framework.py 260.1 KB
Newer Older
G
gouzil 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
import collections
X
Xin Pan 已提交
16
from collections import defaultdict
H
huzhiqiang 已提交
17
from collections.abc import Iterable
Q
qiaolongfei 已提交
18
import contextlib
19
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
20
import os
F
fengjiayi 已提交
21
import re
22
import traceback
23
import copy
24
from types import MethodType, FunctionType
25

Y
Yu Yang 已提交
26
import numpy as np
27
import subprocess
S
sneaxiy 已提交
28
import multiprocessing
29
import sys
30
import logging
31
from .proto import framework_pb2
32 33

from . import core
34
from . import unique_name
35 36
import paddle.version as fluid_version
import warnings
37
import functools
38
from .variable_index import _getitem_impl_, _setitem_impl_
Y
Yu Yang 已提交
39

40
__all__ = [
41 42 43 44
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
45
    'name_scope',
J
jianghaicheng 已提交
46
    'ipu_shard_guard',
47
    'set_ipu_shard',
S
sneaxiy 已提交
48 49
    'cuda_places',
    'cpu_places',
50
    'xpu_places',
51
    'mlu_places',
S
sneaxiy 已提交
52
    'cuda_pinned_places',
J
Jiabin Yang 已提交
53
    '_non_static_mode',
L
lujun 已提交
54
    'in_dygraph_mode',
55
    'is_compiled_with_cinn',
C
chengduo 已提交
56
    'is_compiled_with_cuda',
57
    'is_compiled_with_rocm',
58
    'is_compiled_with_xpu',
59
    'is_compiled_with_npu',
60
    'Variable',
61
    'require_version',
62
    'device_guard',
G
guofei 已提交
63 64
    'set_flags',
    'get_flags',
65
]
Y
Yu Yang 已提交
66

Q
qiaolongfei 已提交
67 68 69 70
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
71 72
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
73
_dygraph_tracer_ = None
74
_in_eager_mode_ = os.environ.get('FLAGS_enable_eager_mode', '1') == '1'
75
_global_expected_place_ = None
76
_current_device = None
77
global_prog_seed = 0
78
_current_pipeline_stage = None
79
_already_patch_eager_tensor = False
J
Jiabin Yang 已提交
80
_already_patch_varbase = False
81
_current_cuda_graph_mode = None
82
_global_flags_ = core.globals()
83 84 85 86 87 88
_enable_standalone_executor_ = os.environ.get(
    'FLAGS_USE_STANDALONE_EXECUTOR', None
)
_dy2st_enable_standalone_executor_ = os.environ.get(
    'FLAGS_DY2ST_USE_STANDALONE_EXECUTOR', 1
)
J
Jiabin Yang 已提交
89 90

# Some explanation of our execution system 2022.03
91
# For now we have 3 kinds of execution system, since we refactored dygraph mode to
J
Jiabin Yang 已提交
92
# build a fast execution system for dynamic mode. But we can't just remove all legacy
93
# code once we present the new system for some historical reason. That's why we have
J
Jiabin Yang 已提交
94
# these flags.
95
#
J
Jiabin Yang 已提交
96
# 1. _non_static_mode():
97
# _non_static_mode means  we are now running in legacy dygraph mode or dygraph mode.
J
Jiabin Yang 已提交
98 99 100 101
# 2. dygraph_mode():
# This flags inidicates we are now running in dygraph mode which called eager mode before.
# 3. _in_legacy_dygraph():
# This flags inidicates we are now running in legacy dygraph mode
102
#
J
Jiabin Yang 已提交
103
# They have a relation ship as below:
104
# Both dygraph_mode and _in_legacy_dygraph are _non_static_mode, but if you are running in
J
Jiabin Yang 已提交
105
# dygraph mode means you are not in _in_legacy_dygraph.
106
#
J
Jiabin Yang 已提交
107 108 109 110 111 112
# Why we have to make different of _in_legacy_dygraph and dygraph_mode?
# In some performance issue, we find that python if statement cause server performance problem
# and we need our new dygraph mode becomes as fast as it could be. That's why we make these flags
# to make sure in most case, we find new dygraph mode first with only one if statement.


113 114 115 116 117
def _update_monkey_methods(is_eager):
    """
    Update monkey methods of VarBase or eager.Tensor while
    switching eager mode and legacy mode.
    """
118
    from paddle import _C_ops, _legacy_C_ops
119 120 121
    from .dygraph.varbase_patch_methods import monkey_patch_varbase
    from .dygraph import monkey_patch_math_varbase

122 123 124
    global _already_patch_eager_tensor
    global _already_patch_varbase

125
    assert isinstance(is_eager, bool)
126
    # switch into eager mode
127
    if is_eager:
128
        _legacy_C_ops.switch_to_eager_ops()
129 130 131 132 133 134
        if not _already_patch_eager_tensor:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_eager_tensor = True
    # switch back into legacy mode
135
    else:
136
        _legacy_C_ops.switch_to_core_ops()
137 138 139 140 141
        if not _already_patch_varbase:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_varbase = True
142

143 144 145 146 147 148
    # switch Paddle.Tensor bind type
    _switch_tensor_bind_type(is_eager)


def _switch_tensor_bind_type(is_eager):
    import paddle
149

150 151 152 153 154
    if is_eager:
        paddle.Tensor = core.eager.Tensor
    else:
        paddle.Tensor = core.VarBase
    paddle.Tensor.__qualname__ = 'Tensor'
155 156


J
Jiabin Yang 已提交
157 158 159
def _enable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = False
160
    _update_monkey_methods(is_eager=False)
J
Jiabin Yang 已提交
161 162 163 164 165


def _disable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = True
166
    _update_monkey_methods(is_eager=True)
J
Jiabin Yang 已提交
167 168 169 170 171 172 173


def _in_eager_without_dygraph_check():
    global _in_eager_mode_
    return _in_eager_mode_


174 175 176 177 178 179 180 181 182
# FIXME(dev): We haven't fully verified eager mode on XPU/NPU et.al but
# only GPU/CPU. Remove this after we improve this feature.
_is_first_import_ = True


def _fallback_legacy_dygraph():
    global _in_eager_mode_
    global _is_first_import_
    need_fallback = False
C
Chen Weihang 已提交
183
    # Only enable eager on CPU/GPU/XPU
184 185 186 187 188
    is_not_support = (
        core.is_compiled_with_npu()
        or core.is_compiled_with_ipu()
        or core.is_compiled_with_mlu()
    )
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209

    if _in_eager_mode_ and is_not_support:
        # switch into legacy dygraph mode
        warnings.warn(
            "We will fallback into legacy dygraph on NPU/XPU/MLU/IPU/ROCM devices. Because we only support new eager dygraph mode on CPU/GPU currently. "
        )
        _in_eager_mode_ = False
        if not _is_first_import_:
            _enable_legacy_dygraph()
        need_fallback = True

    need_fallback = False
    _is_first_import_ = False

    return need_fallback


# switch into legacy mode if need while import paddle
_fallback_legacy_dygraph()


J
Jiabin Yang 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
def in_dygraph_mode():
    """

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .

    Returns:
        bool: Whether paddle runs in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode

    """
    return (_dygraph_tracer_ is not None) and _in_eager_mode_


def _in_legacy_dygraph():
    return (not _in_eager_mode_) and (_dygraph_tracer_ is not None)


def _non_static_mode():
    return _dygraph_tracer_ is not None
246 247 248


@signature_safe_contextmanager
J
Jiabin Yang 已提交
249
def _test_eager_guard(place=None):
C
Chen Weihang 已提交
250 251
    # FIXME(dev): We haven't fully verified eager mode on NPU et.al but
    # only GPU/CPU/XPU. Remove this after we improve this feature.
252 253 254
    already_fallback = _fallback_legacy_dygraph()
    if not already_fallback:
        _disable_legacy_dygraph()
255
    try:
J
Jiabin Yang 已提交
256
        yield
257
    finally:
258 259
        if not already_fallback:
            _enable_legacy_dygraph()
260 261


262 263
global_ipu_index = -1
global_ipu_stage = -1
J
jianghaicheng 已提交
264 265 266 267
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


L
Leo Chen 已提交
268 269 270 271 272 273 274 275 276 277 278
@signature_safe_contextmanager
def _enable_standalone_executor(enable=True):
    global _enable_standalone_executor_
    original_ = _enable_standalone_executor_
    _enable_standalone_executor_ = enable
    try:
        yield
    finally:
        _enable_standalone_executor_ = original_


J
jianghaicheng 已提交
279
@signature_safe_contextmanager
280
def ipu_shard_guard(index=-1, stage=-1):
J
jianghaicheng 已提交
281 282 283 284
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
W
Weilong Wu 已提交
285
        index(int, optional): Specify which ipu the Tensor is computed on, (such as '0, 1, 2, 3').
286
            The default value is -1, which means the Op only run on IPU 0.
W
Weilong Wu 已提交
287
        stage(int, optional): Specify the computation order of the sharded model(such as '0, 1, 2, 3').
288
            The sharded model will be computed from small to large. The default value is -1,
J
jianghaicheng 已提交
289
            which means no pipelining computation order and run Ops in terms of graph.
290

G
gouzil 已提交
291 292 293 294 295 296 297
    Note:
        Only if the enable_manual_shard=True, the 'index' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        Only if the enable_pipelining=True, the 'stage' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        A index is allowed to match none stage or a stage. A stage is only allowed to match a new or
        duplicated index.
J
jianghaicheng 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


332 333 334 335
def set_ipu_shard(call_func, index=-1, stage=-1):
    """
    Shard the ipu with the given call function. Set every ops in call function to the given ipu sharding.

G
gouzil 已提交
336 337 338 339 340
    Note:
        Only when enable_manual_shard=True to set the index to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        Only when enable_pipelining=True to set stage to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        An index supports a corresponding None stage or a stage, and a stage only supports a new index or a duplicate index.

341 342 343 344 345
    Args:
        call_func(Layer|function): Specify the call function to be wrapped.
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is -1, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
346
            The sharded model will be computed from small to large. The default value is -1,
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
            which means no pipelining computation order and run Ops in terms of graph.

    Returns:
        The wrapped call function.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='float32')
            relu = paddle.nn.ReLU()
            relu = paddle.static.set_ipu_shard(relu, index=1, stage=1)
            relu(a)
    """

    def decorate(func):
        def wrapper(*args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return func(*args, **kwargs)

        return wrapper

    from .dygraph.layers import Layer
373

374 375 376 377 378
    if not isinstance(call_func, Layer):
        if callable(call_func):
            return decorate(call_func)
        else:
            raise TypeError(
379 380
                "Unsupported type. Only accept paddle.nn.Layer or function."
            )
381 382 383 384 385 386 387 388 389 390 391 392

    # patch paddle.nn.Layer
    class BlockFn(type(call_func)):
        def __call__(self, *args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return super().__call__(*args, **kwargs)

    BlockFn.__name__ = type(call_func).__name__
    call_func.__class__ = BlockFn
    return call_func


393 394
def require_version(min_version, max_version=None):
    """
395 396 397
    Check if the installed version of PaddlePaddle is in [min_version, max_version],
    if the installed version is lower than ``min_version`` or higher than ``max_version``,
    an exception will be thrown, NO returns if the installed version is satisfied.
398

399 400 401 402
    Args:
        min_version (str): the minimum version required (like '1.4.0').
        max_version (str, optional): the max version required (like '1.6.0'), default is None,
            meaning any version equal or higher than ``min_version`` is acceptable.
403

404 405
    Returns:
        None.
406

407 408 409 410 411 412
    Raises:
        TypeError: if the type of ``min_version`` is not str.
        TypeError: if the type of ``max_version`` is not str or type(None).
        ValueError: if the value of ``min_version`` is not in version format.
        ValueError: if the value of ``max_version`` is not in version format or None.
        Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.
413

414 415
    Examples:
        .. code-block:: python
416

417
            import paddle.fluid as fluid
418

419 420
            # any version >= 0.1.0 is acceptable.
            fluid.require_version('0.1.0')
421

422 423 424
            # if 0.1.0 <= version <= 10.0.0, it is acceptable.
            fluid.require_version(min_version='0.1.0', max_version='10.0.0')
    """
425 426 427
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
428 429
            % (type(min_version))
        )
430 431 432 433

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
434 435
            % (type(max_version))
        )
436 437 438 439 440

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
441 442
            "like '1.5.2.0', but received %s" % min_version
        )
443 444 445 446 447 448

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
449 450
                "like '1.5.2.0', but received %s" % max_version
            )
451 452

    version_installed = [
453 454 455 456
        fluid_version.major,
        fluid_version.minor,
        fluid_version.patch,
        fluid_version.rc,
457 458 459 460
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
461
        for i in range(len(ver_a)):
462 463 464 465 466 467 468 469 470 471 472
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
473 474 475
                "please make sure the version is good with your code."
                % (min_version, max_version, fluid_version.full_version)
            )
476 477 478 479
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
480 481 482
                "please make sure the version is good with your code."
                % (min_version, fluid_version.full_version)
            )
483 484 485
        return

    min_version_split = min_version.split('.')
486 487 488
    min_version_to_check = (
        min_version_split + zero_version[len(min_version_split) :]
    )
489 490 491

    if max_version is not None:
        max_version_split = max_version.split('.')
492 493 494
        max_version_to_check = (
            max_version_split + zero_version[len(max_version_split) :]
        )
495

496 497 498 499
        if (
            version_cmp(version_installed, max_version_to_check) > 0
            or version_cmp(version_installed, min_version_to_check) < 0
        ):
500 501
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
502 503
                % (min_version, max_version, fluid_version.full_version)
            )
504 505 506 507 508
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
509 510
                % (min_version, fluid_version.full_version, min_version)
            )
511 512


513 514
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
515 516 517
        assert not _non_static_mode(), (
            "We don't support %s in dynamic graph mode" % func.__name__
        )
518 519 520 521 522 523 524
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
525 526 527 528
        assert _non_static_mode(), (
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
529 530 531 532 533
        return func(*args, **kwargs)

    return __impl__


534 535 536
def _non_static_only_(func):
    def __impl__(*args, **kwargs):
        from .dygraph.base import in_declarative_mode
537 538 539 540 541

        assert _non_static_mode() or in_declarative_mode(), (
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
542 543 544 545 546
        return func(*args, **kwargs)

    return __impl__


547 548
def _static_only_(func):
    def __impl__(*args, **kwargs):
549 550 551 552
        assert not _non_static_mode(), (
            "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode."
            % func.__name__
        )
553 554 555 556 557
        return func(*args, **kwargs)

    return __impl__


558 559 560 561 562
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


563 564 565 566 567 568
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
569
# same base class.
570 571 572
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
573 574 575 576
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
577 578
            % (func.__name__, func.__name__)
        )
579 580 581 582

    return __impl__


T
tangwei12 已提交
583 584
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
585 586 587 588 589 590 591 592 593
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
594 595
                DeprecationWarning,
            )
596 597 598 599 600 601 602
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


603 604
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
605
static_only = wrap_decorator(_static_only_)
606
fake_interface_only = wrap_decorator(_fake_interface_only_)
607
non_static_only = wrap_decorator(_non_static_only_)
608 609


L
lujun 已提交
610 611
def _dygraph_tracer():
    return _dygraph_tracer_
612

W
Wu Yi 已提交
613

614 615 616 617
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
618
def _current_expected_place():
619 620 621
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
622 623 624 625 626
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
627
                _global_expected_place_ = core.CUDAPlace(_cuda_ids()[0])
628 629 630 631 632
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
633 634 635 636 637 638
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
639
                _global_expected_place_ = core.XPUPlace(_xpu_ids()[0])
640 641 642 643 644
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
645 646 647 648 649 650
        elif core.is_compiled_with_mlu():
            try:
                device_count = core.get_mlu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
651
                _global_expected_place_ = core.MLUPlace(_mlu_ids()[0])
652 653 654 655 656
            else:
                warnings.warn(
                    "You are using MLU version Paddle, but your MLU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
672
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
673 674


L
Leo Chen 已提交
675 676
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
677 678
    """
    convert VarBase tp numpy
T
tangwei12 已提交
679

680 681 682
    Args:
        var_base(VarBase) : the VarBase to convert
    Returns (np.ndarray): the np.ndarray contain the value of VarBase
L
Leo Chen 已提交
683 684 685 686 687 688 689 690 691
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
692
def _cpu_num():
693
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
694 695 696 697 698 699 700
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
701 702 703
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()
                )
            )
C
chengduo 已提交
704
        os.environ['CPU_NUM'] = str(1)
705
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
706 707 708 709 710 711 712 713
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
714
        device_ids = range(core.get_cuda_device_count())
C
chengduo 已提交
715
    return device_ids
S
sneaxiy 已提交
716 717


718 719 720 721 722
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
723
        device_ids = range(core.get_xpu_device_count())
724 725 726
    return device_ids


727 728 729 730 731
def _npu_ids():
    npus_env = os.getenv("FLAGS_selected_npus")
    if npus_env:
        device_ids = [int(s) for s in npus_env.split(",")]
    else:
732
        device_ids = range(core.get_npu_device_count())
733 734 735
    return device_ids


736 737 738 739 740
def _mlu_ids():
    mlus_env = os.getenv("FLAGS_selected_mlus")
    if mlus_env:
        device_ids = [int(s) for s in mlus_env.split(",")]
    else:
741
        device_ids = range(core.get_mlu_device_count())
742 743 744
    return device_ids


745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
def is_compiled_with_npu():
    """
    Whether this whl package can be used to run the model on NPU.

    Returns (bool): support npu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_npu = fluid.is_compiled_with_npu()
    """
    return core.is_compiled_with_npu()


775 776 777 778 779 780 781
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
782

783 784 785 786 787 788
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

Z
Zman 已提交
789 790
    Returns:
        None
791 792 793 794 795 796 797 798 799 800

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

    Returns (bool): `True` if CINN is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
816 817 818 819
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

820
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
821 822 823 824

    Examples:
        .. code-block:: python

825
            import paddle
826
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
827 828 829 830
    """
    return core.is_compiled_with_cuda()


831 832 833 834 835 836 837 838 839 840
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
841
            support_gpu = paddle.device.is_compiled_with_rocm()
842 843 844 845
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
846
def cuda_places(device_ids=None):
L
lujun 已提交
847
    """
848
    Note:
849 850 851
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
852
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
853 854

    If :code:`device_ids` is None, environment variable of
855
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
856
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
857
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
858
    If :code:`FLAGS_selected_gpus` is not set, all visible
859
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
860 861

    If :code:`device_ids` is not None, it should be the device
862
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
863
    the returned list would be
C
Chen Weihang 已提交
864
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
865

866
    Parameters:
867
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
868 869

    Returns:
C
Chen Weihang 已提交
870
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
871 872

    Examples:
873

L
lujun 已提交
874 875
        .. code-block:: python

C
Chen Weihang 已提交
876 877
            import paddle
            import paddle.static as static
T
tangwei12 已提交
878

879
            # required: gpu
880

C
Chen Weihang 已提交
881 882 883
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
884 885

    """
886
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
887
    if device_ids is None:
C
chengduo 已提交
888
        device_ids = _cuda_ids()
S
sneaxiy 已提交
889 890 891 892 893
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


894 895 896 897
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
898 899 900 901 902 903 904 905 906
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
907
        the returned list would be
S
sunzhongkai588 已提交
908
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
909

910 911 912 913 914 915
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
916

917 918
            # required: xpu

919 920
            import paddle
            import paddle.static as static
921

922 923 924
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
925
    assert core.is_compiled_with_xpu(), "Not compiled with XPU"
926 927 928 929 930 931 932
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


933 934
def npu_places(device_ids=None):
    """
935 936

    Note:
937
        For multi-card tasks, please use `FLAGS_selected_npus` environment variable to set the visible NPU device.
938

939 940 941 942 943 944 945 946 947
    This function creates a list of :code:`paddle.NPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_npus` would be checked first. For example, if
    :code:`FLAGS_selected_npus=0,1,2`, the returned list would
    be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    If :code:`FLAGS_selected_npus` is not set, all visible
    npu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of NPUs. For example, if :code:`device_ids=[0,1,2]`,
948
    the returned list would be
949
    [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
950

951 952 953 954 955 956 957 958 959 960 961
    Parameters:
        device_ids (list or tuple of int, optional): list of NPU device ids.
    Returns:
        list of paddle.NPUPlace: Created NPU place list.
    Examples:
        .. code-block:: python

            # required: npu

            import paddle
            import paddle.static as static
962

963 964 965
            paddle.enable_static()
            npu_places = static.npu_places()
    """
966
    assert core.is_compiled_with_npu(), "Not compiled with NPU"
967 968 969 970 971 972 973
    if device_ids is None:
        device_ids = _npu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.NPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
974
def cpu_places(device_count=None):
L
lujun 已提交
975
    """
C
Chen Weihang 已提交
976
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
977

S
add doc  
sneaxiy 已提交
978
    If :code:`device_count` is None, the device count would
979
    be determined by environment variable :code:`CPU_NUM`.
C
chengduo 已提交
980 981
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
982 983
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
984

985 986
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
987 988

    Returns:
C
Chen Weihang 已提交
989
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
990 991

    Examples:
992

L
lujun 已提交
993 994
        .. code-block:: python

C
Chen Weihang 已提交
995 996
            import paddle
            import paddle.static as static
T
tangwei12 已提交
997

C
Chen Weihang 已提交
998 999 1000
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
1001 1002
    """

S
sneaxiy 已提交
1003 1004 1005 1006 1007 1008
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
1009
    """
1010
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
1011 1012

    If :code:`device_count` is None, the device count would
1013
    be determined by environment variable :code:`CPU_NUM`.
1014 1015 1016 1017
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
1018

1019 1020
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
1021 1022

    Returns:
1023
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
1024 1025 1026 1027

    Examples:
        .. code-block:: python

1028
            import paddle.fluid as fluid
L
lujun 已提交
1029 1030 1031 1032 1033
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
1034
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
1035
    if device_count is None:
1036 1037
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
1038 1039


1040 1041
def mlu_places(device_ids=None):
    """
G
gouzil 已提交
1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054
    This function creates a list of :code:`paddle.device.MLUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_mlus` would be checked first. For example, if
    :code:`FLAGS_selected_mlus=0,1,2`, the returned list would
    be [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].
    If :code:`FLAGS_selected_mlus` is not set, all visible
    mlu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of MLUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be
    [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].

    Note:
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
        For multi-card tasks, please use `FLAGS_selected_mlus` environment variable to set the visible MLU device.

    Parameters:
        device_ids (list or tuple of int, optional): list of MLU device ids.

    Returns:
        list of paddle.device.MLUPlace: Created MLU place list.

    Examples:
        .. code-block:: python

            # required: mlu

            import paddle
            import paddle.static as static

            paddle.enable_static()
            mlu_places = static.mlu_places()
    """
1074
    assert core.is_compiled_with_mlu(), "Not compiled with MLU"
1075 1076 1077 1078 1079 1080 1081
    if device_ids is None:
        device_ids = _mlu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.MLUPlace(dev_id) for dev_id in device_ids]


1082
class NameScope:
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
1093 1094 1095
            new_child = NameScope(
                prefix + "_%d" % len(self._children[prefix]), self
            )
1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
1109
@signature_safe_contextmanager
1110 1111
def name_scope(prefix=None):
    """
1112

1113
    Generate hierarchical name prefix for the operators in Static Graph.
1114

1115
    Note:
T
Tao Luo 已提交
1116 1117
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
1118
        Don't use it in dygraph, since it will cause memory leak.
1119 1120

    Args:
T
Tao Luo 已提交
1121
        prefix(str, optional): prefix. Default is none.
1122 1123

    Examples:
1124

1125
        .. code-block:: python
T
Tink_Y 已提交
1126

1127 1128 1129
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
1130
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
1131
             b = a + 1
1132
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
1133
                c = b * 1
1134
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
1135
                d = c / 1
1136 1137 1138
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
1139 1140
                g = f - 1

1141
          # Op are created in the default main program.
1142
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
1158 1159
    """
    # TODO(panyx0718): Only [0-9a-z].
1160
    # in dygraph we don't need namescope since it will cause mem leak
J
Jiabin Yang 已提交
1161
    if _non_static_mode():
L
Leo Chen 已提交
1162 1163
        yield
    else:
T
tianshuo78520a 已提交
1164
        assert prefix, "namescope prefix can not be empty."
1165 1166
        global _name_scope
        _name_scope = _name_scope.child(prefix)
1167 1168 1169 1170
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
1183 1184
def generate_control_dev_var_name():
    import random
1185

W
Wu Yi 已提交
1186
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
1187 1188 1189 1190


def grad_var_name(var_name):
    """
1191 1192
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
1193 1194 1195
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
1196

1197
def convert_np_dtype_to_dtype_(np_dtype):
1198
    """
1199
    Convert the data type in numpy to the data type in Paddle.
1200

1201
    Args:
1202 1203
        np_dtype (np.dtype|str): The data type in numpy or valid data type
            string.
1204

1205
    Returns:
1206
        core.VarDesc.VarType: The data type in Paddle.
1207 1208

    """
1209 1210
    # Convert the data type string to numpy data type.
    if isinstance(np_dtype, str) and np_dtype == "bfloat16":
1211 1212 1213
        dtype = np.uint16
    else:
        dtype = np.dtype(np_dtype)
1214

1215
    if dtype == np.float32:
1216
        return core.VarDesc.VarType.FP32
1217
    elif dtype == np.float64:
1218
        return core.VarDesc.VarType.FP64
1219
    elif dtype == np.float16:
1220
        return core.VarDesc.VarType.FP16
1221
    elif dtype == np.int32:
1222
        return core.VarDesc.VarType.INT32
1223
    elif dtype == np.int16:
1224
        return core.VarDesc.VarType.INT16
1225
    elif dtype == np.int64:
1226
        return core.VarDesc.VarType.INT64
1227
    elif dtype == np.bool_:
1228
        return core.VarDesc.VarType.BOOL
1229
    elif dtype == np.uint16:
1230 1231 1232
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
1233 1234
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
1235 1236
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
1237 1238 1239 1240
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
1241
    else:
M
minqiyang 已提交
1242
        raise ValueError("Not supported numpy dtype %s" % dtype)
1243 1244 1245


def dtype_is_floating(dtype):
1246 1247 1248
    """
    Check the data type is floating or not.
    Args:
1249
        dtype(np.dtype|core.VarDesc.VarType): data type.
1250 1251 1252 1253 1254
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1255
    if not isinstance(dtype, core.VarDesc.VarType):
1256 1257
        dtype = convert_np_dtype_to_dtype_(dtype)

1258
    return dtype in [
1259 1260 1261
        core.VarDesc.VarType.FP16,
        core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64,
1262
    ]
1263 1264


Y
Yang Yang(Tony) 已提交
1265
def _debug_string_(proto, throw_on_error=True):
1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1277
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1278
    if not proto.IsInitialized(error_fields) and throw_on_error:
1279 1280
        raise ValueError(
            "{0} are not initialized.\nThe message is {1}:\n".format(
1281 1282 1283
                error_fields, proto
            )
        )
Y
Yu Yang 已提交
1284 1285 1286
    return proto.__str__()


1287 1288 1289 1290 1291 1292 1293 1294
def _varbase_creator(
    type=core.VarDesc.VarType.LOD_TENSOR,
    name=None,
    shape=None,
    dtype=None,
    persistable=None,
    **kwargs
):
1295 1296 1297 1298
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

J
Jiabin Yang 已提交
1299
    if _in_eager_mode_:
1300
        eager_tensor = core.eager.Tensor(
1301
            dtype if dtype else core.VarDesc.VarType.FP32,
1302 1303
            list(shape) if shape else [],
            name,
1304
            type if type else core.VarDesc.VarType.LOD_TENSOR,
1305 1306
            True if persistable else False,
        )
1307 1308
        eager_tensor.retain_grads()
        return eager_tensor
J
Jiabin Yang 已提交
1309
    else:
1310 1311 1312 1313 1314 1315 1316
        return core.VarBase(
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            type if type else core.VarDesc.VarType.LOD_TENSOR,
            True if persistable else False,
        )
1317 1318


1319 1320 1321 1322 1323 1324 1325
def _all_is_type(vals, expected_type):
    """
    Return True if type of each element is expected_type.

    NOTE: BuiltIn all() will always return True if vals is empty.
    """
    assert isinstance(vals, (list, tuple))
1326 1327
    if not vals:
        return False
1328 1329 1330
    return all(isinstance(v, expected_type) for v in vals)


1331 1332 1333 1334 1335
class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1336
            return issubclass(t, core.eager.Tensor)
1337
        else:
J
Jiabin Yang 已提交
1338 1339
            if _in_legacy_dygraph():
                return issubclass(t, core.VarBase)
1340 1341 1342 1343 1344 1345 1346 1347
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1348
            return issubclass(t, EagerParamBase)
1349
        else:
J
Jiabin Yang 已提交
1350 1351
            if _in_legacy_dygraph():
                return issubclass(t, ParamBase)
1352 1353 1354
            return issubclass(t, Parameter)


1355
class Variable(metaclass=VariableMetaClass):
1356
    """
J
Jiabin Yang 已提交
1357

U
ustiniankw 已提交
1358 1359 1360 1361
    Notes:
        The constructor of Variable should not be invoked directly.

        In Static Graph Mode: Please use ** `Block.create_var` ** to create a Static variable which has no data until being feed.
1362

U
ustiniankw 已提交
1363
        In Dygraph Mode: Please use ** :ref:`api_fluid_dygraph_to_variable` ** to create a dygraph variable with real data.
J
Jiabin Yang 已提交
1364 1365

    In Fluid, every input and output of an OP is a variable. In most
1366
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1367 1368
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1369

1370
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1371
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1372

T
tianshuo78520a 已提交
1373
    Most of a Variable's member variables can be set to be None. It mean
1374
    it is not available or will be specified later.
1375

1376
    Examples:
1377 1378
        In Static Graph Mode:

1379 1380
        .. code-block:: python

1381
            import paddle.fluid as fluid
1382
            cur_program = fluid.Program()
1383 1384 1385 1386
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1387

1388
        In Dygraph  Mode:
1389 1390 1391 1392 1393 1394 1395 1396 1397

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1398 1399
    """

1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
    def __init__(
        self,
        block,
        type=core.VarDesc.VarType.LOD_TENSOR,
        name=None,
        shape=None,
        dtype=None,
        lod_level=None,
        capacity=None,
        persistable=None,
        error_clip=None,
        stop_gradient=False,
        is_data=False,
        need_check_feed=False,
        belong_to_optimizer=False,
        **kwargs
    ):
Y
Yu Yang 已提交
1417 1418
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1419
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1420

Y
Yu Yang 已提交
1421
        if dtype is not None:
1422
            if not isinstance(dtype, core.VarDesc.VarType):
1423
                dtype = convert_np_dtype_to_dtype_(dtype)
1424

S
Steffy-zxf 已提交
1425 1426 1427 1428
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

1429 1430 1431
        if type == core.VarDesc.VarType.SPARSE_COO:
            lod_level = None

H
hong 已提交
1432 1433
        self.belong_to_optimizer = belong_to_optimizer

1434 1435 1436
        self.error_clip = error_clip

        is_new_var = False
1437
        self.desc = self.block.desc.find_var(name.encode())
1438

1439
        if self.desc is None:
1440
            self.desc = self.block.desc.var(name.encode())
1441
            is_new_var = True
1442

1443 1444 1445
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
1446 1447 1448 1449 1450
            raise ValueError(
                "Variable '{0}' has been created before. The "
                "previous type is {1}, the new type is {2}. They"
                " are not matched".format(self.name, self.desc.type(), type)
            )
1451

1452
        if shape is not None:
1453
            if is_new_var:
1454 1455 1456 1457 1458 1459
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1460 1461
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1462 1463
                        "matched.".format(self.name, old_shape, shape)
                    )
1464 1465 1466 1467 1468 1469
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
1470 1471 1472 1473 1474 1475
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous data type is {1}, the new "
                        "data type is {2}. They are not "
                        "matched.".format(self.name, old_dtype, dtype)
                    )
1476 1477 1478 1479 1480 1481

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
1482 1483 1484 1485 1486 1487
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous lod_level is {1}, the new "
                        "lod_level is {2}. They are not "
                        "matched".format(self.name, self.lod_level, lod_level)
                    )
1488 1489 1490 1491 1492 1493
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1494 1495
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1496
                        "persistable is {2}. They are not matched".format(
1497 1498 1499
                            self.name, self.persistable, persistable
                        )
                    )
1500

1501 1502
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1503

1504 1505 1506 1507 1508 1509 1510
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1511

1512 1513
        self.block.vars[name] = self
        self.op = None
1514
        self.stop_gradient = stop_gradient
1515
        self.is_data = is_data
Y
Yu Yang 已提交
1516

1517 1518
    def detach(self):
        """
U
ustiniankw 已提交
1519

1520
        Returns a new Variable, detached from the current graph.
1521 1522
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1523

1524
        Returns:
U
ustiniankw 已提交
1525
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable), The detached Variable.
1526 1527 1528 1529

        Examples:
            .. code-block:: python

1530
                import paddle
1531

1532 1533 1534 1535
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1536

1537 1538
                # create a detached Variable
                y = x.detach()
U
ustiniankw 已提交
1539

1540
        """
1541

1542 1543 1544 1545
        assert (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ), "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"
1546 1547 1548 1549 1550 1551

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
1552 1553
            stop_gradient=True,
        )
1554

1555 1556 1557
        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]}
        )
1558
        return output
1559

1560
    @fake_interface_only
1561
    def numpy(self):
1562
        """
J
Jiabin Yang 已提交
1563
        **Notes**:
T
tianshuo78520a 已提交
1564
            **This API is ONLY available in Dygraph mode**
1565

J
Jiabin Yang 已提交
1566
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1567 1568 1569 1570 1571

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1572
            ndarray: dtype is same as current Variable
1573 1574 1575 1576 1577 1578

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1579
                from paddle.fluid.dygraph import Linear
1580 1581 1582 1583
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1584
                    linear = Linear(32, 64)
1585
                    data = to_variable(data)
1586
                    x = linear(data)
1587 1588 1589
                    print(x.numpy())

        """
1590
        pass
1591

1592
    @fake_interface_only
1593
    def backward(self, retain_graph=False):
1594
        """
J
Jiabin Yang 已提交
1595
        **Notes**:
T
tianshuo78520a 已提交
1596
            **This API is ONLY available in Dygraph mode**
1597

1598
        Run backward of current Graph which starts from current Tensor.
1599

J
Jiabin Yang 已提交
1600
        Args:
1601 1602 1603 1604
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1605

J
Jiabin Yang 已提交
1606 1607
        Returns:
            NoneType: None
1608 1609 1610 1611 1612

        Examples:
            .. code-block:: python

                import numpy as np
1613 1614
                import paddle
                paddle.disable_static()
1615 1616

                x = np.ones([2, 2], np.float32)
1617 1618 1619 1620 1621 1622 1623
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1624 1625
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1626
                loss.backward()
1627 1628

        """
1629
        pass
1630

1631
    @fake_interface_only
1632
    def gradient(self):
1633
        """
J
Jiabin Yang 已提交
1634
        **Notes**:
T
tianshuo78520a 已提交
1635
            **This API is ONLY available in Dygraph mode**
1636 1637 1638

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1639
        Returns:
1640
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1641 1642 1643 1644

        Examples:
            .. code-block:: python

1645
                import paddle
1646 1647 1648
                import paddle.fluid as fluid
                import numpy as np

1649
                # example1: return ndarray
1650 1651 1652 1653 1654 1655 1656 1657
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
1658
                    loss2 = paddle.sum(ret2)
1659
                    loss2.backward()
1660 1661
                    print(loss2.gradient())

1662 1663
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
1664 1665 1666 1667 1668
                    embedding = paddle.nn.Embedding(
                        20,
                        32,
                        weight_attr='emb.w',
                        sparse=True)
1669 1670 1671 1672 1673 1674 1675
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1676
        """
1677
        pass
1678

1679
    @fake_interface_only
1680
    def clear_gradient(self):
1681
        """
J
Jiabin Yang 已提交
1682
        **Notes**:
T
tianshuo78520a 已提交
1683
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1684 1685

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1686

J
Jiabin Yang 已提交
1687
        Clear  (set to ``0`` ) the Gradient of Current Variable
1688 1689 1690 1691 1692 1693

        Returns:  None

        Examples:
            .. code-block:: python

1694
                import paddle
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705
                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
1706
                    loss2 = paddle.sum(ret2)
1707
                    loss2.backward()
1708 1709 1710 1711 1712
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1713
        pass
X
Xin Pan 已提交
1714

1715 1716 1717 1718
    @fake_interface_only
    def register_hook(self, hook):
        pass

1719
    def __str__(self):
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1736 1737
                import paddle
                import paddle.static as static
1738

1739 1740 1741
                paddle.enable_static()

                cur_program = static.Program()
1742 1743 1744 1745 1746 1747
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1748 1749
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1750 1751 1752 1753
        if (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ):
1754
            dtype_str = str(self.dtype).split('.')[1]
1755 1756 1757 1758 1759 1760 1761
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".format(
                name=self.name,
                type=type_str,
                shape=self.shape,
                dtype=dtype_str,
                stop_gradient=self.stop_gradient,
            )
1762
        else:
1763
            var_str = "{name} : {type})".format(name=self.name, type=type_str)
1764

1765
        if self.is_parameter:
1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1776 1777 1778 1779
        from paddle.distributed.auto_parallel.dist_context import (
            get_default_distributed_context,
        )

1780
        dist_context = get_default_distributed_context()
1781 1782
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1783 1784 1785
            var_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_tensor
            )
1786

1787
        return var_str
Y
Yang Yang(Tony) 已提交
1788

F
update  
fengjiayi 已提交
1789
    def to_string(self, throw_on_error, with_details=False):
1790 1791 1792
        """
        Get debug string.

J
Jiabin Yang 已提交
1793 1794 1795 1796 1797
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1798

1799 1800
        Returns:
            str: The debug string.
1801 1802 1803 1804 1805

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1806
                import paddle
1807

1808
                paddle.enable_static()
1809 1810 1811 1812 1813
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1814
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1815
                print("=============with detail===============")
1816
                print(new_variable.to_string(True, True))
1817
        """
1818
        assert isinstance(throw_on_error, bool) and isinstance(
1819 1820
            with_details, bool
        )
1821
        protostr = self.desc.serialize_to_string()
1822
        proto = framework_pb2.VarDesc.FromString(bytes(protostr))
F
update  
fengjiayi 已提交
1823 1824
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1825
            additional_attr = ("error_clip",)
F
update  
fengjiayi 已提交
1826
            for attr_name in additional_attr:
1827
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
1828

F
update  
fengjiayi 已提交
1829
        return res_str
1830 1831 1832

    __repr__ = __str__

1833 1834 1835
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
1836

1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1860
    @property
1861
    def stop_gradient(self):
J
Jiabin Yang 已提交
1862 1863 1864
        """
        Indicating if we stop gradient from current Variable

1865
        **Notes: This Property has default value as** ``True`` **in** Dygraph **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``
J
Jiabin Yang 已提交
1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1877 1878
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1879 1880 1881
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1882 1883
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1884 1885 1886 1887
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1888
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1889 1890
                assert (out1.gradient() == 0).all()
        """
1891
        return self.desc.stop_gradient()
1892

1893 1894
    @stop_gradient.setter
    def stop_gradient(self, s):
1895
        self.desc.set_stop_gradient(s)
1896

1897 1898
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1899 1900 1901 1902 1903 1904 1905 1906
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

1907
            **2. In** Dygraph **mode, this property should not be changed**
J
Jiabin Yang 已提交
1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1920
        return self.desc.persistable()
1921

Y
Yu Yang 已提交
1922 1923
    @persistable.setter
    def persistable(self, p):
1924
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1925

1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1951 1952
    @property
    def name(self):
J
Jiabin Yang 已提交
1953 1954 1955
        """
        Indicating name of current Variable

1956
        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** Dygraph **mode. This is how we achieve Parameter sharing**
J
Jiabin Yang 已提交
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1969
        return self.desc.name()
Y
Yu Yang 已提交
1970

1971 1972 1973 1974 1975 1976
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1977 1978
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1979

1980 1981 1982 1983 1984 1985
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
1986
          print(x.grad_name) # output is ``x@GRAD``
1987 1988 1989 1990

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1991 1992
    @name.setter
    def name(self, new_name):
1993
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1994

Y
Yu Yang 已提交
1995 1996
    @property
    def shape(self):
J
Jiabin Yang 已提交
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
2014
        # convert to tuple, make it as same as numpy API.
2015
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
2016 2017

    @property
F
fengjiayi 已提交
2018
    def dtype(self):
J
Jiabin Yang 已提交
2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
2035
        return self.desc.dtype()
Y
Yu Yang 已提交
2036 2037 2038

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
2039 2040 2041 2042 2043 2044 2045 2046
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

2047
            **2. Don't support this property in** Dygraph **mode, it's value should be** ``0(int)``
J
Jiabin Yang 已提交
2048 2049 2050 2051

        Examples:
          .. code-block:: python

2052
            import paddle
J
Jiabin Yang 已提交
2053
            import paddle.fluid as fluid
2054 2055

            paddle.enable_static()
J
Jiabin Yang 已提交
2056 2057 2058 2059 2060 2061 2062
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
2063 2064
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
2065 2066
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
2067
        return self.desc.lod_level()
Y
Yu Yang 已提交
2068

Y
Yu Yang 已提交
2069 2070
    @property
    def type(self):
J
Jiabin Yang 已提交
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
2087
        return self.desc.type()
Y
Yu Yang 已提交
2088

2089 2090 2091
    @property
    def T(self):
        """
U
ustiniankw 已提交
2092

2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
U
ustiniankw 已提交
2111

2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
2124 2125
            stop_gradient=False,
        )
2126 2127 2128 2129 2130
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
2131 2132 2133 2134 2135 2136 2137 2138 2139
            stop_gradient=False,
        )

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out], 'XShape': [input_shape]},
            attrs={'axis': perm},
        )
2140 2141
        return out

2142 2143 2144
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
2145
        Variable. It remains in the current graph, that is, the cloned Variable
2146 2147 2148 2149
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
U
ustiniankw 已提交
2150
            Variable, The cloned Variable.
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
2170 2171
            stop_gradient=self.stop_gradient,
        )
2172

2173 2174 2175
        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]}
        )
2176 2177
        return output

W
Wu Yi 已提交
2178
    def _set_error_clip(self, error_clip):
2179
        """
U
ustiniankw 已提交
2180

2181 2182 2183 2184 2185 2186 2187
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
U
ustiniankw 已提交
2188

2189
        """
2190 2191
        self.error_clip = error_clip

2192 2193
    def _set_info(self, key, value):
        """
U
ustiniankw 已提交
2194

2195 2196 2197 2198 2199 2200
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

2201
        Returns:
2202
            None
U
ustiniankw 已提交
2203

2204 2205 2206 2207 2208 2209 2210
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
U
ustiniankw 已提交
2211

2212 2213 2214 2215 2216
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

2217
        Returns:
2218
            object
U
ustiniankw 已提交
2219

2220 2221 2222 2223 2224
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

2225 2226
    def _slice_indices(self, slice, length):
        """
U
ustiniankw 已提交
2227

2228
        Reference implementation for the slice.indices method.
U
ustiniankw 已提交
2229

2230 2231 2232 2233 2234 2235 2236 2237
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
2238
            raise ValueError("slice step can not be zero")
2239 2240 2241 2242 2243 2244 2245 2246 2247 2248

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
2249 2250 2251
            start = (
                max(start + length, lower) if start < 0 else min(start, upper)
            )
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
2297 2298 2299
                if (index > 0 and index >= self.shape[index]) or (
                    index < 0 and (index + self.shape[index]) < 0
                ):
2300
                    raise IndexError("invalid index")
2301 2302 2303 2304 2305
                start = (
                    max(start + self.shape[index], 0)
                    if start < 0
                    else min(start, self.shape[index])
                )
2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2319
    def _cloneVar(self, copy=False):
2320 2321
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2322
                name=unique_name.generate_with_ignorable_key(self.name),
2323 2324
                dtype=self.dtype,
            )
2325 2326 2327 2328
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2329
        new_var = self._cloneVar()
2330 2331 2332 2333 2334 2335
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes, 'starts': starts, 'ends': ends},
        )
2336 2337 2338
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2339
        new_var = self._cloneVar()
2340 2341 2342 2343 2344 2345 2346 2347
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={
                'axis': axis,
            },
        )
2348 2349 2350 2351 2352
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2353
                return self._cloneVar(True)
2354 2355 2356 2357 2358 2359 2360
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
2361 2362 2363
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2364 2365 2366
                        start += step
                else:
                    while start > stop:
2367 2368 2369
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2370 2371 2372 2373
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2374
                return self._cloneVar(True)
2375
            index = int(item)
2376 2377 2378
            if (index > 0 and index >= self.shape[axis]) or (
                index < 0 and (index + self.shape[axis]) < 0
            ):
2379 2380 2381 2382 2383 2384
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2385
        return _getitem_impl_(self, item)
2386

2387
    def __setitem__(self, item, value):
2388
        return _setitem_impl_(self, item, value)
2389

2390 2391
    def get_value(self, scope=None):
        """
2392
        Get the value of variable in given scope.
2393 2394

        Args:
2395
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2396 2397 2398 2399
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
U
ustiniankw 已提交
2400
            Tensor, the value in given scope.
2401 2402 2403 2404 2405

        Examples:
            .. code-block:: python

                import paddle
2406
                import paddle.static as static
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
2431 2432
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file.
2433 2434
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
2435

2436 2437
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2438 2439 2440 2441
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2442 2443 2444 2445 2446

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
2447 2448 2449
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2450 2451 2452 2453 2454
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
U
ustiniankw 已提交
2455

2456
        Set the value to the tensor in given scope.
2457 2458 2459

        Args:
            value(Tensor/ndarray) : The value to be set.
2460
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2461 2462 2463 2464 2465
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
2466

2467 2468 2469 2470
        Examples:
            .. code-block:: python

                import paddle
2471
                import paddle.static as static
2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
U
ustiniankw 已提交
2495

2496 2497 2498
        '''

        # The 'framework' is a low-level module, and 'executor'
2499
        # can not be imported at the begainning of this file.
2500 2501 2502 2503 2504
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
2505 2506 2507 2508
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".format(
                    type(value)
                )
            )
2509 2510 2511

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2512 2513 2514 2515
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2516 2517 2518 2519 2520 2521

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
2522 2523 2524
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2525 2526 2527 2528 2529 2530 2531 2532 2533 2534

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
2535 2536 2537 2538
                    "{} expected a shape {}, but the received shape is {}.".format(
                        self.name, list(t.shape()), list(value_shape)
                    )
                )
2539 2540 2541 2542 2543 2544 2545 2546 2547 2548

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2549 2550 2551 2552
        elif p.is_npu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.NPUPlace(p.npu_device_id())
2553 2554 2555 2556
        elif p.is_mlu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.MLUPlace(p.mlu_device_id())
2557 2558 2559 2560 2561 2562 2563
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2564 2565
    def size(self):
        """
U
ustiniankw 已提交
2566

2567 2568 2569
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
U
ustiniankw 已提交
2570
            Variable, the number of elements for current Variable
2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
U
ustiniankw 已提交
2584

2585 2586 2587 2588
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
2589 2590
            dtype=core.VarDesc.VarType.INT64,
        )
2591

2592 2593 2594
        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]}
        )
2595 2596
        return output

2597 2598
    def _set_attr(self, name, val):
        """
U
ustiniankw 已提交
2599

2600 2601 2602 2603 2604
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
U
ustiniankw 已提交
2605

2606 2607 2608 2609 2610
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
U
ustiniankw 已提交
2611

2612 2613 2614 2615 2616 2617
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2618 2619
            bool, True if has this attribute.

2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

2641
    def attr(self, name):
2642 2643 2644 2645 2646 2647 2648
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2649
            int|str|list, The attribute value. The return value
2650 2651 2652 2653 2654
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
2655
    def dist_attr(self):
2656
        """
2657
        Get distributed attribute of this Variable.
2658
        """
2659
        return self.desc.dist_attr
2660

2661 2662
    @dist_attr.setter
    def dist_attr(self, dist_attr):
2663
        """
2664
        Set distributed attribute of this Variable.
2665
        """
2666
        self.desc.dist_attr = dist_attr
2667

Y
Yu Yang 已提交
2668

F
fengjiayi 已提交
2669 2670 2671
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2672

2673 2674
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2675 2676 2677 2678
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2679
        op_proto = framework_pb2.OpProto.FromString(bytes(pbstr))
F
fengjiayi 已提交
2680 2681 2682 2683
        ret_values.append(op_proto)
    return ret_values


2684
class OpProtoHolder:
2685 2686 2687 2688
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2689 2690 2691 2692 2693 2694 2695 2696
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
2697 2698
            self.__class__, '_instance'
        ), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2699 2700 2701 2702 2703 2704
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2705 2706 2707 2708 2709 2710 2711 2712
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2713 2714
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2715 2716
        return self.op_proto_map[type]

2717 2718
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2719
        custom_op_names = []
2720 2721 2722
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2723 2724 2725
                custom_op_names.append(proto.type)

        return custom_op_names
2726

2727 2728 2729 2730
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2731
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2732
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2733
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
2734
            core.op_proto_and_checker_maker.kOpDeviceAttrName(),
2735 2736
        }

F
fengjiayi 已提交
2737

2738
class Operator:
2739
    """
2740 2741 2742 2743 2744 2745 2746
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2747
        type(str): The type of operator. Default None.
2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2768
        Block.append_op or Block._prepend_op instead.
2769 2770 2771 2772

    Examples:
        .. code-block:: python

2773
            import paddle.fluid as fluid
2774
            cur_program = fluid.Program()
2775 2776 2777 2778 2779
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2780
    """
2781

2782
    OP_WITHOUT_KERNEL_SET = {
2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813
        'feed',
        'fetch',
        'recurrent',
        'go',
        'rnn_memory_helper_grad',
        'conditional_block',
        'while',
        'send',
        'recv',
        'listen_and_serv',
        'fl_listen_and_serv',
        'ncclInit',
        'select',
        'checkpoint_notify',
        'gen_bkcl_id',
        'c_gen_bkcl_id',
        'gen_nccl_id',
        'c_gen_nccl_id',
        'c_comm_init',
        'c_sync_calc_stream',
        'c_sync_comm_stream',
        'queue_generator',
        'dequeue',
        'enqueue',
        'heter_listen_and_serv',
        'c_wait_comm',
        'c_wait_compute',
        'c_gen_hccl_id',
        'c_comm_init_hccl',
        'copy_cross_scope',
        'c_gen_cncl_id',
2814
    }
2815

2816 2817 2818
    def __init__(
        self, block, desc, type=None, inputs=None, outputs=None, attrs=None
    ):
2819 2820 2821 2822 2823 2824 2825 2826 2827 2828
        # read attr type index from op proto to avoid unexpected type
        # conversions, e.g. narrowing conversion like double to float
        try:
            proto = OpProtoHolder.instance().get_op_proto(type)
            self._attr_types = {}
            for attr in proto.attrs:
                self._attr_types[attr.name] = attr.type
        except ValueError:
            pass

J
Jiabin Yang 已提交
2829
        if _non_static_mode():
2830 2831
            if type is None:
                raise ValueError(
2832 2833
                    "`type` to initialized an Operator can not be None."
                )
J
Jiabin Yang 已提交
2834
            self._type = type
M
minqiyang 已提交
2835
            self.attrs = attrs if attrs else {}
2836 2837 2838 2839 2840 2841 2842 2843 2844 2845
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

2846 2847 2848
            # attr for static mode cuda graph
            self._cuda_graph_attr = _current_cuda_graph_mode

2849 2850 2851
            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
2852
                op_attrs[
2853 2854
                    op_maker.kOpRoleAttrName()
                ] = self.block.program._op_role
2855 2856

            role_var_name = op_maker.kOpRoleVarAttrName()
2857 2858 2859 2860
            if (
                len(self.block.program._op_role_var) != 0
                and role_var_name not in op_attrs
            ):
2861
                op_attrs[role_var_name] = self.block.program._op_role_var
2862 2863 2864 2865 2866

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2867 2868 2869 2870 2871
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2872 2873 2874
                return
            if type is None:
                raise ValueError(
2875 2876
                    "`type` to initialized an Operator can not be None."
                )
2877 2878
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2879 2880 2881
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
2882
                        '  File "{}", line {}, in {}'.format(
2883 2884 2885 2886 2887 2888
                            frame[0], frame[1], frame[2]
                        )
                    )
                    op_attrs[callstack_var_name].append(
                        '    {}'.format(frame[3])
                    )
2889 2890 2891 2892 2893 2894 2895

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2896 2897 2898 2899 2900 2901 2902 2903
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
2904 2905 2906
                    warnings.warn(
                        "The Op(%s) is not support to set device." % type
                    )
2907
                if 'force_cpu' in op_attrs:
2908
                    if (
2909 2910
                        type == 'less_than'
                        and op_attrs['force_cpu'] is not None
2911
                    ) or op_attrs['force_cpu'] != False:
2912 2913 2914
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
2915 2916
                            "used at the same time." % type
                        )
2917
            if _current_pipeline_stage is not None:
2918 2919 2920 2921 2922
                pipeline_attr_name = (
                    'pipeline_stage' + core.kAutoParallelSuffix()
                )
                self._update_desc_attr(
                    pipeline_attr_name, _current_pipeline_stage
2923
                )
2924

2925 2926 2927 2928 2929 2930 2931 2932 2933
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
2934 2935 2936
                    assert (
                        found or in_proto.dispensable
                    ), "Input {} not found".format(in_proto.name)
2937 2938
                    if found:
                        in_args = inputs[in_proto.name]
2939
                        if not isinstance(in_args, (list, tuple)):
2940 2941 2942 2943
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
2944 2945
                                % (in_proto.name, len(in_args))
                            )
2946
                        in_arg_names = []
2947
                        for index, arg in enumerate(in_args):
2948
                            if isinstance(arg, str):
2949
                                in_arg_names.append(arg)
2950
                            elif isinstance(arg, bytes):
2951
                                in_arg_names.append(arg.decode())
2952
                            elif isinstance(arg, (Variable, core.VarBase)):
2953
                                in_arg_names.append(arg.name)
2954
                            else:
2955 2956 2957 2958
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2959 2960 2961
                                    "but received : %s"
                                    % (in_proto.name, type, arg)
                                )
2962 2963 2964 2965 2966 2967 2968 2969 2970
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
2971
                        raise ValueError(
2972 2973 2974 2975 2976 2977
                            (
                                "Incorrect setting for output(s) of "
                                "operator \"%s\", should set: [%s]."
                            )
                            % (type, m.name)
                        )
2978 2979 2980 2981 2982 2983 2984 2985 2986
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
2987 2988
                            % (out_proto.name, len(out_args))
                        )
2989 2990
                    out_arg_names = []
                    for arg in out_args:
2991
                        if isinstance(arg, str):
2992 2993
                            out_arg_names.append(arg)
                        else:
2994
                            out_arg_names.append(arg.name)
2995
                        # TODO(minqiyang): could we remove variable's op in static mode?
J
Jiabin Yang 已提交
2996
                        if not _non_static_mode():
2997
                            if isinstance(arg, str):
2998 2999 3000
                                block.var(arg).op = self
                            else:
                                arg.op = self
3001 3002
                    self.desc.set_output(out_proto.name, out_arg_names)

3003
            extra_attrs_map = core.get_op_extra_attrs(type)
3004 3005 3006 3007 3008
            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
3009 3010 3011
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
3012 3013 3014
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)
3015
                for attr_name in extra_attrs_map.keys():
3016 3017 3018 3019 3020 3021
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
                        self._update_desc_attr(
                            attr_name, extra_attrs_map[attr_name]
                        )
3022 3023
                    else:
                        self._update_desc_attr(attr_name, op_attrs[attr_name])
3024

J
jianghaicheng 已提交
3025 3026
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
3027
                if global_ipu_index >= 0:
3028 3029 3030
                    self._update_desc_attr(
                        ipu_index_attr_name, global_ipu_index
                    )
3031
                if global_ipu_stage >= 0:
3032 3033 3034
                    self._update_desc_attr(
                        ipu_stage_attr_name, global_ipu_stage
                    )
J
jianghaicheng 已提交
3035

3036 3037 3038 3039 3040
            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
3041
    def _has_kernel(self, op_type):
3042 3043
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
3044
    def to_string(self, throw_on_error):
3045
        """
3046 3047
        Get debug string.

3048
        Args:
3049 3050
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
3051

3052 3053
        Returns:
            str: The debug string.
3054 3055

        """
3056
        protostr = self.desc.serialize_to_string()
3057
        proto = framework_pb2.OpDesc.FromString(bytes(protostr))
Y
Yang Yang(Tony) 已提交
3058 3059
        return _debug_string_(proto, throw_on_error)

3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3092
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3093 3094
            type(skip_op_callstack)
        )
3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

3121 3122 3123
            attr_type = self.desc.attr_type(name, True)
            if attr_type == core.AttrType.VAR:
                attr_var_name = self.desc.attr(name, True).name()
3124 3125 3126
                a = "{name} = Var['{value}']".format(
                    name=name, type=attr_type, value=attr_var_name
                )
3127 3128 3129 3130 3131 3132 3133 3134 3135 3136
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.VARS:
                attr_var_names = [
                    "'%s'" % var.name() for var in self.desc.attr(name, True)
                ]
                a = "{name} = Vars[{value}]".format(
3137 3138
                    name=name, type=attr_type, value=','.join(attr_var_names)
                )
3139 3140 3141 3142 3143
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3144 3145
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
3146 3147
                    name=name, type=attr_type, value=self._block_attr_id(name)
                )
3148 3149 3150 3151 3152 3153 3154
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
3155 3156
                    name=name, type=attr_type, value=self._blocks_attr_ids(name)
                )
3157 3158 3159 3160 3161
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3162
            # it is bytes of serialized protobuf
3163 3164 3165 3166 3167
            if (
                is_compiled_with_cinn()
                and self.type == 'cinn_launch'
                and name == 'compilation_key'
            ):
3168 3169
                key = self.desc.attr(name)
                v = core.get_serialize_comile_key(key)
3170 3171 3172 3173 3174 3175 3176 3177 3178
                prog = Program()
                prog = prog.parse_from_string(v)
                s = prog._to_readable_code()
                lines = s.split('\n')
                value = '\n'.join(['      ' + line for line in lines])
                value = '\n' + value
            else:
                value = self.desc.attr(name)

3179 3180 3181
            a = "{name} = {value}".format(
                name=name, type=attr_type, value=value
            )
3182

3183 3184 3185 3186
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

3187 3188 3189 3190
        from paddle.distributed.auto_parallel.dist_context import (
            get_default_distributed_context,
        )

3191
        dist_context = get_default_distributed_context()
3192 3193
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
3194 3195 3196
            attrs_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_op
            )
3197

3198
        if outputs_str != "{}":
3199 3200 3201 3202 3203 3204
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".format(
                outputs=outputs_str,
                op_type=self.type,
                inputs=inputs_str,
                attrs=attrs_str,
            )
3205
        else:
3206 3207 3208
            op_str = "{op_type}(inputs={inputs}, {attrs})".format(
                op_type=self.type, inputs=inputs_str, attrs=attrs_str
            )
3209 3210
        return op_str

Y
Yang Yang(Tony) 已提交
3211
    def __str__(self):
3212
        return self._to_readable_code()
3213 3214 3215

    __repr__ = __str__

F
fengjiayi 已提交
3216 3217
    @property
    def type(self):
3218
        return self.desc.type()
F
fengjiayi 已提交
3219 3220

    def input(self, name):
3221
        r"""
U
ustiniankw 已提交
3222

3223
        Get the input arguments according to the input parameter name.
3224

3225 3226
        Args:
            name(str): The input parameter name.
3227

3228
        Returns:
U
ustiniankw 已提交
3229
            list, return the list of argument names that associated with \
3230
                the specific parameter name.
U
ustiniankw 已提交
3231

3232
        """
F
fengjiayi 已提交
3233 3234
        return self.desc.input(name)

W
Wu Yi 已提交
3235
    def _rename_input(self, old_name, new_name):
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
3246
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
3247

W
Wu Yi 已提交
3248
    def _rename_output(self, old_name, new_name):
3249 3250 3251 3252 3253 3254 3255 3256 3257 3258
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
3259
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
3260

F
fengjiayi 已提交
3261 3262 3263 3264
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
3265 3266 3267 3268 3269 3270 3271 3272
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
3273
    def output(self, name):
3274
        r"""
3275
        Get output arguments by the output parameter name.
3276

3277 3278
        Args:
            name(str): The output parameter name.
3279

3280 3281 3282
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
3283
        """
F
fengjiayi 已提交
3284 3285 3286 3287 3288 3289
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

3290 3291 3292 3293 3294 3295
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
3296 3297
            "Can't find op itself in it's block. It could be a bug of Paddle."
        )
3298

F
fengjiayi 已提交
3299
    def has_attr(self, name):
3300
        """
3301 3302
        Whether this Operator has the attribute with name or not.

3303
        Args:
3304
            name(str): the attribute name.
3305

3306 3307
        Returns:
            bool: True if has this attribute.
3308 3309

        """
F
fengjiayi 已提交
3310 3311 3312
        return self.desc.has_attr(name)

    def attr_type(self, name):
3313
        """
3314
        Get the type of attribute by attribute's name.
3315

3316 3317
        Args:
            name(str): the attribute name.
3318

3319 3320
        Returns:
            core.AttrType: the attribute type.
3321
        """
3322
        return self.desc.attr_type(name, True)
F
fengjiayi 已提交
3323

W
Wu Yi 已提交
3324
    def _set_attr(self, name, val):
3325 3326 3327 3328 3329 3330 3331 3332 3333 3334
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
3335 3336
        self._update_desc_attr(name, val)

3337 3338 3339
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
3351 3352 3353 3354 3355
        if isinstance(val, Variable):
            self.desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            self.desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
Q
Qiyang Min 已提交
3356
            self.desc.set_block_attr(name, val.desc)
3357
        elif isinstance(val, list) and val and _all_is_type(val, Block):
3358
            self.desc.set_blocks_attr(name, [v.desc for v in val])
3359 3360 3361
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
Q
Qiyang Min 已提交
3362 3363
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399
            self._update_desc_plain_attr(name, val)

    def _update_desc_plain_attr(self, name, val):
        desc = self.desc
        if not hasattr(self, "_attr_types") or (name not in self._attr_types):
            desc._set_attr(name, val)
            return

        type_index = self._attr_types[name]
        if type_index == core.AttrType.BOOL:
            desc._set_bool_attr(name, val)
        elif type_index == core.AttrType.INT:
            desc._set_int32_attr(name, val)
        elif type_index == core.AttrType.LONG:
            desc._set_int64_attr(name, val)
        elif type_index == core.AttrType.FLOAT:
            desc._set_float32_attr(name, val)
        # elif type_index == core.AttrType.FLOAT64:
        #     desc._set_float64_attr(name, val)
        elif type_index == core.AttrType.STRING:
            desc._set_str_attr(name, val)
        elif type_index == core.AttrType.BOOLS:
            desc._set_bools_attr(name, val)
        elif type_index == core.AttrType.INTS:
            desc._set_int32s_attr(name, val)
        elif type_index == core.AttrType.LONGS:
            desc._set_int64s_attr(name, val)
        elif type_index == core.AttrType.FLOATS:
            desc._set_float32s_attr(name, val)
        elif type_index == core.AttrType.FLOAT64S:
            desc._set_float64s_attr(name, val)
        elif type_index == core.AttrType.STRINGS:
            desc._set_strs_attr(name, val)
        else:
            # defaults to old methods
            desc._set_attr(name, val)
Y
yuyang18 已提交
3400

F
fengjiayi 已提交
3401 3402
    @property
    def attr_names(self):
3403
        return self.desc.attr_names(True)
F
fengjiayi 已提交
3404 3405

    def attr(self, name):
3406
        """
3407 3408
        Get the attribute by name.

3409
        Args:
3410
            name(str): the attribute name.
3411

3412 3413
        Returns:
            bool|int|str|float|list: The attribute value. The return value
3414 3415
            can be any valid attribute type.
        """
F
fengjiayi 已提交
3416
        return self.desc.attr(name)
Y
Yu Yang 已提交
3417

W
Wu Yi 已提交
3418
    def _block_attr_id(self, name):
3419
        """
G
gongweibao 已提交
3420
        Get the block attribute's id by name.
3421

3422 3423
        Args:
            name(str): the attribute name.
3424

3425 3426
        Returns:
            int: the block index.
3427
        """
W
Wu Yi 已提交
3428
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
3429

W
Wu Yi 已提交
3430
    def _block_attr(self, name):
G
gongweibao 已提交
3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
3441
        id = self._block_attr_id(name)
3442
        assert id >= 0 and id < len(self.block.program.blocks)
G
gongweibao 已提交
3443 3444
        return self.block.program.blocks[id]

W
Wu Yi 已提交
3445
    def _blocks_attr(self, name):
G
gongweibao 已提交
3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
3456
        for i in self._blocks_attr_ids(name):
3457
            assert i >= 0 and i < len(self.block.program.blocks)
G
gongweibao 已提交
3458 3459 3460 3461
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
3462
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
3463 3464 3465 3466 3467 3468 3469 3470 3471 3472
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
3473
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
3474

3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485
    def _var_attr(self, name):
        """
        Get the Variable attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variable: the Variable attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3486 3487 3488 3489 3490
        assert (
            attr_type == core.AttrType.VAR
        ), "Required type attr({}) is Variable, but received {}".format(
            name, attr_type
        )
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504
        attr_var_name = self.desc.attr(name, True).name()
        return self.block._var_recursive(attr_var_name)

    def _vars_attr(self, name):
        """
        Get the Variables attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variables: the Variables attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3505 3506 3507 3508 3509
        assert (
            attr_type == core.AttrType.VARS
        ), "Required type attr({}) is list[Variable], but received {}".format(
            name, attr_type
        )
3510 3511 3512 3513 3514 3515
        attr_vars = [
            self.block._var_recursive(var.name())
            for var in self.desc.attr(name, True)
        ]
        return attr_vars

J
JiayiFeng 已提交
3516
    def all_attrs(self):
F
fengjiayi 已提交
3517
        """
3518 3519 3520
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3521
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3522 3523 3524 3525
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
3526
            attr_type = self.desc.attr_type(n, True)
G
gongweibao 已提交
3527
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3528
                attr_map[n] = self._block_attr(n)
3529
            elif attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3530
                attr_map[n] = self._blocks_attr(n)
3531 3532 3533 3534 3535 3536
            elif attr_type == core.AttrType.VAR:
                attr_map[n] = self._var_attr(n)
            elif attr_type == core.AttrType.VARS:
                attr_map[n] = self._vars_attr(n)
            else:
                attr_map[n] = self.attr(n)
G
gongweibao 已提交
3537

F
fengjiayi 已提交
3538 3539
        return attr_map

3540 3541 3542
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3543 3544 3545 3546

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3547 3548 3549
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3550 3551 3552 3553 3554 3555 3556 3557

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3558 3559
            return False

3560 3561 3562 3563 3564 3565
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3566
    @property
3567
    def dist_attr(self):
3568
        """
3569
        Get distributed attribute of this Variable.
3570
        """
3571
        return self.desc.dist_attr
3572

3573 3574
    @dist_attr.setter
    def dist_attr(self, dist_attr):
3575
        """
3576
        Set distributed attribute of this Variable.
3577
        """
3578
        self.desc.dist_attr = dist_attr
3579

Y
Yu Yang 已提交
3580

3581
class Block:
3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3596
        use `Program._create_block()` to create a block.
3597 3598 3599 3600

    Examples:
        .. code-block:: python

3601 3602 3603
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3604 3605 3606 3607 3608 3609 3610 3611 3612
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3613
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3614
        self.desc = program.desc.block(idx)
3615
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3616
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3617
        self.program = program
3618
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
3619

3620
    def __str__(self):
3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3655
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3656 3657
            type(skip_op_callstack)
        )
3658 3659 3660 3661 3662 3663 3664
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
3665 3666
                op._to_readable_code(skip_op_callstack)
            )
3667 3668
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3669

F
fengjiayi 已提交
3670 3671
    def to_string(self, throw_on_error, with_details=False):
        """
3672 3673
        Get debug string.

F
fengjiayi 已提交
3674 3675
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3676
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3677
            with_details(bool): more details about variables and parameters
3678 3679
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3680

3681 3682
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3683
        """
3684
        assert isinstance(throw_on_error, bool) and isinstance(
3685 3686
            with_details, bool
        )
F
fengjiayi 已提交
3687
        if with_details:
F
fengjiayi 已提交
3688
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3689
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
3690 3691 3692
                self.idx,
                self.parent_idx,
            )
3693
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3694
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
3695 3696
                    r"\n    \1", var.to_string(throw_on_error, with_details)
                )
F
fengjiayi 已提交
3697
            for op in self.ops:
F
fengjiayi 已提交
3698
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
3699 3700
                    r"\n    \1", op.to_string(throw_on_error)
                )
F
fengjiayi 已提交
3701 3702 3703
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3704
            proto = framework_pb2.BlockDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
3705 3706
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3707 3708 3709

    __repr__ = __str__

Y
Yu Yang 已提交
3710 3711
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3712
        return self.desc.parent
Y
Yu Yang 已提交
3713

Y
Yu Yang 已提交
3714 3715 3716 3717
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3718
    def _set_forward_block_idx(self, idx):
3719 3720 3721 3722 3723 3724 3725 3726 3727
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3728
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3729

3730 3731 3732 3733 3734 3735 3736 3737
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3738 3739
    @property
    def idx(self):
Y
Yu Yang 已提交
3740
        return self.desc.id
Y
Yu Yang 已提交
3741

Q
Qiao Longfei 已提交
3742
    def var(self, name):
3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3756
        if not isinstance(name, str):
M
minqiyang 已提交
3757
            raise TypeError(
3758 3759 3760
                "var require string as parameter, but get %s instead."
                % (type(name))
            )
Y
Yu Yang 已提交
3761 3762
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3763
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3764
        return v
Q
Qiao Longfei 已提交
3765

X
Xin Pan 已提交
3766
    def _find_var_recursive(self, name):
3767 3768 3769 3770 3771 3772 3773
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3774
            Variable: the Variable with the giving name. Or None if not found.
3775
        """
Y
Yu Yang 已提交
3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3800
        return None
Y
Yu Yang 已提交
3801

X
Xin Pan 已提交
3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3821

Q
Qiao Longfei 已提交
3822
    def all_parameters(self):
3823
        return list(self.iter_parameters())
3824

3825
    def iter_parameters(self):
3826 3827 3828 3829 3830
        return (
            item[1]
            for item in self.vars.items()
            if isinstance(item[1], Parameter)
        )
Q
Qiao Longfei 已提交
3831

Y
Yu Yang 已提交
3832
    def create_var(self, *args, **kwargs):
J
Jiabin Yang 已提交
3833
        if _non_static_mode():
L
Leo Chen 已提交
3834 3835
            var = _varbase_creator(*args, **kwargs)
        else:
3836 3837 3838
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3839
        return var
Y
Yu Yang 已提交
3840

Q
Qiao Longfei 已提交
3841 3842 3843
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3844
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3845 3846
        """
        Rename variable in vars and ops' inputs and outputs
3847 3848

        Args:
3849 3850
            name(str|bytes): the name that need to be renamed.
            new_name(str|bytes): the name that need to rename to.
3851 3852 3853 3854 3855 3856 3857 3858

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3859
        """
3860 3861
        # Ensure the type of name and new_name is str
        name = name.decode() if isinstance(name, bytes) else name
3862 3863 3864
        new_name = (
            new_name.decode() if isinstance(new_name, bytes) else new_name
        )
M
minqiyang 已提交
3865

T
typhoonzero 已提交
3866
        if not self.has_var(name):
3867
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3868 3869
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3870
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3871 3872 3873 3874 3875 3876
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3877
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3878 3879 3880 3881
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3882
        orig_var_type = v.type
3883
        self.desc._rename_var(name.encode(), new_name.encode())
W
Wu Yi 已提交
3884
        # NOTE: v is destroyed by C++ after calling _rename_var.
3885
        d = self.desc.find_var(new_name.encode())
T
typhoonzero 已提交
3886
        if var_type == "Parameter":
L
Leo Chen 已提交
3887
            if in_dygraph_mode():
3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898
                var = EagerParamBase(
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
3899
            else:
J
Jiabin Yang 已提交
3900
                if _in_legacy_dygraph():
3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911
                    var = ParamBase(
                        d.shape(),
                        d.dtype(),
                        type=orig_var_type,
                        name=new_name,
                        stop_gradient=stop_gradient,
                        trainable=trainable,
                        optimize_attr=optimize_attr,
                        regularizer=regularizer,
                        error_clip=error_clip,
                    )
J
Jiabin Yang 已提交
3912
                else:
3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924
                    var = Parameter(
                        self,
                        d.shape(),
                        d.dtype(),
                        type=orig_var_type,
                        name=new_name,
                        stop_gradient=stop_gradient,
                        trainable=trainable,
                        optimize_attr=optimize_attr,
                        regularizer=regularizer,
                        error_clip=error_clip,
                    )
T
typhoonzero 已提交
3925
        elif var_type == "Variable":
3926 3927 3928 3929 3930 3931 3932
            var = Variable(
                self,
                type=orig_var_type,
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient,
            )
T
wip  
typhoonzero 已提交
3933

W
Wu Yi 已提交
3934
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3935 3936 3937
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3938
        self._sync_with_cpp()
3939
        return var
T
typhoonzero 已提交
3940

3941 3942 3943
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
3944
        self.desc._remove_var(name.encode())
3945 3946
        del self.vars[name]

Y
Yu Yang 已提交
3947 3948
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3949
        param = None
L
Leo Chen 已提交
3950
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3951
            param = EagerParamBase(*args, **kwargs)
L
Leo Chen 已提交
3952
        else:
J
Jiabin Yang 已提交
3953 3954 3955 3956
            if _in_legacy_dygraph():
                param = ParamBase(*args, **kwargs)
            else:
                param = Parameter(global_block, *args, **kwargs)
3957

3958
        if 'initializer' in kwargs:
3959 3960 3961 3962 3963

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3964
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3965
                        # are treated as initialization ops that cause error.
3966
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3967 3968
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
3969 3970 3971
                            "c_broadcast",
                            "c_sync_comm_stream",
                            "coalesce_tensor",
3972
                        ]:
3973
                            continue
3974 3975 3976 3977 3978 3979 3980
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
3981 3982 3983 3984 3985 3986
                raise RuntimeError(
                    "param "
                    + param.name
                    + " is inited by multiple init ops "
                    + str(init_ops)
                )
3987
            elif init_ops_len == 1:
3988
                # TODO already inited, do nothing, should log a warning
3989 3990 3991
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3992
        return param
Y
Yu Yang 已提交
3993

Y
Yu Yang 已提交
3994
    def append_op(self, *args, **kwargs):
3995 3996 3997 3998 3999 4000
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
J
Jiabin Yang 已提交
4001
        if _non_static_mode():
4002
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
4003
            inplace_map = kwargs.get("inplace_map", None)
J
Jiabin Yang 已提交
4004
            type = kwargs.get("type", None)
4005 4006 4007
            warnings.warn(
                "Op `%s` is executed through `append_op` under the dynamic mode, "
                "the corresponding API implementation needs to be upgraded to "
4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018
                "using `_C_ops` method." % type,
                DeprecationWarning,
            )
            op = Operator(
                block=self,
                desc=None,
                type=type,
                inputs=None,
                outputs=None,
                attrs=attrs,
            )
4019

M
minqiyang 已提交
4020 4021 4022
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
4023
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
4024

4025 4026 4027 4028 4029 4030 4031 4032
            _dygraph_tracer().trace_op(
                type,
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
                inplace_map,
            )
M
minqiyang 已提交
4033
        else:
4034 4035
            from paddle.fluid.dygraph.base import param_guard

4036
            op_desc = self.desc.append_op()
4037 4038 4039 4040 4041 4042
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
4043 4044 4045 4046 4047 4048 4049 4050
                op = Operator(
                    block=self,
                    desc=op_desc,
                    type=kwargs.get("type", None),
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None),
                )
4051

M
minqiyang 已提交
4052
            self.ops.append(op)
M
minqiyang 已提交
4053

4054 4055
        return op

W
Wu Yi 已提交
4056
    def _insert_op(self, index, *args, **kwargs):
4057 4058 4059 4060 4061 4062 4063 4064 4065
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
4066
        self._sync_with_cpp()
F
fangshuixun007 已提交
4067
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
4068

4069 4070
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
4071
        Insert an Operator according to the giving arguments,
4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
4086 4087 4088 4089 4090 4091 4092 4093 4094
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
4095 4096
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
4097
        self.desc._remove_op(index, index + 1)
4098 4099
        del self.ops[index]

W
Wu Yi 已提交
4100
    def _slice_ops(self, start, end):
4101 4102 4103 4104 4105 4106 4107 4108 4109 4110
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
4111
        return self.ops[start:end]
Y
Yancey1989 已提交
4112

W
Wu Yi 已提交
4113
    def _prepend_op(self, *args, **kwargs):
J
Jiabin Yang 已提交
4114
        if _non_static_mode():
J
Jiabin Yang 已提交
4115 4116
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127
            op = Operator(
                self, None, type=type, inputs=None, outputs=None, attrs=attrs
            )

            _dygraph_tracer().trace_op(
                type,
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
            )
M
minqiyang 已提交
4128
        else:
4129
            op_desc = self.desc._prepend_op()
4130 4131 4132 4133 4134 4135 4136 4137
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None),
            )
M
minqiyang 已提交
4138
            self.ops.insert(0, op)
4139

Y
Yu Yang 已提交
4140 4141
        return op

W
Wu Yi 已提交
4142
    def _sync_with_cpp(self):
4143
        """
4144 4145
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
4146
        """
Q
Qiao Longfei 已提交
4147 4148 4149
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
4150 4151 4152 4153
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
4154 4155 4156 4157 4158 4159 4160 4161
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient,
                    )
4162
                else:
4163 4164 4165 4166 4167 4168
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient,
                    )
Q
Qiao Longfei 已提交
4169

4170
        # sync variables removed from c++ end
4171
        for var in list(self.vars.keys()):
4172
            if not self.desc.find_var(var.encode()):
4173 4174
                self.vars.pop(var)

Q
Qiao Longfei 已提交
4175
        # sync operators from cpp
4176 4177 4178 4179
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
4196 4197 4198 4199 4200

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
4201
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
4202 4203 4204 4205 4206 4207 4208

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

4209 4210 4211 4212 4213
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
4214 4215 4216 4217 4218 4219
                self.ops
            ) and ops_in_cpp_index < len(ops_in_cpp):
                if (
                    self.ops[ops_in_python_index].desc
                    != ops_in_cpp[ops_in_cpp_index]
                ):
4220 4221 4222 4223 4224
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
4225 4226 4227 4228
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
4229
    def _copy_param_info_from(self, other):
4230
        """
4231 4232
        Copy the information of parameters from the other block.

4233
        Args:
4234 4235 4236 4237 4238
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
4239 4240 4241 4242 4243

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
4244
            raise TypeError(
4245 4246
                "_copy_param_info_from should be invoked with Block"
            )
4247
        for p in other.iter_parameters():
4248 4249 4250
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
4251 4252
                # if the Parameter is pruned, v may be None
                continue
4253
            assert isinstance(v, Variable)
4254
            new_p = None
L
Leo Chen 已提交
4255
            if in_dygraph_mode():
4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267
                new_p = EagerParamBase(
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4268
            else:
J
Jiabin Yang 已提交
4269
                if _in_legacy_dygraph():
4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281
                    new_p = ParamBase(
                        shape=v.shape,
                        dtype=v.dtype,
                        type=v.type,
                        lod_level=v.lod_level,
                        stop_gradient=p.stop_gradient,
                        trainable=p.trainable,
                        optimize_attr=p.optimize_attr,
                        regularizer=p.regularizer,
                        error_clip=p.error_clip,
                        name=v.name,
                    )
J
Jiabin Yang 已提交
4282 4283 4284 4285 4286 4287 4288
                else:
                    new_p = Parameter(
                        block=self,
                        shape=v.shape,
                        dtype=v.dtype,
                        type=v.type,
                        lod_level=v.lod_level
4289 4290
                        if v.type == core.VarDesc.VarType.LOD_TENSOR
                        else None,
J
Jiabin Yang 已提交
4291 4292 4293 4294 4295
                        stop_gradient=p.stop_gradient,
                        trainable=p.trainable,
                        optimize_attr=p.optimize_attr,
                        regularizer=p.regularizer,
                        error_clip=p.error_clip,
4296 4297
                        name=v.name,
                    )
4298 4299
            self.vars[new_p.name] = new_p

4300
    def _clone_variable(self, var, force_persistable=True):
4301 4302
        """
        Clone a variable into current block.
4303

4304 4305
        Args:
            var: the variable to be cloned.
4306 4307 4308
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
4309 4310

        Returns:
4311
            Variable: the new  variable cloned from 'var' in current block.
4312 4313
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
4314 4315 4316
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
4317 4318 4319
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
tangwei12 已提交
4320
        elif var.type == core.VarDesc.VarType.RAW:
4321 4322 4323
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
typhoonzero 已提交
4324 4325 4326 4327 4328 4329
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
4330
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4331
                is_data=var.is_data,
4332 4333
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4334 4335 4336 4337 4338 4339 4340
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
4341
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4342
                is_data=var.is_data,
4343 4344
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4345
        return ret_var
4346

Y
Yu Yang 已提交
4347

4348 4349 4350 4351
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
4352
# of some old Python Variables(all old Python Operators) may have
4353
# been destructed.
4354 4355 4356
def _apply_pass(
    main_program, startup_program, pass_name, pass_attrs={}, pass_attr_types={}
):
4357 4358 4359 4360
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
4361 4362 4363 4364 4365 4366 4367
    attrs = core.apply_pass(
        tmp_main_program,
        tmp_startup_program,
        pass_name,
        pass_attrs,
        pass_attr_types,
    )
4368 4369 4370 4371 4372
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


4373
class IrNode:
4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4385 4386 4387
        assert isinstance(
            node, core.Node
        ), 'node must be the instance of core.Node.'
4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

4469
    def remove_input_by_id(self, node_id):
4470 4471 4472 4473 4474 4475
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4476
        self.node.remove_input(node_id)
4477

4478
    def remove_input(self, node):
4479 4480 4481 4482
        """
        Remove a node from inputs.

        Args:
4483
            node(IrNode): the node being removed.
4484
        """
4485
        self.node.remove_input(node.node)
4486

4487
    def append_input(self, node):
4488 4489 4490 4491
        """
        Append a node in inputs.

        Args:
4492
            node(IrNode): the node being appended.
4493
        """
4494
        self.node.append_input(node.node)
4495 4496 4497 4498 4499 4500 4501 4502

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

4503
    def remove_output_by_id(self, node_id):
4504 4505 4506 4507 4508 4509
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4510
        self.node.remove_output(node_id)
4511

4512
    def remove_output(self, node):
4513 4514 4515 4516
        """
        Remove a node from outputs.

        Args:
4517
            node(IrNode): the node being removed.
4518
        """
4519
        self.node.remove_output(node.node)
4520

4521
    def append_output(self, node):
4522 4523 4524 4525
        """
        Append a node in outputs.

        Args:
4526
            node(IrNode): the node being appended.
4527
        """
4528
        self.node.append_output(node.node)
4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4563 4564 4565
        assert (
            isinstance(node, core.Node) and node.is_var()
        ), 'node must be the instance of core.Node and it must be a variable node.'
4566
        super().__init__(node)
4567 4568 4569 4570 4571 4572 4573 4574 4575
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
4576 4577 4578
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4579 4580 4581 4582 4583 4584 4585 4586 4587
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
4588 4589 4590
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4591 4592
        return self.node.var().persistable()

4593 4594 4595 4596 4597 4598 4599
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
4600 4601 4602
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4603 4604 4605 4606 4607 4608 4609 4610 4611
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
4612 4613 4614
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4615 4616 4617 4618 4619 4620 4621 4622 4623
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
4624 4625 4626
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4627 4628
        return self.node.var().shape()

4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4662 4663 4664
        assert (
            isinstance(node, core.Node) and node.is_op()
        ), 'node must be the instance of core.Node and it must be a operator node.'
4665
        super().__init__(node)
4666 4667 4668 4669 4670 4671 4672 4673 4674 4675
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
4676 4677 4678
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4679 4680
        self.node.op()._rename_input(old_input_name, new_input_name)

4681 4682 4683 4684 4685 4686 4687 4688
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
4689 4690 4691
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4692 4693
        self.node.op()._rename_output(old_output_name, new_output_name)

4694 4695 4696 4697 4698 4699 4700 4701 4702 4703
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4704 4705 4706
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4719 4720 4721
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4722 4723 4724 4725 4726 4727 4728 4729 4730
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
4731 4732 4733
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4734 4735
        return self.node.op().set_type(new_type)

4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
4750 4751 4752
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4753
        desc = self.node.op()
4754 4755 4756 4757 4758
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
4759
            desc.set_block_attr(name, val.desc)
4760
        elif isinstance(val, list) and val and _all_is_type(val, Block):
4761
            desc.set_blocks_attr(name, [v.desc for v in val])
4762 4763 4764
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
4765 4766 4767 4768
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4769 4770 4771 4772 4773 4774 4775
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
4776 4777 4778
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4779 4780 4781 4782 4783 4784 4785 4786 4787
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
4788 4789 4790
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4791 4792
        return self.node.op().output_arg_names()

4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4814
class IrGraph:
4815
    """
4816
    Python IrGraph. Beneath it is a core.Graph, which is used for
4817
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4818 4819
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4820 4821 4822 4823
    """

    def __init__(self, graph, for_test=False):
        """
4824 4825
        Construct an IrGraph using core.Graph.

4826 4827 4828 4829 4830
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
4831 4832
            graph, core.Graph
        ), 'graph must be the instance of core.Graph.'
4833 4834 4835
        self.graph = graph
        self._for_test = for_test

4836 4837 4838 4839
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4840 4841 4842
        Warns:
            The method only clones the graph structure, not its attributes.

4843 4844 4845
        Returns:
            IrGraph: A new and duplicated graph.
        """
4846
        g = self.graph.clone()
4847 4848
        return IrGraph(g, self._for_test)

4849
    def is_test(self):
4850 4851 4852
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4853 4854
        return self._for_test

W
WangZhen 已提交
4855
    def all_nodes(self):
4856 4857 4858
        """
        Return all nodes included in the graph as a set.
        """
4859
        return {IrNode(node) for node in self.graph.nodes()}
4860

4861
    def all_var_nodes(self):
4862 4863 4864
        """
        Return all variable nodes included in the graph as a set.
        """
4865
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4866

4867
    def all_persistable_nodes(self):
4868 4869 4870
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4871 4872
        persistable_nodes = set()
        for node in self.graph.nodes():
4873 4874 4875 4876 4877
            if (
                node.is_var()
                and node.var() is not None
                and node.var().persistable()
            ):
W
WangZhen 已提交
4878
                persistable_nodes.add(node)
4879
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4880

4881
    def all_op_nodes(self):
4882 4883 4884
        """
        Return all operator nodes included in the graph as a set.
        """
4885
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4886

4887 4888 4889 4890 4891 4892
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
4893
            IrGraph(self.graph.get_sub_graph(i), for_test=for_test)
4894 4895 4896 4897 4898 4899 4900 4901 4902
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4903
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4915
            IrVarNode: the created persistable variable node.
4916
        """
4917 4918 4919 4920 4921
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4922
        return IrVarNode(self.graph.create_var_node(var_desc))
4923 4924

    def create_var_node(self, name, var_type, shape, var_dtype):
4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4936
            IrVarNode: the created variable node.
4937 4938
        """

4939 4940 4941 4942
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4943
        return IrVarNode(self.graph.create_var_node(var_desc))
4944

4945 4946 4947 4948 4949 4950
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4951
    def create_var_node_from_desc(self, var_desc):
4952 4953 4954 4955 4956 4957 4958 4959
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4960
            IrVarNode: the created variable node.
4961
        """
4962
        return IrVarNode(self.graph.create_var_node(var_desc))
4963 4964

    def create_op_node(self, op_type, attrs, inputs, outputs):
4965 4966 4967 4968 4969 4970 4971
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4972
            outputs(dict): the outputs of the operator node.
4973 4974

        Returns:
4975
            IrOpNode: the created operator node.
4976
        """
4977 4978
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4979
        for attr, value in attrs.items():
4980
            self._update_desc_attr(op_desc, attr, value)
4981
        for input_name, var_nodes in inputs.items():
4982 4983
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
4984 4985 4986
            op_desc.set_input(
                input_name, [var_node.name() for var_node in var_nodes]
            )
4987
        for output_name, var_nodes in outputs.items():
4988 4989
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
4990 4991 4992
            op_desc.set_output(
                output_name, [var_node.name() for var_node in var_nodes]
            )
4993
        return IrOpNode(self.graph.create_op_node(op_desc))
4994 4995

    def create_op_node_from_desc(self, op_desc):
4996 4997 4998 4999 5000 5001 5002
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
5003
            IrOpNode: the created operator node.
5004
        """
5005
        return IrOpNode(self.graph.create_op_node(op_desc))
5006 5007

    def update_input_link(self, old_input_node, new_input_node, op_node):
5008 5009 5010 5011
        """
        Update the input's link of a operator node.

        Args:
5012 5013 5014
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
5015
        """
5016 5017 5018 5019 5020
        assert (
            old_input_node.node in self.graph.nodes()
            and new_input_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
5021 5022 5023 5024
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
5025
        op_node.rename_input(old_input_node.name(), new_input_node.name())
5026

5027 5028 5029 5030 5031 5032 5033 5034 5035
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
5036 5037 5038 5039 5040
        assert (
            old_output_node.node in self.graph.nodes()
            and new_output_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
5041 5042 5043 5044 5045 5046
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

5047
    def link_to(self, node_in, node_out):
5048 5049 5050 5051
        """
        Connect two nodes.

        Args:
5052 5053
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
5054
        """
5055
        assert node_in.node in self.graph.nodes(), (
5056 5057
            'node_in(%s) must be in the graph nodes.' % node_in.node.name()
        )
5058
        assert node_out.node in self.graph.nodes(), (
5059 5060
            'node_out(%s) must be in the graph nodes.' % node_out.node.name()
        )
5061 5062
        node_in.append_output(node_out)
        node_out.append_input(node_in)
5063 5064

    def safe_remove_nodes(self, remove_nodes):
5065 5066 5067 5068 5069 5070 5071
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
5072
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
5073 5074 5075 5076
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
5077 5078
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
5079

Z
Zhen Wang 已提交
5080 5081 5082 5083 5084 5085 5086 5087
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5088
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
5089 5090 5091 5092
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5093
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
5094 5095 5096
                        ]
                    else:
                        var_nodes[each_var_name].append(
5097 5098
                            self._find_node_by_name(node.outputs, each_var_name)
                        )
Z
Zhen Wang 已提交
5099 5100
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
5101
    def has_circle(self):
5102 5103 5104 5105 5106 5107
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
5108 5109 5110
        return core.has_circle(self.graph)

    def graph_num(self):
5111 5112 5113 5114 5115 5116
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
5117 5118 5119
        return core.graph_num(self.graph)

    def topology_sort(self):
5120 5121 5122
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
5123
        Notes: the `graph` can not contain a circle.
5124 5125

        Returns:
Z
Zhen Wang 已提交
5126
            list(IrNode): nodes in topology order.
5127
        """
5128
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
5129
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
5130 5131

    def build_adjacency_list(self):
5132 5133 5134 5135
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
5136
            dict{IrNode: set(IrNode)}: the adjacency list.
5137
        """
5138 5139
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
5140
        for k, v in adj_list.items():
5141 5142
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
5143

5144 5145 5146 5147 5148 5149 5150 5151
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
5152
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
5153 5154 5155 5156 5157
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

5158 5159
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
5160 5161 5162 5163
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True,
            )
5164 5165
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
5166 5167 5168
                print(
                    'The {} is saved as the dot filetype.'.format(dot_file_path)
                )
5169

5170
        remove_ctr_vars = set()
5171
        if remove_ctr_var:
5172
            for node in self.all_var_nodes():
5173 5174 5175
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
5176 5177
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

5178 5179
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
5180 5181 5182 5183 5184 5185
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
5186 5187 5188 5189
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
5190 5191
        if not os.path.exists(save_path):
            os.makedirs(save_path)
5192 5193 5194 5195 5196 5197 5198
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
5199 5200 5201
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
5202
        WARN: When the graph includes backward operator nodes, the
5203 5204 5205 5206 5207 5208
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
5209
        convert_pass = core.get_pass('graph_to_program_pass')
5210 5211
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
5212 5213 5214 5215
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

5216 5217 5218 5219 5220 5221 5222 5223
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
5224
        assert target_node is not None, (
5225 5226
            "Cannot find the target node (%s)in the giving set." % node_name
        )
5227 5228
        return target_node

5229 5230 5231 5232
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
5233 5234 5235 5236 5237
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
5238
            desc.set_block_attr(name, val.desc)
5239
        elif isinstance(val, list) and val and _all_is_type(val, Block):
5240
            desc.set_blocks_attr(name, [v.desc for v in val])
5241 5242 5243
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
5244 5245 5246 5247 5248
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


5249
class Program:
D
dzhwinter 已提交
5250
    """
5251
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
5252
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
5253
    it will contain nested block.
5254

J
Jiabin Yang 已提交
5255 5256 5257
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
5258

J
Jiabin Yang 已提交
5259
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
5260
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
5261 5262 5263 5264 5265 5266 5267
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
5268
    **Notes**:
5269 5270 5271
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
5272 5273

    Returns:
J
Jiabin Yang 已提交
5274
        Program: An empty Program.
D
dzhwinter 已提交
5275 5276

    Examples:
5277 5278
        .. code-block:: python

5279 5280 5281 5282
            import paddle
            import paddle.static as static

            paddle.enable_static()
5283

5284 5285 5286 5287 5288
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
5289
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
5290 5291 5292

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
5293 5294 5295

    """

5296 5297
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
5298 5299
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
5300 5301
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
5302
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
5303
        self.__op_role_var = []
T
tangwei12 已提交
5304

5305 5306
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
5307
        self._is_distributed = False
5308
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
5309
        self._is_chief = False
5310 5311 5312
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
5313
        self._endpoints = []
5314 5315 5316
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
5317
        self._trainers_endpoints = []
5318
        # the distributed lookup table names
T
tangwei12 已提交
5319
        self._distributed_lookup_table = None
5320 5321 5322

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
5323 5324
        self._use_lamb = False

5325 5326 5327
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
5328

5329 5330 5331
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
5332
        self._program_config = None
5333

H
hutuxian 已提交
5334 5335 5336
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

5337 5338 5339
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

5340 5341 5342
        # appending gradients times
        self._appending_grad_times = 0

5343 5344
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
5345 5346
            "__auto_checkpoint_program__"
        )
5347

5348 5349
        # compiled program, i.e. Graph
        self._graph = None
5350 5351
        # to tag whether is startup_program
        self._is_start_up_program_ = False
5352

5353
    def _find_var_class_kwargs(self, new_desc):
5354 5355 5356 5357 5358 5359 5360 5361
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

5362 5363 5364 5365
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
5366
            if idx > (len(self.blocks) - 1):
5367
                self._create_block()
5368 5369 5370 5371 5372 5373 5374 5375 5376 5377
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
                    'shape': get_var_desc_attr_or_none(
                        new_var_desc,
                        "shape",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'dtype': get_var_desc_attr_or_none(
                        new_var_desc,
                        "dtype",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'lod_level': get_var_desc_attr_or_none(
                        new_var_desc,
                        "lod_level",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'error_clip': old_var.error_clip
                    if old_var is not None
                    else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None
                    else False,
                    'is_data': old_var.is_data
                    if old_var is not None
                    else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None
                    else False,
5419 5420 5421
                }

                if isinstance(old_var, Parameter):
5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438
                    kwargs.update(
                        {
                            'trainable': old_var.trainable,
                            'optimize_attr': old_var.optimize_attr,
                            'regularizer': old_var.regularizer,
                            'do_model_average': old_var.do_model_average,
                            'need_clip': old_var.need_clip,
                            'is_distributed': old_var.is_distributed,
                            'is_parameter': old_var.is_parameter,
                        }
                    )
                    block_new_vars.append(
                        {
                            'class': Parameter,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5439 5440
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
5441 5442 5443 5444 5445 5446
                    block_new_vars.append(
                        {
                            'class': Variable,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5447 5448 5449 5450 5451 5452 5453

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
5454
        assert block_num == self.desc.num_blocks()
5455 5456

        # clear old blocks and desc
5457 5458 5459 5460 5461 5462 5463 5464 5465
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
5466

5467
        del desc
5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

5487 5488 5489 5490 5491 5492 5493 5494 5495 5496
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

5497 5498
                import paddle
                import paddle.static as static
5499

5500 5501 5502
                paddle.enable_static()

                prog = static.default_main_program()
5503 5504 5505 5506 5507
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
5508
                prog1 = static.default_main_program()
5509 5510 5511 5512 5513 5514 5515 5516
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
5517
    @property
5518
    def _op_role(self):
Y
yuyang18 已提交
5519 5520 5521 5522 5523 5524 5525 5526
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
5527
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
5528 5529 5530 5531
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
5532 5533
        return self._current_role

5534 5535
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
5536 5537 5538
        self._current_role = role

    @property
5539
    def _op_role_var(self):
Y
yuyang18 已提交
5540
        """
5541
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
5542

5543
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
5544 5545 5546

        Notes: This is a very low-level API. Users should not use it directly.
        """
5547
        return self.__op_role_var
Y
yuyang18 已提交
5548

5549
    @signature_safe_contextmanager
5550 5551 5552 5553 5554
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
5555 5556 5557 5558
        try:
            yield
        finally:
            self._current_role = tmp_role
5559

S
rename  
sneaxiy 已提交
5560
    @signature_safe_contextmanager
W
Wu Yi 已提交
5561
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
5562 5563 5564 5565 5566 5567 5568
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
5569
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
5570 5571 5572

        Examples:

5573
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
5574
            >>> p, g = backward(...)
W
Wu Yi 已提交
5575
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
5576 5577
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
5578
        tmp_role = self._current_role
5579
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
5580

Y
yuyang18 已提交
5581 5582
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
5583
        self.__op_role_var = [
5584 5585 5586
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
5587 5588 5589 5590 5591
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
5592

S
rename  
sneaxiy 已提交
5593
    @signature_safe_contextmanager
X
Xin Pan 已提交
5594
    def _lr_schedule_guard(self, is_with_opt=False):
5595 5596 5597 5598 5599 5600 5601
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
5602 5603 5604 5605
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
5606 5607 5608

        Examples:

5609
            >>> import paddle.fluid as fluid
5610 5611 5612 5613
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
5614 5615

        tmp_role = self._current_role
5616
        tmp_var = self.__op_role_var
5617

5618 5619
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
5620 5621
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
5622
        # TODO(typhoonzero): how to set target learning rate var
5623
        self.__op_role_var = []
5624 5625 5626 5627 5628
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
5629

5630
    def __str__(self):
Y
yuyang18 已提交
5631 5632 5633 5634 5635 5636 5637 5638 5639
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5660 5661
            import paddle
            import paddle.static as static
5662

5663 5664 5665
            paddle.enable_static()

            cur_program = static.Program()
5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5677
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
5678 5679
            type(skip_op_callstack)
        )
5680 5681 5682
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5683
            program_str += '\n'
5684
        return program_str
Y
Yang Yang(Tony) 已提交
5685

F
fengjiayi 已提交
5686 5687 5688
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5689

J
Jiabin Yang 已提交
5690 5691 5692
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5693

J
Jiabin Yang 已提交
5694
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5695

H
haowang101779990 已提交
5696
        Returns:
J
Jiabin Yang 已提交
5697
            str: The debug string describe current Program.
Y
yuyang18 已提交
5698 5699

        Raises:
J
Jiabin Yang 已提交
5700
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5701

5702 5703 5704
        Examples:
            .. code-block:: python

5705 5706 5707 5708
                import paddle
                import paddle.static as static

                paddle.enable_static()
5709

5710 5711 5712
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5713
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5714
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5715
                print("program string without detail: {}".format(prog_string))
5716
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5717
        """
5718 5719 5720
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
5721 5722
            type(throw_on_error)
        )
5723 5724 5725
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
5726 5727
            type(with_details)
        )
5728

F
fengjiayi 已提交
5729 5730 5731 5732 5733 5734
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
5735
            proto = framework_pb2.ProgramDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
5736 5737
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5738

W
Wu Yi 已提交
5739
    def _get_desc(self):
Y
yuyang18 已提交
5740 5741 5742 5743 5744 5745 5746
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5747 5748
        return self.desc

X
version  
Xin Pan 已提交
5749 5750 5751
    def _version(self):
        return self.desc._version()

5752
    def clone(self, for_test=False):
Y
yuyang18 已提交
5753
        """
5754
        .. note:::
5755 5756
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` .
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` .
5757
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5758

5759
        Create a new Program with forward content of original one when ``for_test=True``.
5760
        Create a new Program as same as the original one when ``for_test=False``.
5761

5762
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5763 5764 5765
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5766

5767 5768
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5769 5770
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
5771
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
5772

J
Jiabin Yang 已提交
5773
        For Example:
5774
          ::
L
Luo Tao 已提交
5775

5776 5777 5778 5779 5780 5781
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
5782
            pred = static.nn.fc(x=img, size=10, actvation='relu')
5783
            loss = paddle.mean(pred)
5784
            # Here we use clone before Momentum
5785 5786
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
5787
            optimizer.minimize(loss)
5788

J
Jiabin Yang 已提交
5789
        Args:
5790

5791 5792
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
5793

J
Jiabin Yang 已提交
5794
        Returns:
5795
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
5796

Y
yuyang18 已提交
5797 5798 5799

        Examples:

5800 5801 5802 5803 5804 5805 5806
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5807 5808
            .. code-block:: python

5809
                import paddle
5810 5811

                def print_prog(prog):
5812
                    for name, value in sorted(prog.block(0).vars.items()):
5813 5814 5815 5816 5817
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
5818
                        for key, value in sorted(op.all_attrs().items()):
5819 5820 5821 5822
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5823
            1. To clone a test program, the sample code is:
5824 5825
                .. code-block:: python

5826 5827 5828 5829 5830 5831
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5832 5833

                    def print_prog(prog):
5834
                        for name, value in sorted(prog.block(0).vars.items()):
5835 5836 5837 5838 5839
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
5840
                            for key, value in sorted(op.all_attrs().items()):
5841 5842 5843
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5844 5845
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5846 5847 5848

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5849 5850 5851
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5852
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5853 5854
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5855
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5856 5857
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5858
                            test_program = train_program.clone(for_test=True)
5859
                    print_prog(test_program)
J
Jiabin Yang 已提交
5860 5861 5862 5863

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5864
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5865 5866 5867 5868
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5869 5870 5871
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5872 5873 5874
                            sgd.minimize(avg_loss)


5875
            2. The clone method can be avoid if you create program for training and program for testing individually.
5876 5877
                .. code-block:: python

5878 5879 5880 5881 5882 5883
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5884 5885

                    def print_prog(prog):
5886
                        for name, value in sorted(prog.block(0).vars.items()):
5887 5888 5889 5890 5891
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
5892
                            for key, value in sorted(op.all_attrs().items()):
5893 5894
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5895

5896
                    def network():
5897
                        img = static.data(name='image', shape=[None, 784])
5898
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5899 5900
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5901
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5902 5903
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5904 5905
                        return avg_loss

5906 5907 5908 5909 5910
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5911
                            avg_loss = network()
5912
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5913
                            sgd.minimize(avg_loss)
5914
                    # the test startup program is not used.
5915 5916
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5917 5918
                            avg_loss = network()
                    print_prog(test_program_2)
5919

5920
            The two code snippets above will generate and print same programs.
5921
        """
5922

T
tangwei12 已提交
5923
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5924 5925 5926
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5927
        pruned_origin_block_id_map = None
5928
        if for_test:
5929 5930
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
5931 5932
                self.desc
            )
5933 5934
            forward_prog.blocks = [
                Block(forward_prog, i)
5935
                for i in range(forward_prog.desc.num_blocks())
5936 5937 5938
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5939
        else:
5940
            p = Program()
G
gongweibao 已提交
5941 5942
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5943
            p.desc = core.ProgramDesc(self.desc)
5944
            p.blocks = [Block(p, i) for i in range(self.desc.num_blocks())]
G
gongweibao 已提交
5945 5946

            p._current_role = self._current_role
5947
            p.__op_role_var = self.__op_role_var
5948
            p._appending_grad_times = self._appending_grad_times
5949 5950
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
5951

T
tangwei12 已提交
5952
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5953
            # its desc.
W
Wu Yi 已提交
5954
            p._sync_with_cpp()
5955

W
Wu Yi 已提交
5956
        p._copy_param_info_from(self)
5957
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5958
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5959
        return p
5960

5961
    def _prune(self, targets):
Y
yuyang18 已提交
5962 5963 5964 5965 5966 5967 5968 5969
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5970
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5971 5972 5973 5974
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5975
        """
5976
        return self._prune_with_input([], targets)
5977 5978

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5979
        """
5980
        Prune operators and variables which are not needed to generate
5981 5982
        :code:`targets`. Prune operators and variables which are needed
        to generate feeded_var
5983 5984 5985 5986 5987 5988 5989

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5990
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5991 5992 5993 5994 5995 5996
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5997
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5998 5999 6000
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

6001 6002
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
6003 6004
        if not isinstance(targets, list):
            targets = [targets]
6005 6006

        for var in feeded_var_names:
6007
            if not isinstance(var, str):
6008 6009
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
6010 6011
                    "str, but received %s." % type(var)
                )
6012

6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

6029 6030 6031 6032
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
6033
                    name = t.name
6034
                elif isinstance(t, str):
6035
                    name = str(t)
6036
                else:
6037 6038
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
6039 6040
                        "Variable or Operator, but received %s." % type(t)
                    )
6041 6042 6043 6044 6045 6046

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
6047 6048 6049
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
6050

6051 6052 6053 6054 6055 6056 6057 6058 6059
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
6060
                        # Skip optimize op except for optimize op in targets,
6061 6062 6063 6064 6065
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
6066

6067
                if target_op is not None:
6068 6069 6070
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
6071

6072
        res = Program()
6073
        res.desc, pruned_origin_block_id_map = core.prune(
6074 6075
            self.desc, set(feeded_var_names), targets_idx
        )
6076
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6077
        res._sync_with_cpp()
6078 6079 6080 6081 6082

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

6083 6084
        return res

X
Xin Pan 已提交
6085
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
6086
        """
F
fengjiayi 已提交
6087 6088 6089 6090 6091
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

6092
        3. change the :code:`is_test`
Y
yuyang18 已提交
6093 6094 6095
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

6096
        Args:
X
Xin Pan 已提交
6097 6098
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
6099

Y
yuyang18 已提交
6100 6101 6102 6103 6104 6105
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
6106
        res = Program()
6107
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
6108 6109 6110 6111

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
6112
        if prune_read_op:
6113
            while True:
6114 6115 6116 6117
                if (
                    read_op_idx >= root_block.op_size()
                    or root_block.op(read_op_idx).type() == 'read'
                ):
6118 6119 6120 6121 6122 6123
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
6124
                    root_block._remove_var(var.name().encode())
F
fengjiayi 已提交
6125 6126

        # change all `is_test` attributes to True
6127
        for i in range(res.desc.num_blocks()):
6128
            block = res.desc.block(i)
6129
            for j in range(block.op_size()):
6130 6131
                op = block.op(j)
                if op.has_attr('is_test'):
6132
                    op._set_bool_attr('is_test', True)
6133 6134 6135
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
6136
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6137
        res._sync_with_cpp()
6138 6139
        return res

6140
    def _remove_training_info(self, clip_extra=True):
6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

6155
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
6156 6157
        res._sync_with_cpp()

6158 6159
        # Note: The op_role and op_role_var cann't be deleted currently,
        # and we will try to remove them in the future.
6160
        common_clipped_attrs_list = ['op_callstack', 'with_quant_attr']
6161

6162
        for i in range(res.desc.num_blocks()):
6163 6164 6165 6166
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
6167 6168
            if not clip_extra:
                continue
6169 6170 6171 6172
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
6173 6174 6175

                extra_attrs_map = core.get_op_extra_attrs(op.type())

6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
6189 6190 6191
                # The extra input of op will be removed in the future
                # for name in remove_input_list:
                #     op.remove_input(name)
6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
6205
                # The extra output of op will be removed in the future
6206 6207
                for name in remove_output_list:
                    op.remove_output(name)
6208

6209 6210 6211 6212 6213 6214 6215
                op_quant_name = (
                    core.op_proto_and_checker_maker.kOpWithQuantAttrName()
                )
                quant = (
                    bool(op.attr(op_quant_name))
                    if op_quant_name in op.attr_names()
                    else False
6216 6217
                )
                quant_attrs = [
6218 6219 6220 6221 6222 6223 6224
                    op_quant_name,
                    "quantization_type",
                    "skip_quant",
                    "activation_bits",
                    "bit_length",
                    "quantize_weight_bits",
                    "weight_quant_scale",
6225
                ]
6226 6227
                for extra_attr_name in extra_attrs_map.keys():
                    op.remove_attr(extra_attr_name)
6228
                remove_attr_list = []
6229 6230 6231 6232 6233 6234
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
6235
                    if len(extra_attrs_map) > 0:
6236
                        if name in common_clipped_attrs_list:
6237
                            op.remove_attr(name)
6238
                        continue
6239 6240 6241 6242 6243 6244 6245 6246 6247 6248
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
6249 6250
        return res

6251 6252
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
6253
        """
6254
        .. note::
6255
            1. All information about parameters will be lost after serialization;
6256
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6257

6258 6259
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
6260

J
Jiabin Yang 已提交
6261
        Args:
Y
yuyang18 已提交
6262

J
Jiabin Yang 已提交
6263
            binary_str_type (str): the binary prootbuf string.
6264

J
Jiabin Yang 已提交
6265 6266
        Returns:
            Program: A deserialized Program.
6267 6268 6269 6270

        Examples:
            .. code-block:: python

6271 6272 6273 6274
                import paddle
                import paddle.static as static

                paddle.enable_static()
6275

6276 6277 6278 6279
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
6280

6281
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
6282

6283
                    z = paddle.matmul(x=x, y=y)
6284

6285 6286
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
6287

6288
                    print(static.default_main_program())
6289
                    print(prog_restored)
Y
yuyang18 已提交
6290
        """
6291 6292
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
6293
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
W
Wu Yi 已提交
6294
        p._sync_with_cpp()
6295
        return p
Y
Yu Yang 已提交
6296

6297
    @staticmethod
6298
    def _construct_from_desc(desc):
6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
6310
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
6311 6312 6313
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
6314 6315
    @property
    def random_seed(self):
Y
yuyang18 已提交
6316
        """
J
Jiabin Yang 已提交
6317
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
6318 6319
        the random seed from random device.

6320
        .. note::
6321
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
6322 6323 6324

        Returns:
            int64: Random seed in current Program
6325

6326 6327 6328 6329

        Examples:
            .. code-block:: python

6330 6331 6332
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
6333

6334 6335 6336
                paddle.enable_static()

                prog = static.default_main_program()
6337
                random_seed = prog.random_seed
6338
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
6339 6340 6341
                print(random_seed)
                ## 0
                ## the default random seed is 0
6342

6343
                # Here we need to set random seed before we use paddle.nn.functional.dropout
6344
                prog.random_seed = 1
6345
                z_var = F.dropout(x_var, 0.7)
6346

6347
                print(prog.random_seed)
6348 6349
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
6350
        """
D
dzhwinter 已提交
6351 6352
        return self._seed

Q
qiaolongfei 已提交
6353 6354
    @property
    def num_blocks(self):
Y
yuyang18 已提交
6355
        """
6356 6357
        The number of :ref:`api_guide_Block_en`  in this Program.

6358
        .. note::
6359
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
6360 6361 6362

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
6363

6364 6365 6366 6367

        Examples:
            .. code-block:: python

6368 6369 6370 6371
                import paddle
                import paddle.static as static

                paddle.enable_static()
6372

6373
                prog = static.default_main_program()
6374 6375
                num_blocks = prog.num_blocks
                print(num_blocks)
6376

6377 6378
                # print result:
                # 1
Y
yuyang18 已提交
6379
        """
Q
qiaolongfei 已提交
6380 6381
        return self.desc.num_blocks()

D
dzhwinter 已提交
6382 6383 6384
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
6385 6386
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
6387 6388
                % type(seed)
            )
D
dzhwinter 已提交
6389 6390
        self._seed = seed

Y
Yu Yang 已提交
6391
    def __repr__(self):
6392
        return self.__str__()
6393

Y
Yu Yang 已提交
6394
    def global_block(self):
Y
yuyang18 已提交
6395
        """
6396 6397
        .. note::
            This API has no effect in Dygraph mode.
6398 6399 6400

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
6401 6402
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
6403

6404 6405 6406 6407

        Examples:
            .. code-block:: python

6408 6409 6410 6411
                import paddle
                import paddle.static as static

                paddle.enable_static()
6412

6413
                prog = static.default_main_program()
6414 6415
                gb_block = prog.global_block()
                print(gb_block)
6416

Y
yuyang18 已提交
6417
        """
Y
Yu Yang 已提交
6418 6419
        return self.blocks[0]

Q
Qiao Longfei 已提交
6420
    def block(self, index):
Y
yuyang18 已提交
6421
        """
6422 6423
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6424

6425 6426
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
6427 6428
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
6429

J
Jiabin Yang 已提交
6430 6431
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
6432 6433 6434 6435

        Examples:
            .. code-block:: python

6436 6437 6438 6439
                import paddle
                import paddle.static as static

                paddle.enable_static()
6440

6441
                prog = static.default_main_program()
6442 6443
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
6444
        """
Q
Qiao Longfei 已提交
6445 6446
        return self.blocks[index]

Y
Yu Yang 已提交
6447
    def current_block(self):
Y
yuyang18 已提交
6448
        """
6449 6450
        .. note::
            This API has no effect in Dygraph mode.
6451

J
Jiabin Yang 已提交
6452 6453
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
6454

J
Jiabin Yang 已提交
6455 6456
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
6457

6458 6459 6460
        Examples:
            .. code-block:: python

6461 6462 6463 6464
                import paddle
                import paddle.static as static

                paddle.enable_static()
6465

6466
                prog = static.default_main_program()
6467 6468
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
6469
        """
Y
Yu Yang 已提交
6470 6471
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
6472
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
6473 6474 6475 6476 6477
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
6478

Y
yuyang18 已提交
6479 6480 6481 6482 6483
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
6484
        new_block_idx = len(self.blocks)
6485 6486 6487 6488 6489
        parent = (
            self.current_block()
            if parent_idx is None
            else self.block(parent_idx)
        )
F
update  
fengjiayi 已提交
6490
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
6491 6492 6493 6494
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
6495
    def _rollback(self):
Y
yuyang18 已提交
6496 6497 6498 6499 6500
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
6501 6502
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
6503
    def _sync_with_cpp(self):
Y
yuyang18 已提交
6504 6505 6506 6507 6508 6509 6510 6511 6512 6513
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
6514 6515 6516
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
6517
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
6518

W
Wu Yi 已提交
6519
    def _copy_param_info_from(self, other):
6520
        """
6521
        Copy the information of parameters from other program.
D
dzhwinter 已提交
6522

Y
yuyang18 已提交
6523 6524 6525
        Notes: This is a very low level API. Users should not invoke it
        directly.

6526 6527 6528 6529 6530 6531 6532
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6533 6534
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6535 6536
                % type(other)
            )
6537

W
Wu Yi 已提交
6538
        self.global_block()._copy_param_info_from(other.global_block())
6539

6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6551 6552
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6553 6554
                % type(other)
            )
6555 6556
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
6557
        self._parameters_on_pservers = other._parameters_on_pservers
6558
        self._endpoints = other._endpoints
6559
        self._ps_endpoint = other._ps_endpoint
6560 6561
        self._distributed_lookup_table = other._distributed_lookup_table

6562
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
6563 6564
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
6565

Y
yuyang18 已提交
6566 6567 6568
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
6569 6570
        Args:
            other(Program): Other program
6571
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
6572 6573
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is
            cloned from block 0 in other, etc. Default is None, which means default mapped,
6574
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
6575 6576 6577 6578 6579

        Returns:
            None
        """
        if not isinstance(other, Program):
6580 6581
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6582 6583
                % type(other)
            )
F
fengjiayi 已提交
6584

6585 6586
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
6587
                i: i for i in range(self.desc.num_blocks())
6588
            }
6589 6590 6591

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
6592 6593
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
6594
            for var in list(block.vars.values()):
6595 6596 6597 6598 6599 6600 6601
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
6602

6603
    def list_vars(self):
Y
yuyang18 已提交
6604
        """
6605
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
6606

J
Jiabin Yang 已提交
6607
        Returns:
6608
            iterable Tensors: The Generator will yield every Tensor in this program.
6609 6610 6611 6612

        Examples:
            .. code-block:: python

6613 6614
                import paddle
                import paddle.static as static
6615

6616 6617 6618 6619 6620
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
6621 6622
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
6623

6624 6625
                # var img : LOD_TENSOR.shape(-1, 1, 28, 28).dtype(float32).stop_gradient(True)
                # var label : LOD_TENSOR.shape(-1, 1).dtype(int64).stop_gradient(True)
Y
yuyang18 已提交
6626
        """
6627
        for each_block in self.blocks:
6628
            for each_var in list(each_block.vars.values()):
6629 6630
                yield each_var

6631 6632 6633 6634 6635 6636 6637 6638 6639 6640
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

6641 6642 6643 6644
                import paddle
                import paddle.static as static

                paddle.enable_static()
6645

6646 6647
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
6648
                hidden = static.nn.fc(x=data, size=10)
6649 6650
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
6651 6652 6653 6654 6655 6656 6657

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
6658 6659
                # persist trainable param fc_0.w_0 : LOD_TENSOR.shape(13, 10).dtype(float32).stop_gradient(False)
                # persist trainable param fc_0.b_0 : LOD_TENSOR.shape(10,).dtype(float32).stop_gradient(False)
6660 6661 6662 6663 6664 6665 6666 6667 6668 6669
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

6670 6671 6672 6673 6674 6675 6676 6677 6678
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
6679 6680 6681
            mode(str, optional): Source of the obtained parameters and buffers.
                    'opt' :  The return value only contains the variable in the optimizer.
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.
6682 6683
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
6684
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
6712
        # can not be imported at the begainning of this file.
6713 6714
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
6715

6716 6717
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
6718 6719 6720 6721
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".format(
                    type(scope)
                )
            )
6722 6723 6724 6725 6726

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
6727 6728
            raise TypeError(
                "Type of `mode` should be string, but received {}.".format(
6729 6730 6731
                    type(mode)
                )
            )
6732 6733 6734 6735 6736

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
6737 6738 6739 6740 6741
            if (
                var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH
                or var.desc.type() == core.VarDesc.VarType.FETCH_LIST
                or var.desc.type() == core.VarDesc.VarType.READER
            ):
6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
6760 6761 6762 6763
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".format(
                        mode
                    )
                )
6764 6765 6766 6767 6768 6769 6770 6771

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
6772 6773 6774 6775
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".format(
                        var.name
                    )
                )
6776 6777 6778 6779 6780 6781
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
6782
        Set parameters and persistable buffers in state_dict to program.
6783
        An exception will throw if shape or dtype of the parameters is not match.
6784

6785 6786 6787 6788
        .. note::
            This function MUST called after run start_up_program

        Args:
6789
            state_dict(dict): the dict store parameters and persistable buffers.
6790 6791
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
6792
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6793 6794
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
6795

6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
6825 6826 6827
                    type(state_dict)
                )
            )
6828 6829

        vars_dict = {var.name: var for var in self.list_vars()}
6830 6831 6832
        condition = (
            True if 'StructuredToParameterName@@' in state_dict else False
        )
6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
6844 6845
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
6846 6847
                except TypeError as err:
                    warnings.warn(
6848 6849
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
6850
            else:
6851
                warnings.warn(
6852 6853 6854 6855 6856 6857
                    (
                        "Skip loading for '{0}'. Because '{0}' not in the program.".format(
                            name
                        )
                    )
                )
6858

Y
Yu Yang 已提交
6859

6860
class Parameter(Variable, metaclass=ParameterMetaClass):
6861
    """
6862
    Parameter is derived from Variable. A parameter is a persistable
6863
    Variable, and will be updated by optimizers after each iteration.
6864
    The training of a neural network is essentially the updating of
6865 6866
    its parameters.

6867
    Relative to a general Variable, a Parameter has several its own
6868 6869
    member variables:

6870 6871 6872 6873 6874 6875 6876 6877 6878 6879
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
6880
        need_clip (bool): Whether the parameter gradient need to be cliped
6881
            in optimizer. Default is True.
6882 6883
    """

6884 6885 6886 6887 6888 6889 6890 6891
    def __init__(
        self,
        block,
        shape,
        dtype,
        type=core.VarDesc.VarType.LOD_TENSOR,
        **kwargs
    ):
6892 6893 6894 6895 6896
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6897 6898
        for each in shape:
            if each < 0:
6899 6900
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912
                    % list(shape)
                )

        Variable.__init__(
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs
        )
Y
Yu Yang 已提交
6913 6914 6915 6916
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6917 6918
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6919
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6920

6921 6922
        self.need_clip = kwargs.get('need_clip', True)

6923 6924
        self.is_distributed = False

6925 6926
        self.is_parameter = True

F
fengjiayi 已提交
6927
    def __str__(self):
6928
        return self._to_readable_code()
F
fengjiayi 已提交
6929

F
update  
fengjiayi 已提交
6930 6931 6932
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6933

F
update  
fengjiayi 已提交
6934 6935 6936 6937 6938 6939 6940 6941
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6942 6943 6944 6945 6946 6947 6948 6949 6950
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6951
        """
6952
        assert isinstance(throw_on_error, bool) and isinstance(
6953 6954
            with_details, bool
        )
F
update  
fengjiayi 已提交
6955 6956
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
6957 6958 6959 6960 6961 6962 6963
            additional_attr = (
                "trainable",
                "optimize_attr",
                "regularizer",
                "do_model_average",
                "need_clip",
            )
F
update  
fengjiayi 已提交
6964
            for attr_name in additional_attr:
6965
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
F
update  
fengjiayi 已提交
6966 6967
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6968 6969 6970 6971
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6972

6973 6974
class ParamBase(core.VarBase):
    """
6975 6976
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode).
    A ParamBase is a persistable Tensor, and will be updated by optimizers
6977
    after each iteration.
6978 6979 6980
    The training of a neural network is essentially the updating of
    its ParamBase.

6981
    Relative to a general Tensor, a ParamBase has several its own
6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
6994
        need_clip (bool): Whether the parameter gradient need to be cliped
6995
            in optimizer. Default is True.
6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
7009 7010
                    % list(shape)
                )
7011 7012 7013 7014 7015 7016 7017

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

7018
        super().__init__(
7019 7020 7021 7022 7023 7024
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            core.VarDesc.VarType.LOD_TENSOR,
            True,
        )
7025

7026 7027
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
7028 7029 7030 7031 7032 7033 7034

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

7035 7036
        self.need_clip = kwargs.get('need_clip', True)

7037
        self.is_distributed = kwargs.get('is_distributed', False)
7038
        # self.block = default_main_program().global_block()
7039

7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
7051 7052
                type(trainable),
            )
7053

7054
    def __str__(self):
7055
        """
7056
        Convert a ParamBase object to a readable string.
7057

7058
        Returns(str): A readable string.
7059 7060 7061 7062

        Examples:
            .. code-block:: python

7063
                import paddle
7064 7065 7066 7067 7068 7069 7070
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
7071
        """
7072
        return "Parameter containing:\n{tensor}".format(
7073
            tensor=super().__str__()
7074
        )
7075

7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
7087

7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

7106 7107 7108 7109
    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
7110 7111 7112 7113 7114 7115
        return new_param

    __repr__ = __str__


if hasattr(core, "eager"):
7116
    _core_eager_eagertensor = core.eager.Tensor
7117 7118 7119 7120 7121 7122
else:
    _core_eager_eagertensor = object


class EagerParamBase(_core_eager_eagertensor):
    """
7123 7124
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode).
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers
7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
7142
        need_clip (bool): Whether the parameter gradient need to be cliped
7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
7157 7158
                    % list(shape)
                )
7159 7160 7161 7162 7163 7164 7165

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

7166 7167 7168
        if isinstance(shape, core.eager.Tensor):
            shape = shape.numpy()

7169
        super().__init__(
7170 7171 7172 7173 7174 7175
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            core.VarDesc.VarType.LOD_TENSOR,
            True,
        )
7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
7190 7191 7192
        # hook functions for lazy initialization
        self._init_func = None
        self._init_op_creator = None
7193 7194

    def set_init_func(self, obj):
7195
        self._init_func = obj
7196 7197 7198

    @dygraph_only
    def initialize(self):
7199 7200 7201
        assert (
            self._init_func is not None
        ), "Required self._init_func is not None, but received None."
7202
        self._init_func()
7203
        # clear function handle to release resource
7204
        self._init_func = None
7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
7217 7218
                type(trainable),
            )
7219

7220 7221 7222 7223
    def _create_init_op(self, block):
        """
        Call init_op_creator function to create initializer operation in block.
        """
7224 7225 7226
        assert (
            self._init_op_creator is not None
        ), "Required self._init_op_creator is not None, but received None."
7227 7228
        self._init_op_creator(block)

7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247
    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
7248
            tensor=super().__str__()
7249
        )
7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
7285 7286
        return new_param

7287 7288 7289
    __repr__ = __str__


Y
Yu Yang 已提交
7290
# program is a global instance.
Y
Yu Yang 已提交
7291 7292
_main_program_ = Program()
_startup_program_ = Program()
7293
_startup_program_._is_start_up_program_ = True
7294

7295

7296
def default_startup_program():
Y
Yu Yang 已提交
7297
    """
Y
yuyang18 已提交
7298 7299
    Get default/global startup program.

7300
    The :code:`paddle.nn` function will append the initialization operators into startup program.
7301
    The :code:`startup_program` will initialize the parameters by the OPs.
T
tangwei12 已提交
7302

7303 7304
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
7305

7306 7307
    Returns:
        Program: current default startup program.
7308

7309
    Returns type:
7310 7311 7312 7313

    Examples:
        .. code-block:: python

7314
            import paddle
7315

7316
            paddle.enable_static()
7317 7318 7319 7320
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
7321
    """
Y
Yu Yang 已提交
7322
    return _startup_program_
7323

7324

7325
def default_main_program():
Y
Yu Yang 已提交
7326
    """
7327
    This API can be used to get ``default main program`` which store the
7328
    descriptions of Ops and tensors.
T
tangwei12 已提交
7329

7330 7331
    For example ``z = paddle.add(x, y)`` will create a new ``add``
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` .
Y
yuyang18 已提交
7332

7333
    The ``default main program`` is the default value for ``Program`` parameter in
7334
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
7335
    :code:`default_main_program` when the program is not specified.
7336

7337
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
7338

Y
Yu Yang 已提交
7339
    Returns:
7340
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
7341 7342 7343 7344

    Examples:
        ..  code-block:: python

7345
            import paddle
7346

7347
            paddle.enable_static()
7348
            # Sample Network:
7349 7350 7351
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
7352

7353 7354 7355
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
7356
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
7357
    """
Y
Yu Yang 已提交
7358
    return _main_program_
Y
Yu Yang 已提交
7359 7360 7361 7362 7363


def switch_main_program(program):
    """
    Switch the main program to a new program.
7364

Y
Yu Yang 已提交
7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
7379
    Switch the startup program to a new program
Y
Yu Yang 已提交
7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
7392
@signature_safe_contextmanager
Y
Yu Yang 已提交
7393 7394
def program_guard(main_program, startup_program=None):
    """
7395 7396
    :api_attr: Static Graph

7397 7398 7399
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
7400

G
guofei 已提交
7401
    Args:
7402
        main_program(Program): New main program inside ``with`` statement.
7403 7404
        startup_program(Program, optional): New startup program inside ``with``
            statement. :code:`None` means not changing startup program,
G
guofei 已提交
7405 7406 7407
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
7408
    Examples:
7409
       .. code-block:: python
T
tangwei12 已提交
7410

7411
          import paddle
Y
yuyang18 已提交
7412

7413 7414 7415 7416 7417
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
7418
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
7419 7420 7421

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
7422

Y
Yu Yang 已提交
7423
    Examples:
7424
       .. code-block:: python
Y
yuyang18 已提交
7425

7426
          import paddle
7427

7428 7429 7430 7431 7432
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
7433

Y
Yu Yang 已提交
7434
    """
7435
    from .data_feeder import check_type
7436 7437 7438 7439

    check_type(
        main_program, 'main_program', Program, 'paddle.static.program_guard'
    )
Y
Yu Yang 已提交
7440 7441
    main_program = switch_main_program(main_program)
    if startup_program is not None:
7442 7443 7444 7445 7446 7447
        check_type(
            startup_program,
            'startup_program',
            Program,
            'paddle.static.program_guard',
        )
7448 7449
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
7450
        startup_program = switch_startup_program(startup_program)
7451 7452 7453 7454 7455 7456
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
7457 7458


W
Wu Yi 已提交
7459
def _get_var(name, program=None):
X
xuwei06 已提交
7460
    """
Y
yuyang18 已提交
7461
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
7462

X
xuwei06 已提交
7463 7464 7465
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
7466
        If None, default_global_program() will be used.
X
xuwei06 已提交
7467 7468 7469 7470 7471 7472 7473

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
7474
    assert isinstance(program, Program)
X
xuwei06 已提交
7475 7476

    return program.global_block().var(name)
7477 7478


S
rename  
sneaxiy 已提交
7479
@signature_safe_contextmanager
L
lujun 已提交
7480 7481
def _dygraph_guard(tracer):
    global _dygraph_tracer_
7482
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
7483
    _dygraph_tracer_ = tracer
7484
    core._switch_tracer(tracer)
M
minqiyang 已提交
7485

7486 7487 7488
    try:
        yield
    finally:
7489 7490
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
7491 7492


S
rename  
sneaxiy 已提交
7493
@signature_safe_contextmanager
L
lujun 已提交
7494
def _dygraph_place_guard(place):
7495 7496 7497
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
7498 7499
    _set_dygraph_tracer_expected_place(place)

7500 7501 7502
    try:
        yield
    finally:
7503
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
7504
        _set_dygraph_tracer_expected_place(_global_expected_place_)
7505 7506


7507 7508 7509 7510 7511 7512 7513 7514 7515 7516
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
7517

7518 7519
    Note:
        The API only supports static mode.
7520 7521 7522 7523

    A context manager that specifies the device on which the OP will be placed.

    Args:
7524
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
7525
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs.
7526 7527 7528 7529 7530 7531 7532
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
7533

7534
        .. code-block:: python
7535

7536
            # required: gpu
Z
Zhang Ting 已提交
7537
            import paddle
7538

Z
Zhang Ting 已提交
7539 7540 7541
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
7542
            if support_gpu:
Z
Zhang Ting 已提交
7543
                place = paddle.CUDAPlace(0)
7544 7545

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
7546 7547 7548
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
7549

Z
Zhang Ting 已提交
7550
            with paddle.static.device_guard("cpu"):
7551
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
7552 7553
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
7554
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
7555
                out = paddle.reshape(data1, shape=shape)
7556

Z
Zhang Ting 已提交
7557 7558
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
7559 7560 7561
            result = exe.run(fetch_list=[out])
    """

7562 7563 7564 7565 7566
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
7567
    if device not in ['cpu', 'gpu', 'npu', 'xpu', 'mlu', '', None]:
7568
        raise ValueError(
7569
            "The Attr(device) should be 'cpu' 'npu' 'xpu' 'mlu' or 'gpu', and it can also be empty string or None "
7570 7571
            "when there is no need to specify device. But received %s" % device
        )
7572 7573
    if index:
        device = ":".join([device, index])
7574
    pre_device = switch_device(device)
7575 7576 7577 7578
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
7579 7580


7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600
def _switch_cuda_graph_mode(cuda_graph_attr):
    global _current_cuda_graph_mode
    pre_mode = _current_cuda_graph_mode
    _current_cuda_graph_mode = cuda_graph_attr
    return pre_mode


@signature_safe_contextmanager
def _cuda_graph_guard(cuda_graph_attr=None):
    """

    Note:
        The API only supports static mode.

    A context manager that specifies the cuda_graph_mode which indicating the cuda graph capture under static mode.

    Args:
        cuda_graph_attr(str|None): The cuda graph attr with the format of:
                                   cuda_graph_capture_mode;memory_pool_id;cuda_graph_id
    """
7601 7602
    assert (
        not _non_static_mode()
7603
    ), "cuda_graph_guard only works under static mode"
7604 7605
    assert (
        core.is_compiled_with_cuda()
7606 7607 7608 7609 7610 7611 7612 7613
    ), "cuda_graph_guard context can be only used when Paddle is compiled with cuda"
    pre_mode = _switch_cuda_graph_mode(cuda_graph_attr)
    try:
        yield
    finally:
        _switch_cuda_graph_mode(pre_mode)


G
guofei 已提交
7614 7615 7616
def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
7617
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7618 7619 7620 7621 7622 7623 7624

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

7625 7626
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
7627 7628 7629 7630
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
7631 7632
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
7633 7634
        else:
            raise ValueError(
7635 7636
                "Flag %s cannot set its value through this function." % (key)
            )
G
guofei 已提交
7637 7638 7639 7640 7641


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
7642
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7643 7644 7645 7646 7647 7648 7649 7650 7651 7652

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

7653
            import paddle
G
guofei 已提交
7654 7655

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
7656
            res = paddle.get_flags(flags)
G
guofei 已提交
7657 7658 7659 7660 7661 7662
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
7663
            if _global_flags().is_public(key):
7664
                value = _global_flags()[key]
G
guofei 已提交
7665 7666 7667 7668
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
7669 7670 7671
                    'Flag %s cannot get its value through this function.'
                    % (key)
                )
G
guofei 已提交
7672
    elif isinstance(flags, str):
7673
        if _global_flags().is_public(flags):
7674
            value = _global_flags()[flags]
G
guofei 已提交
7675 7676 7677 7678
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
7679 7680
                'Flag %s cannot get its value through this function.' % (flags)
            )
G
guofei 已提交
7681 7682 7683
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
7684 7685 7686 7687 7688 7689


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703
    if isinstance(
        place,
        (
            core.Place,
            core.XPUPlace,
            core.CPUPlace,
            core.CUDAPinnedPlace,
            core.CUDAPlace,
            core.NPUPlace,
            core.IPUPlace,
            core.MLUPlace,
            core.CustomPlace,
        ),
    ):
7704 7705 7706 7707
        return place

    if not isinstance(place, str):
        raise ValueError(
7708 7709
            "place only support string which is 'Place' and so on."
        )
7710 7711

    place = place.lower()
7712
    if place == "cpu":
7713
        return core.CPUPlace()
7714

7715
    if place == "device":
7716 7717
        return core.Place()

7718
    # GPU
7719 7720 7721 7722
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
7723 7724 7725
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with CUDA".format(avaliable_gpu_place)
            )
7726 7727 7728 7729 7730 7731 7732 7733 7734
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
7735 7736

    # XPU
7737 7738 7739 7740
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
7741 7742 7743
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with XPU".format(avaliable_xpu_place)
            )
7744 7745 7746 7747
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
7748 7749 7750 7751 7752 7753

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
7754 7755 7756
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with NPU".format(avaliable_npu_place)
            )
7757 7758 7759 7760 7761
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

J
jianghaicheng 已提交
7762 7763 7764 7765 7766
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
7767 7768 7769
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with IPU".format(avaliable_ipu_place)
            )
J
jianghaicheng 已提交
7770 7771 7772 7773 7774
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

7775 7776 7777 7778 7779
    # MLU
    avaliable_mlu_place = re.match(r'mlu:\d+', place)
    if avaliable_mlu_place:
        if not core.is_compiled_with_mlu():
            raise ValueError(
7780 7781 7782
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with MLU".format(avaliable_mlu_place)
            )
7783 7784 7785 7786 7787
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.MLUPlace(device_id)

7788
    raise ValueError(
7789 7790 7791 7792
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace, IPUPlace, MLUPlace and NPUPlace, but received {}.".format(
            place
        )
    )
7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret