framework.py 259.3 KB
Newer Older
G
gouzil 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
import collections
X
Xin Pan 已提交
16
from collections import defaultdict
H
huzhiqiang 已提交
17
from collections.abc import Iterable
Q
qiaolongfei 已提交
18
import contextlib
19
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
20
import os
F
fengjiayi 已提交
21
import re
22
import traceback
23
import copy
24
from types import MethodType, FunctionType
25

Y
Yu Yang 已提交
26
import numpy as np
27
import subprocess
S
sneaxiy 已提交
28
import multiprocessing
29
import sys
30
import logging
31
from .proto import framework_pb2
32 33

from . import core
34
from . import unique_name
35 36
import paddle.version as fluid_version
import warnings
37
import functools
38
from .variable_index import _getitem_impl_, _setitem_impl_
Y
Yu Yang 已提交
39

40
__all__ = [
41 42 43 44
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
45
    'name_scope',
J
jianghaicheng 已提交
46
    'ipu_shard_guard',
47
    'set_ipu_shard',
S
sneaxiy 已提交
48 49
    'cuda_places',
    'cpu_places',
50
    'xpu_places',
51
    'mlu_places',
S
sneaxiy 已提交
52
    'cuda_pinned_places',
J
Jiabin Yang 已提交
53
    '_non_static_mode',
L
lujun 已提交
54
    'in_dygraph_mode',
55
    'is_compiled_with_cinn',
C
chengduo 已提交
56
    'is_compiled_with_cuda',
57
    'is_compiled_with_rocm',
58
    'is_compiled_with_xpu',
59
    'is_compiled_with_npu',
60
    'Variable',
61
    'require_version',
62
    'device_guard',
G
guofei 已提交
63 64
    'set_flags',
    'get_flags',
65
]
Y
Yu Yang 已提交
66

Q
qiaolongfei 已提交
67 68 69 70
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
71 72
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
73
_dygraph_tracer_ = None
74
_in_eager_mode_ = True
75
_global_expected_place_ = None
76
_current_device = None
77
global_prog_seed = 0
78
_current_pipeline_stage = None
79
_already_patch_eager_tensor = False
J
Jiabin Yang 已提交
80
_already_patch_varbase = False
81
_current_cuda_graph_mode = None
82
_global_flags_ = core.globals()
83 84 85 86 87 88
_enable_standalone_executor_ = os.environ.get(
    'FLAGS_USE_STANDALONE_EXECUTOR', None
)
_dy2st_enable_standalone_executor_ = os.environ.get(
    'FLAGS_DY2ST_USE_STANDALONE_EXECUTOR', 1
)
89 90 91
_cuda_graph_enable_standalone_executor_ = os.environ.get(
    'FLAGS_CUDA_GRAPH_USE_STANDALONE_EXECUTOR', 0
)
J
Jiabin Yang 已提交
92 93

# Some explanation of our execution system 2022.03
94
# For now we have 3 kinds of execution system, since we refactored dygraph mode to
J
Jiabin Yang 已提交
95
# build a fast execution system for dynamic mode. But we can't just remove all legacy
96
# code once we present the new system for some historical reason. That's why we have
J
Jiabin Yang 已提交
97
# these flags.
98
#
J
Jiabin Yang 已提交
99
# 1. _non_static_mode():
100
# _non_static_mode means  we are now running in legacy dygraph mode or dygraph mode.
J
Jiabin Yang 已提交
101 102 103
# 2. dygraph_mode():
# This flags inidicates we are now running in dygraph mode which called eager mode before.
# 3. _in_legacy_dygraph():
姜永久 已提交
104
# This flags has been deprecated
105
#
J
Jiabin Yang 已提交
106
# They have a relation ship as below:
姜永久 已提交
107
# Since _in_legacy_graph is deprecated, so dygraph_mode is _non_static_mode
108
#
J
Jiabin Yang 已提交
109 110 111 112 113 114
# Why we have to make different of _in_legacy_dygraph and dygraph_mode?
# In some performance issue, we find that python if statement cause server performance problem
# and we need our new dygraph mode becomes as fast as it could be. That's why we make these flags
# to make sure in most case, we find new dygraph mode first with only one if statement.


115 116 117 118 119
def _update_monkey_methods(is_eager):
    """
    Update monkey methods of VarBase or eager.Tensor while
    switching eager mode and legacy mode.
    """
120
    from paddle import _C_ops, _legacy_C_ops
121 122 123
    from .dygraph.varbase_patch_methods import monkey_patch_varbase
    from .dygraph import monkey_patch_math_varbase

124 125 126
    global _already_patch_eager_tensor
    global _already_patch_varbase

127
    assert isinstance(is_eager, bool)
128
    # switch into eager mode
129
    if is_eager:
130 131 132 133 134 135
        if not _already_patch_eager_tensor:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_eager_tensor = True
    # switch back into legacy mode
136
    else:
137 138 139 140 141
        if not _already_patch_varbase:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_varbase = True
142

143 144 145 146 147 148
    # switch Paddle.Tensor bind type
    _switch_tensor_bind_type(is_eager)


def _switch_tensor_bind_type(is_eager):
    import paddle
149

150 151 152 153 154
    if is_eager:
        paddle.Tensor = core.eager.Tensor
    else:
        paddle.Tensor = core.VarBase
    paddle.Tensor.__qualname__ = 'Tensor'
155 156


J
Jiabin Yang 已提交
157 158 159
def _enable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = False
160
    _update_monkey_methods(is_eager=False)
J
Jiabin Yang 已提交
161 162 163 164 165


def _disable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = True
166
    _update_monkey_methods(is_eager=True)
J
Jiabin Yang 已提交
167 168 169 170 171 172 173


def _in_eager_without_dygraph_check():
    global _in_eager_mode_
    return _in_eager_mode_


174 175 176 177 178 179 180 181 182
# FIXME(dev): We haven't fully verified eager mode on XPU/NPU et.al but
# only GPU/CPU. Remove this after we improve this feature.
_is_first_import_ = True


def _fallback_legacy_dygraph():
    global _in_eager_mode_
    global _is_first_import_
    need_fallback = False
C
Chen Weihang 已提交
183
    # Only enable eager on CPU/GPU/XPU
184 185 186 187 188
    is_not_support = (
        core.is_compiled_with_npu()
        or core.is_compiled_with_ipu()
        or core.is_compiled_with_mlu()
    )
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209

    if _in_eager_mode_ and is_not_support:
        # switch into legacy dygraph mode
        warnings.warn(
            "We will fallback into legacy dygraph on NPU/XPU/MLU/IPU/ROCM devices. Because we only support new eager dygraph mode on CPU/GPU currently. "
        )
        _in_eager_mode_ = False
        if not _is_first_import_:
            _enable_legacy_dygraph()
        need_fallback = True

    need_fallback = False
    _is_first_import_ = False

    return need_fallback


# switch into legacy mode if need while import paddle
_fallback_legacy_dygraph()


J
Jiabin Yang 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
def in_dygraph_mode():
    """

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .

    Returns:
        bool: Whether paddle runs in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
231
            print(paddle.in_dynamic_mode())  # False, Now we are in static graph mode
J
Jiabin Yang 已提交
232 233 234 235 236 237 238 239 240 241

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode

    """
    return (_dygraph_tracer_ is not None) and _in_eager_mode_


def _non_static_mode():
    return _dygraph_tracer_ is not None
242 243 244


@signature_safe_contextmanager
J
Jiabin Yang 已提交
245
def _test_eager_guard(place=None):
C
Chen Weihang 已提交
246 247
    # FIXME(dev): We haven't fully verified eager mode on NPU et.al but
    # only GPU/CPU/XPU. Remove this after we improve this feature.
248 249 250
    already_fallback = _fallback_legacy_dygraph()
    if not already_fallback:
        _disable_legacy_dygraph()
251
    try:
J
Jiabin Yang 已提交
252
        yield
253
    finally:
254
        pass
255 256


257 258
global_ipu_index = -1
global_ipu_stage = -1
J
jianghaicheng 已提交
259 260 261 262
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


L
Leo Chen 已提交
263 264 265 266 267 268 269 270 271 272 273
@signature_safe_contextmanager
def _enable_standalone_executor(enable=True):
    global _enable_standalone_executor_
    original_ = _enable_standalone_executor_
    _enable_standalone_executor_ = enable
    try:
        yield
    finally:
        _enable_standalone_executor_ = original_


J
jianghaicheng 已提交
274
@signature_safe_contextmanager
275
def ipu_shard_guard(index=-1, stage=-1):
J
jianghaicheng 已提交
276 277 278 279
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
W
Weilong Wu 已提交
280
        index(int, optional): Specify which ipu the Tensor is computed on, (such as '0, 1, 2, 3').
281
            The default value is -1, which means the Op only run on IPU 0.
W
Weilong Wu 已提交
282
        stage(int, optional): Specify the computation order of the sharded model(such as '0, 1, 2, 3').
283
            The sharded model will be computed from small to large. The default value is -1,
J
jianghaicheng 已提交
284
            which means no pipelining computation order and run Ops in terms of graph.
285

G
gouzil 已提交
286 287 288 289 290 291 292
    Note:
        Only if the enable_manual_shard=True, the 'index' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        Only if the enable_pipelining=True, the 'stage' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        A index is allowed to match none stage or a stage. A stage is only allowed to match a new or
        duplicated index.
J
jianghaicheng 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


327 328 329 330
def set_ipu_shard(call_func, index=-1, stage=-1):
    """
    Shard the ipu with the given call function. Set every ops in call function to the given ipu sharding.

G
gouzil 已提交
331 332 333 334 335
    Note:
        Only when enable_manual_shard=True to set the index to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        Only when enable_pipelining=True to set stage to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        An index supports a corresponding None stage or a stage, and a stage only supports a new index or a duplicate index.

336 337 338 339 340
    Args:
        call_func(Layer|function): Specify the call function to be wrapped.
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is -1, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
341
            The sharded model will be computed from small to large. The default value is -1,
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
            which means no pipelining computation order and run Ops in terms of graph.

    Returns:
        The wrapped call function.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='float32')
            relu = paddle.nn.ReLU()
            relu = paddle.static.set_ipu_shard(relu, index=1, stage=1)
            relu(a)
    """

    def decorate(func):
        def wrapper(*args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return func(*args, **kwargs)

        return wrapper

    from .dygraph.layers import Layer
368

369 370 371 372 373
    if not isinstance(call_func, Layer):
        if callable(call_func):
            return decorate(call_func)
        else:
            raise TypeError(
374 375
                "Unsupported type. Only accept paddle.nn.Layer or function."
            )
376 377 378 379 380 381 382 383 384 385 386 387

    # patch paddle.nn.Layer
    class BlockFn(type(call_func)):
        def __call__(self, *args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return super().__call__(*args, **kwargs)

    BlockFn.__name__ = type(call_func).__name__
    call_func.__class__ = BlockFn
    return call_func


388 389
def require_version(min_version, max_version=None):
    """
390 391 392
    Check if the installed version of PaddlePaddle is in [min_version, max_version],
    if the installed version is lower than ``min_version`` or higher than ``max_version``,
    an exception will be thrown, NO returns if the installed version is satisfied.
393

394 395 396 397
    Args:
        min_version (str): the minimum version required (like '1.4.0').
        max_version (str, optional): the max version required (like '1.6.0'), default is None,
            meaning any version equal or higher than ``min_version`` is acceptable.
398

399 400
    Returns:
        None.
401

402 403 404 405 406 407
    Raises:
        TypeError: if the type of ``min_version`` is not str.
        TypeError: if the type of ``max_version`` is not str or type(None).
        ValueError: if the value of ``min_version`` is not in version format.
        ValueError: if the value of ``max_version`` is not in version format or None.
        Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.
408

409 410
    Examples:
        .. code-block:: python
411

412
            import paddle.fluid as fluid
413

414 415
            # any version >= 0.1.0 is acceptable.
            fluid.require_version('0.1.0')
416

417 418 419
            # if 0.1.0 <= version <= 10.0.0, it is acceptable.
            fluid.require_version(min_version='0.1.0', max_version='10.0.0')
    """
420 421 422
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
423 424
            % (type(min_version))
        )
425 426 427 428

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
429 430
            % (type(max_version))
        )
431 432 433 434 435

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
436 437
            "like '1.5.2.0', but received %s" % min_version
        )
438 439 440 441 442 443

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
444 445
                "like '1.5.2.0', but received %s" % max_version
            )
446 447

    version_installed = [
448 449 450 451
        fluid_version.major,
        fluid_version.minor,
        fluid_version.patch,
        fluid_version.rc,
452 453 454 455
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
456
        for i in range(len(ver_a)):
457 458 459 460 461 462 463 464 465 466 467
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
468 469 470
                "please make sure the version is good with your code."
                % (min_version, max_version, fluid_version.full_version)
            )
471 472 473 474
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
475 476 477
                "please make sure the version is good with your code."
                % (min_version, fluid_version.full_version)
            )
478 479 480
        return

    min_version_split = min_version.split('.')
481 482 483
    min_version_to_check = (
        min_version_split + zero_version[len(min_version_split) :]
    )
484 485 486

    if max_version is not None:
        max_version_split = max_version.split('.')
487 488 489
        max_version_to_check = (
            max_version_split + zero_version[len(max_version_split) :]
        )
490

491 492 493 494
        if (
            version_cmp(version_installed, max_version_to_check) > 0
            or version_cmp(version_installed, min_version_to_check) < 0
        ):
495 496
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
497 498
                % (min_version, max_version, fluid_version.full_version)
            )
499 500 501 502 503
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
504 505
                % (min_version, fluid_version.full_version, min_version)
            )
506 507


508 509
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
510 511 512
        assert not _non_static_mode(), (
            "We don't support %s in dynamic graph mode" % func.__name__
        )
513 514 515 516 517 518 519
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
520 521 522 523
        assert _non_static_mode(), (
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
524 525 526 527 528
        return func(*args, **kwargs)

    return __impl__


529 530 531
def _non_static_only_(func):
    def __impl__(*args, **kwargs):
        from .dygraph.base import in_declarative_mode
532 533 534 535 536

        assert _non_static_mode() or in_declarative_mode(), (
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
537 538 539 540 541
        return func(*args, **kwargs)

    return __impl__


542 543
def _static_only_(func):
    def __impl__(*args, **kwargs):
544 545 546 547
        assert not _non_static_mode(), (
            "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode."
            % func.__name__
        )
548 549 550 551 552
        return func(*args, **kwargs)

    return __impl__


553 554 555 556 557
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


558 559 560 561 562 563
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
564
# same base class.
565 566 567
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
568 569
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
R
Ryan 已提交
570
            "  2. If you are using `@paddle.jit.to_static`, you can call `paddle.jit.enable_to_static(False)`. "
571
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
572 573
            % (func.__name__, func.__name__)
        )
574 575 576 577

    return __impl__


T
tangwei12 已提交
578 579
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
580 581 582 583 584 585 586 587 588
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
589 590
                DeprecationWarning,
            )
591 592 593 594 595 596 597
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


598 599
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
600
static_only = wrap_decorator(_static_only_)
601
fake_interface_only = wrap_decorator(_fake_interface_only_)
602
non_static_only = wrap_decorator(_non_static_only_)
603 604


L
lujun 已提交
605 606
def _dygraph_tracer():
    return _dygraph_tracer_
607

W
Wu Yi 已提交
608

609 610 611 612
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
613
def _current_expected_place():
614 615 616
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
617 618 619 620 621
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
622
                _global_expected_place_ = core.CUDAPlace(_cuda_ids()[0])
623 624 625 626 627
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
628 629 630 631 632 633
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
634
                _global_expected_place_ = core.XPUPlace(_xpu_ids()[0])
635 636 637 638 639
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
640 641 642 643 644 645
        elif core.is_compiled_with_mlu():
            try:
                device_count = core.get_mlu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
646
                _global_expected_place_ = core.MLUPlace(_mlu_ids()[0])
647 648 649 650 651
            else:
                warnings.warn(
                    "You are using MLU version Paddle, but your MLU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666
        elif core.is_compiled_with_custom_device("npu"):
            # TODO(duanyanhui): Optimize DeviceManager and Return all expected places when device registered in DeviceManager is greater than 1.
            try:
                device_count = core.get_custom_device_count("npu")
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CustomPlace(
                    "npu", _custom_device_ids("npu")[0]
                )
            else:
                warnings.warn(
                    "You are using NPU version Paddle, but your NPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
667 668 669 670 671 672 673 674 675 676 677 678 679 680 681
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
682
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
683 684


L
Leo Chen 已提交
685 686
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
687 688
    """
    convert VarBase tp numpy
T
tangwei12 已提交
689

690 691 692
    Args:
        var_base(VarBase) : the VarBase to convert
    Returns (np.ndarray): the np.ndarray contain the value of VarBase
L
Leo Chen 已提交
693 694 695 696 697 698 699 700 701
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
702
def _cpu_num():
703
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
704 705 706 707 708 709 710
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
711 712 713
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()
                )
            )
C
chengduo 已提交
714
        os.environ['CPU_NUM'] = str(1)
715
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
716 717 718 719 720 721 722 723
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
724
        device_ids = range(core.get_cuda_device_count())
C
chengduo 已提交
725
    return device_ids
S
sneaxiy 已提交
726 727


728 729 730 731 732
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
733
        device_ids = range(core.get_xpu_device_count())
734 735 736
    return device_ids


737 738 739 740 741
def _npu_ids():
    npus_env = os.getenv("FLAGS_selected_npus")
    if npus_env:
        device_ids = [int(s) for s in npus_env.split(",")]
    else:
742
        device_ids = range(core.get_npu_device_count())
743 744 745
    return device_ids


746 747 748 749 750 751 752 753 754
def _custom_device_ids(device_type):
    custom_devices_env = os.getenv("FLAGS_selected_" + device_type + "s")
    if custom_devices_env:
        device_ids = [int(s) for s in custom_devices_env.split(",")]
    else:
        device_ids = range(core.get_custom_device_count(device_type))
    return device_ids


755 756 757 758 759
def _mlu_ids():
    mlus_env = os.getenv("FLAGS_selected_mlus")
    if mlus_env:
        device_ids = [int(s) for s in mlus_env.split(",")]
    else:
760
        device_ids = range(core.get_mlu_device_count())
761 762 763
    return device_ids


764 765 766 767 768 769 770 771 772 773 774 775 776 777 778
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
def is_compiled_with_npu():
    """
    Whether this whl package can be used to run the model on NPU.

    Returns (bool): support npu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_npu = fluid.is_compiled_with_npu()
    """
    return core.is_compiled_with_npu()


794 795 796 797 798 799 800
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
801

802 803 804 805 806 807
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

Z
Zman 已提交
808 809
    Returns:
        None
810 811 812 813 814 815 816 817 818 819

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

    Returns (bool): `True` if CINN is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
835 836 837 838
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

839
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
840 841 842 843

    Examples:
        .. code-block:: python

844
            import paddle
845
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
846 847 848 849
    """
    return core.is_compiled_with_cuda()


850 851 852 853 854 855 856 857 858 859
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
860
            support_gpu = paddle.device.is_compiled_with_rocm()
861 862 863 864
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
865
def cuda_places(device_ids=None):
L
lujun 已提交
866
    """
867
    Note:
868 869 870
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
871
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
872 873

    If :code:`device_ids` is None, environment variable of
874
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
875
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
876
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
877
    If :code:`FLAGS_selected_gpus` is not set, all visible
878
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
879 880

    If :code:`device_ids` is not None, it should be the device
881
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
882
    the returned list would be
C
Chen Weihang 已提交
883
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
884

885
    Parameters:
886
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
887 888

    Returns:
C
Chen Weihang 已提交
889
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
890 891

    Examples:
892

L
lujun 已提交
893 894
        .. code-block:: python

C
Chen Weihang 已提交
895 896
            import paddle
            import paddle.static as static
T
tangwei12 已提交
897

898
            # required: gpu
899

C
Chen Weihang 已提交
900 901 902
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
903 904

    """
905
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
906
    if device_ids is None:
C
chengduo 已提交
907
        device_ids = _cuda_ids()
S
sneaxiy 已提交
908 909 910 911 912
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


913 914 915 916
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
917 918 919 920 921 922 923 924 925
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
926
        the returned list would be
S
sunzhongkai588 已提交
927
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
928

929 930 931 932 933 934
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
935

936 937
            # required: xpu

938 939
            import paddle
            import paddle.static as static
940

941 942 943
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
944
    assert core.is_compiled_with_xpu(), "Not compiled with XPU"
945 946 947 948 949 950 951
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


952 953
def npu_places(device_ids=None):
    """
954 955

    Note:
956
        For multi-card tasks, please use `FLAGS_selected_npus` environment variable to set the visible NPU device.
957

958 959 960 961 962 963 964 965 966
    This function creates a list of :code:`paddle.NPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_npus` would be checked first. For example, if
    :code:`FLAGS_selected_npus=0,1,2`, the returned list would
    be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    If :code:`FLAGS_selected_npus` is not set, all visible
    npu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of NPUs. For example, if :code:`device_ids=[0,1,2]`,
967
    the returned list would be
968
    [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
969

970 971 972 973 974 975 976 977 978 979 980
    Parameters:
        device_ids (list or tuple of int, optional): list of NPU device ids.
    Returns:
        list of paddle.NPUPlace: Created NPU place list.
    Examples:
        .. code-block:: python

            # required: npu

            import paddle
            import paddle.static as static
981

982 983 984
            paddle.enable_static()
            npu_places = static.npu_places()
    """
985
    assert core.is_compiled_with_npu(), "Not compiled with NPU"
986 987 988 989 990 991 992
    if device_ids is None:
        device_ids = _npu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.NPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
993
def cpu_places(device_count=None):
L
lujun 已提交
994
    """
C
Chen Weihang 已提交
995
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
996

S
add doc  
sneaxiy 已提交
997
    If :code:`device_count` is None, the device count would
998
    be determined by environment variable :code:`CPU_NUM`.
C
chengduo 已提交
999 1000
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
1001 1002
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
1003

1004 1005
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
1006 1007

    Returns:
C
Chen Weihang 已提交
1008
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
1009 1010

    Examples:
1011

L
lujun 已提交
1012 1013
        .. code-block:: python

C
Chen Weihang 已提交
1014 1015
            import paddle
            import paddle.static as static
T
tangwei12 已提交
1016

C
Chen Weihang 已提交
1017 1018 1019
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
1020 1021
    """

S
sneaxiy 已提交
1022 1023 1024 1025 1026 1027
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
1028
    """
1029
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
1030 1031

    If :code:`device_count` is None, the device count would
1032
    be determined by environment variable :code:`CPU_NUM`.
1033 1034 1035 1036
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
1037

1038 1039
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
1040 1041

    Returns:
1042
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
1043 1044 1045 1046

    Examples:
        .. code-block:: python

1047
            import paddle.fluid as fluid
L
lujun 已提交
1048 1049 1050 1051 1052
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
1053
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
1054
    if device_count is None:
1055 1056
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
1057 1058


1059 1060
def mlu_places(device_ids=None):
    """
G
gouzil 已提交
1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
    This function creates a list of :code:`paddle.device.MLUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_mlus` would be checked first. For example, if
    :code:`FLAGS_selected_mlus=0,1,2`, the returned list would
    be [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].
    If :code:`FLAGS_selected_mlus` is not set, all visible
    mlu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of MLUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be
    [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].

    Note:
1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
        For multi-card tasks, please use `FLAGS_selected_mlus` environment variable to set the visible MLU device.

    Parameters:
        device_ids (list or tuple of int, optional): list of MLU device ids.

    Returns:
        list of paddle.device.MLUPlace: Created MLU place list.

    Examples:
        .. code-block:: python

            # required: mlu

            import paddle
            import paddle.static as static

            paddle.enable_static()
            mlu_places = static.mlu_places()
    """
1093
    assert core.is_compiled_with_mlu(), "Not compiled with MLU"
1094 1095 1096 1097 1098 1099 1100
    if device_ids is None:
        device_ids = _mlu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.MLUPlace(dev_id) for dev_id in device_ids]


1101
class NameScope:
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
1112 1113 1114
            new_child = NameScope(
                prefix + "_%d" % len(self._children[prefix]), self
            )
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
1128
@signature_safe_contextmanager
1129 1130
def name_scope(prefix=None):
    """
1131

1132
    Generate hierarchical name prefix for the operators in Static Graph.
1133

1134
    Note:
T
Tao Luo 已提交
1135 1136
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
1137
        Don't use it in dygraph, since it will cause memory leak.
1138 1139

    Args:
T
Tao Luo 已提交
1140
        prefix(str, optional): prefix. Default is none.
1141 1142

    Examples:
1143

1144
        .. code-block:: python
T
Tink_Y 已提交
1145

1146 1147 1148
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
1149
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
1150
             b = a + 1
1151
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
1152
                c = b * 1
1153
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
1154
                d = c / 1
1155 1156 1157
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
1158 1159
                g = f - 1

1160
          # Op are created in the default main program.
1161
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
1177 1178
    """
    # TODO(panyx0718): Only [0-9a-z].
1179
    # in dygraph we don't need namescope since it will cause mem leak
J
Jiabin Yang 已提交
1180
    if _non_static_mode():
L
Leo Chen 已提交
1181 1182
        yield
    else:
T
tianshuo78520a 已提交
1183
        assert prefix, "namescope prefix can not be empty."
1184 1185
        global _name_scope
        _name_scope = _name_scope.child(prefix)
1186 1187 1188 1189
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
1202 1203
def generate_control_dev_var_name():
    import random
1204

W
Wu Yi 已提交
1205
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
1206 1207 1208 1209


def grad_var_name(var_name):
    """
1210 1211
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
1212 1213 1214
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
1215

1216
def convert_np_dtype_to_dtype_(np_dtype):
1217
    """
1218
    Convert the data type in numpy to the data type in Paddle.
1219

1220
    Args:
1221 1222
        np_dtype (np.dtype|str): The data type in numpy or valid data type
            string.
1223

1224
    Returns:
1225
        core.VarDesc.VarType: The data type in Paddle.
1226 1227

    """
1228 1229
    # Convert the data type string to numpy data type.
    if isinstance(np_dtype, str) and np_dtype == "bfloat16":
1230 1231 1232
        dtype = np.uint16
    else:
        dtype = np.dtype(np_dtype)
1233

1234
    if dtype == np.float32:
1235
        return core.VarDesc.VarType.FP32
1236
    elif dtype == np.float64:
1237
        return core.VarDesc.VarType.FP64
1238
    elif dtype == np.float16:
1239
        return core.VarDesc.VarType.FP16
1240
    elif dtype == np.int32:
1241
        return core.VarDesc.VarType.INT32
1242
    elif dtype == np.int16:
1243
        return core.VarDesc.VarType.INT16
1244
    elif dtype == np.int64:
1245
        return core.VarDesc.VarType.INT64
1246
    elif dtype == np.bool_:
1247
        return core.VarDesc.VarType.BOOL
1248
    elif dtype == np.uint16:
1249 1250 1251
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
1252 1253
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
1254 1255
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
1256 1257 1258 1259
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
1260
    else:
M
minqiyang 已提交
1261
        raise ValueError("Not supported numpy dtype %s" % dtype)
1262 1263 1264


def dtype_is_floating(dtype):
1265 1266 1267
    """
    Check the data type is floating or not.
    Args:
1268
        dtype(np.dtype|core.VarDesc.VarType): data type.
1269 1270 1271 1272 1273
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1274
    if not isinstance(dtype, core.VarDesc.VarType):
1275 1276
        dtype = convert_np_dtype_to_dtype_(dtype)

1277
    return dtype in [
1278 1279 1280
        core.VarDesc.VarType.FP16,
        core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64,
1281
    ]
1282 1283


Y
Yang Yang(Tony) 已提交
1284
def _debug_string_(proto, throw_on_error=True):
1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1296
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1297
    if not proto.IsInitialized(error_fields) and throw_on_error:
1298 1299
        raise ValueError(
            "{0} are not initialized.\nThe message is {1}:\n".format(
1300 1301 1302
                error_fields, proto
            )
        )
Y
Yu Yang 已提交
1303 1304 1305
    return proto.__str__()


1306 1307 1308 1309 1310 1311
def _varbase_creator(
    type=core.VarDesc.VarType.LOD_TENSOR,
    name=None,
    shape=None,
    dtype=None,
    persistable=None,
1312
    **kwargs,
1313
):
1314 1315 1316 1317
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

J
Jiabin Yang 已提交
1318
    if _in_eager_mode_:
1319
        eager_tensor = core.eager.Tensor(
1320
            dtype if dtype else core.VarDesc.VarType.FP32,
1321 1322
            list(shape) if shape else [],
            name,
1323
            type if type else core.VarDesc.VarType.LOD_TENSOR,
1324 1325
            True if persistable else False,
        )
1326 1327
        eager_tensor.retain_grads()
        return eager_tensor
J
Jiabin Yang 已提交
1328
    else:
1329 1330 1331 1332 1333 1334 1335
        return core.VarBase(
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            type if type else core.VarDesc.VarType.LOD_TENSOR,
            True if persistable else False,
        )
1336 1337


1338 1339 1340 1341 1342 1343 1344
def _all_is_type(vals, expected_type):
    """
    Return True if type of each element is expected_type.

    NOTE: BuiltIn all() will always return True if vals is empty.
    """
    assert isinstance(vals, (list, tuple))
1345 1346
    if not vals:
        return False
1347 1348 1349
    return all(isinstance(v, expected_type) for v in vals)


1350 1351 1352 1353 1354
class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1355
            return issubclass(t, core.eager.Tensor)
1356 1357 1358 1359 1360 1361 1362 1363 1364
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1365
            return issubclass(t, EagerParamBase)
1366 1367 1368 1369
        else:
            return issubclass(t, Parameter)


1370
class Variable(metaclass=VariableMetaClass):
1371
    """
J
Jiabin Yang 已提交
1372

U
ustiniankw 已提交
1373 1374 1375 1376
    Notes:
        The constructor of Variable should not be invoked directly.

        In Static Graph Mode: Please use ** `Block.create_var` ** to create a Static variable which has no data until being feed.
1377

U
ustiniankw 已提交
1378
        In Dygraph Mode: Please use ** :ref:`api_fluid_dygraph_to_variable` ** to create a dygraph variable with real data.
J
Jiabin Yang 已提交
1379 1380

    In Fluid, every input and output of an OP is a variable. In most
1381
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1382 1383
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1384

1385
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1386
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1387

T
tianshuo78520a 已提交
1388
    Most of a Variable's member variables can be set to be None. It mean
1389
    it is not available or will be specified later.
1390

1391
    Examples:
1392 1393
        In Static Graph Mode:

1394 1395
        .. code-block:: python

1396
            import paddle.fluid as fluid
1397
            cur_program = fluid.Program()
1398 1399 1400 1401
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1402

1403
        In Dygraph  Mode:
1404 1405 1406 1407 1408 1409 1410 1411 1412

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1413 1414
    """

1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429
    def __init__(
        self,
        block,
        type=core.VarDesc.VarType.LOD_TENSOR,
        name=None,
        shape=None,
        dtype=None,
        lod_level=None,
        capacity=None,
        persistable=None,
        error_clip=None,
        stop_gradient=False,
        is_data=False,
        need_check_feed=False,
        belong_to_optimizer=False,
1430
        **kwargs,
1431
    ):
Y
Yu Yang 已提交
1432 1433
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1434
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1435

Y
Yu Yang 已提交
1436
        if dtype is not None:
1437
            if not isinstance(dtype, core.VarDesc.VarType):
1438
                dtype = convert_np_dtype_to_dtype_(dtype)
1439

S
Steffy-zxf 已提交
1440 1441 1442 1443
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

1444 1445 1446
        if type == core.VarDesc.VarType.SPARSE_COO:
            lod_level = None

H
hong 已提交
1447 1448
        self.belong_to_optimizer = belong_to_optimizer

1449 1450 1451
        self.error_clip = error_clip

        is_new_var = False
1452
        self.desc = self.block.desc.find_var(name.encode())
1453

1454
        if self.desc is None:
1455
            self.desc = self.block.desc.var(name.encode())
1456
            is_new_var = True
1457

1458 1459 1460
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
1461 1462 1463 1464 1465
            raise ValueError(
                "Variable '{0}' has been created before. The "
                "previous type is {1}, the new type is {2}. They"
                " are not matched".format(self.name, self.desc.type(), type)
            )
1466

1467
        if shape is not None:
1468
            if is_new_var:
1469 1470 1471 1472 1473 1474
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1475 1476
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1477 1478
                        "matched.".format(self.name, old_shape, shape)
                    )
1479 1480 1481 1482 1483 1484
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
1485 1486 1487 1488 1489 1490
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous data type is {1}, the new "
                        "data type is {2}. They are not "
                        "matched.".format(self.name, old_dtype, dtype)
                    )
1491 1492 1493 1494 1495 1496

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
1497 1498 1499 1500 1501 1502
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous lod_level is {1}, the new "
                        "lod_level is {2}. They are not "
                        "matched".format(self.name, self.lod_level, lod_level)
                    )
1503 1504 1505 1506 1507 1508
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1509 1510
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1511
                        "persistable is {2}. They are not matched".format(
1512 1513 1514
                            self.name, self.persistable, persistable
                        )
                    )
1515

1516 1517
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1518

1519 1520 1521 1522 1523 1524 1525
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1526

1527 1528
        self.block.vars[name] = self
        self.op = None
1529
        self.stop_gradient = stop_gradient
1530
        self.is_data = is_data
Y
Yu Yang 已提交
1531

1532 1533
    def detach(self):
        """
U
ustiniankw 已提交
1534

1535
        Returns a new Variable, detached from the current graph.
1536 1537
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1538

1539
        Returns:
U
ustiniankw 已提交
1540
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable), The detached Variable.
1541 1542 1543 1544

        Examples:
            .. code-block:: python

1545
                import paddle
1546

1547 1548 1549 1550
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1551

1552 1553
                # create a detached Variable
                y = x.detach()
U
ustiniankw 已提交
1554

1555
        """
1556

1557 1558 1559 1560
        assert (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ), "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"
1561 1562 1563 1564 1565 1566

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
1567 1568
            stop_gradient=True,
        )
1569

1570 1571 1572
        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]}
        )
1573
        return output
1574

1575
    @fake_interface_only
1576
    def numpy(self):
1577
        """
J
Jiabin Yang 已提交
1578
        **Notes**:
T
tianshuo78520a 已提交
1579
            **This API is ONLY available in Dygraph mode**
1580

J
Jiabin Yang 已提交
1581
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1582 1583 1584 1585 1586

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1587
            ndarray: dtype is same as current Variable
1588 1589 1590 1591 1592 1593

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1594
                from paddle.fluid.dygraph import Linear
1595 1596 1597 1598
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1599
                    linear = Linear(32, 64)
1600
                    data = to_variable(data)
1601
                    x = linear(data)
1602 1603 1604
                    print(x.numpy())

        """
1605
        pass
1606

1607
    @fake_interface_only
1608
    def backward(self, retain_graph=False):
1609
        """
J
Jiabin Yang 已提交
1610
        **Notes**:
T
tianshuo78520a 已提交
1611
            **This API is ONLY available in Dygraph mode**
1612

1613
        Run backward of current Graph which starts from current Tensor.
1614

J
Jiabin Yang 已提交
1615
        Args:
1616 1617 1618 1619
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1620

J
Jiabin Yang 已提交
1621 1622
        Returns:
            NoneType: None
1623 1624 1625 1626 1627

        Examples:
            .. code-block:: python

                import numpy as np
1628 1629
                import paddle
                paddle.disable_static()
1630 1631

                x = np.ones([2, 2], np.float32)
1632 1633 1634 1635 1636 1637 1638
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1639 1640
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1641
                loss.backward()
1642 1643

        """
1644
        pass
1645

1646
    @fake_interface_only
1647
    def gradient(self):
1648
        """
J
Jiabin Yang 已提交
1649
        **Notes**:
T
tianshuo78520a 已提交
1650
            **This API is ONLY available in Dygraph mode**
1651 1652 1653

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1654
        Returns:
1655
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1656 1657 1658 1659

        Examples:
            .. code-block:: python

1660
                import paddle
1661 1662 1663
                import paddle.fluid as fluid
                import numpy as np

1664
                # example1: return ndarray
1665 1666 1667 1668 1669 1670 1671 1672
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
1673
                    loss2 = paddle.sum(ret2)
1674
                    loss2.backward()
1675 1676
                    print(loss2.gradient())

1677 1678
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
1679 1680 1681 1682 1683
                    embedding = paddle.nn.Embedding(
                        20,
                        32,
                        weight_attr='emb.w',
                        sparse=True)
1684 1685 1686 1687 1688 1689 1690
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1691
        """
1692
        pass
1693

1694
    @fake_interface_only
1695
    def clear_gradient(self):
1696
        """
J
Jiabin Yang 已提交
1697
        **Notes**:
T
tianshuo78520a 已提交
1698
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1699 1700

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1701

J
Jiabin Yang 已提交
1702
        Clear  (set to ``0`` ) the Gradient of Current Variable
1703 1704 1705 1706 1707 1708

        Returns:  None

        Examples:
            .. code-block:: python

1709
                import paddle
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
1721
                    loss2 = paddle.sum(ret2)
1722
                    loss2.backward()
1723 1724 1725 1726 1727
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1728
        pass
X
Xin Pan 已提交
1729

1730 1731 1732 1733
    @fake_interface_only
    def register_hook(self, hook):
        pass

1734
    def __str__(self):
1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1751 1752
                import paddle
                import paddle.static as static
1753

1754 1755 1756
                paddle.enable_static()

                cur_program = static.Program()
1757 1758 1759 1760 1761 1762
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1763 1764
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1765 1766 1767 1768
        if (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ):
1769
            dtype_str = str(self.dtype).split('.')[1]
1770 1771 1772 1773 1774 1775 1776
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".format(
                name=self.name,
                type=type_str,
                shape=self.shape,
                dtype=dtype_str,
                stop_gradient=self.stop_gradient,
            )
1777
        else:
1778
            var_str = "{name} : {type})".format(name=self.name, type=type_str)
1779

1780
        if self.is_parameter:
1781 1782 1783 1784 1785 1786 1787 1788 1789 1790
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1791 1792 1793 1794
        from paddle.distributed.auto_parallel.dist_context import (
            get_default_distributed_context,
        )

1795
        dist_context = get_default_distributed_context()
1796 1797
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1798 1799 1800
            var_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_tensor
            )
1801

1802
        return var_str
Y
Yang Yang(Tony) 已提交
1803

F
update  
fengjiayi 已提交
1804
    def to_string(self, throw_on_error, with_details=False):
1805 1806 1807
        """
        Get debug string.

J
Jiabin Yang 已提交
1808 1809 1810 1811 1812
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1813

1814 1815
        Returns:
            str: The debug string.
1816 1817 1818 1819 1820

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1821
                import paddle
1822

1823
                paddle.enable_static()
1824 1825 1826 1827 1828
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1829
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1830
                print("=============with detail===============")
1831
                print(new_variable.to_string(True, True))
1832
        """
1833
        assert isinstance(throw_on_error, bool) and isinstance(
1834 1835
            with_details, bool
        )
1836
        protostr = self.desc.serialize_to_string()
1837
        proto = framework_pb2.VarDesc.FromString(bytes(protostr))
F
update  
fengjiayi 已提交
1838 1839
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1840
            additional_attr = ("error_clip",)
F
update  
fengjiayi 已提交
1841
            for attr_name in additional_attr:
1842
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
1843

F
update  
fengjiayi 已提交
1844
        return res_str
1845 1846 1847

    __repr__ = __str__

1848 1849 1850
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
1851

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1875
    @property
1876
    def stop_gradient(self):
J
Jiabin Yang 已提交
1877 1878 1879
        """
        Indicating if we stop gradient from current Variable

1880
        **Notes: This Property has default value as** ``True`` **in** Dygraph **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``
J
Jiabin Yang 已提交
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1892 1893
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1894 1895 1896
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1897 1898
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1899 1900 1901 1902
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1903
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1904 1905
                assert (out1.gradient() == 0).all()
        """
1906
        return self.desc.stop_gradient()
1907

1908 1909
    @stop_gradient.setter
    def stop_gradient(self, s):
1910
        self.desc.set_stop_gradient(s)
1911

1912 1913
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1914 1915 1916 1917 1918 1919 1920 1921
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

1922
            **2. In** Dygraph **mode, this property should not be changed**
J
Jiabin Yang 已提交
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1935
        return self.desc.persistable()
1936

Y
Yu Yang 已提交
1937 1938
    @persistable.setter
    def persistable(self, p):
1939
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1940

1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1966 1967
    @property
    def name(self):
J
Jiabin Yang 已提交
1968 1969 1970
        """
        Indicating name of current Variable

1971
        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** Dygraph **mode. This is how we achieve Parameter sharing**
J
Jiabin Yang 已提交
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1984
        return self.desc.name()
Y
Yu Yang 已提交
1985

1986 1987 1988 1989 1990 1991
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1992 1993
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1994

1995 1996 1997 1998 1999 2000
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
2001
          print(x.grad_name) # output is ``x@GRAD``
2002 2003 2004 2005

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
2006 2007
    @name.setter
    def name(self, new_name):
2008
        self.desc.set_name(new_name)
T
typhoonzero 已提交
2009

Y
Yu Yang 已提交
2010 2011
    @property
    def shape(self):
J
Jiabin Yang 已提交
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
2029
        # convert to tuple, make it as same as numpy API.
2030
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
2031 2032

    @property
F
fengjiayi 已提交
2033
    def dtype(self):
J
Jiabin Yang 已提交
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
2050
        return self.desc.dtype()
Y
Yu Yang 已提交
2051 2052 2053

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
2054 2055 2056 2057 2058 2059 2060 2061
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

2062
            **2. Don't support this property in** Dygraph **mode, it's value should be** ``0(int)``
J
Jiabin Yang 已提交
2063 2064 2065 2066

        Examples:
          .. code-block:: python

2067
            import paddle
J
Jiabin Yang 已提交
2068
            import paddle.fluid as fluid
2069 2070

            paddle.enable_static()
J
Jiabin Yang 已提交
2071 2072 2073 2074 2075 2076 2077
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
2078 2079
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
2080 2081
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
2082
        return self.desc.lod_level()
Y
Yu Yang 已提交
2083

Y
Yu Yang 已提交
2084 2085
    @property
    def type(self):
J
Jiabin Yang 已提交
2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
2102
        return self.desc.type()
Y
Yu Yang 已提交
2103

2104 2105 2106
    @property
    def T(self):
        """
U
ustiniankw 已提交
2107

2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
U
ustiniankw 已提交
2126

2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
2139 2140
            stop_gradient=False,
        )
2141 2142 2143 2144 2145
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
2146 2147 2148 2149 2150 2151 2152 2153 2154
            stop_gradient=False,
        )

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out], 'XShape': [input_shape]},
            attrs={'axis': perm},
        )
2155 2156
        return out

2157 2158 2159
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
2160
        Variable. It remains in the current graph, that is, the cloned Variable
2161 2162 2163 2164
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
U
ustiniankw 已提交
2165
            Variable, The cloned Variable.
2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
2185 2186
            stop_gradient=self.stop_gradient,
        )
2187

2188 2189 2190
        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]}
        )
2191 2192
        return output

W
Wu Yi 已提交
2193
    def _set_error_clip(self, error_clip):
2194
        """
U
ustiniankw 已提交
2195

2196 2197 2198 2199 2200 2201 2202
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
U
ustiniankw 已提交
2203

2204
        """
2205 2206
        self.error_clip = error_clip

2207 2208
    def _set_info(self, key, value):
        """
U
ustiniankw 已提交
2209

2210 2211 2212 2213 2214 2215
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

2216
        Returns:
2217
            None
U
ustiniankw 已提交
2218

2219 2220 2221 2222 2223 2224 2225
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
U
ustiniankw 已提交
2226

2227 2228 2229 2230 2231
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

2232
        Returns:
2233
            object
U
ustiniankw 已提交
2234

2235 2236 2237 2238 2239
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

2240 2241
    def _slice_indices(self, slice, length):
        """
U
ustiniankw 已提交
2242

2243
        Reference implementation for the slice.indices method.
U
ustiniankw 已提交
2244

2245 2246 2247 2248 2249 2250 2251 2252
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
2253
            raise ValueError("slice step can not be zero")
2254 2255 2256 2257 2258 2259 2260 2261 2262 2263

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
2264 2265 2266
            start = (
                max(start + length, lower) if start < 0 else min(start, upper)
            )
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
2312 2313 2314
                if (index > 0 and index >= self.shape[index]) or (
                    index < 0 and (index + self.shape[index]) < 0
                ):
2315
                    raise IndexError("invalid index")
2316 2317 2318 2319 2320
                start = (
                    max(start + self.shape[index], 0)
                    if start < 0
                    else min(start, self.shape[index])
                )
2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2334
    def _cloneVar(self, copy=False):
2335 2336
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2337
                name=unique_name.generate_with_ignorable_key(self.name),
2338 2339
                dtype=self.dtype,
            )
2340 2341 2342 2343
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2344
        new_var = self._cloneVar()
2345 2346 2347 2348 2349 2350
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes, 'starts': starts, 'ends': ends},
        )
2351 2352 2353
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2354
        new_var = self._cloneVar()
2355 2356 2357 2358 2359 2360 2361 2362
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={
                'axis': axis,
            },
        )
2363 2364 2365 2366 2367
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2368
                return self._cloneVar(True)
2369 2370 2371 2372 2373 2374 2375
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
2376 2377 2378
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2379 2380 2381
                        start += step
                else:
                    while start > stop:
2382 2383 2384
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2385 2386 2387 2388
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2389
                return self._cloneVar(True)
2390
            index = int(item)
2391 2392 2393
            if (index > 0 and index >= self.shape[axis]) or (
                index < 0 and (index + self.shape[axis]) < 0
            ):
2394 2395 2396 2397 2398 2399
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2400
        return _getitem_impl_(self, item)
2401

2402
    def __setitem__(self, item, value):
2403
        return _setitem_impl_(self, item, value)
2404

2405 2406
    def get_value(self, scope=None):
        """
2407
        Get the value of variable in given scope.
2408 2409

        Args:
2410
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2411 2412 2413 2414
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
U
ustiniankw 已提交
2415
            Tensor, the value in given scope.
2416 2417 2418 2419 2420

        Examples:
            .. code-block:: python

                import paddle
2421
                import paddle.static as static
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
2446 2447
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file.
2448 2449
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
2450

2451 2452
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2453 2454 2455 2456
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2457 2458 2459 2460 2461

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
2462 2463 2464
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2465 2466 2467 2468 2469
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
U
ustiniankw 已提交
2470

2471
        Set the value to the tensor in given scope.
2472 2473 2474

        Args:
            value(Tensor/ndarray) : The value to be set.
2475
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2476 2477 2478 2479 2480
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
2481

2482 2483 2484 2485
        Examples:
            .. code-block:: python

                import paddle
2486
                import paddle.static as static
2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
U
ustiniankw 已提交
2510

2511 2512 2513
        '''

        # The 'framework' is a low-level module, and 'executor'
2514
        # can not be imported at the begainning of this file.
2515 2516 2517 2518 2519
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
2520 2521 2522 2523
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".format(
                    type(value)
                )
            )
2524 2525 2526

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2527 2528 2529 2530
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2531 2532 2533 2534 2535 2536

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
2537 2538 2539
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2540 2541 2542 2543 2544 2545 2546 2547 2548 2549

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
2550 2551 2552 2553
                    "{} expected a shape {}, but the received shape is {}.".format(
                        self.name, list(t.shape()), list(value_shape)
                    )
                )
2554 2555 2556 2557 2558 2559 2560 2561 2562 2563

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2564 2565 2566 2567
        elif p.is_npu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.NPUPlace(p.npu_device_id())
2568 2569 2570 2571
        elif p.is_mlu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.MLUPlace(p.mlu_device_id())
2572 2573 2574 2575 2576 2577 2578
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2579 2580
    def size(self):
        """
U
ustiniankw 已提交
2581

2582 2583 2584
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
U
ustiniankw 已提交
2585
            Variable, the number of elements for current Variable
2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
U
ustiniankw 已提交
2599

2600 2601 2602 2603
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
2604 2605
            dtype=core.VarDesc.VarType.INT64,
        )
2606

2607 2608 2609
        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]}
        )
2610 2611
        return output

2612 2613
    def _set_attr(self, name, val):
        """
U
ustiniankw 已提交
2614

2615 2616 2617 2618 2619
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
U
ustiniankw 已提交
2620

2621 2622 2623 2624 2625
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
U
ustiniankw 已提交
2626

2627 2628 2629 2630 2631 2632
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2633 2634
            bool, True if has this attribute.

2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

2656
    def attr(self, name):
2657 2658 2659 2660 2661 2662 2663
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2664
            int|str|list, The attribute value. The return value
2665 2666 2667 2668 2669
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
2670
    def dist_attr(self):
2671
        """
2672
        Get distributed attribute of this Variable.
2673
        """
2674
        return self.desc.dist_attr
2675

2676 2677
    @dist_attr.setter
    def dist_attr(self, dist_attr):
2678
        """
2679
        Set distributed attribute of this Variable.
2680
        """
2681
        self.desc.dist_attr = dist_attr
2682

Y
Yu Yang 已提交
2683

F
fengjiayi 已提交
2684 2685 2686
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2687

2688 2689
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2690 2691 2692 2693
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2694
        op_proto = framework_pb2.OpProto.FromString(bytes(pbstr))
F
fengjiayi 已提交
2695 2696 2697 2698
        ret_values.append(op_proto)
    return ret_values


2699
class OpProtoHolder:
2700 2701 2702 2703
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2704 2705 2706 2707 2708 2709 2710 2711
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
2712 2713
            self.__class__, '_instance'
        ), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2714 2715 2716 2717 2718 2719
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2720 2721 2722 2723 2724 2725 2726 2727
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2728 2729
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2730 2731
        return self.op_proto_map[type]

2732 2733
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2734
        custom_op_names = []
2735 2736 2737
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2738 2739 2740
                custom_op_names.append(proto.type)

        return custom_op_names
2741

2742 2743 2744 2745
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2746
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2747
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2748
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
2749
            core.op_proto_and_checker_maker.kOpDeviceAttrName(),
2750 2751
        }

F
fengjiayi 已提交
2752

2753
class Operator:
2754
    """
2755 2756 2757 2758 2759 2760 2761
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2762
        type(str): The type of operator. Default None.
2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2783
        Block.append_op or Block._prepend_op instead.
2784 2785 2786 2787

    Examples:
        .. code-block:: python

2788
            import paddle.fluid as fluid
2789
            cur_program = fluid.Program()
2790 2791 2792 2793 2794
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2795
    """
2796

2797
    OP_WITHOUT_KERNEL_SET = {
2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
        'feed',
        'fetch',
        'recurrent',
        'go',
        'rnn_memory_helper_grad',
        'conditional_block',
        'while',
        'send',
        'recv',
        'listen_and_serv',
        'fl_listen_and_serv',
        'ncclInit',
        'select',
        'checkpoint_notify',
        'gen_bkcl_id',
        'c_gen_bkcl_id',
        'gen_nccl_id',
        'c_gen_nccl_id',
        'c_comm_init',
        'c_sync_calc_stream',
        'c_sync_comm_stream',
        'queue_generator',
        'dequeue',
        'enqueue',
        'heter_listen_and_serv',
        'c_wait_comm',
        'c_wait_compute',
        'c_gen_hccl_id',
        'c_comm_init_hccl',
        'copy_cross_scope',
        'c_gen_cncl_id',
2829
    }
2830

2831 2832 2833
    def __init__(
        self, block, desc, type=None, inputs=None, outputs=None, attrs=None
    ):
2834 2835 2836 2837 2838 2839 2840 2841 2842 2843
        # read attr type index from op proto to avoid unexpected type
        # conversions, e.g. narrowing conversion like double to float
        try:
            proto = OpProtoHolder.instance().get_op_proto(type)
            self._attr_types = {}
            for attr in proto.attrs:
                self._attr_types[attr.name] = attr.type
        except ValueError:
            pass

J
Jiabin Yang 已提交
2844
        if _non_static_mode():
2845 2846
            if type is None:
                raise ValueError(
2847 2848
                    "`type` to initialized an Operator can not be None."
                )
J
Jiabin Yang 已提交
2849
            self._type = type
M
minqiyang 已提交
2850
            self.attrs = attrs if attrs else {}
2851 2852 2853 2854 2855 2856 2857 2858 2859 2860
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

2861
            # attr for static graph mode cuda graph
2862 2863
            self._cuda_graph_attr = _current_cuda_graph_mode

2864 2865 2866
            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
2867
                op_attrs[
2868 2869
                    op_maker.kOpRoleAttrName()
                ] = self.block.program._op_role
2870 2871

            role_var_name = op_maker.kOpRoleVarAttrName()
2872 2873 2874 2875
            if (
                len(self.block.program._op_role_var) != 0
                and role_var_name not in op_attrs
            ):
2876
                op_attrs[role_var_name] = self.block.program._op_role_var
2877 2878 2879 2880 2881

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2882 2883 2884 2885 2886
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2887 2888 2889
                return
            if type is None:
                raise ValueError(
2890 2891
                    "`type` to initialized an Operator can not be None."
                )
2892 2893
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2894 2895 2896
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
2897
                        '  File "{}", line {}, in {}'.format(
2898 2899 2900 2901 2902 2903
                            frame[0], frame[1], frame[2]
                        )
                    )
                    op_attrs[callstack_var_name].append(
                        '    {}'.format(frame[3])
                    )
2904 2905 2906 2907 2908 2909 2910

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2911 2912 2913 2914 2915 2916 2917 2918
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
2919 2920 2921
                    warnings.warn(
                        "The Op(%s) is not support to set device." % type
                    )
2922
                if 'force_cpu' in op_attrs:
2923
                    if (
2924 2925
                        type == 'less_than'
                        and op_attrs['force_cpu'] is not None
2926
                    ) or op_attrs['force_cpu'] != False:
2927 2928 2929
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
2930 2931
                            "used at the same time." % type
                        )
2932
            if _current_pipeline_stage is not None:
2933 2934 2935 2936 2937
                pipeline_attr_name = (
                    'pipeline_stage' + core.kAutoParallelSuffix()
                )
                self._update_desc_attr(
                    pipeline_attr_name, _current_pipeline_stage
2938
                )
2939

2940 2941 2942 2943 2944 2945 2946 2947 2948
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
2949 2950 2951
                    assert (
                        found or in_proto.dispensable
                    ), "Input {} not found".format(in_proto.name)
2952 2953
                    if found:
                        in_args = inputs[in_proto.name]
2954
                        if not isinstance(in_args, (list, tuple)):
2955 2956 2957 2958
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
2959 2960
                                % (in_proto.name, len(in_args))
                            )
2961
                        in_arg_names = []
2962
                        for index, arg in enumerate(in_args):
2963
                            if isinstance(arg, str):
2964
                                in_arg_names.append(arg)
2965
                            elif isinstance(arg, bytes):
2966
                                in_arg_names.append(arg.decode())
2967
                            elif isinstance(arg, (Variable, core.VarBase)):
2968
                                in_arg_names.append(arg.name)
2969
                            else:
2970
                                raise TypeError(
2971 2972
                                    f"The type of '%{in_proto.name}' in operator {type} should be "
                                    f"one of [str, bytes, Variable]. but received : {arg}"
2973
                                )
2974 2975 2976 2977 2978 2979 2980 2981 2982
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
2983
                        raise ValueError(
2984 2985 2986 2987 2988 2989
                            (
                                "Incorrect setting for output(s) of "
                                "operator \"%s\", should set: [%s]."
                            )
                            % (type, m.name)
                        )
2990 2991 2992 2993 2994 2995 2996 2997 2998
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
2999 3000
                            % (out_proto.name, len(out_args))
                        )
3001 3002
                    out_arg_names = []
                    for arg in out_args:
3003
                        if isinstance(arg, str):
3004 3005
                            out_arg_names.append(arg)
                        else:
3006
                            out_arg_names.append(arg.name)
3007
                        # TODO(minqiyang): could we remove variable's op in static graph mode?
J
Jiabin Yang 已提交
3008
                        if not _non_static_mode():
3009
                            if isinstance(arg, str):
3010 3011 3012
                                block.var(arg).op = self
                            else:
                                arg.op = self
3013 3014
                    self.desc.set_output(out_proto.name, out_arg_names)

3015
            extra_attrs_map = core.get_op_extra_attrs(type)
3016 3017 3018 3019 3020
            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
3021 3022 3023
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
3024 3025 3026
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)
3027
                for attr_name in extra_attrs_map.keys():
3028 3029 3030 3031 3032 3033
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
                        self._update_desc_attr(
                            attr_name, extra_attrs_map[attr_name]
                        )
3034 3035
                    else:
                        self._update_desc_attr(attr_name, op_attrs[attr_name])
3036

J
jianghaicheng 已提交
3037 3038
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
3039
                if global_ipu_index >= 0:
3040 3041 3042
                    self._update_desc_attr(
                        ipu_index_attr_name, global_ipu_index
                    )
3043
                if global_ipu_stage >= 0:
3044 3045 3046
                    self._update_desc_attr(
                        ipu_stage_attr_name, global_ipu_stage
                    )
J
jianghaicheng 已提交
3047

3048 3049 3050 3051 3052
            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
3053
    def _has_kernel(self, op_type):
3054 3055
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
3056
    def to_string(self, throw_on_error):
3057
        """
3058 3059
        Get debug string.

3060
        Args:
3061 3062
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
3063

3064 3065
        Returns:
            str: The debug string.
3066 3067

        """
3068
        protostr = self.desc.serialize_to_string()
3069
        proto = framework_pb2.OpDesc.FromString(bytes(protostr))
Y
Yang Yang(Tony) 已提交
3070 3071
        return _debug_string_(proto, throw_on_error)

3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3104
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3105 3106
            type(skip_op_callstack)
        )
3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

3133 3134 3135
            attr_type = self.desc.attr_type(name, True)
            if attr_type == core.AttrType.VAR:
                attr_var_name = self.desc.attr(name, True).name()
3136 3137 3138
                a = "{name} = Var['{value}']".format(
                    name=name, type=attr_type, value=attr_var_name
                )
3139 3140 3141 3142 3143 3144 3145 3146 3147 3148
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.VARS:
                attr_var_names = [
                    "'%s'" % var.name() for var in self.desc.attr(name, True)
                ]
                a = "{name} = Vars[{value}]".format(
3149 3150
                    name=name, type=attr_type, value=','.join(attr_var_names)
                )
3151 3152 3153 3154 3155
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3156 3157
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
3158 3159
                    name=name, type=attr_type, value=self._block_attr_id(name)
                )
3160 3161 3162 3163 3164 3165 3166
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
3167 3168
                    name=name, type=attr_type, value=self._blocks_attr_ids(name)
                )
3169 3170 3171 3172 3173
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3174
            # it is bytes of serialized protobuf
3175 3176 3177 3178 3179
            if (
                is_compiled_with_cinn()
                and self.type == 'cinn_launch'
                and name == 'compilation_key'
            ):
3180 3181
                key = self.desc.attr(name)
                v = core.get_serialize_comile_key(key)
3182 3183 3184 3185 3186 3187 3188 3189 3190
                prog = Program()
                prog = prog.parse_from_string(v)
                s = prog._to_readable_code()
                lines = s.split('\n')
                value = '\n'.join(['      ' + line for line in lines])
                value = '\n' + value
            else:
                value = self.desc.attr(name)

3191 3192 3193
            a = "{name} = {value}".format(
                name=name, type=attr_type, value=value
            )
3194

3195 3196 3197 3198
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

3199 3200 3201 3202
        from paddle.distributed.auto_parallel.dist_context import (
            get_default_distributed_context,
        )

3203
        dist_context = get_default_distributed_context()
3204 3205
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
3206 3207 3208
            attrs_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_op
            )
3209

3210
        if outputs_str != "{}":
3211 3212 3213 3214 3215 3216
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".format(
                outputs=outputs_str,
                op_type=self.type,
                inputs=inputs_str,
                attrs=attrs_str,
            )
3217
        else:
3218 3219 3220
            op_str = "{op_type}(inputs={inputs}, {attrs})".format(
                op_type=self.type, inputs=inputs_str, attrs=attrs_str
            )
3221 3222
        return op_str

Y
Yang Yang(Tony) 已提交
3223
    def __str__(self):
3224
        return self._to_readable_code()
3225 3226 3227

    __repr__ = __str__

F
fengjiayi 已提交
3228 3229
    @property
    def type(self):
3230
        return self.desc.type()
F
fengjiayi 已提交
3231 3232

    def input(self, name):
3233
        r"""
U
ustiniankw 已提交
3234

3235
        Get the input arguments according to the input parameter name.
3236

3237 3238
        Args:
            name(str): The input parameter name.
3239

3240
        Returns:
U
ustiniankw 已提交
3241
            list, return the list of argument names that associated with \
3242
                the specific parameter name.
U
ustiniankw 已提交
3243

3244
        """
F
fengjiayi 已提交
3245 3246
        return self.desc.input(name)

W
Wu Yi 已提交
3247
    def _rename_input(self, old_name, new_name):
3248 3249 3250 3251 3252 3253 3254 3255 3256 3257
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
3258
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
3259

W
Wu Yi 已提交
3260
    def _rename_output(self, old_name, new_name):
3261 3262 3263 3264 3265 3266 3267 3268 3269 3270
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
3271
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
3272

F
fengjiayi 已提交
3273 3274 3275 3276
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
3277 3278 3279 3280 3281 3282 3283 3284
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
3285
    def output(self, name):
3286
        r"""
3287
        Get output arguments by the output parameter name.
3288

3289 3290
        Args:
            name(str): The output parameter name.
3291

3292 3293 3294
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
3295
        """
F
fengjiayi 已提交
3296 3297 3298 3299 3300 3301
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

3302 3303 3304 3305 3306 3307
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
3308 3309
            "Can't find op itself in it's block. It could be a bug of Paddle."
        )
3310

F
fengjiayi 已提交
3311
    def has_attr(self, name):
3312
        """
3313 3314
        Whether this Operator has the attribute with name or not.

3315
        Args:
3316
            name(str): the attribute name.
3317

3318 3319
        Returns:
            bool: True if has this attribute.
3320 3321

        """
F
fengjiayi 已提交
3322 3323 3324
        return self.desc.has_attr(name)

    def attr_type(self, name):
3325
        """
3326
        Get the type of attribute by attribute's name.
3327

3328 3329
        Args:
            name(str): the attribute name.
3330

3331 3332
        Returns:
            core.AttrType: the attribute type.
3333
        """
3334
        return self.desc.attr_type(name, True)
F
fengjiayi 已提交
3335

W
Wu Yi 已提交
3336
    def _set_attr(self, name, val):
3337 3338 3339 3340 3341 3342 3343 3344 3345 3346
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
3347 3348
        self._update_desc_attr(name, val)

3349 3350 3351
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
3363 3364 3365 3366 3367
        if isinstance(val, Variable):
            self.desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            self.desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
Q
Qiyang Min 已提交
3368
            self.desc.set_block_attr(name, val.desc)
3369
        elif isinstance(val, list) and val and _all_is_type(val, Block):
3370
            self.desc.set_blocks_attr(name, [v.desc for v in val])
3371 3372 3373
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
Q
Qiyang Min 已提交
3374 3375
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411
            self._update_desc_plain_attr(name, val)

    def _update_desc_plain_attr(self, name, val):
        desc = self.desc
        if not hasattr(self, "_attr_types") or (name not in self._attr_types):
            desc._set_attr(name, val)
            return

        type_index = self._attr_types[name]
        if type_index == core.AttrType.BOOL:
            desc._set_bool_attr(name, val)
        elif type_index == core.AttrType.INT:
            desc._set_int32_attr(name, val)
        elif type_index == core.AttrType.LONG:
            desc._set_int64_attr(name, val)
        elif type_index == core.AttrType.FLOAT:
            desc._set_float32_attr(name, val)
        # elif type_index == core.AttrType.FLOAT64:
        #     desc._set_float64_attr(name, val)
        elif type_index == core.AttrType.STRING:
            desc._set_str_attr(name, val)
        elif type_index == core.AttrType.BOOLS:
            desc._set_bools_attr(name, val)
        elif type_index == core.AttrType.INTS:
            desc._set_int32s_attr(name, val)
        elif type_index == core.AttrType.LONGS:
            desc._set_int64s_attr(name, val)
        elif type_index == core.AttrType.FLOATS:
            desc._set_float32s_attr(name, val)
        elif type_index == core.AttrType.FLOAT64S:
            desc._set_float64s_attr(name, val)
        elif type_index == core.AttrType.STRINGS:
            desc._set_strs_attr(name, val)
        else:
            # defaults to old methods
            desc._set_attr(name, val)
Y
yuyang18 已提交
3412

F
fengjiayi 已提交
3413 3414
    @property
    def attr_names(self):
3415
        return self.desc.attr_names(True)
F
fengjiayi 已提交
3416 3417

    def attr(self, name):
3418
        """
3419 3420
        Get the attribute by name.

3421
        Args:
3422
            name(str): the attribute name.
3423

3424 3425
        Returns:
            bool|int|str|float|list: The attribute value. The return value
3426 3427
            can be any valid attribute type.
        """
F
fengjiayi 已提交
3428
        return self.desc.attr(name)
Y
Yu Yang 已提交
3429

W
Wu Yi 已提交
3430
    def _block_attr_id(self, name):
3431
        """
G
gongweibao 已提交
3432
        Get the block attribute's id by name.
3433

3434 3435
        Args:
            name(str): the attribute name.
3436

3437 3438
        Returns:
            int: the block index.
3439
        """
W
Wu Yi 已提交
3440
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
3441

W
Wu Yi 已提交
3442
    def _block_attr(self, name):
G
gongweibao 已提交
3443 3444 3445 3446 3447 3448 3449 3450 3451 3452
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
3453
        id = self._block_attr_id(name)
3454
        assert id >= 0 and id < len(self.block.program.blocks)
G
gongweibao 已提交
3455 3456
        return self.block.program.blocks[id]

W
Wu Yi 已提交
3457
    def _blocks_attr(self, name):
G
gongweibao 已提交
3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
3468
        for i in self._blocks_attr_ids(name):
3469
            assert i >= 0 and i < len(self.block.program.blocks)
G
gongweibao 已提交
3470 3471 3472 3473
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
3474
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
3485
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
3486

3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
    def _var_attr(self, name):
        """
        Get the Variable attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variable: the Variable attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3498 3499 3500 3501 3502
        assert (
            attr_type == core.AttrType.VAR
        ), "Required type attr({}) is Variable, but received {}".format(
            name, attr_type
        )
3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516
        attr_var_name = self.desc.attr(name, True).name()
        return self.block._var_recursive(attr_var_name)

    def _vars_attr(self, name):
        """
        Get the Variables attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variables: the Variables attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3517 3518 3519 3520 3521
        assert (
            attr_type == core.AttrType.VARS
        ), "Required type attr({}) is list[Variable], but received {}".format(
            name, attr_type
        )
3522 3523 3524 3525 3526 3527
        attr_vars = [
            self.block._var_recursive(var.name())
            for var in self.desc.attr(name, True)
        ]
        return attr_vars

J
JiayiFeng 已提交
3528
    def all_attrs(self):
F
fengjiayi 已提交
3529
        """
3530 3531 3532
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3533
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3534 3535 3536 3537
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
3538
            attr_type = self.desc.attr_type(n, True)
G
gongweibao 已提交
3539
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3540
                attr_map[n] = self._block_attr(n)
3541
            elif attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3542
                attr_map[n] = self._blocks_attr(n)
3543 3544 3545 3546 3547 3548
            elif attr_type == core.AttrType.VAR:
                attr_map[n] = self._var_attr(n)
            elif attr_type == core.AttrType.VARS:
                attr_map[n] = self._vars_attr(n)
            else:
                attr_map[n] = self.attr(n)
G
gongweibao 已提交
3549

F
fengjiayi 已提交
3550 3551
        return attr_map

3552 3553 3554
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3555 3556 3557 3558

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3559 3560 3561
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3562 3563 3564 3565 3566 3567 3568 3569

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3570 3571
            return False

3572 3573 3574 3575 3576 3577
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3578
    @property
3579
    def dist_attr(self):
3580
        """
3581
        Get distributed attribute of this Variable.
3582
        """
3583
        return self.desc.dist_attr
3584

3585 3586
    @dist_attr.setter
    def dist_attr(self, dist_attr):
3587
        """
3588
        Set distributed attribute of this Variable.
3589
        """
3590
        self.desc.dist_attr = dist_attr
3591

Y
Yu Yang 已提交
3592

3593
class Block:
3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3608
        use `Program._create_block()` to create a block.
3609 3610 3611 3612

    Examples:
        .. code-block:: python

3613 3614 3615
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3616 3617 3618 3619 3620 3621 3622 3623 3624
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3625
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3626
        self.desc = program.desc.block(idx)
3627
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3628
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3629
        self.program = program
3630
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
3631

3632
    def __str__(self):
3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3667
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3668 3669
            type(skip_op_callstack)
        )
3670 3671 3672 3673 3674 3675 3676
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
3677 3678
                op._to_readable_code(skip_op_callstack)
            )
3679 3680
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3681

F
fengjiayi 已提交
3682 3683
    def to_string(self, throw_on_error, with_details=False):
        """
3684 3685
        Get debug string.

F
fengjiayi 已提交
3686 3687
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3688
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3689
            with_details(bool): more details about variables and parameters
3690 3691
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3692

3693 3694
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3695
        """
3696
        assert isinstance(throw_on_error, bool) and isinstance(
3697 3698
            with_details, bool
        )
F
fengjiayi 已提交
3699
        if with_details:
F
fengjiayi 已提交
3700
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3701
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
3702 3703 3704
                self.idx,
                self.parent_idx,
            )
3705
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3706
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
3707 3708
                    r"\n    \1", var.to_string(throw_on_error, with_details)
                )
F
fengjiayi 已提交
3709
            for op in self.ops:
F
fengjiayi 已提交
3710
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
3711 3712
                    r"\n    \1", op.to_string(throw_on_error)
                )
F
fengjiayi 已提交
3713 3714 3715
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3716
            proto = framework_pb2.BlockDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
3717 3718
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3719 3720 3721

    __repr__ = __str__

Y
Yu Yang 已提交
3722 3723
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3724
        return self.desc.parent
Y
Yu Yang 已提交
3725

Y
Yu Yang 已提交
3726 3727 3728 3729
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3730
    def _set_forward_block_idx(self, idx):
3731 3732 3733 3734 3735 3736 3737 3738 3739
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3740
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3741

3742 3743 3744 3745 3746 3747 3748 3749
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3750 3751
    @property
    def idx(self):
Y
Yu Yang 已提交
3752
        return self.desc.id
Y
Yu Yang 已提交
3753

Q
Qiao Longfei 已提交
3754
    def var(self, name):
3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3768
        if not isinstance(name, str):
M
minqiyang 已提交
3769
            raise TypeError(
3770 3771 3772
                "var require string as parameter, but get %s instead."
                % (type(name))
            )
Y
Yu Yang 已提交
3773 3774
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3775
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3776
        return v
Q
Qiao Longfei 已提交
3777

X
Xin Pan 已提交
3778
    def _find_var_recursive(self, name):
3779 3780 3781 3782 3783 3784 3785
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3786
            Variable: the Variable with the giving name. Or None if not found.
3787
        """
Y
Yu Yang 已提交
3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3812
        return None
Y
Yu Yang 已提交
3813

X
Xin Pan 已提交
3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3833

Q
Qiao Longfei 已提交
3834
    def all_parameters(self):
3835
        return list(self.iter_parameters())
3836

3837
    def iter_parameters(self):
3838 3839 3840 3841 3842
        return (
            item[1]
            for item in self.vars.items()
            if isinstance(item[1], Parameter)
        )
Q
Qiao Longfei 已提交
3843

Y
Yu Yang 已提交
3844
    def create_var(self, *args, **kwargs):
J
Jiabin Yang 已提交
3845
        if _non_static_mode():
L
Leo Chen 已提交
3846 3847
            var = _varbase_creator(*args, **kwargs)
        else:
3848 3849 3850
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3851
        return var
Y
Yu Yang 已提交
3852

Q
Qiao Longfei 已提交
3853 3854 3855
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3856
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3857 3858
        """
        Rename variable in vars and ops' inputs and outputs
3859 3860

        Args:
3861 3862
            name(str|bytes): the name that need to be renamed.
            new_name(str|bytes): the name that need to rename to.
3863 3864 3865 3866 3867 3868 3869 3870

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3871
        """
3872 3873
        # Ensure the type of name and new_name is str
        name = name.decode() if isinstance(name, bytes) else name
3874 3875 3876
        new_name = (
            new_name.decode() if isinstance(new_name, bytes) else new_name
        )
M
minqiyang 已提交
3877

T
typhoonzero 已提交
3878
        if not self.has_var(name):
3879
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3880 3881
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3882
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3883 3884 3885 3886 3887 3888
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3889
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3890 3891 3892 3893
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3894
        orig_var_type = v.type
3895
        self.desc._rename_var(name.encode(), new_name.encode())
W
Wu Yi 已提交
3896
        # NOTE: v is destroyed by C++ after calling _rename_var.
3897
        d = self.desc.find_var(new_name.encode())
T
typhoonzero 已提交
3898
        if var_type == "Parameter":
L
Leo Chen 已提交
3899
            if in_dygraph_mode():
3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910
                var = EagerParamBase(
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
3911
            else:
姜永久 已提交
3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923
                var = Parameter(
                    self,
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
T
typhoonzero 已提交
3924
        elif var_type == "Variable":
3925 3926 3927 3928 3929 3930 3931
            var = Variable(
                self,
                type=orig_var_type,
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient,
            )
T
wip  
typhoonzero 已提交
3932

W
Wu Yi 已提交
3933
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3934 3935 3936
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3937
        self._sync_with_cpp()
3938
        return var
T
typhoonzero 已提交
3939

3940 3941 3942
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
3943
        self.desc._remove_var(name.encode())
3944 3945
        del self.vars[name]

Y
Yu Yang 已提交
3946 3947
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3948
        param = None
L
Leo Chen 已提交
3949
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3950
            param = EagerParamBase(*args, **kwargs)
L
Leo Chen 已提交
3951
        else:
姜永久 已提交
3952
            param = Parameter(global_block, *args, **kwargs)
3953

3954
        if 'initializer' in kwargs:
3955 3956 3957 3958 3959

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3960
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3961
                        # are treated as initialization ops that cause error.
3962
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3963 3964
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
3965 3966 3967
                            "c_broadcast",
                            "c_sync_comm_stream",
                            "coalesce_tensor",
3968
                        ]:
3969
                            continue
3970 3971 3972 3973 3974 3975 3976
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
3977 3978 3979 3980 3981 3982
                raise RuntimeError(
                    "param "
                    + param.name
                    + " is inited by multiple init ops "
                    + str(init_ops)
                )
3983
            elif init_ops_len == 1:
3984
                # TODO already inited, do nothing, should log a warning
3985 3986 3987
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3988
        return param
Y
Yu Yang 已提交
3989

Y
Yu Yang 已提交
3990
    def append_op(self, *args, **kwargs):
3991 3992 3993 3994 3995 3996
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
J
Jiabin Yang 已提交
3997
        if _non_static_mode():
3998
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
3999
            inplace_map = kwargs.get("inplace_map", None)
J
Jiabin Yang 已提交
4000
            type = kwargs.get("type", None)
4001 4002 4003
            warnings.warn(
                "Op `%s` is executed through `append_op` under the dynamic mode, "
                "the corresponding API implementation needs to be upgraded to "
4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014
                "using `_C_ops` method." % type,
                DeprecationWarning,
            )
            op = Operator(
                block=self,
                desc=None,
                type=type,
                inputs=None,
                outputs=None,
                attrs=attrs,
            )
4015

M
minqiyang 已提交
4016 4017
            # record ops in tracer rather than blocks
            #
4018
            # TODO(minqiyang): add op stop_gradient support in static graph mode too.
L
lujun 已提交
4019
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
4020

4021 4022 4023 4024 4025 4026 4027 4028
            _dygraph_tracer().trace_op(
                type,
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
                inplace_map,
            )
M
minqiyang 已提交
4029
        else:
4030 4031
            from paddle.fluid.dygraph.base import param_guard

4032
            op_desc = self.desc.append_op()
4033 4034 4035 4036 4037 4038
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
4039 4040 4041 4042 4043 4044 4045 4046
                op = Operator(
                    block=self,
                    desc=op_desc,
                    type=kwargs.get("type", None),
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None),
                )
4047

M
minqiyang 已提交
4048
            self.ops.append(op)
M
minqiyang 已提交
4049

4050 4051
        return op

W
Wu Yi 已提交
4052
    def _insert_op(self, index, *args, **kwargs):
4053 4054 4055 4056 4057 4058 4059 4060 4061
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
4062
        self._sync_with_cpp()
F
fangshuixun007 已提交
4063
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
4064

4065 4066
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
4067
        Insert an Operator according to the giving arguments,
4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
4082 4083 4084 4085 4086 4087 4088 4089 4090
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
4091 4092
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
4093
        self.desc._remove_op(index, index + 1)
4094 4095
        del self.ops[index]

W
Wu Yi 已提交
4096
    def _slice_ops(self, start, end):
4097 4098 4099 4100 4101 4102 4103 4104 4105 4106
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
4107
        return self.ops[start:end]
Y
Yancey1989 已提交
4108

W
Wu Yi 已提交
4109
    def _prepend_op(self, *args, **kwargs):
J
Jiabin Yang 已提交
4110
        if _non_static_mode():
J
Jiabin Yang 已提交
4111 4112
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123
            op = Operator(
                self, None, type=type, inputs=None, outputs=None, attrs=attrs
            )

            _dygraph_tracer().trace_op(
                type,
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
            )
M
minqiyang 已提交
4124
        else:
4125
            op_desc = self.desc._prepend_op()
4126 4127 4128 4129 4130 4131 4132 4133
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None),
            )
M
minqiyang 已提交
4134
            self.ops.insert(0, op)
4135

Y
Yu Yang 已提交
4136 4137
        return op

W
Wu Yi 已提交
4138
    def _sync_with_cpp(self):
4139
        """
4140 4141
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
4142
        """
Q
Qiao Longfei 已提交
4143 4144 4145
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
4146 4147 4148 4149
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
4150 4151 4152 4153 4154 4155 4156 4157
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient,
                    )
4158
                else:
4159 4160 4161 4162 4163 4164
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient,
                    )
Q
Qiao Longfei 已提交
4165

4166
        # sync variables removed from c++ end
4167
        for var in list(self.vars.keys()):
4168
            if not self.desc.find_var(var.encode()):
4169 4170
                self.vars.pop(var)

Q
Qiao Longfei 已提交
4171
        # sync operators from cpp
4172 4173 4174 4175
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
4192 4193 4194 4195 4196

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
4197
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
4198 4199 4200 4201 4202 4203 4204

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

4205 4206 4207 4208 4209
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
4210 4211 4212 4213 4214 4215
                self.ops
            ) and ops_in_cpp_index < len(ops_in_cpp):
                if (
                    self.ops[ops_in_python_index].desc
                    != ops_in_cpp[ops_in_cpp_index]
                ):
4216 4217 4218 4219 4220
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
4221 4222 4223 4224
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
4225
    def _copy_param_info_from(self, other):
4226
        """
4227 4228
        Copy the information of parameters from the other block.

4229
        Args:
4230 4231 4232 4233 4234
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
4235 4236 4237 4238 4239

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
4240
            raise TypeError(
4241 4242
                "_copy_param_info_from should be invoked with Block"
            )
4243
        for p in other.iter_parameters():
4244 4245 4246
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
4247 4248
                # if the Parameter is pruned, v may be None
                continue
4249
            assert isinstance(v, Variable)
4250
            new_p = None
L
Leo Chen 已提交
4251
            if in_dygraph_mode():
4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263
                new_p = EagerParamBase(
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4264
            else:
姜永久 已提交
4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279
                new_p = Parameter(
                    block=self,
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR
                    else None,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4280 4281
            self.vars[new_p.name] = new_p

4282
    def _clone_variable(self, var, force_persistable=True):
4283 4284
        """
        Clone a variable into current block.
4285

4286 4287
        Args:
            var: the variable to be cloned.
4288 4289 4290
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
4291 4292

        Returns:
4293
            Variable: the new  variable cloned from 'var' in current block.
4294 4295
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
4296 4297 4298
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
4299 4300 4301
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
tangwei12 已提交
4302
        elif var.type == core.VarDesc.VarType.RAW:
4303 4304 4305
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
typhoonzero 已提交
4306 4307 4308 4309 4310 4311
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
4312
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4313
                is_data=var.is_data,
4314 4315
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4316 4317 4318 4319 4320 4321 4322
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
4323
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4324
                is_data=var.is_data,
4325 4326
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4327
        return ret_var
4328

Y
Yu Yang 已提交
4329

4330 4331 4332 4333
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
4334
# of some old Python Variables(all old Python Operators) may have
4335
# been destructed.
4336 4337 4338
def _apply_pass(
    main_program, startup_program, pass_name, pass_attrs={}, pass_attr_types={}
):
4339 4340 4341 4342
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
4343 4344 4345 4346 4347 4348 4349
    attrs = core.apply_pass(
        tmp_main_program,
        tmp_startup_program,
        pass_name,
        pass_attrs,
        pass_attr_types,
    )
4350 4351 4352 4353 4354
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


4355
class IrNode:
4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4367 4368 4369
        assert isinstance(
            node, core.Node
        ), 'node must be the instance of core.Node.'
4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

4451
    def remove_input_by_id(self, node_id):
4452 4453 4454 4455 4456 4457
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4458
        self.node.remove_input(node_id)
4459

4460
    def remove_input(self, node):
4461 4462 4463 4464
        """
        Remove a node from inputs.

        Args:
4465
            node(IrNode): the node being removed.
4466
        """
4467
        self.node.remove_input(node.node)
4468

4469
    def append_input(self, node):
4470 4471 4472 4473
        """
        Append a node in inputs.

        Args:
4474
            node(IrNode): the node being appended.
4475
        """
4476
        self.node.append_input(node.node)
4477 4478 4479 4480 4481 4482 4483 4484

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

4485
    def remove_output_by_id(self, node_id):
4486 4487 4488 4489 4490 4491
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4492
        self.node.remove_output(node_id)
4493

4494
    def remove_output(self, node):
4495 4496 4497 4498
        """
        Remove a node from outputs.

        Args:
4499
            node(IrNode): the node being removed.
4500
        """
4501
        self.node.remove_output(node.node)
4502

4503
    def append_output(self, node):
4504 4505 4506 4507
        """
        Append a node in outputs.

        Args:
4508
            node(IrNode): the node being appended.
4509
        """
4510
        self.node.append_output(node.node)
4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4545 4546 4547
        assert (
            isinstance(node, core.Node) and node.is_var()
        ), 'node must be the instance of core.Node and it must be a variable node.'
4548
        super().__init__(node)
4549 4550 4551 4552 4553 4554 4555 4556 4557
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
4558 4559 4560
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4561 4562 4563 4564 4565 4566 4567 4568 4569
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
4570 4571 4572
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4573 4574
        return self.node.var().persistable()

4575 4576 4577 4578 4579 4580 4581
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
4582 4583 4584
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4585 4586 4587 4588 4589 4590 4591 4592 4593
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
4594 4595 4596
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4597 4598 4599 4600 4601 4602 4603 4604 4605
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
4606 4607 4608
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4609 4610
        return self.node.var().shape()

4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4644 4645 4646
        assert (
            isinstance(node, core.Node) and node.is_op()
        ), 'node must be the instance of core.Node and it must be a operator node.'
4647
        super().__init__(node)
4648 4649 4650 4651 4652 4653 4654 4655 4656 4657
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
4658 4659 4660
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4661 4662
        self.node.op()._rename_input(old_input_name, new_input_name)

4663 4664 4665 4666 4667 4668 4669 4670
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
4671 4672 4673
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4674 4675
        self.node.op()._rename_output(old_output_name, new_output_name)

4676 4677 4678 4679 4680 4681 4682 4683 4684 4685
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4686 4687 4688
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4701 4702 4703
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4704 4705 4706 4707 4708 4709 4710 4711 4712
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
4713 4714 4715
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4716 4717
        return self.node.op().set_type(new_type)

4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
4732 4733 4734
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4735
        desc = self.node.op()
4736 4737 4738 4739 4740
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
4741
            desc.set_block_attr(name, val.desc)
4742
        elif isinstance(val, list) and val and _all_is_type(val, Block):
4743
            desc.set_blocks_attr(name, [v.desc for v in val])
4744 4745 4746
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
4747 4748 4749 4750
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4751 4752 4753 4754 4755 4756 4757
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
4758 4759 4760
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4761 4762 4763 4764 4765 4766 4767 4768 4769
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
4770 4771 4772
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4773 4774
        return self.node.op().output_arg_names()

4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4796
class IrGraph:
4797
    """
4798
    Python IrGraph. Beneath it is a core.Graph, which is used for
4799
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4800 4801
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4802 4803 4804 4805
    """

    def __init__(self, graph, for_test=False):
        """
4806 4807
        Construct an IrGraph using core.Graph.

4808 4809 4810 4811 4812
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
4813 4814
            graph, core.Graph
        ), 'graph must be the instance of core.Graph.'
4815 4816 4817
        self.graph = graph
        self._for_test = for_test

4818 4819 4820 4821
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4822 4823 4824
        Warns:
            The method only clones the graph structure, not its attributes.

4825 4826 4827
        Returns:
            IrGraph: A new and duplicated graph.
        """
4828
        g = self.graph.clone()
4829 4830
        return IrGraph(g, self._for_test)

4831
    def is_test(self):
4832 4833 4834
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4835 4836
        return self._for_test

W
WangZhen 已提交
4837
    def all_nodes(self):
4838 4839 4840
        """
        Return all nodes included in the graph as a set.
        """
4841
        return {IrNode(node) for node in self.graph.nodes()}
4842

4843
    def all_var_nodes(self):
4844 4845 4846
        """
        Return all variable nodes included in the graph as a set.
        """
4847
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4848

4849
    def all_persistable_nodes(self):
4850 4851 4852
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4853 4854
        persistable_nodes = set()
        for node in self.graph.nodes():
4855 4856 4857 4858 4859
            if (
                node.is_var()
                and node.var() is not None
                and node.var().persistable()
            ):
W
WangZhen 已提交
4860
                persistable_nodes.add(node)
4861
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4862

4863
    def all_op_nodes(self):
4864 4865 4866
        """
        Return all operator nodes included in the graph as a set.
        """
4867
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4868

4869 4870 4871 4872 4873 4874
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
4875
            IrGraph(self.graph.get_sub_graph(i), for_test=for_test)
4876 4877 4878 4879 4880 4881 4882 4883 4884
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4885
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4897
            IrVarNode: the created persistable variable node.
4898
        """
4899 4900 4901 4902 4903
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4904
        return IrVarNode(self.graph.create_var_node(var_desc))
4905 4906

    def create_var_node(self, name, var_type, shape, var_dtype):
4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4918
            IrVarNode: the created variable node.
4919 4920
        """

4921 4922 4923 4924
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4925
        return IrVarNode(self.graph.create_var_node(var_desc))
4926

4927 4928 4929 4930 4931 4932
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4933
    def create_var_node_from_desc(self, var_desc):
4934 4935 4936 4937 4938 4939 4940 4941
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4942
            IrVarNode: the created variable node.
4943
        """
4944
        return IrVarNode(self.graph.create_var_node(var_desc))
4945 4946

    def create_op_node(self, op_type, attrs, inputs, outputs):
4947 4948 4949 4950 4951 4952 4953
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4954
            outputs(dict): the outputs of the operator node.
4955 4956

        Returns:
4957
            IrOpNode: the created operator node.
4958
        """
4959 4960
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4961
        for attr, value in attrs.items():
4962
            self._update_desc_attr(op_desc, attr, value)
4963
        for input_name, var_nodes in inputs.items():
4964 4965
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
4966 4967 4968
            op_desc.set_input(
                input_name, [var_node.name() for var_node in var_nodes]
            )
4969
        for output_name, var_nodes in outputs.items():
4970 4971
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
4972 4973 4974
            op_desc.set_output(
                output_name, [var_node.name() for var_node in var_nodes]
            )
4975
        return IrOpNode(self.graph.create_op_node(op_desc))
4976 4977

    def create_op_node_from_desc(self, op_desc):
4978 4979 4980 4981 4982 4983 4984
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4985
            IrOpNode: the created operator node.
4986
        """
4987
        return IrOpNode(self.graph.create_op_node(op_desc))
4988 4989

    def update_input_link(self, old_input_node, new_input_node, op_node):
4990 4991 4992 4993
        """
        Update the input's link of a operator node.

        Args:
4994 4995 4996
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4997
        """
4998 4999 5000 5001 5002
        assert (
            old_input_node.node in self.graph.nodes()
            and new_input_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
5003 5004 5005 5006
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
5007
        op_node.rename_input(old_input_node.name(), new_input_node.name())
5008

5009 5010 5011 5012 5013 5014 5015 5016 5017
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
5018 5019 5020 5021 5022
        assert (
            old_output_node.node in self.graph.nodes()
            and new_output_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
5023 5024 5025 5026 5027 5028
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

5029
    def link_to(self, node_in, node_out):
5030 5031 5032 5033
        """
        Connect two nodes.

        Args:
5034 5035
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
5036
        """
5037
        assert node_in.node in self.graph.nodes(), (
5038 5039
            'node_in(%s) must be in the graph nodes.' % node_in.node.name()
        )
5040
        assert node_out.node in self.graph.nodes(), (
5041 5042
            'node_out(%s) must be in the graph nodes.' % node_out.node.name()
        )
5043 5044
        node_in.append_output(node_out)
        node_out.append_input(node_in)
5045 5046

    def safe_remove_nodes(self, remove_nodes):
5047 5048 5049 5050 5051 5052 5053
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
5054
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
5055 5056 5057 5058
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
5059 5060
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
5061

Z
Zhen Wang 已提交
5062 5063 5064 5065 5066 5067 5068 5069
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5070
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
5071 5072 5073 5074
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5075
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
5076 5077 5078
                        ]
                    else:
                        var_nodes[each_var_name].append(
5079 5080
                            self._find_node_by_name(node.outputs, each_var_name)
                        )
Z
Zhen Wang 已提交
5081 5082
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
5083
    def has_circle(self):
5084 5085 5086 5087 5088 5089
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
5090 5091 5092
        return core.has_circle(self.graph)

    def graph_num(self):
5093 5094 5095 5096 5097 5098
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
5099 5100 5101
        return core.graph_num(self.graph)

    def topology_sort(self):
5102 5103 5104
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
5105
        Notes: the `graph` can not contain a circle.
5106 5107

        Returns:
Z
Zhen Wang 已提交
5108
            list(IrNode): nodes in topology order.
5109
        """
5110
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
5111
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
5112 5113

    def build_adjacency_list(self):
5114 5115 5116 5117
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
5118
            dict{IrNode: set(IrNode)}: the adjacency list.
5119
        """
5120 5121
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
5122
        for k, v in adj_list.items():
5123 5124
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
5125

5126 5127 5128 5129 5130 5131 5132 5133
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
5134
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
5135 5136 5137 5138 5139
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

5140 5141
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
5142 5143 5144 5145
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True,
            )
5146 5147
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
5148 5149 5150
                print(
                    'The {} is saved as the dot filetype.'.format(dot_file_path)
                )
5151

5152
        remove_ctr_vars = set()
5153
        if remove_ctr_var:
5154
            for node in self.all_var_nodes():
5155 5156 5157
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
5158 5159
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

5160 5161
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
5162 5163 5164 5165 5166 5167
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
5168 5169 5170 5171
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
5172 5173
        if not os.path.exists(save_path):
            os.makedirs(save_path)
5174 5175 5176 5177 5178 5179 5180
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
5181 5182 5183
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
5184
        WARN: When the graph includes backward operator nodes, the
5185 5186 5187 5188 5189 5190
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
5191
        convert_pass = core.get_pass('graph_to_program_pass')
5192 5193
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
5194 5195 5196 5197
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

5198 5199 5200 5201 5202 5203 5204 5205
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
5206
        assert target_node is not None, (
5207 5208
            "Cannot find the target node (%s)in the giving set." % node_name
        )
5209 5210
        return target_node

5211 5212 5213 5214
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
5215 5216 5217 5218 5219
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
5220
            desc.set_block_attr(name, val.desc)
5221
        elif isinstance(val, list) and val and _all_is_type(val, Block):
5222
            desc.set_blocks_attr(name, [v.desc for v in val])
5223 5224 5225
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
5226 5227 5228 5229 5230
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


5231
class Program:
D
dzhwinter 已提交
5232
    """
5233
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
5234
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
5235
    it will contain nested block.
5236

J
Jiabin Yang 已提交
5237 5238 5239
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
5240

J
Jiabin Yang 已提交
5241
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
5242
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
5243 5244 5245 5246 5247 5248 5249
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
5250
    **Notes**:
5251 5252 5253
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
5254 5255

    Returns:
J
Jiabin Yang 已提交
5256
        Program: An empty Program.
D
dzhwinter 已提交
5257 5258

    Examples:
5259 5260
        .. code-block:: python

5261 5262 5263 5264
            import paddle
            import paddle.static as static

            paddle.enable_static()
5265

5266 5267 5268 5269 5270
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
5271
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
5272 5273 5274

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
5275 5276 5277

    """

5278 5279
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
5280 5281
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
5282 5283
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
5284
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
5285
        self.__op_role_var = []
T
tangwei12 已提交
5286

5287 5288
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
5289
        self._is_distributed = False
5290
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
5291
        self._is_chief = False
5292 5293 5294
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
5295
        self._endpoints = []
5296 5297 5298
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
5299
        self._trainers_endpoints = []
5300
        # the distributed lookup table names
T
tangwei12 已提交
5301
        self._distributed_lookup_table = None
5302 5303 5304

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
5305 5306
        self._use_lamb = False

5307 5308 5309
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
5310

5311 5312 5313
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
5314
        self._program_config = None
5315

H
hutuxian 已提交
5316 5317 5318
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

5319 5320 5321
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

5322 5323 5324
        # appending gradients times
        self._appending_grad_times = 0

5325 5326
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
5327 5328
            "__auto_checkpoint_program__"
        )
5329

5330 5331
        # compiled program, i.e. Graph
        self._graph = None
5332 5333
        # to tag whether is startup_program
        self._is_start_up_program_ = False
5334

5335
    def _find_var_class_kwargs(self, new_desc):
5336 5337 5338 5339 5340 5341 5342 5343
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

5344 5345 5346 5347
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
5348
            if idx > (len(self.blocks) - 1):
5349
                self._create_block()
5350 5351 5352 5353 5354 5355 5356 5357 5358 5359
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
                    'shape': get_var_desc_attr_or_none(
                        new_var_desc,
                        "shape",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'dtype': get_var_desc_attr_or_none(
                        new_var_desc,
                        "dtype",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'lod_level': get_var_desc_attr_or_none(
                        new_var_desc,
                        "lod_level",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'error_clip': old_var.error_clip
                    if old_var is not None
                    else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None
                    else False,
                    'is_data': old_var.is_data
                    if old_var is not None
                    else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None
                    else False,
5401 5402 5403
                }

                if isinstance(old_var, Parameter):
5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420
                    kwargs.update(
                        {
                            'trainable': old_var.trainable,
                            'optimize_attr': old_var.optimize_attr,
                            'regularizer': old_var.regularizer,
                            'do_model_average': old_var.do_model_average,
                            'need_clip': old_var.need_clip,
                            'is_distributed': old_var.is_distributed,
                            'is_parameter': old_var.is_parameter,
                        }
                    )
                    block_new_vars.append(
                        {
                            'class': Parameter,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5421 5422
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
5423 5424 5425 5426 5427 5428
                    block_new_vars.append(
                        {
                            'class': Variable,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5429 5430 5431 5432 5433 5434 5435

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
5436
        assert block_num == self.desc.num_blocks()
5437 5438

        # clear old blocks and desc
5439 5440 5441 5442 5443 5444 5445 5446 5447
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
5448

5449
        del desc
5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

5469 5470 5471 5472 5473 5474 5475 5476 5477 5478
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

5479 5480
                import paddle
                import paddle.static as static
5481

5482 5483 5484
                paddle.enable_static()

                prog = static.default_main_program()
5485 5486 5487 5488 5489
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
5490
                prog1 = static.default_main_program()
5491 5492 5493 5494 5495 5496 5497 5498
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
5499
    @property
5500
    def _op_role(self):
Y
yuyang18 已提交
5501 5502 5503 5504 5505 5506 5507 5508
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
5509
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
5510 5511 5512 5513
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
5514 5515
        return self._current_role

5516 5517
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
5518 5519 5520
        self._current_role = role

    @property
5521
    def _op_role_var(self):
Y
yuyang18 已提交
5522
        """
5523
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
5524

5525
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
5526 5527 5528

        Notes: This is a very low-level API. Users should not use it directly.
        """
5529
        return self.__op_role_var
Y
yuyang18 已提交
5530

5531
    @signature_safe_contextmanager
5532 5533 5534 5535 5536
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
5537 5538 5539 5540
        try:
            yield
        finally:
            self._current_role = tmp_role
5541

S
rename  
sneaxiy 已提交
5542
    @signature_safe_contextmanager
W
Wu Yi 已提交
5543
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
5544 5545 5546 5547 5548 5549 5550
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
5551
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
5552 5553 5554

        Examples:

5555
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
5556
            >>> p, g = backward(...)
W
Wu Yi 已提交
5557
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
5558 5559
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
5560
        tmp_role = self._current_role
5561
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
5562

Y
yuyang18 已提交
5563 5564
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
5565
        self.__op_role_var = [
5566 5567 5568
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
5569 5570 5571 5572 5573
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
5574

S
rename  
sneaxiy 已提交
5575
    @signature_safe_contextmanager
X
Xin Pan 已提交
5576
    def _lr_schedule_guard(self, is_with_opt=False):
5577 5578 5579 5580 5581 5582 5583
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
5584 5585 5586 5587
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
5588 5589 5590

        Examples:

5591
            >>> import paddle.fluid as fluid
5592 5593 5594 5595
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
5596 5597

        tmp_role = self._current_role
5598
        tmp_var = self.__op_role_var
5599

5600 5601
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
5602 5603
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
5604
        # TODO(typhoonzero): how to set target learning rate var
5605
        self.__op_role_var = []
5606 5607 5608 5609 5610
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
5611

5612
    def __str__(self):
Y
yuyang18 已提交
5613 5614 5615 5616 5617 5618 5619 5620 5621
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5642 5643
            import paddle
            import paddle.static as static
5644

5645 5646 5647
            paddle.enable_static()

            cur_program = static.Program()
5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5659
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
5660 5661
            type(skip_op_callstack)
        )
5662 5663 5664
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5665
            program_str += '\n'
5666
        return program_str
Y
Yang Yang(Tony) 已提交
5667

F
fengjiayi 已提交
5668 5669 5670
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5671

J
Jiabin Yang 已提交
5672 5673 5674
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5675

J
Jiabin Yang 已提交
5676
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5677

H
haowang101779990 已提交
5678
        Returns:
J
Jiabin Yang 已提交
5679
            str: The debug string describe current Program.
Y
yuyang18 已提交
5680 5681

        Raises:
J
Jiabin Yang 已提交
5682
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5683

5684 5685 5686
        Examples:
            .. code-block:: python

5687 5688 5689 5690
                import paddle
                import paddle.static as static

                paddle.enable_static()
5691

5692 5693 5694
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5695
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5696
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5697
                print("program string without detail: {}".format(prog_string))
5698
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5699
        """
5700 5701 5702
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
5703 5704
            type(throw_on_error)
        )
5705 5706 5707
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
5708 5709
            type(with_details)
        )
5710

F
fengjiayi 已提交
5711 5712 5713 5714 5715 5716
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
5717
            proto = framework_pb2.ProgramDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
5718 5719
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5720

W
Wu Yi 已提交
5721
    def _get_desc(self):
Y
yuyang18 已提交
5722 5723 5724 5725 5726 5727 5728
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5729 5730
        return self.desc

X
version  
Xin Pan 已提交
5731 5732 5733
    def _version(self):
        return self.desc._version()

5734
    def clone(self, for_test=False):
Y
yuyang18 已提交
5735
        """
5736
        .. note:::
5737 5738
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` .
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` .
5739
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5740

5741
        Create a new Program with forward content of original one when ``for_test=True``.
5742
        Create a new Program as same as the original one when ``for_test=False``.
5743

5744
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5745 5746 5747
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5748

5749 5750
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5751 5752
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
5753
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
5754

J
Jiabin Yang 已提交
5755
        For Example:
5756
          ::
L
Luo Tao 已提交
5757

5758 5759 5760 5761 5762 5763
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
5764
            pred = static.nn.fc(x=img, size=10, actvation='relu')
5765
            loss = paddle.mean(pred)
5766
            # Here we use clone before Momentum
5767 5768
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
5769
            optimizer.minimize(loss)
5770

J
Jiabin Yang 已提交
5771
        Args:
5772

5773 5774
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
5775

J
Jiabin Yang 已提交
5776
        Returns:
5777
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
5778

Y
yuyang18 已提交
5779 5780 5781

        Examples:

5782 5783 5784 5785 5786 5787 5788
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5789 5790
            .. code-block:: python

5791
                import paddle
5792 5793

                def print_prog(prog):
5794
                    for name, value in sorted(prog.block(0).vars.items()):
5795 5796 5797 5798 5799
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
5800
                        for key, value in sorted(op.all_attrs().items()):
5801 5802 5803 5804
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5805
            1. To clone a test program, the sample code is:
5806 5807
                .. code-block:: python

5808 5809 5810 5811 5812 5813
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5814 5815

                    def print_prog(prog):
5816
                        for name, value in sorted(prog.block(0).vars.items()):
5817 5818 5819 5820 5821
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
5822
                            for key, value in sorted(op.all_attrs().items()):
5823 5824 5825
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5826 5827
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5828 5829 5830

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5831 5832 5833
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5834
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5835 5836
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5837
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5838 5839
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5840
                            test_program = train_program.clone(for_test=True)
5841
                    print_prog(test_program)
J
Jiabin Yang 已提交
5842 5843 5844 5845

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5846
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5847 5848 5849 5850
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5851 5852 5853
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5854 5855 5856
                            sgd.minimize(avg_loss)


5857
            2. The clone method can be avoid if you create program for training and program for testing individually.
5858 5859
                .. code-block:: python

5860 5861 5862 5863 5864 5865
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5866 5867

                    def print_prog(prog):
5868
                        for name, value in sorted(prog.block(0).vars.items()):
5869 5870 5871 5872 5873
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
5874
                            for key, value in sorted(op.all_attrs().items()):
5875 5876
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5877

5878
                    def network():
5879
                        img = static.data(name='image', shape=[None, 784])
5880
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5881 5882
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5883
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5884 5885
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5886 5887
                        return avg_loss

5888 5889 5890 5891 5892
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5893
                            avg_loss = network()
5894
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5895
                            sgd.minimize(avg_loss)
5896
                    # the test startup program is not used.
5897 5898
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5899 5900
                            avg_loss = network()
                    print_prog(test_program_2)
5901

5902
            The two code snippets above will generate and print same programs.
5903
        """
5904

T
tangwei12 已提交
5905
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5906 5907 5908
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5909
        pruned_origin_block_id_map = None
5910
        if for_test:
5911 5912
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
5913 5914
                self.desc
            )
5915 5916
            forward_prog.blocks = [
                Block(forward_prog, i)
5917
                for i in range(forward_prog.desc.num_blocks())
5918 5919 5920
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5921
        else:
5922
            p = Program()
G
gongweibao 已提交
5923 5924
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5925
            p.desc = core.ProgramDesc(self.desc)
5926
            p.blocks = [Block(p, i) for i in range(self.desc.num_blocks())]
G
gongweibao 已提交
5927 5928

            p._current_role = self._current_role
5929
            p.__op_role_var = self.__op_role_var
5930
            p._appending_grad_times = self._appending_grad_times
5931 5932
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
5933

T
tangwei12 已提交
5934
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5935
            # its desc.
W
Wu Yi 已提交
5936
            p._sync_with_cpp()
5937

W
Wu Yi 已提交
5938
        p._copy_param_info_from(self)
5939
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5940
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5941
        return p
5942

5943
    def _prune(self, targets):
Y
yuyang18 已提交
5944 5945 5946 5947 5948 5949 5950 5951
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5952
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5953 5954 5955 5956
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5957
        """
5958
        return self._prune_with_input([], targets)
5959 5960

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5961
        """
5962
        Prune operators and variables which are not needed to generate
5963 5964
        :code:`targets`. Prune operators and variables which are needed
        to generate feeded_var
5965 5966 5967 5968 5969 5970 5971

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5972
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5973 5974 5975 5976 5977 5978
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5979
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5980 5981 5982
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5983 5984
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
5985 5986
        if not isinstance(targets, list):
            targets = [targets]
5987 5988

        for var in feeded_var_names:
5989
            if not isinstance(var, str):
5990 5991
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
5992 5993
                    "str, but received %s." % type(var)
                )
5994

5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

6011 6012 6013 6014
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
6015
                    name = t.name
6016
                elif isinstance(t, str):
6017
                    name = str(t)
6018
                else:
6019 6020
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
6021 6022
                        "Variable or Operator, but received %s." % type(t)
                    )
6023 6024 6025 6026 6027 6028

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
6029 6030 6031
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
6032

6033 6034 6035 6036 6037 6038 6039 6040 6041
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
6042
                        # Skip optimize op except for optimize op in targets,
6043 6044 6045 6046 6047
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
6048

6049
                if target_op is not None:
6050 6051 6052
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
6053

6054
        res = Program()
6055
        res.desc, pruned_origin_block_id_map = core.prune(
6056 6057
            self.desc, set(feeded_var_names), targets_idx
        )
6058
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6059
        res._sync_with_cpp()
6060 6061 6062 6063 6064

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

6065 6066
        return res

X
Xin Pan 已提交
6067
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
6068
        """
F
fengjiayi 已提交
6069 6070 6071 6072 6073
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

6074
        3. change the :code:`is_test`
Y
yuyang18 已提交
6075 6076 6077
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

6078
        Args:
X
Xin Pan 已提交
6079 6080
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
6081

Y
yuyang18 已提交
6082 6083 6084 6085 6086 6087
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
6088
        res = Program()
6089
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
6090 6091 6092 6093

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
6094
        if prune_read_op:
6095
            while True:
6096 6097 6098 6099
                if (
                    read_op_idx >= root_block.op_size()
                    or root_block.op(read_op_idx).type() == 'read'
                ):
6100 6101 6102 6103 6104 6105
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
6106
                    root_block._remove_var(var.name().encode())
F
fengjiayi 已提交
6107 6108

        # change all `is_test` attributes to True
6109
        for i in range(res.desc.num_blocks()):
6110
            block = res.desc.block(i)
6111
            for j in range(block.op_size()):
6112 6113
                op = block.op(j)
                if op.has_attr('is_test'):
6114
                    op._set_bool_attr('is_test', True)
6115 6116 6117
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
6118
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6119
        res._sync_with_cpp()
6120 6121
        return res

6122
    def _remove_training_info(self, clip_extra=True):
6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

6137
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
6138 6139
        res._sync_with_cpp()

6140 6141
        # Note: The op_role and op_role_var cann't be deleted currently,
        # and we will try to remove them in the future.
6142
        common_clipped_attrs_list = ['op_callstack', 'with_quant_attr']
6143

6144
        for i in range(res.desc.num_blocks()):
6145 6146 6147 6148
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
6149 6150
            if not clip_extra:
                continue
6151 6152 6153 6154
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
6155 6156 6157

                extra_attrs_map = core.get_op_extra_attrs(op.type())

6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
6171 6172 6173
                # The extra input of op will be removed in the future
                # for name in remove_input_list:
                #     op.remove_input(name)
6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
6187
                # The extra output of op will be removed in the future
6188 6189
                for name in remove_output_list:
                    op.remove_output(name)
6190

6191 6192 6193 6194 6195 6196 6197
                op_quant_name = (
                    core.op_proto_and_checker_maker.kOpWithQuantAttrName()
                )
                quant = (
                    bool(op.attr(op_quant_name))
                    if op_quant_name in op.attr_names()
                    else False
6198 6199
                )
                quant_attrs = [
6200 6201 6202 6203 6204 6205 6206
                    op_quant_name,
                    "quantization_type",
                    "skip_quant",
                    "activation_bits",
                    "bit_length",
                    "quantize_weight_bits",
                    "weight_quant_scale",
6207
                ]
6208 6209
                for extra_attr_name in extra_attrs_map.keys():
                    op.remove_attr(extra_attr_name)
6210
                remove_attr_list = []
6211 6212 6213 6214 6215 6216
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
6217
                    if len(extra_attrs_map) > 0:
6218
                        if name in common_clipped_attrs_list:
6219
                            op.remove_attr(name)
6220
                        continue
6221 6222 6223 6224 6225 6226 6227 6228 6229 6230
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
6231 6232
        return res

6233 6234
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
6235
        """
6236
        .. note::
6237
            1. All information about parameters will be lost after serialization;
6238
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6239

6240 6241
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
6242

J
Jiabin Yang 已提交
6243
        Args:
Y
yuyang18 已提交
6244

J
Jiabin Yang 已提交
6245
            binary_str_type (str): the binary prootbuf string.
6246

J
Jiabin Yang 已提交
6247 6248
        Returns:
            Program: A deserialized Program.
6249 6250 6251 6252

        Examples:
            .. code-block:: python

6253 6254 6255 6256
                import paddle
                import paddle.static as static

                paddle.enable_static()
6257

6258 6259 6260 6261
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
6262

6263
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
6264

6265
                    z = paddle.matmul(x=x, y=y)
6266

6267 6268
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
6269

6270
                    print(static.default_main_program())
6271
                    print(prog_restored)
Y
yuyang18 已提交
6272
        """
6273 6274
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
6275
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
W
Wu Yi 已提交
6276
        p._sync_with_cpp()
6277
        return p
Y
Yu Yang 已提交
6278

6279
    @staticmethod
6280
    def _construct_from_desc(desc):
6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
6292
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
6293 6294 6295
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
6296 6297
    @property
    def random_seed(self):
Y
yuyang18 已提交
6298
        """
J
Jiabin Yang 已提交
6299
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
6300 6301
        the random seed from random device.

6302
        .. note::
6303
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
6304 6305 6306

        Returns:
            int64: Random seed in current Program
6307

6308 6309 6310 6311

        Examples:
            .. code-block:: python

6312 6313 6314
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
6315

6316 6317 6318
                paddle.enable_static()

                prog = static.default_main_program()
6319
                random_seed = prog.random_seed
6320
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
6321 6322 6323
                print(random_seed)
                ## 0
                ## the default random seed is 0
6324

6325
                # Here we need to set random seed before we use paddle.nn.functional.dropout
6326
                prog.random_seed = 1
6327
                z_var = F.dropout(x_var, 0.7)
6328

6329
                print(prog.random_seed)
6330 6331
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
6332
        """
D
dzhwinter 已提交
6333 6334
        return self._seed

Q
qiaolongfei 已提交
6335 6336
    @property
    def num_blocks(self):
Y
yuyang18 已提交
6337
        """
6338 6339
        The number of :ref:`api_guide_Block_en`  in this Program.

6340
        .. note::
6341
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
6342 6343 6344

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
6345

6346 6347 6348 6349

        Examples:
            .. code-block:: python

6350 6351 6352 6353
                import paddle
                import paddle.static as static

                paddle.enable_static()
6354

6355
                prog = static.default_main_program()
6356 6357
                num_blocks = prog.num_blocks
                print(num_blocks)
6358

6359 6360
                # print result:
                # 1
Y
yuyang18 已提交
6361
        """
Q
qiaolongfei 已提交
6362 6363
        return self.desc.num_blocks()

D
dzhwinter 已提交
6364 6365 6366
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
6367 6368
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
6369 6370
                % type(seed)
            )
D
dzhwinter 已提交
6371 6372
        self._seed = seed

Y
Yu Yang 已提交
6373
    def __repr__(self):
6374
        return self.__str__()
6375

Y
Yu Yang 已提交
6376
    def global_block(self):
Y
yuyang18 已提交
6377
        """
6378 6379
        .. note::
            This API has no effect in Dygraph mode.
6380 6381 6382

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
6383 6384
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
6385

6386 6387 6388 6389

        Examples:
            .. code-block:: python

6390 6391 6392 6393
                import paddle
                import paddle.static as static

                paddle.enable_static()
6394

6395
                prog = static.default_main_program()
6396 6397
                gb_block = prog.global_block()
                print(gb_block)
6398

Y
yuyang18 已提交
6399
        """
Y
Yu Yang 已提交
6400 6401
        return self.blocks[0]

Q
Qiao Longfei 已提交
6402
    def block(self, index):
Y
yuyang18 已提交
6403
        """
6404 6405
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6406

6407 6408
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
6409 6410
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
6411

J
Jiabin Yang 已提交
6412 6413
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
6414 6415 6416 6417

        Examples:
            .. code-block:: python

6418 6419 6420 6421
                import paddle
                import paddle.static as static

                paddle.enable_static()
6422

6423
                prog = static.default_main_program()
6424 6425
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
6426
        """
Q
Qiao Longfei 已提交
6427 6428
        return self.blocks[index]

Y
Yu Yang 已提交
6429
    def current_block(self):
Y
yuyang18 已提交
6430
        """
6431 6432
        .. note::
            This API has no effect in Dygraph mode.
6433

J
Jiabin Yang 已提交
6434 6435
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
6436

J
Jiabin Yang 已提交
6437 6438
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
6439

6440 6441 6442
        Examples:
            .. code-block:: python

6443 6444 6445 6446
                import paddle
                import paddle.static as static

                paddle.enable_static()
6447

6448
                prog = static.default_main_program()
6449 6450
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
6451
        """
Y
Yu Yang 已提交
6452 6453
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
6454
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
6455 6456 6457 6458 6459
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
6460

Y
yuyang18 已提交
6461 6462 6463 6464 6465
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
6466
        new_block_idx = len(self.blocks)
6467 6468 6469 6470 6471
        parent = (
            self.current_block()
            if parent_idx is None
            else self.block(parent_idx)
        )
F
update  
fengjiayi 已提交
6472
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
6473 6474 6475 6476
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
6477
    def _rollback(self):
Y
yuyang18 已提交
6478 6479 6480 6481 6482
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
6483 6484
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
6485
    def _sync_with_cpp(self):
Y
yuyang18 已提交
6486 6487 6488 6489 6490 6491 6492 6493 6494 6495
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
6496 6497 6498
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
6499
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
6500

W
Wu Yi 已提交
6501
    def _copy_param_info_from(self, other):
6502
        """
6503
        Copy the information of parameters from other program.
D
dzhwinter 已提交
6504

Y
yuyang18 已提交
6505 6506 6507
        Notes: This is a very low level API. Users should not invoke it
        directly.

6508 6509 6510 6511 6512 6513 6514
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6515 6516
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6517 6518
                % type(other)
            )
6519

W
Wu Yi 已提交
6520
        self.global_block()._copy_param_info_from(other.global_block())
6521

6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6533 6534
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6535 6536
                % type(other)
            )
6537 6538
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
6539
        self._parameters_on_pservers = other._parameters_on_pservers
6540
        self._endpoints = other._endpoints
6541
        self._ps_endpoint = other._ps_endpoint
6542 6543
        self._distributed_lookup_table = other._distributed_lookup_table

6544
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
6545 6546
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
6547

Y
yuyang18 已提交
6548 6549 6550
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
6551 6552
        Args:
            other(Program): Other program
6553
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
6554 6555
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is
            cloned from block 0 in other, etc. Default is None, which means default mapped,
6556
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
6557 6558 6559 6560 6561

        Returns:
            None
        """
        if not isinstance(other, Program):
6562 6563
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6564 6565
                % type(other)
            )
F
fengjiayi 已提交
6566

6567 6568
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
6569
                i: i for i in range(self.desc.num_blocks())
6570
            }
6571 6572 6573

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
6574 6575
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
6576
            for var in list(block.vars.values()):
6577 6578 6579 6580 6581 6582 6583
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
6584

6585
    def list_vars(self):
Y
yuyang18 已提交
6586
        """
6587
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
6588

J
Jiabin Yang 已提交
6589
        Returns:
6590
            iterable Tensors: The Generator will yield every Tensor in this program.
6591 6592 6593 6594

        Examples:
            .. code-block:: python

6595 6596
                import paddle
                import paddle.static as static
6597

6598 6599 6600 6601 6602
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
6603 6604
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
6605

6606 6607
                # var img : LOD_TENSOR.shape(-1, 1, 28, 28).dtype(float32).stop_gradient(True)
                # var label : LOD_TENSOR.shape(-1, 1).dtype(int64).stop_gradient(True)
Y
yuyang18 已提交
6608
        """
6609
        for each_block in self.blocks:
6610
            for each_var in list(each_block.vars.values()):
6611 6612
                yield each_var

6613 6614 6615 6616 6617 6618 6619 6620 6621 6622
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

6623 6624 6625 6626
                import paddle
                import paddle.static as static

                paddle.enable_static()
6627

6628 6629
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
6630
                hidden = static.nn.fc(x=data, size=10)
6631 6632
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
6633 6634 6635 6636 6637 6638 6639

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
6640 6641
                # persist trainable param fc_0.w_0 : LOD_TENSOR.shape(13, 10).dtype(float32).stop_gradient(False)
                # persist trainable param fc_0.b_0 : LOD_TENSOR.shape(10,).dtype(float32).stop_gradient(False)
6642 6643 6644 6645 6646 6647 6648 6649 6650 6651
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

6652 6653 6654 6655 6656 6657 6658 6659 6660
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
6661 6662 6663
            mode(str, optional): Source of the obtained parameters and buffers.
                    'opt' :  The return value only contains the variable in the optimizer.
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.
6664 6665
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
6666
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
6694
        # can not be imported at the begainning of this file.
6695 6696
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
6697

6698 6699
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
6700 6701 6702 6703
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".format(
                    type(scope)
                )
            )
6704 6705 6706 6707 6708

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
6709 6710
            raise TypeError(
                "Type of `mode` should be string, but received {}.".format(
6711 6712 6713
                    type(mode)
                )
            )
6714 6715 6716 6717 6718

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
6719 6720 6721 6722 6723
            if (
                var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH
                or var.desc.type() == core.VarDesc.VarType.FETCH_LIST
                or var.desc.type() == core.VarDesc.VarType.READER
            ):
6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
6742 6743 6744 6745
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".format(
                        mode
                    )
                )
6746 6747 6748 6749 6750 6751 6752 6753

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
6754 6755 6756 6757
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".format(
                        var.name
                    )
                )
6758 6759 6760 6761 6762 6763
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
6764
        Set parameters and persistable buffers in state_dict to program.
6765
        An exception will throw if shape or dtype of the parameters is not match.
6766

6767 6768 6769 6770
        .. note::
            This function MUST called after run start_up_program

        Args:
6771
            state_dict(dict): the dict store parameters and persistable buffers.
6772 6773
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
6774
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6775 6776
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
6777

6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
6807 6808 6809
                    type(state_dict)
                )
            )
6810 6811

        vars_dict = {var.name: var for var in self.list_vars()}
6812 6813 6814
        condition = (
            True if 'StructuredToParameterName@@' in state_dict else False
        )
6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
6826 6827
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
6828 6829
                except TypeError as err:
                    warnings.warn(
6830 6831
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
6832
            else:
6833
                warnings.warn(
6834 6835 6836 6837 6838 6839
                    (
                        "Skip loading for '{0}'. Because '{0}' not in the program.".format(
                            name
                        )
                    )
                )
6840

Y
Yu Yang 已提交
6841

6842
class Parameter(Variable, metaclass=ParameterMetaClass):
6843
    """
6844
    Parameter is derived from Variable. A parameter is a persistable
6845
    Variable, and will be updated by optimizers after each iteration.
6846
    The training of a neural network is essentially the updating of
6847 6848
    its parameters.

6849
    Relative to a general Variable, a Parameter has several its own
6850 6851
    member variables:

6852 6853 6854 6855 6856 6857 6858 6859 6860 6861
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
6862
        need_clip (bool): Whether the parameter gradient need to be cliped
6863
            in optimizer. Default is True.
6864 6865
    """

6866 6867 6868 6869 6870 6871
    def __init__(
        self,
        block,
        shape,
        dtype,
        type=core.VarDesc.VarType.LOD_TENSOR,
6872
        **kwargs,
6873
    ):
6874 6875 6876 6877 6878
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6879 6880
        for each in shape:
            if each < 0:
6881 6882
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
6883 6884 6885 6886 6887 6888 6889 6890 6891 6892
                    % list(shape)
                )

        Variable.__init__(
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
6893
            **kwargs,
6894
        )
Y
Yu Yang 已提交
6895 6896 6897 6898
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6899 6900
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6901
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6902

6903 6904
        self.need_clip = kwargs.get('need_clip', True)

6905 6906
        self.is_distributed = False

6907 6908
        self.is_parameter = True

F
fengjiayi 已提交
6909
    def __str__(self):
6910
        return self._to_readable_code()
F
fengjiayi 已提交
6911

F
update  
fengjiayi 已提交
6912 6913 6914
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6915

F
update  
fengjiayi 已提交
6916 6917 6918 6919 6920 6921 6922 6923
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6924 6925 6926 6927 6928 6929 6930 6931 6932
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6933
        """
6934
        assert isinstance(throw_on_error, bool) and isinstance(
6935 6936
            with_details, bool
        )
F
update  
fengjiayi 已提交
6937 6938
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
6939 6940 6941 6942 6943 6944 6945
            additional_attr = (
                "trainable",
                "optimize_attr",
                "regularizer",
                "do_model_average",
                "need_clip",
            )
F
update  
fengjiayi 已提交
6946
            for attr_name in additional_attr:
6947
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
F
update  
fengjiayi 已提交
6948 6949
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6950 6951 6952 6953
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6954

6955 6956
class ParamBase(core.VarBase):
    """
6957 6958
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode).
    A ParamBase is a persistable Tensor, and will be updated by optimizers
6959
    after each iteration.
6960 6961 6962
    The training of a neural network is essentially the updating of
    its ParamBase.

6963
    Relative to a general Tensor, a ParamBase has several its own
6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
6976
        need_clip (bool): Whether the parameter gradient need to be cliped
6977
            in optimizer. Default is True.
6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
6991 6992
                    % list(shape)
                )
6993 6994 6995 6996 6997 6998 6999

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

7000
        super().__init__(
7001 7002 7003 7004 7005 7006
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            core.VarDesc.VarType.LOD_TENSOR,
            True,
        )
7007

7008 7009
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
7010 7011 7012 7013 7014 7015 7016

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

7017 7018
        self.need_clip = kwargs.get('need_clip', True)

7019
        self.is_distributed = kwargs.get('is_distributed', False)
7020
        # self.block = default_main_program().global_block()
7021

7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
7033 7034
                type(trainable),
            )
7035

7036
    def __str__(self):
7037
        """
7038
        Convert a ParamBase object to a readable string.
7039

7040
        Returns(str): A readable string.
7041 7042 7043 7044

        Examples:
            .. code-block:: python

7045
                import paddle
7046 7047 7048 7049 7050 7051 7052
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
7053
        """
7054
        return "Parameter containing:\n{tensor}".format(
7055
            tensor=super().__str__()
7056
        )
7057

7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
7069

7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

7088 7089 7090 7091
    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
7092 7093 7094 7095 7096 7097
        return new_param

    __repr__ = __str__


if hasattr(core, "eager"):
7098
    _core_eager_eagertensor = core.eager.Tensor
7099 7100 7101 7102 7103 7104
else:
    _core_eager_eagertensor = object


class EagerParamBase(_core_eager_eagertensor):
    """
7105 7106
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode).
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers
7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
7124
        need_clip (bool): Whether the parameter gradient need to be cliped
7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
7139 7140
                    % list(shape)
                )
7141 7142 7143 7144 7145 7146 7147

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

7148 7149 7150
        if isinstance(shape, core.eager.Tensor):
            shape = shape.numpy()

7151
        super().__init__(
7152 7153 7154 7155 7156 7157
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            core.VarDesc.VarType.LOD_TENSOR,
            True,
        )
7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
7172 7173 7174
        # hook functions for lazy initialization
        self._init_func = None
        self._init_op_creator = None
7175 7176

    def set_init_func(self, obj):
7177
        self._init_func = obj
7178 7179 7180

    @dygraph_only
    def initialize(self):
7181 7182 7183
        assert (
            self._init_func is not None
        ), "Required self._init_func is not None, but received None."
7184
        self._init_func()
7185
        # clear function handle to release resource
7186
        self._init_func = None
7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
7199 7200
                type(trainable),
            )
7201

7202 7203 7204 7205
    def _create_init_op(self, block):
        """
        Call init_op_creator function to create initializer operation in block.
        """
7206 7207 7208
        assert (
            self._init_op_creator is not None
        ), "Required self._init_op_creator is not None, but received None."
7209 7210
        self._init_op_creator(block)

7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229
    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
7230
            tensor=super().__str__()
7231
        )
7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
7267 7268
        return new_param

7269 7270 7271
    __repr__ = __str__


Y
Yu Yang 已提交
7272
# program is a global instance.
Y
Yu Yang 已提交
7273 7274
_main_program_ = Program()
_startup_program_ = Program()
7275
_startup_program_._is_start_up_program_ = True
7276

7277

7278
def default_startup_program():
Y
Yu Yang 已提交
7279
    """
Y
yuyang18 已提交
7280 7281
    Get default/global startup program.

7282
    The :code:`paddle.nn` function will append the initialization operators into startup program.
7283
    The :code:`startup_program` will initialize the parameters by the OPs.
T
tangwei12 已提交
7284

7285 7286
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
7287

7288 7289
    Returns:
        Program: current default startup program.
7290

7291
    Returns type:
7292 7293 7294 7295

    Examples:
        .. code-block:: python

7296
            import paddle
7297

7298
            paddle.enable_static()
7299 7300 7301 7302
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
7303
    """
Y
Yu Yang 已提交
7304
    return _startup_program_
7305

7306

7307
def default_main_program():
Y
Yu Yang 已提交
7308
    """
7309
    This API can be used to get ``default main program`` which store the
7310
    descriptions of Ops and tensors.
T
tangwei12 已提交
7311

7312 7313
    For example ``z = paddle.add(x, y)`` will create a new ``add``
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` .
Y
yuyang18 已提交
7314

7315
    The ``default main program`` is the default value for ``Program`` parameter in
7316
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
7317
    :code:`default_main_program` when the program is not specified.
7318

7319
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
7320

Y
Yu Yang 已提交
7321
    Returns:
7322
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
7323 7324 7325 7326

    Examples:
        ..  code-block:: python

7327
            import paddle
7328

7329
            paddle.enable_static()
7330
            # Sample Network:
7331 7332 7333
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
7334

7335 7336 7337
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
7338
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
7339
    """
Y
Yu Yang 已提交
7340
    return _main_program_
Y
Yu Yang 已提交
7341 7342 7343 7344 7345


def switch_main_program(program):
    """
    Switch the main program to a new program.
7346

Y
Yu Yang 已提交
7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
7361
    Switch the startup program to a new program
Y
Yu Yang 已提交
7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
7374
@signature_safe_contextmanager
Y
Yu Yang 已提交
7375 7376
def program_guard(main_program, startup_program=None):
    """
7377 7378
    :api_attr: Static Graph

7379 7380 7381
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
7382

G
guofei 已提交
7383
    Args:
7384
        main_program(Program): New main program inside ``with`` statement.
7385 7386
        startup_program(Program, optional): New startup program inside ``with``
            statement. :code:`None` means not changing startup program,
G
guofei 已提交
7387 7388 7389
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
7390
    Examples:
7391
       .. code-block:: python
T
tangwei12 已提交
7392

7393
          import paddle
Y
yuyang18 已提交
7394

7395 7396 7397 7398 7399
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
7400
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
7401 7402 7403

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
7404

Y
Yu Yang 已提交
7405
    Examples:
7406
       .. code-block:: python
Y
yuyang18 已提交
7407

7408
          import paddle
7409

7410 7411 7412 7413 7414
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
7415

Y
Yu Yang 已提交
7416
    """
7417
    from .data_feeder import check_type
7418 7419 7420 7421

    check_type(
        main_program, 'main_program', Program, 'paddle.static.program_guard'
    )
Y
Yu Yang 已提交
7422 7423
    main_program = switch_main_program(main_program)
    if startup_program is not None:
7424 7425 7426 7427 7428 7429
        check_type(
            startup_program,
            'startup_program',
            Program,
            'paddle.static.program_guard',
        )
7430 7431
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
7432
        startup_program = switch_startup_program(startup_program)
7433 7434 7435 7436 7437 7438
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
7439 7440


W
Wu Yi 已提交
7441
def _get_var(name, program=None):
X
xuwei06 已提交
7442
    """
Y
yuyang18 已提交
7443
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
7444

X
xuwei06 已提交
7445 7446 7447
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
7448
        If None, default_global_program() will be used.
X
xuwei06 已提交
7449 7450 7451 7452 7453 7454 7455

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
7456
    assert isinstance(program, Program)
X
xuwei06 已提交
7457 7458

    return program.global_block().var(name)
7459 7460


S
rename  
sneaxiy 已提交
7461
@signature_safe_contextmanager
L
lujun 已提交
7462 7463
def _dygraph_guard(tracer):
    global _dygraph_tracer_
7464
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
7465
    _dygraph_tracer_ = tracer
7466
    core._switch_tracer(tracer)
M
minqiyang 已提交
7467

7468 7469 7470
    try:
        yield
    finally:
7471 7472
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
7473 7474


S
rename  
sneaxiy 已提交
7475
@signature_safe_contextmanager
L
lujun 已提交
7476
def _dygraph_place_guard(place):
7477 7478 7479
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
7480 7481
    _set_dygraph_tracer_expected_place(place)

7482 7483 7484
    try:
        yield
    finally:
7485
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
7486
        _set_dygraph_tracer_expected_place(_global_expected_place_)
7487 7488


7489 7490 7491 7492 7493 7494 7495 7496 7497 7498
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
7499

7500
    Note:
7501
        The API only supports static graph mode.
7502 7503 7504 7505

    A context manager that specifies the device on which the OP will be placed.

    Args:
7506
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
7507
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs.
7508 7509 7510 7511 7512 7513 7514
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
7515

7516
        .. code-block:: python
7517

7518
            # required: gpu
Z
Zhang Ting 已提交
7519
            import paddle
7520

Z
Zhang Ting 已提交
7521 7522 7523
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
7524
            if support_gpu:
Z
Zhang Ting 已提交
7525
                place = paddle.CUDAPlace(0)
7526 7527

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
7528 7529 7530
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
7531

Z
Zhang Ting 已提交
7532
            with paddle.static.device_guard("cpu"):
7533
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
7534 7535
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
7536
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
7537
                out = paddle.reshape(data1, shape=shape)
7538

Z
Zhang Ting 已提交
7539 7540
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
7541 7542 7543
            result = exe.run(fetch_list=[out])
    """

7544 7545 7546 7547 7548
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
7549
    if device not in ['cpu', 'gpu', 'npu', 'xpu', 'mlu', '', None]:
7550
        raise ValueError(
7551
            "The Attr(device) should be 'cpu' 'npu' 'xpu' 'mlu' or 'gpu', and it can also be empty string or None "
7552 7553
            "when there is no need to specify device. But received %s" % device
        )
7554 7555
    if index:
        device = ":".join([device, index])
7556
    pre_device = switch_device(device)
7557 7558 7559 7560
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
7561 7562


7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574
def _switch_cuda_graph_mode(cuda_graph_attr):
    global _current_cuda_graph_mode
    pre_mode = _current_cuda_graph_mode
    _current_cuda_graph_mode = cuda_graph_attr
    return pre_mode


@signature_safe_contextmanager
def _cuda_graph_guard(cuda_graph_attr=None):
    """

    Note:
7575
        The API only supports static graph mode.
7576

7577
    A context manager that specifies the cuda_graph_mode which indicating the cuda graph capture under static graph mode.
7578 7579 7580 7581 7582

    Args:
        cuda_graph_attr(str|None): The cuda graph attr with the format of:
                                   cuda_graph_capture_mode;memory_pool_id;cuda_graph_id
    """
7583 7584
    assert (
        not _non_static_mode()
7585
    ), "cuda_graph_guard only works under static graph mode"
7586 7587
    assert (
        core.is_compiled_with_cuda()
7588 7589 7590 7591 7592 7593 7594 7595
    ), "cuda_graph_guard context can be only used when Paddle is compiled with cuda"
    pre_mode = _switch_cuda_graph_mode(cuda_graph_attr)
    try:
        yield
    finally:
        _switch_cuda_graph_mode(pre_mode)


G
guofei 已提交
7596 7597 7598
def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
7599
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7600 7601 7602 7603 7604 7605 7606

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

7607 7608
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
7609 7610 7611 7612
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
7613 7614
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
7615 7616
        else:
            raise ValueError(
7617 7618
                "Flag %s cannot set its value through this function." % (key)
            )
G
guofei 已提交
7619 7620 7621 7622 7623


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
7624
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7625 7626 7627 7628 7629 7630 7631 7632 7633 7634

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

7635
            import paddle
G
guofei 已提交
7636 7637

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
7638
            res = paddle.get_flags(flags)
G
guofei 已提交
7639 7640 7641 7642 7643 7644
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
7645
            if _global_flags().is_public(key):
7646
                value = _global_flags()[key]
G
guofei 已提交
7647 7648 7649 7650
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
7651 7652 7653
                    'Flag %s cannot get its value through this function.'
                    % (key)
                )
G
guofei 已提交
7654
    elif isinstance(flags, str):
7655
        if _global_flags().is_public(flags):
7656
            value = _global_flags()[flags]
G
guofei 已提交
7657 7658 7659 7660
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
7661 7662
                'Flag %s cannot get its value through this function.' % (flags)
            )
G
guofei 已提交
7663 7664 7665
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
7666 7667 7668 7669 7670 7671


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685
    if isinstance(
        place,
        (
            core.Place,
            core.XPUPlace,
            core.CPUPlace,
            core.CUDAPinnedPlace,
            core.CUDAPlace,
            core.NPUPlace,
            core.IPUPlace,
            core.MLUPlace,
            core.CustomPlace,
        ),
    ):
7686 7687 7688 7689
        return place

    if not isinstance(place, str):
        raise ValueError(
7690 7691
            "place only support string which is 'Place' and so on."
        )
7692 7693

    place = place.lower()
7694
    if place == "cpu":
7695
        return core.CPUPlace()
7696

7697
    if place == "device":
7698 7699
        return core.Place()

7700
    # GPU
7701 7702 7703 7704
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
7705 7706 7707
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with CUDA".format(avaliable_gpu_place)
            )
7708 7709 7710 7711 7712 7713 7714 7715 7716
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
7717 7718

    # XPU
7719 7720 7721 7722
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
7723 7724 7725
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with XPU".format(avaliable_xpu_place)
            )
7726 7727 7728 7729
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
7730 7731 7732 7733 7734 7735

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
7736 7737 7738
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with NPU".format(avaliable_npu_place)
            )
7739 7740 7741 7742 7743
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

J
jianghaicheng 已提交
7744 7745 7746 7747 7748
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
7749 7750 7751
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with IPU".format(avaliable_ipu_place)
            )
J
jianghaicheng 已提交
7752 7753 7754 7755 7756
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

7757 7758 7759 7760 7761
    # MLU
    avaliable_mlu_place = re.match(r'mlu:\d+', place)
    if avaliable_mlu_place:
        if not core.is_compiled_with_mlu():
            raise ValueError(
7762 7763 7764
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with MLU".format(avaliable_mlu_place)
            )
7765 7766 7767 7768 7769
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.MLUPlace(device_id)

7770
    raise ValueError(
7771 7772 7773 7774
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace, IPUPlace, MLUPlace and NPUPlace, but received {}.".format(
            place
        )
    )
7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret