framework.py 260.3 KB
Newer Older
G
gouzil 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
import collections
X
Xin Pan 已提交
16
from collections import defaultdict
H
huzhiqiang 已提交
17
from collections.abc import Iterable
Q
qiaolongfei 已提交
18
import contextlib
19
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
20
import os
F
fengjiayi 已提交
21
import re
22
import traceback
23
import copy
24
from types import MethodType, FunctionType
25

Y
Yu Yang 已提交
26
import numpy as np
27
import subprocess
S
sneaxiy 已提交
28
import multiprocessing
29
import sys
30
import logging
31
from .proto import framework_pb2
32 33

from . import core
34
from . import unique_name
35 36
import paddle.version as fluid_version
import warnings
37
import functools
38
from .variable_index import _getitem_impl_, _setitem_impl_
Y
Yu Yang 已提交
39

40
__all__ = [
41 42 43 44
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
45
    'name_scope',
J
jianghaicheng 已提交
46
    'ipu_shard_guard',
47
    'set_ipu_shard',
S
sneaxiy 已提交
48 49
    'cuda_places',
    'cpu_places',
50
    'xpu_places',
51
    'mlu_places',
S
sneaxiy 已提交
52
    'cuda_pinned_places',
J
Jiabin Yang 已提交
53
    '_non_static_mode',
L
lujun 已提交
54
    'in_dygraph_mode',
55
    'is_compiled_with_cinn',
C
chengduo 已提交
56
    'is_compiled_with_cuda',
57
    'is_compiled_with_rocm',
58
    'is_compiled_with_xpu',
59
    'is_compiled_with_npu',
60
    'Variable',
61
    'require_version',
62
    'device_guard',
G
guofei 已提交
63 64
    'set_flags',
    'get_flags',
65
]
Y
Yu Yang 已提交
66

Q
qiaolongfei 已提交
67 68 69 70
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
71 72
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
73
_dygraph_tracer_ = None
74
_in_eager_mode_ = os.environ.get('FLAGS_enable_eager_mode', '1') == '1'
75
_global_expected_place_ = None
76
_current_device = None
77
global_prog_seed = 0
78
_current_pipeline_stage = None
79
_already_patch_eager_tensor = False
J
Jiabin Yang 已提交
80
_already_patch_varbase = False
81
_current_cuda_graph_mode = None
82
_global_flags_ = core.globals()
83 84 85 86 87 88
_enable_standalone_executor_ = os.environ.get(
    'FLAGS_USE_STANDALONE_EXECUTOR', None
)
_dy2st_enable_standalone_executor_ = os.environ.get(
    'FLAGS_DY2ST_USE_STANDALONE_EXECUTOR', 1
)
J
Jiabin Yang 已提交
89 90

# Some explanation of our execution system 2022.03
91
# For now we have 3 kinds of execution system, since we refactored dygraph mode to
J
Jiabin Yang 已提交
92
# build a fast execution system for dynamic mode. But we can't just remove all legacy
93
# code once we present the new system for some historical reason. That's why we have
J
Jiabin Yang 已提交
94
# these flags.
95
#
J
Jiabin Yang 已提交
96
# 1. _non_static_mode():
97
# _non_static_mode means  we are now running in legacy dygraph mode or dygraph mode.
J
Jiabin Yang 已提交
98 99 100 101
# 2. dygraph_mode():
# This flags inidicates we are now running in dygraph mode which called eager mode before.
# 3. _in_legacy_dygraph():
# This flags inidicates we are now running in legacy dygraph mode
102
#
J
Jiabin Yang 已提交
103
# They have a relation ship as below:
104
# Both dygraph_mode and _in_legacy_dygraph are _non_static_mode, but if you are running in
J
Jiabin Yang 已提交
105
# dygraph mode means you are not in _in_legacy_dygraph.
106
#
J
Jiabin Yang 已提交
107 108 109 110 111 112
# Why we have to make different of _in_legacy_dygraph and dygraph_mode?
# In some performance issue, we find that python if statement cause server performance problem
# and we need our new dygraph mode becomes as fast as it could be. That's why we make these flags
# to make sure in most case, we find new dygraph mode first with only one if statement.


113 114 115 116 117
def _update_monkey_methods(is_eager):
    """
    Update monkey methods of VarBase or eager.Tensor while
    switching eager mode and legacy mode.
    """
118
    from paddle import _C_ops, _legacy_C_ops
119 120 121
    from .dygraph.varbase_patch_methods import monkey_patch_varbase
    from .dygraph import monkey_patch_math_varbase

122 123 124
    global _already_patch_eager_tensor
    global _already_patch_varbase

125
    assert isinstance(is_eager, bool)
126
    # switch into eager mode
127
    if is_eager:
128
        _legacy_C_ops.switch_to_eager_ops()
129 130 131 132 133 134
        if not _already_patch_eager_tensor:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_eager_tensor = True
    # switch back into legacy mode
135
    else:
136
        _legacy_C_ops.switch_to_core_ops()
137 138 139 140 141
        if not _already_patch_varbase:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_varbase = True
142

143 144 145 146 147 148
    # switch Paddle.Tensor bind type
    _switch_tensor_bind_type(is_eager)


def _switch_tensor_bind_type(is_eager):
    import paddle
149

150 151 152 153 154
    if is_eager:
        paddle.Tensor = core.eager.Tensor
    else:
        paddle.Tensor = core.VarBase
    paddle.Tensor.__qualname__ = 'Tensor'
155 156


J
Jiabin Yang 已提交
157 158 159
def _enable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = False
160
    _update_monkey_methods(is_eager=False)
J
Jiabin Yang 已提交
161 162 163 164 165


def _disable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = True
166
    _update_monkey_methods(is_eager=True)
J
Jiabin Yang 已提交
167 168 169 170 171 172 173


def _in_eager_without_dygraph_check():
    global _in_eager_mode_
    return _in_eager_mode_


174 175 176 177 178 179 180 181 182
# FIXME(dev): We haven't fully verified eager mode on XPU/NPU et.al but
# only GPU/CPU. Remove this after we improve this feature.
_is_first_import_ = True


def _fallback_legacy_dygraph():
    global _in_eager_mode_
    global _is_first_import_
    need_fallback = False
C
Chen Weihang 已提交
183
    # Only enable eager on CPU/GPU/XPU
184 185 186 187 188
    is_not_support = (
        core.is_compiled_with_npu()
        or core.is_compiled_with_ipu()
        or core.is_compiled_with_mlu()
    )
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209

    if _in_eager_mode_ and is_not_support:
        # switch into legacy dygraph mode
        warnings.warn(
            "We will fallback into legacy dygraph on NPU/XPU/MLU/IPU/ROCM devices. Because we only support new eager dygraph mode on CPU/GPU currently. "
        )
        _in_eager_mode_ = False
        if not _is_first_import_:
            _enable_legacy_dygraph()
        need_fallback = True

    need_fallback = False
    _is_first_import_ = False

    return need_fallback


# switch into legacy mode if need while import paddle
_fallback_legacy_dygraph()


J
Jiabin Yang 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
def in_dygraph_mode():
    """

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .

    Returns:
        bool: Whether paddle runs in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode

    """
    return (_dygraph_tracer_ is not None) and _in_eager_mode_


def _in_legacy_dygraph():
    return (not _in_eager_mode_) and (_dygraph_tracer_ is not None)


def _non_static_mode():
    return _dygraph_tracer_ is not None
246 247 248


@signature_safe_contextmanager
J
Jiabin Yang 已提交
249
def _test_eager_guard(place=None):
C
Chen Weihang 已提交
250 251
    # FIXME(dev): We haven't fully verified eager mode on NPU et.al but
    # only GPU/CPU/XPU. Remove this after we improve this feature.
252 253 254
    already_fallback = _fallback_legacy_dygraph()
    if not already_fallback:
        _disable_legacy_dygraph()
255
    try:
J
Jiabin Yang 已提交
256
        yield
257
    finally:
258 259
        if not already_fallback:
            _enable_legacy_dygraph()
260 261


262 263
global_ipu_index = -1
global_ipu_stage = -1
J
jianghaicheng 已提交
264 265 266 267
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


L
Leo Chen 已提交
268 269 270 271 272 273 274 275 276 277 278
@signature_safe_contextmanager
def _enable_standalone_executor(enable=True):
    global _enable_standalone_executor_
    original_ = _enable_standalone_executor_
    _enable_standalone_executor_ = enable
    try:
        yield
    finally:
        _enable_standalone_executor_ = original_


J
jianghaicheng 已提交
279
@signature_safe_contextmanager
280
def ipu_shard_guard(index=-1, stage=-1):
J
jianghaicheng 已提交
281 282 283 284
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
W
Weilong Wu 已提交
285
        index(int, optional): Specify which ipu the Tensor is computed on, (such as '0, 1, 2, 3').
286
            The default value is -1, which means the Op only run on IPU 0.
W
Weilong Wu 已提交
287
        stage(int, optional): Specify the computation order of the sharded model(such as '0, 1, 2, 3').
288
            The sharded model will be computed from small to large. The default value is -1,
J
jianghaicheng 已提交
289
            which means no pipelining computation order and run Ops in terms of graph.
290

G
gouzil 已提交
291 292 293 294 295 296 297
    Note:
        Only if the enable_manual_shard=True, the 'index' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        Only if the enable_pipelining=True, the 'stage' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        A index is allowed to match none stage or a stage. A stage is only allowed to match a new or
        duplicated index.
J
jianghaicheng 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


332 333 334 335
def set_ipu_shard(call_func, index=-1, stage=-1):
    """
    Shard the ipu with the given call function. Set every ops in call function to the given ipu sharding.

G
gouzil 已提交
336 337 338 339 340
    Note:
        Only when enable_manual_shard=True to set the index to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        Only when enable_pipelining=True to set stage to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        An index supports a corresponding None stage or a stage, and a stage only supports a new index or a duplicate index.

341 342 343 344 345
    Args:
        call_func(Layer|function): Specify the call function to be wrapped.
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is -1, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
346
            The sharded model will be computed from small to large. The default value is -1,
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
            which means no pipelining computation order and run Ops in terms of graph.

    Returns:
        The wrapped call function.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='float32')
            relu = paddle.nn.ReLU()
            relu = paddle.static.set_ipu_shard(relu, index=1, stage=1)
            relu(a)
    """

    def decorate(func):
        def wrapper(*args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return func(*args, **kwargs)

        return wrapper

    from .dygraph.layers import Layer
373

374 375 376 377 378
    if not isinstance(call_func, Layer):
        if callable(call_func):
            return decorate(call_func)
        else:
            raise TypeError(
379 380
                "Unsupported type. Only accept paddle.nn.Layer or function."
            )
381 382 383 384 385 386 387 388 389 390 391 392

    # patch paddle.nn.Layer
    class BlockFn(type(call_func)):
        def __call__(self, *args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return super().__call__(*args, **kwargs)

    BlockFn.__name__ = type(call_func).__name__
    call_func.__class__ = BlockFn
    return call_func


393 394
def require_version(min_version, max_version=None):
    """
395 396 397
    Check if the installed version of PaddlePaddle is in [min_version, max_version],
    if the installed version is lower than ``min_version`` or higher than ``max_version``,
    an exception will be thrown, NO returns if the installed version is satisfied.
398

399 400 401 402
    Args:
        min_version (str): the minimum version required (like '1.4.0').
        max_version (str, optional): the max version required (like '1.6.0'), default is None,
            meaning any version equal or higher than ``min_version`` is acceptable.
403

404 405
    Returns:
        None.
406

407 408 409 410 411 412
    Raises:
        TypeError: if the type of ``min_version`` is not str.
        TypeError: if the type of ``max_version`` is not str or type(None).
        ValueError: if the value of ``min_version`` is not in version format.
        ValueError: if the value of ``max_version`` is not in version format or None.
        Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.
413

414 415
    Examples:
        .. code-block:: python
416

417
            import paddle.fluid as fluid
418

419 420
            # any version >= 0.1.0 is acceptable.
            fluid.require_version('0.1.0')
421

422 423 424
            # if 0.1.0 <= version <= 10.0.0, it is acceptable.
            fluid.require_version(min_version='0.1.0', max_version='10.0.0')
    """
425 426 427
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
428 429
            % (type(min_version))
        )
430 431 432 433

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
434 435
            % (type(max_version))
        )
436 437 438 439 440

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
441 442
            "like '1.5.2.0', but received %s" % min_version
        )
443 444 445 446 447 448

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
449 450
                "like '1.5.2.0', but received %s" % max_version
            )
451 452

    version_installed = [
453 454 455 456
        fluid_version.major,
        fluid_version.minor,
        fluid_version.patch,
        fluid_version.rc,
457 458 459 460
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
461
        for i in range(len(ver_a)):
462 463 464 465 466 467 468 469 470 471 472
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
473 474 475
                "please make sure the version is good with your code."
                % (min_version, max_version, fluid_version.full_version)
            )
476 477 478 479
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
480 481 482
                "please make sure the version is good with your code."
                % (min_version, fluid_version.full_version)
            )
483 484 485
        return

    min_version_split = min_version.split('.')
486 487 488
    min_version_to_check = (
        min_version_split + zero_version[len(min_version_split) :]
    )
489 490 491

    if max_version is not None:
        max_version_split = max_version.split('.')
492 493 494
        max_version_to_check = (
            max_version_split + zero_version[len(max_version_split) :]
        )
495

496 497 498 499
        if (
            version_cmp(version_installed, max_version_to_check) > 0
            or version_cmp(version_installed, min_version_to_check) < 0
        ):
500 501
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
502 503
                % (min_version, max_version, fluid_version.full_version)
            )
504 505 506 507 508
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
509 510
                % (min_version, fluid_version.full_version, min_version)
            )
511 512


513 514
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
515 516 517
        assert not _non_static_mode(), (
            "We don't support %s in dynamic graph mode" % func.__name__
        )
518 519 520 521 522 523 524
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
525 526 527 528
        assert _non_static_mode(), (
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
529 530 531 532 533
        return func(*args, **kwargs)

    return __impl__


534 535 536
def _non_static_only_(func):
    def __impl__(*args, **kwargs):
        from .dygraph.base import in_declarative_mode
537 538 539 540 541

        assert _non_static_mode() or in_declarative_mode(), (
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
542 543 544 545 546
        return func(*args, **kwargs)

    return __impl__


547 548
def _static_only_(func):
    def __impl__(*args, **kwargs):
549 550 551 552
        assert not _non_static_mode(), (
            "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode."
            % func.__name__
        )
553 554 555 556 557
        return func(*args, **kwargs)

    return __impl__


558 559 560 561 562
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


563 564 565 566 567 568
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
569
# same base class.
570 571 572
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
573 574 575 576
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
577 578
            % (func.__name__, func.__name__)
        )
579 580 581 582

    return __impl__


T
tangwei12 已提交
583 584
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
585 586 587 588 589 590 591 592 593
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
594 595
                DeprecationWarning,
            )
596 597 598 599 600 601 602
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


603 604
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
605
static_only = wrap_decorator(_static_only_)
606
fake_interface_only = wrap_decorator(_fake_interface_only_)
607
non_static_only = wrap_decorator(_non_static_only_)
608 609


L
lujun 已提交
610 611
def _dygraph_tracer():
    return _dygraph_tracer_
612

W
Wu Yi 已提交
613

614 615 616 617
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
618
def _current_expected_place():
619 620 621
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
622 623 624 625 626
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
627
                _global_expected_place_ = core.CUDAPlace(_cuda_ids()[0])
628 629 630 631 632
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
633 634 635 636 637 638
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
639
                _global_expected_place_ = core.XPUPlace(_xpu_ids()[0])
640 641 642 643 644
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
645 646 647 648 649 650
        elif core.is_compiled_with_mlu():
            try:
                device_count = core.get_mlu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
651
                _global_expected_place_ = core.MLUPlace(_mlu_ids()[0])
652 653 654 655 656
            else:
                warnings.warn(
                    "You are using MLU version Paddle, but your MLU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
672
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
673 674


L
Leo Chen 已提交
675 676
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
677 678
    """
    convert VarBase tp numpy
T
tangwei12 已提交
679

680 681 682
    Args:
        var_base(VarBase) : the VarBase to convert
    Returns (np.ndarray): the np.ndarray contain the value of VarBase
L
Leo Chen 已提交
683 684 685 686 687 688 689 690 691
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
692
def _cpu_num():
693
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
694 695 696 697 698 699 700
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
701 702 703
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()
                )
            )
C
chengduo 已提交
704
        os.environ['CPU_NUM'] = str(1)
705
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
706 707 708 709 710 711 712 713
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
714
        device_ids = range(core.get_cuda_device_count())
C
chengduo 已提交
715
    return device_ids
S
sneaxiy 已提交
716 717


718 719 720 721 722
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
723
        device_ids = range(core.get_xpu_device_count())
724 725 726
    return device_ids


727 728 729 730 731
def _npu_ids():
    npus_env = os.getenv("FLAGS_selected_npus")
    if npus_env:
        device_ids = [int(s) for s in npus_env.split(",")]
    else:
732
        device_ids = range(core.get_npu_device_count())
733 734 735
    return device_ids


736 737 738 739 740
def _mlu_ids():
    mlus_env = os.getenv("FLAGS_selected_mlus")
    if mlus_env:
        device_ids = [int(s) for s in mlus_env.split(",")]
    else:
741
        device_ids = range(core.get_mlu_device_count())
742 743 744
    return device_ids


745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
def is_compiled_with_npu():
    """
    Whether this whl package can be used to run the model on NPU.

    Returns (bool): support npu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_npu = fluid.is_compiled_with_npu()
    """
    return core.is_compiled_with_npu()


775 776 777 778 779 780 781
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
782

783 784 785 786 787 788
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

789
    Returns: None
790 791 792 793 794 795 796 797 798 799

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

    Returns (bool): `True` if CINN is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
815 816 817 818
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

819
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
820 821 822 823

    Examples:
        .. code-block:: python

824
            import paddle
825
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
826 827 828 829
    """
    return core.is_compiled_with_cuda()


830 831 832 833 834 835 836 837 838 839
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
840
            support_gpu = paddle.device.is_compiled_with_rocm()
841 842 843 844
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
845
def cuda_places(device_ids=None):
L
lujun 已提交
846
    """
847
    Note:
848 849 850
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
851
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
852 853

    If :code:`device_ids` is None, environment variable of
854
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
855
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
856
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
857
    If :code:`FLAGS_selected_gpus` is not set, all visible
858
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
859 860

    If :code:`device_ids` is not None, it should be the device
861
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
862
    the returned list would be
C
Chen Weihang 已提交
863
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
864

865
    Parameters:
866
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
867 868

    Returns:
C
Chen Weihang 已提交
869
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
870 871

    Examples:
872

L
lujun 已提交
873 874
        .. code-block:: python

C
Chen Weihang 已提交
875 876
            import paddle
            import paddle.static as static
T
tangwei12 已提交
877

878
            # required: gpu
879

C
Chen Weihang 已提交
880 881 882
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
883 884

    """
885
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
886
    if device_ids is None:
C
chengduo 已提交
887
        device_ids = _cuda_ids()
S
sneaxiy 已提交
888 889 890 891 892
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


893 894 895 896
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
897 898 899 900 901 902 903 904 905
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
906
        the returned list would be
S
sunzhongkai588 已提交
907
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
908

909 910 911 912 913 914
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
915

916 917
            # required: xpu

918 919
            import paddle
            import paddle.static as static
920

921 922 923
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
924
    assert core.is_compiled_with_xpu(), "Not compiled with XPU"
925 926 927 928 929 930 931
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


932 933 934 935
def npu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_npus` environment variable to set the visible NPU device.
936

937 938 939 940 941 942 943 944 945
    This function creates a list of :code:`paddle.NPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_npus` would be checked first. For example, if
    :code:`FLAGS_selected_npus=0,1,2`, the returned list would
    be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    If :code:`FLAGS_selected_npus` is not set, all visible
    npu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of NPUs. For example, if :code:`device_ids=[0,1,2]`,
946
    the returned list would be
947
    [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
948

949 950 951 952 953 954 955 956 957 958 959
    Parameters:
        device_ids (list or tuple of int, optional): list of NPU device ids.
    Returns:
        list of paddle.NPUPlace: Created NPU place list.
    Examples:
        .. code-block:: python

            # required: npu

            import paddle
            import paddle.static as static
960

961 962 963
            paddle.enable_static()
            npu_places = static.npu_places()
    """
964
    assert core.is_compiled_with_npu(), "Not compiled with NPU"
965 966 967 968 969 970 971
    if device_ids is None:
        device_ids = _npu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.NPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
972
def cpu_places(device_count=None):
L
lujun 已提交
973
    """
C
Chen Weihang 已提交
974
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
975

S
add doc  
sneaxiy 已提交
976
    If :code:`device_count` is None, the device count would
977
    be determined by environment variable :code:`CPU_NUM`.
C
chengduo 已提交
978 979
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
980 981
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
982

983 984
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
985 986

    Returns:
C
Chen Weihang 已提交
987
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
988 989

    Examples:
990

L
lujun 已提交
991 992
        .. code-block:: python

C
Chen Weihang 已提交
993 994
            import paddle
            import paddle.static as static
T
tangwei12 已提交
995

C
Chen Weihang 已提交
996 997 998
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
999 1000
    """

S
sneaxiy 已提交
1001 1002 1003 1004 1005 1006
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
1007
    """
1008
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
1009 1010

    If :code:`device_count` is None, the device count would
1011
    be determined by environment variable :code:`CPU_NUM`.
1012 1013 1014 1015
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
1016

1017 1018
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
1019 1020

    Returns:
1021
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
1022 1023 1024 1025

    Examples:
        .. code-block:: python

1026
            import paddle.fluid as fluid
L
lujun 已提交
1027 1028 1029 1030 1031
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
1032
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
1033
    if device_count is None:
1034 1035
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
1036 1037


1038 1039
def mlu_places(device_ids=None):
    """
G
gouzil 已提交
1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052
    This function creates a list of :code:`paddle.device.MLUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_mlus` would be checked first. For example, if
    :code:`FLAGS_selected_mlus=0,1,2`, the returned list would
    be [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].
    If :code:`FLAGS_selected_mlus` is not set, all visible
    mlu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of MLUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be
    [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].

    Note:
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
        For multi-card tasks, please use `FLAGS_selected_mlus` environment variable to set the visible MLU device.

    Parameters:
        device_ids (list or tuple of int, optional): list of MLU device ids.

    Returns:
        list of paddle.device.MLUPlace: Created MLU place list.

    Examples:
        .. code-block:: python

            # required: mlu

            import paddle
            import paddle.static as static

            paddle.enable_static()
            mlu_places = static.mlu_places()
    """
1072
    assert core.is_compiled_with_mlu(), "Not compiled with MLU"
1073 1074 1075 1076 1077 1078 1079
    if device_ids is None:
        device_ids = _mlu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.MLUPlace(dev_id) for dev_id in device_ids]


1080
class NameScope:
1081 1082 1083 1084 1085 1086 1087 1088 1089 1090
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
1091 1092 1093
            new_child = NameScope(
                prefix + "_%d" % len(self._children[prefix]), self
            )
1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
1107
@signature_safe_contextmanager
1108 1109
def name_scope(prefix=None):
    """
1110

1111
    Generate hierarchical name prefix for the operators in Static Graph.
1112

1113
    Note:
T
Tao Luo 已提交
1114 1115
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
1116
        Don't use it in dygraph, since it will cause memory leak.
1117 1118

    Args:
T
Tao Luo 已提交
1119
        prefix(str, optional): prefix. Default is none.
1120 1121

    Examples:
1122

1123
        .. code-block:: python
T
Tink_Y 已提交
1124

1125 1126 1127
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
1128
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
1129
             b = a + 1
1130
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
1131
                c = b * 1
1132
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
1133
                d = c / 1
1134 1135 1136
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
1137 1138
                g = f - 1

1139
          # Op are created in the default main program.
1140
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
1156 1157
    """
    # TODO(panyx0718): Only [0-9a-z].
1158
    # in dygraph we don't need namescope since it will cause mem leak
J
Jiabin Yang 已提交
1159
    if _non_static_mode():
L
Leo Chen 已提交
1160 1161
        yield
    else:
T
tianshuo78520a 已提交
1162
        assert prefix, "namescope prefix can not be empty."
1163 1164
        global _name_scope
        _name_scope = _name_scope.child(prefix)
1165 1166 1167 1168
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
1181 1182
def generate_control_dev_var_name():
    import random
1183

W
Wu Yi 已提交
1184
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
1185 1186 1187 1188


def grad_var_name(var_name):
    """
1189 1190
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
1191 1192 1193
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
1194

1195
def convert_np_dtype_to_dtype_(np_dtype):
1196
    """
1197
    Convert the data type in numpy to the data type in Paddle.
1198

1199
    Args:
1200 1201
        np_dtype (np.dtype|str): The data type in numpy or valid data type
            string.
1202

1203
    Returns:
1204
        core.VarDesc.VarType: The data type in Paddle.
1205 1206

    """
1207 1208
    # Convert the data type string to numpy data type.
    if isinstance(np_dtype, str) and np_dtype == "bfloat16":
1209 1210 1211
        dtype = np.uint16
    else:
        dtype = np.dtype(np_dtype)
1212

1213
    if dtype == np.float32:
1214
        return core.VarDesc.VarType.FP32
1215
    elif dtype == np.float64:
1216
        return core.VarDesc.VarType.FP64
1217
    elif dtype == np.float16:
1218
        return core.VarDesc.VarType.FP16
1219
    elif dtype == np.int32:
1220
        return core.VarDesc.VarType.INT32
1221
    elif dtype == np.int16:
1222
        return core.VarDesc.VarType.INT16
1223
    elif dtype == np.int64:
1224
        return core.VarDesc.VarType.INT64
1225
    elif dtype == np.bool_:
1226
        return core.VarDesc.VarType.BOOL
1227
    elif dtype == np.uint16:
1228 1229 1230
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
1231 1232
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
1233 1234
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
1235 1236 1237 1238
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
1239
    else:
M
minqiyang 已提交
1240
        raise ValueError("Not supported numpy dtype %s" % dtype)
1241 1242 1243


def dtype_is_floating(dtype):
1244 1245 1246
    """
    Check the data type is floating or not.
    Args:
1247
        dtype(np.dtype|core.VarDesc.VarType): data type.
1248 1249 1250 1251 1252
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1253
    if not isinstance(dtype, core.VarDesc.VarType):
1254 1255
        dtype = convert_np_dtype_to_dtype_(dtype)

1256
    return dtype in [
1257 1258 1259
        core.VarDesc.VarType.FP16,
        core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64,
1260
    ]
1261 1262


Y
Yang Yang(Tony) 已提交
1263
def _debug_string_(proto, throw_on_error=True):
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1275
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1276
    if not proto.IsInitialized(error_fields) and throw_on_error:
1277 1278
        raise ValueError(
            "{0} are not initialized.\nThe message is {1}:\n".format(
1279 1280 1281
                error_fields, proto
            )
        )
Y
Yu Yang 已提交
1282 1283 1284
    return proto.__str__()


1285 1286 1287 1288 1289 1290 1291 1292
def _varbase_creator(
    type=core.VarDesc.VarType.LOD_TENSOR,
    name=None,
    shape=None,
    dtype=None,
    persistable=None,
    **kwargs
):
1293 1294 1295 1296
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

J
Jiabin Yang 已提交
1297
    if _in_eager_mode_:
1298
        eager_tensor = core.eager.Tensor(
1299
            dtype if dtype else core.VarDesc.VarType.FP32,
1300 1301
            list(shape) if shape else [],
            name,
1302
            type if type else core.VarDesc.VarType.LOD_TENSOR,
1303 1304
            True if persistable else False,
        )
1305 1306
        eager_tensor.retain_grads()
        return eager_tensor
J
Jiabin Yang 已提交
1307
    else:
1308 1309 1310 1311 1312 1313 1314
        return core.VarBase(
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            type if type else core.VarDesc.VarType.LOD_TENSOR,
            True if persistable else False,
        )
1315 1316


1317 1318 1319 1320 1321 1322 1323
def _all_is_type(vals, expected_type):
    """
    Return True if type of each element is expected_type.

    NOTE: BuiltIn all() will always return True if vals is empty.
    """
    assert isinstance(vals, (list, tuple))
1324 1325
    if not vals:
        return False
1326 1327 1328
    return all(isinstance(v, expected_type) for v in vals)


1329 1330 1331 1332 1333
class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1334
            return issubclass(t, core.eager.Tensor)
1335
        else:
J
Jiabin Yang 已提交
1336 1337
            if _in_legacy_dygraph():
                return issubclass(t, core.VarBase)
1338 1339 1340 1341 1342 1343 1344 1345
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1346
            return issubclass(t, EagerParamBase)
1347
        else:
J
Jiabin Yang 已提交
1348 1349
            if _in_legacy_dygraph():
                return issubclass(t, ParamBase)
1350 1351 1352
            return issubclass(t, Parameter)


1353
class Variable(metaclass=VariableMetaClass):
1354
    """
J
Jiabin Yang 已提交
1355

U
ustiniankw 已提交
1356 1357 1358 1359
    Notes:
        The constructor of Variable should not be invoked directly.

        In Static Graph Mode: Please use ** `Block.create_var` ** to create a Static variable which has no data until being feed.
1360

U
ustiniankw 已提交
1361
        In Dygraph Mode: Please use ** :ref:`api_fluid_dygraph_to_variable` ** to create a dygraph variable with real data.
J
Jiabin Yang 已提交
1362 1363

    In Fluid, every input and output of an OP is a variable. In most
1364
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1365 1366
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1367

1368
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1369
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1370

T
tianshuo78520a 已提交
1371
    Most of a Variable's member variables can be set to be None. It mean
1372
    it is not available or will be specified later.
1373

1374
    Examples:
1375 1376
        In Static Graph Mode:

1377 1378
        .. code-block:: python

1379
            import paddle.fluid as fluid
1380
            cur_program = fluid.Program()
1381 1382 1383 1384
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1385

J
Jiabin Yang 已提交
1386
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
1387 1388 1389 1390 1391 1392 1393 1394 1395

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1396 1397
    """

1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
    def __init__(
        self,
        block,
        type=core.VarDesc.VarType.LOD_TENSOR,
        name=None,
        shape=None,
        dtype=None,
        lod_level=None,
        capacity=None,
        persistable=None,
        error_clip=None,
        stop_gradient=False,
        is_data=False,
        need_check_feed=False,
        belong_to_optimizer=False,
        **kwargs
    ):
Y
Yu Yang 已提交
1415 1416
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1417
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1418

Y
Yu Yang 已提交
1419
        if dtype is not None:
1420
            if not isinstance(dtype, core.VarDesc.VarType):
1421
                dtype = convert_np_dtype_to_dtype_(dtype)
1422

S
Steffy-zxf 已提交
1423 1424 1425 1426
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

1427 1428 1429
        if type == core.VarDesc.VarType.SPARSE_COO:
            lod_level = None

H
hong 已提交
1430 1431
        self.belong_to_optimizer = belong_to_optimizer

1432 1433 1434
        self.error_clip = error_clip

        is_new_var = False
1435
        self.desc = self.block.desc.find_var(name.encode())
1436

1437
        if self.desc is None:
1438
            self.desc = self.block.desc.var(name.encode())
1439
            is_new_var = True
1440

1441 1442 1443
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
1444 1445 1446 1447 1448
            raise ValueError(
                "Variable '{0}' has been created before. The "
                "previous type is {1}, the new type is {2}. They"
                " are not matched".format(self.name, self.desc.type(), type)
            )
1449

1450
        if shape is not None:
1451
            if is_new_var:
1452 1453 1454 1455 1456 1457
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1458 1459
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1460 1461
                        "matched.".format(self.name, old_shape, shape)
                    )
1462 1463 1464 1465 1466 1467
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
1468 1469 1470 1471 1472 1473
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous data type is {1}, the new "
                        "data type is {2}. They are not "
                        "matched.".format(self.name, old_dtype, dtype)
                    )
1474 1475 1476 1477 1478 1479

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
1480 1481 1482 1483 1484 1485
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous lod_level is {1}, the new "
                        "lod_level is {2}. They are not "
                        "matched".format(self.name, self.lod_level, lod_level)
                    )
1486 1487 1488 1489 1490 1491
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1492 1493
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1494
                        "persistable is {2}. They are not matched".format(
1495 1496 1497
                            self.name, self.persistable, persistable
                        )
                    )
1498

1499 1500
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1501

1502 1503 1504 1505 1506 1507 1508
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1509

1510 1511
        self.block.vars[name] = self
        self.op = None
1512
        self.stop_gradient = stop_gradient
1513
        self.is_data = is_data
Y
Yu Yang 已提交
1514

1515 1516
    def detach(self):
        """
U
ustiniankw 已提交
1517

1518
        Returns a new Variable, detached from the current graph.
1519 1520
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1521

1522
        Returns:
U
ustiniankw 已提交
1523
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable), The detached Variable.
1524 1525 1526 1527

        Examples:
            .. code-block:: python

1528
                import paddle
1529

1530 1531 1532 1533
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1534

1535 1536
                # create a detached Variable
                y = x.detach()
U
ustiniankw 已提交
1537

1538
        """
1539

1540 1541 1542 1543
        assert (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ), "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"
1544 1545 1546 1547 1548 1549

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
1550 1551
            stop_gradient=True,
        )
1552

1553 1554 1555
        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]}
        )
1556
        return output
1557

1558
    @fake_interface_only
1559
    def numpy(self):
1560
        """
J
Jiabin Yang 已提交
1561
        **Notes**:
T
tianshuo78520a 已提交
1562
            **This API is ONLY available in Dygraph mode**
1563

J
Jiabin Yang 已提交
1564
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1565 1566 1567 1568 1569

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1570
            ndarray: dtype is same as current Variable
1571 1572 1573 1574 1575 1576

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1577
                from paddle.fluid.dygraph import Linear
1578 1579 1580 1581
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1582
                    linear = Linear(32, 64)
1583
                    data = to_variable(data)
1584
                    x = linear(data)
1585 1586 1587
                    print(x.numpy())

        """
1588
        pass
1589

1590
    @fake_interface_only
1591
    def backward(self, retain_graph=False):
1592
        """
J
Jiabin Yang 已提交
1593
        **Notes**:
T
tianshuo78520a 已提交
1594
            **This API is ONLY available in Dygraph mode**
1595

1596
        Run backward of current Graph which starts from current Tensor.
1597

J
Jiabin Yang 已提交
1598
        Args:
1599 1600 1601 1602
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1603

J
Jiabin Yang 已提交
1604 1605
        Returns:
            NoneType: None
1606 1607 1608 1609 1610

        Examples:
            .. code-block:: python

                import numpy as np
1611 1612
                import paddle
                paddle.disable_static()
1613 1614

                x = np.ones([2, 2], np.float32)
1615 1616 1617 1618 1619 1620 1621
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1622 1623
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1624
                loss.backward()
1625 1626

        """
1627
        pass
1628

1629
    @fake_interface_only
1630
    def gradient(self):
1631
        """
J
Jiabin Yang 已提交
1632
        **Notes**:
T
tianshuo78520a 已提交
1633
            **This API is ONLY available in Dygraph mode**
1634 1635 1636

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1637
        Returns:
1638
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1639 1640 1641 1642 1643 1644 1645

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

1646
                # example1: return ndarray
1647 1648 1649 1650 1651 1652 1653 1654 1655
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1656
                    loss2.backward()
1657 1658
                    print(loss2.gradient())

1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
                    embedding = fluid.dygraph.Embedding(
                        size=[20, 32],
                        param_attr='emb.w',
                        is_sparse=True)
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1672
        """
1673
        pass
1674

1675
    @fake_interface_only
1676
    def clear_gradient(self):
1677
        """
J
Jiabin Yang 已提交
1678
        **Notes**:
T
tianshuo78520a 已提交
1679
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1680 1681

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1682

J
Jiabin Yang 已提交
1683
        Clear  (set to ``0`` ) the Gradient of Current Variable
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701

        Returns:  None

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
                    loss2 = fluid.layers.reduce_sum(ret2)
1702
                    loss2.backward()
1703 1704 1705 1706 1707
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1708
        pass
X
Xin Pan 已提交
1709

1710 1711 1712 1713
    @fake_interface_only
    def register_hook(self, hook):
        pass

1714
    def __str__(self):
1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1731 1732
                import paddle
                import paddle.static as static
1733

1734 1735 1736
                paddle.enable_static()

                cur_program = static.Program()
1737 1738 1739 1740 1741 1742
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1743 1744
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1745 1746 1747 1748
        if (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ):
1749
            dtype_str = str(self.dtype).split('.')[1]
1750 1751 1752 1753 1754 1755 1756
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".format(
                name=self.name,
                type=type_str,
                shape=self.shape,
                dtype=dtype_str,
                stop_gradient=self.stop_gradient,
            )
1757
        else:
1758
            var_str = "{name} : {type})".format(name=self.name, type=type_str)
1759

1760
        if self.is_parameter:
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1771 1772 1773 1774
        from paddle.distributed.auto_parallel.dist_context import (
            get_default_distributed_context,
        )

1775
        dist_context = get_default_distributed_context()
1776 1777
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1778 1779 1780
            var_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_tensor
            )
1781

1782
        return var_str
Y
Yang Yang(Tony) 已提交
1783

F
update  
fengjiayi 已提交
1784
    def to_string(self, throw_on_error, with_details=False):
1785 1786 1787
        """
        Get debug string.

J
Jiabin Yang 已提交
1788 1789 1790 1791 1792
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1793

1794 1795
        Returns:
            str: The debug string.
1796 1797 1798 1799 1800

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1801
                import paddle
1802

1803
                paddle.enable_static()
1804 1805 1806 1807 1808
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1809
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1810
                print("=============with detail===============")
1811
                print(new_variable.to_string(True, True))
1812
        """
1813
        assert isinstance(throw_on_error, bool) and isinstance(
1814 1815
            with_details, bool
        )
1816
        protostr = self.desc.serialize_to_string()
1817
        proto = framework_pb2.VarDesc.FromString(bytes(protostr))
F
update  
fengjiayi 已提交
1818 1819
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1820
            additional_attr = ("error_clip",)
F
update  
fengjiayi 已提交
1821
            for attr_name in additional_attr:
1822
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
1823

F
update  
fengjiayi 已提交
1824
        return res_str
1825 1826 1827

    __repr__ = __str__

1828 1829 1830
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
1831

1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1855
    @property
1856
    def stop_gradient(self):
J
Jiabin Yang 已提交
1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1872 1873
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1874 1875 1876
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1877 1878
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1879 1880 1881 1882
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1883
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1884 1885
                assert (out1.gradient() == 0).all()
        """
1886
        return self.desc.stop_gradient()
1887

1888 1889
    @stop_gradient.setter
    def stop_gradient(self, s):
1890
        self.desc.set_stop_gradient(s)
1891

1892 1893
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1915
        return self.desc.persistable()
1916

Y
Yu Yang 已提交
1917 1918
    @persistable.setter
    def persistable(self, p):
1919
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1920

1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1946 1947
    @property
    def name(self):
J
Jiabin Yang 已提交
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1964
        return self.desc.name()
Y
Yu Yang 已提交
1965

1966 1967 1968 1969 1970 1971
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1972 1973
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1974

1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1986 1987
    @name.setter
    def name(self, new_name):
1988
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1989

Y
Yu Yang 已提交
1990 1991
    @property
    def shape(self):
J
Jiabin Yang 已提交
1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
2009
        # convert to tuple, make it as same as numpy API.
2010
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
2011 2012

    @property
F
fengjiayi 已提交
2013
    def dtype(self):
J
Jiabin Yang 已提交
2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
2030
        return self.desc.dtype()
Y
Yu Yang 已提交
2031 2032 2033

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

2047
            import paddle
J
Jiabin Yang 已提交
2048
            import paddle.fluid as fluid
2049 2050

            paddle.enable_static()
J
Jiabin Yang 已提交
2051 2052 2053 2054 2055 2056 2057
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
2058 2059
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
2060 2061
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
2062
        return self.desc.lod_level()
Y
Yu Yang 已提交
2063

Y
Yu Yang 已提交
2064 2065
    @property
    def type(self):
J
Jiabin Yang 已提交
2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
2082
        return self.desc.type()
Y
Yu Yang 已提交
2083

2084 2085 2086
    @property
    def T(self):
        """
U
ustiniankw 已提交
2087

2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
U
ustiniankw 已提交
2106

2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
2119 2120
            stop_gradient=False,
        )
2121 2122 2123 2124 2125
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
2126 2127 2128 2129 2130 2131 2132 2133 2134
            stop_gradient=False,
        )

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out], 'XShape': [input_shape]},
            attrs={'axis': perm},
        )
2135 2136
        return out

2137 2138 2139
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
2140
        Variable. It remains in the current graph, that is, the cloned Variable
2141 2142 2143 2144
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
U
ustiniankw 已提交
2145
            Variable, The cloned Variable.
2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
2165 2166
            stop_gradient=self.stop_gradient,
        )
2167

2168 2169 2170
        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]}
        )
2171 2172
        return output

W
Wu Yi 已提交
2173
    def _set_error_clip(self, error_clip):
2174
        """
U
ustiniankw 已提交
2175

2176 2177 2178 2179 2180 2181 2182
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
U
ustiniankw 已提交
2183

2184
        """
2185 2186
        self.error_clip = error_clip

2187 2188
    def _set_info(self, key, value):
        """
U
ustiniankw 已提交
2189

2190 2191 2192 2193 2194 2195
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

2196
        Returns:
2197
            None
U
ustiniankw 已提交
2198

2199 2200 2201 2202 2203 2204 2205
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
U
ustiniankw 已提交
2206

2207 2208 2209 2210 2211
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

2212
        Returns:
2213
            object
U
ustiniankw 已提交
2214

2215 2216 2217 2218 2219
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

2220 2221
    def _slice_indices(self, slice, length):
        """
U
ustiniankw 已提交
2222

2223
        Reference implementation for the slice.indices method.
U
ustiniankw 已提交
2224

2225 2226 2227 2228 2229 2230 2231 2232
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
2233
            raise ValueError("slice step can not be zero")
2234 2235 2236 2237 2238 2239 2240 2241 2242 2243

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
2244 2245 2246
            start = (
                max(start + length, lower) if start < 0 else min(start, upper)
            )
2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
2292 2293 2294
                if (index > 0 and index >= self.shape[index]) or (
                    index < 0 and (index + self.shape[index]) < 0
                ):
2295
                    raise IndexError("invalid index")
2296 2297 2298 2299 2300
                start = (
                    max(start + self.shape[index], 0)
                    if start < 0
                    else min(start, self.shape[index])
                )
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2314
    def _cloneVar(self, copy=False):
2315 2316
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2317
                name=unique_name.generate_with_ignorable_key(self.name),
2318 2319
                dtype=self.dtype,
            )
2320 2321 2322 2323
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2324
        new_var = self._cloneVar()
2325 2326 2327 2328 2329 2330
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes, 'starts': starts, 'ends': ends},
        )
2331 2332 2333
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2334
        new_var = self._cloneVar()
2335 2336 2337 2338 2339 2340 2341 2342
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={
                'axis': axis,
            },
        )
2343 2344 2345 2346 2347
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2348
                return self._cloneVar(True)
2349 2350 2351 2352 2353 2354 2355
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
2356 2357 2358
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2359 2360 2361
                        start += step
                else:
                    while start > stop:
2362 2363 2364
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2365 2366 2367 2368
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2369
                return self._cloneVar(True)
2370
            index = int(item)
2371 2372 2373
            if (index > 0 and index >= self.shape[axis]) or (
                index < 0 and (index + self.shape[axis]) < 0
            ):
2374 2375 2376 2377 2378 2379
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2380
        return _getitem_impl_(self, item)
2381

2382
    def __setitem__(self, item, value):
2383
        return _setitem_impl_(self, item, value)
2384

2385 2386
    def get_value(self, scope=None):
        """
2387
        Get the value of variable in given scope.
2388 2389

        Args:
2390
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2391 2392 2393 2394
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
U
ustiniankw 已提交
2395
            Tensor, the value in given scope.
2396 2397 2398 2399 2400

        Examples:
            .. code-block:: python

                import paddle
2401
                import paddle.static as static
2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
2426 2427
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file.
2428 2429
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
2430

2431 2432
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2433 2434 2435 2436
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2437 2438 2439 2440 2441

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
2442 2443 2444
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2445 2446 2447 2448 2449
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
U
ustiniankw 已提交
2450

2451
        Set the value to the tensor in given scope.
2452 2453 2454

        Args:
            value(Tensor/ndarray) : The value to be set.
2455
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2456 2457 2458 2459 2460
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
2461

2462 2463 2464 2465
        Examples:
            .. code-block:: python

                import paddle
2466
                import paddle.static as static
2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
U
ustiniankw 已提交
2490

2491 2492 2493
        '''

        # The 'framework' is a low-level module, and 'executor'
2494
        # can not be imported at the begainning of this file.
2495 2496 2497 2498 2499
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
2500 2501 2502 2503
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".format(
                    type(value)
                )
            )
2504 2505 2506

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2507 2508 2509 2510
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2511 2512 2513 2514 2515 2516

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
2517 2518 2519
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2520 2521 2522 2523 2524 2525 2526 2527 2528 2529

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
2530 2531 2532 2533
                    "{} expected a shape {}, but the received shape is {}.".format(
                        self.name, list(t.shape()), list(value_shape)
                    )
                )
2534 2535 2536 2537 2538 2539 2540 2541 2542 2543

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2544 2545 2546 2547
        elif p.is_npu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.NPUPlace(p.npu_device_id())
2548 2549 2550 2551
        elif p.is_mlu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.MLUPlace(p.mlu_device_id())
2552 2553 2554 2555 2556 2557 2558
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2559 2560
    def size(self):
        """
U
ustiniankw 已提交
2561

2562 2563 2564
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
U
ustiniankw 已提交
2565
            Variable, the number of elements for current Variable
2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
U
ustiniankw 已提交
2579

2580 2581 2582 2583
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
2584 2585
            dtype=core.VarDesc.VarType.INT64,
        )
2586

2587 2588 2589
        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]}
        )
2590 2591
        return output

2592 2593
    def _set_attr(self, name, val):
        """
U
ustiniankw 已提交
2594

2595 2596 2597 2598 2599
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
U
ustiniankw 已提交
2600

2601 2602 2603 2604 2605
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
U
ustiniankw 已提交
2606

2607 2608 2609 2610 2611 2612
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2613 2614
            bool, True if has this attribute.

2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

2636
    def attr(self, name):
2637 2638 2639 2640 2641 2642 2643
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2644
            int|str|list, The attribute value. The return value
2645 2646 2647 2648 2649
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
2650
    def dist_attr(self):
2651
        """
2652
        Get distributed attribute of this Variable.
2653
        """
2654
        return self.desc.dist_attr
2655

2656 2657
    @dist_attr.setter
    def dist_attr(self, dist_attr):
2658
        """
2659
        Set distributed attribute of this Variable.
2660
        """
2661
        self.desc.dist_attr = dist_attr
2662

Y
Yu Yang 已提交
2663

F
fengjiayi 已提交
2664 2665 2666
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2667

2668 2669
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2670 2671 2672 2673
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2674
        op_proto = framework_pb2.OpProto.FromString(bytes(pbstr))
F
fengjiayi 已提交
2675 2676 2677 2678
        ret_values.append(op_proto)
    return ret_values


2679
class OpProtoHolder:
2680 2681 2682 2683
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2684 2685 2686 2687 2688 2689 2690 2691
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
2692 2693
            self.__class__, '_instance'
        ), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2694 2695 2696 2697 2698 2699
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2700 2701 2702 2703 2704 2705 2706 2707
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2708 2709
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2710 2711
        return self.op_proto_map[type]

2712 2713
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2714
        custom_op_names = []
2715 2716 2717
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2718 2719 2720
                custom_op_names.append(proto.type)

        return custom_op_names
2721

2722 2723 2724 2725
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2726
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2727
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2728
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
2729
            core.op_proto_and_checker_maker.kOpDeviceAttrName(),
2730 2731
        }

F
fengjiayi 已提交
2732

2733
class Operator:
2734
    """
2735 2736 2737 2738 2739 2740 2741
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2742
        type(str): The type of operator. Default None.
2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2763
        Block.append_op or Block._prepend_op instead.
2764 2765 2766 2767

    Examples:
        .. code-block:: python

2768
            import paddle.fluid as fluid
2769
            cur_program = fluid.Program()
2770 2771 2772 2773 2774
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2775
    """
2776

2777
    OP_WITHOUT_KERNEL_SET = {
2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808
        'feed',
        'fetch',
        'recurrent',
        'go',
        'rnn_memory_helper_grad',
        'conditional_block',
        'while',
        'send',
        'recv',
        'listen_and_serv',
        'fl_listen_and_serv',
        'ncclInit',
        'select',
        'checkpoint_notify',
        'gen_bkcl_id',
        'c_gen_bkcl_id',
        'gen_nccl_id',
        'c_gen_nccl_id',
        'c_comm_init',
        'c_sync_calc_stream',
        'c_sync_comm_stream',
        'queue_generator',
        'dequeue',
        'enqueue',
        'heter_listen_and_serv',
        'c_wait_comm',
        'c_wait_compute',
        'c_gen_hccl_id',
        'c_comm_init_hccl',
        'copy_cross_scope',
        'c_gen_cncl_id',
2809
    }
2810

2811 2812 2813
    def __init__(
        self, block, desc, type=None, inputs=None, outputs=None, attrs=None
    ):
2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
        # read attr type index from op proto to avoid unexpected type
        # conversions, e.g. narrowing conversion like double to float
        try:
            proto = OpProtoHolder.instance().get_op_proto(type)
            self._attr_types = {}
            for attr in proto.attrs:
                self._attr_types[attr.name] = attr.type
        except ValueError:
            pass

J
Jiabin Yang 已提交
2824
        if _non_static_mode():
2825 2826
            if type is None:
                raise ValueError(
2827 2828
                    "`type` to initialized an Operator can not be None."
                )
J
Jiabin Yang 已提交
2829
            self._type = type
M
minqiyang 已提交
2830
            self.attrs = attrs if attrs else {}
2831 2832 2833 2834 2835 2836 2837 2838 2839 2840
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

2841 2842 2843
            # attr for static mode cuda graph
            self._cuda_graph_attr = _current_cuda_graph_mode

2844 2845 2846
            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
2847
                op_attrs[
2848 2849
                    op_maker.kOpRoleAttrName()
                ] = self.block.program._op_role
2850 2851

            role_var_name = op_maker.kOpRoleVarAttrName()
2852 2853 2854 2855
            if (
                len(self.block.program._op_role_var) != 0
                and role_var_name not in op_attrs
            ):
2856
                op_attrs[role_var_name] = self.block.program._op_role_var
2857 2858 2859 2860 2861

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2862 2863 2864 2865 2866
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2867 2868 2869
                return
            if type is None:
                raise ValueError(
2870 2871
                    "`type` to initialized an Operator can not be None."
                )
2872 2873
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2874 2875 2876
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
2877
                        '  File "{}", line {}, in {}'.format(
2878 2879 2880 2881 2882 2883
                            frame[0], frame[1], frame[2]
                        )
                    )
                    op_attrs[callstack_var_name].append(
                        '    {}'.format(frame[3])
                    )
2884 2885 2886 2887 2888 2889 2890

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2891 2892 2893 2894 2895 2896 2897 2898
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
2899 2900 2901
                    warnings.warn(
                        "The Op(%s) is not support to set device." % type
                    )
2902
                if 'force_cpu' in op_attrs:
2903
                    if (
2904 2905
                        type == 'less_than'
                        and op_attrs['force_cpu'] is not None
2906
                    ) or op_attrs['force_cpu'] != False:
2907 2908 2909
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
2910 2911
                            "used at the same time." % type
                        )
2912
            if _current_pipeline_stage is not None:
2913 2914 2915 2916 2917
                pipeline_attr_name = (
                    'pipeline_stage' + core.kAutoParallelSuffix()
                )
                self._update_desc_attr(
                    pipeline_attr_name, _current_pipeline_stage
2918
                )
2919

2920 2921 2922 2923 2924 2925 2926 2927 2928
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
2929 2930 2931
                    assert (
                        found or in_proto.dispensable
                    ), "Input {} not found".format(in_proto.name)
2932 2933
                    if found:
                        in_args = inputs[in_proto.name]
2934
                        if not isinstance(in_args, (list, tuple)):
2935 2936 2937 2938
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
2939 2940
                                % (in_proto.name, len(in_args))
                            )
2941
                        in_arg_names = []
2942
                        for index, arg in enumerate(in_args):
2943
                            if isinstance(arg, str):
2944
                                in_arg_names.append(arg)
2945
                            elif isinstance(arg, bytes):
2946
                                in_arg_names.append(arg.decode())
2947
                            elif isinstance(arg, (Variable, core.VarBase)):
2948
                                in_arg_names.append(arg.name)
2949
                            else:
2950 2951 2952 2953
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2954 2955 2956
                                    "but received : %s"
                                    % (in_proto.name, type, arg)
                                )
2957 2958 2959 2960 2961 2962 2963 2964 2965
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
2966
                        raise ValueError(
2967 2968 2969 2970 2971 2972
                            (
                                "Incorrect setting for output(s) of "
                                "operator \"%s\", should set: [%s]."
                            )
                            % (type, m.name)
                        )
2973 2974 2975 2976 2977 2978 2979 2980 2981
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
2982 2983
                            % (out_proto.name, len(out_args))
                        )
2984 2985
                    out_arg_names = []
                    for arg in out_args:
2986
                        if isinstance(arg, str):
2987 2988
                            out_arg_names.append(arg)
                        else:
2989
                            out_arg_names.append(arg.name)
2990
                        # TODO(minqiyang): could we remove variable's op in static mode?
J
Jiabin Yang 已提交
2991
                        if not _non_static_mode():
2992
                            if isinstance(arg, str):
2993 2994 2995
                                block.var(arg).op = self
                            else:
                                arg.op = self
2996 2997
                    self.desc.set_output(out_proto.name, out_arg_names)

2998
            extra_attrs_map = core.get_op_extra_attrs(type)
2999 3000 3001 3002 3003
            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
3004 3005 3006
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
3007 3008 3009
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)
3010
                for attr_name in extra_attrs_map.keys():
3011 3012 3013 3014 3015 3016
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
                        self._update_desc_attr(
                            attr_name, extra_attrs_map[attr_name]
                        )
3017 3018
                    else:
                        self._update_desc_attr(attr_name, op_attrs[attr_name])
3019

J
jianghaicheng 已提交
3020 3021
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
3022
                if global_ipu_index >= 0:
3023 3024 3025
                    self._update_desc_attr(
                        ipu_index_attr_name, global_ipu_index
                    )
3026
                if global_ipu_stage >= 0:
3027 3028 3029
                    self._update_desc_attr(
                        ipu_stage_attr_name, global_ipu_stage
                    )
J
jianghaicheng 已提交
3030

3031 3032 3033 3034 3035
            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
3036
    def _has_kernel(self, op_type):
3037 3038
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
3039
    def to_string(self, throw_on_error):
3040
        """
3041 3042
        Get debug string.

3043
        Args:
3044 3045
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
3046

3047 3048
        Returns:
            str: The debug string.
3049 3050

        """
3051
        protostr = self.desc.serialize_to_string()
3052
        proto = framework_pb2.OpDesc.FromString(bytes(protostr))
Y
Yang Yang(Tony) 已提交
3053 3054
        return _debug_string_(proto, throw_on_error)

3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3087
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3088 3089
            type(skip_op_callstack)
        )
3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

3116 3117 3118
            attr_type = self.desc.attr_type(name, True)
            if attr_type == core.AttrType.VAR:
                attr_var_name = self.desc.attr(name, True).name()
3119 3120 3121
                a = "{name} = Var['{value}']".format(
                    name=name, type=attr_type, value=attr_var_name
                )
3122 3123 3124 3125 3126 3127 3128 3129 3130 3131
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.VARS:
                attr_var_names = [
                    "'%s'" % var.name() for var in self.desc.attr(name, True)
                ]
                a = "{name} = Vars[{value}]".format(
3132 3133
                    name=name, type=attr_type, value=','.join(attr_var_names)
                )
3134 3135 3136 3137 3138
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3139 3140
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
3141 3142
                    name=name, type=attr_type, value=self._block_attr_id(name)
                )
3143 3144 3145 3146 3147 3148 3149
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
3150 3151
                    name=name, type=attr_type, value=self._blocks_attr_ids(name)
                )
3152 3153 3154 3155 3156
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3157
            # it is bytes of serialized protobuf
3158 3159 3160 3161 3162
            if (
                is_compiled_with_cinn()
                and self.type == 'cinn_launch'
                and name == 'compilation_key'
            ):
3163 3164
                key = self.desc.attr(name)
                v = core.get_serialize_comile_key(key)
3165 3166 3167 3168 3169 3170 3171 3172 3173
                prog = Program()
                prog = prog.parse_from_string(v)
                s = prog._to_readable_code()
                lines = s.split('\n')
                value = '\n'.join(['      ' + line for line in lines])
                value = '\n' + value
            else:
                value = self.desc.attr(name)

3174 3175 3176
            a = "{name} = {value}".format(
                name=name, type=attr_type, value=value
            )
3177

3178 3179 3180 3181
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

3182 3183 3184 3185
        from paddle.distributed.auto_parallel.dist_context import (
            get_default_distributed_context,
        )

3186
        dist_context = get_default_distributed_context()
3187 3188
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
3189 3190 3191
            attrs_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_op
            )
3192

3193
        if outputs_str != "{}":
3194 3195 3196 3197 3198 3199
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".format(
                outputs=outputs_str,
                op_type=self.type,
                inputs=inputs_str,
                attrs=attrs_str,
            )
3200
        else:
3201 3202 3203
            op_str = "{op_type}(inputs={inputs}, {attrs})".format(
                op_type=self.type, inputs=inputs_str, attrs=attrs_str
            )
3204 3205
        return op_str

Y
Yang Yang(Tony) 已提交
3206
    def __str__(self):
3207
        return self._to_readable_code()
3208 3209 3210

    __repr__ = __str__

F
fengjiayi 已提交
3211 3212
    @property
    def type(self):
3213
        return self.desc.type()
F
fengjiayi 已提交
3214 3215

    def input(self, name):
3216
        r"""
U
ustiniankw 已提交
3217

3218
        Get the input arguments according to the input parameter name.
3219

3220 3221
        Args:
            name(str): The input parameter name.
3222

3223
        Returns:
U
ustiniankw 已提交
3224
            list, return the list of argument names that associated with \
3225
                the specific parameter name.
U
ustiniankw 已提交
3226

3227
        """
F
fengjiayi 已提交
3228 3229
        return self.desc.input(name)

W
Wu Yi 已提交
3230
    def _rename_input(self, old_name, new_name):
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
3241
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
3242

W
Wu Yi 已提交
3243
    def _rename_output(self, old_name, new_name):
3244 3245 3246 3247 3248 3249 3250 3251 3252 3253
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
3254
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
3255

F
fengjiayi 已提交
3256 3257 3258 3259
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
3260 3261 3262 3263 3264 3265 3266 3267
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
3268
    def output(self, name):
3269
        r"""
3270
        Get output arguments by the output parameter name.
3271

3272 3273
        Args:
            name(str): The output parameter name.
3274

3275 3276 3277
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
3278
        """
F
fengjiayi 已提交
3279 3280 3281 3282 3283 3284
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

3285 3286 3287 3288 3289 3290
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
3291 3292
            "Can't find op itself in it's block. It could be a bug of Paddle."
        )
3293

F
fengjiayi 已提交
3294
    def has_attr(self, name):
3295
        """
3296 3297
        Whether this Operator has the attribute with name or not.

3298
        Args:
3299
            name(str): the attribute name.
3300

3301 3302
        Returns:
            bool: True if has this attribute.
3303 3304

        """
F
fengjiayi 已提交
3305 3306 3307
        return self.desc.has_attr(name)

    def attr_type(self, name):
3308
        """
3309
        Get the type of attribute by attribute's name.
3310

3311 3312
        Args:
            name(str): the attribute name.
3313

3314 3315
        Returns:
            core.AttrType: the attribute type.
3316
        """
3317
        return self.desc.attr_type(name, True)
F
fengjiayi 已提交
3318

W
Wu Yi 已提交
3319
    def _set_attr(self, name, val):
3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
3330 3331
        self._update_desc_attr(name, val)

3332 3333 3334
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
3346 3347 3348 3349 3350
        if isinstance(val, Variable):
            self.desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            self.desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
Q
Qiyang Min 已提交
3351
            self.desc.set_block_attr(name, val.desc)
3352
        elif isinstance(val, list) and val and _all_is_type(val, Block):
3353
            self.desc.set_blocks_attr(name, [v.desc for v in val])
3354 3355 3356
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
Q
Qiyang Min 已提交
3357 3358
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394
            self._update_desc_plain_attr(name, val)

    def _update_desc_plain_attr(self, name, val):
        desc = self.desc
        if not hasattr(self, "_attr_types") or (name not in self._attr_types):
            desc._set_attr(name, val)
            return

        type_index = self._attr_types[name]
        if type_index == core.AttrType.BOOL:
            desc._set_bool_attr(name, val)
        elif type_index == core.AttrType.INT:
            desc._set_int32_attr(name, val)
        elif type_index == core.AttrType.LONG:
            desc._set_int64_attr(name, val)
        elif type_index == core.AttrType.FLOAT:
            desc._set_float32_attr(name, val)
        # elif type_index == core.AttrType.FLOAT64:
        #     desc._set_float64_attr(name, val)
        elif type_index == core.AttrType.STRING:
            desc._set_str_attr(name, val)
        elif type_index == core.AttrType.BOOLS:
            desc._set_bools_attr(name, val)
        elif type_index == core.AttrType.INTS:
            desc._set_int32s_attr(name, val)
        elif type_index == core.AttrType.LONGS:
            desc._set_int64s_attr(name, val)
        elif type_index == core.AttrType.FLOATS:
            desc._set_float32s_attr(name, val)
        elif type_index == core.AttrType.FLOAT64S:
            desc._set_float64s_attr(name, val)
        elif type_index == core.AttrType.STRINGS:
            desc._set_strs_attr(name, val)
        else:
            # defaults to old methods
            desc._set_attr(name, val)
Y
yuyang18 已提交
3395

F
fengjiayi 已提交
3396 3397
    @property
    def attr_names(self):
3398
        return self.desc.attr_names(True)
F
fengjiayi 已提交
3399 3400

    def attr(self, name):
3401
        """
3402 3403
        Get the attribute by name.

3404
        Args:
3405
            name(str): the attribute name.
3406

3407 3408
        Returns:
            bool|int|str|float|list: The attribute value. The return value
3409 3410
            can be any valid attribute type.
        """
F
fengjiayi 已提交
3411
        return self.desc.attr(name)
Y
Yu Yang 已提交
3412

W
Wu Yi 已提交
3413
    def _block_attr_id(self, name):
3414
        """
G
gongweibao 已提交
3415
        Get the block attribute's id by name.
3416

3417 3418
        Args:
            name(str): the attribute name.
3419

3420 3421
        Returns:
            int: the block index.
3422
        """
W
Wu Yi 已提交
3423
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
3424

W
Wu Yi 已提交
3425
    def _block_attr(self, name):
G
gongweibao 已提交
3426 3427 3428 3429 3430 3431 3432 3433 3434 3435
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
3436
        id = self._block_attr_id(name)
3437
        assert id >= 0 and id < len(self.block.program.blocks)
G
gongweibao 已提交
3438 3439
        return self.block.program.blocks[id]

W
Wu Yi 已提交
3440
    def _blocks_attr(self, name):
G
gongweibao 已提交
3441 3442 3443 3444 3445 3446 3447 3448 3449 3450
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
3451
        for i in self._blocks_attr_ids(name):
3452
            assert i >= 0 and i < len(self.block.program.blocks)
G
gongweibao 已提交
3453 3454 3455 3456
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
3457
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
3458 3459 3460 3461 3462 3463 3464 3465 3466 3467
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
3468
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
3469

3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480
    def _var_attr(self, name):
        """
        Get the Variable attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variable: the Variable attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3481 3482 3483 3484 3485
        assert (
            attr_type == core.AttrType.VAR
        ), "Required type attr({}) is Variable, but received {}".format(
            name, attr_type
        )
3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499
        attr_var_name = self.desc.attr(name, True).name()
        return self.block._var_recursive(attr_var_name)

    def _vars_attr(self, name):
        """
        Get the Variables attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variables: the Variables attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3500 3501 3502 3503 3504
        assert (
            attr_type == core.AttrType.VARS
        ), "Required type attr({}) is list[Variable], but received {}".format(
            name, attr_type
        )
3505 3506 3507 3508 3509 3510
        attr_vars = [
            self.block._var_recursive(var.name())
            for var in self.desc.attr(name, True)
        ]
        return attr_vars

J
JiayiFeng 已提交
3511
    def all_attrs(self):
F
fengjiayi 已提交
3512
        """
3513 3514 3515
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3516
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3517 3518 3519 3520
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
3521
            attr_type = self.desc.attr_type(n, True)
G
gongweibao 已提交
3522
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3523
                attr_map[n] = self._block_attr(n)
3524
            elif attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3525
                attr_map[n] = self._blocks_attr(n)
3526 3527 3528 3529 3530 3531
            elif attr_type == core.AttrType.VAR:
                attr_map[n] = self._var_attr(n)
            elif attr_type == core.AttrType.VARS:
                attr_map[n] = self._vars_attr(n)
            else:
                attr_map[n] = self.attr(n)
G
gongweibao 已提交
3532

F
fengjiayi 已提交
3533 3534
        return attr_map

3535 3536 3537
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3538 3539 3540 3541

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3542 3543 3544
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3545 3546 3547 3548 3549 3550 3551 3552

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3553 3554
            return False

3555 3556 3557 3558 3559 3560
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3561
    @property
3562
    def dist_attr(self):
3563
        """
3564
        Get distributed attribute of this Variable.
3565
        """
3566
        return self.desc.dist_attr
3567

3568 3569
    @dist_attr.setter
    def dist_attr(self, dist_attr):
3570
        """
3571
        Set distributed attribute of this Variable.
3572
        """
3573
        self.desc.dist_attr = dist_attr
3574

Y
Yu Yang 已提交
3575

3576
class Block:
3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3591
        use `Program._create_block()` to create a block.
3592 3593 3594 3595

    Examples:
        .. code-block:: python

3596 3597 3598
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3599 3600 3601 3602 3603 3604 3605 3606 3607
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3608
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3609
        self.desc = program.desc.block(idx)
3610
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3611
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3612
        self.program = program
3613
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
3614

3615
    def __str__(self):
3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3650
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3651 3652
            type(skip_op_callstack)
        )
3653 3654 3655 3656 3657 3658 3659
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
3660 3661
                op._to_readable_code(skip_op_callstack)
            )
3662 3663
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3664

F
fengjiayi 已提交
3665 3666
    def to_string(self, throw_on_error, with_details=False):
        """
3667 3668
        Get debug string.

F
fengjiayi 已提交
3669 3670
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3671
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3672
            with_details(bool): more details about variables and parameters
3673 3674
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3675

3676 3677
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3678
        """
3679
        assert isinstance(throw_on_error, bool) and isinstance(
3680 3681
            with_details, bool
        )
F
fengjiayi 已提交
3682
        if with_details:
F
fengjiayi 已提交
3683
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3684
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
3685 3686 3687
                self.idx,
                self.parent_idx,
            )
3688
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3689
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
3690 3691
                    r"\n    \1", var.to_string(throw_on_error, with_details)
                )
F
fengjiayi 已提交
3692
            for op in self.ops:
F
fengjiayi 已提交
3693
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
3694 3695
                    r"\n    \1", op.to_string(throw_on_error)
                )
F
fengjiayi 已提交
3696 3697 3698
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3699
            proto = framework_pb2.BlockDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
3700 3701
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3702 3703 3704

    __repr__ = __str__

Y
Yu Yang 已提交
3705 3706
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3707
        return self.desc.parent
Y
Yu Yang 已提交
3708

Y
Yu Yang 已提交
3709 3710 3711 3712
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3713
    def _set_forward_block_idx(self, idx):
3714 3715 3716 3717 3718 3719 3720 3721 3722
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3723
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3724

3725 3726 3727 3728 3729 3730 3731 3732
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3733 3734
    @property
    def idx(self):
Y
Yu Yang 已提交
3735
        return self.desc.id
Y
Yu Yang 已提交
3736

Q
Qiao Longfei 已提交
3737
    def var(self, name):
3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3751
        if not isinstance(name, str):
M
minqiyang 已提交
3752
            raise TypeError(
3753 3754 3755
                "var require string as parameter, but get %s instead."
                % (type(name))
            )
Y
Yu Yang 已提交
3756 3757
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3758
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3759
        return v
Q
Qiao Longfei 已提交
3760

X
Xin Pan 已提交
3761
    def _find_var_recursive(self, name):
3762 3763 3764 3765 3766 3767 3768
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3769
            Variable: the Variable with the giving name. Or None if not found.
3770
        """
Y
Yu Yang 已提交
3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3795
        return None
Y
Yu Yang 已提交
3796

X
Xin Pan 已提交
3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3816

Q
Qiao Longfei 已提交
3817
    def all_parameters(self):
3818
        return list(self.iter_parameters())
3819

3820
    def iter_parameters(self):
3821 3822 3823 3824 3825
        return (
            item[1]
            for item in self.vars.items()
            if isinstance(item[1], Parameter)
        )
Q
Qiao Longfei 已提交
3826

Y
Yu Yang 已提交
3827
    def create_var(self, *args, **kwargs):
J
Jiabin Yang 已提交
3828
        if _non_static_mode():
L
Leo Chen 已提交
3829 3830
            var = _varbase_creator(*args, **kwargs)
        else:
3831 3832 3833
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3834
        return var
Y
Yu Yang 已提交
3835

Q
Qiao Longfei 已提交
3836 3837 3838
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3839
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3840 3841
        """
        Rename variable in vars and ops' inputs and outputs
3842 3843

        Args:
3844 3845
            name(str|bytes): the name that need to be renamed.
            new_name(str|bytes): the name that need to rename to.
3846 3847 3848 3849 3850 3851 3852 3853

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3854
        """
3855 3856
        # Ensure the type of name and new_name is str
        name = name.decode() if isinstance(name, bytes) else name
3857 3858 3859
        new_name = (
            new_name.decode() if isinstance(new_name, bytes) else new_name
        )
M
minqiyang 已提交
3860

T
typhoonzero 已提交
3861
        if not self.has_var(name):
3862
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3863 3864
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3865
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3866 3867 3868 3869 3870 3871
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3872
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3873 3874 3875 3876
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3877
        orig_var_type = v.type
3878
        self.desc._rename_var(name.encode(), new_name.encode())
W
Wu Yi 已提交
3879
        # NOTE: v is destroyed by C++ after calling _rename_var.
3880
        d = self.desc.find_var(new_name.encode())
T
typhoonzero 已提交
3881
        if var_type == "Parameter":
L
Leo Chen 已提交
3882
            if in_dygraph_mode():
3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893
                var = EagerParamBase(
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
3894
            else:
J
Jiabin Yang 已提交
3895
                if _in_legacy_dygraph():
3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906
                    var = ParamBase(
                        d.shape(),
                        d.dtype(),
                        type=orig_var_type,
                        name=new_name,
                        stop_gradient=stop_gradient,
                        trainable=trainable,
                        optimize_attr=optimize_attr,
                        regularizer=regularizer,
                        error_clip=error_clip,
                    )
J
Jiabin Yang 已提交
3907
                else:
3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
                    var = Parameter(
                        self,
                        d.shape(),
                        d.dtype(),
                        type=orig_var_type,
                        name=new_name,
                        stop_gradient=stop_gradient,
                        trainable=trainable,
                        optimize_attr=optimize_attr,
                        regularizer=regularizer,
                        error_clip=error_clip,
                    )
T
typhoonzero 已提交
3920
        elif var_type == "Variable":
3921 3922 3923 3924 3925 3926 3927
            var = Variable(
                self,
                type=orig_var_type,
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient,
            )
T
wip  
typhoonzero 已提交
3928

W
Wu Yi 已提交
3929
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3930 3931 3932
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3933
        self._sync_with_cpp()
3934
        return var
T
typhoonzero 已提交
3935

3936 3937 3938
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
3939
        self.desc._remove_var(name.encode())
3940 3941
        del self.vars[name]

Y
Yu Yang 已提交
3942 3943
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3944
        param = None
L
Leo Chen 已提交
3945
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3946
            param = EagerParamBase(*args, **kwargs)
L
Leo Chen 已提交
3947
        else:
J
Jiabin Yang 已提交
3948 3949 3950 3951
            if _in_legacy_dygraph():
                param = ParamBase(*args, **kwargs)
            else:
                param = Parameter(global_block, *args, **kwargs)
3952

3953
        if 'initializer' in kwargs:
3954 3955 3956 3957 3958

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3959
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3960
                        # are treated as initialization ops that cause error.
3961
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3962 3963
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
3964 3965 3966
                            "c_broadcast",
                            "c_sync_comm_stream",
                            "coalesce_tensor",
3967
                        ]:
3968
                            continue
3969 3970 3971 3972 3973 3974 3975
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
3976 3977 3978 3979 3980 3981
                raise RuntimeError(
                    "param "
                    + param.name
                    + " is inited by multiple init ops "
                    + str(init_ops)
                )
3982
            elif init_ops_len == 1:
3983
                # TODO already inited, do nothing, should log a warning
3984 3985 3986
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3987
        return param
Y
Yu Yang 已提交
3988

Y
Yu Yang 已提交
3989
    def append_op(self, *args, **kwargs):
3990 3991 3992 3993 3994 3995
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
J
Jiabin Yang 已提交
3996
        if _non_static_mode():
3997
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
3998
            inplace_map = kwargs.get("inplace_map", None)
J
Jiabin Yang 已提交
3999
            type = kwargs.get("type", None)
4000 4001 4002
            warnings.warn(
                "Op `%s` is executed through `append_op` under the dynamic mode, "
                "the corresponding API implementation needs to be upgraded to "
4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013
                "using `_C_ops` method." % type,
                DeprecationWarning,
            )
            op = Operator(
                block=self,
                desc=None,
                type=type,
                inputs=None,
                outputs=None,
                attrs=attrs,
            )
4014

M
minqiyang 已提交
4015 4016 4017
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
4018
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
4019

4020 4021 4022 4023 4024 4025 4026 4027
            _dygraph_tracer().trace_op(
                type,
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
                inplace_map,
            )
M
minqiyang 已提交
4028
        else:
4029 4030
            from paddle.fluid.dygraph.base import param_guard

4031
            op_desc = self.desc.append_op()
4032 4033 4034 4035 4036 4037
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
4038 4039 4040 4041 4042 4043 4044 4045
                op = Operator(
                    block=self,
                    desc=op_desc,
                    type=kwargs.get("type", None),
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None),
                )
4046

M
minqiyang 已提交
4047
            self.ops.append(op)
M
minqiyang 已提交
4048

4049 4050
        return op

W
Wu Yi 已提交
4051
    def _insert_op(self, index, *args, **kwargs):
4052 4053 4054 4055 4056 4057 4058 4059 4060
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
4061
        self._sync_with_cpp()
F
fangshuixun007 已提交
4062
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
4063

4064 4065
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
4066
        Insert an Operator according to the giving arguments,
4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
4081 4082 4083 4084 4085 4086 4087 4088 4089
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
4090 4091
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
4092
        self.desc._remove_op(index, index + 1)
4093 4094
        del self.ops[index]

W
Wu Yi 已提交
4095
    def _slice_ops(self, start, end):
4096 4097 4098 4099 4100 4101 4102 4103 4104 4105
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
4106
        return self.ops[start:end]
Y
Yancey1989 已提交
4107

W
Wu Yi 已提交
4108
    def _prepend_op(self, *args, **kwargs):
J
Jiabin Yang 已提交
4109
        if _non_static_mode():
J
Jiabin Yang 已提交
4110 4111
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122
            op = Operator(
                self, None, type=type, inputs=None, outputs=None, attrs=attrs
            )

            _dygraph_tracer().trace_op(
                type,
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
            )
M
minqiyang 已提交
4123
        else:
4124
            op_desc = self.desc._prepend_op()
4125 4126 4127 4128 4129 4130 4131 4132
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None),
            )
M
minqiyang 已提交
4133
            self.ops.insert(0, op)
4134

Y
Yu Yang 已提交
4135 4136
        return op

W
Wu Yi 已提交
4137
    def _sync_with_cpp(self):
4138
        """
4139 4140
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
4141
        """
Q
Qiao Longfei 已提交
4142 4143 4144
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
4145 4146 4147 4148
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
4149 4150 4151 4152 4153 4154 4155 4156
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient,
                    )
4157
                else:
4158 4159 4160 4161 4162 4163
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient,
                    )
Q
Qiao Longfei 已提交
4164

4165
        # sync variables removed from c++ end
4166
        for var in list(self.vars.keys()):
4167
            if not self.desc.find_var(var.encode()):
4168 4169
                self.vars.pop(var)

Q
Qiao Longfei 已提交
4170
        # sync operators from cpp
4171 4172 4173 4174
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
4191 4192 4193 4194 4195

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
4196
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
4197 4198 4199 4200 4201 4202 4203

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

4204 4205 4206 4207 4208
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
4209 4210 4211 4212 4213 4214
                self.ops
            ) and ops_in_cpp_index < len(ops_in_cpp):
                if (
                    self.ops[ops_in_python_index].desc
                    != ops_in_cpp[ops_in_cpp_index]
                ):
4215 4216 4217 4218 4219
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
4220 4221 4222 4223
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
4224
    def _copy_param_info_from(self, other):
4225
        """
4226 4227
        Copy the information of parameters from the other block.

4228
        Args:
4229 4230 4231 4232 4233
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
4234 4235 4236 4237 4238

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
4239
            raise TypeError(
4240 4241
                "_copy_param_info_from should be invoked with Block"
            )
4242
        for p in other.iter_parameters():
4243 4244 4245
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
4246 4247
                # if the Parameter is pruned, v may be None
                continue
4248
            assert isinstance(v, Variable)
4249
            new_p = None
L
Leo Chen 已提交
4250
            if in_dygraph_mode():
4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262
                new_p = EagerParamBase(
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4263
            else:
J
Jiabin Yang 已提交
4264
                if _in_legacy_dygraph():
4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276
                    new_p = ParamBase(
                        shape=v.shape,
                        dtype=v.dtype,
                        type=v.type,
                        lod_level=v.lod_level,
                        stop_gradient=p.stop_gradient,
                        trainable=p.trainable,
                        optimize_attr=p.optimize_attr,
                        regularizer=p.regularizer,
                        error_clip=p.error_clip,
                        name=v.name,
                    )
J
Jiabin Yang 已提交
4277 4278 4279 4280 4281 4282 4283
                else:
                    new_p = Parameter(
                        block=self,
                        shape=v.shape,
                        dtype=v.dtype,
                        type=v.type,
                        lod_level=v.lod_level
4284 4285
                        if v.type == core.VarDesc.VarType.LOD_TENSOR
                        else None,
J
Jiabin Yang 已提交
4286 4287 4288 4289 4290
                        stop_gradient=p.stop_gradient,
                        trainable=p.trainable,
                        optimize_attr=p.optimize_attr,
                        regularizer=p.regularizer,
                        error_clip=p.error_clip,
4291 4292
                        name=v.name,
                    )
4293 4294
            self.vars[new_p.name] = new_p

4295
    def _clone_variable(self, var, force_persistable=True):
4296 4297
        """
        Clone a variable into current block.
4298

4299 4300
        Args:
            var: the variable to be cloned.
4301 4302 4303
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
4304 4305

        Returns:
4306
            Variable: the new  variable cloned from 'var' in current block.
4307 4308
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
4309 4310 4311
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
4312 4313 4314
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
tangwei12 已提交
4315
        elif var.type == core.VarDesc.VarType.RAW:
4316 4317 4318
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
typhoonzero 已提交
4319 4320 4321 4322 4323 4324
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
4325
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4326
                is_data=var.is_data,
4327 4328
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4329 4330 4331 4332 4333 4334 4335
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
4336
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4337
                is_data=var.is_data,
4338 4339
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4340
        return ret_var
4341

Y
Yu Yang 已提交
4342

4343 4344 4345 4346
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
4347
# of some old Python Variables(all old Python Operators) may have
4348
# been destructed.
4349 4350 4351
def _apply_pass(
    main_program, startup_program, pass_name, pass_attrs={}, pass_attr_types={}
):
4352 4353 4354 4355
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
4356 4357 4358 4359 4360 4361 4362
    attrs = core.apply_pass(
        tmp_main_program,
        tmp_startup_program,
        pass_name,
        pass_attrs,
        pass_attr_types,
    )
4363 4364 4365 4366 4367
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


4368
class IrNode:
4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4380 4381 4382
        assert isinstance(
            node, core.Node
        ), 'node must be the instance of core.Node.'
4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

4464
    def remove_input_by_id(self, node_id):
4465 4466 4467 4468 4469 4470
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4471
        self.node.remove_input(node_id)
4472

4473
    def remove_input(self, node):
4474 4475 4476 4477
        """
        Remove a node from inputs.

        Args:
4478
            node(IrNode): the node being removed.
4479
        """
4480
        self.node.remove_input(node.node)
4481

4482
    def append_input(self, node):
4483 4484 4485 4486
        """
        Append a node in inputs.

        Args:
4487
            node(IrNode): the node being appended.
4488
        """
4489
        self.node.append_input(node.node)
4490 4491 4492 4493 4494 4495 4496 4497

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

4498
    def remove_output_by_id(self, node_id):
4499 4500 4501 4502 4503 4504
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4505
        self.node.remove_output(node_id)
4506

4507
    def remove_output(self, node):
4508 4509 4510 4511
        """
        Remove a node from outputs.

        Args:
4512
            node(IrNode): the node being removed.
4513
        """
4514
        self.node.remove_output(node.node)
4515

4516
    def append_output(self, node):
4517 4518 4519 4520
        """
        Append a node in outputs.

        Args:
4521
            node(IrNode): the node being appended.
4522
        """
4523
        self.node.append_output(node.node)
4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4558 4559 4560
        assert (
            isinstance(node, core.Node) and node.is_var()
        ), 'node must be the instance of core.Node and it must be a variable node.'
4561
        super().__init__(node)
4562 4563 4564 4565 4566 4567 4568 4569 4570
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
4571 4572 4573
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4574 4575 4576 4577 4578 4579 4580 4581 4582
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
4583 4584 4585
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4586 4587
        return self.node.var().persistable()

4588 4589 4590 4591 4592 4593 4594
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
4595 4596 4597
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4598 4599 4600 4601 4602 4603 4604 4605 4606
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
4607 4608 4609
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4610 4611 4612 4613 4614 4615 4616 4617 4618
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
4619 4620 4621
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4622 4623
        return self.node.var().shape()

4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4657 4658 4659
        assert (
            isinstance(node, core.Node) and node.is_op()
        ), 'node must be the instance of core.Node and it must be a operator node.'
4660
        super().__init__(node)
4661 4662 4663 4664 4665 4666 4667 4668 4669 4670
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
4671 4672 4673
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4674 4675
        self.node.op()._rename_input(old_input_name, new_input_name)

4676 4677 4678 4679 4680 4681 4682 4683
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
4684 4685 4686
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4687 4688
        self.node.op()._rename_output(old_output_name, new_output_name)

4689 4690 4691 4692 4693 4694 4695 4696 4697 4698
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4699 4700 4701
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4714 4715 4716
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4717 4718 4719 4720 4721 4722 4723 4724 4725
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
4726 4727 4728
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4729 4730
        return self.node.op().set_type(new_type)

4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
4745 4746 4747
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4748
        desc = self.node.op()
4749 4750 4751 4752 4753
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
4754
            desc.set_block_attr(name, val.desc)
4755
        elif isinstance(val, list) and val and _all_is_type(val, Block):
4756
            desc.set_blocks_attr(name, [v.desc for v in val])
4757 4758 4759
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
4760 4761 4762 4763
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4764 4765 4766 4767 4768 4769 4770
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
4771 4772 4773
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4774 4775 4776 4777 4778 4779 4780 4781 4782
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
4783 4784 4785
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4786 4787
        return self.node.op().output_arg_names()

4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4809
class IrGraph:
4810
    """
4811
    Python IrGraph. Beneath it is a core.Graph, which is used for
4812
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4813 4814
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4815 4816 4817 4818
    """

    def __init__(self, graph, for_test=False):
        """
4819 4820
        Construct an IrGraph using core.Graph.

4821 4822 4823 4824 4825
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
4826 4827
            graph, core.Graph
        ), 'graph must be the instance of core.Graph.'
4828 4829 4830
        self.graph = graph
        self._for_test = for_test

4831 4832 4833 4834
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4835 4836 4837
        Warns:
            The method only clones the graph structure, not its attributes.

4838 4839 4840
        Returns:
            IrGraph: A new and duplicated graph.
        """
4841
        g = self.graph.clone()
4842 4843
        return IrGraph(g, self._for_test)

4844
    def is_test(self):
4845 4846 4847
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4848 4849
        return self._for_test

W
WangZhen 已提交
4850
    def all_nodes(self):
4851 4852 4853
        """
        Return all nodes included in the graph as a set.
        """
4854
        return {IrNode(node) for node in self.graph.nodes()}
4855

4856
    def all_var_nodes(self):
4857 4858 4859
        """
        Return all variable nodes included in the graph as a set.
        """
4860
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4861

4862
    def all_persistable_nodes(self):
4863 4864 4865
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4866 4867
        persistable_nodes = set()
        for node in self.graph.nodes():
4868 4869 4870 4871 4872
            if (
                node.is_var()
                and node.var() is not None
                and node.var().persistable()
            ):
W
WangZhen 已提交
4873
                persistable_nodes.add(node)
4874
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4875

4876
    def all_op_nodes(self):
4877 4878 4879
        """
        Return all operator nodes included in the graph as a set.
        """
4880
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4881

4882 4883 4884 4885 4886 4887
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
4888
            IrGraph(self.graph.get_sub_graph(i), for_test=for_test)
4889 4890 4891 4892 4893 4894 4895 4896 4897
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4898
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4910
            IrVarNode: the created persistable variable node.
4911
        """
4912 4913 4914 4915 4916
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4917
        return IrVarNode(self.graph.create_var_node(var_desc))
4918 4919

    def create_var_node(self, name, var_type, shape, var_dtype):
4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4931
            IrVarNode: the created variable node.
4932 4933
        """

4934 4935 4936 4937
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4938
        return IrVarNode(self.graph.create_var_node(var_desc))
4939

4940 4941 4942 4943 4944 4945
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4946
    def create_var_node_from_desc(self, var_desc):
4947 4948 4949 4950 4951 4952 4953 4954
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4955
            IrVarNode: the created variable node.
4956
        """
4957
        return IrVarNode(self.graph.create_var_node(var_desc))
4958 4959

    def create_op_node(self, op_type, attrs, inputs, outputs):
4960 4961 4962 4963 4964 4965 4966
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4967
            outputs(dict): the outputs of the operator node.
4968 4969

        Returns:
4970
            IrOpNode: the created operator node.
4971
        """
4972 4973
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4974
        for attr, value in attrs.items():
4975
            self._update_desc_attr(op_desc, attr, value)
4976
        for input_name, var_nodes in inputs.items():
4977 4978
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
4979 4980 4981
            op_desc.set_input(
                input_name, [var_node.name() for var_node in var_nodes]
            )
4982
        for output_name, var_nodes in outputs.items():
4983 4984
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
4985 4986 4987
            op_desc.set_output(
                output_name, [var_node.name() for var_node in var_nodes]
            )
4988
        return IrOpNode(self.graph.create_op_node(op_desc))
4989 4990

    def create_op_node_from_desc(self, op_desc):
4991 4992 4993 4994 4995 4996 4997
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4998
            IrOpNode: the created operator node.
4999
        """
5000
        return IrOpNode(self.graph.create_op_node(op_desc))
5001 5002

    def update_input_link(self, old_input_node, new_input_node, op_node):
5003 5004 5005 5006
        """
        Update the input's link of a operator node.

        Args:
5007 5008 5009
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
5010
        """
5011 5012 5013 5014 5015
        assert (
            old_input_node.node in self.graph.nodes()
            and new_input_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
5016 5017 5018 5019
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
5020
        op_node.rename_input(old_input_node.name(), new_input_node.name())
5021

5022 5023 5024 5025 5026 5027 5028 5029 5030
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
5031 5032 5033 5034 5035
        assert (
            old_output_node.node in self.graph.nodes()
            and new_output_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
5036 5037 5038 5039 5040 5041
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

5042
    def link_to(self, node_in, node_out):
5043 5044 5045 5046
        """
        Connect two nodes.

        Args:
5047 5048
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
5049
        """
5050
        assert node_in.node in self.graph.nodes(), (
5051 5052
            'node_in(%s) must be in the graph nodes.' % node_in.node.name()
        )
5053
        assert node_out.node in self.graph.nodes(), (
5054 5055
            'node_out(%s) must be in the graph nodes.' % node_out.node.name()
        )
5056 5057
        node_in.append_output(node_out)
        node_out.append_input(node_in)
5058 5059

    def safe_remove_nodes(self, remove_nodes):
5060 5061 5062 5063 5064 5065 5066
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
5067
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
5068 5069 5070 5071
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
5072 5073
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
5074

Z
Zhen Wang 已提交
5075 5076 5077 5078 5079 5080 5081 5082
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5083
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
5084 5085 5086 5087
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5088
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
5089 5090 5091
                        ]
                    else:
                        var_nodes[each_var_name].append(
5092 5093
                            self._find_node_by_name(node.outputs, each_var_name)
                        )
Z
Zhen Wang 已提交
5094 5095
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
5096
    def has_circle(self):
5097 5098 5099 5100 5101 5102
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
5103 5104 5105
        return core.has_circle(self.graph)

    def graph_num(self):
5106 5107 5108 5109 5110 5111
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
5112 5113 5114
        return core.graph_num(self.graph)

    def topology_sort(self):
5115 5116 5117
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
5118
        Notes: the `graph` can not contain a circle.
5119 5120

        Returns:
Z
Zhen Wang 已提交
5121
            list(IrNode): nodes in topology order.
5122
        """
5123
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
5124
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
5125 5126

    def build_adjacency_list(self):
5127 5128 5129 5130
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
5131
            dict{IrNode: set(IrNode)}: the adjacency list.
5132
        """
5133 5134
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
5135
        for k, v in adj_list.items():
5136 5137
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
5138

5139 5140 5141 5142 5143 5144 5145 5146
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
5147
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
5148 5149 5150 5151 5152
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

5153 5154
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
5155 5156 5157 5158
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True,
            )
5159 5160
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
5161 5162 5163
                print(
                    'The {} is saved as the dot filetype.'.format(dot_file_path)
                )
5164

5165
        remove_ctr_vars = set()
5166
        if remove_ctr_var:
5167
            for node in self.all_var_nodes():
5168 5169 5170
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
5171 5172
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

5173 5174
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
5175 5176 5177 5178 5179 5180
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
5181 5182 5183 5184
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
5185 5186
        if not os.path.exists(save_path):
            os.makedirs(save_path)
5187 5188 5189 5190 5191 5192 5193
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
5194 5195 5196
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
5197
        WARN: When the graph includes backward operator nodes, the
5198 5199 5200 5201 5202 5203
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
5204
        convert_pass = core.get_pass('graph_to_program_pass')
5205 5206
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
5207 5208 5209 5210
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

5211 5212 5213 5214 5215 5216 5217 5218
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
5219
        assert target_node is not None, (
5220 5221
            "Cannot find the target node (%s)in the giving set." % node_name
        )
5222 5223
        return target_node

5224 5225 5226 5227
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
5228 5229 5230 5231 5232
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
5233
            desc.set_block_attr(name, val.desc)
5234
        elif isinstance(val, list) and val and _all_is_type(val, Block):
5235
            desc.set_blocks_attr(name, [v.desc for v in val])
5236 5237 5238
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
5239 5240 5241 5242 5243
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


5244
class Program:
D
dzhwinter 已提交
5245
    """
5246
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
5247
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
5248
    it will contain nested block.
5249

J
Jiabin Yang 已提交
5250 5251 5252
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
5253

J
Jiabin Yang 已提交
5254
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
5255
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
5256 5257 5258 5259 5260 5261 5262
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
5263
    **Notes**:
5264 5265 5266
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
5267 5268

    Returns:
J
Jiabin Yang 已提交
5269
        Program: An empty Program.
D
dzhwinter 已提交
5270 5271

    Examples:
5272 5273
        .. code-block:: python

5274 5275 5276 5277
            import paddle
            import paddle.static as static

            paddle.enable_static()
5278

5279 5280 5281 5282 5283
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
5284
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
5285 5286 5287

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
5288 5289 5290

    """

5291 5292
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
5293 5294
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
5295 5296
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
5297
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
5298
        self.__op_role_var = []
T
tangwei12 已提交
5299

5300 5301
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
5302
        self._is_distributed = False
5303
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
5304
        self._is_chief = False
5305 5306 5307
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
5308
        self._endpoints = []
5309 5310 5311
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
5312
        self._trainers_endpoints = []
5313
        # the distributed lookup table names
T
tangwei12 已提交
5314
        self._distributed_lookup_table = None
5315 5316 5317

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
5318 5319
        self._use_lamb = False

5320 5321 5322
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
5323

5324 5325 5326
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
5327
        self._program_config = None
5328

H
hutuxian 已提交
5329 5330 5331
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

5332 5333 5334
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

5335 5336 5337
        # appending gradients times
        self._appending_grad_times = 0

5338 5339
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
5340 5341
            "__auto_checkpoint_program__"
        )
5342

5343 5344
        # compiled program, i.e. Graph
        self._graph = None
5345 5346
        # to tag whether is startup_program
        self._is_start_up_program_ = False
5347

5348
    def _find_var_class_kwargs(self, new_desc):
5349 5350 5351 5352 5353 5354 5355 5356
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

5357 5358 5359 5360
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
5361
            if idx > (len(self.blocks) - 1):
5362
                self._create_block()
5363 5364 5365 5366 5367 5368 5369 5370 5371 5372
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
                    'shape': get_var_desc_attr_or_none(
                        new_var_desc,
                        "shape",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'dtype': get_var_desc_attr_or_none(
                        new_var_desc,
                        "dtype",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'lod_level': get_var_desc_attr_or_none(
                        new_var_desc,
                        "lod_level",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'error_clip': old_var.error_clip
                    if old_var is not None
                    else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None
                    else False,
                    'is_data': old_var.is_data
                    if old_var is not None
                    else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None
                    else False,
5414 5415 5416
                }

                if isinstance(old_var, Parameter):
5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433
                    kwargs.update(
                        {
                            'trainable': old_var.trainable,
                            'optimize_attr': old_var.optimize_attr,
                            'regularizer': old_var.regularizer,
                            'do_model_average': old_var.do_model_average,
                            'need_clip': old_var.need_clip,
                            'is_distributed': old_var.is_distributed,
                            'is_parameter': old_var.is_parameter,
                        }
                    )
                    block_new_vars.append(
                        {
                            'class': Parameter,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5434 5435
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
5436 5437 5438 5439 5440 5441
                    block_new_vars.append(
                        {
                            'class': Variable,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5442 5443 5444 5445 5446 5447 5448

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
5449
        assert block_num == self.desc.num_blocks()
5450 5451

        # clear old blocks and desc
5452 5453 5454 5455 5456 5457 5458 5459 5460
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
5461

5462
        del desc
5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

5482 5483 5484 5485 5486 5487 5488 5489 5490 5491
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

5492 5493
                import paddle
                import paddle.static as static
5494

5495 5496 5497
                paddle.enable_static()

                prog = static.default_main_program()
5498 5499 5500 5501 5502
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
5503
                prog1 = static.default_main_program()
5504 5505 5506 5507 5508 5509 5510 5511
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
5512
    @property
5513
    def _op_role(self):
Y
yuyang18 已提交
5514 5515 5516 5517 5518 5519 5520 5521
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
5522
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
5523 5524 5525 5526
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
5527 5528
        return self._current_role

5529 5530
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
5531 5532 5533
        self._current_role = role

    @property
5534
    def _op_role_var(self):
Y
yuyang18 已提交
5535
        """
5536
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
5537

5538
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
5539 5540 5541

        Notes: This is a very low-level API. Users should not use it directly.
        """
5542
        return self.__op_role_var
Y
yuyang18 已提交
5543

5544
    @signature_safe_contextmanager
5545 5546 5547 5548 5549
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
5550 5551 5552 5553
        try:
            yield
        finally:
            self._current_role = tmp_role
5554

S
rename  
sneaxiy 已提交
5555
    @signature_safe_contextmanager
W
Wu Yi 已提交
5556
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
5557 5558 5559 5560 5561 5562 5563
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
5564
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
5565 5566 5567

        Examples:

5568
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
5569
            >>> p, g = backward(...)
W
Wu Yi 已提交
5570
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
5571 5572
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
5573
        tmp_role = self._current_role
5574
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
5575

Y
yuyang18 已提交
5576 5577
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
5578
        self.__op_role_var = [
5579 5580 5581
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
5582 5583 5584 5585 5586
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
5587

S
rename  
sneaxiy 已提交
5588
    @signature_safe_contextmanager
X
Xin Pan 已提交
5589
    def _lr_schedule_guard(self, is_with_opt=False):
5590 5591 5592 5593 5594 5595 5596
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
5597 5598 5599 5600
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
5601 5602 5603

        Examples:

5604
            >>> import paddle.fluid as fluid
5605 5606 5607 5608
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
5609 5610

        tmp_role = self._current_role
5611
        tmp_var = self.__op_role_var
5612

5613 5614
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
5615 5616
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
5617
        # TODO(typhoonzero): how to set target learning rate var
5618
        self.__op_role_var = []
5619 5620 5621 5622 5623
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
5624

5625
    def __str__(self):
Y
yuyang18 已提交
5626 5627 5628 5629 5630 5631 5632 5633 5634
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5655 5656
            import paddle
            import paddle.static as static
5657

5658 5659 5660
            paddle.enable_static()

            cur_program = static.Program()
5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5672
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
5673 5674
            type(skip_op_callstack)
        )
5675 5676 5677
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5678
            program_str += '\n'
5679
        return program_str
Y
Yang Yang(Tony) 已提交
5680

F
fengjiayi 已提交
5681 5682 5683
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5684

J
Jiabin Yang 已提交
5685 5686 5687
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5688

J
Jiabin Yang 已提交
5689
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5690

H
haowang101779990 已提交
5691
        Returns:
J
Jiabin Yang 已提交
5692
            str: The debug string describe current Program.
Y
yuyang18 已提交
5693 5694

        Raises:
J
Jiabin Yang 已提交
5695
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5696

5697 5698 5699
        Examples:
            .. code-block:: python

5700 5701 5702 5703
                import paddle
                import paddle.static as static

                paddle.enable_static()
5704

5705 5706 5707
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5708
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5709
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5710
                print("program string without detail: {}".format(prog_string))
5711
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5712
        """
5713 5714 5715
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
5716 5717
            type(throw_on_error)
        )
5718 5719 5720
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
5721 5722
            type(with_details)
        )
5723

F
fengjiayi 已提交
5724 5725 5726 5727 5728 5729
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
5730
            proto = framework_pb2.ProgramDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
5731 5732
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5733

W
Wu Yi 已提交
5734
    def _get_desc(self):
Y
yuyang18 已提交
5735 5736 5737 5738 5739 5740 5741
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5742 5743
        return self.desc

X
version  
Xin Pan 已提交
5744 5745 5746
    def _version(self):
        return self.desc._version()

5747
    def clone(self, for_test=False):
Y
yuyang18 已提交
5748
        """
5749
        .. note:::
5750 5751
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` .
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` .
5752
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5753

5754
        Create a new Program with forward content of original one when ``for_test=True``.
5755
        Create a new Program as same as the original one when ``for_test=False``.
5756

5757
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5758 5759 5760
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5761

5762 5763
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5764 5765
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
5766
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
5767

J
Jiabin Yang 已提交
5768
        For Example:
5769
          ::
L
Luo Tao 已提交
5770

5771 5772 5773 5774 5775 5776
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
5777
            pred = static.nn.fc(x=img, size=10, actvation='relu')
5778
            loss = paddle.mean(pred)
5779
            # Here we use clone before Momentum
5780 5781
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
5782
            optimizer.minimize(loss)
5783

J
Jiabin Yang 已提交
5784
        Args:
5785

5786 5787
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
5788

J
Jiabin Yang 已提交
5789
        Returns:
5790
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
5791

Y
yuyang18 已提交
5792 5793 5794

        Examples:

5795 5796 5797 5798 5799 5800 5801
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5802 5803
            .. code-block:: python

5804
                import paddle
5805 5806

                def print_prog(prog):
5807
                    for name, value in sorted(prog.block(0).vars.items()):
5808 5809 5810 5811 5812
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
5813
                        for key, value in sorted(op.all_attrs().items()):
5814 5815 5816 5817
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5818
            1. To clone a test program, the sample code is:
5819 5820
                .. code-block:: python

5821 5822 5823 5824 5825 5826
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5827 5828

                    def print_prog(prog):
5829
                        for name, value in sorted(prog.block(0).vars.items()):
5830 5831 5832 5833 5834
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
5835
                            for key, value in sorted(op.all_attrs().items()):
5836 5837 5838
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5839 5840
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5841 5842 5843

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5844 5845 5846
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5847
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5848 5849
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5850
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5851 5852
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5853
                            test_program = train_program.clone(for_test=True)
5854
                    print_prog(test_program)
J
Jiabin Yang 已提交
5855 5856 5857 5858

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5859
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5860 5861 5862 5863
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5864 5865 5866
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5867 5868 5869
                            sgd.minimize(avg_loss)


5870
            2. The clone method can be avoid if you create program for training and program for testing individually.
5871 5872
                .. code-block:: python

5873 5874 5875 5876 5877 5878
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5879 5880

                    def print_prog(prog):
5881
                        for name, value in sorted(prog.block(0).vars.items()):
5882 5883 5884 5885 5886
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
5887
                            for key, value in sorted(op.all_attrs().items()):
5888 5889
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5890

5891
                    def network():
5892
                        img = static.data(name='image', shape=[None, 784])
5893
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5894 5895
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5896
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5897 5898
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5899 5900
                        return avg_loss

5901 5902 5903 5904 5905
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5906
                            avg_loss = network()
5907
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5908
                            sgd.minimize(avg_loss)
5909
                    # the test startup program is not used.
5910 5911
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5912 5913
                            avg_loss = network()
                    print_prog(test_program_2)
5914

5915
            The two code snippets above will generate and print same programs.
5916
        """
5917

T
tangwei12 已提交
5918
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5919 5920 5921
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5922
        pruned_origin_block_id_map = None
5923
        if for_test:
5924 5925
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
5926 5927
                self.desc
            )
5928 5929
            forward_prog.blocks = [
                Block(forward_prog, i)
5930
                for i in range(forward_prog.desc.num_blocks())
5931 5932 5933
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5934
        else:
5935
            p = Program()
G
gongweibao 已提交
5936 5937
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5938
            p.desc = core.ProgramDesc(self.desc)
5939
            p.blocks = [Block(p, i) for i in range(self.desc.num_blocks())]
G
gongweibao 已提交
5940 5941

            p._current_role = self._current_role
5942
            p.__op_role_var = self.__op_role_var
5943
            p._appending_grad_times = self._appending_grad_times
5944 5945
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
5946

T
tangwei12 已提交
5947
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5948
            # its desc.
W
Wu Yi 已提交
5949
            p._sync_with_cpp()
5950

W
Wu Yi 已提交
5951
        p._copy_param_info_from(self)
5952
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5953
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5954
        return p
5955

5956
    def _prune(self, targets):
Y
yuyang18 已提交
5957 5958 5959 5960 5961 5962 5963 5964
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5965
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5966 5967 5968 5969
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5970
        """
5971
        return self._prune_with_input([], targets)
5972 5973

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5974
        """
5975
        Prune operators and variables which are not needed to generate
5976 5977
        :code:`targets`. Prune operators and variables which are needed
        to generate feeded_var
5978 5979 5980 5981 5982 5983 5984

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5985
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5986 5987 5988 5989 5990 5991
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5992
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5993 5994 5995
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5996 5997
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
5998 5999
        if not isinstance(targets, list):
            targets = [targets]
6000 6001

        for var in feeded_var_names:
6002
            if not isinstance(var, str):
6003 6004
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
6005 6006
                    "str, but received %s." % type(var)
                )
6007

6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

6024 6025 6026 6027
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
6028
                    name = t.name
6029
                elif isinstance(t, str):
6030
                    name = str(t)
6031
                else:
6032 6033
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
6034 6035
                        "Variable or Operator, but received %s." % type(t)
                    )
6036 6037 6038 6039 6040 6041

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
6042 6043 6044
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
6045

6046 6047 6048 6049 6050 6051 6052 6053 6054
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
6055
                        # Skip optimize op except for optimize op in targets,
6056 6057 6058 6059 6060
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
6061

6062
                if target_op is not None:
6063 6064 6065
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
6066

6067
        res = Program()
6068
        res.desc, pruned_origin_block_id_map = core.prune(
6069 6070
            self.desc, set(feeded_var_names), targets_idx
        )
6071
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6072
        res._sync_with_cpp()
6073 6074 6075 6076 6077

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

6078 6079
        return res

X
Xin Pan 已提交
6080
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
6081
        """
F
fengjiayi 已提交
6082 6083 6084 6085 6086
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

6087
        3. change the :code:`is_test`
Y
yuyang18 已提交
6088 6089 6090
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

6091
        Args:
X
Xin Pan 已提交
6092 6093
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
6094

Y
yuyang18 已提交
6095 6096 6097 6098 6099 6100
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
6101
        res = Program()
6102
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
6103 6104 6105 6106

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
6107
        if prune_read_op:
6108
            while True:
6109 6110 6111 6112
                if (
                    read_op_idx >= root_block.op_size()
                    or root_block.op(read_op_idx).type() == 'read'
                ):
6113 6114 6115 6116 6117 6118
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
6119
                    root_block._remove_var(var.name().encode())
F
fengjiayi 已提交
6120 6121

        # change all `is_test` attributes to True
6122
        for i in range(res.desc.num_blocks()):
6123
            block = res.desc.block(i)
6124
            for j in range(block.op_size()):
6125 6126
                op = block.op(j)
                if op.has_attr('is_test'):
6127
                    op._set_bool_attr('is_test', True)
6128 6129 6130
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
6131
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6132
        res._sync_with_cpp()
6133 6134
        return res

6135
    def _remove_training_info(self, clip_extra=True):
6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

6150
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
6151 6152
        res._sync_with_cpp()

6153 6154
        # Note: The op_role and op_role_var cann't be deleted currently,
        # and we will try to remove them in the future.
6155
        common_clipped_attrs_list = ['op_callstack', 'with_quant_attr']
6156

6157
        for i in range(res.desc.num_blocks()):
6158 6159 6160 6161
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
6162 6163
            if not clip_extra:
                continue
6164 6165 6166 6167
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
6168 6169 6170

                extra_attrs_map = core.get_op_extra_attrs(op.type())

6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
6184 6185 6186
                # The extra input of op will be removed in the future
                # for name in remove_input_list:
                #     op.remove_input(name)
6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
6200
                # The extra output of op will be removed in the future
6201 6202
                for name in remove_output_list:
                    op.remove_output(name)
6203

6204 6205 6206 6207 6208 6209 6210
                op_quant_name = (
                    core.op_proto_and_checker_maker.kOpWithQuantAttrName()
                )
                quant = (
                    bool(op.attr(op_quant_name))
                    if op_quant_name in op.attr_names()
                    else False
6211 6212
                )
                quant_attrs = [
6213 6214 6215 6216 6217 6218 6219
                    op_quant_name,
                    "quantization_type",
                    "skip_quant",
                    "activation_bits",
                    "bit_length",
                    "quantize_weight_bits",
                    "weight_quant_scale",
6220
                ]
6221 6222
                for extra_attr_name in extra_attrs_map.keys():
                    op.remove_attr(extra_attr_name)
6223
                remove_attr_list = []
6224 6225 6226 6227 6228 6229
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
6230
                    if len(extra_attrs_map) > 0:
6231
                        if name in common_clipped_attrs_list:
6232
                            op.remove_attr(name)
6233
                        continue
6234 6235 6236 6237 6238 6239 6240 6241 6242 6243
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
6244 6245
        return res

6246 6247
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
6248
        """
6249
        .. note::
6250
            1. All information about parameters will be lost after serialization;
6251
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6252

6253 6254
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
6255

J
Jiabin Yang 已提交
6256
        Args:
Y
yuyang18 已提交
6257

J
Jiabin Yang 已提交
6258
            binary_str_type (str): the binary prootbuf string.
6259

J
Jiabin Yang 已提交
6260 6261
        Returns:
            Program: A deserialized Program.
6262 6263 6264 6265

        Examples:
            .. code-block:: python

6266 6267 6268 6269
                import paddle
                import paddle.static as static

                paddle.enable_static()
6270

6271 6272 6273 6274
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
6275

6276
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
6277

6278
                    z = paddle.matmul(x=x, y=y)
6279

6280 6281
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
6282

6283
                    print(static.default_main_program())
6284
                    print(prog_restored)
Y
yuyang18 已提交
6285
        """
6286 6287
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
6288
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
W
Wu Yi 已提交
6289
        p._sync_with_cpp()
6290
        return p
Y
Yu Yang 已提交
6291

6292
    @staticmethod
6293
    def _construct_from_desc(desc):
6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
6305
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
6306 6307 6308
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
6309 6310
    @property
    def random_seed(self):
Y
yuyang18 已提交
6311
        """
J
Jiabin Yang 已提交
6312
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
6313 6314
        the random seed from random device.

6315
        .. note::
6316
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
6317 6318 6319

        Returns:
            int64: Random seed in current Program
6320

6321 6322 6323 6324

        Examples:
            .. code-block:: python

6325 6326 6327
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
6328

6329 6330 6331
                paddle.enable_static()

                prog = static.default_main_program()
6332
                random_seed = prog.random_seed
6333
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
6334 6335 6336
                print(random_seed)
                ## 0
                ## the default random seed is 0
6337

6338
                # Here we need to set random seed before we use paddle.nn.functional.dropout
6339
                prog.random_seed = 1
6340
                z_var = F.dropout(x_var, 0.7)
6341

6342
                print(prog.random_seed)
6343 6344
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
6345
        """
D
dzhwinter 已提交
6346 6347
        return self._seed

Q
qiaolongfei 已提交
6348 6349
    @property
    def num_blocks(self):
Y
yuyang18 已提交
6350
        """
6351 6352
        The number of :ref:`api_guide_Block_en`  in this Program.

6353
        .. note::
6354
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
6355 6356 6357

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
6358

6359 6360 6361 6362

        Examples:
            .. code-block:: python

6363 6364 6365 6366
                import paddle
                import paddle.static as static

                paddle.enable_static()
6367

6368
                prog = static.default_main_program()
6369 6370
                num_blocks = prog.num_blocks
                print(num_blocks)
6371

6372 6373
                # print result:
                # 1
Y
yuyang18 已提交
6374
        """
Q
qiaolongfei 已提交
6375 6376
        return self.desc.num_blocks()

D
dzhwinter 已提交
6377 6378 6379
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
6380 6381
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
6382 6383
                % type(seed)
            )
D
dzhwinter 已提交
6384 6385
        self._seed = seed

Y
Yu Yang 已提交
6386
    def __repr__(self):
6387
        return self.__str__()
6388

Y
Yu Yang 已提交
6389
    def global_block(self):
Y
yuyang18 已提交
6390
        """
6391 6392
        .. note::
            This API has no effect in Dygraph mode.
6393 6394 6395

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
6396 6397
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
6398

6399 6400 6401 6402

        Examples:
            .. code-block:: python

6403 6404 6405 6406
                import paddle
                import paddle.static as static

                paddle.enable_static()
6407

6408
                prog = static.default_main_program()
6409 6410
                gb_block = prog.global_block()
                print(gb_block)
6411

Y
yuyang18 已提交
6412
        """
Y
Yu Yang 已提交
6413 6414
        return self.blocks[0]

Q
Qiao Longfei 已提交
6415
    def block(self, index):
Y
yuyang18 已提交
6416
        """
6417 6418
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6419

6420 6421
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
6422 6423
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
6424

J
Jiabin Yang 已提交
6425 6426
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
6427 6428 6429 6430

        Examples:
            .. code-block:: python

6431 6432 6433 6434
                import paddle
                import paddle.static as static

                paddle.enable_static()
6435

6436
                prog = static.default_main_program()
6437 6438
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
6439
        """
Q
Qiao Longfei 已提交
6440 6441
        return self.blocks[index]

Y
Yu Yang 已提交
6442
    def current_block(self):
Y
yuyang18 已提交
6443
        """
6444 6445
        .. note::
            This API has no effect in Dygraph mode.
6446

J
Jiabin Yang 已提交
6447 6448
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
6449

J
Jiabin Yang 已提交
6450 6451
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
6452

6453 6454 6455
        Examples:
            .. code-block:: python

6456 6457 6458 6459
                import paddle
                import paddle.static as static

                paddle.enable_static()
6460

6461
                prog = static.default_main_program()
6462 6463
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
6464
        """
Y
Yu Yang 已提交
6465 6466
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
6467
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
6468 6469 6470 6471 6472
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
6473

Y
yuyang18 已提交
6474 6475 6476 6477 6478
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
6479
        new_block_idx = len(self.blocks)
6480 6481 6482 6483 6484
        parent = (
            self.current_block()
            if parent_idx is None
            else self.block(parent_idx)
        )
F
update  
fengjiayi 已提交
6485
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
6486 6487 6488 6489
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
6490
    def _rollback(self):
Y
yuyang18 已提交
6491 6492 6493 6494 6495
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
6496 6497
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
6498
    def _sync_with_cpp(self):
Y
yuyang18 已提交
6499 6500 6501 6502 6503 6504 6505 6506 6507 6508
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
6509 6510 6511
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
6512
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
6513

W
Wu Yi 已提交
6514
    def _copy_param_info_from(self, other):
6515
        """
6516
        Copy the information of parameters from other program.
D
dzhwinter 已提交
6517

Y
yuyang18 已提交
6518 6519 6520
        Notes: This is a very low level API. Users should not invoke it
        directly.

6521 6522 6523 6524 6525 6526 6527
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6528 6529
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6530 6531
                % type(other)
            )
6532

W
Wu Yi 已提交
6533
        self.global_block()._copy_param_info_from(other.global_block())
6534

6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6546 6547
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6548 6549
                % type(other)
            )
6550 6551
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
6552
        self._parameters_on_pservers = other._parameters_on_pservers
6553
        self._endpoints = other._endpoints
6554
        self._ps_endpoint = other._ps_endpoint
6555 6556
        self._distributed_lookup_table = other._distributed_lookup_table

6557
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
6558 6559
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
6560

Y
yuyang18 已提交
6561 6562 6563
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
6564 6565
        Args:
            other(Program): Other program
6566
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
6567 6568
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is
            cloned from block 0 in other, etc. Default is None, which means default mapped,
6569
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
6570 6571 6572 6573 6574

        Returns:
            None
        """
        if not isinstance(other, Program):
6575 6576
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6577 6578
                % type(other)
            )
F
fengjiayi 已提交
6579

6580 6581
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
6582
                i: i for i in range(self.desc.num_blocks())
6583
            }
6584 6585 6586

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
6587 6588
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
6589
            for var in list(block.vars.values()):
6590 6591 6592 6593 6594 6595 6596
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
6597

6598
    def list_vars(self):
Y
yuyang18 已提交
6599
        """
6600
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
6601

J
Jiabin Yang 已提交
6602
        Returns:
6603
            iterable Tensors: The Generator will yield every Tensor in this program.
6604 6605 6606 6607

        Examples:
            .. code-block:: python

6608 6609
                import paddle
                import paddle.static as static
6610

6611 6612 6613 6614 6615
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
6616 6617
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
6618

6619 6620
                # var img : LOD_TENSOR.shape(-1, 1, 28, 28).dtype(float32).stop_gradient(True)
                # var label : LOD_TENSOR.shape(-1, 1).dtype(int64).stop_gradient(True)
Y
yuyang18 已提交
6621
        """
6622
        for each_block in self.blocks:
6623
            for each_var in list(each_block.vars.values()):
6624 6625
                yield each_var

6626 6627 6628 6629 6630 6631 6632 6633 6634 6635
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

6636 6637 6638 6639
                import paddle
                import paddle.static as static

                paddle.enable_static()
6640

6641 6642
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
6643
                hidden = static.nn.fc(x=data, size=10)
6644 6645
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
6646 6647 6648 6649 6650 6651 6652

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
6653 6654
                # persist trainable param fc_0.w_0 : LOD_TENSOR.shape(13, 10).dtype(float32).stop_gradient(False)
                # persist trainable param fc_0.b_0 : LOD_TENSOR.shape(10,).dtype(float32).stop_gradient(False)
6655 6656 6657 6658 6659 6660 6661 6662 6663 6664
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

6665 6666 6667 6668 6669 6670 6671 6672 6673
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
6674 6675 6676
            mode(str, optional): Source of the obtained parameters and buffers.
                    'opt' :  The return value only contains the variable in the optimizer.
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.
6677 6678
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
6679
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
6707
        # can not be imported at the begainning of this file.
6708 6709
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
6710

6711 6712
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
6713 6714 6715 6716
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".format(
                    type(scope)
                )
            )
6717 6718 6719 6720 6721

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
6722 6723
            raise TypeError(
                "Type of `mode` should be string, but received {}.".format(
6724 6725 6726
                    type(mode)
                )
            )
6727 6728 6729 6730 6731

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
6732 6733 6734 6735 6736
            if (
                var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH
                or var.desc.type() == core.VarDesc.VarType.FETCH_LIST
                or var.desc.type() == core.VarDesc.VarType.READER
            ):
6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
6755 6756 6757 6758
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".format(
                        mode
                    )
                )
6759 6760 6761 6762 6763 6764 6765 6766

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
6767 6768 6769 6770
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".format(
                        var.name
                    )
                )
6771 6772 6773 6774 6775 6776
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
6777
        Set parameters and persistable buffers in state_dict to program.
6778
        An exception will throw if shape or dtype of the parameters is not match.
6779

6780 6781 6782 6783
        .. note::
            This function MUST called after run start_up_program

        Args:
6784
            state_dict(dict): the dict store parameters and persistable buffers.
6785 6786
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
6787
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6788 6789
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
6790

6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
6820 6821 6822
                    type(state_dict)
                )
            )
6823 6824

        vars_dict = {var.name: var for var in self.list_vars()}
6825 6826 6827
        condition = (
            True if 'StructuredToParameterName@@' in state_dict else False
        )
6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
6839 6840
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
6841 6842
                except TypeError as err:
                    warnings.warn(
6843 6844
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
6845
            else:
6846
                warnings.warn(
6847 6848 6849 6850 6851 6852
                    (
                        "Skip loading for '{0}'. Because '{0}' not in the program.".format(
                            name
                        )
                    )
                )
6853

Y
Yu Yang 已提交
6854

6855
class Parameter(Variable, metaclass=ParameterMetaClass):
6856
    """
6857
    Parameter is derived from Variable. A parameter is a persistable
6858
    Variable, and will be updated by optimizers after each iteration.
6859
    The training of a neural network is essentially the updating of
6860 6861
    its parameters.

6862
    Relative to a general Variable, a Parameter has several its own
6863 6864
    member variables:

6865 6866 6867 6868 6869 6870 6871 6872 6873 6874
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
6875
        need_clip (bool): Whether the parameter gradient need to be cliped
6876
            in optimizer. Default is True.
6877 6878
    """

6879 6880 6881 6882 6883 6884 6885 6886
    def __init__(
        self,
        block,
        shape,
        dtype,
        type=core.VarDesc.VarType.LOD_TENSOR,
        **kwargs
    ):
6887 6888 6889 6890 6891
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6892 6893
        for each in shape:
            if each < 0:
6894 6895
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907
                    % list(shape)
                )

        Variable.__init__(
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs
        )
Y
Yu Yang 已提交
6908 6909 6910 6911
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6912 6913
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6914
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6915

6916 6917
        self.need_clip = kwargs.get('need_clip', True)

6918 6919
        self.is_distributed = False

6920 6921
        self.is_parameter = True

F
fengjiayi 已提交
6922
    def __str__(self):
6923
        return self._to_readable_code()
F
fengjiayi 已提交
6924

F
update  
fengjiayi 已提交
6925 6926 6927
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6928

F
update  
fengjiayi 已提交
6929 6930 6931 6932 6933 6934 6935 6936
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6937 6938 6939 6940 6941 6942 6943 6944 6945
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6946
        """
6947
        assert isinstance(throw_on_error, bool) and isinstance(
6948 6949
            with_details, bool
        )
F
update  
fengjiayi 已提交
6950 6951
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
6952 6953 6954 6955 6956 6957 6958
            additional_attr = (
                "trainable",
                "optimize_attr",
                "regularizer",
                "do_model_average",
                "need_clip",
            )
F
update  
fengjiayi 已提交
6959
            for attr_name in additional_attr:
6960
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
F
update  
fengjiayi 已提交
6961 6962
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6963 6964 6965 6966
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6967

6968 6969
class ParamBase(core.VarBase):
    """
6970 6971
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode).
    A ParamBase is a persistable Tensor, and will be updated by optimizers
6972
    after each iteration.
6973 6974 6975
    The training of a neural network is essentially the updating of
    its ParamBase.

6976
    Relative to a general Tensor, a ParamBase has several its own
6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
6989
        need_clip (bool): Whether the parameter gradient need to be cliped
6990
            in optimizer. Default is True.
6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
7004 7005
                    % list(shape)
                )
7006 7007 7008 7009 7010 7011 7012

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

7013
        super().__init__(
7014 7015 7016 7017 7018 7019
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            core.VarDesc.VarType.LOD_TENSOR,
            True,
        )
7020

7021 7022
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
7023 7024 7025 7026 7027 7028 7029

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

7030 7031
        self.need_clip = kwargs.get('need_clip', True)

7032
        self.is_distributed = kwargs.get('is_distributed', False)
7033
        # self.block = default_main_program().global_block()
7034

7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
7046 7047
                type(trainable),
            )
7048

7049
    def __str__(self):
7050
        """
7051
        Convert a ParamBase object to a readable string.
7052

7053
        Returns(str): A readable string.
7054 7055 7056 7057

        Examples:
            .. code-block:: python

7058
                import paddle
7059 7060 7061 7062 7063 7064 7065
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
7066
        """
7067
        return "Parameter containing:\n{tensor}".format(
7068
            tensor=super().__str__()
7069
        )
7070

7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
7082

7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

7101 7102 7103 7104
    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
7105 7106 7107 7108 7109 7110
        return new_param

    __repr__ = __str__


if hasattr(core, "eager"):
7111
    _core_eager_eagertensor = core.eager.Tensor
7112 7113 7114 7115 7116 7117
else:
    _core_eager_eagertensor = object


class EagerParamBase(_core_eager_eagertensor):
    """
7118 7119
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode).
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers
7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
7137
        need_clip (bool): Whether the parameter gradient need to be cliped
7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
7152 7153
                    % list(shape)
                )
7154 7155 7156 7157 7158 7159 7160

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

7161 7162 7163
        if isinstance(shape, core.eager.Tensor):
            shape = shape.numpy()

7164
        super().__init__(
7165 7166 7167 7168 7169 7170
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            core.VarDesc.VarType.LOD_TENSOR,
            True,
        )
7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
7185 7186 7187
        # hook functions for lazy initialization
        self._init_func = None
        self._init_op_creator = None
7188 7189

    def set_init_func(self, obj):
7190
        self._init_func = obj
7191 7192 7193

    @dygraph_only
    def initialize(self):
7194 7195 7196
        assert (
            self._init_func is not None
        ), "Required self._init_func is not None, but received None."
7197
        self._init_func()
7198
        # clear function handle to release resource
7199
        self._init_func = None
7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
7212 7213
                type(trainable),
            )
7214

7215 7216 7217 7218
    def _create_init_op(self, block):
        """
        Call init_op_creator function to create initializer operation in block.
        """
7219 7220 7221
        assert (
            self._init_op_creator is not None
        ), "Required self._init_op_creator is not None, but received None."
7222 7223
        self._init_op_creator(block)

7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242
    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
7243
            tensor=super().__str__()
7244
        )
7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
7280 7281
        return new_param

7282 7283 7284
    __repr__ = __str__


Y
Yu Yang 已提交
7285
# program is a global instance.
Y
Yu Yang 已提交
7286 7287
_main_program_ = Program()
_startup_program_ = Program()
7288
_startup_program_._is_start_up_program_ = True
7289

7290

7291
def default_startup_program():
Y
Yu Yang 已提交
7292
    """
Y
yuyang18 已提交
7293 7294
    Get default/global startup program.

7295
    The :code:`paddle.nn` function will append the initialization operators into startup program.
7296
    The :code:`startup_program` will initialize the parameters by the OPs.
T
tangwei12 已提交
7297

7298 7299
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
7300

7301 7302
    Returns:
        Program: current default startup program.
7303

7304
    Returns type:
7305 7306 7307 7308

    Examples:
        .. code-block:: python

7309
            import paddle
7310

7311
            paddle.enable_static()
7312 7313 7314 7315
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
7316
    """
Y
Yu Yang 已提交
7317
    return _startup_program_
7318

7319

7320
def default_main_program():
Y
Yu Yang 已提交
7321
    """
7322
    This API can be used to get ``default main program`` which store the
7323
    descriptions of Ops and tensors.
T
tangwei12 已提交
7324

7325 7326
    For example ``z = paddle.add(x, y)`` will create a new ``add``
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` .
Y
yuyang18 已提交
7327

7328
    The ``default main program`` is the default value for ``Program`` parameter in
7329
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
7330
    :code:`default_main_program` when the program is not specified.
7331

7332
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
7333

Y
Yu Yang 已提交
7334
    Returns:
7335
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
7336 7337 7338 7339

    Examples:
        ..  code-block:: python

7340
            import paddle
7341

7342
            paddle.enable_static()
7343
            # Sample Network:
7344 7345 7346
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
7347

7348 7349 7350
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
7351
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
7352
    """
Y
Yu Yang 已提交
7353
    return _main_program_
Y
Yu Yang 已提交
7354 7355 7356 7357 7358


def switch_main_program(program):
    """
    Switch the main program to a new program.
7359

Y
Yu Yang 已提交
7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
7374
    Switch the startup program to a new program
Y
Yu Yang 已提交
7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
7387
@signature_safe_contextmanager
Y
Yu Yang 已提交
7388 7389
def program_guard(main_program, startup_program=None):
    """
7390 7391
    :api_attr: Static Graph

7392 7393 7394
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
7395

G
guofei 已提交
7396
    Args:
7397
        main_program(Program): New main program inside ``with`` statement.
7398 7399
        startup_program(Program, optional): New startup program inside ``with``
            statement. :code:`None` means not changing startup program,
G
guofei 已提交
7400 7401 7402
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
7403
    Examples:
7404
       .. code-block:: python
T
tangwei12 已提交
7405

7406
          import paddle
Y
yuyang18 已提交
7407

7408 7409 7410 7411 7412
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
7413
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
7414 7415 7416

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
7417

Y
Yu Yang 已提交
7418
    Examples:
7419
       .. code-block:: python
Y
yuyang18 已提交
7420

7421
          import paddle
7422

7423 7424 7425 7426 7427
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
7428

Y
Yu Yang 已提交
7429
    """
7430
    from .data_feeder import check_type
7431 7432 7433 7434

    check_type(
        main_program, 'main_program', Program, 'paddle.static.program_guard'
    )
Y
Yu Yang 已提交
7435 7436
    main_program = switch_main_program(main_program)
    if startup_program is not None:
7437 7438 7439 7440 7441 7442
        check_type(
            startup_program,
            'startup_program',
            Program,
            'paddle.static.program_guard',
        )
7443 7444
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
7445
        startup_program = switch_startup_program(startup_program)
7446 7447 7448 7449 7450 7451
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
7452 7453


W
Wu Yi 已提交
7454
def _get_var(name, program=None):
X
xuwei06 已提交
7455
    """
Y
yuyang18 已提交
7456
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
7457

X
xuwei06 已提交
7458 7459 7460
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
7461
        If None, default_global_program() will be used.
X
xuwei06 已提交
7462 7463 7464 7465 7466 7467 7468

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
7469
    assert isinstance(program, Program)
X
xuwei06 已提交
7470 7471

    return program.global_block().var(name)
7472 7473


S
rename  
sneaxiy 已提交
7474
@signature_safe_contextmanager
L
lujun 已提交
7475 7476
def _dygraph_guard(tracer):
    global _dygraph_tracer_
7477
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
7478
    _dygraph_tracer_ = tracer
7479
    core._switch_tracer(tracer)
M
minqiyang 已提交
7480

7481 7482 7483
    try:
        yield
    finally:
7484 7485
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
7486 7487


S
rename  
sneaxiy 已提交
7488
@signature_safe_contextmanager
L
lujun 已提交
7489
def _dygraph_place_guard(place):
7490 7491 7492
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
7493 7494
    _set_dygraph_tracer_expected_place(place)

7495 7496 7497
    try:
        yield
    finally:
7498
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
7499
        _set_dygraph_tracer_expected_place(_global_expected_place_)
7500 7501


7502 7503 7504 7505 7506 7507 7508 7509 7510 7511
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
7512

7513 7514
    Note:
        The API only supports static mode.
7515 7516 7517 7518

    A context manager that specifies the device on which the OP will be placed.

    Args:
7519
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
7520
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs.
7521 7522 7523 7524 7525 7526 7527
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
7528

7529
        .. code-block:: python
7530

7531
            # required: gpu
Z
Zhang Ting 已提交
7532
            import paddle
7533

Z
Zhang Ting 已提交
7534 7535 7536
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
7537
            if support_gpu:
Z
Zhang Ting 已提交
7538
                place = paddle.CUDAPlace(0)
7539 7540

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
7541 7542 7543
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
7544

Z
Zhang Ting 已提交
7545
            with paddle.static.device_guard("cpu"):
7546
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
7547 7548
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
7549
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
7550
                out = paddle.reshape(data1, shape=shape)
7551

Z
Zhang Ting 已提交
7552 7553
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
7554 7555 7556
            result = exe.run(fetch_list=[out])
    """

7557 7558 7559 7560 7561
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
7562
    if device not in ['cpu', 'gpu', 'npu', 'xpu', 'mlu', '', None]:
7563
        raise ValueError(
7564
            "The Attr(device) should be 'cpu' 'npu' 'xpu' 'mlu' or 'gpu', and it can also be empty string or None "
7565 7566
            "when there is no need to specify device. But received %s" % device
        )
7567 7568
    if index:
        device = ":".join([device, index])
7569
    pre_device = switch_device(device)
7570 7571 7572 7573
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
7574 7575


7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595
def _switch_cuda_graph_mode(cuda_graph_attr):
    global _current_cuda_graph_mode
    pre_mode = _current_cuda_graph_mode
    _current_cuda_graph_mode = cuda_graph_attr
    return pre_mode


@signature_safe_contextmanager
def _cuda_graph_guard(cuda_graph_attr=None):
    """

    Note:
        The API only supports static mode.

    A context manager that specifies the cuda_graph_mode which indicating the cuda graph capture under static mode.

    Args:
        cuda_graph_attr(str|None): The cuda graph attr with the format of:
                                   cuda_graph_capture_mode;memory_pool_id;cuda_graph_id
    """
7596 7597
    assert (
        not _non_static_mode()
7598
    ), "cuda_graph_guard only works under static mode"
7599 7600
    assert (
        core.is_compiled_with_cuda()
7601 7602 7603 7604 7605 7606 7607 7608
    ), "cuda_graph_guard context can be only used when Paddle is compiled with cuda"
    pre_mode = _switch_cuda_graph_mode(cuda_graph_attr)
    try:
        yield
    finally:
        _switch_cuda_graph_mode(pre_mode)


G
guofei 已提交
7609 7610 7611
def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
7612
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7613 7614 7615 7616 7617 7618 7619

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

7620 7621
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
7622 7623 7624 7625
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
7626 7627
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
7628 7629
        else:
            raise ValueError(
7630 7631
                "Flag %s cannot set its value through this function." % (key)
            )
G
guofei 已提交
7632 7633 7634 7635 7636


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
7637
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7638 7639 7640 7641 7642 7643 7644 7645 7646 7647

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

7648
            import paddle
G
guofei 已提交
7649 7650

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
7651
            res = paddle.get_flags(flags)
G
guofei 已提交
7652 7653 7654 7655 7656 7657
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
7658
            if _global_flags().is_public(key):
7659
                value = _global_flags()[key]
G
guofei 已提交
7660 7661 7662 7663
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
7664 7665 7666
                    'Flag %s cannot get its value through this function.'
                    % (key)
                )
G
guofei 已提交
7667
    elif isinstance(flags, str):
7668
        if _global_flags().is_public(flags):
7669
            value = _global_flags()[flags]
G
guofei 已提交
7670 7671 7672 7673
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
7674 7675
                'Flag %s cannot get its value through this function.' % (flags)
            )
G
guofei 已提交
7676 7677 7678
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
7679 7680 7681 7682 7683 7684


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698
    if isinstance(
        place,
        (
            core.Place,
            core.XPUPlace,
            core.CPUPlace,
            core.CUDAPinnedPlace,
            core.CUDAPlace,
            core.NPUPlace,
            core.IPUPlace,
            core.MLUPlace,
            core.CustomPlace,
        ),
    ):
7699 7700 7701 7702
        return place

    if not isinstance(place, str):
        raise ValueError(
7703 7704
            "place only support string which is 'Place' and so on."
        )
7705 7706

    place = place.lower()
7707
    if place == "cpu":
7708
        return core.CPUPlace()
7709

7710
    if place == "device":
7711 7712
        return core.Place()

7713
    # GPU
7714 7715 7716 7717
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
7718 7719 7720
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with CUDA".format(avaliable_gpu_place)
            )
7721 7722 7723 7724 7725 7726 7727 7728 7729
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
7730 7731

    # XPU
7732 7733 7734 7735
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
7736 7737 7738
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with XPU".format(avaliable_xpu_place)
            )
7739 7740 7741 7742
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
7743 7744 7745 7746 7747 7748

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
7749 7750 7751
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with NPU".format(avaliable_npu_place)
            )
7752 7753 7754 7755 7756
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

J
jianghaicheng 已提交
7757 7758 7759 7760 7761
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
7762 7763 7764
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with IPU".format(avaliable_ipu_place)
            )
J
jianghaicheng 已提交
7765 7766 7767 7768 7769
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

7770 7771 7772 7773 7774
    # MLU
    avaliable_mlu_place = re.match(r'mlu:\d+', place)
    if avaliable_mlu_place:
        if not core.is_compiled_with_mlu():
            raise ValueError(
7775 7776 7777
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with MLU".format(avaliable_mlu_place)
            )
7778 7779 7780 7781 7782
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.MLUPlace(device_id)

7783
    raise ValueError(
7784 7785 7786 7787
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace, IPUPlace, MLUPlace and NPUPlace, but received {}.".format(
            place
        )
    )
7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret