framework.py 256.2 KB
Newer Older
G
gouzil 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

import textwrap
Y
Yu Yang 已提交
16
import collections
X
Xin Pan 已提交
17
from collections import defaultdict
H
huzhiqiang 已提交
18
from collections.abc import Iterable
Q
qiaolongfei 已提交
19
import contextlib
20
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
21
import os
F
fengjiayi 已提交
22
import re
23
import traceback
24
import copy
25
from types import MethodType, FunctionType
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
R
risemeup1 已提交
32 33 34

from .proto import framework_pb2, data_feed_pb2

35
from . import core
36
from . import unique_name
37 38
import paddle.version as fluid_version
import warnings
39
import functools
40
from .variable_index import _getitem_impl_, _setitem_impl_
41
import threading
Y
Yu Yang 已提交
42

43
__all__ = [
44 45 46 47
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
48
    'name_scope',
J
jianghaicheng 已提交
49
    'ipu_shard_guard',
50
    'set_ipu_shard',
S
sneaxiy 已提交
51 52
    'cuda_places',
    'cpu_places',
53
    'xpu_places',
S
sneaxiy 已提交
54
    'cuda_pinned_places',
J
Jiabin Yang 已提交
55
    '_non_static_mode',
L
lujun 已提交
56
    'in_dygraph_mode',
57
    'is_compiled_with_cinn',
C
chengduo 已提交
58
    'is_compiled_with_cuda',
59
    'is_compiled_with_rocm',
60
    'is_compiled_with_xpu',
61
    'Variable',
62
    'require_version',
63
    'device_guard',
G
guofei 已提交
64 65
    'set_flags',
    'get_flags',
66
]
Y
Yu Yang 已提交
67

Q
qiaolongfei 已提交
68 69 70 71
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
72 73
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

74

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
# use thread local to create thread save global variables.
class GlobalThreadLocal(threading.local):
    def __init__(self):
        """
        init the thread local data.
        TODO(xiongkun): how to access another thread local data ?
        """
        global _dygraph_tracer_
        self._in_declarative_mode_ = False
        self._functional_dygraph_context_manager = None
        self._dygraph_tracer_ = _dygraph_tracer_
        self._in_eager_mode_ = True

    def __str__(self):
        strings = []
        strings.append(
            "_in_declarative_mode_:" + str(self._in_declarative_mode_)
        )
        strings.append(
            "_functional_dygraph_context_manager:"
            + str(self._functional_dygraph_context_manager)
        )
        strings.append("_dygraph_tracer_:" + str(self._dygraph_tracer_))
        strings.append("_in_eager_mode_:" + str(self._in_eager_mode_))
        return "\n".join(strings)

    def __setattr__(self, name, val):
        if name == '_dygraph_tracer_':
            global _dygraph_tracer_
            _dygraph_tracer_ = val
        self.__dict__[name] = val


L
lujun 已提交
108
_dygraph_tracer_ = None
109 110
global_var = GlobalThreadLocal()

111
_global_expected_place_ = None
112
_current_device = None
113
global_prog_seed = 0
114
_current_pipeline_stage = None
115
_current_cuda_graph_mode = None
116
_global_flags_ = core.globals()
117

J
Jiabin Yang 已提交
118

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
# special_op_attrs, extra_op_attrs are prepared for printing warnings
# when turning on FLAGS_print_extra_attrs
special_op_attrs = {
    "elementwise_add": [{"axis": -1}],
    "elementwise_sub": [{"axis": -1}],
    "elementwise_mul": [{"axis": -1}],
    "elementwise_div": [{"axis": -1}],
    "elementwise_max": [{"axis": -1}],
    "elementwise_min": [{"axis": -1}],
    "elementwise_pow": [{"axis": -1}],
    "elementwise_mod": [{"axis": -1}],
    "elementwise_floordiv": [{"axis": -1}],
    "less_than": [{"axis": -1}],
    "less_equal": [{"axis": -1}],
    "greater_than": [{"axis": -1}],
    "greater_equal": [{"axis": -1}],
    "equal": [{"axis": -1}],
    "not_equal": [{"axis": -1}],
    "amax": [{"reduce_all": False}],
    "amin": [{"reduce_all": False}],
    "any": [{"reduce_all": False}],
    "frobenius_norm": [{"reduce_all": False}],
    "logsumexp": [{"reduce_all": False}],
    "reduce_max": [{"reduce_all": False}],
    "reduce_min": [{"reduce_all": False}],
    "reduce_mean": [{"reduce_all": False}],
    "reduce_prod": [{"reduce_all": False}],
    "reduce_sum": [{"reduce_all": False}],
}

extra_op_attrs = {
    "gather": ["overwrite"],
    "graph_reindex": ["flag_buffer_hashtable"],
    "graph_sample_neighbors": ["flag_perm_buffer"],
    "relu6": ["threshold"],
    "swish": ["beta"],
    "hsigmoid_loss": ["remote_prefetch"],
    "max_pool2d_with_index": ["global_pooling"],
    "uniform": ["diag_num"],
    "unique": ["is_sorted"],
}

J
Jiabin Yang 已提交
161
# Some explanation of our execution system 2022.03
162
# For now we have 3 kinds of execution system, since we refactored dygraph mode to
J
Jiabin Yang 已提交
163
# build a fast execution system for dynamic mode. But we can't just remove all legacy
164
# code once we present the new system for some historical reason. That's why we have
J
Jiabin Yang 已提交
165
# these flags.
166
#
J
Jiabin Yang 已提交
167
# 1. _non_static_mode():
168
# _non_static_mode means  we are now running in legacy dygraph mode or dygraph mode.
J
Jiabin Yang 已提交
169 170 171
# 2. dygraph_mode():
# This flags inidicates we are now running in dygraph mode which called eager mode before.
# 3. _in_legacy_dygraph():
姜永久 已提交
172
# This flags has been deprecated
173
#
J
Jiabin Yang 已提交
174
# They have a relation ship as below:
姜永久 已提交
175
# Since _in_legacy_graph is deprecated, so dygraph_mode is _non_static_mode
176
#
J
Jiabin Yang 已提交
177 178 179 180 181 182 183
# Why we have to make different of _in_legacy_dygraph and dygraph_mode?
# In some performance issue, we find that python if statement cause server performance problem
# and we need our new dygraph mode becomes as fast as it could be. That's why we make these flags
# to make sure in most case, we find new dygraph mode first with only one if statement.


def _in_eager_without_dygraph_check():
184
    return global_var._in_eager_mode_
J
Jiabin Yang 已提交
185 186


K
Kim Yann 已提交
187
# FIXME(dev): We haven't fully verified eager mode on XPU et.al but
188 189 190 191
# only GPU/CPU. Remove this after we improve this feature.
_is_first_import_ = True


J
Jiabin Yang 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
def in_dygraph_mode():
    """

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .

    Returns:
        bool: Whether paddle runs in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
213
            print(paddle.in_dynamic_mode())  # False, Now we are in static graph mode
J
Jiabin Yang 已提交
214 215 216 217 218

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode

    """
219 220 221
    return (
        global_var._dygraph_tracer_ is not None
    ) and global_var._in_eager_mode_
J
Jiabin Yang 已提交
222 223 224


def _non_static_mode():
225
    return global_var._dygraph_tracer_ is not None
226 227


228 229
global_ipu_index = -1
global_ipu_stage = -1
J
jianghaicheng 已提交
230 231 232 233 234
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


@signature_safe_contextmanager
235
def ipu_shard_guard(index=-1, stage=-1):
J
jianghaicheng 已提交
236 237 238 239
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
W
Weilong Wu 已提交
240
        index(int, optional): Specify which ipu the Tensor is computed on, (such as '0, 1, 2, 3').
241
            The default value is -1, which means the Op only run on IPU 0.
W
Weilong Wu 已提交
242
        stage(int, optional): Specify the computation order of the sharded model(such as '0, 1, 2, 3').
243
            The sharded model will be computed from small to large. The default value is -1,
J
jianghaicheng 已提交
244
            which means no pipelining computation order and run Ops in terms of graph.
245

G
gouzil 已提交
246 247 248 249 250 251 252
    Note:
        Only if the enable_manual_shard=True, the 'index' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        Only if the enable_pipelining=True, the 'stage' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        A index is allowed to match none stage or a stage. A stage is only allowed to match a new or
        duplicated index.
J
jianghaicheng 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


287 288 289 290
def set_ipu_shard(call_func, index=-1, stage=-1):
    """
    Shard the ipu with the given call function. Set every ops in call function to the given ipu sharding.

G
gouzil 已提交
291 292 293 294 295
    Note:
        Only when enable_manual_shard=True to set the index to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        Only when enable_pipelining=True to set stage to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        An index supports a corresponding None stage or a stage, and a stage only supports a new index or a duplicate index.

296 297 298 299 300
    Args:
        call_func(Layer|function): Specify the call function to be wrapped.
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is -1, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
301
            The sharded model will be computed from small to large. The default value is -1,
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
            which means no pipelining computation order and run Ops in terms of graph.

    Returns:
        The wrapped call function.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='float32')
            relu = paddle.nn.ReLU()
            relu = paddle.static.set_ipu_shard(relu, index=1, stage=1)
            relu(a)
    """

    def decorate(func):
        def wrapper(*args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return func(*args, **kwargs)

        return wrapper

327
    from paddle.nn import Layer
328

329 330 331 332 333
    if not isinstance(call_func, Layer):
        if callable(call_func):
            return decorate(call_func)
        else:
            raise TypeError(
334 335
                "Unsupported type. Only accept paddle.nn.Layer or function."
            )
336 337 338 339 340 341 342 343 344 345 346 347

    # patch paddle.nn.Layer
    class BlockFn(type(call_func)):
        def __call__(self, *args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return super().__call__(*args, **kwargs)

    BlockFn.__name__ = type(call_func).__name__
    call_func.__class__ = BlockFn
    return call_func


348 349
def require_version(min_version, max_version=None):
    """
350 351 352
    Check if the installed version of PaddlePaddle is in [min_version, max_version],
    if the installed version is lower than ``min_version`` or higher than ``max_version``,
    an exception will be thrown, NO returns if the installed version is satisfied.
353

354 355 356 357
    Args:
        min_version (str): the minimum version required (like '1.4.0').
        max_version (str, optional): the max version required (like '1.6.0'), default is None,
            meaning any version equal or higher than ``min_version`` is acceptable.
358

359 360
    Returns:
        None.
361

362 363 364 365 366 367
    Raises:
        TypeError: if the type of ``min_version`` is not str.
        TypeError: if the type of ``max_version`` is not str or type(None).
        ValueError: if the value of ``min_version`` is not in version format.
        ValueError: if the value of ``max_version`` is not in version format or None.
        Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.
368

369 370
    Examples:
        .. code-block:: python
371

372
            import paddle.fluid as fluid
373

374 375
            # any version >= 0.1.0 is acceptable.
            fluid.require_version('0.1.0')
376

377 378 379
            # if 0.1.0 <= version <= 10.0.0, it is acceptable.
            fluid.require_version(min_version='0.1.0', max_version='10.0.0')
    """
380 381 382
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
383 384
            % (type(min_version))
        )
385 386 387 388

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
389 390
            % (type(max_version))
        )
391 392 393 394 395

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
396 397
            "like '1.5.2.0', but received %s" % min_version
        )
398 399 400 401 402 403

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
404 405
                "like '1.5.2.0', but received %s" % max_version
            )
406 407

    version_installed = [
408 409 410 411
        fluid_version.major,
        fluid_version.minor,
        fluid_version.patch,
        fluid_version.rc,
412 413 414 415
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
416
        for i in range(len(ver_a)):
417 418 419 420 421 422 423 424 425 426 427
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
428 429 430
                "please make sure the version is good with your code."
                % (min_version, max_version, fluid_version.full_version)
            )
431 432 433 434
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
435 436 437
                "please make sure the version is good with your code."
                % (min_version, fluid_version.full_version)
            )
438 439 440
        return

    min_version_split = min_version.split('.')
441 442 443
    min_version_to_check = (
        min_version_split + zero_version[len(min_version_split) :]
    )
444 445 446

    if max_version is not None:
        max_version_split = max_version.split('.')
447 448 449
        max_version_to_check = (
            max_version_split + zero_version[len(max_version_split) :]
        )
450

451 452 453 454
        if (
            version_cmp(version_installed, max_version_to_check) > 0
            or version_cmp(version_installed, min_version_to_check) < 0
        ):
455 456
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
457 458
                % (min_version, max_version, fluid_version.full_version)
            )
459 460 461 462 463
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
464 465
                % (min_version, fluid_version.full_version, min_version)
            )
466 467


468 469
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
470 471 472
        assert not _non_static_mode(), (
            "We don't support %s in dynamic graph mode" % func.__name__
        )
473 474 475 476 477 478 479
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
480 481 482 483
        assert _non_static_mode(), (
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
484 485 486 487 488
        return func(*args, **kwargs)

    return __impl__


489 490 491
def _non_static_only_(func):
    def __impl__(*args, **kwargs):
        from .dygraph.base import in_declarative_mode
492 493 494 495 496

        assert _non_static_mode() or in_declarative_mode(), (
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
497 498 499 500 501
        return func(*args, **kwargs)

    return __impl__


502 503
def _static_only_(func):
    def __impl__(*args, **kwargs):
504 505 506 507
        assert not _non_static_mode(), (
            "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode."
            % func.__name__
        )
508 509 510 511 512
        return func(*args, **kwargs)

    return __impl__


513 514 515 516 517
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


518
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
W
wanghuancoder 已提交
519 520
# used to make Variable and Tensor has same interfaces, like numpy. Since Tensor is not exposed in our
# official docments, logically, we want to keep Tensor and logically consistent. While, actually,
521 522
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
W
wanghuancoder 已提交
523
# TODO(zhiqiu): We should make Tensor consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
524
# same base class.
525 526 527
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
528 529
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
R
Ryan 已提交
530
            "  2. If you are using `@paddle.jit.to_static`, you can call `paddle.jit.enable_to_static(False)`. "
531
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
532 533
            % (func.__name__, func.__name__)
        )
534 535 536 537

    return __impl__


T
tangwei12 已提交
538 539
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
540 541 542 543 544 545 546 547 548
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
549 550
                DeprecationWarning,
            )
551 552 553 554 555 556 557
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


558 559
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
560
static_only = wrap_decorator(_static_only_)
561
fake_interface_only = wrap_decorator(_fake_interface_only_)
562
non_static_only = wrap_decorator(_non_static_only_)
563 564


L
lujun 已提交
565
def _dygraph_tracer():
566
    return global_var._dygraph_tracer_
567

W
Wu Yi 已提交
568

569 570 571 572
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
573
def _current_expected_place():
574 575 576
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
577 578 579 580 581
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
582
                _global_expected_place_ = core.CUDAPlace(_cuda_ids()[0])
583 584 585 586 587
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
588 589 590 591 592 593
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
594
                _global_expected_place_ = core.XPUPlace(_xpu_ids()[0])
595 596 597 598 599
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
600 601 602 603 604 605 606 607 608 609 610 611 612 613 614
        elif core.is_compiled_with_custom_device("npu"):
            # TODO(duanyanhui): Optimize DeviceManager and Return all expected places when device registered in DeviceManager is greater than 1.
            try:
                device_count = core.get_custom_device_count("npu")
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CustomPlace(
                    "npu", _custom_device_ids("npu")[0]
                )
            else:
                warnings.warn(
                    "You are using NPU version Paddle, but your NPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
615 616 617 618 619 620 621
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
622 623
    if global_var._dygraph_tracer_ is not None:
        global_var._dygraph_tracer_._expected_place = place
624 625 626 627 628


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
629
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
630 631


S
sneaxiy 已提交
632
def _cpu_num():
633
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
634 635 636 637 638 639 640
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
641 642 643
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()
                )
            )
C
chengduo 已提交
644
        os.environ['CPU_NUM'] = str(1)
645
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
646 647 648 649 650 651 652 653
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
654
        device_ids = range(core.get_cuda_device_count())
C
chengduo 已提交
655
    return device_ids
S
sneaxiy 已提交
656 657


658 659 660 661 662
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
663
        device_ids = range(core.get_xpu_device_count())
664 665 666
    return device_ids


667 668 669 670 671 672 673 674 675
def _custom_device_ids(device_type):
    custom_devices_env = os.getenv("FLAGS_selected_" + device_type + "s")
    if custom_devices_env:
        device_ids = [int(s) for s in custom_devices_env.split(",")]
    else:
        device_ids = range(core.get_custom_device_count(device_type))
    return device_ids


676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


691 692 693 694 695 696 697
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
698

699 700 701 702 703 704
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

Z
Zman 已提交
705 706
    Returns:
        None
707 708 709 710 711 712 713 714 715 716

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


717 718 719 720
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

721 722
    Returns:
        Bool: `True` if CINN is currently available, otherwise `False`.
723 724 725 726 727 728 729 730 731 732

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
733 734 735 736
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

737 738
    Returns:
        Bool: `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
739 740 741 742

    Examples:
        .. code-block:: python

743
            import paddle
744
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
745 746 747 748
    """
    return core.is_compiled_with_cuda()


749 750 751 752
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

753 754
    Returns:
        Bool: `True` if ROCm is currently available, otherwise `False`.
755 756 757 758 759

    Examples:
        .. code-block:: python

            import paddle
760
            support_gpu = paddle.device.is_compiled_with_rocm()
761 762 763 764
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
765
def cuda_places(device_ids=None):
L
lujun 已提交
766
    """
767
    Note:
768 769 770
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
771
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
772 773

    If :code:`device_ids` is None, environment variable of
774
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
775
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
776
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
777
    If :code:`FLAGS_selected_gpus` is not set, all visible
778
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
779 780

    If :code:`device_ids` is not None, it should be the device
781
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
782
    the returned list would be
C
Chen Weihang 已提交
783
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
784

785
    Parameters:
786
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
787 788

    Returns:
C
Chen Weihang 已提交
789
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
790 791

    Examples:
792

L
lujun 已提交
793 794
        .. code-block:: python

C
Chen Weihang 已提交
795 796
            import paddle
            import paddle.static as static
T
tangwei12 已提交
797

798
            # required: gpu
799

C
Chen Weihang 已提交
800 801 802
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
803 804

    """
805
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
806
    if device_ids is None:
C
chengduo 已提交
807
        device_ids = _cuda_ids()
S
sneaxiy 已提交
808 809 810 811 812
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


813 814 815 816
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
817 818 819 820 821 822 823 824 825
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
826
        the returned list would be
S
sunzhongkai588 已提交
827
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
828

829 830 831 832 833 834
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
835

836 837
            # required: xpu

838 839
            import paddle
            import paddle.static as static
840

841 842 843
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
844
    assert core.is_compiled_with_xpu(), "Not compiled with XPU"
845 846 847 848 849 850 851
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
852
def cpu_places(device_count=None):
L
lujun 已提交
853
    """
C
Chen Weihang 已提交
854
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
855

S
add doc  
sneaxiy 已提交
856
    If :code:`device_count` is None, the device count would
857
    be determined by environment variable :code:`CPU_NUM`.
C
chengduo 已提交
858 859
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
860 861
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
862

863 864
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
865 866

    Returns:
C
Chen Weihang 已提交
867
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
868 869

    Examples:
870

L
lujun 已提交
871 872
        .. code-block:: python

C
Chen Weihang 已提交
873 874
            import paddle
            import paddle.static as static
T
tangwei12 已提交
875

C
Chen Weihang 已提交
876 877 878
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
879 880
    """

S
sneaxiy 已提交
881 882 883 884 885 886
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
887
    """
888
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
889 890

    If :code:`device_count` is None, the device count would
891
    be determined by environment variable :code:`CPU_NUM`.
892 893 894 895
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
896

897 898
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
899 900

    Returns:
901
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
902 903 904 905

    Examples:
        .. code-block:: python

906
            import paddle.fluid as fluid
L
lujun 已提交
907 908 909 910 911
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
912
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
913
    if device_count is None:
914 915
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
916 917


918
class NameScope:
919 920 921 922 923 924 925 926 927 928
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
929 930 931
            new_child = NameScope(
                prefix + "_%d" % len(self._children[prefix]), self
            )
932 933 934 935 936 937 938 939 940 941 942 943 944
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
945
@signature_safe_contextmanager
946 947
def name_scope(prefix=None):
    """
948

949
    Generate hierarchical name prefix for the operators in Static Graph.
950

951
    Note:
T
Tao Luo 已提交
952 953
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
954
        Don't use it in dygraph, since it will cause memory leak.
955 956

    Args:
T
Tao Luo 已提交
957
        prefix(str, optional): prefix. Default is none.
958 959

    Examples:
960

961
        .. code-block:: python
T
Tink_Y 已提交
962

963 964 965
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
966
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
967
             b = a + 1
968
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
969
                c = b * 1
970
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
971
                d = c / 1
972 973 974
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
975 976
                g = f - 1

977
          # Op are created in the default main program.
978
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
994 995
    """
    # TODO(panyx0718): Only [0-9a-z].
996
    # in dygraph we don't need namescope since it will cause mem leak
J
Jiabin Yang 已提交
997
    if _non_static_mode():
L
Leo Chen 已提交
998 999
        yield
    else:
T
tianshuo78520a 已提交
1000
        assert prefix, "namescope prefix can not be empty."
1001 1002
        global _name_scope
        _name_scope = _name_scope.child(prefix)
1003 1004 1005 1006
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
1019 1020
def generate_control_dev_var_name():
    import random
1021

W
Wu Yi 已提交
1022
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
1023 1024 1025 1026


def grad_var_name(var_name):
    """
1027 1028
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
1029 1030 1031
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
1032

1033
def convert_np_dtype_to_dtype_(np_dtype):
1034
    """
1035
    Convert the data type in numpy to the data type in Paddle.
1036

1037
    Args:
1038 1039
        np_dtype (np.dtype|str): The data type in numpy or valid data type
            string.
1040

1041
    Returns:
1042
        core.VarDesc.VarType: The data type in Paddle.
1043 1044

    """
1045 1046
    # Convert the data type string to numpy data type.
    if isinstance(np_dtype, str) and np_dtype == "bfloat16":
1047 1048 1049
        dtype = np.uint16
    else:
        dtype = np.dtype(np_dtype)
1050

1051
    if dtype == np.float32:
1052
        return core.VarDesc.VarType.FP32
1053
    elif dtype == np.float64:
1054
        return core.VarDesc.VarType.FP64
1055
    elif dtype == np.float16:
1056
        return core.VarDesc.VarType.FP16
1057
    elif dtype == np.int32:
1058
        return core.VarDesc.VarType.INT32
1059
    elif dtype == np.int16:
1060
        return core.VarDesc.VarType.INT16
1061
    elif dtype == np.int64:
1062
        return core.VarDesc.VarType.INT64
1063
    elif dtype == np.bool_:
1064
        return core.VarDesc.VarType.BOOL
1065
    elif dtype == np.uint16:
1066 1067 1068
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
1069 1070
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
1071 1072
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
1073 1074 1075 1076
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
1077
    else:
M
minqiyang 已提交
1078
        raise ValueError("Not supported numpy dtype %s" % dtype)
1079 1080 1081


def dtype_is_floating(dtype):
1082 1083 1084
    """
    Check the data type is floating or not.
    Args:
1085
        dtype(np.dtype|core.VarDesc.VarType): data type.
1086 1087 1088 1089 1090
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1091
    if not isinstance(dtype, core.VarDesc.VarType):
1092 1093
        dtype = convert_np_dtype_to_dtype_(dtype)

1094
    return dtype in [
1095 1096 1097
        core.VarDesc.VarType.FP16,
        core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64,
1098
    ]
1099 1100


Y
Yang Yang(Tony) 已提交
1101
def _debug_string_(proto, throw_on_error=True):
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1113
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1114
    if not proto.IsInitialized(error_fields) and throw_on_error:
1115 1116
        raise ValueError(
            "{0} are not initialized.\nThe message is {1}:\n".format(
1117 1118 1119
                error_fields, proto
            )
        )
Y
Yu Yang 已提交
1120 1121 1122
    return proto.__str__()


1123
def _create_tensor(
1124 1125 1126 1127 1128
    type=core.VarDesc.VarType.LOD_TENSOR,
    name=None,
    shape=None,
    dtype=None,
    persistable=None,
1129
    **kwargs,
1130
):
1131 1132 1133 1134
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

W
wanghuancoder 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143
    eager_tensor = core.eager.Tensor(
        dtype if dtype else core.VarDesc.VarType.FP32,
        list(shape) if shape else [],
        name,
        type if type else core.VarDesc.VarType.LOD_TENSOR,
        True if persistable else False,
    )
    eager_tensor.retain_grads()
    return eager_tensor
1144 1145


1146 1147 1148 1149 1150 1151 1152
def _all_is_type(vals, expected_type):
    """
    Return True if type of each element is expected_type.

    NOTE: BuiltIn all() will always return True if vals is empty.
    """
    assert isinstance(vals, (list, tuple))
1153 1154
    if not vals:
        return False
1155 1156 1157
    return all(isinstance(v, expected_type) for v in vals)


1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252
def wrap_as_scalar(number):
    """Wrap a number(either python scalar or numpy scalar) as core.Scalar if
    it is not a scalar.


    Args:
        number (Number): number

    Returns:
        Scalar: A Scalar that contains the value.
    """
    if isinstance(number, core.Scalar):
        return number
    if isinstance(number, (bool, int, float, complex)):
        return core.Scalar(number)
    if isinstance(number, np.number):
        # it is a numpy scalar
        return core.Scalar(number.item())
    else:
        raise TypeError("Cannot wrap {} as core.Scalar".format(number))


def wrap_as_scalars(array):
    """This function is used to convert flat list, or numpy array(not
    necesarily flat) to list of core.Scalar, which correspond to
    std::vector<paddle::experimental::Scalar> in operator runtime.

    Args:
        array (List | np.ndarray): array of numbers

    Returns:
        List: list of core.Scalar, of which each element is a Scalar containing
          the corresponding value.
    """
    if isinstance(array, np.ndarray):
        array = array.ravel().tolist()
    return [wrap_as_scalar(item) for item in array]


def extract_plain_list(array):
    """extract value from a list of core.Scalar.

    Args:
        array (list): Scalars

    Returns:
        list: values extracted from the scalars.
    """
    return [item.value() for item in array]


def canonicalize_attrs(attrs, op_proto):
    """This function is used to canonicalize attributes(as a string->any dict)
    according to the type specification in the OpProto. This is especially
    important for operators that has any attributes of type Scalar or Scalars.

    Though various frontends of phi kernels & paddle operators can wrap variables
    of concrete types into Scalars(a tagged union of several numeric types) or
    vector of Scalars. Paddle operator requires strict type matching.

    Args:
        attrs (Dict[str, Any]): attribute dict intended to pass to an operator.
        op_proto (OpProto): Proto (signature) of the operator.

    Returns:
        Dict[str, Any]: canonicalized attributes.
    """
    canonicalized_attrs = attrs.copy()  # shallow copy is enough here
    for attr in op_proto.attrs:
        attr_name = attr.name
        type_index = attr.type
        if (attr_name not in attrs) or (attrs[attr_name] is None):
            continue

        attr_val = attrs[attr_name]

        # VAR and VARS should be skipped
        if isinstance(attr_val, Variable):
            continue
        if isinstance(attr_val, list) and _all_is_type(attr_val, Variable):
            continue

        # wrap
        if type_index == core.AttrType.SCALAR:
            canonicalized_attrs[attr_name] = core.Scalar(attr_val)
        elif type_index == core.AttrType.SCALARS:
            # it should be a list (or a numpy array)
            if len(attr_val) > 0:
                attr_val = np.array(attr_val).ravel().tolist()
                attr_val = [core.Scalar(x) for x in attr_val]
                canonicalized_attrs[attr_name] = attr_val

    return canonicalized_attrs


1253 1254 1255 1256 1257
class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1258
            return issubclass(t, core.eager.Tensor)
1259 1260 1261 1262 1263 1264 1265 1266 1267
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1268
            return issubclass(t, EagerParamBase)
1269 1270 1271 1272
        else:
            return issubclass(t, Parameter)


1273
class Variable(metaclass=VariableMetaClass):
1274
    """
J
Jiabin Yang 已提交
1275

U
ustiniankw 已提交
1276 1277 1278 1279
    Notes:
        The constructor of Variable should not be invoked directly.

        In Static Graph Mode: Please use ** `Block.create_var` ** to create a Static variable which has no data until being feed.
1280

U
ustiniankw 已提交
1281
        In Dygraph Mode: Please use ** :ref:`api_fluid_dygraph_to_variable` ** to create a dygraph variable with real data.
J
Jiabin Yang 已提交
1282 1283

    In Fluid, every input and output of an OP is a variable. In most
1284
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1285 1286
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1287

1288
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1289
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1290

T
tianshuo78520a 已提交
1291
    Most of a Variable's member variables can be set to be None. It mean
1292
    it is not available or will be specified later.
1293

1294
    Examples:
1295 1296
        In Static Graph Mode:

1297 1298
        .. code-block:: python

1299
            import paddle.fluid as fluid
1300
            cur_program = fluid.Program()
1301 1302 1303 1304
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1305

1306
        In Dygraph  Mode:
1307 1308 1309 1310 1311 1312 1313 1314 1315

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1316 1317
    """

1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332
    def __init__(
        self,
        block,
        type=core.VarDesc.VarType.LOD_TENSOR,
        name=None,
        shape=None,
        dtype=None,
        lod_level=None,
        capacity=None,
        persistable=None,
        error_clip=None,
        stop_gradient=False,
        is_data=False,
        need_check_feed=False,
        belong_to_optimizer=False,
1333
        **kwargs,
1334
    ):
Y
Yu Yang 已提交
1335 1336
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1337
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1338

Y
Yu Yang 已提交
1339
        if dtype is not None:
1340
            if not isinstance(dtype, core.VarDesc.VarType):
1341
                dtype = convert_np_dtype_to_dtype_(dtype)
1342

S
Steffy-zxf 已提交
1343 1344 1345 1346
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

1347 1348 1349
        if type == core.VarDesc.VarType.SPARSE_COO:
            lod_level = None

H
hong 已提交
1350 1351
        self.belong_to_optimizer = belong_to_optimizer

1352 1353 1354
        self.error_clip = error_clip

        is_new_var = False
1355
        self.desc = self.block.desc.find_var(name.encode())
1356

1357
        if self.desc is None:
1358
            self.desc = self.block.desc.var(name.encode())
1359
            is_new_var = True
1360

1361 1362 1363
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
1364 1365 1366 1367 1368
            raise ValueError(
                "Variable '{0}' has been created before. The "
                "previous type is {1}, the new type is {2}. They"
                " are not matched".format(self.name, self.desc.type(), type)
            )
1369

1370
        if shape is not None:
1371
            if is_new_var:
1372 1373 1374 1375 1376 1377
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1378 1379
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1380 1381
                        "matched.".format(self.name, old_shape, shape)
                    )
1382 1383 1384 1385 1386 1387
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
1388 1389 1390 1391 1392 1393
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous data type is {1}, the new "
                        "data type is {2}. They are not "
                        "matched.".format(self.name, old_dtype, dtype)
                    )
1394 1395 1396 1397 1398 1399

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
1400 1401 1402 1403 1404 1405
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous lod_level is {1}, the new "
                        "lod_level is {2}. They are not "
                        "matched".format(self.name, self.lod_level, lod_level)
                    )
1406 1407 1408 1409 1410 1411
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1412 1413
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1414
                        "persistable is {2}. They are not matched".format(
1415 1416 1417
                            self.name, self.persistable, persistable
                        )
                    )
1418

1419 1420
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1421

1422 1423 1424 1425 1426 1427 1428
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1429

1430 1431
        self.block.vars[name] = self
        self.op = None
1432
        self.stop_gradient = stop_gradient
1433
        self.is_data = is_data
Y
Yu Yang 已提交
1434

1435 1436
    def detach(self):
        """
U
ustiniankw 已提交
1437

1438
        Returns a new Variable, detached from the current graph.
1439 1440
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1441

1442
        Returns:
U
ustiniankw 已提交
1443
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable), The detached Variable.
1444 1445 1446 1447

        Examples:
            .. code-block:: python

1448
                import paddle
1449

1450 1451 1452 1453
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1454

1455 1456
                # create a detached Variable
                y = x.detach()
U
ustiniankw 已提交
1457

1458
        """
1459

1460 1461 1462 1463
        assert (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ), "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"
1464 1465 1466 1467 1468 1469

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
1470 1471
            stop_gradient=True,
        )
1472

1473 1474 1475
        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]}
        )
1476
        return output
1477

1478
    @fake_interface_only
1479
    def numpy(self):
1480
        """
J
Jiabin Yang 已提交
1481
        **Notes**:
T
tianshuo78520a 已提交
1482
            **This API is ONLY available in Dygraph mode**
1483

J
Jiabin Yang 已提交
1484
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1485 1486 1487 1488 1489

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1490
            ndarray: dtype is same as current Variable
1491 1492 1493 1494 1495 1496

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1497
                from paddle.fluid.dygraph import Linear
1498 1499 1500 1501
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1502
                    linear = Linear(32, 64)
1503
                    data = to_variable(data)
1504
                    x = linear(data)
1505 1506 1507
                    print(x.numpy())

        """
1508
        pass
1509

1510
    @non_static_only
1511
    def backward(self, retain_graph=False):
1512
        """
J
Jiabin Yang 已提交
1513
        **Notes**:
T
tianshuo78520a 已提交
1514
            **This API is ONLY available in Dygraph mode**
1515

1516
        Run backward of current Graph which starts from current Tensor.
1517

J
Jiabin Yang 已提交
1518
        Args:
1519 1520 1521 1522
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1523

J
Jiabin Yang 已提交
1524 1525
        Returns:
            NoneType: None
1526 1527 1528 1529 1530

        Examples:
            .. code-block:: python

                import numpy as np
1531 1532
                import paddle
                paddle.disable_static()
1533 1534

                x = np.ones([2, 2], np.float32)
1535 1536 1537 1538 1539 1540 1541
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1542 1543
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1544
                loss.backward()
1545 1546

        """
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
        from .backward import append_backward

        if retain_graph is True:
            raise AssertionError(
                "`retain_graph` == True is not supported in @to_static function."
                "please set retain_graph = False."
            )
        param_grad_list = append_backward(self)
        for param, param_grad in param_grad_list:
            # set grad to simulate dygraph loss.backward() in static mode.
            setattr(param, "grad", param_grad)
1558

1559
    @fake_interface_only
1560
    def gradient(self):
1561
        """
J
Jiabin Yang 已提交
1562
        **Notes**:
T
tianshuo78520a 已提交
1563
            **This API is ONLY available in Dygraph mode**
1564 1565 1566

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1567
        Returns:
1568
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1569 1570 1571 1572

        Examples:
            .. code-block:: python

1573
                import paddle
1574 1575 1576
                import paddle.fluid as fluid
                import numpy as np

1577
                # example1: return ndarray
1578 1579 1580 1581 1582 1583 1584
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
1585
                    ret2 = paddle.add_n(inputs2)
1586
                    loss2 = paddle.sum(ret2)
1587
                    loss2.backward()
1588 1589
                    print(loss2.gradient())

1590 1591
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
1592 1593 1594 1595 1596
                    embedding = paddle.nn.Embedding(
                        20,
                        32,
                        weight_attr='emb.w',
                        sparse=True)
1597 1598 1599 1600 1601 1602 1603
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1604
        """
1605
        pass
1606

1607
    @fake_interface_only
1608
    def clear_gradient(self):
1609
        """
J
Jiabin Yang 已提交
1610
        **Notes**:
T
tianshuo78520a 已提交
1611
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1612 1613

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1614

J
Jiabin Yang 已提交
1615
        Clear  (set to ``0`` ) the Gradient of Current Variable
1616 1617 1618 1619 1620 1621

        Returns:  None

        Examples:
            .. code-block:: python

1622
                import paddle
1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
1633
                    ret2 = paddle.add_n(inputs2)
1634
                    loss2 = paddle.sum(ret2)
1635
                    loss2.backward()
1636 1637 1638 1639 1640
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1641
        pass
X
Xin Pan 已提交
1642

1643 1644 1645 1646
    @fake_interface_only
    def register_hook(self, hook):
        pass

1647
    def __str__(self):
1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1664 1665
                import paddle
                import paddle.static as static
1666

1667 1668 1669
                paddle.enable_static()

                cur_program = static.Program()
1670 1671 1672 1673 1674 1675
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1676 1677
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1678 1679 1680 1681
        if (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ):
1682
            dtype_str = str(self.dtype).split('.')[1]
1683 1684 1685 1686 1687 1688 1689
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".format(
                name=self.name,
                type=type_str,
                shape=self.shape,
                dtype=dtype_str,
                stop_gradient=self.stop_gradient,
            )
1690
        else:
1691
            var_str = "{name} : {type})".format(name=self.name, type=type_str)
1692

1693
        if self.is_parameter:
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1704 1705 1706 1707
        from paddle.distributed.auto_parallel.dist_context import (
            get_default_distributed_context,
        )

1708
        dist_context = get_default_distributed_context()
1709 1710
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1711 1712 1713
            var_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_tensor
            )
1714

1715
        return var_str
Y
Yang Yang(Tony) 已提交
1716

F
update  
fengjiayi 已提交
1717
    def to_string(self, throw_on_error, with_details=False):
1718 1719 1720
        """
        Get debug string.

J
Jiabin Yang 已提交
1721 1722 1723 1724 1725
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1726

1727 1728
        Returns:
            str: The debug string.
1729 1730 1731 1732 1733

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1734
                import paddle
1735

1736
                paddle.enable_static()
1737 1738 1739 1740 1741
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1742
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1743
                print("=============with detail===============")
1744
                print(new_variable.to_string(True, True))
1745
        """
1746
        assert isinstance(throw_on_error, bool) and isinstance(
1747 1748
            with_details, bool
        )
1749
        protostr = self.desc.serialize_to_string()
1750
        proto = framework_pb2.VarDesc.FromString(bytes(protostr))
F
update  
fengjiayi 已提交
1751 1752
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1753
            additional_attr = ("error_clip",)
F
update  
fengjiayi 已提交
1754
            for attr_name in additional_attr:
1755
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
1756

F
update  
fengjiayi 已提交
1757
        return res_str
1758 1759 1760

    __repr__ = __str__

1761 1762 1763
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
1764

1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1788
    @property
1789
    def stop_gradient(self):
J
Jiabin Yang 已提交
1790 1791 1792
        """
        Indicating if we stop gradient from current Variable

1793
        **Notes: This Property has default value as** ``True`` **in** Dygraph **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``
J
Jiabin Yang 已提交
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1805 1806
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1807 1808 1809
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1810 1811
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1812 1813 1814 1815
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1816
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1817 1818
                assert (out1.gradient() == 0).all()
        """
1819
        return self.desc.stop_gradient()
1820

1821 1822
    @stop_gradient.setter
    def stop_gradient(self, s):
1823
        self.desc.set_stop_gradient(s)
1824

1825 1826
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1827 1828 1829 1830 1831 1832 1833 1834
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

1835
            **2. In** Dygraph **mode, this property should not be changed**
J
Jiabin Yang 已提交
1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1848
        return self.desc.persistable()
1849

Y
Yu Yang 已提交
1850 1851
    @persistable.setter
    def persistable(self, p):
1852
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1853

1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1879 1880
    @property
    def name(self):
J
Jiabin Yang 已提交
1881 1882 1883
        """
        Indicating name of current Variable

1884
        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** Dygraph **mode. This is how we achieve Parameter sharing**
J
Jiabin Yang 已提交
1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1897
        return self.desc.name()
Y
Yu Yang 已提交
1898

1899 1900 1901 1902 1903 1904
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1905 1906
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1907

1908 1909 1910
        Examples:
          .. code-block:: python

1911
          import paddle
1912

1913
          x = paddle.static.data(name="x", shape=[-1, 23, 48], dtype='float32')
1914
          print(x.grad_name) # output is ``x@GRAD``
1915 1916 1917 1918

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1919 1920
    @name.setter
    def name(self, new_name):
1921
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1922

Y
Yu Yang 已提交
1923 1924
    @property
    def shape(self):
J
Jiabin Yang 已提交
1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1942
        # convert to tuple, make it as same as numpy API.
1943
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1944 1945

    @property
F
fengjiayi 已提交
1946
    def dtype(self):
J
Jiabin Yang 已提交
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1963
        return self.desc.dtype()
Y
Yu Yang 已提交
1964 1965 1966

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1967 1968 1969 1970 1971 1972 1973 1974
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

1975
            **2. Don't support this property in** Dygraph **mode, it's value should be** ``0(int)``
J
Jiabin Yang 已提交
1976 1977 1978 1979

        Examples:
          .. code-block:: python

1980
            import paddle
J
Jiabin Yang 已提交
1981
            import paddle.fluid as fluid
1982 1983

            paddle.enable_static()
J
Jiabin Yang 已提交
1984 1985 1986 1987 1988 1989 1990
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1991 1992
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
1993 1994
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
1995
        return self.desc.lod_level()
Y
Yu Yang 已提交
1996

Y
Yu Yang 已提交
1997 1998
    @property
    def type(self):
J
Jiabin Yang 已提交
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
2015
        return self.desc.type()
Y
Yu Yang 已提交
2016

2017 2018 2019
    @property
    def T(self):
        """
U
ustiniankw 已提交
2020

2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
U
ustiniankw 已提交
2039

2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
2052 2053
            stop_gradient=False,
        )
2054 2055 2056 2057 2058
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
2059 2060 2061 2062 2063 2064 2065 2066 2067
            stop_gradient=False,
        )

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out], 'XShape': [input_shape]},
            attrs={'axis': perm},
        )
2068 2069
        return out

2070 2071 2072
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
2073
        Variable. It remains in the current graph, that is, the cloned Variable
2074 2075 2076 2077
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
U
ustiniankw 已提交
2078
            Variable, The cloned Variable.
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
2098 2099
            stop_gradient=self.stop_gradient,
        )
2100

2101 2102 2103
        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]}
        )
2104 2105
        return output

W
Wu Yi 已提交
2106
    def _set_error_clip(self, error_clip):
2107
        """
U
ustiniankw 已提交
2108

2109 2110 2111 2112 2113 2114 2115
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
U
ustiniankw 已提交
2116

2117
        """
2118 2119
        self.error_clip = error_clip

2120 2121
    def _set_info(self, key, value):
        """
U
ustiniankw 已提交
2122

2123 2124 2125 2126 2127 2128
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

2129
        Returns:
2130
            None
U
ustiniankw 已提交
2131

2132 2133 2134 2135 2136 2137 2138
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
U
ustiniankw 已提交
2139

2140 2141 2142 2143 2144
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

2145
        Returns:
2146
            object
U
ustiniankw 已提交
2147

2148 2149 2150 2151 2152
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

2153 2154
    def _slice_indices(self, slice, length):
        """
U
ustiniankw 已提交
2155

2156
        Reference implementation for the slice.indices method.
U
ustiniankw 已提交
2157

2158 2159 2160 2161 2162 2163 2164 2165
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
2166
            raise ValueError("slice step can not be zero")
2167 2168 2169 2170 2171 2172 2173 2174 2175 2176

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
2177 2178 2179
            start = (
                max(start + length, lower) if start < 0 else min(start, upper)
            )
2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
2225 2226 2227
                if (index > 0 and index >= self.shape[index]) or (
                    index < 0 and (index + self.shape[index]) < 0
                ):
2228
                    raise IndexError("invalid index")
2229 2230 2231 2232 2233
                start = (
                    max(start + self.shape[index], 0)
                    if start < 0
                    else min(start, self.shape[index])
                )
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2247
    def _cloneVar(self, copy=False):
2248 2249
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2250
                name=unique_name.generate_with_ignorable_key(self.name),
2251 2252
                dtype=self.dtype,
            )
2253 2254 2255 2256
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2257
        new_var = self._cloneVar()
2258 2259 2260 2261 2262 2263
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes, 'starts': starts, 'ends': ends},
        )
2264 2265 2266
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2267
        new_var = self._cloneVar()
2268 2269 2270 2271 2272 2273 2274 2275
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={
                'axis': axis,
            },
        )
2276 2277 2278 2279 2280
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2281
                return self._cloneVar(True)
2282 2283 2284 2285 2286 2287 2288
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
2289 2290 2291
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2292 2293 2294
                        start += step
                else:
                    while start > stop:
2295 2296 2297
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2298 2299 2300 2301
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2302
                return self._cloneVar(True)
2303
            index = int(item)
2304 2305 2306
            if (index > 0 and index >= self.shape[axis]) or (
                index < 0 and (index + self.shape[axis]) < 0
            ):
2307 2308 2309 2310 2311 2312
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2313
        return _getitem_impl_(self, item)
2314

2315
    def __setitem__(self, item, value):
2316
        return _setitem_impl_(self, item, value)
2317

2318 2319
    def get_value(self, scope=None):
        """
2320
        Get the value of variable in given scope.
2321 2322

        Args:
2323
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2324 2325 2326 2327
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
U
ustiniankw 已提交
2328
            Tensor, the value in given scope.
2329 2330 2331 2332 2333

        Examples:
            .. code-block:: python

                import paddle
2334
                import paddle.static as static
2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
2359 2360
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file.
2361 2362
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
2363

2364 2365
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2366 2367 2368 2369
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2370 2371 2372 2373 2374

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
2375 2376 2377
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2378 2379 2380 2381 2382
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
U
ustiniankw 已提交
2383

2384
        Set the value to the tensor in given scope.
2385 2386 2387

        Args:
            value(Tensor/ndarray) : The value to be set.
2388
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2389 2390 2391 2392 2393
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
2394

2395 2396 2397 2398
        Examples:
            .. code-block:: python

                import paddle
2399
                import paddle.static as static
2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
U
ustiniankw 已提交
2423

2424 2425 2426
        '''

        # The 'framework' is a low-level module, and 'executor'
2427
        # can not be imported at the begainning of this file.
2428 2429 2430 2431 2432
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
2433 2434 2435 2436
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".format(
                    type(value)
                )
            )
2437 2438 2439

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2440 2441 2442 2443
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2444 2445 2446 2447 2448 2449

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
2450 2451 2452
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2453 2454 2455 2456 2457 2458 2459 2460 2461 2462

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
2463 2464 2465 2466
                    "{} expected a shape {}, but the received shape is {}.".format(
                        self.name, list(t.shape()), list(value_shape)
                    )
                )
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2484 2485
    def size(self):
        """
U
ustiniankw 已提交
2486

2487 2488 2489
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
U
ustiniankw 已提交
2490
            Variable, the number of elements for current Variable
2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
U
ustiniankw 已提交
2504

2505 2506 2507 2508
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
2509 2510
            dtype=core.VarDesc.VarType.INT64,
        )
2511

2512 2513 2514
        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]}
        )
2515 2516
        return output

2517 2518
    def _set_attr(self, name, val):
        """
U
ustiniankw 已提交
2519

2520 2521 2522 2523 2524
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
U
ustiniankw 已提交
2525

2526 2527 2528 2529 2530
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
U
ustiniankw 已提交
2531

2532 2533 2534 2535 2536 2537
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2538 2539
            bool, True if has this attribute.

2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

2561
    def attr(self, name):
2562 2563 2564 2565 2566 2567 2568
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2569
            int|str|list, The attribute value. The return value
2570 2571 2572 2573 2574
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
2575
    def dist_attr(self):
2576
        """
2577
        Get distributed attribute of this Variable.
2578
        """
2579
        return self.desc.dist_attr
2580

2581 2582
    @dist_attr.setter
    def dist_attr(self, dist_attr):
2583
        """
2584
        Set distributed attribute of this Variable.
2585
        """
2586
        self.desc.dist_attr = dist_attr
2587

Y
Yu Yang 已提交
2588

F
fengjiayi 已提交
2589 2590 2591
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2592

2593 2594
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2595 2596 2597 2598
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2599
        op_proto = framework_pb2.OpProto.FromString(bytes(pbstr))
F
fengjiayi 已提交
2600 2601 2602 2603
        ret_values.append(op_proto)
    return ret_values


2604
class OpProtoHolder:
2605 2606 2607 2608
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2609 2610 2611 2612 2613 2614 2615 2616
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
2617 2618
            self.__class__, '_instance'
        ), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2619 2620 2621 2622 2623 2624
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2625 2626 2627 2628 2629 2630 2631 2632
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2633 2634
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2635 2636
        return self.op_proto_map[type]

2637 2638
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2639
        custom_op_names = []
2640 2641 2642
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2643 2644 2645
                custom_op_names.append(proto.type)

        return custom_op_names
2646

2647 2648 2649
    def has_op_proto(self, type):
        return type in self.op_proto_map

2650 2651 2652 2653
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2654
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2655
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2656
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
2657
            core.op_proto_and_checker_maker.kOpDeviceAttrName(),
2658 2659
        }

F
fengjiayi 已提交
2660

2661
class Operator:
2662
    """
2663 2664 2665 2666 2667 2668 2669
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2670
        type(str): The type of operator. Default None.
2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2691
        Block.append_op or Block._prepend_op instead.
2692 2693 2694 2695

    Examples:
        .. code-block:: python

2696
            import paddle.fluid as fluid
2697
            cur_program = fluid.Program()
2698 2699 2700 2701 2702
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2703
    """
2704

2705
    OP_WITHOUT_KERNEL_SET = {
2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733
        'feed',
        'fetch',
        'recurrent',
        'go',
        'rnn_memory_helper_grad',
        'conditional_block',
        'while',
        'send',
        'recv',
        'listen_and_serv',
        'fl_listen_and_serv',
        'ncclInit',
        'select',
        'checkpoint_notify',
        'gen_bkcl_id',
        'c_gen_bkcl_id',
        'gen_nccl_id',
        'c_gen_nccl_id',
        'c_comm_init',
        'c_sync_calc_stream',
        'c_sync_comm_stream',
        'queue_generator',
        'dequeue',
        'enqueue',
        'heter_listen_and_serv',
        'c_wait_comm',
        'c_wait_compute',
        'copy_cross_scope',
2734
    }
2735

2736 2737 2738
    def __init__(
        self, block, desc, type=None, inputs=None, outputs=None, attrs=None
    ):
2739 2740 2741 2742 2743 2744 2745 2746 2747 2748
        # read attr type index from op proto to avoid unexpected type
        # conversions, e.g. narrowing conversion like double to float
        try:
            proto = OpProtoHolder.instance().get_op_proto(type)
            self._attr_types = {}
            for attr in proto.attrs:
                self._attr_types[attr.name] = attr.type
        except ValueError:
            pass

J
Jiabin Yang 已提交
2749
        if _non_static_mode():
2750 2751
            if type is None:
                raise ValueError(
2752 2753
                    "`type` to initialized an Operator can not be None."
                )
J
Jiabin Yang 已提交
2754
            self._type = type
M
minqiyang 已提交
2755
            self.attrs = attrs if attrs else {}
2756
        else:
2757

2758 2759 2760 2761 2762 2763 2764 2765 2766
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

2767
            # attr for static graph mode cuda graph
2768 2769
            self._cuda_graph_attr = _current_cuda_graph_mode

2770 2771 2772
            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
2773
                op_attrs[
2774 2775
                    op_maker.kOpRoleAttrName()
                ] = self.block.program._op_role
2776 2777

            role_var_name = op_maker.kOpRoleVarAttrName()
2778 2779 2780 2781
            if (
                len(self.block.program._op_role_var) != 0
                and role_var_name not in op_attrs
            ):
2782
                op_attrs[role_var_name] = self.block.program._op_role_var
2783 2784 2785 2786 2787

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2788 2789 2790 2791 2792
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2793 2794 2795
                return
            if type is None:
                raise ValueError(
2796 2797
                    "`type` to initialized an Operator can not be None."
                )
2798 2799
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2800 2801 2802
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
2803
                        '  File "{}", line {}, in {}'.format(
2804 2805 2806 2807 2808 2809
                            frame[0], frame[1], frame[2]
                        )
                    )
                    op_attrs[callstack_var_name].append(
                        '    {}'.format(frame[3])
                    )
2810 2811 2812 2813 2814 2815 2816

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2817 2818 2819 2820 2821 2822 2823 2824
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
2825 2826 2827
                    warnings.warn(
                        "The Op(%s) is not support to set device." % type
                    )
2828
                if 'force_cpu' in op_attrs:
2829
                    if (
2830 2831
                        type == 'less_than'
                        and op_attrs['force_cpu'] is not None
2832
                    ) or op_attrs['force_cpu'] != False:
2833 2834 2835
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
2836 2837
                            "used at the same time." % type
                        )
2838
            if _current_pipeline_stage is not None:
2839 2840 2841 2842 2843
                pipeline_attr_name = (
                    'pipeline_stage' + core.kAutoParallelSuffix()
                )
                self._update_desc_attr(
                    pipeline_attr_name, _current_pipeline_stage
2844
                )
2845

2846 2847 2848 2849 2850 2851 2852 2853 2854
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
2855 2856 2857
                    assert (
                        found or in_proto.dispensable
                    ), "Input {} not found".format(in_proto.name)
2858 2859
                    if found:
                        in_args = inputs[in_proto.name]
2860
                        if not isinstance(in_args, (list, tuple)):
2861 2862 2863 2864
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
2865 2866
                                % (in_proto.name, len(in_args))
                            )
2867
                        in_arg_names = []
2868
                        for index, arg in enumerate(in_args):
2869
                            if isinstance(arg, str):
2870
                                in_arg_names.append(arg)
2871
                            elif isinstance(arg, bytes):
2872
                                in_arg_names.append(arg.decode())
W
wanghuancoder 已提交
2873
                            elif isinstance(arg, (Variable, core.eager.Tensor)):
2874
                                in_arg_names.append(arg.name)
2875
                            else:
2876
                                raise TypeError(
2877 2878
                                    f"The type of '%{in_proto.name}' in operator {type} should be "
                                    f"one of [str, bytes, Variable]. but received : {arg}"
2879
                                )
2880 2881 2882 2883 2884 2885 2886 2887
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905

                    # FIXME: The outputs of primitive operator currently
                    # doesn't include intermediate output as it will be dropped
                    # in operator codegen, such as xshape output of reshape2.
                    # It will fixed when the operator codegen support
                    # intermediate output.
                    if core._is_bwd_prim_enabled():
                        if not (
                            (m.name in outputs)
                            or m.dispensable
                            or m.intermediate
                        ):
                            raise ValueError(
                                (
                                    "Incorrect setting for output(s) of "
                                    "operator \"%s\", should set: [%s]."
                                )
                                % (type, m.name)
2906
                            )
2907 2908 2909 2910 2911 2912 2913 2914 2915 2916
                    else:
                        if not ((m.name in outputs) or m.dispensable):
                            raise ValueError(
                                (
                                    "Incorrect setting for output(s) of "
                                    "operator \"%s\", should set: [%s]."
                                )
                                % (type, m.name)
                            )

2917 2918 2919 2920 2921 2922 2923 2924 2925
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
2926 2927
                            % (out_proto.name, len(out_args))
                        )
2928 2929
                    out_arg_names = []
                    for arg in out_args:
2930
                        if isinstance(arg, str):
2931 2932
                            out_arg_names.append(arg)
                        else:
2933
                            out_arg_names.append(arg.name)
2934
                        # TODO(minqiyang): could we remove variable's op in static graph mode?
J
Jiabin Yang 已提交
2935
                        if not _non_static_mode():
2936
                            if isinstance(arg, str):
2937 2938 2939
                                block.var(arg).op = self
                            else:
                                arg.op = self
2940 2941
                    self.desc.set_output(out_proto.name, out_arg_names)

2942
            extra_attrs_map = core.get_op_extra_attrs(type)
2943 2944 2945 2946 2947
            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
2948 2949 2950
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
2951 2952 2953
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)
2954
                for attr_name in extra_attrs_map.keys():
2955 2956 2957 2958 2959
                    if os.environ.get('FLAGS_print_extra_attrs', '0') == '1':
                        warnings.warn(
                            "op %s use extra_attr: %s" % (type, attr_name)
                        )

2960 2961 2962 2963 2964 2965
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
                        self._update_desc_attr(
                            attr_name, extra_attrs_map[attr_name]
                        )
2966 2967
                    else:
                        self._update_desc_attr(attr_name, op_attrs[attr_name])
2968

2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
                if os.environ.get('FLAGS_print_extra_attrs', '0') == '1':
                    if type in extra_op_attrs:
                        attrs = extra_op_attrs.get(type, [])
                        for attr in attrs:
                            if attr in op_attrs.keys():
                                warnings.warn(
                                    "op %s use extra_attr: %s" % (type, attr)
                                )

                    if type in special_op_attrs:
                        attrs = special_op_attrs.get(type, [])
                        for attr in attrs:
                            a_name = list(attr.keys())[0]
                            default_value = list(attr.values())[0]
                            if (
                                a_name in op_attrs.keys()
                                and default_value != op_attrs[a_name]
                            ):
                                warnings.warn(
                                    "op %s's attr %s = %s is not the default value: %s"
                                    % (
                                        type,
                                        a_name,
                                        op_attrs[a_name],
                                        default_value,
                                    )
                                )

J
jianghaicheng 已提交
2997 2998
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
2999
                if global_ipu_index >= 0:
3000 3001 3002
                    self._update_desc_attr(
                        ipu_index_attr_name, global_ipu_index
                    )
3003
                if global_ipu_stage >= 0:
3004 3005 3006
                    self._update_desc_attr(
                        ipu_stage_attr_name, global_ipu_stage
                    )
J
jianghaicheng 已提交
3007

3008
            self.desc.check_attrs()
3009

3010 3011 3012 3013
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
3014
    def _has_kernel(self, op_type):
3015 3016
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
3017
    def to_string(self, throw_on_error):
3018
        """
3019 3020
        Get debug string.

3021
        Args:
3022 3023
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
3024

3025 3026
        Returns:
            str: The debug string.
3027 3028

        """
3029
        protostr = self.desc.serialize_to_string()
3030
        proto = framework_pb2.OpDesc.FromString(bytes(protostr))
Y
Yang Yang(Tony) 已提交
3031 3032
        return _debug_string_(proto, throw_on_error)

3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3065
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3066 3067
            type(skip_op_callstack)
        )
3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

3094 3095 3096
            attr_type = self.desc.attr_type(name, True)
            if attr_type == core.AttrType.VAR:
                attr_var_name = self.desc.attr(name, True).name()
3097 3098 3099
                a = "{name} = Var['{value}']".format(
                    name=name, type=attr_type, value=attr_var_name
                )
3100 3101 3102 3103 3104 3105 3106 3107 3108 3109
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.VARS:
                attr_var_names = [
                    "'%s'" % var.name() for var in self.desc.attr(name, True)
                ]
                a = "{name} = Vars[{value}]".format(
3110 3111
                    name=name, type=attr_type, value=','.join(attr_var_names)
                )
3112 3113 3114 3115 3116
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3117 3118
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
3119 3120
                    name=name, type=attr_type, value=self._block_attr_id(name)
                )
3121 3122 3123 3124 3125 3126 3127
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
3128 3129
                    name=name, type=attr_type, value=self._blocks_attr_ids(name)
                )
3130 3131 3132 3133 3134
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3135
            # it is bytes of serialized protobuf
3136 3137 3138 3139 3140
            if (
                is_compiled_with_cinn()
                and self.type == 'cinn_launch'
                and name == 'compilation_key'
            ):
3141 3142
                key = self.desc.attr(name)
                v = core.get_serialize_comile_key(key)
3143 3144 3145 3146 3147 3148 3149 3150 3151
                prog = Program()
                prog = prog.parse_from_string(v)
                s = prog._to_readable_code()
                lines = s.split('\n')
                value = '\n'.join(['      ' + line for line in lines])
                value = '\n' + value
            else:
                value = self.desc.attr(name)

3152 3153 3154
            a = "{name} = {value}".format(
                name=name, type=attr_type, value=value
            )
3155

3156 3157 3158 3159
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

3160 3161 3162 3163
        from paddle.distributed.auto_parallel.dist_context import (
            get_default_distributed_context,
        )

3164
        dist_context = get_default_distributed_context()
3165 3166
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
3167 3168 3169
            attrs_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_op
            )
3170

3171
        if outputs_str != "{}":
3172 3173 3174 3175 3176 3177
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".format(
                outputs=outputs_str,
                op_type=self.type,
                inputs=inputs_str,
                attrs=attrs_str,
            )
3178
        else:
3179 3180 3181
            op_str = "{op_type}(inputs={inputs}, {attrs})".format(
                op_type=self.type, inputs=inputs_str, attrs=attrs_str
            )
3182 3183
        return op_str

Y
Yang Yang(Tony) 已提交
3184
    def __str__(self):
3185
        return self._to_readable_code()
3186 3187 3188

    __repr__ = __str__

F
fengjiayi 已提交
3189 3190
    @property
    def type(self):
3191
        return self.desc.type()
F
fengjiayi 已提交
3192 3193

    def input(self, name):
3194
        r"""
U
ustiniankw 已提交
3195

3196
        Get the input arguments according to the input parameter name.
3197

3198 3199
        Args:
            name(str): The input parameter name.
3200

3201
        Returns:
U
ustiniankw 已提交
3202
            list, return the list of argument names that associated with \
3203
                the specific parameter name.
U
ustiniankw 已提交
3204

3205
        """
F
fengjiayi 已提交
3206 3207
        return self.desc.input(name)

W
Wu Yi 已提交
3208
    def _rename_input(self, old_name, new_name):
3209 3210 3211 3212 3213 3214 3215 3216 3217 3218
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
3219
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
3220

W
Wu Yi 已提交
3221
    def _rename_output(self, old_name, new_name):
3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
3232
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
3233

F
fengjiayi 已提交
3234 3235 3236 3237
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
3238 3239 3240 3241 3242 3243 3244 3245
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
3246
    def output(self, name):
3247
        r"""
3248
        Get output arguments by the output parameter name.
3249

3250 3251
        Args:
            name(str): The output parameter name.
3252

3253 3254 3255
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
3256
        """
F
fengjiayi 已提交
3257 3258 3259 3260 3261 3262
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

3263 3264 3265 3266 3267 3268
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
3269 3270
            "Can't find op itself in it's block. It could be a bug of Paddle."
        )
3271

F
fengjiayi 已提交
3272
    def has_attr(self, name):
3273
        """
3274 3275
        Whether this Operator has the attribute with name or not.

3276
        Args:
3277
            name(str): the attribute name.
3278

3279 3280
        Returns:
            bool: True if has this attribute.
3281 3282

        """
F
fengjiayi 已提交
3283 3284 3285
        return self.desc.has_attr(name)

    def attr_type(self, name):
3286
        """
3287
        Get the type of attribute by attribute's name.
3288

3289 3290
        Args:
            name(str): the attribute name.
3291

3292 3293
        Returns:
            core.AttrType: the attribute type.
3294
        """
3295
        return self.desc.attr_type(name, True)
F
fengjiayi 已提交
3296

W
Wu Yi 已提交
3297
    def _set_attr(self, name, val):
3298 3299 3300 3301 3302 3303 3304 3305 3306 3307
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
3308 3309
        self._update_desc_attr(name, val)

3310 3311 3312
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
3324 3325 3326 3327 3328
        if isinstance(val, Variable):
            self.desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            self.desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
Q
Qiyang Min 已提交
3329
            self.desc.set_block_attr(name, val.desc)
3330
        elif isinstance(val, list) and val and _all_is_type(val, Block):
3331
            self.desc.set_blocks_attr(name, [v.desc for v in val])
3332 3333 3334
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
Q
Qiyang Min 已提交
3335 3336
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
3337 3338 3339 3340 3341 3342 3343 3344 3345
            self._update_desc_plain_attr(name, val)

    def _update_desc_plain_attr(self, name, val):
        desc = self.desc
        if not hasattr(self, "_attr_types") or (name not in self._attr_types):
            desc._set_attr(name, val)
            return

        type_index = self._attr_types[name]
3346 3347 3348 3349 3350 3351
        # if the required attribute is a SCALAR, pass as-is
        if type_index == core.AttrType.SCALAR:
            desc._set_scalar_attr(name, wrap_as_scalar(val))
        elif type_index == core.AttrType.SCALARS:
            desc._set_scalars_attr(name, wrap_as_scalars(val))
        elif type_index == core.AttrType.BOOL:
3352 3353 3354 3355 3356 3357 3358
            desc._set_bool_attr(name, val)
        elif type_index == core.AttrType.INT:
            desc._set_int32_attr(name, val)
        elif type_index == core.AttrType.LONG:
            desc._set_int64_attr(name, val)
        elif type_index == core.AttrType.FLOAT:
            desc._set_float32_attr(name, val)
3359 3360
        elif type_index == core.AttrType.FLOAT64:
            desc._set_float64_attr(name, val)
3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377
        elif type_index == core.AttrType.STRING:
            desc._set_str_attr(name, val)
        elif type_index == core.AttrType.BOOLS:
            desc._set_bools_attr(name, val)
        elif type_index == core.AttrType.INTS:
            desc._set_int32s_attr(name, val)
        elif type_index == core.AttrType.LONGS:
            desc._set_int64s_attr(name, val)
        elif type_index == core.AttrType.FLOATS:
            desc._set_float32s_attr(name, val)
        elif type_index == core.AttrType.FLOAT64S:
            desc._set_float64s_attr(name, val)
        elif type_index == core.AttrType.STRINGS:
            desc._set_strs_attr(name, val)
        else:
            # defaults to old methods
            desc._set_attr(name, val)
Y
yuyang18 已提交
3378

F
fengjiayi 已提交
3379 3380
    @property
    def attr_names(self):
3381
        return self.desc.attr_names(True)
F
fengjiayi 已提交
3382 3383

    def attr(self, name):
3384
        """
3385 3386
        Get the attribute by name.

3387
        Args:
3388
            name(str): the attribute name.
3389

3390 3391
        Returns:
            bool|int|str|float|list: The attribute value. The return value
3392 3393
            can be any valid attribute type.
        """
F
fengjiayi 已提交
3394
        return self.desc.attr(name)
Y
Yu Yang 已提交
3395

W
Wu Yi 已提交
3396
    def _block_attr_id(self, name):
3397
        """
G
gongweibao 已提交
3398
        Get the block attribute's id by name.
3399

3400 3401
        Args:
            name(str): the attribute name.
3402

3403 3404
        Returns:
            int: the block index.
3405
        """
W
Wu Yi 已提交
3406
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
3407

W
Wu Yi 已提交
3408
    def _block_attr(self, name):
G
gongweibao 已提交
3409 3410 3411 3412 3413 3414 3415 3416 3417 3418
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
3419
        id = self._block_attr_id(name)
3420
        assert id >= 0 and id < len(self.block.program.blocks)
G
gongweibao 已提交
3421 3422
        return self.block.program.blocks[id]

W
Wu Yi 已提交
3423
    def _blocks_attr(self, name):
G
gongweibao 已提交
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
3434
        for i in self._blocks_attr_ids(name):
3435
            assert i >= 0 and i < len(self.block.program.blocks)
G
gongweibao 已提交
3436 3437 3438 3439
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
3440
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
3441 3442 3443 3444 3445 3446 3447 3448 3449 3450
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
3451
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
3452

3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463
    def _var_attr(self, name):
        """
        Get the Variable attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variable: the Variable attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3464 3465 3466 3467 3468
        assert (
            attr_type == core.AttrType.VAR
        ), "Required type attr({}) is Variable, but received {}".format(
            name, attr_type
        )
3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
        attr_var_name = self.desc.attr(name, True).name()
        return self.block._var_recursive(attr_var_name)

    def _vars_attr(self, name):
        """
        Get the Variables attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variables: the Variables attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3483 3484 3485 3486 3487
        assert (
            attr_type == core.AttrType.VARS
        ), "Required type attr({}) is list[Variable], but received {}".format(
            name, attr_type
        )
3488 3489 3490 3491 3492 3493
        attr_vars = [
            self.block._var_recursive(var.name())
            for var in self.desc.attr(name, True)
        ]
        return attr_vars

J
JiayiFeng 已提交
3494
    def all_attrs(self):
F
fengjiayi 已提交
3495
        """
3496 3497 3498
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3499
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3500 3501 3502 3503
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
3504
            attr_type = self.desc.attr_type(n, True)
G
gongweibao 已提交
3505
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3506
                attr_map[n] = self._block_attr(n)
3507
            elif attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3508
                attr_map[n] = self._blocks_attr(n)
3509 3510 3511 3512 3513 3514
            elif attr_type == core.AttrType.VAR:
                attr_map[n] = self._var_attr(n)
            elif attr_type == core.AttrType.VARS:
                attr_map[n] = self._vars_attr(n)
            else:
                attr_map[n] = self.attr(n)
G
gongweibao 已提交
3515

F
fengjiayi 已提交
3516 3517
        return attr_map

3518 3519 3520
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3521 3522 3523 3524

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3525 3526 3527
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3528 3529 3530 3531 3532 3533 3534 3535

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3536 3537
            return False

3538 3539 3540 3541 3542 3543
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3544
    @property
3545
    def dist_attr(self):
3546
        """
3547
        Get distributed attribute of this Variable.
3548
        """
3549
        return self.desc.dist_attr
3550

3551 3552
    @dist_attr.setter
    def dist_attr(self, dist_attr):
3553
        """
3554
        Set distributed attribute of this Variable.
3555
        """
3556
        self.desc.dist_attr = dist_attr
3557

Y
Yu Yang 已提交
3558

3559
class Block:
3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3574
        use `Program._create_block()` to create a block.
3575 3576 3577 3578

    Examples:
        .. code-block:: python

3579 3580 3581
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3582 3583 3584 3585 3586 3587 3588 3589 3590
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3591
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3592
        self.desc = program.desc.block(idx)
3593
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3594
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3595 3596
        self.program = program

3597
    def __str__(self):
3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3632
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3633 3634
            type(skip_op_callstack)
        )
3635 3636 3637 3638 3639 3640 3641
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
3642 3643
                op._to_readable_code(skip_op_callstack)
            )
3644 3645
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3646

F
fengjiayi 已提交
3647 3648
    def to_string(self, throw_on_error, with_details=False):
        """
3649 3650
        Get debug string.

F
fengjiayi 已提交
3651 3652
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3653
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3654
            with_details(bool): more details about variables and parameters
3655 3656
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3657

3658 3659
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3660
        """
3661
        assert isinstance(throw_on_error, bool) and isinstance(
3662 3663
            with_details, bool
        )
F
fengjiayi 已提交
3664
        if with_details:
F
fengjiayi 已提交
3665
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3666
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
3667 3668 3669
                self.idx,
                self.parent_idx,
            )
3670
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3671
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
3672 3673
                    r"\n    \1", var.to_string(throw_on_error, with_details)
                )
F
fengjiayi 已提交
3674
            for op in self.ops:
F
fengjiayi 已提交
3675
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
3676 3677
                    r"\n    \1", op.to_string(throw_on_error)
                )
F
fengjiayi 已提交
3678 3679 3680
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3681
            proto = framework_pb2.BlockDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
3682 3683
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3684 3685 3686

    __repr__ = __str__

Y
Yu Yang 已提交
3687 3688
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3689
        return self.desc.parent
Y
Yu Yang 已提交
3690

Y
Yu Yang 已提交
3691 3692 3693 3694
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3695
    def _set_forward_block_idx(self, idx):
3696 3697 3698 3699 3700 3701 3702 3703 3704
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3705
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3706

3707 3708 3709 3710 3711 3712 3713 3714
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3715 3716
    @property
    def idx(self):
Y
Yu Yang 已提交
3717
        return self.desc.id
Y
Yu Yang 已提交
3718

Q
Qiao Longfei 已提交
3719
    def var(self, name):
3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3733
        if not isinstance(name, str):
M
minqiyang 已提交
3734
            raise TypeError(
3735 3736 3737
                "var require string as parameter, but get %s instead."
                % (type(name))
            )
Y
Yu Yang 已提交
3738 3739
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3740
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3741
        return v
Q
Qiao Longfei 已提交
3742

X
Xin Pan 已提交
3743
    def _find_var_recursive(self, name):
3744 3745 3746 3747 3748 3749 3750
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3751
            Variable: the Variable with the giving name. Or None if not found.
3752
        """
Y
Yu Yang 已提交
3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3777
        return None
Y
Yu Yang 已提交
3778

X
Xin Pan 已提交
3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3798

Q
Qiao Longfei 已提交
3799
    def all_parameters(self):
3800
        return list(self.iter_parameters())
3801

3802
    def iter_parameters(self):
3803 3804 3805 3806 3807
        return (
            item[1]
            for item in self.vars.items()
            if isinstance(item[1], Parameter)
        )
Q
Qiao Longfei 已提交
3808

Y
Yu Yang 已提交
3809
    def create_var(self, *args, **kwargs):
J
Jiabin Yang 已提交
3810
        if _non_static_mode():
3811
            var = _create_tensor(*args, **kwargs)
L
Leo Chen 已提交
3812
        else:
3813 3814 3815
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3816
        return var
Y
Yu Yang 已提交
3817

Q
Qiao Longfei 已提交
3818 3819 3820
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3821
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3822 3823
        """
        Rename variable in vars and ops' inputs and outputs
3824 3825

        Args:
3826 3827
            name(str|bytes): the name that need to be renamed.
            new_name(str|bytes): the name that need to rename to.
3828 3829 3830 3831 3832 3833 3834 3835

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3836
        """
3837 3838
        # Ensure the type of name and new_name is str
        name = name.decode() if isinstance(name, bytes) else name
3839 3840 3841
        new_name = (
            new_name.decode() if isinstance(new_name, bytes) else new_name
        )
M
minqiyang 已提交
3842

T
typhoonzero 已提交
3843
        if not self.has_var(name):
3844
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3845 3846
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3847
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3848 3849 3850 3851 3852 3853
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3854
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3855 3856 3857 3858
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3859
        orig_var_type = v.type
3860
        self.desc._rename_var(name.encode(), new_name.encode())
W
Wu Yi 已提交
3861
        # NOTE: v is destroyed by C++ after calling _rename_var.
3862
        d = self.desc.find_var(new_name.encode())
T
typhoonzero 已提交
3863
        if var_type == "Parameter":
L
Leo Chen 已提交
3864
            if in_dygraph_mode():
3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875
                var = EagerParamBase(
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
3876
            else:
姜永久 已提交
3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888
                var = Parameter(
                    self,
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
T
typhoonzero 已提交
3889
        elif var_type == "Variable":
3890 3891 3892 3893 3894 3895 3896
            var = Variable(
                self,
                type=orig_var_type,
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient,
            )
T
wip  
typhoonzero 已提交
3897

W
Wu Yi 已提交
3898
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3899 3900 3901
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3902
        self._sync_with_cpp()
3903
        return var
T
typhoonzero 已提交
3904

3905 3906 3907
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
3908
        self.desc._remove_var(name.encode())
3909 3910
        del self.vars[name]

Y
Yu Yang 已提交
3911 3912
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3913
        param = None
L
Leo Chen 已提交
3914
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3915
            param = EagerParamBase(*args, **kwargs)
L
Leo Chen 已提交
3916
        else:
姜永久 已提交
3917
            param = Parameter(global_block, *args, **kwargs)
3918 3919 3920
        # NOTE(Aurelius84): we deliver stop_gradient in append_op, so we
        # need recorde it state and reset it back after calling this API
        stop_gradient = param.stop_gradient
3921

3922
        if 'initializer' in kwargs:
3923 3924 3925 3926 3927

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3928
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3929
                        # are treated as initialization ops that cause error.
3930
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3931 3932
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
3933 3934 3935
                            "c_broadcast",
                            "c_sync_comm_stream",
                            "coalesce_tensor",
3936
                        ]:
3937
                            continue
3938 3939 3940 3941 3942 3943 3944
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
3945 3946 3947 3948 3949 3950
                raise RuntimeError(
                    "param "
                    + param.name
                    + " is inited by multiple init ops "
                    + str(init_ops)
                )
3951
            elif init_ops_len == 1:
3952
                # TODO already inited, do nothing, should log a warning
3953 3954 3955
                pass
            else:
                initializer(param, self)
3956
        param.stop_gradient = stop_gradient
Q
Qiao Longfei 已提交
3957
        return param
Y
Yu Yang 已提交
3958

Y
Yu Yang 已提交
3959
    def append_op(self, *args, **kwargs):
3960 3961 3962 3963 3964 3965
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
3966
        op_type = kwargs.get("type", None)
J
Jiabin Yang 已提交
3967
        if _non_static_mode():
3968
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
3969
            inplace_map = kwargs.get("inplace_map", None)
3970 3971 3972
            warnings.warn(
                "Op `%s` is executed through `append_op` under the dynamic mode, "
                "the corresponding API implementation needs to be upgraded to "
3973 3974 3975 3976 3977 3978
                "using `_C_ops` method." % type,
                DeprecationWarning,
            )
            op = Operator(
                block=self,
                desc=None,
3979
                type=op_type,
3980 3981 3982 3983
                inputs=None,
                outputs=None,
                attrs=attrs,
            )
3984

M
minqiyang 已提交
3985 3986
            # record ops in tracer rather than blocks
            #
3987
            # TODO(minqiyang): add op stop_gradient support in static graph mode too.
L
lujun 已提交
3988
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3989

3990
            _dygraph_tracer().trace_op(
3991
                op_type,
3992 3993 3994 3995 3996 3997
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
                inplace_map,
            )
M
minqiyang 已提交
3998
        else:
3999
            from paddle.fluid.dygraph.base import param_guard
4000
            from paddle.utils import flatten
4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014

            def pass_stop_gradient(ins, outs):
                """
                Set out.stop_gradient = True if all inputs stop_gradient is True.
                """
                need_reset = True
                for var in flatten(ins):
                    if getattr(var, 'stop_gradient', None) is False:
                        need_reset = False
                        break
                if need_reset:
                    for var in flatten(outs):
                        if isinstance(var, Variable):
                            var.stop_gradient = True
4015

4016
            op_desc = self.desc.append_op()
4017 4018
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
W
wanghuancoder 已提交
4019
            # NOTE(Aurelius84): In case of @to_static, all Tensor(s) should
4020 4021
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
            ignore_ops = {
                'conditional_block',
                'conditional_block_grad',
                'recurrent',
                'recurrent_grad',
                'while',
                'while_grad',
            }
            if op_type not in ignore_ops:
                pass_stop_gradient(inputs, outputs)
4032
            with param_guard(inputs), param_guard(outputs):
4033 4034 4035
                op = Operator(
                    block=self,
                    desc=op_desc,
4036
                    type=op_type,
4037 4038 4039 4040
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None),
                )
4041

M
minqiyang 已提交
4042
            self.ops.append(op)
M
minqiyang 已提交
4043

4044 4045
        return op

W
Wu Yi 已提交
4046
    def _insert_op(self, index, *args, **kwargs):
4047 4048 4049 4050 4051 4052 4053 4054 4055
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
4056
        self._sync_with_cpp()
F
fangshuixun007 已提交
4057
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
4058

4059 4060
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
4061
        Insert an Operator according to the giving arguments,
4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
4076 4077 4078 4079 4080 4081 4082 4083 4084
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
4085 4086
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
4087
        self.desc._remove_op(index, index + 1)
4088 4089
        del self.ops[index]

W
Wu Yi 已提交
4090
    def _slice_ops(self, start, end):
4091 4092 4093 4094 4095 4096 4097 4098 4099 4100
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
4101
        return self.ops[start:end]
Y
Yancey1989 已提交
4102

W
Wu Yi 已提交
4103
    def _prepend_op(self, *args, **kwargs):
J
Jiabin Yang 已提交
4104
        if _non_static_mode():
J
Jiabin Yang 已提交
4105 4106
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117
            op = Operator(
                self, None, type=type, inputs=None, outputs=None, attrs=attrs
            )

            _dygraph_tracer().trace_op(
                type,
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
            )
M
minqiyang 已提交
4118
        else:
4119
            op_desc = self.desc._prepend_op()
4120 4121 4122 4123 4124 4125 4126 4127
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None),
            )
M
minqiyang 已提交
4128
            self.ops.insert(0, op)
4129

Y
Yu Yang 已提交
4130 4131
        return op

W
Wu Yi 已提交
4132
    def _sync_with_cpp(self):
4133
        """
4134 4135
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
4136
        """
Q
Qiao Longfei 已提交
4137 4138 4139
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
4140 4141 4142 4143
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
4144 4145 4146 4147 4148 4149 4150 4151
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient,
                    )
4152
                else:
4153 4154 4155 4156 4157 4158
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient,
                    )
Q
Qiao Longfei 已提交
4159

4160
        # sync variables removed from c++ end
4161
        for var in list(self.vars.keys()):
4162
            if not self.desc.find_var(var.encode()):
4163 4164
                self.vars.pop(var)

Q
Qiao Longfei 已提交
4165
        # sync operators from cpp
4166 4167 4168 4169
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
4186 4187 4188 4189 4190

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
4191
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
4192 4193 4194 4195 4196 4197 4198

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

4199 4200 4201 4202 4203
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
4204 4205 4206 4207 4208 4209
                self.ops
            ) and ops_in_cpp_index < len(ops_in_cpp):
                if (
                    self.ops[ops_in_python_index].desc
                    != ops_in_cpp[ops_in_cpp_index]
                ):
4210 4211 4212 4213 4214
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
4215 4216 4217 4218
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
4219
    def _copy_param_info_from(self, other):
4220
        """
4221 4222
        Copy the information of parameters from the other block.

4223
        Args:
4224 4225 4226 4227 4228
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
4229 4230 4231 4232 4233

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
4234
            raise TypeError(
4235 4236
                "_copy_param_info_from should be invoked with Block"
            )
4237
        for p in other.iter_parameters():
4238 4239 4240
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
4241 4242
                # if the Parameter is pruned, v may be None
                continue
4243
            assert isinstance(v, Variable)
4244
            new_p = None
L
Leo Chen 已提交
4245
            if in_dygraph_mode():
4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257
                new_p = EagerParamBase(
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4258
            else:
姜永久 已提交
4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273
                new_p = Parameter(
                    block=self,
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR
                    else None,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4274 4275
            self.vars[new_p.name] = new_p

4276
    def _clone_variable(self, var, force_persistable=True):
4277 4278
        """
        Clone a variable into current block.
4279

4280 4281
        Args:
            var: the variable to be cloned.
4282 4283 4284
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
4285 4286

        Returns:
4287
            Variable: the new  variable cloned from 'var' in current block.
4288 4289
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
4290 4291 4292
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
4293 4294 4295
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
tangwei12 已提交
4296
        elif var.type == core.VarDesc.VarType.RAW:
4297 4298 4299
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
typhoonzero 已提交
4300 4301 4302 4303 4304 4305
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
4306
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4307
                is_data=var.is_data,
4308 4309
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4310 4311 4312 4313 4314 4315 4316
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
4317
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4318
                is_data=var.is_data,
4319 4320
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4321
        return ret_var
4322

Y
Yu Yang 已提交
4323

4324 4325 4326 4327
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
4328
# of some old Python Variables(all old Python Operators) may have
4329
# been destructed.
4330 4331 4332
def _apply_pass(
    main_program, startup_program, pass_name, pass_attrs={}, pass_attr_types={}
):
4333 4334 4335 4336
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
4337 4338 4339 4340 4341 4342 4343
    attrs = core.apply_pass(
        tmp_main_program,
        tmp_startup_program,
        pass_name,
        pass_attrs,
        pass_attr_types,
    )
4344 4345 4346 4347 4348
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


4349
class IrNode:
4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4361 4362 4363
        assert isinstance(
            node, core.Node
        ), 'node must be the instance of core.Node.'
4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

4445
    def remove_input_by_id(self, node_id):
4446 4447 4448 4449 4450 4451
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4452
        self.node.remove_input(node_id)
4453

4454
    def remove_input(self, node):
4455 4456 4457 4458
        """
        Remove a node from inputs.

        Args:
4459
            node(IrNode): the node being removed.
4460
        """
4461
        self.node.remove_input(node.node)
4462

4463
    def append_input(self, node):
4464 4465 4466 4467
        """
        Append a node in inputs.

        Args:
4468
            node(IrNode): the node being appended.
4469
        """
4470
        self.node.append_input(node.node)
4471 4472 4473 4474 4475 4476 4477 4478

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

4479
    def remove_output_by_id(self, node_id):
4480 4481 4482 4483 4484 4485
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4486
        self.node.remove_output(node_id)
4487

4488
    def remove_output(self, node):
4489 4490 4491 4492
        """
        Remove a node from outputs.

        Args:
4493
            node(IrNode): the node being removed.
4494
        """
4495
        self.node.remove_output(node.node)
4496

4497
    def append_output(self, node):
4498 4499 4500 4501
        """
        Append a node in outputs.

        Args:
4502
            node(IrNode): the node being appended.
4503
        """
4504
        self.node.append_output(node.node)
4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4539 4540 4541
        assert (
            isinstance(node, core.Node) and node.is_var()
        ), 'node must be the instance of core.Node and it must be a variable node.'
4542
        super().__init__(node)
4543 4544 4545 4546 4547 4548 4549 4550 4551
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
4552 4553 4554
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4555 4556 4557 4558 4559 4560 4561 4562 4563
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
4564 4565 4566
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4567 4568
        return self.node.var().persistable()

4569 4570 4571 4572 4573 4574 4575
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
4576 4577 4578
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4579 4580 4581 4582 4583 4584 4585 4586 4587
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
4588 4589 4590
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4591 4592 4593 4594 4595 4596 4597 4598 4599
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
4600 4601 4602
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4603 4604
        return self.node.var().shape()

4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4638 4639 4640
        assert (
            isinstance(node, core.Node) and node.is_op()
        ), 'node must be the instance of core.Node and it must be a operator node.'
4641
        super().__init__(node)
4642 4643 4644 4645 4646 4647 4648 4649 4650 4651
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
4652 4653 4654
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4655 4656
        self.node.op()._rename_input(old_input_name, new_input_name)

4657 4658 4659 4660 4661 4662 4663 4664
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
4665 4666 4667
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4668 4669
        self.node.op()._rename_output(old_output_name, new_output_name)

4670 4671 4672 4673 4674 4675 4676 4677 4678 4679
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4680 4681 4682
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4695 4696 4697
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4698 4699 4700 4701 4702 4703 4704 4705 4706
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
4707 4708 4709
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4710 4711
        return self.node.op().set_type(new_type)

4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
4726 4727 4728
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4729
        desc = self.node.op()
4730 4731 4732 4733 4734
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
4735
            desc.set_block_attr(name, val.desc)
4736
        elif isinstance(val, list) and val and _all_is_type(val, Block):
4737
            desc.set_blocks_attr(name, [v.desc for v in val])
4738 4739 4740
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
4741 4742 4743 4744
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4745 4746 4747 4748 4749 4750 4751
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
4752 4753 4754
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4755 4756 4757 4758 4759 4760 4761 4762 4763
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
4764 4765 4766
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4767 4768
        return self.node.op().output_arg_names()

4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4790
class IrGraph:
4791
    """
4792
    Python IrGraph. Beneath it is a core.Graph, which is used for
4793
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4794 4795
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4796 4797 4798 4799
    """

    def __init__(self, graph, for_test=False):
        """
4800 4801
        Construct an IrGraph using core.Graph.

4802 4803 4804 4805 4806
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
4807 4808
            graph, core.Graph
        ), 'graph must be the instance of core.Graph.'
4809 4810 4811
        self.graph = graph
        self._for_test = for_test

4812 4813 4814 4815
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4816 4817 4818
        Warns:
            The method only clones the graph structure, not its attributes.

4819 4820 4821
        Returns:
            IrGraph: A new and duplicated graph.
        """
4822
        g = self.graph.clone()
4823 4824
        return IrGraph(g, self._for_test)

4825
    def is_test(self):
4826 4827 4828
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4829 4830
        return self._for_test

W
WangZhen 已提交
4831
    def all_nodes(self):
4832 4833 4834
        """
        Return all nodes included in the graph as a set.
        """
4835
        return {IrNode(node) for node in self.graph.nodes()}
4836

4837
    def all_var_nodes(self):
4838 4839 4840
        """
        Return all variable nodes included in the graph as a set.
        """
4841
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4842

4843
    def all_persistable_nodes(self):
4844 4845 4846
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4847 4848
        persistable_nodes = set()
        for node in self.graph.nodes():
4849 4850 4851 4852 4853
            if (
                node.is_var()
                and node.var() is not None
                and node.var().persistable()
            ):
W
WangZhen 已提交
4854
                persistable_nodes.add(node)
4855
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4856

4857
    def all_op_nodes(self):
4858 4859 4860
        """
        Return all operator nodes included in the graph as a set.
        """
4861
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4862

4863 4864 4865 4866 4867 4868
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
4869
            IrGraph(self.graph.get_sub_graph(i), for_test=for_test)
4870 4871 4872 4873 4874 4875 4876 4877 4878
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4879
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4891
            IrVarNode: the created persistable variable node.
4892
        """
4893 4894 4895 4896 4897
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4898
        return IrVarNode(self.graph.create_var_node(var_desc))
4899 4900

    def create_var_node(self, name, var_type, shape, var_dtype):
4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4912
            IrVarNode: the created variable node.
4913 4914
        """

4915 4916 4917 4918
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4919
        return IrVarNode(self.graph.create_var_node(var_desc))
4920

4921 4922 4923 4924 4925 4926
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4927
    def create_var_node_from_desc(self, var_desc):
4928 4929 4930 4931 4932 4933 4934 4935
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4936
            IrVarNode: the created variable node.
4937
        """
4938
        return IrVarNode(self.graph.create_var_node(var_desc))
4939 4940

    def create_op_node(self, op_type, attrs, inputs, outputs):
4941 4942 4943 4944 4945 4946 4947
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4948
            outputs(dict): the outputs of the operator node.
4949 4950

        Returns:
4951
            IrOpNode: the created operator node.
4952
        """
4953 4954
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4955
        for attr, value in attrs.items():
4956
            self._update_desc_attr(op_desc, attr, value)
4957
        for input_name, var_nodes in inputs.items():
4958 4959
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
4960 4961 4962
            op_desc.set_input(
                input_name, [var_node.name() for var_node in var_nodes]
            )
4963
        for output_name, var_nodes in outputs.items():
4964 4965
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
4966 4967 4968
            op_desc.set_output(
                output_name, [var_node.name() for var_node in var_nodes]
            )
4969
        return IrOpNode(self.graph.create_op_node(op_desc))
4970 4971

    def create_op_node_from_desc(self, op_desc):
4972 4973 4974 4975 4976 4977 4978
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4979
            IrOpNode: the created operator node.
4980
        """
4981
        return IrOpNode(self.graph.create_op_node(op_desc))
4982 4983

    def update_input_link(self, old_input_node, new_input_node, op_node):
4984 4985 4986 4987
        """
        Update the input's link of a operator node.

        Args:
4988 4989 4990
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4991
        """
4992 4993 4994 4995 4996
        assert (
            old_input_node.node in self.graph.nodes()
            and new_input_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4997 4998 4999 5000
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
5001
        op_node.rename_input(old_input_node.name(), new_input_node.name())
5002

5003 5004 5005 5006 5007 5008 5009 5010 5011
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
5012 5013 5014 5015 5016
        assert (
            old_output_node.node in self.graph.nodes()
            and new_output_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
5017 5018 5019 5020 5021 5022
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

5023
    def link_to(self, node_in, node_out):
5024 5025 5026 5027
        """
        Connect two nodes.

        Args:
5028 5029
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
5030
        """
5031
        assert node_in.node in self.graph.nodes(), (
5032 5033
            'node_in(%s) must be in the graph nodes.' % node_in.node.name()
        )
5034
        assert node_out.node in self.graph.nodes(), (
5035 5036
            'node_out(%s) must be in the graph nodes.' % node_out.node.name()
        )
5037 5038
        node_in.append_output(node_out)
        node_out.append_input(node_in)
5039 5040

    def safe_remove_nodes(self, remove_nodes):
5041 5042 5043 5044 5045 5046 5047
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
5048
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
5049 5050 5051 5052
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
5053 5054
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
5055

Z
Zhen Wang 已提交
5056 5057 5058 5059 5060 5061 5062 5063
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5064
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
5065 5066 5067 5068
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5069
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
5070 5071 5072
                        ]
                    else:
                        var_nodes[each_var_name].append(
5073 5074
                            self._find_node_by_name(node.outputs, each_var_name)
                        )
Z
Zhen Wang 已提交
5075 5076
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
5077
    def has_circle(self):
5078 5079 5080 5081 5082 5083
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
5084 5085 5086
        return core.has_circle(self.graph)

    def graph_num(self):
5087 5088 5089 5090 5091 5092
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
5093 5094 5095
        return core.graph_num(self.graph)

    def topology_sort(self):
5096 5097 5098
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
5099
        Notes: the `graph` can not contain a circle.
5100 5101

        Returns:
Z
Zhen Wang 已提交
5102
            list(IrNode): nodes in topology order.
5103
        """
5104
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
5105
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
5106 5107

    def build_adjacency_list(self):
5108 5109 5110 5111
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
5112
            dict{IrNode: set(IrNode)}: the adjacency list.
5113
        """
5114 5115
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
5116
        for k, v in adj_list.items():
5117 5118
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
5119

5120 5121 5122 5123 5124 5125 5126 5127
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
5128
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
5129 5130 5131 5132 5133
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

5134 5135
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
5136 5137 5138 5139
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True,
            )
5140 5141
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
5142 5143 5144
                print(
                    'The {} is saved as the dot filetype.'.format(dot_file_path)
                )
5145

5146
        remove_ctr_vars = set()
5147
        if remove_ctr_var:
5148
            for node in self.all_var_nodes():
5149 5150 5151
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
5152 5153
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

5154 5155
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
5156 5157 5158 5159 5160 5161
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
5162 5163 5164 5165
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
5166 5167
        if not os.path.exists(save_path):
            os.makedirs(save_path)
5168 5169 5170 5171 5172 5173 5174
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
5175 5176 5177
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
5178
        WARN: When the graph includes backward operator nodes, the
5179 5180 5181 5182 5183 5184
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
5185
        convert_pass = core.get_pass('graph_to_program_pass')
5186 5187
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
5188 5189 5190 5191
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

5192 5193 5194 5195 5196 5197 5198 5199
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
5200
        assert target_node is not None, (
5201 5202
            "Cannot find the target node (%s)in the giving set." % node_name
        )
5203 5204
        return target_node

5205 5206 5207 5208
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
5209 5210 5211 5212 5213
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
5214
            desc.set_block_attr(name, val.desc)
5215
        elif isinstance(val, list) and val and _all_is_type(val, Block):
5216
            desc.set_blocks_attr(name, [v.desc for v in val])
5217 5218 5219
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
5220 5221 5222 5223 5224
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


5225
class Program:
D
dzhwinter 已提交
5226
    """
5227
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
5228
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
5229
    it will contain nested block.
5230

J
Jiabin Yang 已提交
5231 5232 5233
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
5234

J
Jiabin Yang 已提交
5235
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
5236
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
5237 5238 5239 5240 5241 5242 5243
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
5244
    **Notes**:
5245 5246 5247
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
5248 5249

    Returns:
J
Jiabin Yang 已提交
5250
        Program: An empty Program.
D
dzhwinter 已提交
5251 5252

    Examples:
5253 5254
        .. code-block:: python

5255 5256 5257 5258
            import paddle
            import paddle.static as static

            paddle.enable_static()
5259

5260 5261 5262 5263 5264
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
5265
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
5266 5267 5268

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
5269 5270 5271

    """

5272 5273
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
5274 5275
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
5276 5277
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
5278
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
5279
        self.__op_role_var = []
T
tangwei12 已提交
5280

5281 5282
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
5283
        self._is_distributed = False
5284
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
5285
        self._is_chief = False
5286 5287 5288
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
5289
        self._endpoints = []
5290 5291 5292
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
5293
        self._trainers_endpoints = []
5294
        # the distributed lookup table names
T
tangwei12 已提交
5295
        self._distributed_lookup_table = None
5296 5297 5298

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
5299 5300
        self._use_lamb = False

5301 5302 5303
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
5304

5305 5306 5307
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
5308
        self._program_config = None
5309

5310 5311
        self._pass_applied = None

H
hutuxian 已提交
5312 5313 5314
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

5315 5316 5317
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

5318 5319 5320
        # appending gradients times
        self._appending_grad_times = 0

5321 5322
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
5323 5324
            "__auto_checkpoint_program__"
        )
5325

5326 5327
        # compiled program, i.e. Graph
        self._graph = None
5328 5329
        # to tag whether is startup_program
        self._is_start_up_program_ = False
5330

5331
    def _find_var_class_kwargs(self, new_desc):
5332 5333 5334 5335 5336 5337 5338 5339
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

5340 5341 5342 5343
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
5344
            if idx > (len(self.blocks) - 1):
5345
                self._create_block()
5346 5347 5348 5349 5350 5351 5352 5353 5354 5355
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
                    'shape': get_var_desc_attr_or_none(
                        new_var_desc,
                        "shape",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'dtype': get_var_desc_attr_or_none(
                        new_var_desc,
                        "dtype",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'lod_level': get_var_desc_attr_or_none(
                        new_var_desc,
                        "lod_level",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'error_clip': old_var.error_clip
                    if old_var is not None
                    else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None
                    else False,
                    'is_data': old_var.is_data
                    if old_var is not None
                    else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None
                    else False,
5397 5398 5399
                }

                if isinstance(old_var, Parameter):
5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416
                    kwargs.update(
                        {
                            'trainable': old_var.trainable,
                            'optimize_attr': old_var.optimize_attr,
                            'regularizer': old_var.regularizer,
                            'do_model_average': old_var.do_model_average,
                            'need_clip': old_var.need_clip,
                            'is_distributed': old_var.is_distributed,
                            'is_parameter': old_var.is_parameter,
                        }
                    )
                    block_new_vars.append(
                        {
                            'class': Parameter,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5417 5418
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
5419 5420 5421 5422 5423 5424
                    block_new_vars.append(
                        {
                            'class': Variable,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5425 5426 5427 5428 5429 5430 5431

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
5432
        assert block_num == self.desc.num_blocks()
5433 5434

        # clear old blocks and desc
5435 5436 5437 5438 5439 5440 5441 5442 5443
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
5444

5445
        del desc
5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

5465 5466 5467 5468 5469 5470 5471 5472 5473 5474
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

5475 5476
                import paddle
                import paddle.static as static
5477

5478 5479 5480
                paddle.enable_static()

                prog = static.default_main_program()
5481 5482 5483 5484 5485
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
5486
                prog1 = static.default_main_program()
5487 5488 5489 5490 5491 5492 5493 5494
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
5495
    @property
5496
    def _op_role(self):
Y
yuyang18 已提交
5497 5498 5499 5500 5501 5502 5503 5504
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
5505
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
5506 5507 5508 5509
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
5510 5511
        return self._current_role

5512 5513
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
5514 5515 5516
        self._current_role = role

    @property
5517
    def _op_role_var(self):
Y
yuyang18 已提交
5518
        """
5519
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
5520

5521
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
5522 5523 5524

        Notes: This is a very low-level API. Users should not use it directly.
        """
5525
        return self.__op_role_var
Y
yuyang18 已提交
5526

5527
    @signature_safe_contextmanager
5528 5529 5530 5531 5532
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
5533 5534 5535 5536
        try:
            yield
        finally:
            self._current_role = tmp_role
5537

S
rename  
sneaxiy 已提交
5538
    @signature_safe_contextmanager
W
Wu Yi 已提交
5539
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
5540 5541 5542 5543 5544 5545 5546
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
5547
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
5548 5549 5550

        Examples:

5551
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
5552
            >>> p, g = backward(...)
W
Wu Yi 已提交
5553
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
5554 5555
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
5556
        tmp_role = self._current_role
5557
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
5558

Y
yuyang18 已提交
5559 5560
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
5561
        self.__op_role_var = [
5562 5563 5564
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
5565 5566 5567 5568 5569
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
5570

S
rename  
sneaxiy 已提交
5571
    @signature_safe_contextmanager
X
Xin Pan 已提交
5572
    def _lr_schedule_guard(self, is_with_opt=False):
5573 5574 5575 5576 5577 5578 5579
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
5580 5581 5582 5583
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
5584 5585 5586

        Examples:

5587
            >>> import paddle.fluid as fluid
5588 5589 5590 5591
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
5592 5593

        tmp_role = self._current_role
5594
        tmp_var = self.__op_role_var
5595

5596 5597
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
5598 5599
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
5600
        # TODO(typhoonzero): how to set target learning rate var
5601
        self.__op_role_var = []
5602 5603 5604 5605 5606
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
5607

5608
    def __str__(self):
Y
yuyang18 已提交
5609 5610 5611 5612 5613 5614 5615 5616 5617
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5638 5639
            import paddle
            import paddle.static as static
5640

5641 5642 5643
            paddle.enable_static()

            cur_program = static.Program()
5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5655
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
5656 5657
            type(skip_op_callstack)
        )
5658 5659 5660
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5661
            program_str += '\n'
5662
        return program_str
Y
Yang Yang(Tony) 已提交
5663

F
fengjiayi 已提交
5664 5665 5666
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5667

J
Jiabin Yang 已提交
5668 5669 5670
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5671

J
Jiabin Yang 已提交
5672
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5673

H
haowang101779990 已提交
5674
        Returns:
J
Jiabin Yang 已提交
5675
            str: The debug string describe current Program.
Y
yuyang18 已提交
5676 5677

        Raises:
J
Jiabin Yang 已提交
5678
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5679

5680 5681 5682
        Examples:
            .. code-block:: python

5683 5684 5685 5686
                import paddle
                import paddle.static as static

                paddle.enable_static()
5687

5688 5689 5690
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5691
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5692
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5693
                print("program string without detail: {}".format(prog_string))
5694
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5695
        """
5696 5697 5698
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
5699 5700
            type(throw_on_error)
        )
5701 5702 5703
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
5704 5705
            type(with_details)
        )
5706

F
fengjiayi 已提交
5707 5708 5709 5710
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726
            protostr = self.desc.serialize_to_string()
            proto = framework_pb2.ProgramDesc.FromString(bytes(protostr))
            res_str += (
                "version {\n  "
                + textwrap.indent(
                    _debug_string_(proto.version, throw_on_error), "  "
                )
                + "}\n"
            )
            res_str += (
                "op_version_map {\n  "
                + textwrap.indent(
                    _debug_string_(proto.op_version_map, throw_on_error), "  "
                )
                + "}\n"
            )
F
fengjiayi 已提交
5727 5728
        else:
            protostr = self.desc.serialize_to_string()
5729
            proto = framework_pb2.ProgramDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
5730 5731
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5732

W
Wu Yi 已提交
5733
    def _get_desc(self):
Y
yuyang18 已提交
5734 5735 5736 5737 5738 5739 5740
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5741 5742
        return self.desc

X
version  
Xin Pan 已提交
5743 5744 5745
    def _version(self):
        return self.desc._version()

5746
    def clone(self, for_test=False):
Y
yuyang18 已提交
5747
        """
5748
        .. note:::
5749 5750
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` .
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` .
5751
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5752

5753
        Create a new Program with forward content of original one when ``for_test=True``.
5754
        Create a new Program as same as the original one when ``for_test=False``.
5755

5756
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5757 5758 5759
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5760

5761 5762
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5763 5764
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
5765
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
5766

J
Jiabin Yang 已提交
5767
        For Example:
5768
          ::
L
Luo Tao 已提交
5769

5770 5771 5772 5773 5774 5775
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
5776
            pred = static.nn.fc(x=img, size=10, actvation='relu')
5777
            loss = paddle.mean(pred)
5778
            # Here we use clone before Momentum
5779 5780
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
5781
            optimizer.minimize(loss)
5782

J
Jiabin Yang 已提交
5783
        Args:
5784

5785 5786
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
5787

J
Jiabin Yang 已提交
5788
        Returns:
5789
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
5790

Y
yuyang18 已提交
5791 5792 5793

        Examples:

5794 5795 5796 5797 5798 5799 5800
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5801 5802
            .. code-block:: python

5803
                import paddle
5804 5805

                def print_prog(prog):
5806
                    for name, value in sorted(prog.block(0).vars.items()):
5807 5808 5809 5810 5811
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
5812
                        for key, value in sorted(op.all_attrs().items()):
5813 5814 5815 5816
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5817
            1. To clone a test program, the sample code is:
5818 5819
                .. code-block:: python

5820 5821 5822 5823 5824 5825
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5826 5827

                    def print_prog(prog):
5828
                        for name, value in sorted(prog.block(0).vars.items()):
5829 5830 5831 5832 5833
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
5834
                            for key, value in sorted(op.all_attrs().items()):
5835 5836 5837
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5838 5839
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5840 5841 5842

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5843 5844 5845
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5846
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5847 5848
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5849
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5850 5851
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5852
                            test_program = train_program.clone(for_test=True)
5853
                    print_prog(test_program)
J
Jiabin Yang 已提交
5854 5855 5856 5857

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5858
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5859 5860 5861 5862
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5863 5864 5865
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5866 5867 5868
                            sgd.minimize(avg_loss)


5869
            2. The clone method can be avoid if you create program for training and program for testing individually.
5870 5871
                .. code-block:: python

5872 5873 5874 5875 5876 5877
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5878 5879

                    def print_prog(prog):
5880
                        for name, value in sorted(prog.block(0).vars.items()):
5881 5882 5883 5884 5885
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
5886
                            for key, value in sorted(op.all_attrs().items()):
5887 5888
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5889

5890
                    def network():
5891
                        img = static.data(name='image', shape=[None, 784])
5892
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5893 5894
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5895
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5896 5897
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5898 5899
                        return avg_loss

5900 5901 5902 5903 5904
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5905
                            avg_loss = network()
5906
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5907
                            sgd.minimize(avg_loss)
5908
                    # the test startup program is not used.
5909 5910
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5911 5912
                            avg_loss = network()
                    print_prog(test_program_2)
5913

5914
            The two code snippets above will generate and print same programs.
5915
        """
5916

T
tangwei12 已提交
5917
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5918 5919 5920
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5921
        pruned_origin_block_id_map = None
5922
        if for_test:
5923 5924
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
5925 5926
                self.desc
            )
5927 5928
            forward_prog.blocks = [
                Block(forward_prog, i)
5929
                for i in range(forward_prog.desc.num_blocks())
5930 5931 5932
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5933
        else:
5934
            p = Program()
G
gongweibao 已提交
5935 5936
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5937
            p.desc = core.ProgramDesc(self.desc)
5938
            p.blocks = [Block(p, i) for i in range(self.desc.num_blocks())]
G
gongweibao 已提交
5939 5940

            p._current_role = self._current_role
5941
            p.__op_role_var = self.__op_role_var
5942
            p._appending_grad_times = self._appending_grad_times
5943 5944
            if hasattr(self, 'lr_scheduler'):
                p.lr_scheduler = self.lr_scheduler
G
gongweibao 已提交
5945

T
tangwei12 已提交
5946
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5947
            # its desc.
W
Wu Yi 已提交
5948
            p._sync_with_cpp()
5949

W
Wu Yi 已提交
5950
        p._copy_param_info_from(self)
5951
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5952
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5953
        return p
5954

5955
    def _prune(self, targets):
Y
yuyang18 已提交
5956 5957 5958 5959 5960 5961 5962 5963
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5964
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5965 5966 5967 5968
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5969
        """
5970
        return self._prune_with_input([], targets)
5971 5972

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5973
        """
5974
        Prune operators and variables which are not needed to generate
5975 5976
        :code:`targets`. Prune operators and variables which are needed
        to generate feeded_var
5977 5978 5979 5980 5981 5982 5983

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5984
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5985 5986 5987 5988 5989 5990
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5991
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5992 5993 5994
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5995 5996
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
5997 5998
        if not isinstance(targets, list):
            targets = [targets]
5999 6000

        for var in feeded_var_names:
6001
            if not isinstance(var, str):
6002 6003
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
6004 6005
                    "str, but received %s." % type(var)
                )
6006

6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

6023 6024 6025 6026
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
6027
                    name = t.name
6028
                elif isinstance(t, str):
6029
                    name = str(t)
6030
                else:
6031 6032
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
6033 6034
                        "Variable or Operator, but received %s." % type(t)
                    )
6035 6036 6037 6038 6039 6040

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
6041 6042 6043
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
6044

6045 6046 6047 6048 6049 6050 6051 6052 6053
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
6054
                        # Skip optimize op except for optimize op in targets,
6055 6056 6057 6058 6059
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
6060

6061
                if target_op is not None:
6062 6063 6064
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
6065

6066
        res = Program()
6067
        res.desc, pruned_origin_block_id_map = core.prune(
6068 6069
            self.desc, set(feeded_var_names), targets_idx
        )
6070
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6071
        res._sync_with_cpp()
6072 6073 6074 6075 6076

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

6077 6078
        return res

X
Xin Pan 已提交
6079
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
6080
        """
F
fengjiayi 已提交
6081 6082 6083 6084 6085
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

6086
        3. change the :code:`is_test`
Y
yuyang18 已提交
6087 6088 6089
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

6090
        Args:
X
Xin Pan 已提交
6091 6092
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
6093

Y
yuyang18 已提交
6094 6095 6096 6097 6098 6099
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
6100
        res = Program()
6101
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
6102 6103 6104 6105

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
6106
        if prune_read_op:
6107
            while True:
6108 6109 6110 6111
                if (
                    read_op_idx >= root_block.op_size()
                    or root_block.op(read_op_idx).type() == 'read'
                ):
6112 6113 6114 6115 6116 6117
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
6118
                    root_block._remove_var(var.name().encode())
F
fengjiayi 已提交
6119 6120

        # change all `is_test` attributes to True
6121
        for i in range(res.desc.num_blocks()):
6122
            block = res.desc.block(i)
6123
            for j in range(block.op_size()):
6124 6125
                op = block.op(j)
                if op.has_attr('is_test'):
6126
                    op._set_bool_attr('is_test', True)
6127 6128 6129
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
6130
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6131
        res._sync_with_cpp()
6132 6133
        return res

6134
    def _remove_training_info(self, clip_extra=True):
6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

6149
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
6150 6151
        res._sync_with_cpp()

6152 6153
        # Note: The op_role and op_role_var cann't be deleted currently,
        # and we will try to remove them in the future.
6154
        common_clipped_attrs_list = ['op_callstack', 'with_quant_attr']
6155

6156
        for i in range(res.desc.num_blocks()):
6157 6158 6159 6160
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
6161 6162
            if not clip_extra:
                continue
6163 6164 6165 6166
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
6167 6168 6169

                extra_attrs_map = core.get_op_extra_attrs(op.type())

6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
6183 6184 6185
                # The extra input of op will be removed in the future
                # for name in remove_input_list:
                #     op.remove_input(name)
6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
6199
                # The extra output of op will be removed in the future
6200 6201
                for name in remove_output_list:
                    op.remove_output(name)
6202

6203 6204 6205 6206 6207 6208 6209
                op_quant_name = (
                    core.op_proto_and_checker_maker.kOpWithQuantAttrName()
                )
                quant = (
                    bool(op.attr(op_quant_name))
                    if op_quant_name in op.attr_names()
                    else False
6210 6211
                )
                quant_attrs = [
6212 6213 6214 6215 6216 6217 6218
                    op_quant_name,
                    "quantization_type",
                    "skip_quant",
                    "activation_bits",
                    "bit_length",
                    "quantize_weight_bits",
                    "weight_quant_scale",
6219
                ]
6220 6221
                for extra_attr_name in extra_attrs_map.keys():
                    op.remove_attr(extra_attr_name)
6222
                remove_attr_list = []
6223 6224 6225 6226 6227 6228
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
6229
                    if len(extra_attrs_map) > 0:
6230
                        if name in common_clipped_attrs_list:
6231
                            op.remove_attr(name)
6232
                        continue
6233 6234 6235 6236 6237 6238 6239 6240 6241 6242
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
6243 6244
        return res

6245 6246
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
6247
        """
6248
        .. note::
6249
            1. All information about parameters will be lost after serialization;
6250
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6251

6252 6253
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
6254

J
Jiabin Yang 已提交
6255
        Args:
Y
yuyang18 已提交
6256

J
Jiabin Yang 已提交
6257
            binary_str_type (str): the binary prootbuf string.
6258

J
Jiabin Yang 已提交
6259 6260
        Returns:
            Program: A deserialized Program.
6261 6262 6263 6264

        Examples:
            .. code-block:: python

6265 6266 6267 6268
                import paddle
                import paddle.static as static

                paddle.enable_static()
6269

6270 6271 6272 6273
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
6274

6275
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
6276

6277
                    z = paddle.matmul(x=x, y=y)
6278

6279 6280
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
6281

6282
                    print(static.default_main_program())
6283
                    print(prog_restored)
Y
yuyang18 已提交
6284
        """
6285 6286
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
6287
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
W
Wu Yi 已提交
6288
        p._sync_with_cpp()
6289
        return p
Y
Yu Yang 已提交
6290

6291
    @staticmethod
6292
    def _construct_from_desc(desc):
6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
6304
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
6305 6306 6307
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
6308 6309
    @property
    def random_seed(self):
Y
yuyang18 已提交
6310
        """
J
Jiabin Yang 已提交
6311
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
6312 6313
        the random seed from random device.

6314
        .. note::
6315
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
6316 6317 6318

        Returns:
            int64: Random seed in current Program
6319

6320 6321 6322 6323

        Examples:
            .. code-block:: python

6324 6325 6326
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
6327

6328 6329 6330
                paddle.enable_static()

                prog = static.default_main_program()
6331
                random_seed = prog.random_seed
6332
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
6333 6334 6335
                print(random_seed)
                ## 0
                ## the default random seed is 0
6336

6337
                # Here we need to set random seed before we use paddle.nn.functional.dropout
6338
                prog.random_seed = 1
6339
                z_var = F.dropout(x_var, 0.7)
6340

6341
                print(prog.random_seed)
6342 6343
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
6344
        """
D
dzhwinter 已提交
6345 6346
        return self._seed

Q
qiaolongfei 已提交
6347 6348
    @property
    def num_blocks(self):
Y
yuyang18 已提交
6349
        """
6350 6351
        The number of :ref:`api_guide_Block_en`  in this Program.

6352
        .. note::
6353
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
6354 6355 6356

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
6357

6358 6359 6360 6361

        Examples:
            .. code-block:: python

6362 6363 6364 6365
                import paddle
                import paddle.static as static

                paddle.enable_static()
6366

6367
                prog = static.default_main_program()
6368 6369
                num_blocks = prog.num_blocks
                print(num_blocks)
6370

6371 6372
                # print result:
                # 1
Y
yuyang18 已提交
6373
        """
Q
qiaolongfei 已提交
6374 6375
        return self.desc.num_blocks()

D
dzhwinter 已提交
6376 6377 6378
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
6379 6380
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
6381 6382
                % type(seed)
            )
D
dzhwinter 已提交
6383 6384
        self._seed = seed

Y
Yu Yang 已提交
6385
    def __repr__(self):
6386
        return self.__str__()
6387

Y
Yu Yang 已提交
6388
    def global_block(self):
Y
yuyang18 已提交
6389
        """
6390 6391
        .. note::
            This API has no effect in Dygraph mode.
6392 6393 6394

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
6395 6396
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
6397

6398 6399 6400 6401

        Examples:
            .. code-block:: python

6402 6403 6404 6405
                import paddle
                import paddle.static as static

                paddle.enable_static()
6406

6407
                prog = static.default_main_program()
6408 6409
                gb_block = prog.global_block()
                print(gb_block)
6410

Y
yuyang18 已提交
6411
        """
Y
Yu Yang 已提交
6412 6413
        return self.blocks[0]

Q
Qiao Longfei 已提交
6414
    def block(self, index):
Y
yuyang18 已提交
6415
        """
6416 6417
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6418

6419 6420
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
6421 6422
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
6423

J
Jiabin Yang 已提交
6424 6425
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
6426 6427 6428 6429

        Examples:
            .. code-block:: python

6430 6431 6432 6433
                import paddle
                import paddle.static as static

                paddle.enable_static()
6434

6435
                prog = static.default_main_program()
6436 6437
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
6438
        """
Q
Qiao Longfei 已提交
6439 6440
        return self.blocks[index]

Y
Yu Yang 已提交
6441
    def current_block(self):
Y
yuyang18 已提交
6442
        """
6443 6444
        .. note::
            This API has no effect in Dygraph mode.
6445

J
Jiabin Yang 已提交
6446 6447
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
6448

J
Jiabin Yang 已提交
6449 6450
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
6451

6452 6453 6454
        Examples:
            .. code-block:: python

6455 6456 6457 6458
                import paddle
                import paddle.static as static

                paddle.enable_static()
6459

6460
                prog = static.default_main_program()
6461 6462
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
6463
        """
Y
Yu Yang 已提交
6464 6465
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
6466
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
6467 6468 6469 6470 6471
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
6472

Y
yuyang18 已提交
6473 6474 6475 6476 6477
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
6478
        new_block_idx = len(self.blocks)
6479 6480 6481 6482 6483
        parent = (
            self.current_block()
            if parent_idx is None
            else self.block(parent_idx)
        )
F
update  
fengjiayi 已提交
6484
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
6485 6486 6487 6488
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
6489
    def _rollback(self):
Y
yuyang18 已提交
6490 6491 6492 6493 6494
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
6495 6496
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
6497
    def _sync_with_cpp(self):
Y
yuyang18 已提交
6498 6499 6500 6501 6502 6503 6504 6505 6506 6507
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
6508 6509 6510
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
6511
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
6512

W
Wu Yi 已提交
6513
    def _copy_param_info_from(self, other):
6514
        """
6515
        Copy the information of parameters from other program.
D
dzhwinter 已提交
6516

Y
yuyang18 已提交
6517 6518 6519
        Notes: This is a very low level API. Users should not invoke it
        directly.

6520 6521 6522 6523 6524 6525 6526
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6527 6528
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6529 6530
                % type(other)
            )
6531

W
Wu Yi 已提交
6532
        self.global_block()._copy_param_info_from(other.global_block())
6533

6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6545 6546
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6547 6548
                % type(other)
            )
6549 6550
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
6551
        self._parameters_on_pservers = other._parameters_on_pservers
6552
        self._endpoints = other._endpoints
6553
        self._ps_endpoint = other._ps_endpoint
6554 6555
        self._distributed_lookup_table = other._distributed_lookup_table

6556
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
6557 6558
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
6559

Y
yuyang18 已提交
6560 6561 6562
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
6563 6564
        Args:
            other(Program): Other program
6565
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
6566 6567
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is
            cloned from block 0 in other, etc. Default is None, which means default mapped,
6568
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
6569 6570 6571 6572 6573

        Returns:
            None
        """
        if not isinstance(other, Program):
6574 6575
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6576 6577
                % type(other)
            )
F
fengjiayi 已提交
6578

6579 6580
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
6581
                i: i for i in range(self.desc.num_blocks())
6582
            }
6583 6584 6585

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
6586 6587
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
6588
            for var in list(block.vars.values()):
6589 6590 6591 6592 6593 6594 6595
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
6596

6597
    def list_vars(self):
Y
yuyang18 已提交
6598
        """
6599
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
6600

J
Jiabin Yang 已提交
6601
        Returns:
6602
            iterable Tensors: The Generator will yield every Tensor in this program.
6603 6604 6605 6606

        Examples:
            .. code-block:: python

6607 6608
                import paddle
                import paddle.static as static
6609

6610 6611 6612 6613 6614
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
6615 6616
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
6617

6618 6619
                # var img : LOD_TENSOR.shape(-1, 1, 28, 28).dtype(float32).stop_gradient(True)
                # var label : LOD_TENSOR.shape(-1, 1).dtype(int64).stop_gradient(True)
Y
yuyang18 已提交
6620
        """
6621
        for each_block in self.blocks:
6622
            for each_var in list(each_block.vars.values()):
6623 6624
                yield each_var

6625 6626 6627 6628 6629 6630 6631 6632 6633 6634
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

6635 6636 6637 6638
                import paddle
                import paddle.static as static

                paddle.enable_static()
6639

6640 6641
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
6642
                hidden = static.nn.fc(x=data, size=10)
6643 6644
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
6645 6646 6647 6648 6649 6650 6651

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
6652 6653
                # persist trainable param fc_0.w_0 : LOD_TENSOR.shape(13, 10).dtype(float32).stop_gradient(False)
                # persist trainable param fc_0.b_0 : LOD_TENSOR.shape(10,).dtype(float32).stop_gradient(False)
6654 6655 6656 6657 6658 6659 6660 6661 6662 6663
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

6664 6665 6666 6667 6668 6669 6670 6671 6672
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
6673 6674 6675
            mode(str, optional): Source of the obtained parameters and buffers.
                    'opt' :  The return value only contains the variable in the optimizer.
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.
6676 6677
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
6678
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
6706
        # can not be imported at the begainning of this file.
6707 6708
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
6709

6710 6711
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
6712 6713 6714 6715
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".format(
                    type(scope)
                )
            )
6716 6717 6718 6719 6720

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
6721 6722
            raise TypeError(
                "Type of `mode` should be string, but received {}.".format(
6723 6724 6725
                    type(mode)
                )
            )
6726 6727 6728 6729 6730

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
6731 6732 6733 6734 6735
            if (
                var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH
                or var.desc.type() == core.VarDesc.VarType.FETCH_LIST
                or var.desc.type() == core.VarDesc.VarType.READER
            ):
6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
6754 6755 6756 6757
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".format(
                        mode
                    )
                )
6758 6759 6760 6761 6762 6763 6764 6765

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
6766 6767 6768 6769
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".format(
                        var.name
                    )
                )
6770 6771 6772 6773 6774 6775
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
6776
        Set parameters and persistable buffers in state_dict to program.
6777
        An exception will throw if shape or dtype of the parameters is not match.
6778

6779 6780 6781 6782
        .. note::
            This function MUST called after run start_up_program

        Args:
6783
            state_dict(dict): the dict store parameters and persistable buffers.
6784 6785
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
6786
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6787 6788
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
6789

6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
6819 6820 6821
                    type(state_dict)
                )
            )
6822 6823

        vars_dict = {var.name: var for var in self.list_vars()}
6824 6825 6826
        condition = (
            True if 'StructuredToParameterName@@' in state_dict else False
        )
6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
6838 6839
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
6840 6841
                except TypeError as err:
                    warnings.warn(
6842 6843
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
6844
            else:
6845
                warnings.warn(
6846 6847 6848 6849 6850 6851
                    (
                        "Skip loading for '{0}'. Because '{0}' not in the program.".format(
                            name
                        )
                    )
                )
6852

Y
Yu Yang 已提交
6853

6854
class Parameter(Variable, metaclass=ParameterMetaClass):
6855
    """
6856
    Parameter is derived from Variable. A parameter is a persistable
6857
    Variable, and will be updated by optimizers after each iteration.
6858
    The training of a neural network is essentially the updating of
6859 6860
    its parameters.

6861
    Relative to a general Variable, a Parameter has several its own
6862 6863
    member variables:

6864 6865 6866 6867 6868 6869 6870 6871 6872 6873
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
6874
        need_clip (bool): Whether the parameter gradient need to be cliped
6875
            in optimizer. Default is True.
6876 6877
    """

6878 6879 6880 6881 6882 6883
    def __init__(
        self,
        block,
        shape,
        dtype,
        type=core.VarDesc.VarType.LOD_TENSOR,
6884
        **kwargs,
6885
    ):
6886 6887 6888 6889 6890
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6891 6892
        for each in shape:
            if each < 0:
6893 6894
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
6895 6896 6897 6898 6899 6900 6901 6902 6903 6904
                    % list(shape)
                )

        Variable.__init__(
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
6905
            **kwargs,
6906
        )
Y
Yu Yang 已提交
6907 6908 6909 6910
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6911 6912
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6913
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6914

6915 6916
        self.need_clip = kwargs.get('need_clip', True)

6917 6918
        self.is_distributed = False

6919 6920
        self.is_parameter = True

F
fengjiayi 已提交
6921
    def __str__(self):
6922
        return self._to_readable_code()
F
fengjiayi 已提交
6923

F
update  
fengjiayi 已提交
6924 6925 6926
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6927

F
update  
fengjiayi 已提交
6928 6929 6930 6931 6932 6933 6934 6935
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6936 6937 6938 6939
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
G
GGBond8488 已提交
6940
                import paddle
6941 6942

                prog = fluid.default_main_program()
G
GGBond8488 已提交
6943
                rlt = paddle.static.data("fake_data", shape=[-1,1,1], dtype='float32')
6944 6945
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6946
        """
6947
        assert isinstance(throw_on_error, bool) and isinstance(
6948 6949
            with_details, bool
        )
F
update  
fengjiayi 已提交
6950 6951
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
6952 6953 6954 6955 6956 6957 6958
            additional_attr = (
                "trainable",
                "optimize_attr",
                "regularizer",
                "do_model_average",
                "need_clip",
            )
F
update  
fengjiayi 已提交
6959
            for attr_name in additional_attr:
6960
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
F
update  
fengjiayi 已提交
6961 6962
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6963 6964 6965 6966
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6967

W
wanghuancoder 已提交
6968
class EagerParamBase(core.eager.Tensor):
6969
    """
6970 6971
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode).
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers
6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
6989
        need_clip (bool): Whether the parameter gradient need to be cliped
6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
7004 7005
                    % list(shape)
                )
7006 7007 7008 7009 7010 7011 7012

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

7013 7014 7015
        if isinstance(shape, core.eager.Tensor):
            shape = shape.numpy()

7016
        super().__init__(
7017 7018 7019 7020 7021 7022
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            core.VarDesc.VarType.LOD_TENSOR,
            True,
        )
7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
7037 7038 7039
        # hook functions for lazy initialization
        self._init_func = None
        self._init_op_creator = None
7040 7041

    def set_init_func(self, obj):
7042
        self._init_func = obj
7043 7044 7045

    @dygraph_only
    def initialize(self):
7046 7047 7048
        assert (
            self._init_func is not None
        ), "Required self._init_func is not None, but received None."
7049
        self._init_func(self, None)
7050
        # clear function handle to release resource
7051
        self._init_func = None
7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
7064 7065
                type(trainable),
            )
7066

7067 7068 7069 7070
    def _create_init_op(self, block):
        """
        Call init_op_creator function to create initializer operation in block.
        """
7071 7072 7073
        assert (
            self._init_op_creator is not None
        ), "Required self._init_op_creator is not None, but received None."
7074
        self._init_op_creator(self, block)
7075

7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094
    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
7095
            tensor=super().__str__()
7096
        )
7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
7126 7127
        new_param._init_func = self._init_func
        new_param._init_op_creator = self._init_op_creator
7128 7129 7130 7131 7132 7133
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
7134 7135
        return new_param

7136 7137 7138
    __repr__ = __str__


Y
Yu Yang 已提交
7139
# program is a global instance.
Y
Yu Yang 已提交
7140 7141
_main_program_ = Program()
_startup_program_ = Program()
7142
_startup_program_._is_start_up_program_ = True
7143

7144

7145
def default_startup_program():
Y
Yu Yang 已提交
7146
    """
Y
yuyang18 已提交
7147 7148
    Get default/global startup program.

7149
    The :code:`paddle.nn` function will append the initialization operators into startup program.
7150
    The :code:`startup_program` will initialize the parameters by the OPs.
T
tangwei12 已提交
7151

7152 7153
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
7154

7155 7156
    Returns:
        Program: current default startup program.
7157

7158
    Returns type:
7159 7160 7161 7162

    Examples:
        .. code-block:: python

7163
            import paddle
7164

7165
            paddle.enable_static()
7166 7167 7168 7169
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
7170
    """
Y
Yu Yang 已提交
7171
    return _startup_program_
7172

7173

7174
def default_main_program():
Y
Yu Yang 已提交
7175
    """
7176
    This API can be used to get ``default main program`` which store the
7177
    descriptions of Ops and tensors.
T
tangwei12 已提交
7178

7179 7180
    For example ``z = paddle.add(x, y)`` will create a new ``add``
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` .
Y
yuyang18 已提交
7181

7182
    The ``default main program`` is the default value for ``Program`` parameter in
7183
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
7184
    :code:`default_main_program` when the program is not specified.
7185

7186
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
7187

Y
Yu Yang 已提交
7188
    Returns:
7189
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
7190 7191 7192 7193

    Examples:
        ..  code-block:: python

7194
            import paddle
7195

7196
            paddle.enable_static()
7197
            # Sample Network:
7198 7199 7200
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
7201

7202 7203 7204
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
7205
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
7206
    """
Y
Yu Yang 已提交
7207
    return _main_program_
Y
Yu Yang 已提交
7208 7209 7210 7211 7212


def switch_main_program(program):
    """
    Switch the main program to a new program.
7213

Y
Yu Yang 已提交
7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
7228
    Switch the startup program to a new program
Y
Yu Yang 已提交
7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
7241
@signature_safe_contextmanager
Y
Yu Yang 已提交
7242 7243
def program_guard(main_program, startup_program=None):
    """
7244 7245
    :api_attr: Static Graph

7246 7247 7248
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
7249

G
guofei 已提交
7250
    Args:
7251
        main_program(Program): New main program inside ``with`` statement.
7252 7253
        startup_program(Program, optional): New startup program inside ``with``
            statement. :code:`None` means not changing startup program,
G
guofei 已提交
7254 7255 7256
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
7257
    Examples:
7258
       .. code-block:: python
T
tangwei12 已提交
7259

7260
          import paddle
Y
yuyang18 已提交
7261

7262 7263 7264 7265 7266
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
7267
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
7268 7269 7270

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
7271

Y
Yu Yang 已提交
7272
    Examples:
7273
       .. code-block:: python
Y
yuyang18 已提交
7274

7275
          import paddle
7276

7277 7278 7279 7280 7281
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
7282

Y
Yu Yang 已提交
7283
    """
7284
    from .data_feeder import check_type
7285 7286 7287 7288

    check_type(
        main_program, 'main_program', Program, 'paddle.static.program_guard'
    )
Y
Yu Yang 已提交
7289 7290
    main_program = switch_main_program(main_program)
    if startup_program is not None:
7291 7292 7293 7294 7295 7296
        check_type(
            startup_program,
            'startup_program',
            Program,
            'paddle.static.program_guard',
        )
7297 7298
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
7299
        startup_program = switch_startup_program(startup_program)
7300 7301 7302 7303 7304 7305
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
7306 7307


W
Wu Yi 已提交
7308
def _get_var(name, program=None):
X
xuwei06 已提交
7309
    """
Y
yuyang18 已提交
7310
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
7311

X
xuwei06 已提交
7312 7313 7314
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
7315
        If None, default_global_program() will be used.
X
xuwei06 已提交
7316 7317 7318 7319 7320 7321 7322

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
7323
    assert isinstance(program, Program)
X
xuwei06 已提交
7324 7325

    return program.global_block().var(name)
7326 7327


7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340
@signature_safe_contextmanager
def dygraph_guard_if_declarative():
    from .dygraph.base import in_declarative_mode
    from .dygraph import Tracer

    if in_declarative_mode():
        # Under @paddle.jit.to_static decorator, we switch back dygraph mode temporarily.
        with _dygraph_guard(tracer=Tracer()):
            yield
    else:
        yield


S
rename  
sneaxiy 已提交
7341
@signature_safe_contextmanager
L
lujun 已提交
7342
def _dygraph_guard(tracer):
7343 7344 7345 7346
    tmp_tracer = global_var._dygraph_tracer_
    global_var._dygraph_tracer_ = tracer
    if tracer is not None:
        core._switch_tracer(tracer)
M
minqiyang 已提交
7347

C
Charles-hit 已提交
7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359
    try:
        yield
    finally:
        if tmp_tracer is not None:
            core._switch_tracer(tmp_tracer)
        global_var._dygraph_tracer_ = tmp_tracer


@signature_safe_contextmanager
def _static_guard():
    tmp_tracer = global_var._dygraph_tracer_
    global_var._dygraph_tracer_ = None
7360 7361 7362
    try:
        yield
    finally:
7363 7364 7365
        if tmp_tracer is not None:
            core._switch_tracer(tmp_tracer)
        global_var._dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
7366 7367


S
rename  
sneaxiy 已提交
7368
@signature_safe_contextmanager
L
lujun 已提交
7369
def _dygraph_place_guard(place):
7370 7371 7372
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
7373 7374
    _set_dygraph_tracer_expected_place(place)

7375 7376 7377
    try:
        yield
    finally:
7378
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
7379
        _set_dygraph_tracer_expected_place(_global_expected_place_)
7380 7381


7382 7383 7384 7385 7386 7387 7388 7389 7390 7391
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
7392

7393
    Note:
7394
        The API only supports static graph mode.
7395 7396 7397 7398

    A context manager that specifies the device on which the OP will be placed.

    Args:
7399
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
7400
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs.
7401 7402 7403 7404 7405 7406 7407
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
7408

7409
        .. code-block:: python
7410

7411
            # required: gpu
Z
Zhang Ting 已提交
7412
            import paddle
7413

Z
Zhang Ting 已提交
7414 7415 7416
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
7417
            if support_gpu:
Z
Zhang Ting 已提交
7418
                place = paddle.CUDAPlace(0)
7419 7420

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
7421 7422 7423
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
7424

Z
Zhang Ting 已提交
7425
            with paddle.static.device_guard("cpu"):
7426
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
7427 7428
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
7429
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
7430
                out = paddle.reshape(data1, shape=shape)
7431

Z
Zhang Ting 已提交
7432 7433
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
7434 7435 7436
            result = exe.run(fetch_list=[out])
    """

7437 7438 7439 7440 7441
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
D
duanyanhui 已提交
7442
    if device not in ['cpu', 'gpu', 'xpu', 'npu', '', None]:
7443
        raise ValueError(
K
Kim Yann 已提交
7444
            "The Attr(device) should be 'cpu' 'npu' or 'gpu', and it can also be empty string or None "
7445 7446
            "when there is no need to specify device. But received %s" % device
        )
7447 7448
    if index:
        device = ":".join([device, index])
7449
    pre_device = switch_device(device)
7450 7451 7452 7453
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
7454 7455


7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467
def _switch_cuda_graph_mode(cuda_graph_attr):
    global _current_cuda_graph_mode
    pre_mode = _current_cuda_graph_mode
    _current_cuda_graph_mode = cuda_graph_attr
    return pre_mode


@signature_safe_contextmanager
def _cuda_graph_guard(cuda_graph_attr=None):
    """

    Note:
7468
        The API only supports static graph mode.
7469

7470
    A context manager that specifies the cuda_graph_mode which indicating the cuda graph capture under static graph mode.
7471 7472 7473 7474 7475

    Args:
        cuda_graph_attr(str|None): The cuda graph attr with the format of:
                                   cuda_graph_capture_mode;memory_pool_id;cuda_graph_id
    """
7476 7477
    assert (
        not _non_static_mode()
7478
    ), "cuda_graph_guard only works under static graph mode"
7479 7480
    assert (
        core.is_compiled_with_cuda()
7481 7482 7483 7484 7485 7486 7487 7488
    ), "cuda_graph_guard context can be only used when Paddle is compiled with cuda"
    pre_mode = _switch_cuda_graph_mode(cuda_graph_attr)
    try:
        yield
    finally:
        _switch_cuda_graph_mode(pre_mode)


G
guofei 已提交
7489 7490 7491
def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
7492
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7493 7494 7495 7496 7497 7498 7499

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

7500 7501
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
7502 7503 7504 7505
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
7506 7507
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
7508 7509
        else:
            raise ValueError(
7510 7511
                "Flag %s cannot set its value through this function." % (key)
            )
G
guofei 已提交
7512 7513 7514 7515 7516


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
7517
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7518 7519 7520 7521 7522 7523 7524 7525 7526 7527

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

7528
            import paddle
G
guofei 已提交
7529 7530

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
7531
            res = paddle.get_flags(flags)
G
guofei 已提交
7532 7533 7534 7535 7536 7537
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
7538
            if _global_flags().is_public(key):
7539
                value = _global_flags()[key]
G
guofei 已提交
7540 7541 7542 7543
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
7544 7545 7546
                    'Flag %s cannot get its value through this function.'
                    % (key)
                )
G
guofei 已提交
7547
    elif isinstance(flags, str):
7548
        if _global_flags().is_public(flags):
7549
            value = _global_flags()[flags]
G
guofei 已提交
7550 7551 7552 7553
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
7554 7555
                'Flag %s cannot get its value through this function.' % (flags)
            )
G
guofei 已提交
7556 7557 7558
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
7559 7560 7561 7562 7563 7564


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576
    if isinstance(
        place,
        (
            core.Place,
            core.XPUPlace,
            core.CPUPlace,
            core.CUDAPinnedPlace,
            core.CUDAPlace,
            core.IPUPlace,
            core.CustomPlace,
        ),
    ):
7577 7578 7579 7580
        return place

    if not isinstance(place, str):
        raise ValueError(
7581 7582
            "place only support string which is 'Place' and so on."
        )
7583 7584

    place = place.lower()
7585
    if place == "cpu":
7586
        return core.CPUPlace()
7587

7588
    if place == "device":
7589 7590
        return core.Place()

7591
    # GPU
7592 7593 7594 7595
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
7596
                "The device should not be {}, since PaddlePaddle is "
7597
                "not compiled with CUDA".format(avaliable_gpu_place.group())
7598
            )
7599 7600 7601 7602 7603 7604 7605 7606 7607
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
7608 7609

    # XPU
7610 7611 7612 7613
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
7614
                "The device should not be {}, since PaddlePaddle is "
7615
                "not compiled with XPU".format(avaliable_xpu_place.group())
7616
            )
7617 7618 7619 7620
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
7621

J
jianghaicheng 已提交
7622 7623 7624 7625 7626
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
7627
                "The device should not be {}, since PaddlePaddle is "
7628
                "not compiled with IPU".format(avaliable_ipu_place.group())
7629
            )
J
jianghaicheng 已提交
7630 7631 7632 7633 7634
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

7635
    raise ValueError(
K
Kim Yann 已提交
7636
        f"Paddle supports CPUPlace, CUDAPlace, CUDAPinnedPlace, XPUPlace and IPUPlace, but received {place}."
7637
    )
7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret