_block(self):
Y
yuyang18 已提交
6369
        """
6370 6371
        .. note::
            This API has no effect in Dygraph mode.
6372 6373 6374

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
6375 6376
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
6377

6378 6379 6380 6381

        Examples:
            .. code-block:: python

6382 6383 6384 6385
                import paddle
                import paddle.static as static

                paddle.enable_static()
6386

6387
                prog = static.default_main_program()
6388 6389
                gb_block = prog.global_block()
                print(gb_block)
6390

Y
yuyang18 已提交
6391
        """
Y
Yu Yang 已提交
6392 6393
        return self.blocks[0]

Q
Qiao Longfei 已提交
6394
    def block(self, index):
Y
yuyang18 已提交
6395
        """
6396 6397
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6398

6399 6400
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
6401 6402
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
6403

J
Jiabin Yang 已提交
6404 6405
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
6406 6407 6408 6409

        Examples:
            .. code-block:: python

6410 6411 6412 6413
                import paddle
                import paddle.static as static

                paddle.enable_static()
6414

6415
                prog = static.default_main_program()
6416 6417
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
6418
        """
Q
Qiao Longfei 已提交
6419 6420
        return self.blocks[index]

Y
Yu Yang 已提交
6421
    def current_block(self):
Y
yuyang18 已提交
6422
        """
6423 6424
        .. note::
            This API has no effect in Dygraph mode.
6425

J
Jiabin Yang 已提交
6426 6427
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
6428

J
Jiabin Yang 已提交
6429 6430
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
6431

6432 6433 6434
        Examples:
            .. code-block:: python

6435 6436 6437 6438
                import paddle
                import paddle.static as static

                paddle.enable_static()
6439

6440
                prog = static.default_main_program()
6441 6442
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
6443
        """
Y
Yu Yang 已提交
6444 6445
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
6446
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
6447 6448 6449 6450 6451
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
6452

Y
yuyang18 已提交
6453 6454 6455 6456 6457
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
6458
        new_block_idx = len(self.blocks)
6459 6460 6461 6462 6463
        parent = (
            self.current_block()
            if parent_idx is None
            else self.block(parent_idx)
        )
F
update  
fengjiayi 已提交
6464
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
6465 6466 6467 6468
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
6469
    def _rollback(self):
Y
yuyang18 已提交
6470 6471 6472 6473 6474
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
6475 6476
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
6477
    def _sync_with_cpp(self):
Y
yuyang18 已提交
6478 6479 6480 6481 6482 6483 6484 6485 6486 6487
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
6488 6489 6490
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
6491
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
6492

W
Wu Yi 已提交
6493
    def _copy_param_info_from(self, other):
6494
        """
6495
        Copy the information of parameters from other program.
D
dzhwinter 已提交
6496

Y
yuyang18 已提交
6497 6498 6499
        Notes: This is a very low level API. Users should not invoke it
        directly.

6500 6501 6502 6503 6504 6505 6506
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6507 6508
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6509 6510
                % type(other)
            )
6511

W
Wu Yi 已提交
6512
        self.global_block()._copy_param_info_from(other.global_block())
6513

6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6525 6526
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6527 6528
                % type(other)
            )
6529 6530
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
6531
        self._parameters_on_pservers = other._parameters_on_pservers
6532
        self._endpoints = other._endpoints
6533
        self._ps_endpoint = other._ps_endpoint
6534 6535
        self._distributed_lookup_table = other._distributed_lookup_table

6536
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
6537 6538
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
6539

Y
yuyang18 已提交
6540 6541 6542
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
6543 6544
        Args:
            other(Program): Other program
6545
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
6546 6547
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is
            cloned from block 0 in other, etc. Default is None, which means default mapped,
6548
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
6549 6550 6551 6552 6553

        Returns:
            None
        """
        if not isinstance(other, Program):
6554 6555
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6556 6557
                % type(other)
            )
F
fengjiayi 已提交
6558

6559 6560
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
6561
                i: i for i in range(self.desc.num_blocks())
6562
            }
6563 6564 6565

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
6566 6567
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
6568
            for var in list(block.vars.values()):
6569 6570 6571 6572 6573 6574 6575
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
6576

6577
    def list_vars(self):
Y
yuyang18 已提交
6578
        """
6579
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
6580

J
Jiabin Yang 已提交
6581
        Returns:
6582
            iterable Tensors: The Generator will yield every Tensor in this program.
6583 6584 6585 6586

        Examples:
            .. code-block:: python

6587 6588
                import paddle
                import paddle.static as static
6589

6590 6591 6592 6593 6594
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
6595 6596
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
6597

6598 6599
                # var img : LOD_TENSOR.shape(-1, 1, 28, 28).dtype(float32).stop_gradient(True)
                # var label : LOD_TENSOR.shape(-1, 1).dtype(int64).stop_gradient(True)
Y
yuyang18 已提交
6600
        """
6601
        for each_block in self.blocks:
6602
            for each_var in list(each_block.vars.values()):
6603 6604
                yield each_var

6605 6606 6607 6608 6609 6610 6611 6612 6613 6614
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

6615 6616 6617 6618
                import paddle
                import paddle.static as static

                paddle.enable_static()
6619

6620 6621
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
6622
                hidden = static.nn.fc(x=data, size=10)
6623 6624
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
6625 6626 6627 6628 6629 6630 6631

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
6632 6633
                # persist trainable param fc_0.w_0 : LOD_TENSOR.shape(13, 10).dtype(float32).stop_gradient(False)
                # persist trainable param fc_0.b_0 : LOD_TENSOR.shape(10,).dtype(float32).stop_gradient(False)
6634 6635 6636 6637 6638 6639 6640 6641 6642 6643
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

6644 6645 6646 6647 6648 6649 6650 6651 6652
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
6653 6654 6655
            mode(str, optional): Source of the obtained parameters and buffers.
                    'opt' :  The return value only contains the variable in the optimizer.
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.
6656 6657
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
6658
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
6686
        # can not be imported at the begainning of this file.
6687 6688
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
6689

6690 6691
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
6692 6693 6694 6695
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".format(
                    type(scope)
                )
            )
6696 6697 6698 6699 6700

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
6701 6702
            raise TypeError(
                "Type of `mode` should be string, but received {}.".format(
6703 6704 6705
                    type(mode)
                )
            )
6706 6707 6708 6709 6710

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
6711 6712 6713 6714 6715
            if (
                var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH
                or var.desc.type() == core.VarDesc.VarType.FETCH_LIST
                or var.desc.type() == core.VarDesc.VarType.READER
            ):
6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
6734 6735 6736 6737
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".format(
                        mode
                    )
                )
6738 6739 6740 6741 6742 6743 6744 6745

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
6746 6747 6748 6749
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".format(
                        var.name
                    )
                )
6750 6751 6752 6753 6754 6755
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
6756
        Set parameters and persistable buffers in state_dict to program.
6757
        An exception will throw if shape or dtype of the parameters is not match.
6758

6759 6760 6761 6762
        .. note::
            This function MUST called after run start_up_program

        Args:
6763
            state_dict(dict): the dict store parameters and persistable buffers.
6764 6765
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
6766
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6767 6768
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
6769

6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
6799 6800 6801
                    type(state_dict)
                )
            )
6802 6803

        vars_dict = {var.name: var for var in self.list_vars()}
6804 6805 6806
        condition = (
            True if 'StructuredToParameterName@@' in state_dict else False
        )
6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
6818 6819
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
6820 6821
                except TypeError as err:
                    warnings.warn(
6822 6823
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
6824
            else:
6825
                warnings.warn(
6826 6827 6828 6829 6830 6831
                    (
                        "Skip loading for '{0}'. Because '{0}' not in the program.".format(
                            name
                        )
                    )
                )
6832

Y
Yu Yang 已提交
6833

6834
class Parameter(Variable, metaclass=ParameterMetaClass):
6835
    """
6836
    Parameter is derived from Variable. A parameter is a persistable
6837
    Variable, and will be updated by optimizers after each iteration.
6838
    The training of a neural network is essentially the updating of
6839 6840
    its parameters.

6841
    Relative to a general Variable, a Parameter has several its own
6842 6843
    member variables:

6844 6845 6846 6847 6848 6849 6850 6851 6852 6853
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
6854
        need_clip (bool): Whether the parameter gradient need to be cliped
6855
            in optimizer. Default is True.
6856 6857
    """

6858 6859 6860 6861 6862 6863
    def __init__(
        self,
        block,
        shape,
        dtype,
        type=core.VarDesc.VarType.LOD_TENSOR,
6864
        **kwargs,
6865
    ):
6866 6867 6868 6869 6870
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6871 6872
        for each in shape:
            if each < 0:
6873 6874
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
6875 6876 6877 6878 6879 6880 6881 6882 6883 6884
                    % list(shape)
                )

        Variable.__init__(
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
6885
            **kwargs,
6886
        )
Y
Yu Yang 已提交
6887 6888 6889 6890
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6891 6892
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6893
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6894

6895 6896
        self.need_clip = kwargs.get('need_clip', True)

6897 6898
        self.is_distributed = False

6899 6900
        self.is_parameter = True

F
fengjiayi 已提交
6901
    def __str__(self):
6902
        return self._to_readable_code()
F
fengjiayi 已提交
6903

F
update  
fengjiayi 已提交
6904 6905 6906
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6907

F
update  
fengjiayi 已提交
6908 6909 6910 6911 6912 6913 6914 6915
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6916 6917 6918 6919
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
G
GGBond8488 已提交
6920
                import paddle
6921 6922

                prog = fluid.default_main_program()
G
GGBond8488 已提交
6923
                rlt = paddle.static.data("fake_data", shape=[-1,1,1], dtype='float32')
6924 6925
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6926
        """
6927
        assert isinstance(throw_on_error, bool) and isinstance(
6928 6929
            with_details, bool
        )
F
update  
fengjiayi 已提交
6930 6931
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
6932 6933 6934 6935 6936 6937 6938
            additional_attr = (
                "trainable",
                "optimize_attr",
                "regularizer",
                "do_model_average",
                "need_clip",
            )
F
update  
fengjiayi 已提交
6939
            for attr_name in additional_attr:
6940
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
F
update  
fengjiayi 已提交
6941 6942
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6943 6944 6945 6946
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6947

W
wanghuancoder 已提交
6948
class EagerParamBase(core.eager.Tensor):
6949
    """
6950 6951
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode).
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers
6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
6969
        need_clip (bool): Whether the parameter gradient need to be cliped
6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
6984 6985
                    % list(shape)
                )
6986 6987 6988 6989 6990 6991 6992

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

6993 6994 6995
        if isinstance(shape, core.eager.Tensor):
            shape = shape.numpy()

6996
        super().__init__(
6997 6998 6999 7000 7001 7002
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            core.VarDesc.VarType.LOD_TENSOR,
            True,
        )
7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
7017 7018 7019
        # hook functions for lazy initialization
        self._init_func = None
        self._init_op_creator = None
7020 7021

    def set_init_func(self, obj):
7022
        self._init_func = obj
7023 7024 7025

    @dygraph_only
    def initialize(self):
7026 7027 7028
        assert (
            self._init_func is not None
        ), "Required self._init_func is not None, but received None."
7029
        self._init_func(self, None)
7030
        # clear function handle to release resource
7031
        self._init_func = None
7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
7044 7045
                type(trainable),
            )
7046

7047 7048 7049 7050
    def _create_init_op(self, block):
        """
        Call init_op_creator function to create initializer operation in block.
        """
7051 7052 7053
        assert (
            self._init_op_creator is not None
        ), "Required self._init_op_creator is not None, but received None."
7054
        self._init_op_creator(self, block)
7055

7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074
    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
7075
            tensor=super().__str__()
7076
        )
7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
7106 7107
        new_param._init_func = self._init_func
        new_param._init_op_creator = self._init_op_creator
7108 7109 7110 7111 7112 7113
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
7114 7115
        return new_param

7116 7117 7118
    __repr__ = __str__


Y
Yu Yang 已提交
7119
# program is a global instance.
Y
Yu Yang 已提交
7120 7121
_main_program_ = Program()
_startup_program_ = Program()
7122
_startup_program_._is_start_up_program_ = True
7123

7124

7125
def default_startup_program():
Y
Yu Yang 已提交
7126
    """
Y
yuyang18 已提交
7127 7128
    Get default/global startup program.

7129
    The :code:`paddle.nn` function will append the initialization operators into startup program.
7130
    The :code:`startup_program` will initialize the parameters by the OPs.
T
tangwei12 已提交
7131

7132 7133
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
7134

7135 7136
    Returns:
        Program: current default startup program.
7137

7138
    Returns type:
7139 7140 7141 7142

    Examples:
        .. code-block:: python

7143
            import paddle
7144

7145
            paddle.enable_static()
7146 7147 7148 7149
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
7150
    """
Y
Yu Yang 已提交
7151
    return _startup_program_
7152

7153

7154
def default_main_program():
Y
Yu Yang 已提交
7155
    """
7156
    This API can be used to get ``default main program`` which store the
7157
    descriptions of Ops and tensors.
T
tangwei12 已提交
7158

7159 7160
    For example ``z = paddle.add(x, y)`` will create a new ``add``
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` .
Y
yuyang18 已提交
7161

7162
    The ``default main program`` is the default value for ``Program`` parameter in
7163
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
7164
    :code:`default_main_program` when the program is not specified.
7165

7166
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
7167

Y
Yu Yang 已提交
7168
    Returns:
7169
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
7170 7171 7172 7173

    Examples:
        ..  code-block:: python

7174
            import paddle
7175

7176
            paddle.enable_static()
7177
            # Sample Network:
7178 7179 7180
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
7181

7182 7183 7184
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
7185
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
7186
    """
Y
Yu Yang 已提交
7187
    return _main_program_
Y
Yu Yang 已提交
7188 7189 7190 7191 7192


def switch_main_program(program):
    """
    Switch the main program to a new program.
7193

Y
Yu Yang 已提交
7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
7208
    Switch the startup program to a new program
Y
Yu Yang 已提交
7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
7221
@signature_safe_contextmanager
Y
Yu Yang 已提交
7222 7223
def program_guard(main_program, startup_program=None):
    """
7224 7225
    :api_attr: Static Graph

7226 7227 7228
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
7229

G
guofei 已提交
7230
    Args:
7231
        main_program(Program): New main program inside ``with`` statement.
7232 7233
        startup_program(Program, optional): New startup program inside ``with``
            statement. :code:`None` means not changing startup program,
G
guofei 已提交
7234 7235 7236
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
7237
    Examples:
7238
       .. code-block:: python
T
tangwei12 已提交
7239

7240
          import paddle
Y
yuyang18 已提交
7241

7242 7243 7244 7245 7246
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
7247
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
7248 7249 7250

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
7251

Y
Yu Yang 已提交
7252
    Examples:
7253
       .. code-block:: python
Y
yuyang18 已提交
7254

7255
          import paddle
7256

7257 7258 7259 7260 7261
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
7262

Y
Yu Yang 已提交
7263
    """
7264
    from .data_feeder import check_type
7265 7266 7267 7268

    check_type(
        main_program, 'main_program', Program, 'paddle.static.program_guard'
    )
Y
Yu Yang 已提交
7269 7270
    main_program = switch_main_program(main_program)
    if startup_program is not None:
7271 7272 7273 7274 7275 7276
        check_type(
            startup_program,
            'startup_program',
            Program,
            'paddle.static.program_guard',
        )
7277 7278
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
7279
        startup_program = switch_startup_program(startup_program)
7280 7281 7282 7283 7284 7285
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
7286 7287


W
Wu Yi 已提交
7288
def _get_var(name, program=None):
X
xuwei06 已提交
7289
    """
Y
yuyang18 已提交
7290
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
7291

X
xuwei06 已提交
7292 7293 7294
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
7295
        If None, default_global_program() will be used.
X
xuwei06 已提交
7296 7297 7298 7299 7300 7301 7302

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
7303
    assert isinstance(program, Program)
X
xuwei06 已提交
7304 7305

    return program.global_block().var(name)
7306 7307


7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320
@signature_safe_contextmanager
def dygraph_guard_if_declarative():
    from .dygraph.base import in_declarative_mode
    from .dygraph import Tracer

    if in_declarative_mode():
        # Under @paddle.jit.to_static decorator, we switch back dygraph mode temporarily.
        with _dygraph_guard(tracer=Tracer()):
            yield
    else:
        yield


S
rename  
sneaxiy 已提交
7321
@signature_safe_contextmanager
L
lujun 已提交
7322
def _dygraph_guard(tracer):
7323 7324 7325 7326
    tmp_tracer = global_var._dygraph_tracer_
    global_var._dygraph_tracer_ = tracer
    if tracer is not None:
        core._switch_tracer(tracer)
M
minqiyang 已提交
7327

C
Charles-hit 已提交
7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339
    try:
        yield
    finally:
        if tmp_tracer is not None:
            core._switch_tracer(tmp_tracer)
        global_var._dygraph_tracer_ = tmp_tracer


@signature_safe_contextmanager
def _static_guard():
    tmp_tracer = global_var._dygraph_tracer_
    global_var._dygraph_tracer_ = None
7340 7341 7342
    try:
        yield
    finally:
7343 7344 7345
        if tmp_tracer is not None:
            core._switch_tracer(tmp_tracer)
        global_var._dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
7346 7347


S
rename  
sneaxiy 已提交
7348
@signature_safe_contextmanager
L
lujun 已提交
7349
def _dygraph_place_guard(place):
7350 7351 7352
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
7353 7354
    _set_dygraph_tracer_expected_place(place)

7355 7356 7357
    try:
        yield
    finally:
7358
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
7359
        _set_dygraph_tracer_expected_place(_global_expected_place_)
7360 7361


7362 7363 7364 7365 7366 7367 7368 7369 7370 7371
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
7372

7373
    Note:
7374
        The API only supports static graph mode.
7375 7376 7377 7378

    A context manager that specifies the device on which the OP will be placed.

    Args:
7379
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
7380
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs.
7381 7382 7383 7384 7385 7386 7387
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
7388

7389
        .. code-block:: python
7390

7391
            # required: gpu
Z
Zhang Ting 已提交
7392
            import paddle
7393

Z
Zhang Ting 已提交
7394 7395 7396
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
7397
            if support_gpu:
Z
Zhang Ting 已提交
7398
                place = paddle.CUDAPlace(0)
7399 7400

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
7401 7402 7403
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
7404

Z
Zhang Ting 已提交
7405
            with paddle.static.device_guard("cpu"):
7406
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
7407 7408
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
7409
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
7410
                out = paddle.reshape(data1, shape=shape)
7411

Z
Zhang Ting 已提交
7412 7413
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
7414 7415 7416
            result = exe.run(fetch_list=[out])
    """

7417 7418 7419 7420 7421
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
7422 7423 7424 7425
    if (
        device not in ['cpu', 'gpu', 'xpu', '', None]
        and device not in core.get_all_custom_device_type()
    ):
7426
        raise ValueError(
7427
            "The Attr(device) should be 'cpu', 'xpu', 'gpu' or custom device, and it can also be empty string or None "
7428 7429
            "when there is no need to specify device. But received %s" % device
        )
7430 7431
    if index:
        device = ":".join([device, index])
7432
    pre_device = switch_device(device)
7433 7434 7435 7436
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
7437 7438


7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450
def _switch_cuda_graph_mode(cuda_graph_attr):
    global _current_cuda_graph_mode
    pre_mode = _current_cuda_graph_mode
    _current_cuda_graph_mode = cuda_graph_attr
    return pre_mode


@signature_safe_contextmanager
def _cuda_graph_guard(cuda_graph_attr=None):
    """

    Note:
7451
        The API only supports static graph mode.
7452

7453
    A context manager that specifies the cuda_graph_mode which indicating the cuda graph capture under static graph mode.
7454 7455 7456 7457 7458

    Args:
        cuda_graph_attr(str|None): The cuda graph attr with the format of:
                                   cuda_graph_capture_mode;memory_pool_id;cuda_graph_id
    """
7459
    assert (
7460
        not in_dygraph_mode()
7461
    ), "cuda_graph_guard only works under static graph mode"
7462 7463
    assert (
        core.is_compiled_with_cuda()
7464 7465 7466 7467 7468 7469 7470 7471
    ), "cuda_graph_guard context can be only used when Paddle is compiled with cuda"
    pre_mode = _switch_cuda_graph_mode(cuda_graph_attr)
    try:
        yield
    finally:
        _switch_cuda_graph_mode(pre_mode)


G
guofei 已提交
7472 7473 7474
def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
7475
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7476 7477 7478 7479 7480 7481 7482

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

7483 7484
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
7485 7486 7487 7488
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
7489 7490
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
7491 7492
        else:
            raise ValueError(
7493 7494
                "Flag %s cannot set its value through this function." % (key)
            )
G
guofei 已提交
7495 7496 7497 7498 7499


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
7500
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7501 7502 7503 7504 7505 7506 7507 7508 7509 7510

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

7511
            import paddle
G
guofei 已提交
7512 7513

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
7514
            res = paddle.get_flags(flags)
G
guofei 已提交
7515 7516 7517 7518 7519 7520
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
7521
            if _global_flags().is_public(key):
7522
                value = _global_flags()[key]
G
guofei 已提交
7523 7524 7525 7526
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
7527 7528 7529
                    'Flag %s cannot get its value through this function.'
                    % (key)
                )
G
guofei 已提交
7530
    elif isinstance(flags, str):
7531
        if _global_flags().is_public(flags):
7532
            value = _global_flags()[flags]
G
guofei 已提交
7533 7534 7535 7536
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
7537 7538
                'Flag %s cannot get its value through this function.' % (flags)
            )
G
guofei 已提交
7539 7540 7541
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
7542 7543 7544 7545 7546 7547


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559
    if isinstance(
        place,
        (
            core.Place,
            core.XPUPlace,
            core.CPUPlace,
            core.CUDAPinnedPlace,
            core.CUDAPlace,
            core.IPUPlace,
            core.CustomPlace,
        ),
    ):
7560 7561 7562 7563
        return place

    if not isinstance(place, str):
        raise ValueError(
7564 7565
            "place only support string which is 'Place' and so on."
        )
7566 7567

    place = place.lower()
7568
    if place == "cpu":
7569
        return core.CPUPlace()
7570

7571
    if place == "device":
7572 7573
        return core.Place()

7574
    # GPU
7575 7576 7577 7578
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
7579
                "The device should not be {}, since PaddlePaddle is "
7580
                "not compiled with CUDA".format(avaliable_gpu_place.group())
7581
            )
7582 7583 7584 7585 7586 7587 7588 7589 7590
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
7591 7592

    # XPU
7593 7594 7595 7596
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
7597
                "The device should not be {}, since PaddlePaddle is "
7598
                "not compiled with XPU".format(avaliable_xpu_place.group())
7599
            )
7600 7601 7602 7603
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
7604

J
jianghaicheng 已提交
7605 7606 7607 7608 7609
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
7610
                "The device should not be {}, since PaddlePaddle is "
7611
                "not compiled with IPU".format(avaliable_ipu_place.group())
7612
            )
J
jianghaicheng 已提交
7613 7614 7615 7616 7617
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

7618
    raise ValueError(
K
Kim Yann 已提交
7619
        f"Paddle supports CPUPlace, CUDAPlace, CUDAPinnedPlace, XPUPlace and IPUPlace, but received {place}."
7620
    )
7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret