framework.py 256.3 KB
Newer Older
G
gouzil 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

import textwrap
Y
Yu Yang 已提交
16
import collections
X
Xin Pan 已提交
17
from collections import defaultdict
H
huzhiqiang 已提交
18
from collections.abc import Iterable
Q
qiaolongfei 已提交
19
import contextlib
20
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
21
import os
F
fengjiayi 已提交
22
import re
23
import traceback
24
import copy
25
from types import MethodType, FunctionType
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
R
risemeup1 已提交
32 33 34

from .proto import framework_pb2, data_feed_pb2

35
from . import core
36
from . import unique_name
37 38
import paddle.version as fluid_version
import warnings
39
import functools
40
from .variable_index import _getitem_impl_, _setitem_impl_
41
import threading
Y
Yu Yang 已提交
42

43
__all__ = [
44 45 46 47
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
48
    'name_scope',
J
jianghaicheng 已提交
49
    'ipu_shard_guard',
50
    'set_ipu_shard',
S
sneaxiy 已提交
51 52
    'cuda_places',
    'cpu_places',
53
    'xpu_places',
S
sneaxiy 已提交
54
    'cuda_pinned_places',
J
Jiabin Yang 已提交
55
    '_non_static_mode',
L
lujun 已提交
56
    'in_dygraph_mode',
57
    'is_compiled_with_cinn',
C
chengduo 已提交
58
    'is_compiled_with_cuda',
59
    'is_compiled_with_rocm',
60
    'is_compiled_with_xpu',
61
    'Variable',
62
    'require_version',
63
    'device_guard',
G
guofei 已提交
64 65
    'set_flags',
    'get_flags',
66
]
Y
Yu Yang 已提交
67

Q
qiaolongfei 已提交
68 69 70 71
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
72 73
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

74

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
# use thread local to create thread save global variables.
class GlobalThreadLocal(threading.local):
    def __init__(self):
        """
        init the thread local data.
        TODO(xiongkun): how to access another thread local data ?
        """
        global _dygraph_tracer_
        self._in_declarative_mode_ = False
        self._functional_dygraph_context_manager = None
        self._dygraph_tracer_ = _dygraph_tracer_
        self._in_eager_mode_ = True

    def __str__(self):
        strings = []
        strings.append(
            "_in_declarative_mode_:" + str(self._in_declarative_mode_)
        )
        strings.append(
            "_functional_dygraph_context_manager:"
            + str(self._functional_dygraph_context_manager)
        )
        strings.append("_dygraph_tracer_:" + str(self._dygraph_tracer_))
        strings.append("_in_eager_mode_:" + str(self._in_eager_mode_))
        return "\n".join(strings)

    def __setattr__(self, name, val):
        if name == '_dygraph_tracer_':
            global _dygraph_tracer_
            _dygraph_tracer_ = val
        self.__dict__[name] = val


L
lujun 已提交
108
_dygraph_tracer_ = None
109 110
global_var = GlobalThreadLocal()

111
_global_expected_place_ = None
112
_current_device = None
113
global_prog_seed = 0
114
_current_pipeline_stage = None
115
_already_patch_eager_tensor = False
J
Jiabin Yang 已提交
116
_already_patch_varbase = False
117
_current_cuda_graph_mode = None
118
_global_flags_ = core.globals()
119

J
Jiabin Yang 已提交
120

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
# special_op_attrs, extra_op_attrs are prepared for printing warnings
# when turning on FLAGS_print_extra_attrs
special_op_attrs = {
    "elementwise_add": [{"axis": -1}],
    "elementwise_sub": [{"axis": -1}],
    "elementwise_mul": [{"axis": -1}],
    "elementwise_div": [{"axis": -1}],
    "elementwise_max": [{"axis": -1}],
    "elementwise_min": [{"axis": -1}],
    "elementwise_pow": [{"axis": -1}],
    "elementwise_mod": [{"axis": -1}],
    "elementwise_floordiv": [{"axis": -1}],
    "less_than": [{"axis": -1}],
    "less_equal": [{"axis": -1}],
    "greater_than": [{"axis": -1}],
    "greater_equal": [{"axis": -1}],
    "equal": [{"axis": -1}],
    "not_equal": [{"axis": -1}],
    "amax": [{"reduce_all": False}],
    "amin": [{"reduce_all": False}],
    "any": [{"reduce_all": False}],
    "frobenius_norm": [{"reduce_all": False}],
    "logsumexp": [{"reduce_all": False}],
    "reduce_max": [{"reduce_all": False}],
    "reduce_min": [{"reduce_all": False}],
    "reduce_mean": [{"reduce_all": False}],
    "reduce_prod": [{"reduce_all": False}],
    "reduce_sum": [{"reduce_all": False}],
}

extra_op_attrs = {
    "gather": ["overwrite"],
    "graph_reindex": ["flag_buffer_hashtable"],
    "graph_sample_neighbors": ["flag_perm_buffer"],
    "relu6": ["threshold"],
    "swish": ["beta"],
    "hsigmoid_loss": ["remote_prefetch"],
    "max_pool2d_with_index": ["global_pooling"],
    "uniform": ["diag_num"],
    "unique": ["is_sorted"],
}

J
Jiabin Yang 已提交
163
# Some explanation of our execution system 2022.03
164
# For now we have 3 kinds of execution system, since we refactored dygraph mode to
J
Jiabin Yang 已提交
165
# build a fast execution system for dynamic mode. But we can't just remove all legacy
166
# code once we present the new system for some historical reason. That's why we have
J
Jiabin Yang 已提交
167
# these flags.
168
#
J
Jiabin Yang 已提交
169
# 1. _non_static_mode():
170
# _non_static_mode means  we are now running in legacy dygraph mode or dygraph mode.
J
Jiabin Yang 已提交
171 172 173
# 2. dygraph_mode():
# This flags inidicates we are now running in dygraph mode which called eager mode before.
# 3. _in_legacy_dygraph():
姜永久 已提交
174
# This flags has been deprecated
175
#
J
Jiabin Yang 已提交
176
# They have a relation ship as below:
姜永久 已提交
177
# Since _in_legacy_graph is deprecated, so dygraph_mode is _non_static_mode
178
#
J
Jiabin Yang 已提交
179 180 181 182 183 184
# Why we have to make different of _in_legacy_dygraph and dygraph_mode?
# In some performance issue, we find that python if statement cause server performance problem
# and we need our new dygraph mode becomes as fast as it could be. That's why we make these flags
# to make sure in most case, we find new dygraph mode first with only one if statement.


W
wanghuancoder 已提交
185
def _update_monkey_methods():
186
    """
W
wanghuancoder 已提交
187
    Update monkey methods of Tensor or eager.Tensor while
188 189
    switching eager mode and legacy mode.
    """
190
    from paddle import _C_ops, _legacy_C_ops
191 192 193
    from .dygraph.varbase_patch_methods import monkey_patch_varbase
    from .dygraph import monkey_patch_math_varbase

194 195 196
    global _already_patch_eager_tensor
    global _already_patch_varbase

W
wanghuancoder 已提交
197 198 199
    if not _already_patch_eager_tensor:
        monkey_patch_varbase()
        monkey_patch_math_varbase()
200

W
wanghuancoder 已提交
201
        _already_patch_eager_tensor = True
202

203
    # switch Paddle.Tensor bind type
W
wanghuancoder 已提交
204
    _switch_tensor_bind_type()
205 206


W
wanghuancoder 已提交
207
def _switch_tensor_bind_type():
208
    import paddle
209

W
wanghuancoder 已提交
210
    paddle.Tensor = core.eager.Tensor
211
    paddle.Tensor.__qualname__ = 'Tensor'
212 213


J
Jiabin Yang 已提交
214
def _in_eager_without_dygraph_check():
215
    return global_var._in_eager_mode_
J
Jiabin Yang 已提交
216 217


K
Kim Yann 已提交
218
# FIXME(dev): We haven't fully verified eager mode on XPU et.al but
219 220 221 222
# only GPU/CPU. Remove this after we improve this feature.
_is_first_import_ = True


J
Jiabin Yang 已提交
223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
def in_dygraph_mode():
    """

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .

    Returns:
        bool: Whether paddle runs in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
244
            print(paddle.in_dynamic_mode())  # False, Now we are in static graph mode
J
Jiabin Yang 已提交
245 246 247 248 249

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode

    """
250 251 252
    return (
        global_var._dygraph_tracer_ is not None
    ) and global_var._in_eager_mode_
J
Jiabin Yang 已提交
253 254 255


def _non_static_mode():
256
    return global_var._dygraph_tracer_ is not None
257 258


259 260
global_ipu_index = -1
global_ipu_stage = -1
J
jianghaicheng 已提交
261 262 263 264 265
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


@signature_safe_contextmanager
266
def ipu_shard_guard(index=-1, stage=-1):
J
jianghaicheng 已提交
267 268 269 270
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
W
Weilong Wu 已提交
271
        index(int, optional): Specify which ipu the Tensor is computed on, (such as '0, 1, 2, 3').
272
            The default value is -1, which means the Op only run on IPU 0.
W
Weilong Wu 已提交
273
        stage(int, optional): Specify the computation order of the sharded model(such as '0, 1, 2, 3').
274
            The sharded model will be computed from small to large. The default value is -1,
J
jianghaicheng 已提交
275
            which means no pipelining computation order and run Ops in terms of graph.
276

G
gouzil 已提交
277 278 279 280 281 282 283
    Note:
        Only if the enable_manual_shard=True, the 'index' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        Only if the enable_pipelining=True, the 'stage' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        A index is allowed to match none stage or a stage. A stage is only allowed to match a new or
        duplicated index.
J
jianghaicheng 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


318 319 320 321
def set_ipu_shard(call_func, index=-1, stage=-1):
    """
    Shard the ipu with the given call function. Set every ops in call function to the given ipu sharding.

G
gouzil 已提交
322 323 324 325 326
    Note:
        Only when enable_manual_shard=True to set the index to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        Only when enable_pipelining=True to set stage to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        An index supports a corresponding None stage or a stage, and a stage only supports a new index or a duplicate index.

327 328 329 330 331
    Args:
        call_func(Layer|function): Specify the call function to be wrapped.
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is -1, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
332
            The sharded model will be computed from small to large. The default value is -1,
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
            which means no pipelining computation order and run Ops in terms of graph.

    Returns:
        The wrapped call function.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='float32')
            relu = paddle.nn.ReLU()
            relu = paddle.static.set_ipu_shard(relu, index=1, stage=1)
            relu(a)
    """

    def decorate(func):
        def wrapper(*args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return func(*args, **kwargs)

        return wrapper

358
    from paddle.nn import Layer
359

360 361 362 363 364
    if not isinstance(call_func, Layer):
        if callable(call_func):
            return decorate(call_func)
        else:
            raise TypeError(
365 366
                "Unsupported type. Only accept paddle.nn.Layer or function."
            )
367 368 369 370 371 372 373 374 375 376 377 378

    # patch paddle.nn.Layer
    class BlockFn(type(call_func)):
        def __call__(self, *args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return super().__call__(*args, **kwargs)

    BlockFn.__name__ = type(call_func).__name__
    call_func.__class__ = BlockFn
    return call_func


379 380
def require_version(min_version, max_version=None):
    """
381 382 383
    Check if the installed version of PaddlePaddle is in [min_version, max_version],
    if the installed version is lower than ``min_version`` or higher than ``max_version``,
    an exception will be thrown, NO returns if the installed version is satisfied.
384

385 386 387 388
    Args:
        min_version (str): the minimum version required (like '1.4.0').
        max_version (str, optional): the max version required (like '1.6.0'), default is None,
            meaning any version equal or higher than ``min_version`` is acceptable.
389

390 391
    Returns:
        None.
392

393 394 395 396 397 398
    Raises:
        TypeError: if the type of ``min_version`` is not str.
        TypeError: if the type of ``max_version`` is not str or type(None).
        ValueError: if the value of ``min_version`` is not in version format.
        ValueError: if the value of ``max_version`` is not in version format or None.
        Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.
399

400 401
    Examples:
        .. code-block:: python
402

403
            import paddle.fluid as fluid
404

405 406
            # any version >= 0.1.0 is acceptable.
            fluid.require_version('0.1.0')
407

408 409 410
            # if 0.1.0 <= version <= 10.0.0, it is acceptable.
            fluid.require_version(min_version='0.1.0', max_version='10.0.0')
    """
411 412 413
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
414 415
            % (type(min_version))
        )
416 417 418 419

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
420 421
            % (type(max_version))
        )
422 423 424 425 426

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
427 428
            "like '1.5.2.0', but received %s" % min_version
        )
429 430 431 432 433 434

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
435 436
                "like '1.5.2.0', but received %s" % max_version
            )
437 438

    version_installed = [
439 440 441 442
        fluid_version.major,
        fluid_version.minor,
        fluid_version.patch,
        fluid_version.rc,
443 444 445 446
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
447
        for i in range(len(ver_a)):
448 449 450 451 452 453 454 455 456 457 458
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
459 460 461
                "please make sure the version is good with your code."
                % (min_version, max_version, fluid_version.full_version)
            )
462 463 464 465
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
466 467 468
                "please make sure the version is good with your code."
                % (min_version, fluid_version.full_version)
            )
469 470 471
        return

    min_version_split = min_version.split('.')
472 473 474
    min_version_to_check = (
        min_version_split + zero_version[len(min_version_split) :]
    )
475 476 477

    if max_version is not None:
        max_version_split = max_version.split('.')
478 479 480
        max_version_to_check = (
            max_version_split + zero_version[len(max_version_split) :]
        )
481

482 483 484 485
        if (
            version_cmp(version_installed, max_version_to_check) > 0
            or version_cmp(version_installed, min_version_to_check) < 0
        ):
486 487
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
488 489
                % (min_version, max_version, fluid_version.full_version)
            )
490 491 492 493 494
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
495 496
                % (min_version, fluid_version.full_version, min_version)
            )
497 498


499 500
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
501 502 503
        assert not _non_static_mode(), (
            "We don't support %s in dynamic graph mode" % func.__name__
        )
504 505 506 507 508 509 510
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
511 512 513 514
        assert _non_static_mode(), (
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
515 516 517 518 519
        return func(*args, **kwargs)

    return __impl__


520 521 522
def _non_static_only_(func):
    def __impl__(*args, **kwargs):
        from .dygraph.base import in_declarative_mode
523 524 525 526 527

        assert _non_static_mode() or in_declarative_mode(), (
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
528 529 530 531 532
        return func(*args, **kwargs)

    return __impl__


533 534
def _static_only_(func):
    def __impl__(*args, **kwargs):
535 536 537 538
        assert not _non_static_mode(), (
            "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode."
            % func.__name__
        )
539 540 541 542 543
        return func(*args, **kwargs)

    return __impl__


544 545 546 547 548
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


549
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
W
wanghuancoder 已提交
550 551
# used to make Variable and Tensor has same interfaces, like numpy. Since Tensor is not exposed in our
# official docments, logically, we want to keep Tensor and logically consistent. While, actually,
552 553
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
W
wanghuancoder 已提交
554
# TODO(zhiqiu): We should make Tensor consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
555
# same base class.
556 557 558
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
559 560
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
R
Ryan 已提交
561
            "  2. If you are using `@paddle.jit.to_static`, you can call `paddle.jit.enable_to_static(False)`. "
562
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
563 564
            % (func.__name__, func.__name__)
        )
565 566 567 568

    return __impl__


T
tangwei12 已提交
569 570
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
571 572 573 574 575 576 577 578 579
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
580 581
                DeprecationWarning,
            )
582 583 584 585 586 587 588
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


589 590
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
591
static_only = wrap_decorator(_static_only_)
592
fake_interface_only = wrap_decorator(_fake_interface_only_)
593
non_static_only = wrap_decorator(_non_static_only_)
594 595


L
lujun 已提交
596
def _dygraph_tracer():
597
    return global_var._dygraph_tracer_
598

W
Wu Yi 已提交
599

600 601 602 603
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
604
def _current_expected_place():
605 606 607
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
608 609 610 611 612
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
613
                _global_expected_place_ = core.CUDAPlace(_cuda_ids()[0])
614 615 616 617 618
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
619 620 621 622 623 624
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
625
                _global_expected_place_ = core.XPUPlace(_xpu_ids()[0])
626 627 628 629 630
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
        elif core.is_compiled_with_custom_device("npu"):
            # TODO(duanyanhui): Optimize DeviceManager and Return all expected places when device registered in DeviceManager is greater than 1.
            try:
                device_count = core.get_custom_device_count("npu")
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CustomPlace(
                    "npu", _custom_device_ids("npu")[0]
                )
            else:
                warnings.warn(
                    "You are using NPU version Paddle, but your NPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
646 647 648 649 650 651 652
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
653 654
    if global_var._dygraph_tracer_ is not None:
        global_var._dygraph_tracer_._expected_place = place
655 656 657 658 659


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
660
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
661 662


S
sneaxiy 已提交
663
def _cpu_num():
664
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
665 666 667 668 669 670 671
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
672 673 674
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()
                )
            )
C
chengduo 已提交
675
        os.environ['CPU_NUM'] = str(1)
676
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
677 678 679 680 681 682 683 684
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
685
        device_ids = range(core.get_cuda_device_count())
C
chengduo 已提交
686
    return device_ids
S
sneaxiy 已提交
687 688


689 690 691 692 693
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
694
        device_ids = range(core.get_xpu_device_count())
695 696 697
    return device_ids


698 699 700 701 702 703 704 705 706
def _custom_device_ids(device_type):
    custom_devices_env = os.getenv("FLAGS_selected_" + device_type + "s")
    if custom_devices_env:
        device_ids = [int(s) for s in custom_devices_env.split(",")]
    else:
        device_ids = range(core.get_custom_device_count(device_type))
    return device_ids


707 708 709 710 711 712 713 714 715 716 717 718 719 720 721
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


722 723 724 725 726 727 728
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
729

730 731 732 733 734 735
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

Z
Zman 已提交
736 737
    Returns:
        None
738 739 740 741 742 743 744 745 746 747

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

    Returns (bool): `True` if CINN is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
763 764 765 766
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

767
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
768 769 770 771

    Examples:
        .. code-block:: python

772
            import paddle
773
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
774 775 776 777
    """
    return core.is_compiled_with_cuda()


778 779 780 781 782 783 784 785 786 787
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
788
            support_gpu = paddle.device.is_compiled_with_rocm()
789 790 791 792
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
793
def cuda_places(device_ids=None):
L
lujun 已提交
794
    """
795
    Note:
796 797 798
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
799
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
800 801

    If :code:`device_ids` is None, environment variable of
802
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
803
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
804
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
805
    If :code:`FLAGS_selected_gpus` is not set, all visible
806
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
807 808

    If :code:`device_ids` is not None, it should be the device
809
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
810
    the returned list would be
C
Chen Weihang 已提交
811
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
812

813
    Parameters:
814
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
815 816

    Returns:
C
Chen Weihang 已提交
817
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
818 819

    Examples:
820

L
lujun 已提交
821 822
        .. code-block:: python

C
Chen Weihang 已提交
823 824
            import paddle
            import paddle.static as static
T
tangwei12 已提交
825

826
            # required: gpu
827

C
Chen Weihang 已提交
828 829 830
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
831 832

    """
833
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
834
    if device_ids is None:
C
chengduo 已提交
835
        device_ids = _cuda_ids()
S
sneaxiy 已提交
836 837 838 839 840
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


841 842 843 844
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
845 846 847 848 849 850 851 852 853
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
854
        the returned list would be
S
sunzhongkai588 已提交
855
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
856

857 858 859 860 861 862
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
863

864 865
            # required: xpu

866 867
            import paddle
            import paddle.static as static
868

869 870 871
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
872
    assert core.is_compiled_with_xpu(), "Not compiled with XPU"
873 874 875 876 877 878 879
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
880
def cpu_places(device_count=None):
L
lujun 已提交
881
    """
C
Chen Weihang 已提交
882
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
883

S
add doc  
sneaxiy 已提交
884
    If :code:`device_count` is None, the device count would
885
    be determined by environment variable :code:`CPU_NUM`.
C
chengduo 已提交
886 887
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
888 889
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
890

891 892
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
893 894

    Returns:
C
Chen Weihang 已提交
895
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
896 897

    Examples:
898

L
lujun 已提交
899 900
        .. code-block:: python

C
Chen Weihang 已提交
901 902
            import paddle
            import paddle.static as static
T
tangwei12 已提交
903

C
Chen Weihang 已提交
904 905 906
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
907 908
    """

S
sneaxiy 已提交
909 910 911 912 913 914
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
915
    """
916
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
917 918

    If :code:`device_count` is None, the device count would
919
    be determined by environment variable :code:`CPU_NUM`.
920 921 922 923
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
924

925 926
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
927 928

    Returns:
929
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
930 931 932 933

    Examples:
        .. code-block:: python

934
            import paddle.fluid as fluid
L
lujun 已提交
935 936 937 938 939
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
940
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
941
    if device_count is None:
942 943
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
944 945


946
class NameScope:
947 948 949 950 951 952 953 954 955 956
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
957 958 959
            new_child = NameScope(
                prefix + "_%d" % len(self._children[prefix]), self
            )
960 961 962 963 964 965 966 967 968 969 970 971 972
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
973
@signature_safe_contextmanager
974 975
def name_scope(prefix=None):
    """
976

977
    Generate hierarchical name prefix for the operators in Static Graph.
978

979
    Note:
T
Tao Luo 已提交
980 981
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
982
        Don't use it in dygraph, since it will cause memory leak.
983 984

    Args:
T
Tao Luo 已提交
985
        prefix(str, optional): prefix. Default is none.
986 987

    Examples:
988

989
        .. code-block:: python
T
Tink_Y 已提交
990

991 992 993
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
994
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
995
             b = a + 1
996
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
997
                c = b * 1
998
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
999
                d = c / 1
1000 1001 1002
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
1003 1004
                g = f - 1

1005
          # Op are created in the default main program.
1006
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
1022 1023
    """
    # TODO(panyx0718): Only [0-9a-z].
1024
    # in dygraph we don't need namescope since it will cause mem leak
J
Jiabin Yang 已提交
1025
    if _non_static_mode():
L
Leo Chen 已提交
1026 1027
        yield
    else:
T
tianshuo78520a 已提交
1028
        assert prefix, "namescope prefix can not be empty."
1029 1030
        global _name_scope
        _name_scope = _name_scope.child(prefix)
1031 1032 1033 1034
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
1047 1048
def generate_control_dev_var_name():
    import random
1049

W
Wu Yi 已提交
1050
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
1051 1052 1053 1054


def grad_var_name(var_name):
    """
1055 1056
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
1057 1058 1059
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
1060

1061
def convert_np_dtype_to_dtype_(np_dtype):
1062
    """
1063
    Convert the data type in numpy to the data type in Paddle.
1064

1065
    Args:
1066 1067
        np_dtype (np.dtype|str): The data type in numpy or valid data type
            string.
1068

1069
    Returns:
1070
        core.VarDesc.VarType: The data type in Paddle.
1071 1072

    """
1073 1074
    # Convert the data type string to numpy data type.
    if isinstance(np_dtype, str) and np_dtype == "bfloat16":
1075 1076 1077
        dtype = np.uint16
    else:
        dtype = np.dtype(np_dtype)
1078

1079
    if dtype == np.float32:
1080
        return core.VarDesc.VarType.FP32
1081
    elif dtype == np.float64:
1082
        return core.VarDesc.VarType.FP64
1083
    elif dtype == np.float16:
1084
        return core.VarDesc.VarType.FP16
1085
    elif dtype == np.int32:
1086
        return core.VarDesc.VarType.INT32
1087
    elif dtype == np.int16:
1088
        return core.VarDesc.VarType.INT16
1089
    elif dtype == np.int64:
1090
        return core.VarDesc.VarType.INT64
1091
    elif dtype == np.bool_:
1092
        return core.VarDesc.VarType.BOOL
1093
    elif dtype == np.uint16:
1094 1095 1096
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
1097 1098
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
1099 1100
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
1101 1102 1103 1104
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
1105
    else:
M
minqiyang 已提交
1106
        raise ValueError("Not supported numpy dtype %s" % dtype)
1107 1108 1109


def dtype_is_floating(dtype):
1110 1111 1112
    """
    Check the data type is floating or not.
    Args:
1113
        dtype(np.dtype|core.VarDesc.VarType): data type.
1114 1115 1116 1117 1118
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1119
    if not isinstance(dtype, core.VarDesc.VarType):
1120 1121
        dtype = convert_np_dtype_to_dtype_(dtype)

1122
    return dtype in [
1123 1124 1125
        core.VarDesc.VarType.FP16,
        core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64,
1126
    ]
1127 1128


Y
Yang Yang(Tony) 已提交
1129
def _debug_string_(proto, throw_on_error=True):
1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1141
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1142
    if not proto.IsInitialized(error_fields) and throw_on_error:
1143 1144
        raise ValueError(
            "{0} are not initialized.\nThe message is {1}:\n".format(
1145 1146 1147
                error_fields, proto
            )
        )
Y
Yu Yang 已提交
1148 1149 1150
    return proto.__str__()


1151 1152 1153 1154 1155 1156
def _varbase_creator(
    type=core.VarDesc.VarType.LOD_TENSOR,
    name=None,
    shape=None,
    dtype=None,
    persistable=None,
1157
    **kwargs,
1158
):
1159 1160 1161 1162
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

W
wanghuancoder 已提交
1163 1164 1165 1166 1167 1168 1169 1170 1171
    eager_tensor = core.eager.Tensor(
        dtype if dtype else core.VarDesc.VarType.FP32,
        list(shape) if shape else [],
        name,
        type if type else core.VarDesc.VarType.LOD_TENSOR,
        True if persistable else False,
    )
    eager_tensor.retain_grads()
    return eager_tensor
1172 1173


1174 1175 1176 1177 1178 1179 1180
def _all_is_type(vals, expected_type):
    """
    Return True if type of each element is expected_type.

    NOTE: BuiltIn all() will always return True if vals is empty.
    """
    assert isinstance(vals, (list, tuple))
1181 1182
    if not vals:
        return False
1183 1184 1185
    return all(isinstance(v, expected_type) for v in vals)


1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
def wrap_as_scalar(number):
    """Wrap a number(either python scalar or numpy scalar) as core.Scalar if
    it is not a scalar.


    Args:
        number (Number): number

    Returns:
        Scalar: A Scalar that contains the value.
    """
    if isinstance(number, core.Scalar):
        return number
    if isinstance(number, (bool, int, float, complex)):
        return core.Scalar(number)
    if isinstance(number, np.number):
        # it is a numpy scalar
        return core.Scalar(number.item())
    else:
        raise TypeError("Cannot wrap {} as core.Scalar".format(number))


def wrap_as_scalars(array):
    """This function is used to convert flat list, or numpy array(not
    necesarily flat) to list of core.Scalar, which correspond to
    std::vector<paddle::experimental::Scalar> in operator runtime.

    Args:
        array (List | np.ndarray): array of numbers

    Returns:
        List: list of core.Scalar, of which each element is a Scalar containing
          the corresponding value.
    """
    if isinstance(array, np.ndarray):
        array = array.ravel().tolist()
    return [wrap_as_scalar(item) for item in array]


def extract_plain_list(array):
    """extract value from a list of core.Scalar.

    Args:
        array (list): Scalars

    Returns:
        list: values extracted from the scalars.
    """
    return [item.value() for item in array]


def canonicalize_attrs(attrs, op_proto):
    """This function is used to canonicalize attributes(as a string->any dict)
    according to the type specification in the OpProto. This is especially
    important for operators that has any attributes of type Scalar or Scalars.

    Though various frontends of phi kernels & paddle operators can wrap variables
    of concrete types into Scalars(a tagged union of several numeric types) or
    vector of Scalars. Paddle operator requires strict type matching.

    Args:
        attrs (Dict[str, Any]): attribute dict intended to pass to an operator.
        op_proto (OpProto): Proto (signature) of the operator.

    Returns:
        Dict[str, Any]: canonicalized attributes.
    """
    canonicalized_attrs = attrs.copy()  # shallow copy is enough here
    for attr in op_proto.attrs:
        attr_name = attr.name
        type_index = attr.type
        if (attr_name not in attrs) or (attrs[attr_name] is None):
            continue

        attr_val = attrs[attr_name]

        # VAR and VARS should be skipped
        if isinstance(attr_val, Variable):
            continue
        if isinstance(attr_val, list) and _all_is_type(attr_val, Variable):
            continue

        # wrap
        if type_index == core.AttrType.SCALAR:
            canonicalized_attrs[attr_name] = core.Scalar(attr_val)
        elif type_index == core.AttrType.SCALARS:
            # it should be a list (or a numpy array)
            if len(attr_val) > 0:
                attr_val = np.array(attr_val).ravel().tolist()
                attr_val = [core.Scalar(x) for x in attr_val]
                canonicalized_attrs[attr_name] = attr_val

    return canonicalized_attrs


1281 1282 1283 1284 1285
class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1286
            return issubclass(t, core.eager.Tensor)
1287 1288 1289 1290 1291 1292 1293 1294 1295
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1296
            return issubclass(t, EagerParamBase)
1297 1298 1299 1300
        else:
            return issubclass(t, Parameter)


1301
class Variable(metaclass=VariableMetaClass):
1302
    """
J
Jiabin Yang 已提交
1303

U
ustiniankw 已提交
1304 1305 1306 1307
    Notes:
        The constructor of Variable should not be invoked directly.

        In Static Graph Mode: Please use ** `Block.create_var` ** to create a Static variable which has no data until being feed.
1308

U
ustiniankw 已提交
1309
        In Dygraph Mode: Please use ** :ref:`api_fluid_dygraph_to_variable` ** to create a dygraph variable with real data.
J
Jiabin Yang 已提交
1310 1311

    In Fluid, every input and output of an OP is a variable. In most
1312
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1313 1314
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1315

1316
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1317
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1318

T
tianshuo78520a 已提交
1319
    Most of a Variable's member variables can be set to be None. It mean
1320
    it is not available or will be specified later.
1321

1322
    Examples:
1323 1324
        In Static Graph Mode:

1325 1326
        .. code-block:: python

1327
            import paddle.fluid as fluid
1328
            cur_program = fluid.Program()
1329 1330 1331 1332
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1333

1334
        In Dygraph  Mode:
1335 1336 1337 1338 1339 1340 1341 1342 1343

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1344 1345
    """

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
    def __init__(
        self,
        block,
        type=core.VarDesc.VarType.LOD_TENSOR,
        name=None,
        shape=None,
        dtype=None,
        lod_level=None,
        capacity=None,
        persistable=None,
        error_clip=None,
        stop_gradient=False,
        is_data=False,
        need_check_feed=False,
        belong_to_optimizer=False,
1361
        **kwargs,
1362
    ):
Y
Yu Yang 已提交
1363 1364
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1365
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1366

Y
Yu Yang 已提交
1367
        if dtype is not None:
1368
            if not isinstance(dtype, core.VarDesc.VarType):
1369
                dtype = convert_np_dtype_to_dtype_(dtype)
1370

S
Steffy-zxf 已提交
1371 1372 1373 1374
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

1375 1376 1377
        if type == core.VarDesc.VarType.SPARSE_COO:
            lod_level = None

H
hong 已提交
1378 1379
        self.belong_to_optimizer = belong_to_optimizer

1380 1381 1382
        self.error_clip = error_clip

        is_new_var = False
1383
        self.desc = self.block.desc.find_var(name.encode())
1384

1385
        if self.desc is None:
1386
            self.desc = self.block.desc.var(name.encode())
1387
            is_new_var = True
1388

1389 1390 1391
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
1392 1393 1394 1395 1396
            raise ValueError(
                "Variable '{0}' has been created before. The "
                "previous type is {1}, the new type is {2}. They"
                " are not matched".format(self.name, self.desc.type(), type)
            )
1397

1398
        if shape is not None:
1399
            if is_new_var:
1400 1401 1402 1403 1404 1405
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1406 1407
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1408 1409
                        "matched.".format(self.name, old_shape, shape)
                    )
1410 1411 1412 1413 1414 1415
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
1416 1417 1418 1419 1420 1421
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous data type is {1}, the new "
                        "data type is {2}. They are not "
                        "matched.".format(self.name, old_dtype, dtype)
                    )
1422 1423 1424 1425 1426 1427

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
1428 1429 1430 1431 1432 1433
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous lod_level is {1}, the new "
                        "lod_level is {2}. They are not "
                        "matched".format(self.name, self.lod_level, lod_level)
                    )
1434 1435 1436 1437 1438 1439
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1440 1441
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1442
                        "persistable is {2}. They are not matched".format(
1443 1444 1445
                            self.name, self.persistable, persistable
                        )
                    )
1446

1447 1448
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1449

1450 1451 1452 1453 1454 1455 1456
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1457

1458 1459
        self.block.vars[name] = self
        self.op = None
1460
        self.stop_gradient = stop_gradient
1461
        self.is_data = is_data
Y
Yu Yang 已提交
1462

1463 1464
    def detach(self):
        """
U
ustiniankw 已提交
1465

1466
        Returns a new Variable, detached from the current graph.
1467 1468
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1469

1470
        Returns:
U
ustiniankw 已提交
1471
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable), The detached Variable.
1472 1473 1474 1475

        Examples:
            .. code-block:: python

1476
                import paddle
1477

1478 1479 1480 1481
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1482

1483 1484
                # create a detached Variable
                y = x.detach()
U
ustiniankw 已提交
1485

1486
        """
1487

1488 1489 1490 1491
        assert (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ), "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"
1492 1493 1494 1495 1496 1497

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
1498 1499
            stop_gradient=True,
        )
1500

1501 1502 1503
        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]}
        )
1504
        return output
1505

1506
    @fake_interface_only
1507
    def numpy(self):
1508
        """
J
Jiabin Yang 已提交
1509
        **Notes**:
T
tianshuo78520a 已提交
1510
            **This API is ONLY available in Dygraph mode**
1511

J
Jiabin Yang 已提交
1512
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1513 1514 1515 1516 1517

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1518
            ndarray: dtype is same as current Variable
1519 1520 1521 1522 1523 1524

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1525
                from paddle.fluid.dygraph import Linear
1526 1527 1528 1529
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1530
                    linear = Linear(32, 64)
1531
                    data = to_variable(data)
1532
                    x = linear(data)
1533 1534 1535
                    print(x.numpy())

        """
1536
        pass
1537

1538
    @non_static_only
1539
    def backward(self, retain_graph=False):
1540
        """
J
Jiabin Yang 已提交
1541
        **Notes**:
T
tianshuo78520a 已提交
1542
            **This API is ONLY available in Dygraph mode**
1543

1544
        Run backward of current Graph which starts from current Tensor.
1545

J
Jiabin Yang 已提交
1546
        Args:
1547 1548 1549 1550
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1551

J
Jiabin Yang 已提交
1552 1553
        Returns:
            NoneType: None
1554 1555 1556 1557 1558

        Examples:
            .. code-block:: python

                import numpy as np
1559 1560
                import paddle
                paddle.disable_static()
1561 1562

                x = np.ones([2, 2], np.float32)
1563 1564 1565 1566 1567 1568 1569
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1570 1571
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1572
                loss.backward()
1573 1574

        """
1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585
        from .backward import append_backward

        if retain_graph is True:
            raise AssertionError(
                "`retain_graph` == True is not supported in @to_static function."
                "please set retain_graph = False."
            )
        param_grad_list = append_backward(self)
        for param, param_grad in param_grad_list:
            # set grad to simulate dygraph loss.backward() in static mode.
            setattr(param, "grad", param_grad)
1586

1587
    @fake_interface_only
1588
    def gradient(self):
1589
        """
J
Jiabin Yang 已提交
1590
        **Notes**:
T
tianshuo78520a 已提交
1591
            **This API is ONLY available in Dygraph mode**
1592 1593 1594

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1595
        Returns:
1596
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1597 1598 1599 1600

        Examples:
            .. code-block:: python

1601
                import paddle
1602 1603 1604
                import paddle.fluid as fluid
                import numpy as np

1605
                # example1: return ndarray
1606 1607 1608 1609 1610 1611 1612
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
1613
                    ret2 = paddle.add_n(inputs2)
1614
                    loss2 = paddle.sum(ret2)
1615
                    loss2.backward()
1616 1617
                    print(loss2.gradient())

1618 1619
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
1620 1621 1622 1623 1624
                    embedding = paddle.nn.Embedding(
                        20,
                        32,
                        weight_attr='emb.w',
                        sparse=True)
1625 1626 1627 1628 1629 1630 1631
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1632
        """
1633
        pass
1634

1635
    @fake_interface_only
1636
    def clear_gradient(self):
1637
        """
J
Jiabin Yang 已提交
1638
        **Notes**:
T
tianshuo78520a 已提交
1639
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1640 1641

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1642

J
Jiabin Yang 已提交
1643
        Clear  (set to ``0`` ) the Gradient of Current Variable
1644 1645 1646 1647 1648 1649

        Returns:  None

        Examples:
            .. code-block:: python

1650
                import paddle
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660
                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
1661
                    ret2 = paddle.add_n(inputs2)
1662
                    loss2 = paddle.sum(ret2)
1663
                    loss2.backward()
1664 1665 1666 1667 1668
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1669
        pass
X
Xin Pan 已提交
1670

1671 1672 1673 1674
    @fake_interface_only
    def register_hook(self, hook):
        pass

1675
    def __str__(self):
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1692 1693
                import paddle
                import paddle.static as static
1694

1695 1696 1697
                paddle.enable_static()

                cur_program = static.Program()
1698 1699 1700 1701 1702 1703
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1704 1705
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1706 1707 1708 1709
        if (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ):
1710
            dtype_str = str(self.dtype).split('.')[1]
1711 1712 1713 1714 1715 1716 1717
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".format(
                name=self.name,
                type=type_str,
                shape=self.shape,
                dtype=dtype_str,
                stop_gradient=self.stop_gradient,
            )
1718
        else:
1719
            var_str = "{name} : {type})".format(name=self.name, type=type_str)
1720

1721
        if self.is_parameter:
1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1732 1733 1734 1735
        from paddle.distributed.auto_parallel.dist_context import (
            get_default_distributed_context,
        )

1736
        dist_context = get_default_distributed_context()
1737 1738
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1739 1740 1741
            var_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_tensor
            )
1742

1743
        return var_str
Y
Yang Yang(Tony) 已提交
1744

F
update  
fengjiayi 已提交
1745
    def to_string(self, throw_on_error, with_details=False):
1746 1747 1748
        """
        Get debug string.

J
Jiabin Yang 已提交
1749 1750 1751 1752 1753
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1754

1755 1756
        Returns:
            str: The debug string.
1757 1758 1759 1760 1761

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1762
                import paddle
1763

1764
                paddle.enable_static()
1765 1766 1767 1768 1769
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1770
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1771
                print("=============with detail===============")
1772
                print(new_variable.to_string(True, True))
1773
        """
1774
        assert isinstance(throw_on_error, bool) and isinstance(
1775 1776
            with_details, bool
        )
1777
        protostr = self.desc.serialize_to_string()
1778
        proto = framework_pb2.VarDesc.FromString(bytes(protostr))
F
update  
fengjiayi 已提交
1779 1780
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1781
            additional_attr = ("error_clip",)
F
update  
fengjiayi 已提交
1782
            for attr_name in additional_attr:
1783
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
1784

F
update  
fengjiayi 已提交
1785
        return res_str
1786 1787 1788

    __repr__ = __str__

1789 1790 1791
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
1792

1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1816
    @property
1817
    def stop_gradient(self):
J
Jiabin Yang 已提交
1818 1819 1820
        """
        Indicating if we stop gradient from current Variable

1821
        **Notes: This Property has default value as** ``True`` **in** Dygraph **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``
J
Jiabin Yang 已提交
1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1833 1834
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1835 1836 1837
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1838 1839
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1840 1841 1842 1843
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1844
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1845 1846
                assert (out1.gradient() == 0).all()
        """
1847
        return self.desc.stop_gradient()
1848

1849 1850
    @stop_gradient.setter
    def stop_gradient(self, s):
1851
        self.desc.set_stop_gradient(s)
1852

1853 1854
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1855 1856 1857 1858 1859 1860 1861 1862
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

1863
            **2. In** Dygraph **mode, this property should not be changed**
J
Jiabin Yang 已提交
1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1876
        return self.desc.persistable()
1877

Y
Yu Yang 已提交
1878 1879
    @persistable.setter
    def persistable(self, p):
1880
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1881

1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1907 1908
    @property
    def name(self):
J
Jiabin Yang 已提交
1909 1910 1911
        """
        Indicating name of current Variable

1912
        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** Dygraph **mode. This is how we achieve Parameter sharing**
J
Jiabin Yang 已提交
1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1925
        return self.desc.name()
Y
Yu Yang 已提交
1926

1927 1928 1929 1930 1931 1932
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1933 1934
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1935

1936 1937 1938
        Examples:
          .. code-block:: python

1939
          import paddle
1940

1941
          x = paddle.static.data(name="x", shape=[-1, 23, 48], dtype='float32')
1942
          print(x.grad_name) # output is ``x@GRAD``
1943 1944 1945 1946

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1947 1948
    @name.setter
    def name(self, new_name):
1949
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1950

Y
Yu Yang 已提交
1951 1952
    @property
    def shape(self):
J
Jiabin Yang 已提交
1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1970
        # convert to tuple, make it as same as numpy API.
1971
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1972 1973

    @property
F
fengjiayi 已提交
1974
    def dtype(self):
J
Jiabin Yang 已提交
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1991
        return self.desc.dtype()
Y
Yu Yang 已提交
1992 1993 1994

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1995 1996 1997 1998 1999 2000 2001 2002
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

2003
            **2. Don't support this property in** Dygraph **mode, it's value should be** ``0(int)``
J
Jiabin Yang 已提交
2004 2005 2006 2007

        Examples:
          .. code-block:: python

2008
            import paddle
J
Jiabin Yang 已提交
2009
            import paddle.fluid as fluid
2010 2011

            paddle.enable_static()
J
Jiabin Yang 已提交
2012 2013 2014 2015 2016 2017 2018
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
2019 2020
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
2021 2022
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
2023
        return self.desc.lod_level()
Y
Yu Yang 已提交
2024

Y
Yu Yang 已提交
2025 2026
    @property
    def type(self):
J
Jiabin Yang 已提交
2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
2043
        return self.desc.type()
Y
Yu Yang 已提交
2044

2045 2046 2047
    @property
    def T(self):
        """
U
ustiniankw 已提交
2048

2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
U
ustiniankw 已提交
2067

2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
2080 2081
            stop_gradient=False,
        )
2082 2083 2084 2085 2086
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
2087 2088 2089 2090 2091 2092 2093 2094 2095
            stop_gradient=False,
        )

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out], 'XShape': [input_shape]},
            attrs={'axis': perm},
        )
2096 2097
        return out

2098 2099 2100
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
2101
        Variable. It remains in the current graph, that is, the cloned Variable
2102 2103 2104 2105
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
U
ustiniankw 已提交
2106
            Variable, The cloned Variable.
2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
2126 2127
            stop_gradient=self.stop_gradient,
        )
2128

2129 2130 2131
        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]}
        )
2132 2133
        return output

W
Wu Yi 已提交
2134
    def _set_error_clip(self, error_clip):
2135
        """
U
ustiniankw 已提交
2136

2137 2138 2139 2140 2141 2142 2143
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
U
ustiniankw 已提交
2144

2145
        """
2146 2147
        self.error_clip = error_clip

2148 2149
    def _set_info(self, key, value):
        """
U
ustiniankw 已提交
2150

2151 2152 2153 2154 2155 2156
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

2157
        Returns:
2158
            None
U
ustiniankw 已提交
2159

2160 2161 2162 2163 2164 2165 2166
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
U
ustiniankw 已提交
2167

2168 2169 2170 2171 2172
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

2173
        Returns:
2174
            object
U
ustiniankw 已提交
2175

2176 2177 2178 2179 2180
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

2181 2182
    def _slice_indices(self, slice, length):
        """
U
ustiniankw 已提交
2183

2184
        Reference implementation for the slice.indices method.
U
ustiniankw 已提交
2185

2186 2187 2188 2189 2190 2191 2192 2193
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
2194
            raise ValueError("slice step can not be zero")
2195 2196 2197 2198 2199 2200 2201 2202 2203 2204

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
2205 2206 2207
            start = (
                max(start + length, lower) if start < 0 else min(start, upper)
            )
2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
2253 2254 2255
                if (index > 0 and index >= self.shape[index]) or (
                    index < 0 and (index + self.shape[index]) < 0
                ):
2256
                    raise IndexError("invalid index")
2257 2258 2259 2260 2261
                start = (
                    max(start + self.shape[index], 0)
                    if start < 0
                    else min(start, self.shape[index])
                )
2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2275
    def _cloneVar(self, copy=False):
2276 2277
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2278
                name=unique_name.generate_with_ignorable_key(self.name),
2279 2280
                dtype=self.dtype,
            )
2281 2282 2283 2284
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2285
        new_var = self._cloneVar()
2286 2287 2288 2289 2290 2291
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes, 'starts': starts, 'ends': ends},
        )
2292 2293 2294
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2295
        new_var = self._cloneVar()
2296 2297 2298 2299 2300 2301 2302 2303
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={
                'axis': axis,
            },
        )
2304 2305 2306 2307 2308
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2309
                return self._cloneVar(True)
2310 2311 2312 2313 2314 2315 2316
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
2317 2318 2319
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2320 2321 2322
                        start += step
                else:
                    while start > stop:
2323 2324 2325
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2326 2327 2328 2329
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2330
                return self._cloneVar(True)
2331
            index = int(item)
2332 2333 2334
            if (index > 0 and index >= self.shape[axis]) or (
                index < 0 and (index + self.shape[axis]) < 0
            ):
2335 2336 2337 2338 2339 2340
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2341
        return _getitem_impl_(self, item)
2342

2343
    def __setitem__(self, item, value):
2344
        return _setitem_impl_(self, item, value)
2345

2346 2347
    def get_value(self, scope=None):
        """
2348
        Get the value of variable in given scope.
2349 2350

        Args:
2351
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2352 2353 2354 2355
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
U
ustiniankw 已提交
2356
            Tensor, the value in given scope.
2357 2358 2359 2360 2361

        Examples:
            .. code-block:: python

                import paddle
2362
                import paddle.static as static
2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
2387 2388
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file.
2389 2390
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
2391

2392 2393
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2394 2395 2396 2397
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2398 2399 2400 2401 2402

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
2403 2404 2405
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2406 2407 2408 2409 2410
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
U
ustiniankw 已提交
2411

2412
        Set the value to the tensor in given scope.
2413 2414 2415

        Args:
            value(Tensor/ndarray) : The value to be set.
2416
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2417 2418 2419 2420 2421
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
2422

2423 2424 2425 2426
        Examples:
            .. code-block:: python

                import paddle
2427
                import paddle.static as static
2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
U
ustiniankw 已提交
2451

2452 2453 2454
        '''

        # The 'framework' is a low-level module, and 'executor'
2455
        # can not be imported at the begainning of this file.
2456 2457 2458 2459 2460
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
2461 2462 2463 2464
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".format(
                    type(value)
                )
            )
2465 2466 2467

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2468 2469 2470 2471
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2472 2473 2474 2475 2476 2477

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
2478 2479 2480
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2481 2482 2483 2484 2485 2486 2487 2488 2489 2490

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
2491 2492 2493 2494
                    "{} expected a shape {}, but the received shape is {}.".format(
                        self.name, list(t.shape()), list(value_shape)
                    )
                )
2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2512 2513
    def size(self):
        """
U
ustiniankw 已提交
2514

2515 2516 2517
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
U
ustiniankw 已提交
2518
            Variable, the number of elements for current Variable
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
U
ustiniankw 已提交
2532

2533 2534 2535 2536
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
2537 2538
            dtype=core.VarDesc.VarType.INT64,
        )
2539

2540 2541 2542
        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]}
        )
2543 2544
        return output

2545 2546
    def _set_attr(self, name, val):
        """
U
ustiniankw 已提交
2547

2548 2549 2550 2551 2552
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
U
ustiniankw 已提交
2553

2554 2555 2556 2557 2558
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
U
ustiniankw 已提交
2559

2560 2561 2562 2563 2564 2565
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2566 2567
            bool, True if has this attribute.

2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

2589
    def attr(self, name):
2590 2591 2592 2593 2594 2595 2596
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2597
            int|str|list, The attribute value. The return value
2598 2599 2600 2601 2602
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
2603
    def dist_attr(self):
2604
        """
2605
        Get distributed attribute of this Variable.
2606
        """
2607
        return self.desc.dist_attr
2608

2609 2610
    @dist_attr.setter
    def dist_attr(self, dist_attr):
2611
        """
2612
        Set distributed attribute of this Variable.
2613
        """
2614
        self.desc.dist_attr = dist_attr
2615

Y
Yu Yang 已提交
2616

F
fengjiayi 已提交
2617 2618 2619
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2620

2621 2622
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2623 2624 2625 2626
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2627
        op_proto = framework_pb2.OpProto.FromString(bytes(pbstr))
F
fengjiayi 已提交
2628 2629 2630 2631
        ret_values.append(op_proto)
    return ret_values


2632
class OpProtoHolder:
2633 2634 2635 2636
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2637 2638 2639 2640 2641 2642 2643 2644
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
2645 2646
            self.__class__, '_instance'
        ), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2647 2648 2649 2650 2651 2652
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2653 2654 2655 2656 2657 2658 2659 2660
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2661 2662
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2663 2664
        return self.op_proto_map[type]

2665 2666
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2667
        custom_op_names = []
2668 2669 2670
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2671 2672 2673
                custom_op_names.append(proto.type)

        return custom_op_names
2674

2675 2676 2677
    def has_op_proto(self, type):
        return type in self.op_proto_map

2678 2679 2680 2681
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2682
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2683
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2684
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
2685
            core.op_proto_and_checker_maker.kOpDeviceAttrName(),
2686 2687
        }

F
fengjiayi 已提交
2688

2689
class Operator:
2690
    """
2691 2692 2693 2694 2695 2696 2697
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2698
        type(str): The type of operator. Default None.
2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2719
        Block.append_op or Block._prepend_op instead.
2720 2721 2722 2723

    Examples:
        .. code-block:: python

2724
            import paddle.fluid as fluid
2725
            cur_program = fluid.Program()
2726 2727 2728 2729 2730
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2731
    """
2732

2733
    OP_WITHOUT_KERNEL_SET = {
2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761
        'feed',
        'fetch',
        'recurrent',
        'go',
        'rnn_memory_helper_grad',
        'conditional_block',
        'while',
        'send',
        'recv',
        'listen_and_serv',
        'fl_listen_and_serv',
        'ncclInit',
        'select',
        'checkpoint_notify',
        'gen_bkcl_id',
        'c_gen_bkcl_id',
        'gen_nccl_id',
        'c_gen_nccl_id',
        'c_comm_init',
        'c_sync_calc_stream',
        'c_sync_comm_stream',
        'queue_generator',
        'dequeue',
        'enqueue',
        'heter_listen_and_serv',
        'c_wait_comm',
        'c_wait_compute',
        'copy_cross_scope',
2762
    }
2763

2764 2765 2766
    def __init__(
        self, block, desc, type=None, inputs=None, outputs=None, attrs=None
    ):
2767 2768 2769 2770 2771 2772 2773 2774 2775 2776
        # read attr type index from op proto to avoid unexpected type
        # conversions, e.g. narrowing conversion like double to float
        try:
            proto = OpProtoHolder.instance().get_op_proto(type)
            self._attr_types = {}
            for attr in proto.attrs:
                self._attr_types[attr.name] = attr.type
        except ValueError:
            pass

J
Jiabin Yang 已提交
2777
        if _non_static_mode():
2778 2779
            if type is None:
                raise ValueError(
2780 2781
                    "`type` to initialized an Operator can not be None."
                )
J
Jiabin Yang 已提交
2782
            self._type = type
M
minqiyang 已提交
2783
            self.attrs = attrs if attrs else {}
2784
        else:
2785

2786 2787 2788 2789 2790 2791 2792 2793 2794
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

2795
            # attr for static graph mode cuda graph
2796 2797
            self._cuda_graph_attr = _current_cuda_graph_mode

2798 2799 2800
            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
2801
                op_attrs[
2802 2803
                    op_maker.kOpRoleAttrName()
                ] = self.block.program._op_role
2804 2805

            role_var_name = op_maker.kOpRoleVarAttrName()
2806 2807 2808 2809
            if (
                len(self.block.program._op_role_var) != 0
                and role_var_name not in op_attrs
            ):
2810
                op_attrs[role_var_name] = self.block.program._op_role_var
2811 2812 2813 2814 2815

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2816 2817 2818 2819 2820
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2821 2822 2823
                return
            if type is None:
                raise ValueError(
2824 2825
                    "`type` to initialized an Operator can not be None."
                )
2826 2827
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2828 2829 2830
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
2831
                        '  File "{}", line {}, in {}'.format(
2832 2833 2834 2835 2836 2837
                            frame[0], frame[1], frame[2]
                        )
                    )
                    op_attrs[callstack_var_name].append(
                        '    {}'.format(frame[3])
                    )
2838 2839 2840 2841 2842 2843 2844

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2845 2846 2847 2848 2849 2850 2851 2852
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
2853 2854 2855
                    warnings.warn(
                        "The Op(%s) is not support to set device." % type
                    )
2856
                if 'force_cpu' in op_attrs:
2857
                    if (
2858 2859
                        type == 'less_than'
                        and op_attrs['force_cpu'] is not None
2860
                    ) or op_attrs['force_cpu'] != False:
2861 2862 2863
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
2864 2865
                            "used at the same time." % type
                        )
2866
            if _current_pipeline_stage is not None:
2867 2868 2869 2870 2871
                pipeline_attr_name = (
                    'pipeline_stage' + core.kAutoParallelSuffix()
                )
                self._update_desc_attr(
                    pipeline_attr_name, _current_pipeline_stage
2872
                )
2873

2874 2875 2876 2877 2878 2879 2880 2881 2882
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
2883 2884 2885
                    assert (
                        found or in_proto.dispensable
                    ), "Input {} not found".format(in_proto.name)
2886 2887
                    if found:
                        in_args = inputs[in_proto.name]
2888
                        if not isinstance(in_args, (list, tuple)):
2889 2890 2891 2892
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
2893 2894
                                % (in_proto.name, len(in_args))
                            )
2895
                        in_arg_names = []
2896
                        for index, arg in enumerate(in_args):
2897
                            if isinstance(arg, str):
2898
                                in_arg_names.append(arg)
2899
                            elif isinstance(arg, bytes):
2900
                                in_arg_names.append(arg.decode())
W
wanghuancoder 已提交
2901
                            elif isinstance(arg, (Variable, core.eager.Tensor)):
2902
                                in_arg_names.append(arg.name)
2903
                            else:
2904
                                raise TypeError(
2905 2906
                                    f"The type of '%{in_proto.name}' in operator {type} should be "
                                    f"one of [str, bytes, Variable]. but received : {arg}"
2907
                                )
2908 2909 2910 2911 2912 2913 2914 2915
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933

                    # FIXME: The outputs of primitive operator currently
                    # doesn't include intermediate output as it will be dropped
                    # in operator codegen, such as xshape output of reshape2.
                    # It will fixed when the operator codegen support
                    # intermediate output.
                    if core._is_bwd_prim_enabled():
                        if not (
                            (m.name in outputs)
                            or m.dispensable
                            or m.intermediate
                        ):
                            raise ValueError(
                                (
                                    "Incorrect setting for output(s) of "
                                    "operator \"%s\", should set: [%s]."
                                )
                                % (type, m.name)
2934
                            )
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944
                    else:
                        if not ((m.name in outputs) or m.dispensable):
                            raise ValueError(
                                (
                                    "Incorrect setting for output(s) of "
                                    "operator \"%s\", should set: [%s]."
                                )
                                % (type, m.name)
                            )

2945 2946 2947 2948 2949 2950 2951 2952 2953
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
2954 2955
                            % (out_proto.name, len(out_args))
                        )
2956 2957
                    out_arg_names = []
                    for arg in out_args:
2958
                        if isinstance(arg, str):
2959 2960
                            out_arg_names.append(arg)
                        else:
2961
                            out_arg_names.append(arg.name)
2962
                        # TODO(minqiyang): could we remove variable's op in static graph mode?
J
Jiabin Yang 已提交
2963
                        if not _non_static_mode():
2964
                            if isinstance(arg, str):
2965 2966 2967
                                block.var(arg).op = self
                            else:
                                arg.op = self
2968 2969
                    self.desc.set_output(out_proto.name, out_arg_names)

2970
            extra_attrs_map = core.get_op_extra_attrs(type)
2971 2972 2973 2974 2975
            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
2976 2977 2978
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
2979 2980 2981
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)
2982
                for attr_name in extra_attrs_map.keys():
2983 2984 2985 2986 2987
                    if os.environ.get('FLAGS_print_extra_attrs', '0') == '1':
                        warnings.warn(
                            "op %s use extra_attr: %s" % (type, attr_name)
                        )

2988 2989 2990 2991 2992 2993
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
                        self._update_desc_attr(
                            attr_name, extra_attrs_map[attr_name]
                        )
2994 2995
                    else:
                        self._update_desc_attr(attr_name, op_attrs[attr_name])
2996

2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024
                if os.environ.get('FLAGS_print_extra_attrs', '0') == '1':
                    if type in extra_op_attrs:
                        attrs = extra_op_attrs.get(type, [])
                        for attr in attrs:
                            if attr in op_attrs.keys():
                                warnings.warn(
                                    "op %s use extra_attr: %s" % (type, attr)
                                )

                    if type in special_op_attrs:
                        attrs = special_op_attrs.get(type, [])
                        for attr in attrs:
                            a_name = list(attr.keys())[0]
                            default_value = list(attr.values())[0]
                            if (
                                a_name in op_attrs.keys()
                                and default_value != op_attrs[a_name]
                            ):
                                warnings.warn(
                                    "op %s's attr %s = %s is not the default value: %s"
                                    % (
                                        type,
                                        a_name,
                                        op_attrs[a_name],
                                        default_value,
                                    )
                                )

J
jianghaicheng 已提交
3025 3026
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
3027
                if global_ipu_index >= 0:
3028 3029 3030
                    self._update_desc_attr(
                        ipu_index_attr_name, global_ipu_index
                    )
3031
                if global_ipu_stage >= 0:
3032 3033 3034
                    self._update_desc_attr(
                        ipu_stage_attr_name, global_ipu_stage
                    )
J
jianghaicheng 已提交
3035

3036
            self.desc.check_attrs()
3037

3038 3039 3040 3041
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
3042
    def _has_kernel(self, op_type):
3043 3044
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
3045
    def to_string(self, throw_on_error):
3046
        """
3047 3048
        Get debug string.

3049
        Args:
3050 3051
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
3052

3053 3054
        Returns:
            str: The debug string.
3055 3056

        """
3057
        protostr = self.desc.serialize_to_string()
3058
        proto = framework_pb2.OpDesc.FromString(bytes(protostr))
Y
Yang Yang(Tony) 已提交
3059 3060
        return _debug_string_(proto, throw_on_error)

3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3093
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3094 3095
            type(skip_op_callstack)
        )
3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

3122 3123 3124
            attr_type = self.desc.attr_type(name, True)
            if attr_type == core.AttrType.VAR:
                attr_var_name = self.desc.attr(name, True).name()
3125 3126 3127
                a = "{name} = Var['{value}']".format(
                    name=name, type=attr_type, value=attr_var_name
                )
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.VARS:
                attr_var_names = [
                    "'%s'" % var.name() for var in self.desc.attr(name, True)
                ]
                a = "{name} = Vars[{value}]".format(
3138 3139
                    name=name, type=attr_type, value=','.join(attr_var_names)
                )
3140 3141 3142 3143 3144
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3145 3146
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
3147 3148
                    name=name, type=attr_type, value=self._block_attr_id(name)
                )
3149 3150 3151 3152 3153 3154 3155
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
3156 3157
                    name=name, type=attr_type, value=self._blocks_attr_ids(name)
                )
3158 3159 3160 3161 3162
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3163
            # it is bytes of serialized protobuf
3164 3165 3166 3167 3168
            if (
                is_compiled_with_cinn()
                and self.type == 'cinn_launch'
                and name == 'compilation_key'
            ):
3169 3170
                key = self.desc.attr(name)
                v = core.get_serialize_comile_key(key)
3171 3172 3173 3174 3175 3176 3177 3178 3179
                prog = Program()
                prog = prog.parse_from_string(v)
                s = prog._to_readable_code()
                lines = s.split('\n')
                value = '\n'.join(['      ' + line for line in lines])
                value = '\n' + value
            else:
                value = self.desc.attr(name)

3180 3181 3182
            a = "{name} = {value}".format(
                name=name, type=attr_type, value=value
            )
3183

3184 3185 3186 3187
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

3188 3189 3190 3191
        from paddle.distributed.auto_parallel.dist_context import (
            get_default_distributed_context,
        )

3192
        dist_context = get_default_distributed_context()
3193 3194
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
3195 3196 3197
            attrs_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_op
            )
3198

3199
        if outputs_str != "{}":
3200 3201 3202 3203 3204 3205
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".format(
                outputs=outputs_str,
                op_type=self.type,
                inputs=inputs_str,
                attrs=attrs_str,
            )
3206
        else:
3207 3208 3209
            op_str = "{op_type}(inputs={inputs}, {attrs})".format(
                op_type=self.type, inputs=inputs_str, attrs=attrs_str
            )
3210 3211
        return op_str

Y
Yang Yang(Tony) 已提交
3212
    def __str__(self):
3213
        return self._to_readable_code()
3214 3215 3216

    __repr__ = __str__

F
fengjiayi 已提交
3217 3218
    @property
    def type(self):
3219
        return self.desc.type()
F
fengjiayi 已提交
3220 3221

    def input(self, name):
3222
        r"""
U
ustiniankw 已提交
3223

3224
        Get the input arguments according to the input parameter name.
3225

3226 3227
        Args:
            name(str): The input parameter name.
3228

3229
        Returns:
U
ustiniankw 已提交
3230
            list, return the list of argument names that associated with \
3231
                the specific parameter name.
U
ustiniankw 已提交
3232

3233
        """
F
fengjiayi 已提交
3234 3235
        return self.desc.input(name)

W
Wu Yi 已提交
3236
    def _rename_input(self, old_name, new_name):
3237 3238 3239 3240 3241 3242 3243 3244 3245 3246
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
3247
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
3248

W
Wu Yi 已提交
3249
    def _rename_output(self, old_name, new_name):
3250 3251 3252 3253 3254 3255 3256 3257 3258 3259
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
3260
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
3261

F
fengjiayi 已提交
3262 3263 3264 3265
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
3266 3267 3268 3269 3270 3271 3272 3273
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
3274
    def output(self, name):
3275
        r"""
3276
        Get output arguments by the output parameter name.
3277

3278 3279
        Args:
            name(str): The output parameter name.
3280

3281 3282 3283
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
3284
        """
F
fengjiayi 已提交
3285 3286 3287 3288 3289 3290
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

3291 3292 3293 3294 3295 3296
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
3297 3298
            "Can't find op itself in it's block. It could be a bug of Paddle."
        )
3299

F
fengjiayi 已提交
3300
    def has_attr(self, name):
3301
        """
3302 3303
        Whether this Operator has the attribute with name or not.

3304
        Args:
3305
            name(str): the attribute name.
3306

3307 3308
        Returns:
            bool: True if has this attribute.
3309 3310

        """
F
fengjiayi 已提交
3311 3312 3313
        return self.desc.has_attr(name)

    def attr_type(self, name):
3314
        """
3315
        Get the type of attribute by attribute's name.
3316

3317 3318
        Args:
            name(str): the attribute name.
3319

3320 3321
        Returns:
            core.AttrType: the attribute type.
3322
        """
3323
        return self.desc.attr_type(name, True)
F
fengjiayi 已提交
3324

W
Wu Yi 已提交
3325
    def _set_attr(self, name, val):
3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
3336 3337
        self._update_desc_attr(name, val)

3338 3339 3340
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
3352 3353 3354 3355 3356
        if isinstance(val, Variable):
            self.desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            self.desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
Q
Qiyang Min 已提交
3357
            self.desc.set_block_attr(name, val.desc)
3358
        elif isinstance(val, list) and val and _all_is_type(val, Block):
3359
            self.desc.set_blocks_attr(name, [v.desc for v in val])
3360 3361 3362
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
Q
Qiyang Min 已提交
3363 3364
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
3365 3366 3367 3368 3369 3370 3371 3372 3373
            self._update_desc_plain_attr(name, val)

    def _update_desc_plain_attr(self, name, val):
        desc = self.desc
        if not hasattr(self, "_attr_types") or (name not in self._attr_types):
            desc._set_attr(name, val)
            return

        type_index = self._attr_types[name]
3374 3375 3376 3377 3378 3379
        # if the required attribute is a SCALAR, pass as-is
        if type_index == core.AttrType.SCALAR:
            desc._set_scalar_attr(name, wrap_as_scalar(val))
        elif type_index == core.AttrType.SCALARS:
            desc._set_scalars_attr(name, wrap_as_scalars(val))
        elif type_index == core.AttrType.BOOL:
3380 3381 3382 3383 3384 3385 3386
            desc._set_bool_attr(name, val)
        elif type_index == core.AttrType.INT:
            desc._set_int32_attr(name, val)
        elif type_index == core.AttrType.LONG:
            desc._set_int64_attr(name, val)
        elif type_index == core.AttrType.FLOAT:
            desc._set_float32_attr(name, val)
3387 3388
        elif type_index == core.AttrType.FLOAT64:
            desc._set_float64_attr(name, val)
3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405
        elif type_index == core.AttrType.STRING:
            desc._set_str_attr(name, val)
        elif type_index == core.AttrType.BOOLS:
            desc._set_bools_attr(name, val)
        elif type_index == core.AttrType.INTS:
            desc._set_int32s_attr(name, val)
        elif type_index == core.AttrType.LONGS:
            desc._set_int64s_attr(name, val)
        elif type_index == core.AttrType.FLOATS:
            desc._set_float32s_attr(name, val)
        elif type_index == core.AttrType.FLOAT64S:
            desc._set_float64s_attr(name, val)
        elif type_index == core.AttrType.STRINGS:
            desc._set_strs_attr(name, val)
        else:
            # defaults to old methods
            desc._set_attr(name, val)
Y
yuyang18 已提交
3406

F
fengjiayi 已提交
3407 3408
    @property
    def attr_names(self):
3409
        return self.desc.attr_names(True)
F
fengjiayi 已提交
3410 3411

    def attr(self, name):
3412
        """
3413 3414
        Get the attribute by name.

3415
        Args:
3416
            name(str): the attribute name.
3417

3418 3419
        Returns:
            bool|int|str|float|list: The attribute value. The return value
3420 3421
            can be any valid attribute type.
        """
F
fengjiayi 已提交
3422
        return self.desc.attr(name)
Y
Yu Yang 已提交
3423

W
Wu Yi 已提交
3424
    def _block_attr_id(self, name):
3425
        """
G
gongweibao 已提交
3426
        Get the block attribute's id by name.
3427

3428 3429
        Args:
            name(str): the attribute name.
3430

3431 3432
        Returns:
            int: the block index.
3433
        """
W
Wu Yi 已提交
3434
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
3435

W
Wu Yi 已提交
3436
    def _block_attr(self, name):
G
gongweibao 已提交
3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
3447
        id = self._block_attr_id(name)
3448
        assert id >= 0 and id < len(self.block.program.blocks)
G
gongweibao 已提交
3449 3450
        return self.block.program.blocks[id]

W
Wu Yi 已提交
3451
    def _blocks_attr(self, name):
G
gongweibao 已提交
3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
3462
        for i in self._blocks_attr_ids(name):
3463
            assert i >= 0 and i < len(self.block.program.blocks)
G
gongweibao 已提交
3464 3465 3466 3467
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
3468
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
3469 3470 3471 3472 3473 3474 3475 3476 3477 3478
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
3479
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
3480

3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
    def _var_attr(self, name):
        """
        Get the Variable attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variable: the Variable attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3492 3493 3494 3495 3496
        assert (
            attr_type == core.AttrType.VAR
        ), "Required type attr({}) is Variable, but received {}".format(
            name, attr_type
        )
3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510
        attr_var_name = self.desc.attr(name, True).name()
        return self.block._var_recursive(attr_var_name)

    def _vars_attr(self, name):
        """
        Get the Variables attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variables: the Variables attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3511 3512 3513 3514 3515
        assert (
            attr_type == core.AttrType.VARS
        ), "Required type attr({}) is list[Variable], but received {}".format(
            name, attr_type
        )
3516 3517 3518 3519 3520 3521
        attr_vars = [
            self.block._var_recursive(var.name())
            for var in self.desc.attr(name, True)
        ]
        return attr_vars

J
JiayiFeng 已提交
3522
    def all_attrs(self):
F
fengjiayi 已提交
3523
        """
3524 3525 3526
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3527
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3528 3529 3530 3531
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
3532
            attr_type = self.desc.attr_type(n, True)
G
gongweibao 已提交
3533
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3534
                attr_map[n] = self._block_attr(n)
3535
            elif attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3536
                attr_map[n] = self._blocks_attr(n)
3537 3538 3539 3540 3541 3542
            elif attr_type == core.AttrType.VAR:
                attr_map[n] = self._var_attr(n)
            elif attr_type == core.AttrType.VARS:
                attr_map[n] = self._vars_attr(n)
            else:
                attr_map[n] = self.attr(n)
G
gongweibao 已提交
3543

F
fengjiayi 已提交
3544 3545
        return attr_map

3546 3547 3548
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3549 3550 3551 3552

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3553 3554 3555
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3556 3557 3558 3559 3560 3561 3562 3563

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3564 3565
            return False

3566 3567 3568 3569 3570 3571
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3572
    @property
3573
    def dist_attr(self):
3574
        """
3575
        Get distributed attribute of this Variable.
3576
        """
3577
        return self.desc.dist_attr
3578

3579 3580
    @dist_attr.setter
    def dist_attr(self, dist_attr):
3581
        """
3582
        Set distributed attribute of this Variable.
3583
        """
3584
        self.desc.dist_attr = dist_attr
3585

Y
Yu Yang 已提交
3586

3587
class Block:
3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3602
        use `Program._create_block()` to create a block.
3603 3604 3605 3606

    Examples:
        .. code-block:: python

3607 3608 3609
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3610 3611 3612 3613 3614 3615 3616 3617 3618
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3619
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3620
        self.desc = program.desc.block(idx)
3621
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3622
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3623 3624
        self.program = program

3625
    def __str__(self):
3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3660
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3661 3662
            type(skip_op_callstack)
        )
3663 3664 3665 3666 3667 3668 3669
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
3670 3671
                op._to_readable_code(skip_op_callstack)
            )
3672 3673
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3674

F
fengjiayi 已提交
3675 3676
    def to_string(self, throw_on_error, with_details=False):
        """
3677 3678
        Get debug string.

F
fengjiayi 已提交
3679 3680
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3681
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3682
            with_details(bool): more details about variables and parameters
3683 3684
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3685

3686 3687
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3688
        """
3689
        assert isinstance(throw_on_error, bool) and isinstance(
3690 3691
            with_details, bool
        )
F
fengjiayi 已提交
3692
        if with_details:
F
fengjiayi 已提交
3693
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3694
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
3695 3696 3697
                self.idx,
                self.parent_idx,
            )
3698
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3699
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
3700 3701
                    r"\n    \1", var.to_string(throw_on_error, with_details)
                )
F
fengjiayi 已提交
3702
            for op in self.ops:
F
fengjiayi 已提交
3703
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
3704 3705
                    r"\n    \1", op.to_string(throw_on_error)
                )
F
fengjiayi 已提交
3706 3707 3708
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3709
            proto = framework_pb2.BlockDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
3710 3711
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3712 3713 3714

    __repr__ = __str__

Y
Yu Yang 已提交
3715 3716
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3717
        return self.desc.parent
Y
Yu Yang 已提交
3718

Y
Yu Yang 已提交
3719 3720 3721 3722
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3723
    def _set_forward_block_idx(self, idx):
3724 3725 3726 3727 3728 3729 3730 3731 3732
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3733
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3734

3735 3736 3737 3738 3739 3740 3741 3742
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3743 3744
    @property
    def idx(self):
Y
Yu Yang 已提交
3745
        return self.desc.id
Y
Yu Yang 已提交
3746

Q
Qiao Longfei 已提交
3747
    def var(self, name):
3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3761
        if not isinstance(name, str):
M
minqiyang 已提交
3762
            raise TypeError(
3763 3764 3765
                "var require string as parameter, but get %s instead."
                % (type(name))
            )
Y
Yu Yang 已提交
3766 3767
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3768
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3769
        return v
Q
Qiao Longfei 已提交
3770

X
Xin Pan 已提交
3771
    def _find_var_recursive(self, name):
3772 3773 3774 3775 3776 3777 3778
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3779
            Variable: the Variable with the giving name. Or None if not found.
3780
        """
Y
Yu Yang 已提交
3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3805
        return None
Y
Yu Yang 已提交
3806

X
Xin Pan 已提交
3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3826

Q
Qiao Longfei 已提交
3827
    def all_parameters(self):
3828
        return list(self.iter_parameters())
3829

3830
    def iter_parameters(self):
3831 3832 3833 3834 3835
        return (
            item[1]
            for item in self.vars.items()
            if isinstance(item[1], Parameter)
        )
Q
Qiao Longfei 已提交
3836

Y
Yu Yang 已提交
3837
    def create_var(self, *args, **kwargs):
J
Jiabin Yang 已提交
3838
        if _non_static_mode():
L
Leo Chen 已提交
3839 3840
            var = _varbase_creator(*args, **kwargs)
        else:
3841 3842 3843
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3844
        return var
Y
Yu Yang 已提交
3845

Q
Qiao Longfei 已提交
3846 3847 3848
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3849
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3850 3851
        """
        Rename variable in vars and ops' inputs and outputs
3852 3853

        Args:
3854 3855
            name(str|bytes): the name that need to be renamed.
            new_name(str|bytes): the name that need to rename to.
3856 3857 3858 3859 3860 3861 3862 3863

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3864
        """
3865 3866
        # Ensure the type of name and new_name is str
        name = name.decode() if isinstance(name, bytes) else name
3867 3868 3869
        new_name = (
            new_name.decode() if isinstance(new_name, bytes) else new_name
        )
M
minqiyang 已提交
3870

T
typhoonzero 已提交
3871
        if not self.has_var(name):
3872
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3873 3874
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3875
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3876 3877 3878 3879 3880 3881
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3882
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3883 3884 3885 3886
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3887
        orig_var_type = v.type
3888
        self.desc._rename_var(name.encode(), new_name.encode())
W
Wu Yi 已提交
3889
        # NOTE: v is destroyed by C++ after calling _rename_var.
3890
        d = self.desc.find_var(new_name.encode())
T
typhoonzero 已提交
3891
        if var_type == "Parameter":
L
Leo Chen 已提交
3892
            if in_dygraph_mode():
3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
                var = EagerParamBase(
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
3904
            else:
姜永久 已提交
3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916
                var = Parameter(
                    self,
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
T
typhoonzero 已提交
3917
        elif var_type == "Variable":
3918 3919 3920 3921 3922 3923 3924
            var = Variable(
                self,
                type=orig_var_type,
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient,
            )
T
wip  
typhoonzero 已提交
3925

W
Wu Yi 已提交
3926
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3927 3928 3929
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3930
        self._sync_with_cpp()
3931
        return var
T
typhoonzero 已提交
3932

3933 3934 3935
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
3936
        self.desc._remove_var(name.encode())
3937 3938
        del self.vars[name]

Y
Yu Yang 已提交
3939 3940
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3941
        param = None
L
Leo Chen 已提交
3942
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3943
            param = EagerParamBase(*args, **kwargs)
L
Leo Chen 已提交
3944
        else:
姜永久 已提交
3945
            param = Parameter(global_block, *args, **kwargs)
3946 3947 3948
        # NOTE(Aurelius84): we deliver stop_gradient in append_op, so we
        # need recorde it state and reset it back after calling this API
        stop_gradient = param.stop_gradient
3949

3950
        if 'initializer' in kwargs:
3951 3952 3953 3954 3955

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3956
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3957
                        # are treated as initialization ops that cause error.
3958
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3959 3960
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
3961 3962 3963
                            "c_broadcast",
                            "c_sync_comm_stream",
                            "coalesce_tensor",
3964
                        ]:
3965
                            continue
3966 3967 3968 3969 3970 3971 3972
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
3973 3974 3975 3976 3977 3978
                raise RuntimeError(
                    "param "
                    + param.name
                    + " is inited by multiple init ops "
                    + str(init_ops)
                )
3979
            elif init_ops_len == 1:
3980
                # TODO already inited, do nothing, should log a warning
3981 3982 3983
                pass
            else:
                initializer(param, self)
3984
        param.stop_gradient = stop_gradient
Q
Qiao Longfei 已提交
3985
        return param
Y
Yu Yang 已提交
3986

Y
Yu Yang 已提交
3987
    def append_op(self, *args, **kwargs):
3988 3989 3990 3991 3992 3993
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
3994
        op_type = kwargs.get("type", None)
J
Jiabin Yang 已提交
3995
        if _non_static_mode():
3996
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
3997
            inplace_map = kwargs.get("inplace_map", None)
3998 3999 4000
            warnings.warn(
                "Op `%s` is executed through `append_op` under the dynamic mode, "
                "the corresponding API implementation needs to be upgraded to "
4001 4002 4003 4004 4005 4006
                "using `_C_ops` method." % type,
                DeprecationWarning,
            )
            op = Operator(
                block=self,
                desc=None,
4007
                type=op_type,
4008 4009 4010 4011
                inputs=None,
                outputs=None,
                attrs=attrs,
            )
4012

M
minqiyang 已提交
4013 4014
            # record ops in tracer rather than blocks
            #
4015
            # TODO(minqiyang): add op stop_gradient support in static graph mode too.
L
lujun 已提交
4016
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
4017

4018
            _dygraph_tracer().trace_op(
4019
                op_type,
4020 4021 4022 4023 4024 4025
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
                inplace_map,
            )
M
minqiyang 已提交
4026
        else:
4027
            from paddle.fluid.dygraph.base import param_guard
4028
            from paddle.utils import flatten
4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042

            def pass_stop_gradient(ins, outs):
                """
                Set out.stop_gradient = True if all inputs stop_gradient is True.
                """
                need_reset = True
                for var in flatten(ins):
                    if getattr(var, 'stop_gradient', None) is False:
                        need_reset = False
                        break
                if need_reset:
                    for var in flatten(outs):
                        if isinstance(var, Variable):
                            var.stop_gradient = True
4043

4044
            op_desc = self.desc.append_op()
4045 4046
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
W
wanghuancoder 已提交
4047
            # NOTE(Aurelius84): In case of @to_static, all Tensor(s) should
4048 4049
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
4050 4051 4052 4053 4054 4055 4056 4057 4058 4059
            ignore_ops = {
                'conditional_block',
                'conditional_block_grad',
                'recurrent',
                'recurrent_grad',
                'while',
                'while_grad',
            }
            if op_type not in ignore_ops:
                pass_stop_gradient(inputs, outputs)
4060
            with param_guard(inputs), param_guard(outputs):
4061 4062 4063
                op = Operator(
                    block=self,
                    desc=op_desc,
4064
                    type=op_type,
4065 4066 4067 4068
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None),
                )
4069

M
minqiyang 已提交
4070
            self.ops.append(op)
M
minqiyang 已提交
4071

4072 4073
        return op

W
Wu Yi 已提交
4074
    def _insert_op(self, index, *args, **kwargs):
4075 4076 4077 4078 4079 4080 4081 4082 4083
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
4084
        self._sync_with_cpp()
F
fangshuixun007 已提交
4085
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
4086

4087 4088
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
4089
        Insert an Operator according to the giving arguments,
4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
4104 4105 4106 4107 4108 4109 4110 4111 4112
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
4113 4114
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
4115
        self.desc._remove_op(index, index + 1)
4116 4117
        del self.ops[index]

W
Wu Yi 已提交
4118
    def _slice_ops(self, start, end):
4119 4120 4121 4122 4123 4124 4125 4126 4127 4128
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
4129
        return self.ops[start:end]
Y
Yancey1989 已提交
4130

W
Wu Yi 已提交
4131
    def _prepend_op(self, *args, **kwargs):
J
Jiabin Yang 已提交
4132
        if _non_static_mode():
J
Jiabin Yang 已提交
4133 4134
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145
            op = Operator(
                self, None, type=type, inputs=None, outputs=None, attrs=attrs
            )

            _dygraph_tracer().trace_op(
                type,
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
            )
M
minqiyang 已提交
4146
        else:
4147
            op_desc = self.desc._prepend_op()
4148 4149 4150 4151 4152 4153 4154 4155
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None),
            )
M
minqiyang 已提交
4156
            self.ops.insert(0, op)
4157

Y
Yu Yang 已提交
4158 4159
        return op

W
Wu Yi 已提交
4160
    def _sync_with_cpp(self):
4161
        """
4162 4163
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
4164
        """
Q
Qiao Longfei 已提交
4165 4166 4167
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
4168 4169 4170 4171
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
4172 4173 4174 4175 4176 4177 4178 4179
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient,
                    )
4180
                else:
4181 4182 4183 4184 4185 4186
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient,
                    )
Q
Qiao Longfei 已提交
4187

4188
        # sync variables removed from c++ end
4189
        for var in list(self.vars.keys()):
4190
            if not self.desc.find_var(var.encode()):
4191 4192
                self.vars.pop(var)

Q
Qiao Longfei 已提交
4193
        # sync operators from cpp
4194 4195 4196 4197
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
4214 4215 4216 4217 4218

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
4219
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
4220 4221 4222 4223 4224 4225 4226

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

4227 4228 4229 4230 4231
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
4232 4233 4234 4235 4236 4237
                self.ops
            ) and ops_in_cpp_index < len(ops_in_cpp):
                if (
                    self.ops[ops_in_python_index].desc
                    != ops_in_cpp[ops_in_cpp_index]
                ):
4238 4239 4240 4241 4242
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
4243 4244 4245 4246
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
4247
    def _copy_param_info_from(self, other):
4248
        """
4249 4250
        Copy the information of parameters from the other block.

4251
        Args:
4252 4253 4254 4255 4256
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
4257 4258 4259 4260 4261

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
4262
            raise TypeError(
4263 4264
                "_copy_param_info_from should be invoked with Block"
            )
4265
        for p in other.iter_parameters():
4266 4267 4268
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
4269 4270
                # if the Parameter is pruned, v may be None
                continue
4271
            assert isinstance(v, Variable)
4272
            new_p = None
L
Leo Chen 已提交
4273
            if in_dygraph_mode():
4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285
                new_p = EagerParamBase(
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4286
            else:
姜永久 已提交
4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301
                new_p = Parameter(
                    block=self,
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR
                    else None,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4302 4303
            self.vars[new_p.name] = new_p

4304
    def _clone_variable(self, var, force_persistable=True):
4305 4306
        """
        Clone a variable into current block.
4307

4308 4309
        Args:
            var: the variable to be cloned.
4310 4311 4312
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
4313 4314

        Returns:
4315
            Variable: the new  variable cloned from 'var' in current block.
4316 4317
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
4318 4319 4320
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
4321 4322 4323
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
tangwei12 已提交
4324
        elif var.type == core.VarDesc.VarType.RAW:
4325 4326 4327
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
typhoonzero 已提交
4328 4329 4330 4331 4332 4333
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
4334
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4335
                is_data=var.is_data,
4336 4337
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4338 4339 4340 4341 4342 4343 4344
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
4345
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4346
                is_data=var.is_data,
4347 4348
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4349
        return ret_var
4350

Y
Yu Yang 已提交
4351

4352 4353 4354 4355
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
4356
# of some old Python Variables(all old Python Operators) may have
4357
# been destructed.
4358 4359 4360
def _apply_pass(
    main_program, startup_program, pass_name, pass_attrs={}, pass_attr_types={}
):
4361 4362 4363 4364
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
4365 4366 4367 4368 4369 4370 4371
    attrs = core.apply_pass(
        tmp_main_program,
        tmp_startup_program,
        pass_name,
        pass_attrs,
        pass_attr_types,
    )
4372 4373 4374 4375 4376
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


4377
class IrNode:
4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4389 4390 4391
        assert isinstance(
            node, core.Node
        ), 'node must be the instance of core.Node.'
4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

4473
    def remove_input_by_id(self, node_id):
4474 4475 4476 4477 4478 4479
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4480
        self.node.remove_input(node_id)
4481

4482
    def remove_input(self, node):
4483 4484 4485 4486
        """
        Remove a node from inputs.

        Args:
4487
            node(IrNode): the node being removed.
4488
        """
4489
        self.node.remove_input(node.node)
4490

4491
    def append_input(self, node):
4492 4493 4494 4495
        """
        Append a node in inputs.

        Args:
4496
            node(IrNode): the node being appended.
4497
        """
4498
        self.node.append_input(node.node)
4499 4500 4501 4502 4503 4504 4505 4506

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

4507
    def remove_output_by_id(self, node_id):
4508 4509 4510 4511 4512 4513
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4514
        self.node.remove_output(node_id)
4515

4516
    def remove_output(self, node):
4517 4518 4519 4520
        """
        Remove a node from outputs.

        Args:
4521
            node(IrNode): the node being removed.
4522
        """
4523
        self.node.remove_output(node.node)
4524

4525
    def append_output(self, node):
4526 4527 4528 4529
        """
        Append a node in outputs.

        Args:
4530
            node(IrNode): the node being appended.
4531
        """
4532
        self.node.append_output(node.node)
4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4567 4568 4569
        assert (
            isinstance(node, core.Node) and node.is_var()
        ), 'node must be the instance of core.Node and it must be a variable node.'
4570
        super().__init__(node)
4571 4572 4573 4574 4575 4576 4577 4578 4579
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
4580 4581 4582
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4583 4584 4585 4586 4587 4588 4589 4590 4591
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
4592 4593 4594
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4595 4596
        return self.node.var().persistable()

4597 4598 4599 4600 4601 4602 4603
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
4604 4605 4606
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4607 4608 4609 4610 4611 4612 4613 4614 4615
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
4616 4617 4618
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4619 4620 4621 4622 4623 4624 4625 4626 4627
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
4628 4629 4630
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4631 4632
        return self.node.var().shape()

4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4666 4667 4668
        assert (
            isinstance(node, core.Node) and node.is_op()
        ), 'node must be the instance of core.Node and it must be a operator node.'
4669
        super().__init__(node)
4670 4671 4672 4673 4674 4675 4676 4677 4678 4679
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
4680 4681 4682
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4683 4684
        self.node.op()._rename_input(old_input_name, new_input_name)

4685 4686 4687 4688 4689 4690 4691 4692
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
4693 4694 4695
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4696 4697
        self.node.op()._rename_output(old_output_name, new_output_name)

4698 4699 4700 4701 4702 4703 4704 4705 4706 4707
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4708 4709 4710
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4723 4724 4725
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4726 4727 4728 4729 4730 4731 4732 4733 4734
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
4735 4736 4737
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4738 4739
        return self.node.op().set_type(new_type)

4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
4754 4755 4756
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4757
        desc = self.node.op()
4758 4759 4760 4761 4762
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
4763
            desc.set_block_attr(name, val.desc)
4764
        elif isinstance(val, list) and val and _all_is_type(val, Block):
4765
            desc.set_blocks_attr(name, [v.desc for v in val])
4766 4767 4768
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
4769 4770 4771 4772
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4773 4774 4775 4776 4777 4778 4779
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
4780 4781 4782
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4783 4784 4785 4786 4787 4788 4789 4790 4791
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
4792 4793 4794
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4795 4796
        return self.node.op().output_arg_names()

4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4818
class IrGraph:
4819
    """
4820
    Python IrGraph. Beneath it is a core.Graph, which is used for
4821
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4822 4823
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4824 4825 4826 4827
    """

    def __init__(self, graph, for_test=False):
        """
4828 4829
        Construct an IrGraph using core.Graph.

4830 4831 4832 4833 4834
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
4835 4836
            graph, core.Graph
        ), 'graph must be the instance of core.Graph.'
4837 4838 4839
        self.graph = graph
        self._for_test = for_test

4840 4841 4842 4843
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4844 4845 4846
        Warns:
            The method only clones the graph structure, not its attributes.

4847 4848 4849
        Returns:
            IrGraph: A new and duplicated graph.
        """
4850
        g = self.graph.clone()
4851 4852
        return IrGraph(g, self._for_test)

4853
    def is_test(self):
4854 4855 4856
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4857 4858
        return self._for_test

W
WangZhen 已提交
4859
    def all_nodes(self):
4860 4861 4862
        """
        Return all nodes included in the graph as a set.
        """
4863
        return {IrNode(node) for node in self.graph.nodes()}
4864

4865
    def all_var_nodes(self):
4866 4867 4868
        """
        Return all variable nodes included in the graph as a set.
        """
4869
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4870

4871
    def all_persistable_nodes(self):
4872 4873 4874
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4875 4876
        persistable_nodes = set()
        for node in self.graph.nodes():
4877 4878 4879 4880 4881
            if (
                node.is_var()
                and node.var() is not None
                and node.var().persistable()
            ):
W
WangZhen 已提交
4882
                persistable_nodes.add(node)
4883
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4884

4885
    def all_op_nodes(self):
4886 4887 4888
        """
        Return all operator nodes included in the graph as a set.
        """
4889
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4890

4891 4892 4893 4894 4895 4896
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
4897
            IrGraph(self.graph.get_sub_graph(i), for_test=for_test)
4898 4899 4900 4901 4902 4903 4904 4905 4906
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4907
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4919
            IrVarNode: the created persistable variable node.
4920
        """
4921 4922 4923 4924 4925
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4926
        return IrVarNode(self.graph.create_var_node(var_desc))
4927 4928

    def create_var_node(self, name, var_type, shape, var_dtype):
4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4940
            IrVarNode: the created variable node.
4941 4942
        """

4943 4944 4945 4946
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4947
        return IrVarNode(self.graph.create_var_node(var_desc))
4948

4949 4950 4951 4952 4953 4954
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4955
    def create_var_node_from_desc(self, var_desc):
4956 4957 4958 4959 4960 4961 4962 4963
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4964
            IrVarNode: the created variable node.
4965
        """
4966
        return IrVarNode(self.graph.create_var_node(var_desc))
4967 4968

    def create_op_node(self, op_type, attrs, inputs, outputs):
4969 4970 4971 4972 4973 4974 4975
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4976
            outputs(dict): the outputs of the operator node.
4977 4978

        Returns:
4979
            IrOpNode: the created operator node.
4980
        """
4981 4982
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4983
        for attr, value in attrs.items():
4984
            self._update_desc_attr(op_desc, attr, value)
4985
        for input_name, var_nodes in inputs.items():
4986 4987
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
4988 4989 4990
            op_desc.set_input(
                input_name, [var_node.name() for var_node in var_nodes]
            )
4991
        for output_name, var_nodes in outputs.items():
4992 4993
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
4994 4995 4996
            op_desc.set_output(
                output_name, [var_node.name() for var_node in var_nodes]
            )
4997
        return IrOpNode(self.graph.create_op_node(op_desc))
4998 4999

    def create_op_node_from_desc(self, op_desc):
5000 5001 5002 5003 5004 5005 5006
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
5007
            IrOpNode: the created operator node.
5008
        """
5009
        return IrOpNode(self.graph.create_op_node(op_desc))
5010 5011

    def update_input_link(self, old_input_node, new_input_node, op_node):
5012 5013 5014 5015
        """
        Update the input's link of a operator node.

        Args:
5016 5017 5018
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
5019
        """
5020 5021 5022 5023 5024
        assert (
            old_input_node.node in self.graph.nodes()
            and new_input_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
5025 5026 5027 5028
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
5029
        op_node.rename_input(old_input_node.name(), new_input_node.name())
5030

5031 5032 5033 5034 5035 5036 5037 5038 5039
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
5040 5041 5042 5043 5044
        assert (
            old_output_node.node in self.graph.nodes()
            and new_output_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
5045 5046 5047 5048 5049 5050
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

5051
    def link_to(self, node_in, node_out):
5052 5053 5054 5055
        """
        Connect two nodes.

        Args:
5056 5057
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
5058
        """
5059
        assert node_in.node in self.graph.nodes(), (
5060 5061
            'node_in(%s) must be in the graph nodes.' % node_in.node.name()
        )
5062
        assert node_out.node in self.graph.nodes(), (
5063 5064
            'node_out(%s) must be in the graph nodes.' % node_out.node.name()
        )
5065 5066
        node_in.append_output(node_out)
        node_out.append_input(node_in)
5067 5068

    def safe_remove_nodes(self, remove_nodes):
5069 5070 5071 5072 5073 5074 5075
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
5076
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
5077 5078 5079 5080
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
5081 5082
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
5083

Z
Zhen Wang 已提交
5084 5085 5086 5087 5088 5089 5090 5091
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5092
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
5093 5094 5095 5096
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5097
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
5098 5099 5100
                        ]
                    else:
                        var_nodes[each_var_name].append(
5101 5102
                            self._find_node_by_name(node.outputs, each_var_name)
                        )
Z
Zhen Wang 已提交
5103 5104
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
5105
    def has_circle(self):
5106 5107 5108 5109 5110 5111
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
5112 5113 5114
        return core.has_circle(self.graph)

    def graph_num(self):
5115 5116 5117 5118 5119 5120
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
5121 5122 5123
        return core.graph_num(self.graph)

    def topology_sort(self):
5124 5125 5126
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
5127
        Notes: the `graph` can not contain a circle.
5128 5129

        Returns:
Z
Zhen Wang 已提交
5130
            list(IrNode): nodes in topology order.
5131
        """
5132
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
5133
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
5134 5135

    def build_adjacency_list(self):
5136 5137 5138 5139
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
5140
            dict{IrNode: set(IrNode)}: the adjacency list.
5141
        """
5142 5143
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
5144
        for k, v in adj_list.items():
5145 5146
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
5147

5148 5149 5150 5151 5152 5153 5154 5155
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
5156
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
5157 5158 5159 5160 5161
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

5162 5163
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
5164 5165 5166 5167
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True,
            )
5168 5169
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
5170 5171 5172
                print(
                    'The {} is saved as the dot filetype.'.format(dot_file_path)
                )
5173

5174
        remove_ctr_vars = set()
5175
        if remove_ctr_var:
5176
            for node in self.all_var_nodes():
5177 5178 5179
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
5180 5181
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

5182 5183
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
5184 5185 5186 5187 5188 5189
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
5190 5191 5192 5193
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
5194 5195
        if not os.path.exists(save_path):
            os.makedirs(save_path)
5196 5197 5198 5199 5200 5201 5202
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
5203 5204 5205
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
5206
        WARN: When the graph includes backward operator nodes, the
5207 5208 5209 5210 5211 5212
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
5213
        convert_pass = core.get_pass('graph_to_program_pass')
5214 5215
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
5216 5217 5218 5219
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

5220 5221 5222 5223 5224 5225 5226 5227
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
5228
        assert target_node is not None, (
5229 5230
            "Cannot find the target node (%s)in the giving set." % node_name
        )
5231 5232
        return target_node

5233 5234 5235 5236
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
5237 5238 5239 5240 5241
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
5242
            desc.set_block_attr(name, val.desc)
5243
        elif isinstance(val, list) and val and _all_is_type(val, Block):
5244
            desc.set_blocks_attr(name, [v.desc for v in val])
5245 5246 5247
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
5248 5249 5250 5251 5252
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


5253
class Program:
D
dzhwinter 已提交
5254
    """
5255
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
5256
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
5257
    it will contain nested block.
5258

J
Jiabin Yang 已提交
5259 5260 5261
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
5262

J
Jiabin Yang 已提交
5263
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
5264
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
5265 5266 5267 5268 5269 5270 5271
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
5272
    **Notes**:
5273 5274 5275
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
5276 5277

    Returns:
J
Jiabin Yang 已提交
5278
        Program: An empty Program.
D
dzhwinter 已提交
5279 5280

    Examples:
5281 5282
        .. code-block:: python

5283 5284 5285 5286
            import paddle
            import paddle.static as static

            paddle.enable_static()
5287

5288 5289 5290 5291 5292
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
5293
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
5294 5295 5296

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
5297 5298 5299

    """

5300 5301
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
5302 5303
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
5304 5305
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
5306
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
5307
        self.__op_role_var = []
T
tangwei12 已提交
5308

5309 5310
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
5311
        self._is_distributed = False
5312
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
5313
        self._is_chief = False
5314 5315 5316
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
5317
        self._endpoints = []
5318 5319 5320
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
5321
        self._trainers_endpoints = []
5322
        # the distributed lookup table names
T
tangwei12 已提交
5323
        self._distributed_lookup_table = None
5324 5325 5326

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
5327 5328
        self._use_lamb = False

5329 5330 5331
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
5332

5333 5334 5335
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
5336
        self._program_config = None
5337

H
hutuxian 已提交
5338 5339 5340
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

5341 5342 5343
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

5344 5345 5346
        # appending gradients times
        self._appending_grad_times = 0

5347 5348
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
5349 5350
            "__auto_checkpoint_program__"
        )
5351

5352 5353
        # compiled program, i.e. Graph
        self._graph = None
5354 5355
        # to tag whether is startup_program
        self._is_start_up_program_ = False
5356

5357
    def _find_var_class_kwargs(self, new_desc):
5358 5359 5360 5361 5362 5363 5364 5365
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

5366 5367 5368 5369
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
5370
            if idx > (len(self.blocks) - 1):
5371
                self._create_block()
5372 5373 5374 5375 5376 5377 5378 5379 5380 5381
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
                    'shape': get_var_desc_attr_or_none(
                        new_var_desc,
                        "shape",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'dtype': get_var_desc_attr_or_none(
                        new_var_desc,
                        "dtype",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'lod_level': get_var_desc_attr_or_none(
                        new_var_desc,
                        "lod_level",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'error_clip': old_var.error_clip
                    if old_var is not None
                    else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None
                    else False,
                    'is_data': old_var.is_data
                    if old_var is not None
                    else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None
                    else False,
5423 5424 5425
                }

                if isinstance(old_var, Parameter):
5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442
                    kwargs.update(
                        {
                            'trainable': old_var.trainable,
                            'optimize_attr': old_var.optimize_attr,
                            'regularizer': old_var.regularizer,
                            'do_model_average': old_var.do_model_average,
                            'need_clip': old_var.need_clip,
                            'is_distributed': old_var.is_distributed,
                            'is_parameter': old_var.is_parameter,
                        }
                    )
                    block_new_vars.append(
                        {
                            'class': Parameter,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5443 5444
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
5445 5446 5447 5448 5449 5450
                    block_new_vars.append(
                        {
                            'class': Variable,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5451 5452 5453 5454 5455 5456 5457

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
5458
        assert block_num == self.desc.num_blocks()
5459 5460

        # clear old blocks and desc
5461 5462 5463 5464 5465 5466 5467 5468 5469
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
5470

5471
        del desc
5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

5491 5492 5493 5494 5495 5496 5497 5498 5499 5500
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

5501 5502
                import paddle
                import paddle.static as static
5503

5504 5505 5506
                paddle.enable_static()

                prog = static.default_main_program()
5507 5508 5509 5510 5511
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
5512
                prog1 = static.default_main_program()
5513 5514 5515 5516 5517 5518 5519 5520
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
5521
    @property
5522
    def _op_role(self):
Y
yuyang18 已提交
5523 5524 5525 5526 5527 5528 5529 5530
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
5531
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
5532 5533 5534 5535
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
5536 5537
        return self._current_role

5538 5539
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
5540 5541 5542
        self._current_role = role

    @property
5543
    def _op_role_var(self):
Y
yuyang18 已提交
5544
        """
5545
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
5546

5547
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
5548 5549 5550

        Notes: This is a very low-level API. Users should not use it directly.
        """
5551
        return self.__op_role_var
Y
yuyang18 已提交
5552

5553
    @signature_safe_contextmanager
5554 5555 5556 5557 5558
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
5559 5560 5561 5562
        try:
            yield
        finally:
            self._current_role = tmp_role
5563

S
rename  
sneaxiy 已提交
5564
    @signature_safe_contextmanager
W
Wu Yi 已提交
5565
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
5566 5567 5568 5569 5570 5571 5572
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
5573
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
5574 5575 5576

        Examples:

5577
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
5578
            >>> p, g = backward(...)
W
Wu Yi 已提交
5579
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
5580 5581
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
5582
        tmp_role = self._current_role
5583
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
5584

Y
yuyang18 已提交
5585 5586
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
5587
        self.__op_role_var = [
5588 5589 5590
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
5591 5592 5593 5594 5595
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
5596

S
rename  
sneaxiy 已提交
5597
    @signature_safe_contextmanager
X
Xin Pan 已提交
5598
    def _lr_schedule_guard(self, is_with_opt=False):
5599 5600 5601 5602 5603 5604 5605
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
5606 5607 5608 5609
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
5610 5611 5612

        Examples:

5613
            >>> import paddle.fluid as fluid
5614 5615 5616 5617
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
5618 5619

        tmp_role = self._current_role
5620
        tmp_var = self.__op_role_var
5621

5622 5623
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
5624 5625
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
5626
        # TODO(typhoonzero): how to set target learning rate var
5627
        self.__op_role_var = []
5628 5629 5630 5631 5632
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
5633

5634
    def __str__(self):
Y
yuyang18 已提交
5635 5636 5637 5638 5639 5640 5641 5642 5643
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5664 5665
            import paddle
            import paddle.static as static
5666

5667 5668 5669
            paddle.enable_static()

            cur_program = static.Program()
5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5681
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
5682 5683
            type(skip_op_callstack)
        )
5684 5685 5686
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5687
            program_str += '\n'
5688
        return program_str
Y
Yang Yang(Tony) 已提交
5689

F
fengjiayi 已提交
5690 5691 5692
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5693

J
Jiabin Yang 已提交
5694 5695 5696
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5697

J
Jiabin Yang 已提交
5698
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5699

H
haowang101779990 已提交
5700
        Returns:
J
Jiabin Yang 已提交
5701
            str: The debug string describe current Program.
Y
yuyang18 已提交
5702 5703

        Raises:
J
Jiabin Yang 已提交
5704
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5705

5706 5707 5708
        Examples:
            .. code-block:: python

5709 5710 5711 5712
                import paddle
                import paddle.static as static

                paddle.enable_static()
5713

5714 5715 5716
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5717
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5718
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5719
                print("program string without detail: {}".format(prog_string))
5720
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5721
        """
5722 5723 5724
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
5725 5726
            type(throw_on_error)
        )
5727 5728 5729
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
5730 5731
            type(with_details)
        )
5732

F
fengjiayi 已提交
5733 5734 5735 5736 5737 5738
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
5739
            proto = framework_pb2.ProgramDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
5740 5741
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5742

W
Wu Yi 已提交
5743
    def _get_desc(self):
Y
yuyang18 已提交
5744 5745 5746 5747 5748 5749 5750
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5751 5752
        return self.desc

X
version  
Xin Pan 已提交
5753 5754 5755
    def _version(self):
        return self.desc._version()

5756
    def clone(self, for_test=False):
Y
yuyang18 已提交
5757
        """
5758
        .. note:::
5759 5760
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` .
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` .
5761
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5762

5763
        Create a new Program with forward content of original one when ``for_test=True``.
5764
        Create a new Program as same as the original one when ``for_test=False``.
5765

5766
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5767 5768 5769
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5770

5771 5772
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5773 5774
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
5775
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
5776

J
Jiabin Yang 已提交
5777
        For Example:
5778
          ::
L
Luo Tao 已提交
5779

5780 5781 5782 5783 5784 5785
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
5786
            pred = static.nn.fc(x=img, size=10, actvation='relu')
5787
            loss = paddle.mean(pred)
5788
            # Here we use clone before Momentum
5789 5790
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
5791
            optimizer.minimize(loss)
5792

J
Jiabin Yang 已提交
5793
        Args:
5794

5795 5796
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
5797

J
Jiabin Yang 已提交
5798
        Returns:
5799
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
5800

Y
yuyang18 已提交
5801 5802 5803

        Examples:

5804 5805 5806 5807 5808 5809 5810
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5811 5812
            .. code-block:: python

5813
                import paddle
5814 5815

                def print_prog(prog):
5816
                    for name, value in sorted(prog.block(0).vars.items()):
5817 5818 5819 5820 5821
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
5822
                        for key, value in sorted(op.all_attrs().items()):
5823 5824 5825 5826
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5827
            1. To clone a test program, the sample code is:
5828 5829
                .. code-block:: python

5830 5831 5832 5833 5834 5835
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5836 5837

                    def print_prog(prog):
5838
                        for name, value in sorted(prog.block(0).vars.items()):
5839 5840 5841 5842 5843
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
5844
                            for key, value in sorted(op.all_attrs().items()):
5845 5846 5847
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5848 5849
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5850 5851 5852

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5853 5854 5855
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5856
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5857 5858
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5859
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5860 5861
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5862
                            test_program = train_program.clone(for_test=True)
5863
                    print_prog(test_program)
J
Jiabin Yang 已提交
5864 5865 5866 5867

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5868
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5869 5870 5871 5872
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5873 5874 5875
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5876 5877 5878
                            sgd.minimize(avg_loss)


5879
            2. The clone method can be avoid if you create program for training and program for testing individually.
5880 5881
                .. code-block:: python

5882 5883 5884 5885 5886 5887
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5888 5889

                    def print_prog(prog):
5890
                        for name, value in sorted(prog.block(0).vars.items()):
5891 5892 5893 5894 5895
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
5896
                            for key, value in sorted(op.all_attrs().items()):
5897 5898
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5899

5900
                    def network():
5901
                        img = static.data(name='image', shape=[None, 784])
5902
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5903 5904
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5905
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5906 5907
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5908 5909
                        return avg_loss

5910 5911 5912 5913 5914
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5915
                            avg_loss = network()
5916
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5917
                            sgd.minimize(avg_loss)
5918
                    # the test startup program is not used.
5919 5920
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5921 5922
                            avg_loss = network()
                    print_prog(test_program_2)
5923

5924
            The two code snippets above will generate and print same programs.
5925
        """
5926

T
tangwei12 已提交
5927
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5928 5929 5930
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5931
        pruned_origin_block_id_map = None
5932
        if for_test:
5933 5934
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
5935 5936
                self.desc
            )
5937 5938
            forward_prog.blocks = [
                Block(forward_prog, i)
5939
                for i in range(forward_prog.desc.num_blocks())
5940 5941 5942
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5943
        else:
5944
            p = Program()
G
gongweibao 已提交
5945 5946
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5947
            p.desc = core.ProgramDesc(self.desc)
5948
            p.blocks = [Block(p, i) for i in range(self.desc.num_blocks())]
G
gongweibao 已提交
5949 5950

            p._current_role = self._current_role
5951
            p.__op_role_var = self.__op_role_var
5952
            p._appending_grad_times = self._appending_grad_times
5953 5954
            if hasattr(self, 'lr_scheduler'):
                p.lr_scheduler = self.lr_scheduler
G
gongweibao 已提交
5955

T
tangwei12 已提交
5956
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5957
            # its desc.
W
Wu Yi 已提交
5958
            p._sync_with_cpp()
5959

W
Wu Yi 已提交
5960
        p._copy_param_info_from(self)
5961
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5962
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5963
        return p
5964

5965
    def _prune(self, targets):
Y
yuyang18 已提交
5966 5967 5968 5969 5970 5971 5972 5973
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5974
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5975 5976 5977 5978
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5979
        """
5980
        return self._prune_with_input([], targets)
5981 5982

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5983
        """
5984
        Prune operators and variables which are not needed to generate
5985 5986
        :code:`targets`. Prune operators and variables which are needed
        to generate feeded_var
5987 5988 5989 5990 5991 5992 5993

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5994
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5995 5996 5997 5998 5999 6000
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
6001
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
6002 6003 6004
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

6005 6006
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
6007 6008
        if not isinstance(targets, list):
            targets = [targets]
6009 6010

        for var in feeded_var_names:
6011
            if not isinstance(var, str):
6012 6013
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
6014 6015
                    "str, but received %s." % type(var)
                )
6016

6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

6033 6034 6035 6036
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
6037
                    name = t.name
6038
                elif isinstance(t, str):
6039
                    name = str(t)
6040
                else:
6041 6042
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
6043 6044
                        "Variable or Operator, but received %s." % type(t)
                    )
6045 6046 6047 6048 6049 6050

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
6051 6052 6053
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
6054

6055 6056 6057 6058 6059 6060 6061 6062 6063
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
6064
                        # Skip optimize op except for optimize op in targets,
6065 6066 6067 6068 6069
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
6070

6071
                if target_op is not None:
6072 6073 6074
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
6075

6076
        res = Program()
6077
        res.desc, pruned_origin_block_id_map = core.prune(
6078 6079
            self.desc, set(feeded_var_names), targets_idx
        )
6080
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6081
        res._sync_with_cpp()
6082 6083 6084 6085 6086

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

6087 6088
        return res

X
Xin Pan 已提交
6089
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
6090
        """
F
fengjiayi 已提交
6091 6092 6093 6094 6095
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

6096
        3. change the :code:`is_test`
Y
yuyang18 已提交
6097 6098 6099
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

6100
        Args:
X
Xin Pan 已提交
6101 6102
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
6103

Y
yuyang18 已提交
6104 6105 6106 6107 6108 6109
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
6110
        res = Program()
6111
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
6112 6113 6114 6115

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
6116
        if prune_read_op:
6117
            while True:
6118 6119 6120 6121
                if (
                    read_op_idx >= root_block.op_size()
                    or root_block.op(read_op_idx).type() == 'read'
                ):
6122 6123 6124 6125 6126 6127
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
6128
                    root_block._remove_var(var.name().encode())
F
fengjiayi 已提交
6129 6130

        # change all `is_test` attributes to True
6131
        for i in range(res.desc.num_blocks()):
6132
            block = res.desc.block(i)
6133
            for j in range(block.op_size()):
6134 6135
                op = block.op(j)
                if op.has_attr('is_test'):
6136
                    op._set_bool_attr('is_test', True)
6137 6138 6139
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
6140
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6141
        res._sync_with_cpp()
6142 6143
        return res

6144
    def _remove_training_info(self, clip_extra=True):
6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

6159
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
6160 6161
        res._sync_with_cpp()

6162 6163
        # Note: The op_role and op_role_var cann't be deleted currently,
        # and we will try to remove them in the future.
6164
        common_clipped_attrs_list = ['op_callstack', 'with_quant_attr']
6165

6166
        for i in range(res.desc.num_blocks()):
6167 6168 6169 6170
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
6171 6172
            if not clip_extra:
                continue
6173 6174 6175 6176
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
6177 6178 6179

                extra_attrs_map = core.get_op_extra_attrs(op.type())

6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
6193 6194 6195
                # The extra input of op will be removed in the future
                # for name in remove_input_list:
                #     op.remove_input(name)
6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
6209
                # The extra output of op will be removed in the future
6210 6211
                for name in remove_output_list:
                    op.remove_output(name)
6212

6213 6214 6215 6216 6217 6218 6219
                op_quant_name = (
                    core.op_proto_and_checker_maker.kOpWithQuantAttrName()
                )
                quant = (
                    bool(op.attr(op_quant_name))
                    if op_quant_name in op.attr_names()
                    else False
6220 6221
                )
                quant_attrs = [
6222 6223 6224 6225 6226 6227 6228
                    op_quant_name,
                    "quantization_type",
                    "skip_quant",
                    "activation_bits",
                    "bit_length",
                    "quantize_weight_bits",
                    "weight_quant_scale",
6229
                ]
6230 6231
                for extra_attr_name in extra_attrs_map.keys():
                    op.remove_attr(extra_attr_name)
6232
                remove_attr_list = []
6233 6234 6235 6236 6237 6238
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
6239
                    if len(extra_attrs_map) > 0:
6240
                        if name in common_clipped_attrs_list:
6241
                            op.remove_attr(name)
6242
                        continue
6243 6244 6245 6246 6247 6248 6249 6250 6251 6252
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
6253 6254
        return res

6255 6256
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
6257
        """
6258
        .. note::
6259
            1. All information about parameters will be lost after serialization;
6260
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6261

6262 6263
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
6264

J
Jiabin Yang 已提交
6265
        Args:
Y
yuyang18 已提交
6266

J
Jiabin Yang 已提交
6267
            binary_str_type (str): the binary prootbuf string.
6268

J
Jiabin Yang 已提交
6269 6270
        Returns:
            Program: A deserialized Program.
6271 6272 6273 6274

        Examples:
            .. code-block:: python

6275 6276 6277 6278
                import paddle
                import paddle.static as static

                paddle.enable_static()
6279

6280 6281 6282 6283
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
6284

6285
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
6286

6287
                    z = paddle.matmul(x=x, y=y)
6288

6289 6290
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
6291

6292
                    print(static.default_main_program())
6293
                    print(prog_restored)
Y
yuyang18 已提交
6294
        """
6295 6296
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
6297
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
W
Wu Yi 已提交
6298
        p._sync_with_cpp()
6299
        return p
Y
Yu Yang 已提交
6300

6301
    @staticmethod
6302
    def _construct_from_desc(desc):
6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
6314
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
6315 6316 6317
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
6318 6319
    @property
    def random_seed(self):
Y
yuyang18 已提交
6320
        """
J
Jiabin Yang 已提交
6321
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
6322 6323
        the random seed from random device.

6324
        .. note::
6325
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
6326 6327 6328

        Returns:
            int64: Random seed in current Program
6329

6330 6331 6332 6333

        Examples:
            .. code-block:: python

6334 6335 6336
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
6337

6338 6339 6340
                paddle.enable_static()

                prog = static.default_main_program()
6341
                random_seed = prog.random_seed
6342
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
6343 6344 6345
                print(random_seed)
                ## 0
                ## the default random seed is 0
6346

6347
                # Here we need to set random seed before we use paddle.nn.functional.dropout
6348
                prog.random_seed = 1
6349
                z_var = F.dropout(x_var, 0.7)
6350

6351
                print(prog.random_seed)
6352 6353
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
6354
        """
D
dzhwinter 已提交
6355 6356
        return self._seed

Q
qiaolongfei 已提交
6357 6358
    @property
    def num_blocks(self):
Y
yuyang18 已提交
6359
        """
6360 6361
        The number of :ref:`api_guide_Block_en`  in this Program.

6362
        .. note::
6363
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
6364 6365 6366

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
6367

6368 6369 6370 6371

        Examples:
            .. code-block:: python

6372 6373 6374 6375
                import paddle
                import paddle.static as static

                paddle.enable_static()
6376

6377
                prog = static.default_main_program()
6378 6379
                num_blocks = prog.num_blocks
                print(num_blocks)
6380

6381 6382
                # print result:
                # 1
Y
yuyang18 已提交
6383
        """
Q
qiaolongfei 已提交
6384 6385
        return self.desc.num_blocks()

D
dzhwinter 已提交
6386 6387 6388
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
6389 6390
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
6391 6392
                % type(seed)
            )
D
dzhwinter 已提交
6393 6394
        self._seed = seed

Y
Yu Yang 已提交
6395
    def __repr__(self):
6396
        return self.__str__()
6397

Y
Yu Yang 已提交
6398
    def global_block(self):
Y
yuyang18 已提交
6399
        """
6400 6401
        .. note::
            This API has no effect in Dygraph mode.
6402 6403 6404

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
6405 6406
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
6407

6408 6409 6410 6411

        Examples:
            .. code-block:: python

6412 6413 6414 6415
                import paddle
                import paddle.static as static

                paddle.enable_static()
6416

6417
                prog = static.default_main_program()
6418 6419
                gb_block = prog.global_block()
                print(gb_block)
6420

Y
yuyang18 已提交
6421
        """
Y
Yu Yang 已提交
6422 6423
        return self.blocks[0]

Q
Qiao Longfei 已提交
6424
    def block(self, index):
Y
yuyang18 已提交
6425
        """
6426 6427
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6428

6429 6430
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
6431 6432
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
6433

J
Jiabin Yang 已提交
6434 6435
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
6436 6437 6438 6439

        Examples:
            .. code-block:: python

6440 6441 6442 6443
                import paddle
                import paddle.static as static

                paddle.enable_static()
6444

6445
                prog = static.default_main_program()
6446 6447
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
6448
        """
Q
Qiao Longfei 已提交
6449 6450
        return self.blocks[index]

Y
Yu Yang 已提交
6451
    def current_block(self):
Y
yuyang18 已提交
6452
        """
6453 6454
        .. note::
            This API has no effect in Dygraph mode.
6455

J
Jiabin Yang 已提交
6456 6457
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
6458

J
Jiabin Yang 已提交
6459 6460
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
6461

6462 6463 6464
        Examples:
            .. code-block:: python

6465 6466 6467 6468
                import paddle
                import paddle.static as static

                paddle.enable_static()
6469

6470
                prog = static.default_main_program()
6471 6472
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
6473
        """
Y
Yu Yang 已提交
6474 6475
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
6476
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
6477 6478 6479 6480 6481
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
6482

Y
yuyang18 已提交
6483 6484 6485 6486 6487
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
6488
        new_block_idx = len(self.blocks)
6489 6490 6491 6492 6493
        parent = (
            self.current_block()
            if parent_idx is None
            else self.block(parent_idx)
        )
F
update  
fengjiayi 已提交
6494
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
6495 6496 6497 6498
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
6499
    def _rollback(self):
Y
yuyang18 已提交
6500 6501 6502 6503 6504
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
6505 6506
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
6507
    def _sync_with_cpp(self):
Y
yuyang18 已提交
6508 6509 6510 6511 6512 6513 6514 6515 6516 6517
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
6518 6519 6520
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
6521
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
6522

W
Wu Yi 已提交
6523
    def _copy_param_info_from(self, other):
6524
        """
6525
        Copy the information of parameters from other program.
D
dzhwinter 已提交
6526

Y
yuyang18 已提交
6527 6528 6529
        Notes: This is a very low level API. Users should not invoke it
        directly.

6530 6531 6532 6533 6534 6535 6536
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6537 6538
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6539 6540
                % type(other)
            )
6541

W
Wu Yi 已提交
6542
        self.global_block()._copy_param_info_from(other.global_block())
6543

6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6555 6556
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6557 6558
                % type(other)
            )
6559 6560
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
6561
        self._parameters_on_pservers = other._parameters_on_pservers
6562
        self._endpoints = other._endpoints
6563
        self._ps_endpoint = other._ps_endpoint
6564 6565
        self._distributed_lookup_table = other._distributed_lookup_table

6566
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
6567 6568
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
6569

Y
yuyang18 已提交
6570 6571 6572
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
6573 6574
        Args:
            other(Program): Other program
6575
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
6576 6577
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is
            cloned from block 0 in other, etc. Default is None, which means default mapped,
6578
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
6579 6580 6581 6582 6583

        Returns:
            None
        """
        if not isinstance(other, Program):
6584 6585
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6586 6587
                % type(other)
            )
F
fengjiayi 已提交
6588

6589 6590
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
6591
                i: i for i in range(self.desc.num_blocks())
6592
            }
6593 6594 6595

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
6596 6597
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
6598
            for var in list(block.vars.values()):
6599 6600 6601 6602 6603 6604 6605
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
6606

6607
    def list_vars(self):
Y
yuyang18 已提交
6608
        """
6609
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
6610

J
Jiabin Yang 已提交
6611
        Returns:
6612
            iterable Tensors: The Generator will yield every Tensor in this program.
6613 6614 6615 6616

        Examples:
            .. code-block:: python

6617 6618
                import paddle
                import paddle.static as static
6619

6620 6621 6622 6623 6624
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
6625 6626
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
6627

6628 6629
                # var img : LOD_TENSOR.shape(-1, 1, 28, 28).dtype(float32).stop_gradient(True)
                # var label : LOD_TENSOR.shape(-1, 1).dtype(int64).stop_gradient(True)
Y
yuyang18 已提交
6630
        """
6631
        for each_block in self.blocks:
6632
            for each_var in list(each_block.vars.values()):
6633 6634
                yield each_var

6635 6636 6637 6638 6639 6640 6641 6642 6643 6644
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

6645 6646 6647 6648
                import paddle
                import paddle.static as static

                paddle.enable_static()
6649

6650 6651
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
6652
                hidden = static.nn.fc(x=data, size=10)
6653 6654
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
6655 6656 6657 6658 6659 6660 6661

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
6662 6663
                # persist trainable param fc_0.w_0 : LOD_TENSOR.shape(13, 10).dtype(float32).stop_gradient(False)
                # persist trainable param fc_0.b_0 : LOD_TENSOR.shape(10,).dtype(float32).stop_gradient(False)
6664 6665 6666 6667 6668 6669 6670 6671 6672 6673
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

6674 6675 6676 6677 6678 6679 6680 6681 6682
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
6683 6684 6685
            mode(str, optional): Source of the obtained parameters and buffers.
                    'opt' :  The return value only contains the variable in the optimizer.
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.
6686 6687
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
6688
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
6716
        # can not be imported at the begainning of this file.
6717 6718
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
6719

6720 6721
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
6722 6723 6724 6725
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".format(
                    type(scope)
                )
            )
6726 6727 6728 6729 6730

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
6731 6732
            raise TypeError(
                "Type of `mode` should be string, but received {}.".format(
6733 6734 6735
                    type(mode)
                )
            )
6736 6737 6738 6739 6740

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
6741 6742 6743 6744 6745
            if (
                var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH
                or var.desc.type() == core.VarDesc.VarType.FETCH_LIST
                or var.desc.type() == core.VarDesc.VarType.READER
            ):
6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
6764 6765 6766 6767
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".format(
                        mode
                    )
                )
6768 6769 6770 6771 6772 6773 6774 6775

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
6776 6777 6778 6779
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".format(
                        var.name
                    )
                )
6780 6781 6782 6783 6784 6785
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
6786
        Set parameters and persistable buffers in state_dict to program.
6787
        An exception will throw if shape or dtype of the parameters is not match.
6788

6789 6790 6791 6792
        .. note::
            This function MUST called after run start_up_program

        Args:
6793
            state_dict(dict): the dict store parameters and persistable buffers.
6794 6795
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
6796
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6797 6798
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
6799

6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
6829 6830 6831
                    type(state_dict)
                )
            )
6832 6833

        vars_dict = {var.name: var for var in self.list_vars()}
6834 6835 6836
        condition = (
            True if 'StructuredToParameterName@@' in state_dict else False
        )
6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
6848 6849
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
6850 6851
                except TypeError as err:
                    warnings.warn(
6852 6853
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
6854
            else:
6855
                warnings.warn(
6856 6857 6858 6859 6860 6861
                    (
                        "Skip loading for '{0}'. Because '{0}' not in the program.".format(
                            name
                        )
                    )
                )
6862

Y
Yu Yang 已提交
6863

6864
class Parameter(Variable, metaclass=ParameterMetaClass):
6865
    """
6866
    Parameter is derived from Variable. A parameter is a persistable
6867
    Variable, and will be updated by optimizers after each iteration.
6868
    The training of a neural network is essentially the updating of
6869 6870
    its parameters.

6871
    Relative to a general Variable, a Parameter has several its own
6872 6873
    member variables:

6874 6875 6876 6877 6878 6879 6880 6881 6882 6883
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
6884
        need_clip (bool): Whether the parameter gradient need to be cliped
6885
            in optimizer. Default is True.
6886 6887
    """

6888 6889 6890 6891 6892 6893
    def __init__(
        self,
        block,
        shape,
        dtype,
        type=core.VarDesc.VarType.LOD_TENSOR,
6894
        **kwargs,
6895
    ):
6896 6897 6898 6899 6900
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6901 6902
        for each in shape:
            if each < 0:
6903 6904
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
6905 6906 6907 6908 6909 6910 6911 6912 6913 6914
                    % list(shape)
                )

        Variable.__init__(
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
6915
            **kwargs,
6916
        )
Y
Yu Yang 已提交
6917 6918 6919 6920
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6921 6922
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6923
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6924

6925 6926
        self.need_clip = kwargs.get('need_clip', True)

6927 6928
        self.is_distributed = False

6929 6930
        self.is_parameter = True

F
fengjiayi 已提交
6931
    def __str__(self):
6932
        return self._to_readable_code()
F
fengjiayi 已提交
6933

F
update  
fengjiayi 已提交
6934 6935 6936
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6937

F
update  
fengjiayi 已提交
6938 6939 6940 6941 6942 6943 6944 6945
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6946 6947 6948 6949
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
G
GGBond8488 已提交
6950
                import paddle
6951 6952

                prog = fluid.default_main_program()
G
GGBond8488 已提交
6953
                rlt = paddle.static.data("fake_data", shape=[-1,1,1], dtype='float32')
6954 6955
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6956
        """
6957
        assert isinstance(throw_on_error, bool) and isinstance(
6958 6959
            with_details, bool
        )
F
update  
fengjiayi 已提交
6960 6961
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
6962 6963 6964 6965 6966 6967 6968
            additional_attr = (
                "trainable",
                "optimize_attr",
                "regularizer",
                "do_model_average",
                "need_clip",
            )
F
update  
fengjiayi 已提交
6969
            for attr_name in additional_attr:
6970
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
F
update  
fengjiayi 已提交
6971 6972
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6973 6974 6975 6976
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6977

W
wanghuancoder 已提交
6978
class EagerParamBase(core.eager.Tensor):
6979
    """
6980 6981
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode).
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers
6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
6999
        need_clip (bool): Whether the parameter gradient need to be cliped
7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
7014 7015
                    % list(shape)
                )
7016 7017 7018 7019 7020 7021 7022

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

7023 7024 7025
        if isinstance(shape, core.eager.Tensor):
            shape = shape.numpy()

7026
        super().__init__(
7027 7028 7029 7030 7031 7032
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            core.VarDesc.VarType.LOD_TENSOR,
            True,
        )
7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
7047 7048 7049
        # hook functions for lazy initialization
        self._init_func = None
        self._init_op_creator = None
7050 7051

    def set_init_func(self, obj):
7052
        self._init_func = obj
7053 7054 7055

    @dygraph_only
    def initialize(self):
7056 7057 7058
        assert (
            self._init_func is not None
        ), "Required self._init_func is not None, but received None."
7059
        self._init_func(self, None)
7060
        # clear function handle to release resource
7061
        self._init_func = None
7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
7074 7075
                type(trainable),
            )
7076

7077 7078 7079 7080
    def _create_init_op(self, block):
        """
        Call init_op_creator function to create initializer operation in block.
        """
7081 7082 7083
        assert (
            self._init_op_creator is not None
        ), "Required self._init_op_creator is not None, but received None."
7084
        self._init_op_creator(self, block)
7085

7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104
    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
7105
            tensor=super().__str__()
7106
        )
7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
7136 7137
        new_param._init_func = self._init_func
        new_param._init_op_creator = self._init_op_creator
7138 7139 7140 7141 7142 7143
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
7144 7145
        return new_param

7146 7147 7148
    __repr__ = __str__


Y
Yu Yang 已提交
7149
# program is a global instance.
Y
Yu Yang 已提交
7150 7151
_main_program_ = Program()
_startup_program_ = Program()
7152
_startup_program_._is_start_up_program_ = True
7153

7154

7155
def default_startup_program():
Y
Yu Yang 已提交
7156
    """
Y
yuyang18 已提交
7157 7158
    Get default/global startup program.

7159
    The :code:`paddle.nn` function will append the initialization operators into startup program.
7160
    The :code:`startup_program` will initialize the parameters by the OPs.
T
tangwei12 已提交
7161

7162 7163
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
7164

7165 7166
    Returns:
        Program: current default startup program.
7167

7168
    Returns type:
7169 7170 7171 7172

    Examples:
        .. code-block:: python

7173
            import paddle
7174

7175
            paddle.enable_static()
7176 7177 7178 7179
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
7180
    """
Y
Yu Yang 已提交
7181
    return _startup_program_
7182

7183

7184
def default_main_program():
Y
Yu Yang 已提交
7185
    """
7186
    This API can be used to get ``default main program`` which store the
7187
    descriptions of Ops and tensors.
T
tangwei12 已提交
7188

7189 7190
    For example ``z = paddle.add(x, y)`` will create a new ``add``
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` .
Y
yuyang18 已提交
7191

7192
    The ``default main program`` is the default value for ``Program`` parameter in
7193
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
7194
    :code:`default_main_program` when the program is not specified.
7195

7196
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
7197

Y
Yu Yang 已提交
7198
    Returns:
7199
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
7200 7201 7202 7203

    Examples:
        ..  code-block:: python

7204
            import paddle
7205

7206
            paddle.enable_static()
7207
            # Sample Network:
7208 7209 7210
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
7211

7212 7213 7214
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
7215
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
7216
    """
Y
Yu Yang 已提交
7217
    return _main_program_
Y
Yu Yang 已提交
7218 7219 7220 7221 7222


def switch_main_program(program):
    """
    Switch the main program to a new program.
7223

Y
Yu Yang 已提交
7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
7238
    Switch the startup program to a new program
Y
Yu Yang 已提交
7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
7251
@signature_safe_contextmanager
Y
Yu Yang 已提交
7252 7253
def program_guard(main_program, startup_program=None):
    """
7254 7255
    :api_attr: Static Graph

7256 7257 7258
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
7259

G
guofei 已提交
7260
    Args:
7261
        main_program(Program): New main program inside ``with`` statement.
7262 7263
        startup_program(Program, optional): New startup program inside ``with``
            statement. :code:`None` means not changing startup program,
G
guofei 已提交
7264 7265 7266
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
7267
    Examples:
7268
       .. code-block:: python
T
tangwei12 已提交
7269

7270
          import paddle
Y
yuyang18 已提交
7271

7272 7273 7274 7275 7276
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
7277
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
7278 7279 7280

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
7281

Y
Yu Yang 已提交
7282
    Examples:
7283
       .. code-block:: python
Y
yuyang18 已提交
7284

7285
          import paddle
7286

7287 7288 7289 7290 7291
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
7292

Y
Yu Yang 已提交
7293
    """
7294
    from .data_feeder import check_type
7295 7296 7297 7298

    check_type(
        main_program, 'main_program', Program, 'paddle.static.program_guard'
    )
Y
Yu Yang 已提交
7299 7300
    main_program = switch_main_program(main_program)
    if startup_program is not None:
7301 7302 7303 7304 7305 7306
        check_type(
            startup_program,
            'startup_program',
            Program,
            'paddle.static.program_guard',
        )
7307 7308
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
7309
        startup_program = switch_startup_program(startup_program)
7310 7311 7312 7313 7314 7315
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
7316 7317


W
Wu Yi 已提交
7318
def _get_var(name, program=None):
X
xuwei06 已提交
7319
    """
Y
yuyang18 已提交
7320
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
7321

X
xuwei06 已提交
7322 7323 7324
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
7325
        If None, default_global_program() will be used.
X
xuwei06 已提交
7326 7327 7328 7329 7330 7331 7332

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
7333
    assert isinstance(program, Program)
X
xuwei06 已提交
7334 7335

    return program.global_block().var(name)
7336 7337


7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350
@signature_safe_contextmanager
def dygraph_guard_if_declarative():
    from .dygraph.base import in_declarative_mode
    from .dygraph import Tracer

    if in_declarative_mode():
        # Under @paddle.jit.to_static decorator, we switch back dygraph mode temporarily.
        with _dygraph_guard(tracer=Tracer()):
            yield
    else:
        yield


S
rename  
sneaxiy 已提交
7351
@signature_safe_contextmanager
L
lujun 已提交
7352
def _dygraph_guard(tracer):
7353 7354 7355 7356
    tmp_tracer = global_var._dygraph_tracer_
    global_var._dygraph_tracer_ = tracer
    if tracer is not None:
        core._switch_tracer(tracer)
M
minqiyang 已提交
7357

C
Charles-hit 已提交
7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369
    try:
        yield
    finally:
        if tmp_tracer is not None:
            core._switch_tracer(tmp_tracer)
        global_var._dygraph_tracer_ = tmp_tracer


@signature_safe_contextmanager
def _static_guard():
    tmp_tracer = global_var._dygraph_tracer_
    global_var._dygraph_tracer_ = None
7370 7371 7372
    try:
        yield
    finally:
7373 7374 7375
        if tmp_tracer is not None:
            core._switch_tracer(tmp_tracer)
        global_var._dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
7376 7377


S
rename  
sneaxiy 已提交
7378
@signature_safe_contextmanager
L
lujun 已提交
7379
def _dygraph_place_guard(place):
7380 7381 7382
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
7383 7384
    _set_dygraph_tracer_expected_place(place)

7385 7386 7387
    try:
        yield
    finally:
7388
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
7389
        _set_dygraph_tracer_expected_place(_global_expected_place_)
7390 7391


7392 7393 7394 7395 7396 7397 7398 7399 7400 7401
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
7402

7403
    Note:
7404
        The API only supports static graph mode.
7405 7406 7407 7408

    A context manager that specifies the device on which the OP will be placed.

    Args:
7409
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
7410
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs.
7411 7412 7413 7414 7415 7416 7417
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
7418

7419
        .. code-block:: python
7420

7421
            # required: gpu
Z
Zhang Ting 已提交
7422
            import paddle
7423

Z
Zhang Ting 已提交
7424 7425 7426
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
7427
            if support_gpu:
Z
Zhang Ting 已提交
7428
                place = paddle.CUDAPlace(0)
7429 7430

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
7431 7432 7433
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
7434

Z
Zhang Ting 已提交
7435
            with paddle.static.device_guard("cpu"):
7436
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
7437 7438
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
7439
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
7440
                out = paddle.reshape(data1, shape=shape)
7441

Z
Zhang Ting 已提交
7442 7443
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
7444 7445 7446
            result = exe.run(fetch_list=[out])
    """

7447 7448 7449 7450 7451
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
D
duanyanhui 已提交
7452
    if device not in ['cpu', 'gpu', 'xpu', 'npu', '', None]:
7453
        raise ValueError(
K
Kim Yann 已提交
7454
            "The Attr(device) should be 'cpu' 'npu' or 'gpu', and it can also be empty string or None "
7455 7456
            "when there is no need to specify device. But received %s" % device
        )
7457 7458
    if index:
        device = ":".join([device, index])
7459
    pre_device = switch_device(device)
7460 7461 7462 7463
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
7464 7465


7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477
def _switch_cuda_graph_mode(cuda_graph_attr):
    global _current_cuda_graph_mode
    pre_mode = _current_cuda_graph_mode
    _current_cuda_graph_mode = cuda_graph_attr
    return pre_mode


@signature_safe_contextmanager
def _cuda_graph_guard(cuda_graph_attr=None):
    """

    Note:
7478
        The API only supports static graph mode.
7479

7480
    A context manager that specifies the cuda_graph_mode which indicating the cuda graph capture under static graph mode.
7481 7482 7483 7484 7485

    Args:
        cuda_graph_attr(str|None): The cuda graph attr with the format of:
                                   cuda_graph_capture_mode;memory_pool_id;cuda_graph_id
    """
7486 7487
    assert (
        not _non_static_mode()
7488
    ), "cuda_graph_guard only works under static graph mode"
7489 7490
    assert (
        core.is_compiled_with_cuda()
7491 7492 7493 7494 7495 7496 7497 7498
    ), "cuda_graph_guard context can be only used when Paddle is compiled with cuda"
    pre_mode = _switch_cuda_graph_mode(cuda_graph_attr)
    try:
        yield
    finally:
        _switch_cuda_graph_mode(pre_mode)


G
guofei 已提交
7499 7500 7501
def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
7502
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7503 7504 7505 7506 7507 7508 7509

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

7510 7511
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
7512 7513 7514 7515
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
7516 7517
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
7518 7519
        else:
            raise ValueError(
7520 7521
                "Flag %s cannot set its value through this function." % (key)
            )
G
guofei 已提交
7522 7523 7524 7525 7526


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
7527
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7528 7529 7530 7531 7532 7533 7534 7535 7536 7537

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

7538
            import paddle
G
guofei 已提交
7539 7540

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
7541
            res = paddle.get_flags(flags)
G
guofei 已提交
7542 7543 7544 7545 7546 7547
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
7548
            if _global_flags().is_public(key):
7549
                value = _global_flags()[key]
G
guofei 已提交
7550 7551 7552 7553
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
7554 7555 7556
                    'Flag %s cannot get its value through this function.'
                    % (key)
                )
G
guofei 已提交
7557
    elif isinstance(flags, str):
7558
        if _global_flags().is_public(flags):
7559
            value = _global_flags()[flags]
G
guofei 已提交
7560 7561 7562 7563
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
7564 7565
                'Flag %s cannot get its value through this function.' % (flags)
            )
G
guofei 已提交
7566 7567 7568
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
7569 7570 7571 7572 7573 7574


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586
    if isinstance(
        place,
        (
            core.Place,
            core.XPUPlace,
            core.CPUPlace,
            core.CUDAPinnedPlace,
            core.CUDAPlace,
            core.IPUPlace,
            core.CustomPlace,
        ),
    ):
7587 7588 7589 7590
        return place

    if not isinstance(place, str):
        raise ValueError(
7591 7592
            "place only support string which is 'Place' and so on."
        )
7593 7594

    place = place.lower()
7595
    if place == "cpu":
7596
        return core.CPUPlace()
7597

7598
    if place == "device":
7599 7600
        return core.Place()

7601
    # GPU
7602 7603 7604 7605
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
7606
                "The device should not be {}, since PaddlePaddle is "
7607
                "not compiled with CUDA".format(avaliable_gpu_place.group())
7608
            )
7609 7610 7611 7612 7613 7614 7615 7616 7617
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
7618 7619

    # XPU
7620 7621 7622 7623
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
7624
                "The device should not be {}, since PaddlePaddle is "
7625
                "not compiled with XPU".format(avaliable_xpu_place.group())
7626
            )
7627 7628 7629 7630
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
7631

J
jianghaicheng 已提交
7632 7633 7634 7635 7636
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
7637
                "The device should not be {}, since PaddlePaddle is "
7638
                "not compiled with IPU".format(avaliable_ipu_place.group())
7639
            )
J
jianghaicheng 已提交
7640 7641 7642 7643 7644
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

7645
    raise ValueError(
K
Kim Yann 已提交
7646
        f"Paddle supports CPUPlace, CUDAPlace, CUDAPinnedPlace, XPUPlace and IPUPlace, but received {place}."
7647
    )
7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret