framework.py 256.0 KB
Newer Older
G
gouzil 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

import textwrap
Y
Yu Yang 已提交
16
import collections
X
Xin Pan 已提交
17
from collections import defaultdict
H
huzhiqiang 已提交
18
from collections.abc import Iterable
Q
qiaolongfei 已提交
19
import contextlib
20
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
21
import os
F
fengjiayi 已提交
22
import re
23
import traceback
24
import copy
25
from types import MethodType, FunctionType
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
R
risemeup1 已提交
32 33 34

from .proto import framework_pb2, data_feed_pb2

35
from . import core
36
from . import unique_name
37 38
import paddle.version as fluid_version
import warnings
39
import functools
40
from .variable_index import _getitem_impl_, _setitem_impl_
41
import threading
Y
Yu Yang 已提交
42

43
__all__ = [
44 45 46 47
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
48
    'name_scope',
J
jianghaicheng 已提交
49
    'ipu_shard_guard',
50
    'set_ipu_shard',
S
sneaxiy 已提交
51 52
    'cuda_places',
    'cpu_places',
53
    'xpu_places',
S
sneaxiy 已提交
54
    'cuda_pinned_places',
L
lujun 已提交
55
    'in_dygraph_mode',
56
    'is_compiled_with_cinn',
C
chengduo 已提交
57
    'is_compiled_with_cuda',
58
    'is_compiled_with_rocm',
59
    'is_compiled_with_xpu',
60
    'Variable',
61
    'require_version',
62
    'device_guard',
G
guofei 已提交
63 64
    'set_flags',
    'get_flags',
65
]
Y
Yu Yang 已提交
66

Q
qiaolongfei 已提交
67 68 69 70
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
71 72
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

73

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
# use thread local to create thread save global variables.
class GlobalThreadLocal(threading.local):
    def __init__(self):
        """
        init the thread local data.
        TODO(xiongkun): how to access another thread local data ?
        """
        global _dygraph_tracer_
        self._in_declarative_mode_ = False
        self._functional_dygraph_context_manager = None
        self._dygraph_tracer_ = _dygraph_tracer_

    def __str__(self):
        strings = []
        strings.append(
            "_in_declarative_mode_:" + str(self._in_declarative_mode_)
        )
        strings.append(
            "_functional_dygraph_context_manager:"
            + str(self._functional_dygraph_context_manager)
        )
        strings.append("_dygraph_tracer_:" + str(self._dygraph_tracer_))
        return "\n".join(strings)

    def __setattr__(self, name, val):
        if name == '_dygraph_tracer_':
            global _dygraph_tracer_
            _dygraph_tracer_ = val
        self.__dict__[name] = val


L
lujun 已提交
105
_dygraph_tracer_ = None
106 107
global_var = GlobalThreadLocal()

108
_global_expected_place_ = None
109
_current_device = None
110
global_prog_seed = 0
111
_current_pipeline_stage = None
112
_current_cuda_graph_mode = None
113
_global_flags_ = core.globals()
114

J
Jiabin Yang 已提交
115

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
# special_op_attrs, extra_op_attrs are prepared for printing warnings
# when turning on FLAGS_print_extra_attrs
special_op_attrs = {
    "elementwise_add": [{"axis": -1}],
    "elementwise_sub": [{"axis": -1}],
    "elementwise_mul": [{"axis": -1}],
    "elementwise_div": [{"axis": -1}],
    "elementwise_max": [{"axis": -1}],
    "elementwise_min": [{"axis": -1}],
    "elementwise_pow": [{"axis": -1}],
    "elementwise_mod": [{"axis": -1}],
    "elementwise_floordiv": [{"axis": -1}],
    "less_than": [{"axis": -1}],
    "less_equal": [{"axis": -1}],
    "greater_than": [{"axis": -1}],
    "greater_equal": [{"axis": -1}],
    "equal": [{"axis": -1}],
    "not_equal": [{"axis": -1}],
    "amax": [{"reduce_all": False}],
    "amin": [{"reduce_all": False}],
    "any": [{"reduce_all": False}],
    "frobenius_norm": [{"reduce_all": False}],
    "logsumexp": [{"reduce_all": False}],
    "reduce_max": [{"reduce_all": False}],
    "reduce_min": [{"reduce_all": False}],
    "reduce_mean": [{"reduce_all": False}],
    "reduce_prod": [{"reduce_all": False}],
    "reduce_sum": [{"reduce_all": False}],
}

extra_op_attrs = {
    "gather": ["overwrite"],
    "graph_reindex": ["flag_buffer_hashtable"],
    "graph_sample_neighbors": ["flag_perm_buffer"],
    "relu6": ["threshold"],
    "swish": ["beta"],
    "hsigmoid_loss": ["remote_prefetch"],
    "max_pool2d_with_index": ["global_pooling"],
    "uniform": ["diag_num"],
    "unique": ["is_sorted"],
}

K
Kim Yann 已提交
158
# FIXME(dev): We haven't fully verified eager mode on XPU et.al but
159 160 161 162
# only GPU/CPU. Remove this after we improve this feature.
_is_first_import_ = True


J
Jiabin Yang 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
def in_dygraph_mode():
    """

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .

    Returns:
        bool: Whether paddle runs in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
184
            print(paddle.in_dynamic_mode())  # False, Now we are in static graph mode
J
Jiabin Yang 已提交
185 186 187 188 189

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode

    """
190
    return global_var._dygraph_tracer_ is not None
J
Jiabin Yang 已提交
191 192


193 194
global_ipu_index = -1
global_ipu_stage = -1
J
jianghaicheng 已提交
195 196 197 198 199
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


@signature_safe_contextmanager
200
def ipu_shard_guard(index=-1, stage=-1):
J
jianghaicheng 已提交
201 202 203 204
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
W
Weilong Wu 已提交
205
        index(int, optional): Specify which ipu the Tensor is computed on, (such as '0, 1, 2, 3').
206
            The default value is -1, which means the Op only run on IPU 0.
W
Weilong Wu 已提交
207
        stage(int, optional): Specify the computation order of the sharded model(such as '0, 1, 2, 3').
208
            The sharded model will be computed from small to large. The default value is -1,
J
jianghaicheng 已提交
209
            which means no pipelining computation order and run Ops in terms of graph.
210

G
gouzil 已提交
211 212 213 214 215 216 217
    Note:
        Only if the enable_manual_shard=True, the 'index' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        Only if the enable_pipelining=True, the 'stage' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        A index is allowed to match none stage or a stage. A stage is only allowed to match a new or
        duplicated index.
J
jianghaicheng 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


252 253 254 255
def set_ipu_shard(call_func, index=-1, stage=-1):
    """
    Shard the ipu with the given call function. Set every ops in call function to the given ipu sharding.

G
gouzil 已提交
256 257 258 259 260
    Note:
        Only when enable_manual_shard=True to set the index to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        Only when enable_pipelining=True to set stage to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        An index supports a corresponding None stage or a stage, and a stage only supports a new index or a duplicate index.

261 262 263 264 265
    Args:
        call_func(Layer|function): Specify the call function to be wrapped.
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is -1, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
266
            The sharded model will be computed from small to large. The default value is -1,
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
            which means no pipelining computation order and run Ops in terms of graph.

    Returns:
        The wrapped call function.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='float32')
            relu = paddle.nn.ReLU()
            relu = paddle.static.set_ipu_shard(relu, index=1, stage=1)
            relu(a)
    """

    def decorate(func):
        def wrapper(*args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return func(*args, **kwargs)

        return wrapper

292
    from paddle.nn import Layer
293

294 295 296 297 298
    if not isinstance(call_func, Layer):
        if callable(call_func):
            return decorate(call_func)
        else:
            raise TypeError(
299 300
                "Unsupported type. Only accept paddle.nn.Layer or function."
            )
301 302 303 304 305 306 307 308 309 310 311 312

    # patch paddle.nn.Layer
    class BlockFn(type(call_func)):
        def __call__(self, *args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return super().__call__(*args, **kwargs)

    BlockFn.__name__ = type(call_func).__name__
    call_func.__class__ = BlockFn
    return call_func


313 314
def require_version(min_version, max_version=None):
    """
315 316 317
    Check if the installed version of PaddlePaddle is in [min_version, max_version],
    if the installed version is lower than ``min_version`` or higher than ``max_version``,
    an exception will be thrown, NO returns if the installed version is satisfied.
318

319 320 321 322
    Args:
        min_version (str): the minimum version required (like '1.4.0').
        max_version (str, optional): the max version required (like '1.6.0'), default is None,
            meaning any version equal or higher than ``min_version`` is acceptable.
323

324 325
    Returns:
        None.
326

327 328 329 330 331 332
    Raises:
        TypeError: if the type of ``min_version`` is not str.
        TypeError: if the type of ``max_version`` is not str or type(None).
        ValueError: if the value of ``min_version`` is not in version format.
        ValueError: if the value of ``max_version`` is not in version format or None.
        Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.
333

334 335
    Examples:
        .. code-block:: python
336

337
            import paddle.fluid as fluid
338

339 340
            # any version >= 0.1.0 is acceptable.
            fluid.require_version('0.1.0')
341

342 343 344
            # if 0.1.0 <= version <= 10.0.0, it is acceptable.
            fluid.require_version(min_version='0.1.0', max_version='10.0.0')
    """
345 346 347
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
348 349
            % (type(min_version))
        )
350 351 352 353

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
354 355
            % (type(max_version))
        )
356 357 358 359 360

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
361 362
            "like '1.5.2.0', but received %s" % min_version
        )
363 364 365 366 367 368

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
369 370
                "like '1.5.2.0', but received %s" % max_version
            )
371 372

    version_installed = [
373 374 375 376
        fluid_version.major,
        fluid_version.minor,
        fluid_version.patch,
        fluid_version.rc,
377 378 379 380
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
381
        for i in range(len(ver_a)):
382 383 384 385 386 387 388 389 390 391 392
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
393 394 395
                "please make sure the version is good with your code."
                % (min_version, max_version, fluid_version.full_version)
            )
396 397 398 399
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
400 401 402
                "please make sure the version is good with your code."
                % (min_version, fluid_version.full_version)
            )
403 404 405
        return

    min_version_split = min_version.split('.')
406 407 408
    min_version_to_check = (
        min_version_split + zero_version[len(min_version_split) :]
    )
409 410 411

    if max_version is not None:
        max_version_split = max_version.split('.')
412 413 414
        max_version_to_check = (
            max_version_split + zero_version[len(max_version_split) :]
        )
415

416 417 418 419
        if (
            version_cmp(version_installed, max_version_to_check) > 0
            or version_cmp(version_installed, min_version_to_check) < 0
        ):
420 421
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
422 423
                % (min_version, max_version, fluid_version.full_version)
            )
424 425 426 427 428
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
429 430
                % (min_version, fluid_version.full_version, min_version)
            )
431 432


433 434
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
435
        assert not in_dygraph_mode(), (
436 437
            "We don't support %s in dynamic graph mode" % func.__name__
        )
438 439 440 441 442 443 444
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
445
        assert in_dygraph_mode(), (
446 447 448
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
449 450 451 452 453
        return func(*args, **kwargs)

    return __impl__


454 455 456
def _non_static_only_(func):
    def __impl__(*args, **kwargs):
        from .dygraph.base import in_declarative_mode
457

458
        assert in_dygraph_mode() or in_declarative_mode(), (
459 460 461
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
462 463 464 465 466
        return func(*args, **kwargs)

    return __impl__


467 468
def _static_only_(func):
    def __impl__(*args, **kwargs):
469
        assert not in_dygraph_mode(), (
470 471 472
            "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode."
            % func.__name__
        )
473 474 475 476 477
        return func(*args, **kwargs)

    return __impl__


478 479 480 481 482
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


483
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
W
wanghuancoder 已提交
484 485
# used to make Variable and Tensor has same interfaces, like numpy. Since Tensor is not exposed in our
# official docments, logically, we want to keep Tensor and logically consistent. While, actually,
486 487
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
W
wanghuancoder 已提交
488
# TODO(zhiqiu): We should make Tensor consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
489
# same base class.
490 491 492
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
493 494
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
R
Ryan 已提交
495
            "  2. If you are using `@paddle.jit.to_static`, you can call `paddle.jit.enable_to_static(False)`. "
496
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
497 498
            % (func.__name__, func.__name__)
        )
499 500 501 502

    return __impl__


T
tangwei12 已提交
503 504
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
505 506 507 508 509 510 511 512 513
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
514 515
                DeprecationWarning,
            )
516 517 518 519 520 521 522
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


523 524
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
525
static_only = wrap_decorator(_static_only_)
526
fake_interface_only = wrap_decorator(_fake_interface_only_)
527
non_static_only = wrap_decorator(_non_static_only_)
528 529


L
lujun 已提交
530
def _dygraph_tracer():
531
    return global_var._dygraph_tracer_
532

W
Wu Yi 已提交
533

534 535 536 537
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
538
def _current_expected_place():
539 540 541
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
542 543 544 545 546
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
547
                _global_expected_place_ = core.CUDAPlace(_cuda_ids()[0])
548 549 550 551 552
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
553 554 555 556 557 558
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
559
                _global_expected_place_ = core.XPUPlace(_xpu_ids()[0])
560 561 562 563 564
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
        elif len(core.get_all_custom_device_type()) > 0:
            dev_type = core.get_all_custom_device_type()[0]
            try:
                device_count = core.get_custom_device_count(dev_type)
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CustomPlace(
                    dev_type, _custom_device_ids(dev_type)[0]
                )
            else:
                warnings.warn(
                    "You are using CUSTOM_DEVICE version Paddle, but your custom device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
580 581 582 583 584 585 586
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
587 588
    if global_var._dygraph_tracer_ is not None:
        global_var._dygraph_tracer_._expected_place = place
589 590 591 592 593


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
594
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
595 596


S
sneaxiy 已提交
597
def _cpu_num():
598
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
599 600 601 602 603 604 605
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
606 607 608
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()
                )
            )
C
chengduo 已提交
609
        os.environ['CPU_NUM'] = str(1)
610
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
611 612 613 614 615 616 617 618
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
619
        device_ids = range(core.get_cuda_device_count())
C
chengduo 已提交
620
    return device_ids
S
sneaxiy 已提交
621 622


623 624 625 626 627
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
628
        device_ids = range(core.get_xpu_device_count())
629 630 631
    return device_ids


632 633 634 635 636 637 638 639 640
def _custom_device_ids(device_type):
    custom_devices_env = os.getenv("FLAGS_selected_" + device_type + "s")
    if custom_devices_env:
        device_ids = [int(s) for s in custom_devices_env.split(",")]
    else:
        device_ids = range(core.get_custom_device_count(device_type))
    return device_ids


641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


656 657 658 659 660 661 662
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
663

664 665 666 667 668 669
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

Z
Zman 已提交
670 671
    Returns:
        None
672 673 674 675 676 677 678 679 680 681

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


682 683 684 685
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

686 687
    Returns:
        Bool: `True` if CINN is currently available, otherwise `False`.
688 689 690 691 692 693 694 695 696 697

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
698 699 700 701
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

702 703
    Returns:
        Bool: `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
704 705 706 707

    Examples:
        .. code-block:: python

708
            import paddle
709
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
710 711 712 713
    """
    return core.is_compiled_with_cuda()


714 715 716 717
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

718 719
    Returns:
        Bool: `True` if ROCm is currently available, otherwise `False`.
720 721 722 723 724

    Examples:
        .. code-block:: python

            import paddle
725
            support_gpu = paddle.device.is_compiled_with_rocm()
726 727 728 729
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
730
def cuda_places(device_ids=None):
L
lujun 已提交
731
    """
732
    Note:
733 734 735
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
736
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
737 738

    If :code:`device_ids` is None, environment variable of
739
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
740
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
741
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
742
    If :code:`FLAGS_selected_gpus` is not set, all visible
743
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
744 745

    If :code:`device_ids` is not None, it should be the device
746
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
747
    the returned list would be
C
Chen Weihang 已提交
748
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
749

750
    Parameters:
751
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
752 753

    Returns:
C
Chen Weihang 已提交
754
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
755 756

    Examples:
757

L
lujun 已提交
758 759
        .. code-block:: python

C
Chen Weihang 已提交
760 761
            import paddle
            import paddle.static as static
T
tangwei12 已提交
762

763
            # required: gpu
764

C
Chen Weihang 已提交
765 766 767
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
768 769

    """
770
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
771
    if device_ids is None:
C
chengduo 已提交
772
        device_ids = _cuda_ids()
S
sneaxiy 已提交
773 774 775 776 777
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


778 779 780 781
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
782 783 784 785 786 787 788 789 790
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
791
        the returned list would be
S
sunzhongkai588 已提交
792
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
793

794 795 796 797 798 799
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
800

801 802
            # required: xpu

803 804
            import paddle
            import paddle.static as static
805

806 807 808
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
809
    assert core.is_compiled_with_xpu(), "Not compiled with XPU"
810 811 812 813 814 815 816
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
817
def cpu_places(device_count=None):
L
lujun 已提交
818
    """
C
Chen Weihang 已提交
819
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
820

S
add doc  
sneaxiy 已提交
821
    If :code:`device_count` is None, the device count would
822
    be determined by environment variable :code:`CPU_NUM`.
C
chengduo 已提交
823 824
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
825 826
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
827

828 829
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
830 831

    Returns:
C
Chen Weihang 已提交
832
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
833 834

    Examples:
835

L
lujun 已提交
836 837
        .. code-block:: python

C
Chen Weihang 已提交
838 839
            import paddle
            import paddle.static as static
T
tangwei12 已提交
840

C
Chen Weihang 已提交
841 842 843
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
844 845
    """

S
sneaxiy 已提交
846 847 848 849 850 851
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
852
    """
853
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
854 855

    If :code:`device_count` is None, the device count would
856
    be determined by environment variable :code:`CPU_NUM`.
857 858 859 860
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
861

862 863
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
864 865

    Returns:
866
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
867 868 869 870

    Examples:
        .. code-block:: python

871
            import paddle.fluid as fluid
L
lujun 已提交
872 873 874 875 876
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
877
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
878
    if device_count is None:
879 880
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
881 882


883
class NameScope:
884 885 886 887 888 889 890 891 892 893
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
894 895 896
            new_child = NameScope(
                prefix + "_%d" % len(self._children[prefix]), self
            )
897 898 899 900 901 902 903 904 905 906 907 908 909
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
910
@signature_safe_contextmanager
911 912
def name_scope(prefix=None):
    """
913

914
    Generate hierarchical name prefix for the operators in Static Graph.
915

916
    Note:
T
Tao Luo 已提交
917 918
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
919
        Don't use it in dygraph, since it will cause memory leak.
920 921

    Args:
T
Tao Luo 已提交
922
        prefix(str, optional): prefix. Default is none.
923 924

    Examples:
925

926
        .. code-block:: python
T
Tink_Y 已提交
927

928 929 930
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
931
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
932
             b = a + 1
933
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
934
                c = b * 1
935
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
936
                d = c / 1
937 938 939
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
940 941
                g = f - 1

942
          # Op are created in the default main program.
943
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
944 945 946 947 948 949 950 951 952 953 954 955 956 957 958
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
959 960
    """
    # TODO(panyx0718): Only [0-9a-z].
961
    # in dygraph we don't need namescope since it will cause mem leak
962
    if in_dygraph_mode():
L
Leo Chen 已提交
963 964
        yield
    else:
T
tianshuo78520a 已提交
965
        assert prefix, "namescope prefix can not be empty."
966 967
        global _name_scope
        _name_scope = _name_scope.child(prefix)
968 969 970 971
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
972 973 974 975 976 977 978 979 980 981 982 983


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
984 985
def generate_control_dev_var_name():
    import random
986

W
Wu Yi 已提交
987
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
988 989 990 991


def grad_var_name(var_name):
    """
992 993
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
994 995 996
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
997

998
def convert_np_dtype_to_dtype_(np_dtype):
999
    """
1000
    Convert the data type in numpy to the data type in Paddle.
1001

1002
    Args:
1003 1004
        np_dtype (np.dtype|str): The data type in numpy or valid data type
            string.
1005

1006
    Returns:
1007
        core.VarDesc.VarType: The data type in Paddle.
1008 1009

    """
1010 1011
    # Convert the data type string to numpy data type.
    if isinstance(np_dtype, str) and np_dtype == "bfloat16":
1012 1013 1014
        dtype = np.uint16
    else:
        dtype = np.dtype(np_dtype)
1015

1016
    if dtype == np.float32:
1017
        return core.VarDesc.VarType.FP32
1018
    elif dtype == np.float64:
1019
        return core.VarDesc.VarType.FP64
1020
    elif dtype == np.float16:
1021
        return core.VarDesc.VarType.FP16
1022
    elif dtype == np.int32:
1023
        return core.VarDesc.VarType.INT32
1024
    elif dtype == np.int16:
1025
        return core.VarDesc.VarType.INT16
1026
    elif dtype == np.int64:
1027
        return core.VarDesc.VarType.INT64
1028
    elif dtype == np.bool_:
1029
        return core.VarDesc.VarType.BOOL
1030
    elif dtype == np.uint16:
1031 1032 1033
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
1034 1035
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
1036 1037
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
1038 1039 1040 1041
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
1042
    else:
M
minqiyang 已提交
1043
        raise ValueError("Not supported numpy dtype %s" % dtype)
1044 1045 1046


def dtype_is_floating(dtype):
1047 1048 1049
    """
    Check the data type is floating or not.
    Args:
1050
        dtype(np.dtype|core.VarDesc.VarType): data type.
1051 1052 1053 1054 1055
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1056
    if not isinstance(dtype, core.VarDesc.VarType):
1057 1058
        dtype = convert_np_dtype_to_dtype_(dtype)

1059
    return dtype in [
1060 1061 1062
        core.VarDesc.VarType.FP16,
        core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64,
1063
    ]
1064 1065


Y
Yang Yang(Tony) 已提交
1066
def _debug_string_(proto, throw_on_error=True):
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1078
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1079
    if not proto.IsInitialized(error_fields) and throw_on_error:
1080 1081
        raise ValueError(
            "{0} are not initialized.\nThe message is {1}:\n".format(
1082 1083 1084
                error_fields, proto
            )
        )
Y
Yu Yang 已提交
1085 1086 1087
    return proto.__str__()


1088
def _create_tensor(
1089 1090 1091 1092 1093
    type=core.VarDesc.VarType.LOD_TENSOR,
    name=None,
    shape=None,
    dtype=None,
    persistable=None,
1094
    **kwargs,
1095
):
1096 1097 1098 1099
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

W
wanghuancoder 已提交
1100 1101 1102 1103 1104 1105 1106 1107 1108
    eager_tensor = core.eager.Tensor(
        dtype if dtype else core.VarDesc.VarType.FP32,
        list(shape) if shape else [],
        name,
        type if type else core.VarDesc.VarType.LOD_TENSOR,
        True if persistable else False,
    )
    eager_tensor.retain_grads()
    return eager_tensor
1109 1110


1111 1112 1113 1114 1115 1116 1117
def _all_is_type(vals, expected_type):
    """
    Return True if type of each element is expected_type.

    NOTE: BuiltIn all() will always return True if vals is empty.
    """
    assert isinstance(vals, (list, tuple))
1118 1119
    if not vals:
        return False
1120 1121 1122
    return all(isinstance(v, expected_type) for v in vals)


1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217
def wrap_as_scalar(number):
    """Wrap a number(either python scalar or numpy scalar) as core.Scalar if
    it is not a scalar.


    Args:
        number (Number): number

    Returns:
        Scalar: A Scalar that contains the value.
    """
    if isinstance(number, core.Scalar):
        return number
    if isinstance(number, (bool, int, float, complex)):
        return core.Scalar(number)
    if isinstance(number, np.number):
        # it is a numpy scalar
        return core.Scalar(number.item())
    else:
        raise TypeError("Cannot wrap {} as core.Scalar".format(number))


def wrap_as_scalars(array):
    """This function is used to convert flat list, or numpy array(not
    necesarily flat) to list of core.Scalar, which correspond to
    std::vector<paddle::experimental::Scalar> in operator runtime.

    Args:
        array (List | np.ndarray): array of numbers

    Returns:
        List: list of core.Scalar, of which each element is a Scalar containing
          the corresponding value.
    """
    if isinstance(array, np.ndarray):
        array = array.ravel().tolist()
    return [wrap_as_scalar(item) for item in array]


def extract_plain_list(array):
    """extract value from a list of core.Scalar.

    Args:
        array (list): Scalars

    Returns:
        list: values extracted from the scalars.
    """
    return [item.value() for item in array]


def canonicalize_attrs(attrs, op_proto):
    """This function is used to canonicalize attributes(as a string->any dict)
    according to the type specification in the OpProto. This is especially
    important for operators that has any attributes of type Scalar or Scalars.

    Though various frontends of phi kernels & paddle operators can wrap variables
    of concrete types into Scalars(a tagged union of several numeric types) or
    vector of Scalars. Paddle operator requires strict type matching.

    Args:
        attrs (Dict[str, Any]): attribute dict intended to pass to an operator.
        op_proto (OpProto): Proto (signature) of the operator.

    Returns:
        Dict[str, Any]: canonicalized attributes.
    """
    canonicalized_attrs = attrs.copy()  # shallow copy is enough here
    for attr in op_proto.attrs:
        attr_name = attr.name
        type_index = attr.type
        if (attr_name not in attrs) or (attrs[attr_name] is None):
            continue

        attr_val = attrs[attr_name]

        # VAR and VARS should be skipped
        if isinstance(attr_val, Variable):
            continue
        if isinstance(attr_val, list) and _all_is_type(attr_val, Variable):
            continue

        # wrap
        if type_index == core.AttrType.SCALAR:
            canonicalized_attrs[attr_name] = core.Scalar(attr_val)
        elif type_index == core.AttrType.SCALARS:
            # it should be a list (or a numpy array)
            if len(attr_val) > 0:
                attr_val = np.array(attr_val).ravel().tolist()
                attr_val = [core.Scalar(x) for x in attr_val]
                canonicalized_attrs[attr_name] = attr_val

    return canonicalized_attrs


1218 1219 1220 1221 1222
class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1223
            return issubclass(t, core.eager.Tensor)
1224 1225 1226 1227 1228 1229 1230 1231 1232
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1233
            return issubclass(t, EagerParamBase)
1234 1235 1236 1237
        else:
            return issubclass(t, Parameter)


1238
class Variable(metaclass=VariableMetaClass):
1239
    """
J
Jiabin Yang 已提交
1240

U
ustiniankw 已提交
1241 1242 1243 1244
    Notes:
        The constructor of Variable should not be invoked directly.

        In Static Graph Mode: Please use ** `Block.create_var` ** to create a Static variable which has no data until being feed.
1245

U
ustiniankw 已提交
1246
        In Dygraph Mode: Please use ** :ref:`api_fluid_dygraph_to_variable` ** to create a dygraph variable with real data.
J
Jiabin Yang 已提交
1247 1248

    In Fluid, every input and output of an OP is a variable. In most
1249
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1250 1251
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1252

1253
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1254
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1255

T
tianshuo78520a 已提交
1256
    Most of a Variable's member variables can be set to be None. It mean
1257
    it is not available or will be specified later.
1258

1259
    Examples:
1260 1261
        In Static Graph Mode:

1262
        .. code-block:: python
C
cyberslack_lee 已提交
1263
            :name: code-example-1
1264

1265
            import paddle.fluid as fluid
1266
            cur_program = fluid.Program()
1267 1268 1269 1270
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1271

1272
        In Dygraph  Mode:
1273 1274

        .. code-block:: python
C
cyberslack_lee 已提交
1275
            :name: code-example-2
1276 1277 1278 1279 1280 1281 1282

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1283 1284
    """

1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
    def __init__(
        self,
        block,
        type=core.VarDesc.VarType.LOD_TENSOR,
        name=None,
        shape=None,
        dtype=None,
        lod_level=None,
        capacity=None,
        persistable=None,
        error_clip=None,
        stop_gradient=False,
        is_data=False,
        need_check_feed=False,
        belong_to_optimizer=False,
1300
        **kwargs,
1301
    ):
Y
Yu Yang 已提交
1302 1303
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1304
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1305

Y
Yu Yang 已提交
1306
        if dtype is not None:
1307
            if not isinstance(dtype, core.VarDesc.VarType):
1308
                dtype = convert_np_dtype_to_dtype_(dtype)
1309

S
Steffy-zxf 已提交
1310 1311 1312 1313
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

1314 1315 1316
        if type == core.VarDesc.VarType.SPARSE_COO:
            lod_level = None

H
hong 已提交
1317 1318
        self.belong_to_optimizer = belong_to_optimizer

1319 1320 1321
        self.error_clip = error_clip

        is_new_var = False
1322
        self.desc = self.block.desc.find_var(name.encode())
1323

1324
        if self.desc is None:
1325
            self.desc = self.block.desc.var(name.encode())
1326
            is_new_var = True
1327

1328 1329 1330
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
1331 1332 1333 1334 1335
            raise ValueError(
                "Variable '{0}' has been created before. The "
                "previous type is {1}, the new type is {2}. They"
                " are not matched".format(self.name, self.desc.type(), type)
            )
1336

1337
        if shape is not None:
1338
            if is_new_var:
1339 1340 1341 1342 1343 1344
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1345 1346
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1347 1348
                        "matched.".format(self.name, old_shape, shape)
                    )
1349 1350 1351 1352 1353 1354
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
1355 1356 1357 1358 1359 1360
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous data type is {1}, the new "
                        "data type is {2}. They are not "
                        "matched.".format(self.name, old_dtype, dtype)
                    )
1361 1362 1363 1364 1365 1366

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
1367 1368 1369 1370 1371 1372
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous lod_level is {1}, the new "
                        "lod_level is {2}. They are not "
                        "matched".format(self.name, self.lod_level, lod_level)
                    )
1373 1374 1375 1376 1377 1378
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1379 1380
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1381
                        "persistable is {2}. They are not matched".format(
1382 1383 1384
                            self.name, self.persistable, persistable
                        )
                    )
1385

1386 1387
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1388

1389 1390 1391 1392 1393 1394 1395
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1396

1397 1398
        self.block.vars[name] = self
        self.op = None
1399
        self.stop_gradient = stop_gradient
1400
        self.is_data = is_data
Y
Yu Yang 已提交
1401

1402 1403
    def detach(self):
        """
U
ustiniankw 已提交
1404

1405
        Returns a new Variable, detached from the current graph.
1406 1407
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1408

1409
        Returns:
U
ustiniankw 已提交
1410
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable), The detached Variable.
1411 1412 1413 1414

        Examples:
            .. code-block:: python

1415
                import paddle
1416

1417 1418 1419 1420
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1421

1422 1423
                # create a detached Variable
                y = x.detach()
U
ustiniankw 已提交
1424

1425
        """
1426

1427 1428 1429 1430
        assert (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ), "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"
1431 1432 1433 1434 1435 1436

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
1437 1438
            stop_gradient=True,
        )
1439

1440 1441 1442
        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]}
        )
1443
        return output
1444

1445
    @fake_interface_only
1446
    def numpy(self):
1447
        """
J
Jiabin Yang 已提交
1448
        **Notes**:
T
tianshuo78520a 已提交
1449
            **This API is ONLY available in Dygraph mode**
1450

J
Jiabin Yang 已提交
1451
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1452 1453 1454 1455 1456

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1457
            ndarray: dtype is same as current Variable
1458 1459 1460 1461 1462 1463

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1464
                from paddle.fluid.dygraph import Linear
1465 1466 1467 1468
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1469
                    linear = Linear(32, 64)
1470
                    data = to_variable(data)
1471
                    x = linear(data)
1472 1473 1474
                    print(x.numpy())

        """
1475
        pass
1476

1477
    @non_static_only
1478
    def backward(self, retain_graph=False):
1479
        """
J
Jiabin Yang 已提交
1480
        **Notes**:
T
tianshuo78520a 已提交
1481
            **This API is ONLY available in Dygraph mode**
1482

1483
        Run backward of current Graph which starts from current Tensor.
1484

J
Jiabin Yang 已提交
1485
        Args:
1486 1487 1488 1489
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1490

J
Jiabin Yang 已提交
1491 1492
        Returns:
            NoneType: None
1493 1494 1495 1496 1497

        Examples:
            .. code-block:: python

                import numpy as np
1498 1499
                import paddle
                paddle.disable_static()
1500 1501

                x = np.ones([2, 2], np.float32)
1502 1503 1504 1505 1506 1507 1508
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1509 1510
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1511
                loss.backward()
1512 1513

        """
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524
        from .backward import append_backward

        if retain_graph is True:
            raise AssertionError(
                "`retain_graph` == True is not supported in @to_static function."
                "please set retain_graph = False."
            )
        param_grad_list = append_backward(self)
        for param, param_grad in param_grad_list:
            # set grad to simulate dygraph loss.backward() in static mode.
            setattr(param, "grad", param_grad)
1525

1526
    @fake_interface_only
1527
    def gradient(self):
1528
        """
J
Jiabin Yang 已提交
1529
        **Notes**:
T
tianshuo78520a 已提交
1530
            **This API is ONLY available in Dygraph mode**
1531 1532 1533

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1534
        Returns:
1535
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1536 1537 1538 1539

        Examples:
            .. code-block:: python

1540
                import paddle
1541 1542 1543
                import paddle.fluid as fluid
                import numpy as np

1544
                # example1: return ndarray
1545 1546 1547 1548 1549 1550 1551
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
1552
                    ret2 = paddle.add_n(inputs2)
1553
                    loss2 = paddle.sum(ret2)
1554
                    loss2.backward()
1555 1556
                    print(loss2.gradient())

1557 1558
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
1559 1560 1561 1562 1563
                    embedding = paddle.nn.Embedding(
                        20,
                        32,
                        weight_attr='emb.w',
                        sparse=True)
1564 1565 1566 1567 1568 1569 1570
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1571
        """
1572
        pass
1573

1574
    @fake_interface_only
1575
    def clear_gradient(self):
1576
        """
J
Jiabin Yang 已提交
1577
        **Notes**:
T
tianshuo78520a 已提交
1578
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1579 1580

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1581

J
Jiabin Yang 已提交
1582
        Clear  (set to ``0`` ) the Gradient of Current Variable
1583 1584 1585 1586 1587 1588

        Returns:  None

        Examples:
            .. code-block:: python

1589
                import paddle
1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
1600
                    ret2 = paddle.add_n(inputs2)
1601
                    loss2 = paddle.sum(ret2)
1602
                    loss2.backward()
1603 1604 1605 1606 1607
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1608
        pass
X
Xin Pan 已提交
1609

1610
    def register_hook(self, hook):
1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
        import paddle

        def backward_hook_wrapper(dy):
            """call the backward hook in ."""
            return hook(np.array(dy))

        def forward_hook_wrapper(x):
            """do nothing but return a new variable."""
            return x

        paddle.static.py_func(
            func=forward_hook_wrapper,
            x=self,
            out=self,
            backward_func=backward_hook_wrapper,
            skip_vars_in_backward_input=[self],
        )
1628

1629
    def __str__(self):
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1646 1647
                import paddle
                import paddle.static as static
1648

1649 1650 1651
                paddle.enable_static()

                cur_program = static.Program()
1652 1653 1654 1655 1656 1657
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1658 1659
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1660 1661 1662 1663
        if (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ):
1664
            dtype_str = str(self.dtype).split('.')[1]
1665 1666 1667 1668 1669 1670 1671
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".format(
                name=self.name,
                type=type_str,
                shape=self.shape,
                dtype=dtype_str,
                stop_gradient=self.stop_gradient,
            )
1672
        else:
1673
            var_str = "{name} : {type})".format(name=self.name, type=type_str)
1674

1675
        if self.is_parameter:
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1686
        from paddle.distributed.auto_parallel.static.dist_context import (
1687 1688 1689
            get_default_distributed_context,
        )

1690
        dist_context = get_default_distributed_context()
1691 1692
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1693 1694 1695
            var_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_tensor
            )
1696

1697
        return var_str
Y
Yang Yang(Tony) 已提交
1698

F
update  
fengjiayi 已提交
1699
    def to_string(self, throw_on_error, with_details=False):
1700 1701 1702
        """
        Get debug string.

J
Jiabin Yang 已提交
1703 1704 1705 1706 1707
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1708

1709 1710
        Returns:
            str: The debug string.
1711 1712 1713 1714 1715

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1716
                import paddle
1717

1718
                paddle.enable_static()
1719 1720 1721 1722 1723
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1724
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1725
                print("=============with detail===============")
1726
                print(new_variable.to_string(True, True))
1727
        """
1728
        assert isinstance(throw_on_error, bool) and isinstance(
1729 1730
            with_details, bool
        )
1731
        protostr = self.desc.serialize_to_string()
1732
        proto = framework_pb2.VarDesc.FromString(bytes(protostr))
F
update  
fengjiayi 已提交
1733 1734
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1735
            additional_attr = ("error_clip",)
F
update  
fengjiayi 已提交
1736
            for attr_name in additional_attr:
1737
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
1738

F
update  
fengjiayi 已提交
1739
        return res_str
1740 1741 1742

    __repr__ = __str__

1743 1744 1745
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
1746

1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1770
    @property
1771
    def stop_gradient(self):
J
Jiabin Yang 已提交
1772 1773 1774
        """
        Indicating if we stop gradient from current Variable

1775
        **Notes: This Property has default value as** ``True`` **in** Dygraph **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``
J
Jiabin Yang 已提交
1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1787 1788
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1789 1790 1791
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1792 1793
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1794 1795 1796 1797
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1798
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1799 1800
                assert (out1.gradient() == 0).all()
        """
1801
        return self.desc.stop_gradient()
1802

1803 1804
    @stop_gradient.setter
    def stop_gradient(self, s):
1805
        self.desc.set_stop_gradient(s)
1806

1807 1808
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1809 1810 1811 1812 1813 1814 1815 1816
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

1817
            **2. In** Dygraph **mode, this property should not be changed**
J
Jiabin Yang 已提交
1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1830
        return self.desc.persistable()
1831

Y
Yu Yang 已提交
1832 1833
    @persistable.setter
    def persistable(self, p):
1834
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1835

1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1861 1862
    @property
    def name(self):
J
Jiabin Yang 已提交
1863 1864 1865
        """
        Indicating name of current Variable

1866
        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** Dygraph **mode. This is how we achieve Parameter sharing**
J
Jiabin Yang 已提交
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1879
        return self.desc.name()
Y
Yu Yang 已提交
1880

1881 1882 1883 1884 1885 1886
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1887 1888
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1889

1890 1891 1892
        Examples:
          .. code-block:: python

1893
          import paddle
1894

1895
          x = paddle.static.data(name="x", shape=[-1, 23, 48], dtype='float32')
1896
          print(x.grad_name) # output is ``x@GRAD``
1897 1898 1899 1900

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1901 1902
    @name.setter
    def name(self, new_name):
1903
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1904

Y
Yu Yang 已提交
1905 1906
    @property
    def shape(self):
J
Jiabin Yang 已提交
1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1924
        # convert to tuple, make it as same as numpy API.
1925
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1926 1927

    @property
F
fengjiayi 已提交
1928
    def dtype(self):
J
Jiabin Yang 已提交
1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1945
        return self.desc.dtype()
Y
Yu Yang 已提交
1946 1947 1948

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1949 1950 1951 1952 1953 1954 1955 1956
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

1957
            **2. Don't support this property in** Dygraph **mode, it's value should be** ``0(int)``
J
Jiabin Yang 已提交
1958 1959 1960 1961

        Examples:
          .. code-block:: python

1962
            import paddle
J
Jiabin Yang 已提交
1963
            import paddle.fluid as fluid
1964 1965

            paddle.enable_static()
J
Jiabin Yang 已提交
1966 1967 1968 1969 1970 1971 1972
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1973 1974
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
1975 1976
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
1977
        return self.desc.lod_level()
Y
Yu Yang 已提交
1978

Y
Yu Yang 已提交
1979 1980
    @property
    def type(self):
J
Jiabin Yang 已提交
1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
1997
        return self.desc.type()
Y
Yu Yang 已提交
1998

1999 2000 2001
    @property
    def T(self):
        """
U
ustiniankw 已提交
2002

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
U
ustiniankw 已提交
2021

2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
2034 2035
            stop_gradient=False,
        )
2036 2037 2038 2039 2040
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
2041 2042 2043 2044 2045 2046 2047 2048 2049
            stop_gradient=False,
        )

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out], 'XShape': [input_shape]},
            attrs={'axis': perm},
        )
2050 2051
        return out

2052 2053 2054
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
2055
        Variable. It remains in the current graph, that is, the cloned Variable
2056 2057 2058 2059
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
U
ustiniankw 已提交
2060
            Variable, The cloned Variable.
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
2080 2081
            stop_gradient=self.stop_gradient,
        )
2082

2083 2084 2085
        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]}
        )
2086 2087
        return output

W
Wu Yi 已提交
2088
    def _set_error_clip(self, error_clip):
2089
        """
U
ustiniankw 已提交
2090

2091 2092 2093 2094 2095 2096 2097
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
U
ustiniankw 已提交
2098

2099
        """
2100 2101
        self.error_clip = error_clip

2102 2103
    def _set_info(self, key, value):
        """
U
ustiniankw 已提交
2104

2105 2106 2107 2108 2109 2110
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

2111
        Returns:
2112
            None
U
ustiniankw 已提交
2113

2114 2115 2116 2117 2118 2119 2120
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
U
ustiniankw 已提交
2121

2122 2123 2124 2125 2126
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

2127
        Returns:
2128
            object
U
ustiniankw 已提交
2129

2130 2131 2132 2133 2134
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

2135 2136
    def _slice_indices(self, slice, length):
        """
U
ustiniankw 已提交
2137

2138
        Reference implementation for the slice.indices method.
U
ustiniankw 已提交
2139

2140 2141 2142 2143 2144 2145 2146 2147
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
2148
            raise ValueError("slice step can not be zero")
2149 2150 2151 2152 2153 2154 2155 2156 2157 2158

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
2159 2160 2161
            start = (
                max(start + length, lower) if start < 0 else min(start, upper)
            )
2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
2207 2208 2209
                if (index > 0 and index >= self.shape[index]) or (
                    index < 0 and (index + self.shape[index]) < 0
                ):
2210
                    raise IndexError("invalid index")
2211 2212 2213 2214 2215
                start = (
                    max(start + self.shape[index], 0)
                    if start < 0
                    else min(start, self.shape[index])
                )
2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2229
    def _cloneVar(self, copy=False):
2230 2231
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2232
                name=unique_name.generate_with_ignorable_key(self.name),
2233 2234
                dtype=self.dtype,
            )
2235 2236 2237 2238
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2239
        new_var = self._cloneVar()
2240 2241 2242 2243 2244 2245
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes, 'starts': starts, 'ends': ends},
        )
2246 2247 2248
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2249
        new_var = self._cloneVar()
2250 2251 2252 2253 2254 2255 2256 2257
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={
                'axis': axis,
            },
        )
2258 2259 2260 2261 2262
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2263
                return self._cloneVar(True)
2264 2265 2266 2267 2268 2269 2270
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
2271 2272 2273
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2274 2275 2276
                        start += step
                else:
                    while start > stop:
2277 2278 2279
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2280 2281 2282 2283
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2284
                return self._cloneVar(True)
2285
            index = int(item)
2286 2287 2288
            if (index > 0 and index >= self.shape[axis]) or (
                index < 0 and (index + self.shape[axis]) < 0
            ):
2289 2290 2291 2292 2293 2294
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2295
        return _getitem_impl_(self, item)
2296

2297
    def __setitem__(self, item, value):
2298
        return _setitem_impl_(self, item, value)
2299

2300 2301
    def get_value(self, scope=None):
        """
2302
        Get the value of variable in given scope.
2303 2304

        Args:
2305
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2306 2307 2308 2309
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
U
ustiniankw 已提交
2310
            Tensor, the value in given scope.
2311 2312 2313 2314 2315

        Examples:
            .. code-block:: python

                import paddle
2316
                import paddle.static as static
2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
2341 2342
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file.
2343 2344
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
2345

2346 2347
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2348 2349 2350 2351
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2352 2353 2354 2355 2356

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
2357 2358 2359
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2360 2361 2362 2363 2364
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
U
ustiniankw 已提交
2365

2366
        Set the value to the tensor in given scope.
2367 2368 2369

        Args:
            value(Tensor/ndarray) : The value to be set.
2370
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2371 2372 2373 2374 2375
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
2376

2377 2378 2379 2380
        Examples:
            .. code-block:: python

                import paddle
2381
                import paddle.static as static
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
U
ustiniankw 已提交
2405

2406 2407 2408
        '''

        # The 'framework' is a low-level module, and 'executor'
2409
        # can not be imported at the begainning of this file.
2410 2411 2412 2413 2414
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
2415 2416 2417 2418
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".format(
                    type(value)
                )
            )
2419 2420 2421

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2422 2423 2424 2425
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2426 2427 2428 2429 2430 2431

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
2432 2433 2434
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2435 2436 2437 2438 2439 2440 2441 2442 2443 2444

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
2445 2446 2447 2448
                    "{} expected a shape {}, but the received shape is {}.".format(
                        self.name, list(t.shape()), list(value_shape)
                    )
                )
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2466 2467
    def size(self):
        """
U
ustiniankw 已提交
2468

2469
        Returns the number of elements for current Variable, which is a int64 Variable with shape [] .
2470 2471

        Returns:
U
ustiniankw 已提交
2472
            Variable, the number of elements for current Variable
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
U
ustiniankw 已提交
2486

2487 2488 2489 2490
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
2491 2492
            dtype=core.VarDesc.VarType.INT64,
        )
2493

2494 2495 2496
        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]}
        )
2497 2498
        return output

2499 2500
    def _set_attr(self, name, val):
        """
U
ustiniankw 已提交
2501

2502 2503 2504 2505 2506
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
U
ustiniankw 已提交
2507

2508 2509 2510 2511 2512
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
U
ustiniankw 已提交
2513

2514 2515 2516 2517 2518 2519
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2520 2521
            bool, True if has this attribute.

2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

2543
    def attr(self, name):
2544 2545 2546 2547 2548 2549 2550
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2551
            int|str|list, The attribute value. The return value
2552 2553 2554 2555 2556
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
2557
    def dist_attr(self):
2558
        """
2559
        Get distributed attribute of this Variable.
2560
        """
2561
        return self.desc.dist_attr
2562

2563 2564
    @dist_attr.setter
    def dist_attr(self, dist_attr):
2565
        """
2566
        Set distributed attribute of this Variable.
2567
        """
2568
        self.desc.dist_attr = dist_attr
2569

Y
Yu Yang 已提交
2570

F
fengjiayi 已提交
2571 2572 2573
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2574

2575 2576
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2577 2578 2579 2580
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2581
        op_proto = framework_pb2.OpProto.FromString(bytes(pbstr))
F
fengjiayi 已提交
2582 2583 2584 2585
        ret_values.append(op_proto)
    return ret_values


2586
class OpProtoHolder:
2587 2588 2589 2590
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2591 2592 2593 2594 2595 2596 2597 2598
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
2599 2600
            self.__class__, '_instance'
        ), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2601 2602 2603 2604 2605 2606
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2607 2608 2609 2610 2611 2612 2613 2614
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2615 2616
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2617 2618
        return self.op_proto_map[type]

2619 2620
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2621
        custom_op_names = []
2622 2623 2624
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2625 2626 2627
                custom_op_names.append(proto.type)

        return custom_op_names
2628

2629 2630 2631
    def has_op_proto(self, type):
        return type in self.op_proto_map

2632 2633 2634 2635
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2636
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2637
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2638
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
2639
            core.op_proto_and_checker_maker.kOpDeviceAttrName(),
2640 2641
        }

F
fengjiayi 已提交
2642

2643
class Operator:
2644
    """
2645 2646 2647 2648 2649 2650 2651
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2652
        type(str): The type of operator. Default None.
2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2673
        Block.append_op or Block._prepend_op instead.
2674 2675 2676 2677

    Examples:
        .. code-block:: python

2678
            import paddle.fluid as fluid
2679
            cur_program = fluid.Program()
2680 2681 2682 2683 2684
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2685
    """
2686

2687
    OP_WITHOUT_KERNEL_SET = {
2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715
        'feed',
        'fetch',
        'recurrent',
        'go',
        'rnn_memory_helper_grad',
        'conditional_block',
        'while',
        'send',
        'recv',
        'listen_and_serv',
        'fl_listen_and_serv',
        'ncclInit',
        'select',
        'checkpoint_notify',
        'gen_bkcl_id',
        'c_gen_bkcl_id',
        'gen_nccl_id',
        'c_gen_nccl_id',
        'c_comm_init',
        'c_sync_calc_stream',
        'c_sync_comm_stream',
        'queue_generator',
        'dequeue',
        'enqueue',
        'heter_listen_and_serv',
        'c_wait_comm',
        'c_wait_compute',
        'copy_cross_scope',
2716
    }
2717

2718 2719 2720
    def __init__(
        self, block, desc, type=None, inputs=None, outputs=None, attrs=None
    ):
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
        # read attr type index from op proto to avoid unexpected type
        # conversions, e.g. narrowing conversion like double to float
        try:
            proto = OpProtoHolder.instance().get_op_proto(type)
            self._attr_types = {}
            for attr in proto.attrs:
                self._attr_types[attr.name] = attr.type
        except ValueError:
            pass

2731
        if in_dygraph_mode():
2732 2733
            if type is None:
                raise ValueError(
2734 2735
                    "`type` to initialized an Operator can not be None."
                )
J
Jiabin Yang 已提交
2736
            self._type = type
M
minqiyang 已提交
2737
            self.attrs = attrs if attrs else {}
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

2748
            # attr for static graph mode cuda graph
2749 2750
            self._cuda_graph_attr = _current_cuda_graph_mode

2751 2752 2753
            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
2754
                op_attrs[
2755 2756
                    op_maker.kOpRoleAttrName()
                ] = self.block.program._op_role
2757 2758

            role_var_name = op_maker.kOpRoleVarAttrName()
2759 2760 2761 2762
            if (
                len(self.block.program._op_role_var) != 0
                and role_var_name not in op_attrs
            ):
2763
                op_attrs[role_var_name] = self.block.program._op_role_var
2764 2765 2766 2767 2768

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2769 2770 2771 2772 2773
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2774 2775 2776
                return
            if type is None:
                raise ValueError(
2777 2778
                    "`type` to initialized an Operator can not be None."
                )
2779 2780
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2781 2782 2783
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
2784
                        '  File "{}", line {}, in {}'.format(
2785 2786 2787 2788 2789 2790
                            frame[0], frame[1], frame[2]
                        )
                    )
                    op_attrs[callstack_var_name].append(
                        '    {}'.format(frame[3])
                    )
2791 2792 2793 2794 2795 2796 2797

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2798 2799 2800 2801 2802 2803 2804 2805
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
2806 2807 2808
                    warnings.warn(
                        "The Op(%s) is not support to set device." % type
                    )
2809
                if 'force_cpu' in op_attrs:
2810
                    if (
2811 2812
                        type == 'less_than'
                        and op_attrs['force_cpu'] is not None
2813
                    ) or op_attrs['force_cpu'] != False:
2814 2815 2816
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
2817 2818
                            "used at the same time." % type
                        )
2819
            if _current_pipeline_stage is not None:
2820 2821 2822 2823 2824
                pipeline_attr_name = (
                    'pipeline_stage' + core.kAutoParallelSuffix()
                )
                self._update_desc_attr(
                    pipeline_attr_name, _current_pipeline_stage
2825
                )
2826

2827 2828 2829 2830 2831 2832 2833 2834 2835
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
2836 2837 2838
                    assert (
                        found or in_proto.dispensable
                    ), "Input {} not found".format(in_proto.name)
2839 2840
                    if found:
                        in_args = inputs[in_proto.name]
2841
                        if not isinstance(in_args, (list, tuple)):
2842 2843 2844 2845
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
2846 2847
                                % (in_proto.name, len(in_args))
                            )
2848
                        in_arg_names = []
2849
                        for index, arg in enumerate(in_args):
2850
                            if isinstance(arg, str):
2851
                                in_arg_names.append(arg)
2852
                            elif isinstance(arg, bytes):
2853
                                in_arg_names.append(arg.decode())
W
wanghuancoder 已提交
2854
                            elif isinstance(arg, (Variable, core.eager.Tensor)):
2855
                                in_arg_names.append(arg.name)
2856
                            else:
2857
                                raise TypeError(
2858 2859
                                    f"The type of '%{in_proto.name}' in operator {type} should be "
                                    f"one of [str, bytes, Variable]. but received : {arg}"
2860
                                )
2861 2862 2863 2864 2865 2866 2867 2868
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886

                    # FIXME: The outputs of primitive operator currently
                    # doesn't include intermediate output as it will be dropped
                    # in operator codegen, such as xshape output of reshape2.
                    # It will fixed when the operator codegen support
                    # intermediate output.
                    if core._is_bwd_prim_enabled():
                        if not (
                            (m.name in outputs)
                            or m.dispensable
                            or m.intermediate
                        ):
                            raise ValueError(
                                (
                                    "Incorrect setting for output(s) of "
                                    "operator \"%s\", should set: [%s]."
                                )
                                % (type, m.name)
2887
                            )
2888 2889 2890 2891 2892 2893 2894 2895 2896 2897
                    else:
                        if not ((m.name in outputs) or m.dispensable):
                            raise ValueError(
                                (
                                    "Incorrect setting for output(s) of "
                                    "operator \"%s\", should set: [%s]."
                                )
                                % (type, m.name)
                            )

2898 2899 2900 2901 2902 2903 2904 2905 2906
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
2907 2908
                            % (out_proto.name, len(out_args))
                        )
2909 2910
                    out_arg_names = []
                    for arg in out_args:
2911
                        if isinstance(arg, str):
2912 2913
                            out_arg_names.append(arg)
                        else:
2914
                            out_arg_names.append(arg.name)
2915
                        # TODO(minqiyang): could we remove variable's op in static graph mode?
2916
                        if not in_dygraph_mode():
2917
                            if isinstance(arg, str):
2918 2919 2920
                                block.var(arg).op = self
                            else:
                                arg.op = self
2921 2922
                    self.desc.set_output(out_proto.name, out_arg_names)

2923
            extra_attrs_map = core.get_op_extra_attrs(type)
2924 2925 2926 2927 2928
            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
2929 2930 2931
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
2932 2933 2934
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)
2935
                for attr_name in extra_attrs_map.keys():
2936 2937 2938 2939 2940
                    if os.environ.get('FLAGS_print_extra_attrs', '0') == '1':
                        warnings.warn(
                            "op %s use extra_attr: %s" % (type, attr_name)
                        )

2941 2942 2943 2944 2945 2946
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
                        self._update_desc_attr(
                            attr_name, extra_attrs_map[attr_name]
                        )
2947 2948
                    else:
                        self._update_desc_attr(attr_name, op_attrs[attr_name])
2949

2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977
                if os.environ.get('FLAGS_print_extra_attrs', '0') == '1':
                    if type in extra_op_attrs:
                        attrs = extra_op_attrs.get(type, [])
                        for attr in attrs:
                            if attr in op_attrs.keys():
                                warnings.warn(
                                    "op %s use extra_attr: %s" % (type, attr)
                                )

                    if type in special_op_attrs:
                        attrs = special_op_attrs.get(type, [])
                        for attr in attrs:
                            a_name = list(attr.keys())[0]
                            default_value = list(attr.values())[0]
                            if (
                                a_name in op_attrs.keys()
                                and default_value != op_attrs[a_name]
                            ):
                                warnings.warn(
                                    "op %s's attr %s = %s is not the default value: %s"
                                    % (
                                        type,
                                        a_name,
                                        op_attrs[a_name],
                                        default_value,
                                    )
                                )

J
jianghaicheng 已提交
2978 2979
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
2980
                if global_ipu_index >= 0:
2981 2982 2983
                    self._update_desc_attr(
                        ipu_index_attr_name, global_ipu_index
                    )
2984
                if global_ipu_stage >= 0:
2985 2986 2987
                    self._update_desc_attr(
                        ipu_stage_attr_name, global_ipu_stage
                    )
J
jianghaicheng 已提交
2988

2989
            self.desc.check_attrs()
2990

2991 2992 2993 2994
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
2995
    def _has_kernel(self, op_type):
2996 2997
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
2998
    def to_string(self, throw_on_error):
2999
        """
3000 3001
        Get debug string.

3002
        Args:
3003 3004
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
3005

3006 3007
        Returns:
            str: The debug string.
3008 3009

        """
3010
        protostr = self.desc.serialize_to_string()
3011
        proto = framework_pb2.OpDesc.FromString(bytes(protostr))
Y
Yang Yang(Tony) 已提交
3012 3013
        return _debug_string_(proto, throw_on_error)

3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3046
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3047 3048
            type(skip_op_callstack)
        )
3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

3075 3076 3077
            attr_type = self.desc.attr_type(name, True)
            if attr_type == core.AttrType.VAR:
                attr_var_name = self.desc.attr(name, True).name()
3078 3079 3080
                a = "{name} = Var['{value}']".format(
                    name=name, type=attr_type, value=attr_var_name
                )
3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.VARS:
                attr_var_names = [
                    "'%s'" % var.name() for var in self.desc.attr(name, True)
                ]
                a = "{name} = Vars[{value}]".format(
3091 3092
                    name=name, type=attr_type, value=','.join(attr_var_names)
                )
3093 3094 3095 3096 3097
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3098 3099
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
3100 3101
                    name=name, type=attr_type, value=self._block_attr_id(name)
                )
3102 3103 3104 3105 3106 3107 3108
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
3109 3110
                    name=name, type=attr_type, value=self._blocks_attr_ids(name)
                )
3111 3112 3113 3114 3115
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3116
            # it is bytes of serialized protobuf
3117 3118 3119 3120 3121
            if (
                is_compiled_with_cinn()
                and self.type == 'cinn_launch'
                and name == 'compilation_key'
            ):
3122 3123
                key = self.desc.attr(name)
                v = core.get_serialize_comile_key(key)
3124 3125 3126 3127 3128 3129 3130 3131 3132
                prog = Program()
                prog = prog.parse_from_string(v)
                s = prog._to_readable_code()
                lines = s.split('\n')
                value = '\n'.join(['      ' + line for line in lines])
                value = '\n' + value
            else:
                value = self.desc.attr(name)

3133 3134 3135
            a = "{name} = {value}".format(
                name=name, type=attr_type, value=value
            )
3136

3137 3138 3139 3140
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

3141
        from paddle.distributed.auto_parallel.static.dist_context import (
3142 3143 3144
            get_default_distributed_context,
        )

3145
        dist_context = get_default_distributed_context()
3146 3147
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
3148 3149 3150
            attrs_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_op
            )
3151

3152
        if outputs_str != "{}":
3153 3154 3155 3156 3157 3158
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".format(
                outputs=outputs_str,
                op_type=self.type,
                inputs=inputs_str,
                attrs=attrs_str,
            )
3159
        else:
3160 3161 3162
            op_str = "{op_type}(inputs={inputs}, {attrs})".format(
                op_type=self.type, inputs=inputs_str, attrs=attrs_str
            )
3163 3164
        return op_str

Y
Yang Yang(Tony) 已提交
3165
    def __str__(self):
3166
        return self._to_readable_code()
3167 3168 3169

    __repr__ = __str__

F
fengjiayi 已提交
3170 3171
    @property
    def type(self):
3172
        return self.desc.type()
F
fengjiayi 已提交
3173 3174

    def input(self, name):
3175
        r"""
U
ustiniankw 已提交
3176

3177
        Get the input arguments according to the input parameter name.
3178

3179 3180
        Args:
            name(str): The input parameter name.
3181

3182
        Returns:
U
ustiniankw 已提交
3183
            list, return the list of argument names that associated with \
3184
                the specific parameter name.
U
ustiniankw 已提交
3185

3186
        """
F
fengjiayi 已提交
3187 3188
        return self.desc.input(name)

W
Wu Yi 已提交
3189
    def _rename_input(self, old_name, new_name):
3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
3200
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
3201

W
Wu Yi 已提交
3202
    def _rename_output(self, old_name, new_name):
3203 3204 3205 3206 3207 3208 3209 3210 3211 3212
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
3213
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
3214

F
fengjiayi 已提交
3215 3216 3217 3218
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
3219 3220 3221 3222 3223 3224 3225 3226
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
3227
    def output(self, name):
3228
        r"""
3229
        Get output arguments by the output parameter name.
3230

3231 3232
        Args:
            name(str): The output parameter name.
3233

3234 3235 3236
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
3237
        """
F
fengjiayi 已提交
3238 3239 3240 3241 3242 3243
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

3244 3245 3246 3247 3248 3249
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
3250 3251
            "Can't find op itself in it's block. It could be a bug of Paddle."
        )
3252

F
fengjiayi 已提交
3253
    def has_attr(self, name):
3254
        """
3255 3256
        Whether this Operator has the attribute with name or not.

3257
        Args:
3258
            name(str): the attribute name.
3259

3260 3261
        Returns:
            bool: True if has this attribute.
3262 3263

        """
F
fengjiayi 已提交
3264 3265 3266
        return self.desc.has_attr(name)

    def attr_type(self, name):
3267
        """
3268
        Get the type of attribute by attribute's name.
3269

3270 3271
        Args:
            name(str): the attribute name.
3272

3273 3274
        Returns:
            core.AttrType: the attribute type.
3275
        """
3276
        return self.desc.attr_type(name, True)
F
fengjiayi 已提交
3277

W
Wu Yi 已提交
3278
    def _set_attr(self, name, val):
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
3289 3290
        self._update_desc_attr(name, val)

3291 3292 3293
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
3305 3306 3307 3308 3309
        if isinstance(val, Variable):
            self.desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            self.desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
Q
Qiyang Min 已提交
3310
            self.desc.set_block_attr(name, val.desc)
3311
        elif isinstance(val, list) and val and _all_is_type(val, Block):
3312
            self.desc.set_blocks_attr(name, [v.desc for v in val])
3313 3314 3315
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
Q
Qiyang Min 已提交
3316 3317
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
3318 3319 3320 3321 3322 3323 3324 3325 3326
            self._update_desc_plain_attr(name, val)

    def _update_desc_plain_attr(self, name, val):
        desc = self.desc
        if not hasattr(self, "_attr_types") or (name not in self._attr_types):
            desc._set_attr(name, val)
            return

        type_index = self._attr_types[name]
3327 3328 3329 3330 3331 3332
        # if the required attribute is a SCALAR, pass as-is
        if type_index == core.AttrType.SCALAR:
            desc._set_scalar_attr(name, wrap_as_scalar(val))
        elif type_index == core.AttrType.SCALARS:
            desc._set_scalars_attr(name, wrap_as_scalars(val))
        elif type_index == core.AttrType.BOOL:
3333 3334 3335 3336 3337 3338 3339
            desc._set_bool_attr(name, val)
        elif type_index == core.AttrType.INT:
            desc._set_int32_attr(name, val)
        elif type_index == core.AttrType.LONG:
            desc._set_int64_attr(name, val)
        elif type_index == core.AttrType.FLOAT:
            desc._set_float32_attr(name, val)
3340 3341
        elif type_index == core.AttrType.FLOAT64:
            desc._set_float64_attr(name, val)
3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358
        elif type_index == core.AttrType.STRING:
            desc._set_str_attr(name, val)
        elif type_index == core.AttrType.BOOLS:
            desc._set_bools_attr(name, val)
        elif type_index == core.AttrType.INTS:
            desc._set_int32s_attr(name, val)
        elif type_index == core.AttrType.LONGS:
            desc._set_int64s_attr(name, val)
        elif type_index == core.AttrType.FLOATS:
            desc._set_float32s_attr(name, val)
        elif type_index == core.AttrType.FLOAT64S:
            desc._set_float64s_attr(name, val)
        elif type_index == core.AttrType.STRINGS:
            desc._set_strs_attr(name, val)
        else:
            # defaults to old methods
            desc._set_attr(name, val)
Y
yuyang18 已提交
3359

F
fengjiayi 已提交
3360 3361
    @property
    def attr_names(self):
3362
        return self.desc.attr_names(True)
F
fengjiayi 已提交
3363 3364

    def attr(self, name):
3365
        """
3366 3367
        Get the attribute by name.

3368
        Args:
3369
            name(str): the attribute name.
3370

3371 3372
        Returns:
            bool|int|str|float|list: The attribute value. The return value
3373 3374
            can be any valid attribute type.
        """
F
fengjiayi 已提交
3375
        return self.desc.attr(name)
Y
Yu Yang 已提交
3376

W
Wu Yi 已提交
3377
    def _block_attr_id(self, name):
3378
        """
G
gongweibao 已提交
3379
        Get the block attribute's id by name.
3380

3381 3382
        Args:
            name(str): the attribute name.
3383

3384 3385
        Returns:
            int: the block index.
3386
        """
W
Wu Yi 已提交
3387
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
3388

W
Wu Yi 已提交
3389
    def _block_attr(self, name):
G
gongweibao 已提交
3390 3391 3392 3393 3394 3395 3396 3397 3398 3399
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
3400
        id = self._block_attr_id(name)
3401
        assert id >= 0 and id < len(self.block.program.blocks)
G
gongweibao 已提交
3402 3403
        return self.block.program.blocks[id]

W
Wu Yi 已提交
3404
    def _blocks_attr(self, name):
G
gongweibao 已提交
3405 3406 3407 3408 3409 3410 3411 3412 3413 3414
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
3415
        for i in self._blocks_attr_ids(name):
3416
            assert i >= 0 and i < len(self.block.program.blocks)
G
gongweibao 已提交
3417 3418 3419 3420
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
3421
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
3422 3423 3424 3425 3426 3427 3428 3429 3430 3431
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
3432
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
3433

3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444
    def _var_attr(self, name):
        """
        Get the Variable attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variable: the Variable attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3445 3446 3447 3448 3449
        assert (
            attr_type == core.AttrType.VAR
        ), "Required type attr({}) is Variable, but received {}".format(
            name, attr_type
        )
3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463
        attr_var_name = self.desc.attr(name, True).name()
        return self.block._var_recursive(attr_var_name)

    def _vars_attr(self, name):
        """
        Get the Variables attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variables: the Variables attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3464 3465 3466 3467 3468
        assert (
            attr_type == core.AttrType.VARS
        ), "Required type attr({}) is list[Variable], but received {}".format(
            name, attr_type
        )
3469 3470 3471 3472 3473 3474
        attr_vars = [
            self.block._var_recursive(var.name())
            for var in self.desc.attr(name, True)
        ]
        return attr_vars

J
JiayiFeng 已提交
3475
    def all_attrs(self):
F
fengjiayi 已提交
3476
        """
3477 3478 3479
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3480
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3481 3482 3483 3484
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
3485
            attr_type = self.desc.attr_type(n, True)
G
gongweibao 已提交
3486
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3487
                attr_map[n] = self._block_attr(n)
3488
            elif attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3489
                attr_map[n] = self._blocks_attr(n)
3490 3491 3492 3493 3494 3495
            elif attr_type == core.AttrType.VAR:
                attr_map[n] = self._var_attr(n)
            elif attr_type == core.AttrType.VARS:
                attr_map[n] = self._vars_attr(n)
            else:
                attr_map[n] = self.attr(n)
G
gongweibao 已提交
3496

F
fengjiayi 已提交
3497 3498
        return attr_map

3499 3500 3501
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3502 3503 3504 3505

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3506 3507 3508
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3509 3510 3511 3512 3513 3514 3515 3516

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3517 3518
            return False

3519 3520 3521 3522 3523 3524
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3525
    @property
3526
    def dist_attr(self):
3527
        """
3528
        Get distributed attribute of this Variable.
3529
        """
3530
        return self.desc.dist_attr
3531

3532 3533
    @dist_attr.setter
    def dist_attr(self, dist_attr):
3534
        """
3535
        Set distributed attribute of this Variable.
3536
        """
3537
        self.desc.dist_attr = dist_attr
3538

Y
Yu Yang 已提交
3539

3540
class Block:
3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3555
        use `Program._create_block()` to create a block.
3556 3557 3558 3559

    Examples:
        .. code-block:: python

3560 3561 3562
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3563 3564 3565 3566 3567 3568 3569 3570 3571
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3572
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3573
        self.desc = program.desc.block(idx)
3574
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3575
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3576 3577
        self.program = program

3578
    def __str__(self):
3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3613
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3614 3615
            type(skip_op_callstack)
        )
3616 3617 3618 3619 3620 3621 3622
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
3623 3624
                op._to_readable_code(skip_op_callstack)
            )
3625 3626
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3627

F
fengjiayi 已提交
3628 3629
    def to_string(self, throw_on_error, with_details=False):
        """
3630 3631
        Get debug string.

F
fengjiayi 已提交
3632 3633
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3634
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3635
            with_details(bool): more details about variables and parameters
3636 3637
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3638

3639 3640
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3641
        """
3642
        assert isinstance(throw_on_error, bool) and isinstance(
3643 3644
            with_details, bool
        )
F
fengjiayi 已提交
3645
        if with_details:
F
fengjiayi 已提交
3646
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3647
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
3648 3649 3650
                self.idx,
                self.parent_idx,
            )
3651
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3652
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
3653 3654
                    r"\n    \1", var.to_string(throw_on_error, with_details)
                )
F
fengjiayi 已提交
3655
            for op in self.ops:
F
fengjiayi 已提交
3656
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
3657 3658
                    r"\n    \1", op.to_string(throw_on_error)
                )
F
fengjiayi 已提交
3659 3660 3661
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3662
            proto = framework_pb2.BlockDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
3663 3664
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3665 3666 3667

    __repr__ = __str__

Y
Yu Yang 已提交
3668 3669
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3670
        return self.desc.parent
Y
Yu Yang 已提交
3671

Y
Yu Yang 已提交
3672 3673 3674 3675
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3676
    def _set_forward_block_idx(self, idx):
3677 3678 3679 3680 3681 3682 3683 3684 3685
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3686
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3687

3688 3689 3690 3691 3692 3693 3694 3695
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3696 3697
    @property
    def idx(self):
Y
Yu Yang 已提交
3698
        return self.desc.id
Y
Yu Yang 已提交
3699

Q
Qiao Longfei 已提交
3700
    def var(self, name):
3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3714
        if not isinstance(name, str):
M
minqiyang 已提交
3715
            raise TypeError(
3716 3717 3718
                "var require string as parameter, but get %s instead."
                % (type(name))
            )
Y
Yu Yang 已提交
3719 3720
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3721
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3722
        return v
Q
Qiao Longfei 已提交
3723

X
Xin Pan 已提交
3724
    def _find_var_recursive(self, name):
3725 3726 3727 3728 3729 3730 3731
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3732
            Variable: the Variable with the giving name. Or None if not found.
3733
        """
Y
Yu Yang 已提交
3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3758
        return None
Y
Yu Yang 已提交
3759

X
Xin Pan 已提交
3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3779

Q
Qiao Longfei 已提交
3780
    def all_parameters(self):
3781
        return list(self.iter_parameters())
3782

3783
    def iter_parameters(self):
3784 3785 3786 3787 3788
        return (
            item[1]
            for item in self.vars.items()
            if isinstance(item[1], Parameter)
        )
Q
Qiao Longfei 已提交
3789

Y
Yu Yang 已提交
3790
    def create_var(self, *args, **kwargs):
3791
        if in_dygraph_mode():
3792
            var = _create_tensor(*args, **kwargs)
L
Leo Chen 已提交
3793
        else:
3794 3795 3796
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3797
        return var
Y
Yu Yang 已提交
3798

Q
Qiao Longfei 已提交
3799 3800 3801
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3802
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3803 3804
        """
        Rename variable in vars and ops' inputs and outputs
3805 3806

        Args:
3807 3808
            name(str|bytes): the name that need to be renamed.
            new_name(str|bytes): the name that need to rename to.
3809 3810 3811 3812 3813 3814 3815 3816

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3817
        """
3818 3819
        # Ensure the type of name and new_name is str
        name = name.decode() if isinstance(name, bytes) else name
3820 3821 3822
        new_name = (
            new_name.decode() if isinstance(new_name, bytes) else new_name
        )
M
minqiyang 已提交
3823

T
typhoonzero 已提交
3824
        if not self.has_var(name):
3825
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3826 3827
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3828
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3829 3830 3831 3832 3833 3834
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3835
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3836 3837 3838 3839
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3840
        orig_var_type = v.type
3841
        self.desc._rename_var(name.encode(), new_name.encode())
W
Wu Yi 已提交
3842
        # NOTE: v is destroyed by C++ after calling _rename_var.
3843
        d = self.desc.find_var(new_name.encode())
T
typhoonzero 已提交
3844
        if var_type == "Parameter":
L
Leo Chen 已提交
3845
            if in_dygraph_mode():
3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856
                var = EagerParamBase(
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
3857
            else:
姜永久 已提交
3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869
                var = Parameter(
                    self,
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
T
typhoonzero 已提交
3870
        elif var_type == "Variable":
3871 3872 3873 3874 3875 3876 3877
            var = Variable(
                self,
                type=orig_var_type,
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient,
            )
T
wip  
typhoonzero 已提交
3878

W
Wu Yi 已提交
3879
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3880 3881 3882
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3883
        self._sync_with_cpp()
3884
        return var
T
typhoonzero 已提交
3885

3886 3887 3888
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
3889
        self.desc._remove_var(name.encode())
3890 3891
        del self.vars[name]

Y
Yu Yang 已提交
3892 3893
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3894
        param = None
L
Leo Chen 已提交
3895
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3896
            param = EagerParamBase(*args, **kwargs)
L
Leo Chen 已提交
3897
        else:
姜永久 已提交
3898
            param = Parameter(global_block, *args, **kwargs)
3899 3900 3901
        # NOTE(Aurelius84): we deliver stop_gradient in append_op, so we
        # need recorde it state and reset it back after calling this API
        stop_gradient = param.stop_gradient
3902

3903
        if 'initializer' in kwargs:
3904 3905 3906 3907 3908

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3909
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3910
                        # are treated as initialization ops that cause error.
3911
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3912 3913
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
3914 3915 3916
                            "c_broadcast",
                            "c_sync_comm_stream",
                            "coalesce_tensor",
3917
                        ]:
3918
                            continue
3919 3920 3921 3922 3923 3924 3925
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
3926 3927 3928 3929 3930 3931
                raise RuntimeError(
                    "param "
                    + param.name
                    + " is inited by multiple init ops "
                    + str(init_ops)
                )
3932
            elif init_ops_len == 1:
3933
                # TODO already inited, do nothing, should log a warning
3934 3935 3936
                pass
            else:
                initializer(param, self)
3937
        param.stop_gradient = stop_gradient
Q
Qiao Longfei 已提交
3938
        return param
Y
Yu Yang 已提交
3939

Y
Yu Yang 已提交
3940
    def append_op(self, *args, **kwargs):
3941 3942 3943 3944 3945 3946
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
3947
        op_type = kwargs.get("type", None)
3948
        if in_dygraph_mode():
3949
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
3950
            inplace_map = kwargs.get("inplace_map", None)
3951 3952 3953
            warnings.warn(
                "Op `%s` is executed through `append_op` under the dynamic mode, "
                "the corresponding API implementation needs to be upgraded to "
3954 3955 3956 3957 3958 3959
                "using `_C_ops` method." % type,
                DeprecationWarning,
            )
            op = Operator(
                block=self,
                desc=None,
3960
                type=op_type,
3961 3962 3963 3964
                inputs=None,
                outputs=None,
                attrs=attrs,
            )
3965

M
minqiyang 已提交
3966 3967
            # record ops in tracer rather than blocks
            #
3968
            # TODO(minqiyang): add op stop_gradient support in static graph mode too.
L
lujun 已提交
3969
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3970

3971
            _dygraph_tracer().trace_op(
3972
                op_type,
3973 3974 3975 3976 3977 3978
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
                inplace_map,
            )
M
minqiyang 已提交
3979
        else:
3980
            from paddle.fluid.dygraph.base import param_guard
3981
            from paddle.utils import flatten
3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995

            def pass_stop_gradient(ins, outs):
                """
                Set out.stop_gradient = True if all inputs stop_gradient is True.
                """
                need_reset = True
                for var in flatten(ins):
                    if getattr(var, 'stop_gradient', None) is False:
                        need_reset = False
                        break
                if need_reset:
                    for var in flatten(outs):
                        if isinstance(var, Variable):
                            var.stop_gradient = True
3996

3997
            op_desc = self.desc.append_op()
3998 3999
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
W
wanghuancoder 已提交
4000
            # NOTE(Aurelius84): In case of @to_static, all Tensor(s) should
4001 4002
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
4003 4004 4005 4006 4007 4008 4009 4010 4011 4012
            ignore_ops = {
                'conditional_block',
                'conditional_block_grad',
                'recurrent',
                'recurrent_grad',
                'while',
                'while_grad',
            }
            if op_type not in ignore_ops:
                pass_stop_gradient(inputs, outputs)
4013
            with param_guard(inputs), param_guard(outputs):
4014 4015 4016
                op = Operator(
                    block=self,
                    desc=op_desc,
4017
                    type=op_type,
4018 4019 4020 4021
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None),
                )
4022

M
minqiyang 已提交
4023
            self.ops.append(op)
M
minqiyang 已提交
4024

4025 4026
        return op

W
Wu Yi 已提交
4027
    def _insert_op(self, index, *args, **kwargs):
4028 4029 4030 4031 4032 4033 4034 4035 4036
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
4037
        self._sync_with_cpp()
F
fangshuixun007 已提交
4038
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
4039

4040 4041
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
4042
        Insert an Operator according to the giving arguments,
4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
4057 4058 4059 4060 4061 4062 4063 4064 4065
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
4066 4067
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
4068
        self.desc._remove_op(index, index + 1)
4069 4070
        del self.ops[index]

W
Wu Yi 已提交
4071
    def _slice_ops(self, start, end):
4072 4073 4074 4075 4076 4077 4078 4079 4080 4081
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
4082
        return self.ops[start:end]
Y
Yancey1989 已提交
4083

W
Wu Yi 已提交
4084
    def _prepend_op(self, *args, **kwargs):
4085
        if in_dygraph_mode():
J
Jiabin Yang 已提交
4086 4087
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098
            op = Operator(
                self, None, type=type, inputs=None, outputs=None, attrs=attrs
            )

            _dygraph_tracer().trace_op(
                type,
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
            )
M
minqiyang 已提交
4099
        else:
4100
            op_desc = self.desc._prepend_op()
4101 4102 4103 4104 4105 4106 4107 4108
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None),
            )
M
minqiyang 已提交
4109
            self.ops.insert(0, op)
4110

Y
Yu Yang 已提交
4111 4112
        return op

W
Wu Yi 已提交
4113
    def _sync_with_cpp(self):
4114
        """
4115 4116
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
4117
        """
Q
Qiao Longfei 已提交
4118 4119 4120
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
4121 4122 4123 4124
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
4125 4126 4127 4128 4129 4130 4131 4132
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient,
                    )
4133
                else:
4134 4135 4136 4137 4138 4139
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient,
                    )
Q
Qiao Longfei 已提交
4140

4141
        # sync variables removed from c++ end
4142
        for var in list(self.vars.keys()):
4143
            if not self.desc.find_var(var.encode()):
4144 4145
                self.vars.pop(var)

Q
Qiao Longfei 已提交
4146
        # sync operators from cpp
4147 4148 4149 4150
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
4167 4168 4169 4170 4171

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
4172
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
4173 4174 4175 4176 4177 4178 4179

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

4180 4181 4182 4183 4184
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
4185 4186 4187 4188 4189 4190
                self.ops
            ) and ops_in_cpp_index < len(ops_in_cpp):
                if (
                    self.ops[ops_in_python_index].desc
                    != ops_in_cpp[ops_in_cpp_index]
                ):
4191 4192 4193 4194 4195
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
4196 4197 4198 4199
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
4200
    def _copy_param_info_from(self, other):
4201
        """
4202 4203
        Copy the information of parameters from the other block.

4204
        Args:
4205 4206 4207 4208 4209
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
4210 4211 4212 4213 4214

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
4215
            raise TypeError(
4216 4217
                "_copy_param_info_from should be invoked with Block"
            )
4218
        for p in other.iter_parameters():
4219 4220 4221
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
4222 4223
                # if the Parameter is pruned, v may be None
                continue
4224
            assert isinstance(v, Variable)
4225
            new_p = None
L
Leo Chen 已提交
4226
            if in_dygraph_mode():
4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238
                new_p = EagerParamBase(
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4239
            else:
姜永久 已提交
4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254
                new_p = Parameter(
                    block=self,
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR
                    else None,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4255 4256
            self.vars[new_p.name] = new_p

4257
    def _clone_variable(self, var, force_persistable=True):
4258 4259
        """
        Clone a variable into current block.
4260

4261 4262
        Args:
            var: the variable to be cloned.
4263 4264 4265
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
4266 4267

        Returns:
4268
            Variable: the new  variable cloned from 'var' in current block.
4269 4270
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
4271 4272 4273
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
4274 4275 4276
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
tangwei12 已提交
4277
        elif var.type == core.VarDesc.VarType.RAW:
4278 4279 4280
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
typhoonzero 已提交
4281 4282 4283 4284 4285 4286
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
4287
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4288
                is_data=var.is_data,
4289 4290
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4291 4292 4293 4294 4295 4296 4297
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
4298
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4299
                is_data=var.is_data,
4300 4301
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4302
        return ret_var
4303

Y
Yu Yang 已提交
4304

4305 4306 4307 4308
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
4309
# of some old Python Variables(all old Python Operators) may have
4310
# been destructed.
4311 4312 4313
def _apply_pass(
    main_program, startup_program, pass_name, pass_attrs={}, pass_attr_types={}
):
4314 4315 4316 4317
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
4318 4319 4320 4321 4322 4323 4324
    attrs = core.apply_pass(
        tmp_main_program,
        tmp_startup_program,
        pass_name,
        pass_attrs,
        pass_attr_types,
    )
4325 4326 4327 4328 4329
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


4330
class IrNode:
4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4342 4343 4344
        assert isinstance(
            node, core.Node
        ), 'node must be the instance of core.Node.'
4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

4426
    def remove_input_by_id(self, node_id):
4427 4428 4429 4430 4431 4432
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4433
        self.node.remove_input(node_id)
4434

4435
    def remove_input(self, node):
4436 4437 4438 4439
        """
        Remove a node from inputs.

        Args:
4440
            node(IrNode): the node being removed.
4441
        """
4442
        self.node.remove_input(node.node)
4443

4444
    def append_input(self, node):
4445 4446 4447 4448
        """
        Append a node in inputs.

        Args:
4449
            node(IrNode): the node being appended.
4450
        """
4451
        self.node.append_input(node.node)
4452 4453 4454 4455 4456 4457 4458 4459

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

4460
    def remove_output_by_id(self, node_id):
4461 4462 4463 4464 4465 4466
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4467
        self.node.remove_output(node_id)
4468

4469
    def remove_output(self, node):
4470 4471 4472 4473
        """
        Remove a node from outputs.

        Args:
4474
            node(IrNode): the node being removed.
4475
        """
4476
        self.node.remove_output(node.node)
4477

4478
    def append_output(self, node):
4479 4480 4481 4482
        """
        Append a node in outputs.

        Args:
4483
            node(IrNode): the node being appended.
4484
        """
4485
        self.node.append_output(node.node)
4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4520 4521 4522
        assert (
            isinstance(node, core.Node) and node.is_var()
        ), 'node must be the instance of core.Node and it must be a variable node.'
4523
        super().__init__(node)
4524 4525 4526 4527 4528 4529 4530 4531 4532
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
4533 4534 4535
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4536 4537 4538 4539 4540 4541 4542 4543 4544
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
4545 4546 4547
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4548 4549
        return self.node.var().persistable()

4550 4551 4552 4553 4554 4555 4556
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
4557 4558 4559
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4560 4561 4562 4563 4564 4565 4566 4567 4568
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
4569 4570 4571
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4572 4573 4574 4575 4576 4577 4578 4579 4580
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
4581 4582 4583
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4584 4585
        return self.node.var().shape()

4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4619 4620 4621
        assert (
            isinstance(node, core.Node) and node.is_op()
        ), 'node must be the instance of core.Node and it must be a operator node.'
4622
        super().__init__(node)
4623 4624 4625 4626 4627 4628 4629 4630 4631 4632
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
4633 4634 4635
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4636 4637
        self.node.op()._rename_input(old_input_name, new_input_name)

4638 4639 4640 4641 4642 4643 4644 4645
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
4646 4647 4648
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4649 4650
        self.node.op()._rename_output(old_output_name, new_output_name)

4651 4652 4653 4654 4655 4656 4657 4658 4659 4660
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4661 4662 4663
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4676 4677 4678
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4679 4680 4681 4682 4683 4684 4685 4686 4687
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
4688 4689 4690
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4691 4692
        return self.node.op().set_type(new_type)

4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
4707 4708 4709
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4710
        desc = self.node.op()
4711 4712 4713 4714 4715
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
4716
            desc.set_block_attr(name, val.desc)
4717
        elif isinstance(val, list) and val and _all_is_type(val, Block):
4718
            desc.set_blocks_attr(name, [v.desc for v in val])
4719 4720 4721
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
4722 4723 4724 4725
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4726 4727 4728 4729 4730 4731 4732
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
4733 4734 4735
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4736 4737 4738 4739 4740 4741 4742 4743 4744
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
4745 4746 4747
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4748 4749
        return self.node.op().output_arg_names()

4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4771
class IrGraph:
4772
    """
4773
    Python IrGraph. Beneath it is a core.Graph, which is used for
4774
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4775 4776
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4777 4778 4779 4780
    """

    def __init__(self, graph, for_test=False):
        """
4781 4782
        Construct an IrGraph using core.Graph.

4783 4784 4785 4786 4787
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
4788 4789
            graph, core.Graph
        ), 'graph must be the instance of core.Graph.'
4790 4791 4792
        self.graph = graph
        self._for_test = for_test

4793 4794 4795 4796
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4797 4798 4799
        Warns:
            The method only clones the graph structure, not its attributes.

4800 4801 4802
        Returns:
            IrGraph: A new and duplicated graph.
        """
4803
        g = self.graph.clone()
4804 4805
        return IrGraph(g, self._for_test)

4806
    def is_test(self):
4807 4808 4809
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4810 4811
        return self._for_test

W
WangZhen 已提交
4812
    def all_nodes(self):
4813 4814 4815
        """
        Return all nodes included in the graph as a set.
        """
4816
        return {IrNode(node) for node in self.graph.nodes()}
4817

4818
    def all_var_nodes(self):
4819 4820 4821
        """
        Return all variable nodes included in the graph as a set.
        """
4822
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4823

4824
    def all_persistable_nodes(self):
4825 4826 4827
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4828 4829
        persistable_nodes = set()
        for node in self.graph.nodes():
4830 4831 4832 4833 4834
            if (
                node.is_var()
                and node.var() is not None
                and node.var().persistable()
            ):
W
WangZhen 已提交
4835
                persistable_nodes.add(node)
4836
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4837

4838
    def all_op_nodes(self):
4839 4840 4841
        """
        Return all operator nodes included in the graph as a set.
        """
4842
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4843

4844 4845 4846 4847 4848 4849
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
4850
            IrGraph(self.graph.get_sub_graph(i), for_test=for_test)
4851 4852 4853 4854 4855 4856 4857 4858 4859
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4860
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4872
            IrVarNode: the created persistable variable node.
4873
        """
4874 4875 4876 4877 4878
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4879
        return IrVarNode(self.graph.create_var_node(var_desc))
4880 4881

    def create_var_node(self, name, var_type, shape, var_dtype):
4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4893
            IrVarNode: the created variable node.
4894 4895
        """

4896 4897 4898 4899
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4900
        return IrVarNode(self.graph.create_var_node(var_desc))
4901

4902 4903 4904 4905 4906 4907
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4908
    def create_var_node_from_desc(self, var_desc):
4909 4910 4911 4912 4913 4914 4915 4916
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4917
            IrVarNode: the created variable node.
4918
        """
4919
        return IrVarNode(self.graph.create_var_node(var_desc))
4920 4921

    def create_op_node(self, op_type, attrs, inputs, outputs):
4922 4923 4924 4925 4926 4927 4928
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4929
            outputs(dict): the outputs of the operator node.
4930 4931

        Returns:
4932
            IrOpNode: the created operator node.
4933
        """
4934 4935
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4936
        for attr, value in attrs.items():
4937
            self._update_desc_attr(op_desc, attr, value)
4938
        for input_name, var_nodes in inputs.items():
4939 4940
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
4941 4942 4943
            op_desc.set_input(
                input_name, [var_node.name() for var_node in var_nodes]
            )
4944
        for output_name, var_nodes in outputs.items():
4945 4946
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
4947 4948 4949
            op_desc.set_output(
                output_name, [var_node.name() for var_node in var_nodes]
            )
4950
        return IrOpNode(self.graph.create_op_node(op_desc))
4951 4952

    def create_op_node_from_desc(self, op_desc):
4953 4954 4955 4956 4957 4958 4959
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4960
            IrOpNode: the created operator node.
4961
        """
4962
        return IrOpNode(self.graph.create_op_node(op_desc))
4963 4964

    def update_input_link(self, old_input_node, new_input_node, op_node):
4965 4966 4967 4968
        """
        Update the input's link of a operator node.

        Args:
4969 4970 4971
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4972
        """
4973 4974 4975 4976 4977
        assert (
            old_input_node.node in self.graph.nodes()
            and new_input_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4978 4979 4980 4981
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
4982
        op_node.rename_input(old_input_node.name(), new_input_node.name())
4983

4984 4985 4986 4987 4988 4989 4990 4991 4992
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
4993 4994 4995 4996 4997
        assert (
            old_output_node.node in self.graph.nodes()
            and new_output_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
4998 4999 5000 5001 5002 5003
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

5004
    def link_to(self, node_in, node_out):
5005 5006 5007 5008
        """
        Connect two nodes.

        Args:
5009 5010
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
5011
        """
5012
        assert node_in.node in self.graph.nodes(), (
5013 5014
            'node_in(%s) must be in the graph nodes.' % node_in.node.name()
        )
5015
        assert node_out.node in self.graph.nodes(), (
5016 5017
            'node_out(%s) must be in the graph nodes.' % node_out.node.name()
        )
5018 5019
        node_in.append_output(node_out)
        node_out.append_input(node_in)
5020 5021

    def safe_remove_nodes(self, remove_nodes):
5022 5023 5024 5025 5026 5027 5028
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
5029
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
5030 5031 5032 5033
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
5034 5035
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
5036

Z
Zhen Wang 已提交
5037 5038 5039 5040 5041 5042 5043 5044
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5045
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
5046 5047 5048 5049
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5050
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
5051 5052 5053
                        ]
                    else:
                        var_nodes[each_var_name].append(
5054 5055
                            self._find_node_by_name(node.outputs, each_var_name)
                        )
Z
Zhen Wang 已提交
5056 5057
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
5058
    def has_circle(self):
5059 5060 5061 5062 5063 5064
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
5065 5066 5067
        return core.has_circle(self.graph)

    def graph_num(self):
5068 5069 5070 5071 5072 5073
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
5074 5075 5076
        return core.graph_num(self.graph)

    def topology_sort(self):
5077 5078 5079
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
5080
        Notes: the `graph` can not contain a circle.
5081 5082

        Returns:
Z
Zhen Wang 已提交
5083
            list(IrNode): nodes in topology order.
5084
        """
5085
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
5086
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
5087 5088

    def build_adjacency_list(self):
5089 5090 5091 5092
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
5093
            dict{IrNode: set(IrNode)}: the adjacency list.
5094
        """
5095 5096
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
5097
        for k, v in adj_list.items():
5098 5099
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
5100

5101 5102 5103 5104 5105 5106 5107 5108
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
5109
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
5110 5111 5112 5113 5114
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

5115 5116
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
5117 5118 5119 5120
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True,
            )
5121 5122
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
5123 5124 5125
                print(
                    'The {} is saved as the dot filetype.'.format(dot_file_path)
                )
5126

5127
        remove_ctr_vars = set()
5128
        if remove_ctr_var:
5129
            for node in self.all_var_nodes():
5130 5131 5132
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
5133 5134
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

5135 5136
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
5137 5138 5139 5140 5141 5142
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
5143 5144 5145 5146
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
5147 5148
        if not os.path.exists(save_path):
            os.makedirs(save_path)
5149 5150 5151 5152 5153 5154 5155
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
5156 5157 5158
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
5159
        WARN: When the graph includes backward operator nodes, the
5160 5161 5162 5163 5164 5165
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
5166
        convert_pass = core.get_pass('graph_to_program_pass')
5167 5168
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
5169 5170 5171 5172
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

5173 5174 5175 5176 5177 5178 5179 5180
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
5181
        assert target_node is not None, (
5182 5183
            "Cannot find the target node (%s)in the giving set." % node_name
        )
5184 5185
        return target_node

5186 5187 5188 5189
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
5190 5191 5192 5193 5194
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
5195
            desc.set_block_attr(name, val.desc)
5196
        elif isinstance(val, list) and val and _all_is_type(val, Block):
5197
            desc.set_blocks_attr(name, [v.desc for v in val])
5198 5199 5200
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
5201 5202 5203 5204 5205
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


5206
class Program:
D
dzhwinter 已提交
5207
    """
5208
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
5209
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
5210
    it will contain nested block.
5211

J
Jiabin Yang 已提交
5212 5213 5214
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
5215

J
Jiabin Yang 已提交
5216
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
5217
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
5218 5219 5220 5221 5222 5223 5224
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
5225
    **Notes**:
5226 5227 5228
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
5229 5230

    Returns:
J
Jiabin Yang 已提交
5231
        Program: An empty Program.
D
dzhwinter 已提交
5232 5233

    Examples:
5234 5235
        .. code-block:: python

5236 5237 5238 5239
            import paddle
            import paddle.static as static

            paddle.enable_static()
5240

5241 5242 5243 5244 5245
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
5246
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
5247 5248 5249

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
5250 5251 5252

    """

5253 5254
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
5255 5256
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
5257 5258
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
5259
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
5260
        self.__op_role_var = []
T
tangwei12 已提交
5261

5262 5263
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
5264
        self._is_distributed = False
5265
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
5266
        self._is_chief = False
5267 5268 5269
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
5270
        self._endpoints = []
5271 5272 5273
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
5274
        self._trainers_endpoints = []
5275
        # the distributed lookup table names
T
tangwei12 已提交
5276
        self._distributed_lookup_table = None
5277 5278 5279

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
5280 5281
        self._use_lamb = False

5282 5283 5284
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
5285

5286 5287 5288
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
5289
        self._program_config = None
5290

5291 5292
        self._pass_applied = None

H
hutuxian 已提交
5293 5294 5295
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

5296 5297 5298
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

5299 5300 5301
        # appending gradients times
        self._appending_grad_times = 0

5302 5303
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
5304 5305
            "__auto_checkpoint_program__"
        )
5306

5307 5308
        # compiled program, i.e. Graph
        self._graph = None
5309 5310
        # to tag whether is startup_program
        self._is_start_up_program_ = False
5311

5312
    def _find_var_class_kwargs(self, new_desc):
5313 5314 5315 5316 5317 5318 5319 5320
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

5321 5322 5323 5324
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
5325
            if idx > (len(self.blocks) - 1):
5326
                self._create_block()
5327 5328 5329 5330 5331 5332 5333 5334 5335 5336
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
                    'shape': get_var_desc_attr_or_none(
                        new_var_desc,
                        "shape",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'dtype': get_var_desc_attr_or_none(
                        new_var_desc,
                        "dtype",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'lod_level': get_var_desc_attr_or_none(
                        new_var_desc,
                        "lod_level",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'error_clip': old_var.error_clip
                    if old_var is not None
                    else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None
                    else False,
                    'is_data': old_var.is_data
                    if old_var is not None
                    else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None
                    else False,
5378 5379 5380
                }

                if isinstance(old_var, Parameter):
5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397
                    kwargs.update(
                        {
                            'trainable': old_var.trainable,
                            'optimize_attr': old_var.optimize_attr,
                            'regularizer': old_var.regularizer,
                            'do_model_average': old_var.do_model_average,
                            'need_clip': old_var.need_clip,
                            'is_distributed': old_var.is_distributed,
                            'is_parameter': old_var.is_parameter,
                        }
                    )
                    block_new_vars.append(
                        {
                            'class': Parameter,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5398 5399
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
5400 5401 5402 5403 5404 5405
                    block_new_vars.append(
                        {
                            'class': Variable,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5406 5407 5408 5409 5410 5411 5412

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
5413
        assert block_num == self.desc.num_blocks()
5414 5415

        # clear old blocks and desc
5416 5417 5418 5419 5420 5421 5422 5423 5424
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
5425

5426
        del desc
5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

5446 5447 5448 5449 5450 5451 5452 5453 5454 5455
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

5456 5457
                import paddle
                import paddle.static as static
5458

5459 5460 5461
                paddle.enable_static()

                prog = static.default_main_program()
5462 5463 5464 5465 5466
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
5467
                prog1 = static.default_main_program()
5468 5469 5470 5471 5472 5473 5474 5475
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
5476
    @property
5477
    def _op_role(self):
Y
yuyang18 已提交
5478 5479 5480 5481 5482 5483 5484 5485
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
5486
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
5487 5488 5489 5490
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
5491 5492
        return self._current_role

5493 5494
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
5495 5496 5497
        self._current_role = role

    @property
5498
    def _op_role_var(self):
Y
yuyang18 已提交
5499
        """
5500
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
5501

5502
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
5503 5504 5505

        Notes: This is a very low-level API. Users should not use it directly.
        """
5506
        return self.__op_role_var
Y
yuyang18 已提交
5507

5508
    @signature_safe_contextmanager
5509 5510 5511 5512 5513
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
5514 5515 5516 5517
        try:
            yield
        finally:
            self._current_role = tmp_role
5518

S
rename  
sneaxiy 已提交
5519
    @signature_safe_contextmanager
W
Wu Yi 已提交
5520
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
5521 5522 5523 5524 5525 5526 5527
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
5528
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
5529 5530 5531

        Examples:

5532
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
5533
            >>> p, g = backward(...)
W
Wu Yi 已提交
5534
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
5535 5536
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
5537
        tmp_role = self._current_role
5538
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
5539

Y
yuyang18 已提交
5540 5541
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
5542
        self.__op_role_var = [
5543 5544 5545
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
5546 5547 5548 5549 5550
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
5551

S
rename  
sneaxiy 已提交
5552
    @signature_safe_contextmanager
X
Xin Pan 已提交
5553
    def _lr_schedule_guard(self, is_with_opt=False):
5554 5555 5556 5557 5558 5559 5560
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
5561 5562 5563 5564
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
5565 5566 5567

        Examples:

5568
            >>> import paddle.fluid as fluid
5569 5570 5571 5572
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
5573 5574

        tmp_role = self._current_role
5575
        tmp_var = self.__op_role_var
5576

5577 5578
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
5579 5580
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
5581
        # TODO(typhoonzero): how to set target learning rate var
5582
        self.__op_role_var = []
5583 5584 5585 5586 5587
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
5588

5589
    def __str__(self):
Y
yuyang18 已提交
5590 5591 5592 5593 5594 5595 5596 5597 5598
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5619 5620
            import paddle
            import paddle.static as static
5621

5622 5623 5624
            paddle.enable_static()

            cur_program = static.Program()
5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5636
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
5637 5638
            type(skip_op_callstack)
        )
5639 5640 5641
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5642
            program_str += '\n'
5643
        return program_str
Y
Yang Yang(Tony) 已提交
5644

F
fengjiayi 已提交
5645 5646 5647
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5648

J
Jiabin Yang 已提交
5649 5650 5651
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5652

J
Jiabin Yang 已提交
5653
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5654

H
haowang101779990 已提交
5655
        Returns:
J
Jiabin Yang 已提交
5656
            str: The debug string describe current Program.
Y
yuyang18 已提交
5657 5658

        Raises:
J
Jiabin Yang 已提交
5659
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5660

5661 5662 5663
        Examples:
            .. code-block:: python

5664 5665 5666 5667
                import paddle
                import paddle.static as static

                paddle.enable_static()
5668

5669 5670 5671
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5672
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5673
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5674
                print("program string without detail: {}".format(prog_string))
5675
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5676
        """
5677 5678 5679
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
5680 5681
            type(throw_on_error)
        )
5682 5683 5684
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
5685 5686
            type(with_details)
        )
5687

F
fengjiayi 已提交
5688 5689 5690 5691
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707
            protostr = self.desc.serialize_to_string()
            proto = framework_pb2.ProgramDesc.FromString(bytes(protostr))
            res_str += (
                "version {\n  "
                + textwrap.indent(
                    _debug_string_(proto.version, throw_on_error), "  "
                )
                + "}\n"
            )
            res_str += (
                "op_version_map {\n  "
                + textwrap.indent(
                    _debug_string_(proto.op_version_map, throw_on_error), "  "
                )
                + "}\n"
            )
F
fengjiayi 已提交
5708 5709
        else:
            protostr = self.desc.serialize_to_string()
5710
            proto = framework_pb2.ProgramDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
5711 5712
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5713

W
Wu Yi 已提交
5714
    def _get_desc(self):
Y
yuyang18 已提交
5715 5716 5717 5718 5719 5720 5721
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5722 5723
        return self.desc

X
version  
Xin Pan 已提交
5724 5725 5726
    def _version(self):
        return self.desc._version()

5727
    def clone(self, for_test=False):
Y
yuyang18 已提交
5728
        """
5729
        .. note:::
5730 5731
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` .
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` .
5732
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5733

5734
        Create a new Program with forward content of original one when ``for_test=True``.
5735
        Create a new Program as same as the original one when ``for_test=False``.
5736

5737
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5738 5739 5740
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5741

5742 5743
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5744 5745
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
5746
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
5747

C
cyberslack_lee 已提交
5748 5749 5750
        Examples:
            .. code-block:: python
                :name: code-example-1
L
Luo Tao 已提交
5751

C
cyberslack_lee 已提交
5752 5753
                import paddle
                import paddle.static as static
5754

C
cyberslack_lee 已提交
5755
                paddle.enable_static()
5756

C
cyberslack_lee 已提交
5757 5758 5759 5760 5761 5762 5763
                img = static.data(name='image', shape=[None, 784])
                pred = static.nn.fc(x=img, size=10, actvation='relu')
                loss = paddle.mean(pred)
                # Here we use clone before Momentum
                test_program = static.default_main_program().clone(for_test=True)
                optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
                optimizer.minimize(loss)
5764

J
Jiabin Yang 已提交
5765
        Args:
5766

5767 5768
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
5769

J
Jiabin Yang 已提交
5770
        Returns:
5771
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
5772

Y
yuyang18 已提交
5773 5774 5775

        Examples:

5776 5777 5778 5779 5780 5781 5782
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5783
            .. code-block:: python
C
cyberslack_lee 已提交
5784
                :name: code-example-2
5785

5786
                import paddle
5787 5788

                def print_prog(prog):
5789
                    for name, value in sorted(prog.block(0).vars.items()):
5790 5791 5792 5793 5794
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
5795
                        for key, value in sorted(op.all_attrs().items()):
5796 5797 5798 5799
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5800
            1. To clone a test program, the sample code is:
5801
                .. code-block:: python
C
cyberslack_lee 已提交
5802
                    :name: code-example-3
5803

5804 5805 5806 5807 5808 5809
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5810 5811

                    def print_prog(prog):
5812
                        for name, value in sorted(prog.block(0).vars.items()):
5813 5814 5815 5816 5817
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
5818
                            for key, value in sorted(op.all_attrs().items()):
5819 5820 5821
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5822 5823
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5824 5825 5826

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5827 5828 5829
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5830
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5831 5832
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5833
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5834 5835
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5836
                            test_program = train_program.clone(for_test=True)
5837
                    print_prog(test_program)
J
Jiabin Yang 已提交
5838 5839 5840 5841

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5842
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5843 5844 5845 5846
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5847 5848 5849
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5850 5851 5852
                            sgd.minimize(avg_loss)


5853
            2. The clone method can be avoid if you create program for training and program for testing individually.
5854
                .. code-block:: python
C
cyberslack_lee 已提交
5855
                    :name: code-example-4
5856

5857 5858 5859 5860 5861 5862
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5863 5864

                    def print_prog(prog):
5865
                        for name, value in sorted(prog.block(0).vars.items()):
5866 5867 5868 5869 5870
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
5871
                            for key, value in sorted(op.all_attrs().items()):
5872 5873
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5874

5875
                    def network():
5876
                        img = static.data(name='image', shape=[None, 784])
5877
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5878 5879
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5880
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5881 5882
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5883 5884
                        return avg_loss

5885 5886 5887 5888 5889
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5890
                            avg_loss = network()
5891
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5892
                            sgd.minimize(avg_loss)
5893
                    # the test startup program is not used.
5894 5895
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5896 5897
                            avg_loss = network()
                    print_prog(test_program_2)
5898

5899
            The two code snippets above will generate and print same programs.
5900
        """
5901

T
tangwei12 已提交
5902
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5903 5904 5905
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5906
        pruned_origin_block_id_map = None
5907
        if for_test:
5908 5909
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
5910 5911
                self.desc
            )
5912 5913
            forward_prog.blocks = [
                Block(forward_prog, i)
5914
                for i in range(forward_prog.desc.num_blocks())
5915 5916 5917
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5918
        else:
5919
            p = Program()
G
gongweibao 已提交
5920 5921
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5922
            p.desc = core.ProgramDesc(self.desc)
5923
            p.blocks = [Block(p, i) for i in range(self.desc.num_blocks())]
G
gongweibao 已提交
5924 5925

            p._current_role = self._current_role
5926
            p.__op_role_var = self.__op_role_var
5927
            p._appending_grad_times = self._appending_grad_times
5928 5929
            if hasattr(self, 'lr_scheduler'):
                p.lr_scheduler = self.lr_scheduler
5930 5931
            if hasattr(self, '_pipeline_opt'):
                p._pipeline_opt = self._pipeline_opt
G
gongweibao 已提交
5932

T
tangwei12 已提交
5933
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5934
            # its desc.
W
Wu Yi 已提交
5935
            p._sync_with_cpp()
5936

W
Wu Yi 已提交
5937
        p._copy_param_info_from(self)
5938
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5939
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5940
        return p
5941

5942
    def _prune(self, targets):
Y
yuyang18 已提交
5943 5944 5945 5946 5947 5948 5949 5950
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5951
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5952 5953 5954 5955
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5956
        """
5957
        return self._prune_with_input([], targets)
5958 5959

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5960
        """
5961
        Prune operators and variables which are not needed to generate
5962 5963
        :code:`targets`. Prune operators and variables which are needed
        to generate feeded_var
5964 5965 5966 5967 5968 5969 5970

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5971
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5972 5973 5974 5975 5976 5977
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5978
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5979 5980 5981
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5982 5983
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
5984 5985
        if not isinstance(targets, list):
            targets = [targets]
5986 5987

        for var in feeded_var_names:
5988
            if not isinstance(var, str):
5989 5990
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
5991 5992
                    "str, but received %s." % type(var)
                )
5993

5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

6010 6011 6012 6013
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
6014
                    name = t.name
6015
                elif isinstance(t, str):
6016
                    name = str(t)
6017
                else:
6018 6019
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
6020 6021
                        "Variable or Operator, but received %s." % type(t)
                    )
6022 6023 6024 6025 6026 6027

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
6028 6029 6030
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
6031

6032 6033 6034 6035 6036 6037 6038 6039 6040
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
6041
                        # Skip optimize op except for optimize op in targets,
6042 6043 6044 6045 6046
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
6047

6048
                if target_op is not None:
6049 6050 6051
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
6052

6053
        res = Program()
6054
        res.desc, pruned_origin_block_id_map = core.prune(
6055 6056
            self.desc, set(feeded_var_names), targets_idx
        )
6057
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6058
        res._sync_with_cpp()
6059 6060 6061 6062 6063

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

6064 6065
        return res

X
Xin Pan 已提交
6066
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
6067
        """
F
fengjiayi 已提交
6068 6069 6070 6071 6072
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

6073
        3. change the :code:`is_test`
Y
yuyang18 已提交
6074 6075 6076
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

6077
        Args:
X
Xin Pan 已提交
6078 6079
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
6080

Y
yuyang18 已提交
6081 6082 6083 6084 6085 6086
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
6087
        res = Program()
6088
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
6089 6090 6091 6092

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
6093
        if prune_read_op:
6094
            while True:
6095 6096 6097 6098
                if (
                    read_op_idx >= root_block.op_size()
                    or root_block.op(read_op_idx).type() == 'read'
                ):
6099 6100 6101 6102 6103 6104
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
6105
                    root_block._remove_var(var.name().encode())
F
fengjiayi 已提交
6106 6107

        # change all `is_test` attributes to True
6108
        for i in range(res.desc.num_blocks()):
6109
            block = res.desc.block(i)
6110
            for j in range(block.op_size()):
6111 6112
                op = block.op(j)
                if op.has_attr('is_test'):
6113
                    op._set_bool_attr('is_test', True)
6114 6115 6116
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
6117
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6118
        res._sync_with_cpp()
6119 6120
        return res

6121
    def _remove_training_info(self, clip_extra=True):
6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

6136
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
6137 6138
        res._sync_with_cpp()

6139 6140
        # Note: The op_role and op_role_var cann't be deleted currently,
        # and we will try to remove them in the future.
6141
        common_clipped_attrs_list = ['op_callstack', 'with_quant_attr']
6142

6143
        for i in range(res.desc.num_blocks()):
6144 6145 6146 6147
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
6148 6149
            if not clip_extra:
                continue
6150 6151 6152 6153
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
6154 6155 6156

                extra_attrs_map = core.get_op_extra_attrs(op.type())

6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
6170 6171 6172
                # The extra input of op will be removed in the future
                # for name in remove_input_list:
                #     op.remove_input(name)
6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
6186
                # The extra output of op will be removed in the future
6187 6188
                for name in remove_output_list:
                    op.remove_output(name)
6189

6190 6191 6192 6193 6194 6195 6196
                op_quant_name = (
                    core.op_proto_and_checker_maker.kOpWithQuantAttrName()
                )
                quant = (
                    bool(op.attr(op_quant_name))
                    if op_quant_name in op.attr_names()
                    else False
6197 6198
                )
                quant_attrs = [
6199 6200 6201 6202 6203 6204 6205
                    op_quant_name,
                    "quantization_type",
                    "skip_quant",
                    "activation_bits",
                    "bit_length",
                    "quantize_weight_bits",
                    "weight_quant_scale",
6206
                ]
6207 6208
                for extra_attr_name in extra_attrs_map.keys():
                    op.remove_attr(extra_attr_name)
6209
                remove_attr_list = []
6210 6211 6212 6213 6214 6215
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
6216
                    if len(extra_attrs_map) > 0:
6217
                        if name in common_clipped_attrs_list:
6218
                            op.remove_attr(name)
6219
                        continue
6220 6221 6222 6223 6224 6225 6226 6227 6228 6229
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
6230 6231
        return res

6232 6233
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
6234
        """
6235
        .. note::
6236
            1. All information about parameters will be lost after serialization;
6237
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6238

6239 6240
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
6241

J
Jiabin Yang 已提交
6242
        Args:
Y
yuyang18 已提交
6243

J
Jiabin Yang 已提交
6244
            binary_str_type (str): the binary prootbuf string.
6245

J
Jiabin Yang 已提交
6246 6247
        Returns:
            Program: A deserialized Program.
6248 6249 6250 6251

        Examples:
            .. code-block:: python

6252 6253 6254 6255
                import paddle
                import paddle.static as static

                paddle.enable_static()
6256

6257 6258 6259 6260
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
6261

6262
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
6263

6264
                    z = paddle.matmul(x=x, y=y)
6265

6266 6267
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
6268

6269
                    print(static.default_main_program())
6270
                    print(prog_restored)
Y
yuyang18 已提交
6271
        """
6272 6273
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
6274
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
W
Wu Yi 已提交
6275
        p._sync_with_cpp()
6276
        return p
Y
Yu Yang 已提交
6277

6278
    @staticmethod
6279
    def _construct_from_desc(desc):
6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
6291
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
6292 6293 6294
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
6295 6296
    @property
    def random_seed(self):
Y
yuyang18 已提交
6297
        """
J
Jiabin Yang 已提交
6298
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
6299 6300
        the random seed from random device.

6301
        .. note::
6302
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
6303 6304 6305

        Returns:
            int64: Random seed in current Program
6306

6307 6308 6309 6310

        Examples:
            .. code-block:: python

6311 6312 6313
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
6314

6315 6316 6317
                paddle.enable_static()

                prog = static.default_main_program()
6318
                random_seed = prog.random_seed
6319
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
6320 6321 6322
                print(random_seed)
                ## 0
                ## the default random seed is 0
6323

6324
                # Here we need to set random seed before we use paddle.nn.functional.dropout
6325
                prog.random_seed = 1
6326
                z_var = F.dropout(x_var, 0.7)
6327

6328
                print(prog.random_seed)
6329 6330
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
6331
        """
D
dzhwinter 已提交
6332 6333
        return self._seed

Q
qiaolongfei 已提交
6334 6335
    @property
    def num_blocks(self):
Y
yuyang18 已提交
6336
        """
6337 6338
        The number of :ref:`api_guide_Block_en`  in this Program.

6339
        .. note::
6340
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
6341 6342 6343

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
6344

6345 6346 6347 6348

        Examples:
            .. code-block:: python

6349 6350 6351 6352
                import paddle
                import paddle.static as static

                paddle.enable_static()
6353

6354
                prog = static.default_main_program()
6355 6356
                num_blocks = prog.num_blocks
                print(num_blocks)
6357

6358 6359
                # print result:
                # 1
Y
yuyang18 已提交
6360
        """
Q
qiaolongfei 已提交
6361 6362
        return self.desc.num_blocks()

D
dzhwinter 已提交
6363 6364 6365
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
6366 6367
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
6368 6369
                % type(seed)
            )
D
dzhwinter 已提交
6370 6371
        self._seed = seed

Y
Yu Yang 已提交
6372
    def __repr__(self):
6373
        return self.__str__()
6374

Y
Yu Yang 已提交
6375
    def global_block(self):
Y
yuyang18 已提交
6376
        """
6377 6378
        .. note::
            This API has no effect in Dygraph mode.
6379 6380 6381

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
6382 6383
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
6384

6385 6386 6387 6388

        Examples:
            .. code-block:: python

6389 6390 6391 6392
                import paddle
                import paddle.static as static

                paddle.enable_static()
6393

6394
                prog = static.default_main_program()
6395 6396
                gb_block = prog.global_block()
                print(gb_block)
6397

Y
yuyang18 已提交
6398
        """
Y
Yu Yang 已提交
6399 6400
        return self.blocks[0]

Q
Qiao Longfei 已提交
6401
    def block(self, index):
Y
yuyang18 已提交
6402
        """
6403 6404
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6405

6406 6407
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
6408 6409
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
6410

J
Jiabin Yang 已提交
6411 6412
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
6413 6414 6415 6416

        Examples:
            .. code-block:: python

6417 6418 6419 6420
                import paddle
                import paddle.static as static

                paddle.enable_static()
6421

6422
                prog = static.default_main_program()
6423 6424
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
6425
        """
Q
Qiao Longfei 已提交
6426 6427
        return self.blocks[index]

Y
Yu Yang 已提交
6428
    def current_block(self):
Y
yuyang18 已提交
6429
        """
6430 6431
        .. note::
            This API has no effect in Dygraph mode.
6432

J
Jiabin Yang 已提交
6433 6434
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
6435

J
Jiabin Yang 已提交
6436 6437
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
6438

6439 6440 6441
        Examples:
            .. code-block:: python

6442 6443 6444 6445
                import paddle
                import paddle.static as static

                paddle.enable_static()
6446

6447
                prog = static.default_main_program()
6448 6449
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
6450
        """
Y
Yu Yang 已提交
6451 6452
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
6453
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
6454 6455 6456 6457 6458
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
6459

Y
yuyang18 已提交
6460 6461 6462 6463 6464
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
6465
        new_block_idx = len(self.blocks)
6466 6467 6468 6469 6470
        parent = (
            self.current_block()
            if parent_idx is None
            else self.block(parent_idx)
        )
F
update  
fengjiayi 已提交
6471
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
6472 6473 6474 6475
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
6476
    def _rollback(self):
Y
yuyang18 已提交
6477 6478 6479 6480 6481
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
6482 6483
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
6484
    def _sync_with_cpp(self):
Y
yuyang18 已提交
6485 6486 6487 6488 6489 6490 6491 6492 6493 6494
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
6495 6496 6497
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
6498
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
6499

W
Wu Yi 已提交
6500
    def _copy_param_info_from(self, other):
6501
        """
6502
        Copy the information of parameters from other program.
D
dzhwinter 已提交
6503

Y
yuyang18 已提交
6504 6505 6506
        Notes: This is a very low level API. Users should not invoke it
        directly.

6507 6508 6509 6510 6511 6512 6513
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6514 6515
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6516 6517
                % type(other)
            )
6518

W
Wu Yi 已提交
6519
        self.global_block()._copy_param_info_from(other.global_block())
6520

6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6532 6533
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6534 6535
                % type(other)
            )
6536 6537
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
6538
        self._parameters_on_pservers = other._parameters_on_pservers
6539
        self._endpoints = other._endpoints
6540
        self._ps_endpoint = other._ps_endpoint
6541 6542
        self._distributed_lookup_table = other._distributed_lookup_table

6543
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
6544 6545
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
6546

Y
yuyang18 已提交
6547 6548 6549
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
6550 6551
        Args:
            other(Program): Other program
6552
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
6553 6554
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is
            cloned from block 0 in other, etc. Default is None, which means default mapped,
6555
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
6556 6557 6558 6559 6560

        Returns:
            None
        """
        if not isinstance(other, Program):
6561 6562
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6563 6564
                % type(other)
            )
F
fengjiayi 已提交
6565

6566 6567
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
6568
                i: i for i in range(self.desc.num_blocks())
6569
            }
6570 6571 6572

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
6573 6574
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
6575
            for var in list(block.vars.values()):
6576 6577 6578 6579 6580 6581 6582
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
6583

6584
    def list_vars(self):
Y
yuyang18 已提交
6585
        """
6586
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
6587

J
Jiabin Yang 已提交
6588
        Returns:
6589
            iterable Tensors: The Generator will yield every Tensor in this program.
6590 6591 6592 6593

        Examples:
            .. code-block:: python

6594 6595
                import paddle
                import paddle.static as static
6596

6597 6598 6599 6600 6601
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
6602 6603
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
6604

6605 6606
                # var img : LOD_TENSOR.shape(-1, 1, 28, 28).dtype(float32).stop_gradient(True)
                # var label : LOD_TENSOR.shape(-1, 1).dtype(int64).stop_gradient(True)
Y
yuyang18 已提交
6607
        """
6608
        for each_block in self.blocks:
6609
            for each_var in list(each_block.vars.values()):
6610 6611
                yield each_var

6612 6613 6614 6615 6616 6617 6618 6619 6620 6621
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

6622 6623 6624 6625
                import paddle
                import paddle.static as static

                paddle.enable_static()
6626

6627 6628
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
6629
                hidden = static.nn.fc(x=data, size=10)
6630 6631
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
6632 6633 6634 6635 6636 6637 6638

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
6639 6640
                # persist trainable param fc_0.w_0 : LOD_TENSOR.shape(13, 10).dtype(float32).stop_gradient(False)
                # persist trainable param fc_0.b_0 : LOD_TENSOR.shape(10,).dtype(float32).stop_gradient(False)
6641 6642 6643 6644 6645 6646 6647 6648 6649 6650
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

6651 6652 6653 6654 6655 6656 6657 6658 6659
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
6660 6661 6662
            mode(str, optional): Source of the obtained parameters and buffers.
                    'opt' :  The return value only contains the variable in the optimizer.
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.
6663 6664
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
6665
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
6693
        # can not be imported at the begainning of this file.
6694 6695
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
6696

6697 6698
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
6699 6700 6701 6702
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".format(
                    type(scope)
                )
            )
6703 6704 6705 6706 6707

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
6708 6709
            raise TypeError(
                "Type of `mode` should be string, but received {}.".format(
6710 6711 6712
                    type(mode)
                )
            )
6713 6714 6715 6716 6717

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
6718 6719 6720 6721 6722
            if (
                var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH
                or var.desc.type() == core.VarDesc.VarType.FETCH_LIST
                or var.desc.type() == core.VarDesc.VarType.READER
            ):
6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):
            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
6740 6741 6742 6743
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".format(
                        mode
                    )
                )
6744 6745 6746 6747 6748 6749 6750 6751

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
6752 6753 6754 6755
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".format(
                        var.name
                    )
                )
6756 6757 6758 6759 6760 6761
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
6762
        Set parameters and persistable buffers in state_dict to program.
6763
        An exception will throw if shape or dtype of the parameters is not match.
6764

6765 6766 6767 6768
        .. note::
            This function MUST called after run start_up_program

        Args:
6769
            state_dict(dict): the dict store parameters and persistable buffers.
6770 6771
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
6772
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6773 6774
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
6775

6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
6805 6806 6807
                    type(state_dict)
                )
            )
6808 6809

        vars_dict = {var.name: var for var in self.list_vars()}
6810 6811 6812
        condition = (
            True if 'StructuredToParameterName@@' in state_dict else False
        )
6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
6824 6825
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
6826 6827
                except TypeError as err:
                    warnings.warn(
6828 6829
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
6830
            else:
6831
                warnings.warn(
6832 6833 6834 6835 6836 6837
                    (
                        "Skip loading for '{0}'. Because '{0}' not in the program.".format(
                            name
                        )
                    )
                )
6838

Y
Yu Yang 已提交
6839

6840
class Parameter(Variable, metaclass=ParameterMetaClass):
6841
    """
6842
    Parameter is derived from Variable. A parameter is a persistable
6843
    Variable, and will be updated by optimizers after each iteration.
6844
    The training of a neural network is essentially the updating of
6845 6846
    its parameters.

6847
    Relative to a general Variable, a Parameter has several its own
6848 6849
    member variables:

6850 6851 6852 6853 6854 6855 6856 6857 6858 6859
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
6860
        need_clip (bool): Whether the parameter gradient need to be cliped
6861
            in optimizer. Default is True.
6862 6863
    """

6864 6865 6866 6867 6868 6869
    def __init__(
        self,
        block,
        shape,
        dtype,
        type=core.VarDesc.VarType.LOD_TENSOR,
6870
        **kwargs,
6871
    ):
6872 6873 6874 6875 6876
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6877 6878
        for each in shape:
            if each < 0:
6879 6880
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
6881 6882 6883 6884 6885 6886 6887 6888 6889 6890
                    % list(shape)
                )

        Variable.__init__(
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
6891
            **kwargs,
6892
        )
Y
Yu Yang 已提交
6893 6894 6895 6896
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6897 6898
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6899
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6900

6901 6902
        self.need_clip = kwargs.get('need_clip', True)

6903 6904
        self.is_distributed = False

6905 6906
        self.is_parameter = True

F
fengjiayi 已提交
6907
    def __str__(self):
6908
        return self._to_readable_code()
F
fengjiayi 已提交
6909

F
update  
fengjiayi 已提交
6910 6911 6912
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6913

F
update  
fengjiayi 已提交
6914 6915 6916 6917 6918 6919 6920 6921
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6922 6923 6924 6925
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
G
GGBond8488 已提交
6926
                import paddle
6927 6928

                prog = fluid.default_main_program()
G
GGBond8488 已提交
6929
                rlt = paddle.static.data("fake_data", shape=[-1,1,1], dtype='float32')
6930 6931
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6932
        """
6933
        assert isinstance(throw_on_error, bool) and isinstance(
6934 6935
            with_details, bool
        )
F
update  
fengjiayi 已提交
6936 6937
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
6938 6939 6940 6941 6942 6943 6944
            additional_attr = (
                "trainable",
                "optimize_attr",
                "regularizer",
                "do_model_average",
                "need_clip",
            )
F
update  
fengjiayi 已提交
6945
            for attr_name in additional_attr:
6946
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
F
update  
fengjiayi 已提交
6947 6948
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6949 6950 6951 6952
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6953

W
wanghuancoder 已提交
6954
class EagerParamBase(core.eager.Tensor):
6955
    """
6956 6957
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode).
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers
6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
6975
        need_clip (bool): Whether the parameter gradient need to be cliped
6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
6990 6991
                    % list(shape)
                )
6992 6993 6994 6995 6996 6997 6998

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

6999 7000 7001
        if isinstance(shape, core.eager.Tensor):
            shape = shape.numpy()

7002
        super().__init__(
7003 7004 7005 7006 7007 7008
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            core.VarDesc.VarType.LOD_TENSOR,
            True,
        )
7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
7023 7024 7025
        # hook functions for lazy initialization
        self._init_func = None
        self._init_op_creator = None
7026 7027

    def set_init_func(self, obj):
7028
        self._init_func = obj
7029 7030 7031

    @dygraph_only
    def initialize(self):
7032 7033 7034
        assert (
            self._init_func is not None
        ), "Required self._init_func is not None, but received None."
7035
        self._init_func(self, None)
7036
        # clear function handle to release resource
7037
        self._init_func = None
7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
7050 7051
                type(trainable),
            )
7052

7053 7054 7055 7056
    def _create_init_op(self, block):
        """
        Call init_op_creator function to create initializer operation in block.
        """
7057 7058 7059
        assert (
            self._init_op_creator is not None
        ), "Required self._init_op_creator is not None, but received None."
7060
        self._init_op_creator(self, block)
7061

7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080
    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
7081
            tensor=super().__str__()
7082
        )
7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
7112 7113
        new_param._init_func = self._init_func
        new_param._init_op_creator = self._init_op_creator
7114 7115 7116 7117 7118 7119
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
7120 7121
        return new_param

7122 7123 7124
    __repr__ = __str__


Y
Yu Yang 已提交
7125
# program is a global instance.
Y
Yu Yang 已提交
7126 7127
_main_program_ = Program()
_startup_program_ = Program()
7128
_startup_program_._is_start_up_program_ = True
7129

7130

7131
def default_startup_program():
Y
Yu Yang 已提交
7132
    """
Y
yuyang18 已提交
7133 7134
    Get default/global startup program.

7135
    The :code:`paddle.nn` function will append the initialization operators into startup program.
7136
    The :code:`startup_program` will initialize the parameters by the OPs.
T
tangwei12 已提交
7137

7138 7139
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
7140

7141 7142
    Returns:
        Program: current default startup program.
7143

7144
    Returns type:
7145 7146 7147 7148

    Examples:
        .. code-block:: python

7149
            import paddle
7150

7151
            paddle.enable_static()
7152 7153 7154 7155
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
7156
    """
Y
Yu Yang 已提交
7157
    return _startup_program_
7158

7159

7160
def default_main_program():
Y
Yu Yang 已提交
7161
    """
7162
    This API can be used to get ``default main program`` which store the
7163
    descriptions of Ops and tensors.
T
tangwei12 已提交
7164

7165 7166
    For example ``z = paddle.add(x, y)`` will create a new ``add``
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` .
Y
yuyang18 已提交
7167

7168
    The ``default main program`` is the default value for ``Program`` parameter in
7169
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
7170
    :code:`default_main_program` when the program is not specified.
7171

7172
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
7173

Y
Yu Yang 已提交
7174
    Returns:
7175
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
7176 7177 7178 7179

    Examples:
        ..  code-block:: python

7180
            import paddle
7181

7182
            paddle.enable_static()
7183
            # Sample Network:
7184 7185 7186
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
7187

7188 7189 7190
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
7191
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
7192
    """
Y
Yu Yang 已提交
7193
    return _main_program_
Y
Yu Yang 已提交
7194 7195 7196 7197 7198


def switch_main_program(program):
    """
    Switch the main program to a new program.
7199

Y
Yu Yang 已提交
7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
7214
    Switch the startup program to a new program
Y
Yu Yang 已提交
7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
7227
@signature_safe_contextmanager
Y
Yu Yang 已提交
7228 7229
def program_guard(main_program, startup_program=None):
    """
7230 7231
    :api_attr: Static Graph

7232 7233 7234
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
7235

G
guofei 已提交
7236
    Args:
7237
        main_program(Program): New main program inside ``with`` statement.
7238 7239
        startup_program(Program, optional): New startup program inside ``with``
            statement. :code:`None` means not changing startup program,
G
guofei 已提交
7240 7241 7242
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
7243
    Examples:
C
cyberslack_lee 已提交
7244 7245
        .. code-block:: python
            :name: code-example-1
T
tangwei12 已提交
7246

C
cyberslack_lee 已提交
7247
            import paddle
Y
yuyang18 已提交
7248

C
cyberslack_lee 已提交
7249 7250 7251 7252 7253 7254
            paddle.enable_static()
            main_program = paddle.static.Program()
            startup_program = paddle.static.Program()
            with paddle.static.program_guard(main_program, startup_program):
                data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
                hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
7255 7256 7257

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
7258

Y
Yu Yang 已提交
7259
    Examples:
C
cyberslack_lee 已提交
7260 7261
        .. code-block:: python
            :name: code-example-2
Y
yuyang18 已提交
7262

C
cyberslack_lee 已提交
7263
            import paddle
7264

C
cyberslack_lee 已提交
7265 7266 7267 7268 7269
            paddle.enable_static()
            main_program = paddle.static.Program()
            # does not care about startup program. Just pass a temporary value.
            with paddle.static.program_guard(main_program, paddle.static.Program()):
                data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
7270

Y
Yu Yang 已提交
7271
    """
7272
    from .data_feeder import check_type
7273 7274 7275 7276

    check_type(
        main_program, 'main_program', Program, 'paddle.static.program_guard'
    )
Y
Yu Yang 已提交
7277 7278
    main_program = switch_main_program(main_program)
    if startup_program is not None:
7279 7280 7281 7282 7283 7284
        check_type(
            startup_program,
            'startup_program',
            Program,
            'paddle.static.program_guard',
        )
7285 7286
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
7287
        startup_program = switch_startup_program(startup_program)
7288 7289 7290 7291 7292 7293
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
7294 7295


W
Wu Yi 已提交
7296
def _get_var(name, program=None):
X
xuwei06 已提交
7297
    """
Y
yuyang18 已提交
7298
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
7299

X
xuwei06 已提交
7300 7301 7302
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
7303
        If None, default_global_program() will be used.
X
xuwei06 已提交
7304 7305 7306 7307 7308 7309 7310

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
7311
    assert isinstance(program, Program)
X
xuwei06 已提交
7312 7313

    return program.global_block().var(name)
7314 7315


7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328
@signature_safe_contextmanager
def dygraph_guard_if_declarative():
    from .dygraph.base import in_declarative_mode
    from .dygraph import Tracer

    if in_declarative_mode():
        # Under @paddle.jit.to_static decorator, we switch back dygraph mode temporarily.
        with _dygraph_guard(tracer=Tracer()):
            yield
    else:
        yield


S
rename  
sneaxiy 已提交
7329
@signature_safe_contextmanager
L
lujun 已提交
7330
def _dygraph_guard(tracer):
7331 7332 7333 7334
    tmp_tracer = global_var._dygraph_tracer_
    global_var._dygraph_tracer_ = tracer
    if tracer is not None:
        core._switch_tracer(tracer)
M
minqiyang 已提交
7335

C
Charles-hit 已提交
7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347
    try:
        yield
    finally:
        if tmp_tracer is not None:
            core._switch_tracer(tmp_tracer)
        global_var._dygraph_tracer_ = tmp_tracer


@signature_safe_contextmanager
def _static_guard():
    tmp_tracer = global_var._dygraph_tracer_
    global_var._dygraph_tracer_ = None
7348 7349 7350
    try:
        yield
    finally:
7351 7352 7353
        if tmp_tracer is not None:
            core._switch_tracer(tmp_tracer)
        global_var._dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
7354 7355


S
rename  
sneaxiy 已提交
7356
@signature_safe_contextmanager
L
lujun 已提交
7357
def _dygraph_place_guard(place):
7358 7359 7360
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
7361 7362
    _set_dygraph_tracer_expected_place(place)

7363 7364 7365
    try:
        yield
    finally:
7366
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
7367
        _set_dygraph_tracer_expected_place(_global_expected_place_)
7368 7369


7370 7371 7372 7373 7374 7375 7376 7377 7378 7379
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
7380

7381
    Note:
7382
        The API only supports static graph mode.
7383 7384 7385 7386

    A context manager that specifies the device on which the OP will be placed.

    Args:
7387
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
7388
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs.
7389 7390 7391 7392 7393 7394 7395
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
7396

7397
        .. code-block:: python
7398

7399
            # required: gpu
Z
Zhang Ting 已提交
7400
            import paddle
7401

Z
Zhang Ting 已提交
7402 7403 7404
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
7405
            if support_gpu:
Z
Zhang Ting 已提交
7406
                place = paddle.CUDAPlace(0)
7407 7408

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
7409 7410 7411
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
7412

Z
Zhang Ting 已提交
7413
            with paddle.static.device_guard("cpu"):
7414
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
7415 7416
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
7417
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
7418
                out = paddle.reshape(data1, shape=shape)
7419

Z
Zhang Ting 已提交
7420 7421
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
7422 7423 7424
            result = exe.run(fetch_list=[out])
    """

7425 7426 7427 7428 7429
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
7430 7431 7432 7433
    if (
        device not in ['cpu', 'gpu', 'xpu', '', None]
        and device not in core.get_all_custom_device_type()
    ):
7434
        raise ValueError(
7435
            "The Attr(device) should be 'cpu', 'xpu', 'gpu' or custom device, and it can also be empty string or None "
7436 7437
            "when there is no need to specify device. But received %s" % device
        )
7438 7439
    if index:
        device = ":".join([device, index])
7440
    pre_device = switch_device(device)
7441 7442 7443 7444
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
7445 7446


7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458
def _switch_cuda_graph_mode(cuda_graph_attr):
    global _current_cuda_graph_mode
    pre_mode = _current_cuda_graph_mode
    _current_cuda_graph_mode = cuda_graph_attr
    return pre_mode


@signature_safe_contextmanager
def _cuda_graph_guard(cuda_graph_attr=None):
    """

    Note:
7459
        The API only supports static graph mode.
7460

7461
    A context manager that specifies the cuda_graph_mode which indicating the cuda graph capture under static graph mode.
7462 7463 7464 7465 7466

    Args:
        cuda_graph_attr(str|None): The cuda graph attr with the format of:
                                   cuda_graph_capture_mode;memory_pool_id;cuda_graph_id
    """
7467
    assert (
7468
        not in_dygraph_mode()
7469
    ), "cuda_graph_guard only works under static graph mode"
7470 7471
    assert (
        core.is_compiled_with_cuda()
7472 7473 7474 7475 7476 7477 7478 7479
    ), "cuda_graph_guard context can be only used when Paddle is compiled with cuda"
    pre_mode = _switch_cuda_graph_mode(cuda_graph_attr)
    try:
        yield
    finally:
        _switch_cuda_graph_mode(pre_mode)


G
guofei 已提交
7480 7481 7482
def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
7483
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7484 7485 7486 7487 7488 7489 7490

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

7491 7492
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
7493 7494 7495 7496
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
7497 7498
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
7499 7500
        else:
            raise ValueError(
7501 7502
                "Flag %s cannot set its value through this function." % (key)
            )
G
guofei 已提交
7503 7504 7505 7506 7507


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
7508
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7509 7510 7511 7512 7513 7514 7515 7516 7517 7518

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

7519
            import paddle
G
guofei 已提交
7520 7521

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
7522
            res = paddle.get_flags(flags)
G
guofei 已提交
7523 7524 7525 7526 7527 7528
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
7529
            if _global_flags().is_public(key):
7530
                value = _global_flags()[key]
G
guofei 已提交
7531 7532 7533 7534
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
7535 7536 7537
                    'Flag %s cannot get its value through this function.'
                    % (key)
                )
G
guofei 已提交
7538
    elif isinstance(flags, str):
7539
        if _global_flags().is_public(flags):
7540
            value = _global_flags()[flags]
G
guofei 已提交
7541 7542 7543 7544
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
7545 7546
                'Flag %s cannot get its value through this function.' % (flags)
            )
G
guofei 已提交
7547 7548 7549
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
7550 7551 7552 7553 7554 7555


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567
    if isinstance(
        place,
        (
            core.Place,
            core.XPUPlace,
            core.CPUPlace,
            core.CUDAPinnedPlace,
            core.CUDAPlace,
            core.IPUPlace,
            core.CustomPlace,
        ),
    ):
7568 7569 7570 7571
        return place

    if not isinstance(place, str):
        raise ValueError(
7572 7573
            "place only support string which is 'Place' and so on."
        )
7574 7575

    place = place.lower()
7576
    if place == "cpu":
7577
        return core.CPUPlace()
7578

7579
    if place == "device":
7580 7581
        return core.Place()

7582
    # GPU
7583 7584 7585 7586
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
7587
                "The device should not be {}, since PaddlePaddle is "
7588
                "not compiled with CUDA".format(avaliable_gpu_place.group())
7589
            )
7590 7591 7592 7593 7594 7595 7596 7597 7598
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
7599 7600

    # XPU
7601 7602 7603 7604
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
7605
                "The device should not be {}, since PaddlePaddle is "
7606
                "not compiled with XPU".format(avaliable_xpu_place.group())
7607
            )
7608 7609 7610 7611
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
7612

J
jianghaicheng 已提交
7613 7614 7615 7616 7617
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
7618
                "The device should not be {}, since PaddlePaddle is "
7619
                "not compiled with IPU".format(avaliable_ipu_place.group())
7620
            )
J
jianghaicheng 已提交
7621 7622 7623 7624 7625
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

7626 7627 7628 7629 7630 7631 7632
    place_info_list = place.split(':', 1)
    device_type = place_info_list[0]
    if device_type in core.get_all_custom_device_type():
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.CustomPlace(device_type, device_id)

7633
    raise ValueError(
7634
        f"Paddle supports CPUPlace, CUDAPlace, CUDAPinnedPlace, XPUPlace, IPUPlace and CustomPlace, but received {place}."
7635
    )
7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647


def _get_paddle_place_list(places):
    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret