framework.py 256.0 KB
Newer Older
G
gouzil 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

import textwrap
Y
Yu Yang 已提交
16
import collections
X
Xin Pan 已提交
17
from collections import defaultdict
H
huzhiqiang 已提交
18
from collections.abc import Iterable
Q
qiaolongfei 已提交
19
import contextlib
20
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
21
import os
F
fengjiayi 已提交
22
import re
23
import traceback
24
import copy
25
from types import MethodType, FunctionType
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
R
risemeup1 已提交
32 33 34

from .proto import framework_pb2, data_feed_pb2

35
from . import core
36
from . import unique_name
37 38
import paddle.version as fluid_version
import warnings
39
import functools
40
from .variable_index import _getitem_impl_, _setitem_impl_
41
import threading
Y
Yu Yang 已提交
42

43
__all__ = [
44 45 46 47
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
48
    'name_scope',
J
jianghaicheng 已提交
49
    'ipu_shard_guard',
50
    'set_ipu_shard',
S
sneaxiy 已提交
51 52
    'cuda_places',
    'cpu_places',
53
    'xpu_places',
S
sneaxiy 已提交
54
    'cuda_pinned_places',
J
Jiabin Yang 已提交
55
    '_non_static_mode',
L
lujun 已提交
56
    'in_dygraph_mode',
57
    'is_compiled_with_cinn',
C
chengduo 已提交
58
    'is_compiled_with_cuda',
59
    'is_compiled_with_rocm',
60
    'is_compiled_with_xpu',
61
    'Variable',
62
    'require_version',
63
    'device_guard',
G
guofei 已提交
64 65
    'set_flags',
    'get_flags',
66
]
Y
Yu Yang 已提交
67

Q
qiaolongfei 已提交
68 69 70 71
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
72 73
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

74

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
# use thread local to create thread save global variables.
class GlobalThreadLocal(threading.local):
    def __init__(self):
        """
        init the thread local data.
        TODO(xiongkun): how to access another thread local data ?
        """
        global _dygraph_tracer_
        self._in_declarative_mode_ = False
        self._functional_dygraph_context_manager = None
        self._dygraph_tracer_ = _dygraph_tracer_
        self._in_eager_mode_ = True

    def __str__(self):
        strings = []
        strings.append(
            "_in_declarative_mode_:" + str(self._in_declarative_mode_)
        )
        strings.append(
            "_functional_dygraph_context_manager:"
            + str(self._functional_dygraph_context_manager)
        )
        strings.append("_dygraph_tracer_:" + str(self._dygraph_tracer_))
        strings.append("_in_eager_mode_:" + str(self._in_eager_mode_))
        return "\n".join(strings)

    def __setattr__(self, name, val):
        if name == '_dygraph_tracer_':
            global _dygraph_tracer_
            _dygraph_tracer_ = val
        self.__dict__[name] = val


L
lujun 已提交
108
_dygraph_tracer_ = None
109 110
global_var = GlobalThreadLocal()

111
_global_expected_place_ = None
112
_current_device = None
113
global_prog_seed = 0
114
_current_pipeline_stage = None
115
_already_patch_eager_tensor = False
J
Jiabin Yang 已提交
116
_already_patch_varbase = False
117
_current_cuda_graph_mode = None
118
_global_flags_ = core.globals()
119 120 121 122 123 124
_enable_standalone_executor_ = os.environ.get(
    'FLAGS_USE_STANDALONE_EXECUTOR', None
)
_dy2st_enable_standalone_executor_ = os.environ.get(
    'FLAGS_DY2ST_USE_STANDALONE_EXECUTOR', 1
)
125 126 127
_cuda_graph_enable_standalone_executor_ = os.environ.get(
    'FLAGS_CUDA_GRAPH_USE_STANDALONE_EXECUTOR', 0
)
J
Jiabin Yang 已提交
128

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
# special_op_attrs, extra_op_attrs are prepared for printing warnings
# when turning on FLAGS_print_extra_attrs
special_op_attrs = {
    "elementwise_add": [{"axis": -1}],
    "elementwise_sub": [{"axis": -1}],
    "elementwise_mul": [{"axis": -1}],
    "elementwise_div": [{"axis": -1}],
    "elementwise_max": [{"axis": -1}],
    "elementwise_min": [{"axis": -1}],
    "elementwise_pow": [{"axis": -1}],
    "elementwise_mod": [{"axis": -1}],
    "elementwise_floordiv": [{"axis": -1}],
    "less_than": [{"axis": -1}],
    "less_equal": [{"axis": -1}],
    "greater_than": [{"axis": -1}],
    "greater_equal": [{"axis": -1}],
    "equal": [{"axis": -1}],
    "not_equal": [{"axis": -1}],
    "amax": [{"reduce_all": False}],
    "amin": [{"reduce_all": False}],
    "any": [{"reduce_all": False}],
    "frobenius_norm": [{"reduce_all": False}],
    "logsumexp": [{"reduce_all": False}],
    "reduce_max": [{"reduce_all": False}],
    "reduce_min": [{"reduce_all": False}],
    "reduce_mean": [{"reduce_all": False}],
    "reduce_prod": [{"reduce_all": False}],
    "reduce_sum": [{"reduce_all": False}],
}

extra_op_attrs = {
    "gather": ["overwrite"],
    "graph_reindex": ["flag_buffer_hashtable"],
    "graph_sample_neighbors": ["flag_perm_buffer"],
    "relu6": ["threshold"],
    "swish": ["beta"],
    "hsigmoid_loss": ["remote_prefetch"],
    "max_pool2d_with_index": ["global_pooling"],
    "uniform": ["diag_num"],
    "unique": ["is_sorted"],
}

J
Jiabin Yang 已提交
171
# Some explanation of our execution system 2022.03
172
# For now we have 3 kinds of execution system, since we refactored dygraph mode to
J
Jiabin Yang 已提交
173
# build a fast execution system for dynamic mode. But we can't just remove all legacy
174
# code once we present the new system for some historical reason. That's why we have
J
Jiabin Yang 已提交
175
# these flags.
176
#
J
Jiabin Yang 已提交
177
# 1. _non_static_mode():
178
# _non_static_mode means  we are now running in legacy dygraph mode or dygraph mode.
J
Jiabin Yang 已提交
179 180 181
# 2. dygraph_mode():
# This flags inidicates we are now running in dygraph mode which called eager mode before.
# 3. _in_legacy_dygraph():
姜永久 已提交
182
# This flags has been deprecated
183
#
J
Jiabin Yang 已提交
184
# They have a relation ship as below:
姜永久 已提交
185
# Since _in_legacy_graph is deprecated, so dygraph_mode is _non_static_mode
186
#
J
Jiabin Yang 已提交
187 188 189 190 191 192
# Why we have to make different of _in_legacy_dygraph and dygraph_mode?
# In some performance issue, we find that python if statement cause server performance problem
# and we need our new dygraph mode becomes as fast as it could be. That's why we make these flags
# to make sure in most case, we find new dygraph mode first with only one if statement.


W
wanghuancoder 已提交
193
def _update_monkey_methods():
194
    """
W
wanghuancoder 已提交
195
    Update monkey methods of Tensor or eager.Tensor while
196 197
    switching eager mode and legacy mode.
    """
198
    from paddle import _C_ops, _legacy_C_ops
199 200 201
    from .dygraph.varbase_patch_methods import monkey_patch_varbase
    from .dygraph import monkey_patch_math_varbase

202 203 204
    global _already_patch_eager_tensor
    global _already_patch_varbase

W
wanghuancoder 已提交
205 206 207
    if not _already_patch_eager_tensor:
        monkey_patch_varbase()
        monkey_patch_math_varbase()
208

W
wanghuancoder 已提交
209
        _already_patch_eager_tensor = True
210

211
    # switch Paddle.Tensor bind type
W
wanghuancoder 已提交
212
    _switch_tensor_bind_type()
213 214


W
wanghuancoder 已提交
215
def _switch_tensor_bind_type():
216
    import paddle
217

W
wanghuancoder 已提交
218
    paddle.Tensor = core.eager.Tensor
219
    paddle.Tensor.__qualname__ = 'Tensor'
220 221


J
Jiabin Yang 已提交
222
def _in_eager_without_dygraph_check():
223
    return global_var._in_eager_mode_
J
Jiabin Yang 已提交
224 225


K
Kim Yann 已提交
226
# FIXME(dev): We haven't fully verified eager mode on XPU et.al but
227 228 229 230
# only GPU/CPU. Remove this after we improve this feature.
_is_first_import_ = True


J
Jiabin Yang 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
def in_dygraph_mode():
    """

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .

    Returns:
        bool: Whether paddle runs in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
252
            print(paddle.in_dynamic_mode())  # False, Now we are in static graph mode
J
Jiabin Yang 已提交
253 254 255 256 257

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode

    """
258 259 260
    return (
        global_var._dygraph_tracer_ is not None
    ) and global_var._in_eager_mode_
J
Jiabin Yang 已提交
261 262 263


def _non_static_mode():
264
    return global_var._dygraph_tracer_ is not None
265 266


267 268
global_ipu_index = -1
global_ipu_stage = -1
J
jianghaicheng 已提交
269 270 271 272
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


L
Leo Chen 已提交
273 274 275 276 277 278 279 280 281 282 283
@signature_safe_contextmanager
def _enable_standalone_executor(enable=True):
    global _enable_standalone_executor_
    original_ = _enable_standalone_executor_
    _enable_standalone_executor_ = enable
    try:
        yield
    finally:
        _enable_standalone_executor_ = original_


J
jianghaicheng 已提交
284
@signature_safe_contextmanager
285
def ipu_shard_guard(index=-1, stage=-1):
J
jianghaicheng 已提交
286 287 288 289
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
W
Weilong Wu 已提交
290
        index(int, optional): Specify which ipu the Tensor is computed on, (such as '0, 1, 2, 3').
291
            The default value is -1, which means the Op only run on IPU 0.
W
Weilong Wu 已提交
292
        stage(int, optional): Specify the computation order of the sharded model(such as '0, 1, 2, 3').
293
            The sharded model will be computed from small to large. The default value is -1,
J
jianghaicheng 已提交
294
            which means no pipelining computation order and run Ops in terms of graph.
295

G
gouzil 已提交
296 297 298 299 300 301 302
    Note:
        Only if the enable_manual_shard=True, the 'index' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        Only if the enable_pipelining=True, the 'stage' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        A index is allowed to match none stage or a stage. A stage is only allowed to match a new or
        duplicated index.
J
jianghaicheng 已提交
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


337 338 339 340
def set_ipu_shard(call_func, index=-1, stage=-1):
    """
    Shard the ipu with the given call function. Set every ops in call function to the given ipu sharding.

G
gouzil 已提交
341 342 343 344 345
    Note:
        Only when enable_manual_shard=True to set the index to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        Only when enable_pipelining=True to set stage to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        An index supports a corresponding None stage or a stage, and a stage only supports a new index or a duplicate index.

346 347 348 349 350
    Args:
        call_func(Layer|function): Specify the call function to be wrapped.
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is -1, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
351
            The sharded model will be computed from small to large. The default value is -1,
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
            which means no pipelining computation order and run Ops in terms of graph.

    Returns:
        The wrapped call function.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='float32')
            relu = paddle.nn.ReLU()
            relu = paddle.static.set_ipu_shard(relu, index=1, stage=1)
            relu(a)
    """

    def decorate(func):
        def wrapper(*args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return func(*args, **kwargs)

        return wrapper

377
    from paddle.nn import Layer
378

379 380 381 382 383
    if not isinstance(call_func, Layer):
        if callable(call_func):
            return decorate(call_func)
        else:
            raise TypeError(
384 385
                "Unsupported type. Only accept paddle.nn.Layer or function."
            )
386 387 388 389 390 391 392 393 394 395 396 397

    # patch paddle.nn.Layer
    class BlockFn(type(call_func)):
        def __call__(self, *args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return super().__call__(*args, **kwargs)

    BlockFn.__name__ = type(call_func).__name__
    call_func.__class__ = BlockFn
    return call_func


398 399
def require_version(min_version, max_version=None):
    """
400 401 402
    Check if the installed version of PaddlePaddle is in [min_version, max_version],
    if the installed version is lower than ``min_version`` or higher than ``max_version``,
    an exception will be thrown, NO returns if the installed version is satisfied.
403

404 405 406 407
    Args:
        min_version (str): the minimum version required (like '1.4.0').
        max_version (str, optional): the max version required (like '1.6.0'), default is None,
            meaning any version equal or higher than ``min_version`` is acceptable.
408

409 410
    Returns:
        None.
411

412 413 414 415 416 417
    Raises:
        TypeError: if the type of ``min_version`` is not str.
        TypeError: if the type of ``max_version`` is not str or type(None).
        ValueError: if the value of ``min_version`` is not in version format.
        ValueError: if the value of ``max_version`` is not in version format or None.
        Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.
418

419 420
    Examples:
        .. code-block:: python
421

422
            import paddle.fluid as fluid
423

424 425
            # any version >= 0.1.0 is acceptable.
            fluid.require_version('0.1.0')
426

427 428 429
            # if 0.1.0 <= version <= 10.0.0, it is acceptable.
            fluid.require_version(min_version='0.1.0', max_version='10.0.0')
    """
430 431 432
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
433 434
            % (type(min_version))
        )
435 436 437 438

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
439 440
            % (type(max_version))
        )
441 442 443 444 445

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
446 447
            "like '1.5.2.0', but received %s" % min_version
        )
448 449 450 451 452 453

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
454 455
                "like '1.5.2.0', but received %s" % max_version
            )
456 457

    version_installed = [
458 459 460 461
        fluid_version.major,
        fluid_version.minor,
        fluid_version.patch,
        fluid_version.rc,
462 463 464 465
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
466
        for i in range(len(ver_a)):
467 468 469 470 471 472 473 474 475 476 477
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
478 479 480
                "please make sure the version is good with your code."
                % (min_version, max_version, fluid_version.full_version)
            )
481 482 483 484
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
485 486 487
                "please make sure the version is good with your code."
                % (min_version, fluid_version.full_version)
            )
488 489 490
        return

    min_version_split = min_version.split('.')
491 492 493
    min_version_to_check = (
        min_version_split + zero_version[len(min_version_split) :]
    )
494 495 496

    if max_version is not None:
        max_version_split = max_version.split('.')
497 498 499
        max_version_to_check = (
            max_version_split + zero_version[len(max_version_split) :]
        )
500

501 502 503 504
        if (
            version_cmp(version_installed, max_version_to_check) > 0
            or version_cmp(version_installed, min_version_to_check) < 0
        ):
505 506
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
507 508
                % (min_version, max_version, fluid_version.full_version)
            )
509 510 511 512 513
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
514 515
                % (min_version, fluid_version.full_version, min_version)
            )
516 517


518 519
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
520 521 522
        assert not _non_static_mode(), (
            "We don't support %s in dynamic graph mode" % func.__name__
        )
523 524 525 526 527 528 529
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
530 531 532 533
        assert _non_static_mode(), (
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
534 535 536 537 538
        return func(*args, **kwargs)

    return __impl__


539 540 541
def _non_static_only_(func):
    def __impl__(*args, **kwargs):
        from .dygraph.base import in_declarative_mode
542 543 544 545 546

        assert _non_static_mode() or in_declarative_mode(), (
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
547 548 549 550 551
        return func(*args, **kwargs)

    return __impl__


552 553
def _static_only_(func):
    def __impl__(*args, **kwargs):
554 555 556 557
        assert not _non_static_mode(), (
            "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode."
            % func.__name__
        )
558 559 560 561 562
        return func(*args, **kwargs)

    return __impl__


563 564 565 566 567
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


568
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
W
wanghuancoder 已提交
569 570
# used to make Variable and Tensor has same interfaces, like numpy. Since Tensor is not exposed in our
# official docments, logically, we want to keep Tensor and logically consistent. While, actually,
571 572
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
W
wanghuancoder 已提交
573
# TODO(zhiqiu): We should make Tensor consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
574
# same base class.
575 576 577
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
578 579
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
R
Ryan 已提交
580
            "  2. If you are using `@paddle.jit.to_static`, you can call `paddle.jit.enable_to_static(False)`. "
581
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
582 583
            % (func.__name__, func.__name__)
        )
584 585 586 587

    return __impl__


T
tangwei12 已提交
588 589
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
590 591 592 593 594 595 596 597 598
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
599 600
                DeprecationWarning,
            )
601 602 603 604 605 606 607
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


608 609
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
610
static_only = wrap_decorator(_static_only_)
611
fake_interface_only = wrap_decorator(_fake_interface_only_)
612
non_static_only = wrap_decorator(_non_static_only_)
613 614


L
lujun 已提交
615
def _dygraph_tracer():
616
    return global_var._dygraph_tracer_
617

W
Wu Yi 已提交
618

619 620 621 622
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
623
def _current_expected_place():
624 625 626
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
627 628 629 630 631
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
632
                _global_expected_place_ = core.CUDAPlace(_cuda_ids()[0])
633 634 635 636 637
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
638 639 640 641 642 643
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
644
                _global_expected_place_ = core.XPUPlace(_xpu_ids()[0])
645 646 647 648 649
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
        elif core.is_compiled_with_custom_device("npu"):
            # TODO(duanyanhui): Optimize DeviceManager and Return all expected places when device registered in DeviceManager is greater than 1.
            try:
                device_count = core.get_custom_device_count("npu")
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CustomPlace(
                    "npu", _custom_device_ids("npu")[0]
                )
            else:
                warnings.warn(
                    "You are using NPU version Paddle, but your NPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
665 666 667 668 669 670 671
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
672 673
    if global_var._dygraph_tracer_ is not None:
        global_var._dygraph_tracer_._expected_place = place
674 675 676 677 678


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
679
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
680 681


S
sneaxiy 已提交
682
def _cpu_num():
683
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
684 685 686 687 688 689 690
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
691 692 693
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()
                )
            )
C
chengduo 已提交
694
        os.environ['CPU_NUM'] = str(1)
695
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
696 697 698 699 700 701 702 703
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
704
        device_ids = range(core.get_cuda_device_count())
C
chengduo 已提交
705
    return device_ids
S
sneaxiy 已提交
706 707


708 709 710 711 712
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
713
        device_ids = range(core.get_xpu_device_count())
714 715 716
    return device_ids


717 718 719 720 721 722 723 724 725
def _custom_device_ids(device_type):
    custom_devices_env = os.getenv("FLAGS_selected_" + device_type + "s")
    if custom_devices_env:
        device_ids = [int(s) for s in custom_devices_env.split(",")]
    else:
        device_ids = range(core.get_custom_device_count(device_type))
    return device_ids


726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


741 742 743 744 745 746 747
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
748

749 750 751 752 753 754
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

Z
Zman 已提交
755 756
    Returns:
        None
757 758 759 760 761 762 763 764 765 766

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

    Returns (bool): `True` if CINN is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
782 783 784 785
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

786
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
787 788 789 790

    Examples:
        .. code-block:: python

791
            import paddle
792
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
793 794 795 796
    """
    return core.is_compiled_with_cuda()


797 798 799 800 801 802 803 804 805 806
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
807
            support_gpu = paddle.device.is_compiled_with_rocm()
808 809 810 811
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
812
def cuda_places(device_ids=None):
L
lujun 已提交
813
    """
814
    Note:
815 816 817
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
818
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
819 820

    If :code:`device_ids` is None, environment variable of
821
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
822
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
823
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
824
    If :code:`FLAGS_selected_gpus` is not set, all visible
825
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
826 827

    If :code:`device_ids` is not None, it should be the device
828
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
829
    the returned list would be
C
Chen Weihang 已提交
830
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
831

832
    Parameters:
833
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
834 835

    Returns:
C
Chen Weihang 已提交
836
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
837 838

    Examples:
839

L
lujun 已提交
840 841
        .. code-block:: python

C
Chen Weihang 已提交
842 843
            import paddle
            import paddle.static as static
T
tangwei12 已提交
844

845
            # required: gpu
846

C
Chen Weihang 已提交
847 848 849
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
850 851

    """
852
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
853
    if device_ids is None:
C
chengduo 已提交
854
        device_ids = _cuda_ids()
S
sneaxiy 已提交
855 856 857 858 859
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


860 861 862 863
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
864 865 866 867 868 869 870 871 872
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
873
        the returned list would be
S
sunzhongkai588 已提交
874
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
875

876 877 878 879 880 881
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
882

883 884
            # required: xpu

885 886
            import paddle
            import paddle.static as static
887

888 889 890
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
891
    assert core.is_compiled_with_xpu(), "Not compiled with XPU"
892 893 894 895 896 897 898
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
899
def cpu_places(device_count=None):
L
lujun 已提交
900
    """
C
Chen Weihang 已提交
901
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
902

S
add doc  
sneaxiy 已提交
903
    If :code:`device_count` is None, the device count would
904
    be determined by environment variable :code:`CPU_NUM`.
C
chengduo 已提交
905 906
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
907 908
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
909

910 911
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
912 913

    Returns:
C
Chen Weihang 已提交
914
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
915 916

    Examples:
917

L
lujun 已提交
918 919
        .. code-block:: python

C
Chen Weihang 已提交
920 921
            import paddle
            import paddle.static as static
T
tangwei12 已提交
922

C
Chen Weihang 已提交
923 924 925
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
926 927
    """

S
sneaxiy 已提交
928 929 930 931 932 933
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
934
    """
935
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
936 937

    If :code:`device_count` is None, the device count would
938
    be determined by environment variable :code:`CPU_NUM`.
939 940 941 942
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
943

944 945
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
946 947

    Returns:
948
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
949 950 951 952

    Examples:
        .. code-block:: python

953
            import paddle.fluid as fluid
L
lujun 已提交
954 955 956 957 958
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
959
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
960
    if device_count is None:
961 962
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
963 964


965
class NameScope:
966 967 968 969 970 971 972 973 974 975
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
976 977 978
            new_child = NameScope(
                prefix + "_%d" % len(self._children[prefix]), self
            )
979 980 981 982 983 984 985 986 987 988 989 990 991
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
992
@signature_safe_contextmanager
993 994
def name_scope(prefix=None):
    """
995

996
    Generate hierarchical name prefix for the operators in Static Graph.
997

998
    Note:
T
Tao Luo 已提交
999 1000
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
1001
        Don't use it in dygraph, since it will cause memory leak.
1002 1003

    Args:
T
Tao Luo 已提交
1004
        prefix(str, optional): prefix. Default is none.
1005 1006

    Examples:
1007

1008
        .. code-block:: python
T
Tink_Y 已提交
1009

1010 1011 1012
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
1013
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
1014
             b = a + 1
1015
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
1016
                c = b * 1
1017
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
1018
                d = c / 1
1019 1020 1021
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
1022 1023
                g = f - 1

1024
          # Op are created in the default main program.
1025
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
1041 1042
    """
    # TODO(panyx0718): Only [0-9a-z].
1043
    # in dygraph we don't need namescope since it will cause mem leak
J
Jiabin Yang 已提交
1044
    if _non_static_mode():
L
Leo Chen 已提交
1045 1046
        yield
    else:
T
tianshuo78520a 已提交
1047
        assert prefix, "namescope prefix can not be empty."
1048 1049
        global _name_scope
        _name_scope = _name_scope.child(prefix)
1050 1051 1052 1053
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
1066 1067
def generate_control_dev_var_name():
    import random
1068

W
Wu Yi 已提交
1069
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
1070 1071 1072 1073


def grad_var_name(var_name):
    """
1074 1075
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
1076 1077 1078
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
1079

1080
def convert_np_dtype_to_dtype_(np_dtype):
1081
    """
1082
    Convert the data type in numpy to the data type in Paddle.
1083

1084
    Args:
1085 1086
        np_dtype (np.dtype|str): The data type in numpy or valid data type
            string.
1087

1088
    Returns:
1089
        core.VarDesc.VarType: The data type in Paddle.
1090 1091

    """
1092 1093
    # Convert the data type string to numpy data type.
    if isinstance(np_dtype, str) and np_dtype == "bfloat16":
1094 1095 1096
        dtype = np.uint16
    else:
        dtype = np.dtype(np_dtype)
1097

1098
    if dtype == np.float32:
1099
        return core.VarDesc.VarType.FP32
1100
    elif dtype == np.float64:
1101
        return core.VarDesc.VarType.FP64
1102
    elif dtype == np.float16:
1103
        return core.VarDesc.VarType.FP16
1104
    elif dtype == np.int32:
1105
        return core.VarDesc.VarType.INT32
1106
    elif dtype == np.int16:
1107
        return core.VarDesc.VarType.INT16
1108
    elif dtype == np.int64:
1109
        return core.VarDesc.VarType.INT64
1110
    elif dtype == np.bool_:
1111
        return core.VarDesc.VarType.BOOL
1112
    elif dtype == np.uint16:
1113 1114 1115
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
1116 1117
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
1118 1119
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
1120 1121 1122 1123
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
1124
    else:
M
minqiyang 已提交
1125
        raise ValueError("Not supported numpy dtype %s" % dtype)
1126 1127 1128


def dtype_is_floating(dtype):
1129 1130 1131
    """
    Check the data type is floating or not.
    Args:
1132
        dtype(np.dtype|core.VarDesc.VarType): data type.
1133 1134 1135 1136 1137
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1138
    if not isinstance(dtype, core.VarDesc.VarType):
1139 1140
        dtype = convert_np_dtype_to_dtype_(dtype)

1141
    return dtype in [
1142 1143 1144
        core.VarDesc.VarType.FP16,
        core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64,
1145
    ]
1146 1147


Y
Yang Yang(Tony) 已提交
1148
def _debug_string_(proto, throw_on_error=True):
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1160
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1161
    if not proto.IsInitialized(error_fields) and throw_on_error:
1162 1163
        raise ValueError(
            "{0} are not initialized.\nThe message is {1}:\n".format(
1164 1165 1166
                error_fields, proto
            )
        )
Y
Yu Yang 已提交
1167 1168 1169
    return proto.__str__()


1170 1171 1172 1173 1174 1175
def _varbase_creator(
    type=core.VarDesc.VarType.LOD_TENSOR,
    name=None,
    shape=None,
    dtype=None,
    persistable=None,
1176
    **kwargs,
1177
):
1178 1179 1180 1181
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

W
wanghuancoder 已提交
1182 1183 1184 1185 1186 1187 1188 1189 1190
    eager_tensor = core.eager.Tensor(
        dtype if dtype else core.VarDesc.VarType.FP32,
        list(shape) if shape else [],
        name,
        type if type else core.VarDesc.VarType.LOD_TENSOR,
        True if persistable else False,
    )
    eager_tensor.retain_grads()
    return eager_tensor
1191 1192


1193 1194 1195 1196 1197 1198 1199
def _all_is_type(vals, expected_type):
    """
    Return True if type of each element is expected_type.

    NOTE: BuiltIn all() will always return True if vals is empty.
    """
    assert isinstance(vals, (list, tuple))
1200 1201
    if not vals:
        return False
1202 1203 1204
    return all(isinstance(v, expected_type) for v in vals)


1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
def wrap_as_scalar(number):
    """Wrap a number(either python scalar or numpy scalar) as core.Scalar if
    it is not a scalar.


    Args:
        number (Number): number

    Returns:
        Scalar: A Scalar that contains the value.
    """
    if isinstance(number, core.Scalar):
        return number
    if isinstance(number, (bool, int, float, complex)):
        return core.Scalar(number)
    if isinstance(number, np.number):
        # it is a numpy scalar
        return core.Scalar(number.item())
    else:
        raise TypeError("Cannot wrap {} as core.Scalar".format(number))


def wrap_as_scalars(array):
    """This function is used to convert flat list, or numpy array(not
    necesarily flat) to list of core.Scalar, which correspond to
    std::vector<paddle::experimental::Scalar> in operator runtime.

    Args:
        array (List | np.ndarray): array of numbers

    Returns:
        List: list of core.Scalar, of which each element is a Scalar containing
          the corresponding value.
    """
    if isinstance(array, np.ndarray):
        array = array.ravel().tolist()
    return [wrap_as_scalar(item) for item in array]


def extract_plain_list(array):
    """extract value from a list of core.Scalar.

    Args:
        array (list): Scalars

    Returns:
        list: values extracted from the scalars.
    """
    return [item.value() for item in array]


def canonicalize_attrs(attrs, op_proto):
    """This function is used to canonicalize attributes(as a string->any dict)
    according to the type specification in the OpProto. This is especially
    important for operators that has any attributes of type Scalar or Scalars.

    Though various frontends of phi kernels & paddle operators can wrap variables
    of concrete types into Scalars(a tagged union of several numeric types) or
    vector of Scalars. Paddle operator requires strict type matching.

    Args:
        attrs (Dict[str, Any]): attribute dict intended to pass to an operator.
        op_proto (OpProto): Proto (signature) of the operator.

    Returns:
        Dict[str, Any]: canonicalized attributes.
    """
    canonicalized_attrs = attrs.copy()  # shallow copy is enough here
    for attr in op_proto.attrs:
        attr_name = attr.name
        type_index = attr.type
        if (attr_name not in attrs) or (attrs[attr_name] is None):
            continue

        attr_val = attrs[attr_name]

        # VAR and VARS should be skipped
        if isinstance(attr_val, Variable):
            continue
        if isinstance(attr_val, list) and _all_is_type(attr_val, Variable):
            continue

        # wrap
        if type_index == core.AttrType.SCALAR:
            canonicalized_attrs[attr_name] = core.Scalar(attr_val)
        elif type_index == core.AttrType.SCALARS:
            # it should be a list (or a numpy array)
            if len(attr_val) > 0:
                attr_val = np.array(attr_val).ravel().tolist()
                attr_val = [core.Scalar(x) for x in attr_val]
                canonicalized_attrs[attr_name] = attr_val

    return canonicalized_attrs


1300 1301 1302 1303 1304
class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1305
            return issubclass(t, core.eager.Tensor)
1306 1307 1308 1309 1310 1311 1312 1313 1314
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1315
            return issubclass(t, EagerParamBase)
1316 1317 1318 1319
        else:
            return issubclass(t, Parameter)


1320
class Variable(metaclass=VariableMetaClass):
1321
    """
J
Jiabin Yang 已提交
1322

U
ustiniankw 已提交
1323 1324 1325 1326
    Notes:
        The constructor of Variable should not be invoked directly.

        In Static Graph Mode: Please use ** `Block.create_var` ** to create a Static variable which has no data until being feed.
1327

U
ustiniankw 已提交
1328
        In Dygraph Mode: Please use ** :ref:`api_fluid_dygraph_to_variable` ** to create a dygraph variable with real data.
J
Jiabin Yang 已提交
1329 1330

    In Fluid, every input and output of an OP is a variable. In most
1331
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1332 1333
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1334

1335
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1336
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1337

T
tianshuo78520a 已提交
1338
    Most of a Variable's member variables can be set to be None. It mean
1339
    it is not available or will be specified later.
1340

1341
    Examples:
1342 1343
        In Static Graph Mode:

1344 1345
        .. code-block:: python

1346
            import paddle.fluid as fluid
1347
            cur_program = fluid.Program()
1348 1349 1350 1351
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1352

1353
        In Dygraph  Mode:
1354 1355 1356 1357 1358 1359 1360 1361 1362

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1363 1364
    """

1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
    def __init__(
        self,
        block,
        type=core.VarDesc.VarType.LOD_TENSOR,
        name=None,
        shape=None,
        dtype=None,
        lod_level=None,
        capacity=None,
        persistable=None,
        error_clip=None,
        stop_gradient=False,
        is_data=False,
        need_check_feed=False,
        belong_to_optimizer=False,
1380
        **kwargs,
1381
    ):
Y
Yu Yang 已提交
1382 1383
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1384
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1385

Y
Yu Yang 已提交
1386
        if dtype is not None:
1387
            if not isinstance(dtype, core.VarDesc.VarType):
1388
                dtype = convert_np_dtype_to_dtype_(dtype)
1389

S
Steffy-zxf 已提交
1390 1391 1392 1393
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

1394 1395 1396
        if type == core.VarDesc.VarType.SPARSE_COO:
            lod_level = None

H
hong 已提交
1397 1398
        self.belong_to_optimizer = belong_to_optimizer

1399 1400 1401
        self.error_clip = error_clip

        is_new_var = False
1402
        self.desc = self.block.desc.find_var(name.encode())
1403

1404
        if self.desc is None:
1405
            self.desc = self.block.desc.var(name.encode())
1406
            is_new_var = True
1407

1408 1409 1410
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
1411 1412 1413 1414 1415
            raise ValueError(
                "Variable '{0}' has been created before. The "
                "previous type is {1}, the new type is {2}. They"
                " are not matched".format(self.name, self.desc.type(), type)
            )
1416

1417
        if shape is not None:
1418
            if is_new_var:
1419 1420 1421 1422 1423 1424
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1425 1426
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1427 1428
                        "matched.".format(self.name, old_shape, shape)
                    )
1429 1430 1431 1432 1433 1434
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
1435 1436 1437 1438 1439 1440
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous data type is {1}, the new "
                        "data type is {2}. They are not "
                        "matched.".format(self.name, old_dtype, dtype)
                    )
1441 1442 1443 1444 1445 1446

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
1447 1448 1449 1450 1451 1452
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous lod_level is {1}, the new "
                        "lod_level is {2}. They are not "
                        "matched".format(self.name, self.lod_level, lod_level)
                    )
1453 1454 1455 1456 1457 1458
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1459 1460
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1461
                        "persistable is {2}. They are not matched".format(
1462 1463 1464
                            self.name, self.persistable, persistable
                        )
                    )
1465

1466 1467
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1468

1469 1470 1471 1472 1473 1474 1475
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1476

1477 1478
        self.block.vars[name] = self
        self.op = None
1479
        self.stop_gradient = stop_gradient
1480
        self.is_data = is_data
Y
Yu Yang 已提交
1481

1482 1483
    def detach(self):
        """
U
ustiniankw 已提交
1484

1485
        Returns a new Variable, detached from the current graph.
1486 1487
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1488

1489
        Returns:
U
ustiniankw 已提交
1490
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable), The detached Variable.
1491 1492 1493 1494

        Examples:
            .. code-block:: python

1495
                import paddle
1496

1497 1498 1499 1500
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1501

1502 1503
                # create a detached Variable
                y = x.detach()
U
ustiniankw 已提交
1504

1505
        """
1506

1507 1508 1509 1510
        assert (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ), "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"
1511 1512 1513 1514 1515 1516

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
1517 1518
            stop_gradient=True,
        )
1519

1520 1521 1522
        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]}
        )
1523
        return output
1524

1525
    @fake_interface_only
1526
    def numpy(self):
1527
        """
J
Jiabin Yang 已提交
1528
        **Notes**:
T
tianshuo78520a 已提交
1529
            **This API is ONLY available in Dygraph mode**
1530

J
Jiabin Yang 已提交
1531
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1532 1533 1534 1535 1536

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1537
            ndarray: dtype is same as current Variable
1538 1539 1540 1541 1542 1543

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1544
                from paddle.fluid.dygraph import Linear
1545 1546 1547 1548
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1549
                    linear = Linear(32, 64)
1550
                    data = to_variable(data)
1551
                    x = linear(data)
1552 1553 1554
                    print(x.numpy())

        """
1555
        pass
1556

1557
    @non_static_only
1558
    def backward(self, retain_graph=False):
1559
        """
J
Jiabin Yang 已提交
1560
        **Notes**:
T
tianshuo78520a 已提交
1561
            **This API is ONLY available in Dygraph mode**
1562

1563
        Run backward of current Graph which starts from current Tensor.
1564

J
Jiabin Yang 已提交
1565
        Args:
1566 1567 1568 1569
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1570

J
Jiabin Yang 已提交
1571 1572
        Returns:
            NoneType: None
1573 1574 1575 1576 1577

        Examples:
            .. code-block:: python

                import numpy as np
1578 1579
                import paddle
                paddle.disable_static()
1580 1581

                x = np.ones([2, 2], np.float32)
1582 1583 1584 1585 1586 1587 1588
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1589 1590
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1591
                loss.backward()
1592 1593

        """
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
        from .backward import append_backward

        if retain_graph is True:
            raise AssertionError(
                "`retain_graph` == True is not supported in @to_static function."
                "please set retain_graph = False."
            )
        param_grad_list = append_backward(self)
        for param, param_grad in param_grad_list:
            # set grad to simulate dygraph loss.backward() in static mode.
            setattr(param, "grad", param_grad)
1605

1606
    @fake_interface_only
1607
    def gradient(self):
1608
        """
J
Jiabin Yang 已提交
1609
        **Notes**:
T
tianshuo78520a 已提交
1610
            **This API is ONLY available in Dygraph mode**
1611 1612 1613

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1614
        Returns:
1615
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1616 1617 1618 1619

        Examples:
            .. code-block:: python

1620
                import paddle
1621 1622 1623
                import paddle.fluid as fluid
                import numpy as np

1624
                # example1: return ndarray
1625 1626 1627 1628 1629 1630 1631
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
1632
                    ret2 = paddle.add_n(inputs2)
1633
                    loss2 = paddle.sum(ret2)
1634
                    loss2.backward()
1635 1636
                    print(loss2.gradient())

1637 1638
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
1639 1640 1641 1642 1643
                    embedding = paddle.nn.Embedding(
                        20,
                        32,
                        weight_attr='emb.w',
                        sparse=True)
1644 1645 1646 1647 1648 1649 1650
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1651
        """
1652
        pass
1653

1654
    @fake_interface_only
1655
    def clear_gradient(self):
1656
        """
J
Jiabin Yang 已提交
1657
        **Notes**:
T
tianshuo78520a 已提交
1658
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1659 1660

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1661

J
Jiabin Yang 已提交
1662
        Clear  (set to ``0`` ) the Gradient of Current Variable
1663 1664 1665 1666 1667 1668

        Returns:  None

        Examples:
            .. code-block:: python

1669
                import paddle
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
1680
                    ret2 = paddle.add_n(inputs2)
1681
                    loss2 = paddle.sum(ret2)
1682
                    loss2.backward()
1683 1684 1685 1686 1687
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1688
        pass
X
Xin Pan 已提交
1689

1690 1691 1692 1693
    @fake_interface_only
    def register_hook(self, hook):
        pass

1694
    def __str__(self):
1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1711 1712
                import paddle
                import paddle.static as static
1713

1714 1715 1716
                paddle.enable_static()

                cur_program = static.Program()
1717 1718 1719 1720 1721 1722
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1723 1724
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1725 1726 1727 1728
        if (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ):
1729
            dtype_str = str(self.dtype).split('.')[1]
1730 1731 1732 1733 1734 1735 1736
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".format(
                name=self.name,
                type=type_str,
                shape=self.shape,
                dtype=dtype_str,
                stop_gradient=self.stop_gradient,
            )
1737
        else:
1738
            var_str = "{name} : {type})".format(name=self.name, type=type_str)
1739

1740
        if self.is_parameter:
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1751 1752 1753 1754
        from paddle.distributed.auto_parallel.dist_context import (
            get_default_distributed_context,
        )

1755
        dist_context = get_default_distributed_context()
1756 1757
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1758 1759 1760
            var_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_tensor
            )
1761

1762
        return var_str
Y
Yang Yang(Tony) 已提交
1763

F
update  
fengjiayi 已提交
1764
    def to_string(self, throw_on_error, with_details=False):
1765 1766 1767
        """
        Get debug string.

J
Jiabin Yang 已提交
1768 1769 1770 1771 1772
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1773

1774 1775
        Returns:
            str: The debug string.
1776 1777 1778 1779 1780

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1781
                import paddle
1782

1783
                paddle.enable_static()
1784 1785 1786 1787 1788
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1789
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1790
                print("=============with detail===============")
1791
                print(new_variable.to_string(True, True))
1792
        """
1793
        assert isinstance(throw_on_error, bool) and isinstance(
1794 1795
            with_details, bool
        )
1796
        protostr = self.desc.serialize_to_string()
1797
        proto = framework_pb2.VarDesc.FromString(bytes(protostr))
F
update  
fengjiayi 已提交
1798 1799
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1800
            additional_attr = ("error_clip",)
F
update  
fengjiayi 已提交
1801
            for attr_name in additional_attr:
1802
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
1803

F
update  
fengjiayi 已提交
1804
        return res_str
1805 1806 1807

    __repr__ = __str__

1808 1809 1810
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
1811

1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1835
    @property
1836
    def stop_gradient(self):
J
Jiabin Yang 已提交
1837 1838 1839
        """
        Indicating if we stop gradient from current Variable

1840
        **Notes: This Property has default value as** ``True`` **in** Dygraph **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``
J
Jiabin Yang 已提交
1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1852 1853
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1854 1855 1856
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1857 1858
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1859 1860 1861 1862
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1863
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1864 1865
                assert (out1.gradient() == 0).all()
        """
1866
        return self.desc.stop_gradient()
1867

1868 1869
    @stop_gradient.setter
    def stop_gradient(self, s):
1870
        self.desc.set_stop_gradient(s)
1871

1872 1873
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1874 1875 1876 1877 1878 1879 1880 1881
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

1882
            **2. In** Dygraph **mode, this property should not be changed**
J
Jiabin Yang 已提交
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1895
        return self.desc.persistable()
1896

Y
Yu Yang 已提交
1897 1898
    @persistable.setter
    def persistable(self, p):
1899
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1900

1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1926 1927
    @property
    def name(self):
J
Jiabin Yang 已提交
1928 1929 1930
        """
        Indicating name of current Variable

1931
        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** Dygraph **mode. This is how we achieve Parameter sharing**
J
Jiabin Yang 已提交
1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1944
        return self.desc.name()
Y
Yu Yang 已提交
1945

1946 1947 1948 1949 1950 1951
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1952 1953
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1954

1955 1956 1957
        Examples:
          .. code-block:: python

1958
          import paddle
1959

1960
          x = paddle.static.data(name="x", shape=[-1, 23, 48], dtype='float32')
1961
          print(x.grad_name) # output is ``x@GRAD``
1962 1963 1964 1965

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1966 1967
    @name.setter
    def name(self, new_name):
1968
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1969

Y
Yu Yang 已提交
1970 1971
    @property
    def shape(self):
J
Jiabin Yang 已提交
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1989
        # convert to tuple, make it as same as numpy API.
1990
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1991 1992

    @property
F
fengjiayi 已提交
1993
    def dtype(self):
J
Jiabin Yang 已提交
1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
2010
        return self.desc.dtype()
Y
Yu Yang 已提交
2011 2012 2013

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
2014 2015 2016 2017 2018 2019 2020 2021
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

2022
            **2. Don't support this property in** Dygraph **mode, it's value should be** ``0(int)``
J
Jiabin Yang 已提交
2023 2024 2025 2026

        Examples:
          .. code-block:: python

2027
            import paddle
J
Jiabin Yang 已提交
2028
            import paddle.fluid as fluid
2029 2030

            paddle.enable_static()
J
Jiabin Yang 已提交
2031 2032 2033 2034 2035 2036 2037
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
2038 2039
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
2040 2041
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
2042
        return self.desc.lod_level()
Y
Yu Yang 已提交
2043

Y
Yu Yang 已提交
2044 2045
    @property
    def type(self):
J
Jiabin Yang 已提交
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
2062
        return self.desc.type()
Y
Yu Yang 已提交
2063

2064 2065 2066
    @property
    def T(self):
        """
U
ustiniankw 已提交
2067

2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
U
ustiniankw 已提交
2086

2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
2099 2100
            stop_gradient=False,
        )
2101 2102 2103 2104 2105
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
2106 2107 2108 2109 2110 2111 2112 2113 2114
            stop_gradient=False,
        )

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out], 'XShape': [input_shape]},
            attrs={'axis': perm},
        )
2115 2116
        return out

2117 2118 2119
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
2120
        Variable. It remains in the current graph, that is, the cloned Variable
2121 2122 2123 2124
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
U
ustiniankw 已提交
2125
            Variable, The cloned Variable.
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
2145 2146
            stop_gradient=self.stop_gradient,
        )
2147

2148 2149 2150
        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]}
        )
2151 2152
        return output

W
Wu Yi 已提交
2153
    def _set_error_clip(self, error_clip):
2154
        """
U
ustiniankw 已提交
2155

2156 2157 2158 2159 2160 2161 2162
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
U
ustiniankw 已提交
2163

2164
        """
2165 2166
        self.error_clip = error_clip

2167 2168
    def _set_info(self, key, value):
        """
U
ustiniankw 已提交
2169

2170 2171 2172 2173 2174 2175
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

2176
        Returns:
2177
            None
U
ustiniankw 已提交
2178

2179 2180 2181 2182 2183 2184 2185
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
U
ustiniankw 已提交
2186

2187 2188 2189 2190 2191
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

2192
        Returns:
2193
            object
U
ustiniankw 已提交
2194

2195 2196 2197 2198 2199
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

2200 2201
    def _slice_indices(self, slice, length):
        """
U
ustiniankw 已提交
2202

2203
        Reference implementation for the slice.indices method.
U
ustiniankw 已提交
2204

2205 2206 2207 2208 2209 2210 2211 2212
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
2213
            raise ValueError("slice step can not be zero")
2214 2215 2216 2217 2218 2219 2220 2221 2222 2223

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
2224 2225 2226
            start = (
                max(start + length, lower) if start < 0 else min(start, upper)
            )
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
2272 2273 2274
                if (index > 0 and index >= self.shape[index]) or (
                    index < 0 and (index + self.shape[index]) < 0
                ):
2275
                    raise IndexError("invalid index")
2276 2277 2278 2279 2280
                start = (
                    max(start + self.shape[index], 0)
                    if start < 0
                    else min(start, self.shape[index])
                )
2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2294
    def _cloneVar(self, copy=False):
2295 2296
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2297
                name=unique_name.generate_with_ignorable_key(self.name),
2298 2299
                dtype=self.dtype,
            )
2300 2301 2302 2303
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2304
        new_var = self._cloneVar()
2305 2306 2307 2308 2309 2310
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes, 'starts': starts, 'ends': ends},
        )
2311 2312 2313
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2314
        new_var = self._cloneVar()
2315 2316 2317 2318 2319 2320 2321 2322
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={
                'axis': axis,
            },
        )
2323 2324 2325 2326 2327
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2328
                return self._cloneVar(True)
2329 2330 2331 2332 2333 2334 2335
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
2336 2337 2338
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2339 2340 2341
                        start += step
                else:
                    while start > stop:
2342 2343 2344
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2345 2346 2347 2348
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2349
                return self._cloneVar(True)
2350
            index = int(item)
2351 2352 2353
            if (index > 0 and index >= self.shape[axis]) or (
                index < 0 and (index + self.shape[axis]) < 0
            ):
2354 2355 2356 2357 2358 2359
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2360
        return _getitem_impl_(self, item)
2361

2362
    def __setitem__(self, item, value):
2363
        return _setitem_impl_(self, item, value)
2364

2365 2366
    def get_value(self, scope=None):
        """
2367
        Get the value of variable in given scope.
2368 2369

        Args:
2370
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2371 2372 2373 2374
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
U
ustiniankw 已提交
2375
            Tensor, the value in given scope.
2376 2377 2378 2379 2380

        Examples:
            .. code-block:: python

                import paddle
2381
                import paddle.static as static
2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
2406 2407
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file.
2408 2409
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
2410

2411 2412
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2413 2414 2415 2416
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2417 2418 2419 2420 2421

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
2422 2423 2424
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2425 2426 2427 2428 2429
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
U
ustiniankw 已提交
2430

2431
        Set the value to the tensor in given scope.
2432 2433 2434

        Args:
            value(Tensor/ndarray) : The value to be set.
2435
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2436 2437 2438 2439 2440
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
2441

2442 2443 2444 2445
        Examples:
            .. code-block:: python

                import paddle
2446
                import paddle.static as static
2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
U
ustiniankw 已提交
2470

2471 2472 2473
        '''

        # The 'framework' is a low-level module, and 'executor'
2474
        # can not be imported at the begainning of this file.
2475 2476 2477 2478 2479
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
2480 2481 2482 2483
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".format(
                    type(value)
                )
            )
2484 2485 2486

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2487 2488 2489 2490
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2491 2492 2493 2494 2495 2496

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
2497 2498 2499
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2500 2501 2502 2503 2504 2505 2506 2507 2508 2509

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
2510 2511 2512 2513
                    "{} expected a shape {}, but the received shape is {}.".format(
                        self.name, list(t.shape()), list(value_shape)
                    )
                )
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2531 2532
    def size(self):
        """
U
ustiniankw 已提交
2533

2534 2535 2536
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
U
ustiniankw 已提交
2537
            Variable, the number of elements for current Variable
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
U
ustiniankw 已提交
2551

2552 2553 2554 2555
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
2556 2557
            dtype=core.VarDesc.VarType.INT64,
        )
2558

2559 2560 2561
        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]}
        )
2562 2563
        return output

2564 2565
    def _set_attr(self, name, val):
        """
U
ustiniankw 已提交
2566

2567 2568 2569 2570 2571
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
U
ustiniankw 已提交
2572

2573 2574 2575 2576 2577
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
U
ustiniankw 已提交
2578

2579 2580 2581 2582 2583 2584
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2585 2586
            bool, True if has this attribute.

2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

2608
    def attr(self, name):
2609 2610 2611 2612 2613 2614 2615
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2616
            int|str|list, The attribute value. The return value
2617 2618 2619 2620 2621
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
2622
    def dist_attr(self):
2623
        """
2624
        Get distributed attribute of this Variable.
2625
        """
2626
        return self.desc.dist_attr
2627

2628 2629
    @dist_attr.setter
    def dist_attr(self, dist_attr):
2630
        """
2631
        Set distributed attribute of this Variable.
2632
        """
2633
        self.desc.dist_attr = dist_attr
2634

Y
Yu Yang 已提交
2635

F
fengjiayi 已提交
2636 2637 2638
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2639

2640 2641
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2642 2643 2644 2645
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2646
        op_proto = framework_pb2.OpProto.FromString(bytes(pbstr))
F
fengjiayi 已提交
2647 2648 2649 2650
        ret_values.append(op_proto)
    return ret_values


2651
class OpProtoHolder:
2652 2653 2654 2655
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2656 2657 2658 2659 2660 2661 2662 2663
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
2664 2665
            self.__class__, '_instance'
        ), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2666 2667 2668 2669 2670 2671
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2672 2673 2674 2675 2676 2677 2678 2679
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2680 2681
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2682 2683
        return self.op_proto_map[type]

2684 2685
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2686
        custom_op_names = []
2687 2688 2689
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2690 2691 2692
                custom_op_names.append(proto.type)

        return custom_op_names
2693

2694 2695 2696
    def has_op_proto(self, type):
        return type in self.op_proto_map

2697 2698 2699 2700
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2701
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2702
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2703
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
2704
            core.op_proto_and_checker_maker.kOpDeviceAttrName(),
2705 2706
        }

F
fengjiayi 已提交
2707

2708
class Operator:
2709
    """
2710 2711 2712 2713 2714 2715 2716
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2717
        type(str): The type of operator. Default None.
2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2738
        Block.append_op or Block._prepend_op instead.
2739 2740 2741 2742

    Examples:
        .. code-block:: python

2743
            import paddle.fluid as fluid
2744
            cur_program = fluid.Program()
2745 2746 2747 2748 2749
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2750
    """
2751

2752
    OP_WITHOUT_KERNEL_SET = {
2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
        'feed',
        'fetch',
        'recurrent',
        'go',
        'rnn_memory_helper_grad',
        'conditional_block',
        'while',
        'send',
        'recv',
        'listen_and_serv',
        'fl_listen_and_serv',
        'ncclInit',
        'select',
        'checkpoint_notify',
        'gen_bkcl_id',
        'c_gen_bkcl_id',
        'gen_nccl_id',
        'c_gen_nccl_id',
        'c_comm_init',
        'c_sync_calc_stream',
        'c_sync_comm_stream',
        'queue_generator',
        'dequeue',
        'enqueue',
        'heter_listen_and_serv',
        'c_wait_comm',
        'c_wait_compute',
        'c_gen_hccl_id',
        'c_comm_init_hccl',
        'copy_cross_scope',
        'c_gen_cncl_id',
2784
    }
2785

2786 2787 2788
    def __init__(
        self, block, desc, type=None, inputs=None, outputs=None, attrs=None
    ):
2789 2790 2791 2792 2793 2794 2795 2796 2797 2798
        # read attr type index from op proto to avoid unexpected type
        # conversions, e.g. narrowing conversion like double to float
        try:
            proto = OpProtoHolder.instance().get_op_proto(type)
            self._attr_types = {}
            for attr in proto.attrs:
                self._attr_types[attr.name] = attr.type
        except ValueError:
            pass

J
Jiabin Yang 已提交
2799
        if _non_static_mode():
2800 2801
            if type is None:
                raise ValueError(
2802 2803
                    "`type` to initialized an Operator can not be None."
                )
J
Jiabin Yang 已提交
2804
            self._type = type
M
minqiyang 已提交
2805
            self.attrs = attrs if attrs else {}
2806
        else:
2807

2808 2809 2810 2811 2812 2813 2814 2815 2816
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

2817
            # attr for static graph mode cuda graph
2818 2819
            self._cuda_graph_attr = _current_cuda_graph_mode

2820 2821 2822
            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
2823
                op_attrs[
2824 2825
                    op_maker.kOpRoleAttrName()
                ] = self.block.program._op_role
2826 2827

            role_var_name = op_maker.kOpRoleVarAttrName()
2828 2829 2830 2831
            if (
                len(self.block.program._op_role_var) != 0
                and role_var_name not in op_attrs
            ):
2832
                op_attrs[role_var_name] = self.block.program._op_role_var
2833 2834 2835 2836 2837

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2838 2839 2840 2841 2842
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2843 2844 2845
                return
            if type is None:
                raise ValueError(
2846 2847
                    "`type` to initialized an Operator can not be None."
                )
2848 2849
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2850 2851 2852
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
2853
                        '  File "{}", line {}, in {}'.format(
2854 2855 2856 2857 2858 2859
                            frame[0], frame[1], frame[2]
                        )
                    )
                    op_attrs[callstack_var_name].append(
                        '    {}'.format(frame[3])
                    )
2860 2861 2862 2863 2864 2865 2866

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2867 2868 2869 2870 2871 2872 2873 2874
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
2875 2876 2877
                    warnings.warn(
                        "The Op(%s) is not support to set device." % type
                    )
2878
                if 'force_cpu' in op_attrs:
2879
                    if (
2880 2881
                        type == 'less_than'
                        and op_attrs['force_cpu'] is not None
2882
                    ) or op_attrs['force_cpu'] != False:
2883 2884 2885
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
2886 2887
                            "used at the same time." % type
                        )
2888
            if _current_pipeline_stage is not None:
2889 2890 2891 2892 2893
                pipeline_attr_name = (
                    'pipeline_stage' + core.kAutoParallelSuffix()
                )
                self._update_desc_attr(
                    pipeline_attr_name, _current_pipeline_stage
2894
                )
2895

2896 2897 2898 2899 2900 2901 2902 2903 2904
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
2905 2906 2907
                    assert (
                        found or in_proto.dispensable
                    ), "Input {} not found".format(in_proto.name)
2908 2909
                    if found:
                        in_args = inputs[in_proto.name]
2910
                        if not isinstance(in_args, (list, tuple)):
2911 2912 2913 2914
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
2915 2916
                                % (in_proto.name, len(in_args))
                            )
2917
                        in_arg_names = []
2918
                        for index, arg in enumerate(in_args):
2919
                            if isinstance(arg, str):
2920
                                in_arg_names.append(arg)
2921
                            elif isinstance(arg, bytes):
2922
                                in_arg_names.append(arg.decode())
W
wanghuancoder 已提交
2923
                            elif isinstance(arg, (Variable, core.eager.Tensor)):
2924
                                in_arg_names.append(arg.name)
2925
                            else:
2926
                                raise TypeError(
2927 2928
                                    f"The type of '%{in_proto.name}' in operator {type} should be "
                                    f"one of [str, bytes, Variable]. but received : {arg}"
2929
                                )
2930 2931 2932 2933 2934 2935 2936 2937 2938
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
2939
                        raise ValueError(
2940 2941 2942 2943 2944 2945
                            (
                                "Incorrect setting for output(s) of "
                                "operator \"%s\", should set: [%s]."
                            )
                            % (type, m.name)
                        )
2946 2947 2948 2949 2950 2951 2952 2953 2954
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
2955 2956
                            % (out_proto.name, len(out_args))
                        )
2957 2958
                    out_arg_names = []
                    for arg in out_args:
2959
                        if isinstance(arg, str):
2960 2961
                            out_arg_names.append(arg)
                        else:
2962
                            out_arg_names.append(arg.name)
2963
                        # TODO(minqiyang): could we remove variable's op in static graph mode?
J
Jiabin Yang 已提交
2964
                        if not _non_static_mode():
2965
                            if isinstance(arg, str):
2966 2967 2968
                                block.var(arg).op = self
                            else:
                                arg.op = self
2969 2970
                    self.desc.set_output(out_proto.name, out_arg_names)

2971
            extra_attrs_map = core.get_op_extra_attrs(type)
2972 2973 2974 2975 2976
            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
2977 2978 2979
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
2980 2981 2982
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)
2983
                for attr_name in extra_attrs_map.keys():
2984 2985 2986 2987 2988
                    if os.environ.get('FLAGS_print_extra_attrs', '0') == '1':
                        warnings.warn(
                            "op %s use extra_attr: %s" % (type, attr_name)
                        )

2989 2990 2991 2992 2993 2994
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
                        self._update_desc_attr(
                            attr_name, extra_attrs_map[attr_name]
                        )
2995 2996
                    else:
                        self._update_desc_attr(attr_name, op_attrs[attr_name])
2997

2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025
                if os.environ.get('FLAGS_print_extra_attrs', '0') == '1':
                    if type in extra_op_attrs:
                        attrs = extra_op_attrs.get(type, [])
                        for attr in attrs:
                            if attr in op_attrs.keys():
                                warnings.warn(
                                    "op %s use extra_attr: %s" % (type, attr)
                                )

                    if type in special_op_attrs:
                        attrs = special_op_attrs.get(type, [])
                        for attr in attrs:
                            a_name = list(attr.keys())[0]
                            default_value = list(attr.values())[0]
                            if (
                                a_name in op_attrs.keys()
                                and default_value != op_attrs[a_name]
                            ):
                                warnings.warn(
                                    "op %s's attr %s = %s is not the default value: %s"
                                    % (
                                        type,
                                        a_name,
                                        op_attrs[a_name],
                                        default_value,
                                    )
                                )

J
jianghaicheng 已提交
3026 3027
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
3028
                if global_ipu_index >= 0:
3029 3030 3031
                    self._update_desc_attr(
                        ipu_index_attr_name, global_ipu_index
                    )
3032
                if global_ipu_stage >= 0:
3033 3034 3035
                    self._update_desc_attr(
                        ipu_stage_attr_name, global_ipu_stage
                    )
J
jianghaicheng 已提交
3036

3037
            self.desc.check_attrs()
3038

3039 3040 3041 3042
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
3043
    def _has_kernel(self, op_type):
3044 3045
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
3046
    def to_string(self, throw_on_error):
3047
        """
3048 3049
        Get debug string.

3050
        Args:
3051 3052
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
3053

3054 3055
        Returns:
            str: The debug string.
3056 3057

        """
3058
        protostr = self.desc.serialize_to_string()
3059
        proto = framework_pb2.OpDesc.FromString(bytes(protostr))
Y
Yang Yang(Tony) 已提交
3060 3061
        return _debug_string_(proto, throw_on_error)

3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3094
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3095 3096
            type(skip_op_callstack)
        )
3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

3123 3124 3125
            attr_type = self.desc.attr_type(name, True)
            if attr_type == core.AttrType.VAR:
                attr_var_name = self.desc.attr(name, True).name()
3126 3127 3128
                a = "{name} = Var['{value}']".format(
                    name=name, type=attr_type, value=attr_var_name
                )
3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.VARS:
                attr_var_names = [
                    "'%s'" % var.name() for var in self.desc.attr(name, True)
                ]
                a = "{name} = Vars[{value}]".format(
3139 3140
                    name=name, type=attr_type, value=','.join(attr_var_names)
                )
3141 3142 3143 3144 3145
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3146 3147
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
3148 3149
                    name=name, type=attr_type, value=self._block_attr_id(name)
                )
3150 3151 3152 3153 3154 3155 3156
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
3157 3158
                    name=name, type=attr_type, value=self._blocks_attr_ids(name)
                )
3159 3160 3161 3162 3163
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3164
            # it is bytes of serialized protobuf
3165 3166 3167 3168 3169
            if (
                is_compiled_with_cinn()
                and self.type == 'cinn_launch'
                and name == 'compilation_key'
            ):
3170 3171
                key = self.desc.attr(name)
                v = core.get_serialize_comile_key(key)
3172 3173 3174 3175 3176 3177 3178 3179 3180
                prog = Program()
                prog = prog.parse_from_string(v)
                s = prog._to_readable_code()
                lines = s.split('\n')
                value = '\n'.join(['      ' + line for line in lines])
                value = '\n' + value
            else:
                value = self.desc.attr(name)

3181 3182 3183
            a = "{name} = {value}".format(
                name=name, type=attr_type, value=value
            )
3184

3185 3186 3187 3188
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

3189 3190 3191 3192
        from paddle.distributed.auto_parallel.dist_context import (
            get_default_distributed_context,
        )

3193
        dist_context = get_default_distributed_context()
3194 3195
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
3196 3197 3198
            attrs_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_op
            )
3199

3200
        if outputs_str != "{}":
3201 3202 3203 3204 3205 3206
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".format(
                outputs=outputs_str,
                op_type=self.type,
                inputs=inputs_str,
                attrs=attrs_str,
            )
3207
        else:
3208 3209 3210
            op_str = "{op_type}(inputs={inputs}, {attrs})".format(
                op_type=self.type, inputs=inputs_str, attrs=attrs_str
            )
3211 3212
        return op_str

Y
Yang Yang(Tony) 已提交
3213
    def __str__(self):
3214
        return self._to_readable_code()
3215 3216 3217

    __repr__ = __str__

F
fengjiayi 已提交
3218 3219
    @property
    def type(self):
3220
        return self.desc.type()
F
fengjiayi 已提交
3221 3222

    def input(self, name):
3223
        r"""
U
ustiniankw 已提交
3224

3225
        Get the input arguments according to the input parameter name.
3226

3227 3228
        Args:
            name(str): The input parameter name.
3229

3230
        Returns:
U
ustiniankw 已提交
3231
            list, return the list of argument names that associated with \
3232
                the specific parameter name.
U
ustiniankw 已提交
3233

3234
        """
F
fengjiayi 已提交
3235 3236
        return self.desc.input(name)

W
Wu Yi 已提交
3237
    def _rename_input(self, old_name, new_name):
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
3248
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
3249

W
Wu Yi 已提交
3250
    def _rename_output(self, old_name, new_name):
3251 3252 3253 3254 3255 3256 3257 3258 3259 3260
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
3261
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
3262

F
fengjiayi 已提交
3263 3264 3265 3266
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
3267 3268 3269 3270 3271 3272 3273 3274
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
3275
    def output(self, name):
3276
        r"""
3277
        Get output arguments by the output parameter name.
3278

3279 3280
        Args:
            name(str): The output parameter name.
3281

3282 3283 3284
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
3285
        """
F
fengjiayi 已提交
3286 3287 3288 3289 3290 3291
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

3292 3293 3294 3295 3296 3297
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
3298 3299
            "Can't find op itself in it's block. It could be a bug of Paddle."
        )
3300

F
fengjiayi 已提交
3301
    def has_attr(self, name):
3302
        """
3303 3304
        Whether this Operator has the attribute with name or not.

3305
        Args:
3306
            name(str): the attribute name.
3307

3308 3309
        Returns:
            bool: True if has this attribute.
3310 3311

        """
F
fengjiayi 已提交
3312 3313 3314
        return self.desc.has_attr(name)

    def attr_type(self, name):
3315
        """
3316
        Get the type of attribute by attribute's name.
3317

3318 3319
        Args:
            name(str): the attribute name.
3320

3321 3322
        Returns:
            core.AttrType: the attribute type.
3323
        """
3324
        return self.desc.attr_type(name, True)
F
fengjiayi 已提交
3325

W
Wu Yi 已提交
3326
    def _set_attr(self, name, val):
3327 3328 3329 3330 3331 3332 3333 3334 3335 3336
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
3337 3338
        self._update_desc_attr(name, val)

3339 3340 3341
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
3353 3354 3355 3356 3357
        if isinstance(val, Variable):
            self.desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            self.desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
Q
Qiyang Min 已提交
3358
            self.desc.set_block_attr(name, val.desc)
3359
        elif isinstance(val, list) and val and _all_is_type(val, Block):
3360
            self.desc.set_blocks_attr(name, [v.desc for v in val])
3361 3362 3363
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
Q
Qiyang Min 已提交
3364 3365
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
3366 3367 3368 3369 3370 3371 3372 3373 3374
            self._update_desc_plain_attr(name, val)

    def _update_desc_plain_attr(self, name, val):
        desc = self.desc
        if not hasattr(self, "_attr_types") or (name not in self._attr_types):
            desc._set_attr(name, val)
            return

        type_index = self._attr_types[name]
3375 3376 3377 3378 3379 3380
        # if the required attribute is a SCALAR, pass as-is
        if type_index == core.AttrType.SCALAR:
            desc._set_scalar_attr(name, wrap_as_scalar(val))
        elif type_index == core.AttrType.SCALARS:
            desc._set_scalars_attr(name, wrap_as_scalars(val))
        elif type_index == core.AttrType.BOOL:
3381 3382 3383 3384 3385 3386 3387
            desc._set_bool_attr(name, val)
        elif type_index == core.AttrType.INT:
            desc._set_int32_attr(name, val)
        elif type_index == core.AttrType.LONG:
            desc._set_int64_attr(name, val)
        elif type_index == core.AttrType.FLOAT:
            desc._set_float32_attr(name, val)
3388 3389
        elif type_index == core.AttrType.FLOAT64:
            desc._set_float64_attr(name, val)
3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
        elif type_index == core.AttrType.STRING:
            desc._set_str_attr(name, val)
        elif type_index == core.AttrType.BOOLS:
            desc._set_bools_attr(name, val)
        elif type_index == core.AttrType.INTS:
            desc._set_int32s_attr(name, val)
        elif type_index == core.AttrType.LONGS:
            desc._set_int64s_attr(name, val)
        elif type_index == core.AttrType.FLOATS:
            desc._set_float32s_attr(name, val)
        elif type_index == core.AttrType.FLOAT64S:
            desc._set_float64s_attr(name, val)
        elif type_index == core.AttrType.STRINGS:
            desc._set_strs_attr(name, val)
        else:
            # defaults to old methods
            desc._set_attr(name, val)
Y
yuyang18 已提交
3407

F
fengjiayi 已提交
3408 3409
    @property
    def attr_names(self):
3410
        return self.desc.attr_names(True)
F
fengjiayi 已提交
3411 3412

    def attr(self, name):
3413
        """
3414 3415
        Get the attribute by name.

3416
        Args:
3417
            name(str): the attribute name.
3418

3419 3420
        Returns:
            bool|int|str|float|list: The attribute value. The return value
3421 3422
            can be any valid attribute type.
        """
F
fengjiayi 已提交
3423
        return self.desc.attr(name)
Y
Yu Yang 已提交
3424

W
Wu Yi 已提交
3425
    def _block_attr_id(self, name):
3426
        """
G
gongweibao 已提交
3427
        Get the block attribute's id by name.
3428

3429 3430
        Args:
            name(str): the attribute name.
3431

3432 3433
        Returns:
            int: the block index.
3434
        """
W
Wu Yi 已提交
3435
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
3436

W
Wu Yi 已提交
3437
    def _block_attr(self, name):
G
gongweibao 已提交
3438 3439 3440 3441 3442 3443 3444 3445 3446 3447
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
3448
        id = self._block_attr_id(name)
3449
        assert id >= 0 and id < len(self.block.program.blocks)
G
gongweibao 已提交
3450 3451
        return self.block.program.blocks[id]

W
Wu Yi 已提交
3452
    def _blocks_attr(self, name):
G
gongweibao 已提交
3453 3454 3455 3456 3457 3458 3459 3460 3461 3462
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
3463
        for i in self._blocks_attr_ids(name):
3464
            assert i >= 0 and i < len(self.block.program.blocks)
G
gongweibao 已提交
3465 3466 3467 3468
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
3469
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
3470 3471 3472 3473 3474 3475 3476 3477 3478 3479
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
3480
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
3481

3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
    def _var_attr(self, name):
        """
        Get the Variable attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variable: the Variable attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3493 3494 3495 3496 3497
        assert (
            attr_type == core.AttrType.VAR
        ), "Required type attr({}) is Variable, but received {}".format(
            name, attr_type
        )
3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511
        attr_var_name = self.desc.attr(name, True).name()
        return self.block._var_recursive(attr_var_name)

    def _vars_attr(self, name):
        """
        Get the Variables attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variables: the Variables attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3512 3513 3514 3515 3516
        assert (
            attr_type == core.AttrType.VARS
        ), "Required type attr({}) is list[Variable], but received {}".format(
            name, attr_type
        )
3517 3518 3519 3520 3521 3522
        attr_vars = [
            self.block._var_recursive(var.name())
            for var in self.desc.attr(name, True)
        ]
        return attr_vars

J
JiayiFeng 已提交
3523
    def all_attrs(self):
F
fengjiayi 已提交
3524
        """
3525 3526 3527
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3528
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3529 3530 3531 3532
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
3533
            attr_type = self.desc.attr_type(n, True)
G
gongweibao 已提交
3534
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3535
                attr_map[n] = self._block_attr(n)
3536
            elif attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3537
                attr_map[n] = self._blocks_attr(n)
3538 3539 3540 3541 3542 3543
            elif attr_type == core.AttrType.VAR:
                attr_map[n] = self._var_attr(n)
            elif attr_type == core.AttrType.VARS:
                attr_map[n] = self._vars_attr(n)
            else:
                attr_map[n] = self.attr(n)
G
gongweibao 已提交
3544

F
fengjiayi 已提交
3545 3546
        return attr_map

3547 3548 3549
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3550 3551 3552 3553

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3554 3555 3556
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3557 3558 3559 3560 3561 3562 3563 3564

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3565 3566
            return False

3567 3568 3569 3570 3571 3572
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3573
    @property
3574
    def dist_attr(self):
3575
        """
3576
        Get distributed attribute of this Variable.
3577
        """
3578
        return self.desc.dist_attr
3579

3580 3581
    @dist_attr.setter
    def dist_attr(self, dist_attr):
3582
        """
3583
        Set distributed attribute of this Variable.
3584
        """
3585
        self.desc.dist_attr = dist_attr
3586

Y
Yu Yang 已提交
3587

3588
class Block:
3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3603
        use `Program._create_block()` to create a block.
3604 3605 3606 3607

    Examples:
        .. code-block:: python

3608 3609 3610
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3611 3612 3613 3614 3615 3616 3617 3618 3619
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3620
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3621
        self.desc = program.desc.block(idx)
3622
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3623
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3624 3625
        self.program = program

3626
    def __str__(self):
3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3661
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3662 3663
            type(skip_op_callstack)
        )
3664 3665 3666 3667 3668 3669 3670
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
3671 3672
                op._to_readable_code(skip_op_callstack)
            )
3673 3674
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3675

F
fengjiayi 已提交
3676 3677
    def to_string(self, throw_on_error, with_details=False):
        """
3678 3679
        Get debug string.

F
fengjiayi 已提交
3680 3681
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3682
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3683
            with_details(bool): more details about variables and parameters
3684 3685
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3686

3687 3688
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3689
        """
3690
        assert isinstance(throw_on_error, bool) and isinstance(
3691 3692
            with_details, bool
        )
F
fengjiayi 已提交
3693
        if with_details:
F
fengjiayi 已提交
3694
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3695
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
3696 3697 3698
                self.idx,
                self.parent_idx,
            )
3699
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3700
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
3701 3702
                    r"\n    \1", var.to_string(throw_on_error, with_details)
                )
F
fengjiayi 已提交
3703
            for op in self.ops:
F
fengjiayi 已提交
3704
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
3705 3706
                    r"\n    \1", op.to_string(throw_on_error)
                )
F
fengjiayi 已提交
3707 3708 3709
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3710
            proto = framework_pb2.BlockDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
3711 3712
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3713 3714 3715

    __repr__ = __str__

Y
Yu Yang 已提交
3716 3717
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3718
        return self.desc.parent
Y
Yu Yang 已提交
3719

Y
Yu Yang 已提交
3720 3721 3722 3723
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3724
    def _set_forward_block_idx(self, idx):
3725 3726 3727 3728 3729 3730 3731 3732 3733
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3734
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3735

3736 3737 3738 3739 3740 3741 3742 3743
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3744 3745
    @property
    def idx(self):
Y
Yu Yang 已提交
3746
        return self.desc.id
Y
Yu Yang 已提交
3747

Q
Qiao Longfei 已提交
3748
    def var(self, name):
3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3762
        if not isinstance(name, str):
M
minqiyang 已提交
3763
            raise TypeError(
3764 3765 3766
                "var require string as parameter, but get %s instead."
                % (type(name))
            )
Y
Yu Yang 已提交
3767 3768
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3769
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3770
        return v
Q
Qiao Longfei 已提交
3771

X
Xin Pan 已提交
3772
    def _find_var_recursive(self, name):
3773 3774 3775 3776 3777 3778 3779
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3780
            Variable: the Variable with the giving name. Or None if not found.
3781
        """
Y
Yu Yang 已提交
3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3806
        return None
Y
Yu Yang 已提交
3807

X
Xin Pan 已提交
3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3827

Q
Qiao Longfei 已提交
3828
    def all_parameters(self):
3829
        return list(self.iter_parameters())
3830

3831
    def iter_parameters(self):
3832 3833 3834 3835 3836
        return (
            item[1]
            for item in self.vars.items()
            if isinstance(item[1], Parameter)
        )
Q
Qiao Longfei 已提交
3837

Y
Yu Yang 已提交
3838
    def create_var(self, *args, **kwargs):
J
Jiabin Yang 已提交
3839
        if _non_static_mode():
L
Leo Chen 已提交
3840 3841
            var = _varbase_creator(*args, **kwargs)
        else:
3842 3843 3844
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3845
        return var
Y
Yu Yang 已提交
3846

Q
Qiao Longfei 已提交
3847 3848 3849
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3850
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3851 3852
        """
        Rename variable in vars and ops' inputs and outputs
3853 3854

        Args:
3855 3856
            name(str|bytes): the name that need to be renamed.
            new_name(str|bytes): the name that need to rename to.
3857 3858 3859 3860 3861 3862 3863 3864

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3865
        """
3866 3867
        # Ensure the type of name and new_name is str
        name = name.decode() if isinstance(name, bytes) else name
3868 3869 3870
        new_name = (
            new_name.decode() if isinstance(new_name, bytes) else new_name
        )
M
minqiyang 已提交
3871

T
typhoonzero 已提交
3872
        if not self.has_var(name):
3873
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3874 3875
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3876
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3877 3878 3879 3880 3881 3882
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3883
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3884 3885 3886 3887
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3888
        orig_var_type = v.type
3889
        self.desc._rename_var(name.encode(), new_name.encode())
W
Wu Yi 已提交
3890
        # NOTE: v is destroyed by C++ after calling _rename_var.
3891
        d = self.desc.find_var(new_name.encode())
T
typhoonzero 已提交
3892
        if var_type == "Parameter":
L
Leo Chen 已提交
3893
            if in_dygraph_mode():
3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904
                var = EagerParamBase(
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
3905
            else:
姜永久 已提交
3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917
                var = Parameter(
                    self,
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
T
typhoonzero 已提交
3918
        elif var_type == "Variable":
3919 3920 3921 3922 3923 3924 3925
            var = Variable(
                self,
                type=orig_var_type,
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient,
            )
T
wip  
typhoonzero 已提交
3926

W
Wu Yi 已提交
3927
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3928 3929 3930
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3931
        self._sync_with_cpp()
3932
        return var
T
typhoonzero 已提交
3933

3934 3935 3936
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
3937
        self.desc._remove_var(name.encode())
3938 3939
        del self.vars[name]

Y
Yu Yang 已提交
3940 3941
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3942
        param = None
L
Leo Chen 已提交
3943
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3944
            param = EagerParamBase(*args, **kwargs)
L
Leo Chen 已提交
3945
        else:
姜永久 已提交
3946
            param = Parameter(global_block, *args, **kwargs)
3947 3948 3949
        # NOTE(Aurelius84): we deliver stop_gradient in append_op, so we
        # need recorde it state and reset it back after calling this API
        stop_gradient = param.stop_gradient
3950

3951
        if 'initializer' in kwargs:
3952 3953 3954 3955 3956

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3957
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3958
                        # are treated as initialization ops that cause error.
3959
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3960 3961
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
3962 3963 3964
                            "c_broadcast",
                            "c_sync_comm_stream",
                            "coalesce_tensor",
3965
                        ]:
3966
                            continue
3967 3968 3969 3970 3971 3972 3973
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
3974 3975 3976 3977 3978 3979
                raise RuntimeError(
                    "param "
                    + param.name
                    + " is inited by multiple init ops "
                    + str(init_ops)
                )
3980
            elif init_ops_len == 1:
3981
                # TODO already inited, do nothing, should log a warning
3982 3983 3984
                pass
            else:
                initializer(param, self)
3985
        param.stop_gradient = stop_gradient
Q
Qiao Longfei 已提交
3986
        return param
Y
Yu Yang 已提交
3987

Y
Yu Yang 已提交
3988
    def append_op(self, *args, **kwargs):
3989 3990 3991 3992 3993 3994
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
3995
        op_type = kwargs.get("type", None)
J
Jiabin Yang 已提交
3996
        if _non_static_mode():
3997
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
3998
            inplace_map = kwargs.get("inplace_map", None)
3999 4000 4001
            warnings.warn(
                "Op `%s` is executed through `append_op` under the dynamic mode, "
                "the corresponding API implementation needs to be upgraded to "
4002 4003 4004 4005 4006 4007
                "using `_C_ops` method." % type,
                DeprecationWarning,
            )
            op = Operator(
                block=self,
                desc=None,
4008
                type=op_type,
4009 4010 4011 4012
                inputs=None,
                outputs=None,
                attrs=attrs,
            )
4013

M
minqiyang 已提交
4014 4015
            # record ops in tracer rather than blocks
            #
4016
            # TODO(minqiyang): add op stop_gradient support in static graph mode too.
L
lujun 已提交
4017
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
4018

4019
            _dygraph_tracer().trace_op(
4020
                op_type,
4021 4022 4023 4024 4025 4026
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
                inplace_map,
            )
M
minqiyang 已提交
4027
        else:
4028
            from paddle.fluid.dygraph.base import param_guard
4029
            from paddle.utils import flatten
4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043

            def pass_stop_gradient(ins, outs):
                """
                Set out.stop_gradient = True if all inputs stop_gradient is True.
                """
                need_reset = True
                for var in flatten(ins):
                    if getattr(var, 'stop_gradient', None) is False:
                        need_reset = False
                        break
                if need_reset:
                    for var in flatten(outs):
                        if isinstance(var, Variable):
                            var.stop_gradient = True
4044

4045
            op_desc = self.desc.append_op()
4046 4047
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
W
wanghuancoder 已提交
4048
            # NOTE(Aurelius84): In case of @to_static, all Tensor(s) should
4049 4050
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
4051 4052 4053 4054 4055 4056 4057 4058 4059 4060
            ignore_ops = {
                'conditional_block',
                'conditional_block_grad',
                'recurrent',
                'recurrent_grad',
                'while',
                'while_grad',
            }
            if op_type not in ignore_ops:
                pass_stop_gradient(inputs, outputs)
4061
            with param_guard(inputs), param_guard(outputs):
4062 4063 4064
                op = Operator(
                    block=self,
                    desc=op_desc,
4065
                    type=op_type,
4066 4067 4068 4069
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None),
                )
4070

M
minqiyang 已提交
4071
            self.ops.append(op)
M
minqiyang 已提交
4072

4073 4074
        return op

W
Wu Yi 已提交
4075
    def _insert_op(self, index, *args, **kwargs):
4076 4077 4078 4079 4080 4081 4082 4083 4084
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
4085
        self._sync_with_cpp()
F
fangshuixun007 已提交
4086
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
4087

4088 4089
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
4090
        Insert an Operator according to the giving arguments,
4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
4105 4106 4107 4108 4109 4110 4111 4112 4113
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
4114 4115
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
4116
        self.desc._remove_op(index, index + 1)
4117 4118
        del self.ops[index]

W
Wu Yi 已提交
4119
    def _slice_ops(self, start, end):
4120 4121 4122 4123 4124 4125 4126 4127 4128 4129
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
4130
        return self.ops[start:end]
Y
Yancey1989 已提交
4131

W
Wu Yi 已提交
4132
    def _prepend_op(self, *args, **kwargs):
J
Jiabin Yang 已提交
4133
        if _non_static_mode():
J
Jiabin Yang 已提交
4134 4135
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146
            op = Operator(
                self, None, type=type, inputs=None, outputs=None, attrs=attrs
            )

            _dygraph_tracer().trace_op(
                type,
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
            )
M
minqiyang 已提交
4147
        else:
4148
            op_desc = self.desc._prepend_op()
4149 4150 4151 4152 4153 4154 4155 4156
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None),
            )
M
minqiyang 已提交
4157
            self.ops.insert(0, op)
4158

Y
Yu Yang 已提交
4159 4160
        return op

W
Wu Yi 已提交
4161
    def _sync_with_cpp(self):
4162
        """
4163 4164
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
4165
        """
Q
Qiao Longfei 已提交
4166 4167 4168
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
4169 4170 4171 4172
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
4173 4174 4175 4176 4177 4178 4179 4180
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient,
                    )
4181
                else:
4182 4183 4184 4185 4186 4187
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient,
                    )
Q
Qiao Longfei 已提交
4188

4189
        # sync variables removed from c++ end
4190
        for var in list(self.vars.keys()):
4191
            if not self.desc.find_var(var.encode()):
4192 4193
                self.vars.pop(var)

Q
Qiao Longfei 已提交
4194
        # sync operators from cpp
4195 4196 4197 4198
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
4215 4216 4217 4218 4219

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
4220
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
4221 4222 4223 4224 4225 4226 4227

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

4228 4229 4230 4231 4232
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
4233 4234 4235 4236 4237 4238
                self.ops
            ) and ops_in_cpp_index < len(ops_in_cpp):
                if (
                    self.ops[ops_in_python_index].desc
                    != ops_in_cpp[ops_in_cpp_index]
                ):
4239 4240 4241 4242 4243
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
4244 4245 4246 4247
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
4248
    def _copy_param_info_from(self, other):
4249
        """
4250 4251
        Copy the information of parameters from the other block.

4252
        Args:
4253 4254 4255 4256 4257
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
4258 4259 4260 4261 4262

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
4263
            raise TypeError(
4264 4265
                "_copy_param_info_from should be invoked with Block"
            )
4266
        for p in other.iter_parameters():
4267 4268 4269
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
4270 4271
                # if the Parameter is pruned, v may be None
                continue
4272
            assert isinstance(v, Variable)
4273
            new_p = None
L
Leo Chen 已提交
4274
            if in_dygraph_mode():
4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286
                new_p = EagerParamBase(
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4287
            else:
姜永久 已提交
4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302
                new_p = Parameter(
                    block=self,
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR
                    else None,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4303 4304
            self.vars[new_p.name] = new_p

4305
    def _clone_variable(self, var, force_persistable=True):
4306 4307
        """
        Clone a variable into current block.
4308

4309 4310
        Args:
            var: the variable to be cloned.
4311 4312 4313
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
4314 4315

        Returns:
4316
            Variable: the new  variable cloned from 'var' in current block.
4317 4318
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
4319 4320 4321
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
4322 4323 4324
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
tangwei12 已提交
4325
        elif var.type == core.VarDesc.VarType.RAW:
4326 4327 4328
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
typhoonzero 已提交
4329 4330 4331 4332 4333 4334
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
4335
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4336
                is_data=var.is_data,
4337 4338
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4339 4340 4341 4342 4343 4344 4345
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
4346
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4347
                is_data=var.is_data,
4348 4349
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4350
        return ret_var
4351

Y
Yu Yang 已提交
4352

4353 4354 4355 4356
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
4357
# of some old Python Variables(all old Python Operators) may have
4358
# been destructed.
4359 4360 4361
def _apply_pass(
    main_program, startup_program, pass_name, pass_attrs={}, pass_attr_types={}
):
4362 4363 4364 4365
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
4366 4367 4368 4369 4370 4371 4372
    attrs = core.apply_pass(
        tmp_main_program,
        tmp_startup_program,
        pass_name,
        pass_attrs,
        pass_attr_types,
    )
4373 4374 4375 4376 4377
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


4378
class IrNode:
4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4390 4391 4392
        assert isinstance(
            node, core.Node
        ), 'node must be the instance of core.Node.'
4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

4474
    def remove_input_by_id(self, node_id):
4475 4476 4477 4478 4479 4480
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4481
        self.node.remove_input(node_id)
4482

4483
    def remove_input(self, node):
4484 4485 4486 4487
        """
        Remove a node from inputs.

        Args:
4488
            node(IrNode): the node being removed.
4489
        """
4490
        self.node.remove_input(node.node)
4491

4492
    def append_input(self, node):
4493 4494 4495 4496
        """
        Append a node in inputs.

        Args:
4497
            node(IrNode): the node being appended.
4498
        """
4499
        self.node.append_input(node.node)
4500 4501 4502 4503 4504 4505 4506 4507

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

4508
    def remove_output_by_id(self, node_id):
4509 4510 4511 4512 4513 4514
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4515
        self.node.remove_output(node_id)
4516

4517
    def remove_output(self, node):
4518 4519 4520 4521
        """
        Remove a node from outputs.

        Args:
4522
            node(IrNode): the node being removed.
4523
        """
4524
        self.node.remove_output(node.node)
4525

4526
    def append_output(self, node):
4527 4528 4529 4530
        """
        Append a node in outputs.

        Args:
4531
            node(IrNode): the node being appended.
4532
        """
4533
        self.node.append_output(node.node)
4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4568 4569 4570
        assert (
            isinstance(node, core.Node) and node.is_var()
        ), 'node must be the instance of core.Node and it must be a variable node.'
4571
        super().__init__(node)
4572 4573 4574 4575 4576 4577 4578 4579 4580
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
4581 4582 4583
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4584 4585 4586 4587 4588 4589 4590 4591 4592
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
4593 4594 4595
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4596 4597
        return self.node.var().persistable()

4598 4599 4600 4601 4602 4603 4604
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
4605 4606 4607
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4608 4609 4610 4611 4612 4613 4614 4615 4616
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
4617 4618 4619
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4620 4621 4622 4623 4624 4625 4626 4627 4628
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
4629 4630 4631
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4632 4633
        return self.node.var().shape()

4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4667 4668 4669
        assert (
            isinstance(node, core.Node) and node.is_op()
        ), 'node must be the instance of core.Node and it must be a operator node.'
4670
        super().__init__(node)
4671 4672 4673 4674 4675 4676 4677 4678 4679 4680
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
4681 4682 4683
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4684 4685
        self.node.op()._rename_input(old_input_name, new_input_name)

4686 4687 4688 4689 4690 4691 4692 4693
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
4694 4695 4696
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4697 4698
        self.node.op()._rename_output(old_output_name, new_output_name)

4699 4700 4701 4702 4703 4704 4705 4706 4707 4708
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4709 4710 4711
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4724 4725 4726
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4727 4728 4729 4730 4731 4732 4733 4734 4735
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
4736 4737 4738
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4739 4740
        return self.node.op().set_type(new_type)

4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
4755 4756 4757
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4758
        desc = self.node.op()
4759 4760 4761 4762 4763
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
4764
            desc.set_block_attr(name, val.desc)
4765
        elif isinstance(val, list) and val and _all_is_type(val, Block):
4766
            desc.set_blocks_attr(name, [v.desc for v in val])
4767 4768 4769
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
4770 4771 4772 4773
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4774 4775 4776 4777 4778 4779 4780
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
4781 4782 4783
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4784 4785 4786 4787 4788 4789 4790 4791 4792
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
4793 4794 4795
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4796 4797
        return self.node.op().output_arg_names()

4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4819
class IrGraph:
4820
    """
4821
    Python IrGraph. Beneath it is a core.Graph, which is used for
4822
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4823 4824
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4825 4826 4827 4828
    """

    def __init__(self, graph, for_test=False):
        """
4829 4830
        Construct an IrGraph using core.Graph.

4831 4832 4833 4834 4835
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
4836 4837
            graph, core.Graph
        ), 'graph must be the instance of core.Graph.'
4838 4839 4840
        self.graph = graph
        self._for_test = for_test

4841 4842 4843 4844
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4845 4846 4847
        Warns:
            The method only clones the graph structure, not its attributes.

4848 4849 4850
        Returns:
            IrGraph: A new and duplicated graph.
        """
4851
        g = self.graph.clone()
4852 4853
        return IrGraph(g, self._for_test)

4854
    def is_test(self):
4855 4856 4857
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4858 4859
        return self._for_test

W
WangZhen 已提交
4860
    def all_nodes(self):
4861 4862 4863
        """
        Return all nodes included in the graph as a set.
        """
4864
        return {IrNode(node) for node in self.graph.nodes()}
4865

4866
    def all_var_nodes(self):
4867 4868 4869
        """
        Return all variable nodes included in the graph as a set.
        """
4870
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4871

4872
    def all_persistable_nodes(self):
4873 4874 4875
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4876 4877
        persistable_nodes = set()
        for node in self.graph.nodes():
4878 4879 4880 4881 4882
            if (
                node.is_var()
                and node.var() is not None
                and node.var().persistable()
            ):
W
WangZhen 已提交
4883
                persistable_nodes.add(node)
4884
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4885

4886
    def all_op_nodes(self):
4887 4888 4889
        """
        Return all operator nodes included in the graph as a set.
        """
4890
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4891

4892 4893 4894 4895 4896 4897
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
4898
            IrGraph(self.graph.get_sub_graph(i), for_test=for_test)
4899 4900 4901 4902 4903 4904 4905 4906 4907
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4908
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4920
            IrVarNode: the created persistable variable node.
4921
        """
4922 4923 4924 4925 4926
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4927
        return IrVarNode(self.graph.create_var_node(var_desc))
4928 4929

    def create_var_node(self, name, var_type, shape, var_dtype):
4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4941
            IrVarNode: the created variable node.
4942 4943
        """

4944 4945 4946 4947
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4948
        return IrVarNode(self.graph.create_var_node(var_desc))
4949

4950 4951 4952 4953 4954 4955
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4956
    def create_var_node_from_desc(self, var_desc):
4957 4958 4959 4960 4961 4962 4963 4964
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4965
            IrVarNode: the created variable node.
4966
        """
4967
        return IrVarNode(self.graph.create_var_node(var_desc))
4968 4969

    def create_op_node(self, op_type, attrs, inputs, outputs):
4970 4971 4972 4973 4974 4975 4976
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4977
            outputs(dict): the outputs of the operator node.
4978 4979

        Returns:
4980
            IrOpNode: the created operator node.
4981
        """
4982 4983
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4984
        for attr, value in attrs.items():
4985
            self._update_desc_attr(op_desc, attr, value)
4986
        for input_name, var_nodes in inputs.items():
4987 4988
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
4989 4990 4991
            op_desc.set_input(
                input_name, [var_node.name() for var_node in var_nodes]
            )
4992
        for output_name, var_nodes in outputs.items():
4993 4994
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
4995 4996 4997
            op_desc.set_output(
                output_name, [var_node.name() for var_node in var_nodes]
            )
4998
        return IrOpNode(self.graph.create_op_node(op_desc))
4999 5000

    def create_op_node_from_desc(self, op_desc):
5001 5002 5003 5004 5005 5006 5007
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
5008
            IrOpNode: the created operator node.
5009
        """
5010
        return IrOpNode(self.graph.create_op_node(op_desc))
5011 5012

    def update_input_link(self, old_input_node, new_input_node, op_node):
5013 5014 5015 5016
        """
        Update the input's link of a operator node.

        Args:
5017 5018 5019
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
5020
        """
5021 5022 5023 5024 5025
        assert (
            old_input_node.node in self.graph.nodes()
            and new_input_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
5026 5027 5028 5029
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
5030
        op_node.rename_input(old_input_node.name(), new_input_node.name())
5031

5032 5033 5034 5035 5036 5037 5038 5039 5040
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
5041 5042 5043 5044 5045
        assert (
            old_output_node.node in self.graph.nodes()
            and new_output_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
5046 5047 5048 5049 5050 5051
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

5052
    def link_to(self, node_in, node_out):
5053 5054 5055 5056
        """
        Connect two nodes.

        Args:
5057 5058
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
5059
        """
5060
        assert node_in.node in self.graph.nodes(), (
5061 5062
            'node_in(%s) must be in the graph nodes.' % node_in.node.name()
        )
5063
        assert node_out.node in self.graph.nodes(), (
5064 5065
            'node_out(%s) must be in the graph nodes.' % node_out.node.name()
        )
5066 5067
        node_in.append_output(node_out)
        node_out.append_input(node_in)
5068 5069

    def safe_remove_nodes(self, remove_nodes):
5070 5071 5072 5073 5074 5075 5076
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
5077
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
5078 5079 5080 5081
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
5082 5083
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
5084

Z
Zhen Wang 已提交
5085 5086 5087 5088 5089 5090 5091 5092
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5093
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
5094 5095 5096 5097
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5098
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
5099 5100 5101
                        ]
                    else:
                        var_nodes[each_var_name].append(
5102 5103
                            self._find_node_by_name(node.outputs, each_var_name)
                        )
Z
Zhen Wang 已提交
5104 5105
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
5106
    def has_circle(self):
5107 5108 5109 5110 5111 5112
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
5113 5114 5115
        return core.has_circle(self.graph)

    def graph_num(self):
5116 5117 5118 5119 5120 5121
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
5122 5123 5124
        return core.graph_num(self.graph)

    def topology_sort(self):
5125 5126 5127
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
5128
        Notes: the `graph` can not contain a circle.
5129 5130

        Returns:
Z
Zhen Wang 已提交
5131
            list(IrNode): nodes in topology order.
5132
        """
5133
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
5134
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
5135 5136

    def build_adjacency_list(self):
5137 5138 5139 5140
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
5141
            dict{IrNode: set(IrNode)}: the adjacency list.
5142
        """
5143 5144
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
5145
        for k, v in adj_list.items():
5146 5147
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
5148

5149 5150 5151 5152 5153 5154 5155 5156
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
5157
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
5158 5159 5160 5161 5162
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

5163 5164
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
5165 5166 5167 5168
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True,
            )
5169 5170
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
5171 5172 5173
                print(
                    'The {} is saved as the dot filetype.'.format(dot_file_path)
                )
5174

5175
        remove_ctr_vars = set()
5176
        if remove_ctr_var:
5177
            for node in self.all_var_nodes():
5178 5179 5180
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
5181 5182
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

5183 5184
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
5185 5186 5187 5188 5189 5190
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
5191 5192 5193 5194
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
5195 5196
        if not os.path.exists(save_path):
            os.makedirs(save_path)
5197 5198 5199 5200 5201 5202 5203
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
5204 5205 5206
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
5207
        WARN: When the graph includes backward operator nodes, the
5208 5209 5210 5211 5212 5213
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
5214
        convert_pass = core.get_pass('graph_to_program_pass')
5215 5216
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
5217 5218 5219 5220
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

5221 5222 5223 5224 5225 5226 5227 5228
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
5229
        assert target_node is not None, (
5230 5231
            "Cannot find the target node (%s)in the giving set." % node_name
        )
5232 5233
        return target_node

5234 5235 5236 5237
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
5238 5239 5240 5241 5242
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
5243
            desc.set_block_attr(name, val.desc)
5244
        elif isinstance(val, list) and val and _all_is_type(val, Block):
5245
            desc.set_blocks_attr(name, [v.desc for v in val])
5246 5247 5248
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
5249 5250 5251 5252 5253
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


5254
class Program:
D
dzhwinter 已提交
5255
    """
5256
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
5257
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
5258
    it will contain nested block.
5259

J
Jiabin Yang 已提交
5260 5261 5262
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
5263

J
Jiabin Yang 已提交
5264
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
5265
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
5266 5267 5268 5269 5270 5271 5272
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
5273
    **Notes**:
5274 5275 5276
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
5277 5278

    Returns:
J
Jiabin Yang 已提交
5279
        Program: An empty Program.
D
dzhwinter 已提交
5280 5281

    Examples:
5282 5283
        .. code-block:: python

5284 5285 5286 5287
            import paddle
            import paddle.static as static

            paddle.enable_static()
5288

5289 5290 5291 5292 5293
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
5294
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
5295 5296 5297

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
5298 5299 5300

    """

5301 5302
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
5303 5304
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
5305 5306
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
5307
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
5308
        self.__op_role_var = []
T
tangwei12 已提交
5309

5310 5311
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
5312
        self._is_distributed = False
5313
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
5314
        self._is_chief = False
5315 5316 5317
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
5318
        self._endpoints = []
5319 5320 5321
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
5322
        self._trainers_endpoints = []
5323
        # the distributed lookup table names
T
tangwei12 已提交
5324
        self._distributed_lookup_table = None
5325 5326 5327

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
5328 5329
        self._use_lamb = False

5330 5331 5332
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
5333

5334 5335 5336
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
5337
        self._program_config = None
5338

H
hutuxian 已提交
5339 5340 5341
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

5342 5343 5344
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

5345 5346 5347
        # appending gradients times
        self._appending_grad_times = 0

5348 5349
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
5350 5351
            "__auto_checkpoint_program__"
        )
5352

5353 5354
        # compiled program, i.e. Graph
        self._graph = None
5355 5356
        # to tag whether is startup_program
        self._is_start_up_program_ = False
5357

5358
    def _find_var_class_kwargs(self, new_desc):
5359 5360 5361 5362 5363 5364 5365 5366
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

5367 5368 5369 5370
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
5371
            if idx > (len(self.blocks) - 1):
5372
                self._create_block()
5373 5374 5375 5376 5377 5378 5379 5380 5381 5382
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
                    'shape': get_var_desc_attr_or_none(
                        new_var_desc,
                        "shape",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'dtype': get_var_desc_attr_or_none(
                        new_var_desc,
                        "dtype",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'lod_level': get_var_desc_attr_or_none(
                        new_var_desc,
                        "lod_level",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'error_clip': old_var.error_clip
                    if old_var is not None
                    else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None
                    else False,
                    'is_data': old_var.is_data
                    if old_var is not None
                    else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None
                    else False,
5424 5425 5426
                }

                if isinstance(old_var, Parameter):
5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443
                    kwargs.update(
                        {
                            'trainable': old_var.trainable,
                            'optimize_attr': old_var.optimize_attr,
                            'regularizer': old_var.regularizer,
                            'do_model_average': old_var.do_model_average,
                            'need_clip': old_var.need_clip,
                            'is_distributed': old_var.is_distributed,
                            'is_parameter': old_var.is_parameter,
                        }
                    )
                    block_new_vars.append(
                        {
                            'class': Parameter,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5444 5445
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
5446 5447 5448 5449 5450 5451
                    block_new_vars.append(
                        {
                            'class': Variable,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5452 5453 5454 5455 5456 5457 5458

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
5459
        assert block_num == self.desc.num_blocks()
5460 5461

        # clear old blocks and desc
5462 5463 5464 5465 5466 5467 5468 5469 5470
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
5471

5472
        del desc
5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

5492 5493 5494 5495 5496 5497 5498 5499 5500 5501
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

5502 5503
                import paddle
                import paddle.static as static
5504

5505 5506 5507
                paddle.enable_static()

                prog = static.default_main_program()
5508 5509 5510 5511 5512
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
5513
                prog1 = static.default_main_program()
5514 5515 5516 5517 5518 5519 5520 5521
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
5522
    @property
5523
    def _op_role(self):
Y
yuyang18 已提交
5524 5525 5526 5527 5528 5529 5530 5531
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
5532
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
5533 5534 5535 5536
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
5537 5538
        return self._current_role

5539 5540
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
5541 5542 5543
        self._current_role = role

    @property
5544
    def _op_role_var(self):
Y
yuyang18 已提交
5545
        """
5546
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
5547

5548
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
5549 5550 5551

        Notes: This is a very low-level API. Users should not use it directly.
        """
5552
        return self.__op_role_var
Y
yuyang18 已提交
5553

5554
    @signature_safe_contextmanager
5555 5556 5557 5558 5559
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
5560 5561 5562 5563
        try:
            yield
        finally:
            self._current_role = tmp_role
5564

S
rename  
sneaxiy 已提交
5565
    @signature_safe_contextmanager
W
Wu Yi 已提交
5566
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
5567 5568 5569 5570 5571 5572 5573
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
5574
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
5575 5576 5577

        Examples:

5578
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
5579
            >>> p, g = backward(...)
W
Wu Yi 已提交
5580
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
5581 5582
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
5583
        tmp_role = self._current_role
5584
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
5585

Y
yuyang18 已提交
5586 5587
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
5588
        self.__op_role_var = [
5589 5590 5591
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
5592 5593 5594 5595 5596
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
5597

S
rename  
sneaxiy 已提交
5598
    @signature_safe_contextmanager
X
Xin Pan 已提交
5599
    def _lr_schedule_guard(self, is_with_opt=False):
5600 5601 5602 5603 5604 5605 5606
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
5607 5608 5609 5610
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
5611 5612 5613

        Examples:

5614
            >>> import paddle.fluid as fluid
5615 5616 5617 5618
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
5619 5620

        tmp_role = self._current_role
5621
        tmp_var = self.__op_role_var
5622

5623 5624
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
5625 5626
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
5627
        # TODO(typhoonzero): how to set target learning rate var
5628
        self.__op_role_var = []
5629 5630 5631 5632 5633
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
5634

5635
    def __str__(self):
Y
yuyang18 已提交
5636 5637 5638 5639 5640 5641 5642 5643 5644
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5665 5666
            import paddle
            import paddle.static as static
5667

5668 5669 5670
            paddle.enable_static()

            cur_program = static.Program()
5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5682
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
5683 5684
            type(skip_op_callstack)
        )
5685 5686 5687
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5688
            program_str += '\n'
5689
        return program_str
Y
Yang Yang(Tony) 已提交
5690

F
fengjiayi 已提交
5691 5692 5693
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5694

J
Jiabin Yang 已提交
5695 5696 5697
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5698

J
Jiabin Yang 已提交
5699
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5700

H
haowang101779990 已提交
5701
        Returns:
J
Jiabin Yang 已提交
5702
            str: The debug string describe current Program.
Y
yuyang18 已提交
5703 5704

        Raises:
J
Jiabin Yang 已提交
5705
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5706

5707 5708 5709
        Examples:
            .. code-block:: python

5710 5711 5712 5713
                import paddle
                import paddle.static as static

                paddle.enable_static()
5714

5715 5716 5717
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5718
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5719
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5720
                print("program string without detail: {}".format(prog_string))
5721
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5722
        """
5723 5724 5725
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
5726 5727
            type(throw_on_error)
        )
5728 5729 5730
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
5731 5732
            type(with_details)
        )
5733

F
fengjiayi 已提交
5734 5735 5736 5737 5738 5739
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
5740
            proto = framework_pb2.ProgramDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
5741 5742
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5743

W
Wu Yi 已提交
5744
    def _get_desc(self):
Y
yuyang18 已提交
5745 5746 5747 5748 5749 5750 5751
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5752 5753
        return self.desc

X
version  
Xin Pan 已提交
5754 5755 5756
    def _version(self):
        return self.desc._version()

5757
    def clone(self, for_test=False):
Y
yuyang18 已提交
5758
        """
5759
        .. note:::
5760 5761
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` .
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` .
5762
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5763

5764
        Create a new Program with forward content of original one when ``for_test=True``.
5765
        Create a new Program as same as the original one when ``for_test=False``.
5766

5767
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5768 5769 5770
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5771

5772 5773
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5774 5775
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
5776
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
5777

J
Jiabin Yang 已提交
5778
        For Example:
5779
          ::
L
Luo Tao 已提交
5780

5781 5782 5783 5784 5785 5786
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
5787
            pred = static.nn.fc(x=img, size=10, actvation='relu')
5788
            loss = paddle.mean(pred)
5789
            # Here we use clone before Momentum
5790 5791
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
5792
            optimizer.minimize(loss)
5793

J
Jiabin Yang 已提交
5794
        Args:
5795

5796 5797
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
5798

J
Jiabin Yang 已提交
5799
        Returns:
5800
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
5801

Y
yuyang18 已提交
5802 5803 5804

        Examples:

5805 5806 5807 5808 5809 5810 5811
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5812 5813
            .. code-block:: python

5814
                import paddle
5815 5816

                def print_prog(prog):
5817
                    for name, value in sorted(prog.block(0).vars.items()):
5818 5819 5820 5821 5822
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
5823
                        for key, value in sorted(op.all_attrs().items()):
5824 5825 5826 5827
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5828
            1. To clone a test program, the sample code is:
5829 5830
                .. code-block:: python

5831 5832 5833 5834 5835 5836
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5837 5838

                    def print_prog(prog):
5839
                        for name, value in sorted(prog.block(0).vars.items()):
5840 5841 5842 5843 5844
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
5845
                            for key, value in sorted(op.all_attrs().items()):
5846 5847 5848
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5849 5850
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5851 5852 5853

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5854 5855 5856
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5857
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5858 5859
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5860
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5861 5862
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5863
                            test_program = train_program.clone(for_test=True)
5864
                    print_prog(test_program)
J
Jiabin Yang 已提交
5865 5866 5867 5868

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5869
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5870 5871 5872 5873
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5874 5875 5876
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5877 5878 5879
                            sgd.minimize(avg_loss)


5880
            2. The clone method can be avoid if you create program for training and program for testing individually.
5881 5882
                .. code-block:: python

5883 5884 5885 5886 5887 5888
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5889 5890

                    def print_prog(prog):
5891
                        for name, value in sorted(prog.block(0).vars.items()):
5892 5893 5894 5895 5896
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
5897
                            for key, value in sorted(op.all_attrs().items()):
5898 5899
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5900

5901
                    def network():
5902
                        img = static.data(name='image', shape=[None, 784])
5903
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5904 5905
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5906
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5907 5908
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5909 5910
                        return avg_loss

5911 5912 5913 5914 5915
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5916
                            avg_loss = network()
5917
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5918
                            sgd.minimize(avg_loss)
5919
                    # the test startup program is not used.
5920 5921
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5922 5923
                            avg_loss = network()
                    print_prog(test_program_2)
5924

5925
            The two code snippets above will generate and print same programs.
5926
        """
5927

T
tangwei12 已提交
5928
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5929 5930 5931
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5932
        pruned_origin_block_id_map = None
5933
        if for_test:
5934 5935
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
5936 5937
                self.desc
            )
5938 5939
            forward_prog.blocks = [
                Block(forward_prog, i)
5940
                for i in range(forward_prog.desc.num_blocks())
5941 5942 5943
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5944
        else:
5945
            p = Program()
G
gongweibao 已提交
5946 5947
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5948
            p.desc = core.ProgramDesc(self.desc)
5949
            p.blocks = [Block(p, i) for i in range(self.desc.num_blocks())]
G
gongweibao 已提交
5950 5951

            p._current_role = self._current_role
5952
            p.__op_role_var = self.__op_role_var
5953
            p._appending_grad_times = self._appending_grad_times
5954 5955
            if hasattr(self, 'lr_scheduler'):
                p.lr_scheduler = self.lr_scheduler
G
gongweibao 已提交
5956

T
tangwei12 已提交
5957
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5958
            # its desc.
W
Wu Yi 已提交
5959
            p._sync_with_cpp()
5960

W
Wu Yi 已提交
5961
        p._copy_param_info_from(self)
5962
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5963
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5964
        return p
5965

5966
    def _prune(self, targets):
Y
yuyang18 已提交
5967 5968 5969 5970 5971 5972 5973 5974
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5975
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5976 5977 5978 5979
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5980
        """
5981
        return self._prune_with_input([], targets)
5982 5983

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5984
        """
5985
        Prune operators and variables which are not needed to generate
5986 5987
        :code:`targets`. Prune operators and variables which are needed
        to generate feeded_var
5988 5989 5990 5991 5992 5993 5994

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5995
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5996 5997 5998 5999 6000 6001
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
6002
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
6003 6004 6005
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

6006 6007
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
6008 6009
        if not isinstance(targets, list):
            targets = [targets]
6010 6011

        for var in feeded_var_names:
6012
            if not isinstance(var, str):
6013 6014
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
6015 6016
                    "str, but received %s." % type(var)
                )
6017

6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

6034 6035 6036 6037
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
6038
                    name = t.name
6039
                elif isinstance(t, str):
6040
                    name = str(t)
6041
                else:
6042 6043
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
6044 6045
                        "Variable or Operator, but received %s." % type(t)
                    )
6046 6047 6048 6049 6050 6051

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
6052 6053 6054
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
6055

6056 6057 6058 6059 6060 6061 6062 6063 6064
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
6065
                        # Skip optimize op except for optimize op in targets,
6066 6067 6068 6069 6070
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
6071

6072
                if target_op is not None:
6073 6074 6075
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
6076

6077
        res = Program()
6078
        res.desc, pruned_origin_block_id_map = core.prune(
6079 6080
            self.desc, set(feeded_var_names), targets_idx
        )
6081
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6082
        res._sync_with_cpp()
6083 6084 6085 6086 6087

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

6088 6089
        return res

X
Xin Pan 已提交
6090
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
6091
        """
F
fengjiayi 已提交
6092 6093 6094 6095 6096
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

6097
        3. change the :code:`is_test`
Y
yuyang18 已提交
6098 6099 6100
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

6101
        Args:
X
Xin Pan 已提交
6102 6103
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
6104

Y
yuyang18 已提交
6105 6106 6107 6108 6109 6110
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
6111
        res = Program()
6112
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
6113 6114 6115 6116

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
6117
        if prune_read_op:
6118
            while True:
6119 6120 6121 6122
                if (
                    read_op_idx >= root_block.op_size()
                    or root_block.op(read_op_idx).type() == 'read'
                ):
6123 6124 6125 6126 6127 6128
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
6129
                    root_block._remove_var(var.name().encode())
F
fengjiayi 已提交
6130 6131

        # change all `is_test` attributes to True
6132
        for i in range(res.desc.num_blocks()):
6133
            block = res.desc.block(i)
6134
            for j in range(block.op_size()):
6135 6136
                op = block.op(j)
                if op.has_attr('is_test'):
6137
                    op._set_bool_attr('is_test', True)
6138 6139 6140
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
6141
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6142
        res._sync_with_cpp()
6143 6144
        return res

6145
    def _remove_training_info(self, clip_extra=True):
6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

6160
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
6161 6162
        res._sync_with_cpp()

6163 6164
        # Note: The op_role and op_role_var cann't be deleted currently,
        # and we will try to remove them in the future.
6165
        common_clipped_attrs_list = ['op_callstack', 'with_quant_attr']
6166

6167
        for i in range(res.desc.num_blocks()):
6168 6169 6170 6171
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
6172 6173
            if not clip_extra:
                continue
6174 6175 6176 6177
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
6178 6179 6180

                extra_attrs_map = core.get_op_extra_attrs(op.type())

6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
6194 6195 6196
                # The extra input of op will be removed in the future
                # for name in remove_input_list:
                #     op.remove_input(name)
6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
6210
                # The extra output of op will be removed in the future
6211 6212
                for name in remove_output_list:
                    op.remove_output(name)
6213

6214 6215 6216 6217 6218 6219 6220
                op_quant_name = (
                    core.op_proto_and_checker_maker.kOpWithQuantAttrName()
                )
                quant = (
                    bool(op.attr(op_quant_name))
                    if op_quant_name in op.attr_names()
                    else False
6221 6222
                )
                quant_attrs = [
6223 6224 6225 6226 6227 6228 6229
                    op_quant_name,
                    "quantization_type",
                    "skip_quant",
                    "activation_bits",
                    "bit_length",
                    "quantize_weight_bits",
                    "weight_quant_scale",
6230
                ]
6231 6232
                for extra_attr_name in extra_attrs_map.keys():
                    op.remove_attr(extra_attr_name)
6233
                remove_attr_list = []
6234 6235 6236 6237 6238 6239
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
6240
                    if len(extra_attrs_map) > 0:
6241
                        if name in common_clipped_attrs_list:
6242
                            op.remove_attr(name)
6243
                        continue
6244 6245 6246 6247 6248 6249 6250 6251 6252 6253
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
6254 6255
        return res

6256 6257
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
6258
        """
6259
        .. note::
6260
            1. All information about parameters will be lost after serialization;
6261
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6262

6263 6264
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
6265

J
Jiabin Yang 已提交
6266
        Args:
Y
yuyang18 已提交
6267

J
Jiabin Yang 已提交
6268
            binary_str_type (str): the binary prootbuf string.
6269

J
Jiabin Yang 已提交
6270 6271
        Returns:
            Program: A deserialized Program.
6272 6273 6274 6275

        Examples:
            .. code-block:: python

6276 6277 6278 6279
                import paddle
                import paddle.static as static

                paddle.enable_static()
6280

6281 6282 6283 6284
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
6285

6286
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
6287

6288
                    z = paddle.matmul(x=x, y=y)
6289

6290 6291
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
6292

6293
                    print(static.default_main_program())
6294
                    print(prog_restored)
Y
yuyang18 已提交
6295
        """
6296 6297
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
6298
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
W
Wu Yi 已提交
6299
        p._sync_with_cpp()
6300
        return p
Y
Yu Yang 已提交
6301

6302
    @staticmethod
6303
    def _construct_from_desc(desc):
6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
6315
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
6316 6317 6318
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
6319 6320
    @property
    def random_seed(self):
Y
yuyang18 已提交
6321
        """
J
Jiabin Yang 已提交
6322
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
6323 6324
        the random seed from random device.

6325
        .. note::
6326
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
6327 6328 6329

        Returns:
            int64: Random seed in current Program
6330

6331 6332 6333 6334

        Examples:
            .. code-block:: python

6335 6336 6337
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
6338

6339 6340 6341
                paddle.enable_static()

                prog = static.default_main_program()
6342
                random_seed = prog.random_seed
6343
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
6344 6345 6346
                print(random_seed)
                ## 0
                ## the default random seed is 0
6347

6348
                # Here we need to set random seed before we use paddle.nn.functional.dropout
6349
                prog.random_seed = 1
6350
                z_var = F.dropout(x_var, 0.7)
6351

6352
                print(prog.random_seed)
6353 6354
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
6355
        """
D
dzhwinter 已提交
6356 6357
        return self._seed

Q
qiaolongfei 已提交
6358 6359
    @property
    def num_blocks(self):
Y
yuyang18 已提交
6360
        """
6361 6362
        The number of :ref:`api_guide_Block_en`  in this Program.

6363
        .. note::
6364
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
6365 6366 6367

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
6368

6369 6370 6371 6372

        Examples:
            .. code-block:: python

6373 6374 6375 6376
                import paddle
                import paddle.static as static

                paddle.enable_static()
6377

6378
                prog = static.default_main_program()
6379 6380
                num_blocks = prog.num_blocks
                print(num_blocks)
6381

6382 6383
                # print result:
                # 1
Y
yuyang18 已提交
6384
        """
Q
qiaolongfei 已提交
6385 6386
        return self.desc.num_blocks()

D
dzhwinter 已提交
6387 6388 6389
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
6390 6391
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
6392 6393
                % type(seed)
            )
D
dzhwinter 已提交
6394 6395
        self._seed = seed

Y
Yu Yang 已提交
6396
    def __repr__(self):
6397
        return self.__str__()
6398

Y
Yu Yang 已提交
6399
    def global_block(self):
Y
yuyang18 已提交
6400
        """
6401 6402
        .. note::
            This API has no effect in Dygraph mode.
6403 6404 6405

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
6406 6407
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
6408

6409 6410 6411 6412

        Examples:
            .. code-block:: python

6413 6414 6415 6416
                import paddle
                import paddle.static as static

                paddle.enable_static()
6417

6418
                prog = static.default_main_program()
6419 6420
                gb_block = prog.global_block()
                print(gb_block)
6421

Y
yuyang18 已提交
6422
        """
Y
Yu Yang 已提交
6423 6424
        return self.blocks[0]

Q
Qiao Longfei 已提交
6425
    def block(self, index):
Y
yuyang18 已提交
6426
        """
6427 6428
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6429

6430 6431
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
6432 6433
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
6434

J
Jiabin Yang 已提交
6435 6436
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
6437 6438 6439 6440

        Examples:
            .. code-block:: python

6441 6442 6443 6444
                import paddle
                import paddle.static as static

                paddle.enable_static()
6445

6446
                prog = static.default_main_program()
6447 6448
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
6449
        """
Q
Qiao Longfei 已提交
6450 6451
        return self.blocks[index]

Y
Yu Yang 已提交
6452
    def current_block(self):
Y
yuyang18 已提交
6453
        """
6454 6455
        .. note::
            This API has no effect in Dygraph mode.
6456

J
Jiabin Yang 已提交
6457 6458
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
6459

J
Jiabin Yang 已提交
6460 6461
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
6462

6463 6464 6465
        Examples:
            .. code-block:: python

6466 6467 6468 6469
                import paddle
                import paddle.static as static

                paddle.enable_static()
6470

6471
                prog = static.default_main_program()
6472 6473
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
6474
        """
Y
Yu Yang 已提交
6475 6476
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
6477
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
6478 6479 6480 6481 6482
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
6483

Y
yuyang18 已提交
6484 6485 6486 6487 6488
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
6489
        new_block_idx = len(self.blocks)
6490 6491 6492 6493 6494
        parent = (
            self.current_block()
            if parent_idx is None
            else self.block(parent_idx)
        )
F
update  
fengjiayi 已提交
6495
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
6496 6497 6498 6499
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
6500
    def _rollback(self):
Y
yuyang18 已提交
6501 6502 6503 6504 6505
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
6506 6507
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
6508
    def _sync_with_cpp(self):
Y
yuyang18 已提交
6509 6510 6511 6512 6513 6514 6515 6516 6517 6518
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
6519 6520 6521
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
6522
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
6523

W
Wu Yi 已提交
6524
    def _copy_param_info_from(self, other):
6525
        """
6526
        Copy the information of parameters from other program.
D
dzhwinter 已提交
6527

Y
yuyang18 已提交
6528 6529 6530
        Notes: This is a very low level API. Users should not invoke it
        directly.

6531 6532 6533 6534 6535 6536 6537
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6538 6539
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6540 6541
                % type(other)
            )
6542

W
Wu Yi 已提交
6543
        self.global_block()._copy_param_info_from(other.global_block())
6544

6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6556 6557
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6558 6559
                % type(other)
            )
6560 6561
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
6562
        self._parameters_on_pservers = other._parameters_on_pservers
6563
        self._endpoints = other._endpoints
6564
        self._ps_endpoint = other._ps_endpoint
6565 6566
        self._distributed_lookup_table = other._distributed_lookup_table

6567
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
6568 6569
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
6570

Y
yuyang18 已提交
6571 6572 6573
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
6574 6575
        Args:
            other(Program): Other program
6576
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
6577 6578
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is
            cloned from block 0 in other, etc. Default is None, which means default mapped,
6579
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
6580 6581 6582 6583 6584

        Returns:
            None
        """
        if not isinstance(other, Program):
6585 6586
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6587 6588
                % type(other)
            )
F
fengjiayi 已提交
6589

6590 6591
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
6592
                i: i for i in range(self.desc.num_blocks())
6593
            }
6594 6595 6596

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
6597 6598
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
6599
            for var in list(block.vars.values()):
6600 6601 6602 6603 6604 6605 6606
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
6607

6608
    def list_vars(self):
Y
yuyang18 已提交
6609
        """
6610
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
6611

J
Jiabin Yang 已提交
6612
        Returns:
6613
            iterable Tensors: The Generator will yield every Tensor in this program.
6614 6615 6616 6617

        Examples:
            .. code-block:: python

6618 6619
                import paddle
                import paddle.static as static
6620

6621 6622 6623 6624 6625
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
6626 6627
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
6628

6629 6630
                # var img : LOD_TENSOR.shape(-1, 1, 28, 28).dtype(float32).stop_gradient(True)
                # var label : LOD_TENSOR.shape(-1, 1).dtype(int64).stop_gradient(True)
Y
yuyang18 已提交
6631
        """
6632
        for each_block in self.blocks:
6633
            for each_var in list(each_block.vars.values()):
6634 6635
                yield each_var

6636 6637 6638 6639 6640 6641 6642 6643 6644 6645
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

6646 6647 6648 6649
                import paddle
                import paddle.static as static

                paddle.enable_static()
6650

6651 6652
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
6653
                hidden = static.nn.fc(x=data, size=10)
6654 6655
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
6656 6657 6658 6659 6660 6661 6662

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
6663 6664
                # persist trainable param fc_0.w_0 : LOD_TENSOR.shape(13, 10).dtype(float32).stop_gradient(False)
                # persist trainable param fc_0.b_0 : LOD_TENSOR.shape(10,).dtype(float32).stop_gradient(False)
6665 6666 6667 6668 6669 6670 6671 6672 6673 6674
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

6675 6676 6677 6678 6679 6680 6681 6682 6683
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
6684 6685 6686
            mode(str, optional): Source of the obtained parameters and buffers.
                    'opt' :  The return value only contains the variable in the optimizer.
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.
6687 6688
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
6689
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
6717
        # can not be imported at the begainning of this file.
6718 6719
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
6720

6721 6722
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
6723 6724 6725 6726
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".format(
                    type(scope)
                )
            )
6727 6728 6729 6730 6731

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
6732 6733
            raise TypeError(
                "Type of `mode` should be string, but received {}.".format(
6734 6735 6736
                    type(mode)
                )
            )
6737 6738 6739 6740 6741

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
6742 6743 6744 6745 6746
            if (
                var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH
                or var.desc.type() == core.VarDesc.VarType.FETCH_LIST
                or var.desc.type() == core.VarDesc.VarType.READER
            ):
6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
6765 6766 6767 6768
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".format(
                        mode
                    )
                )
6769 6770 6771 6772 6773 6774 6775 6776

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
6777 6778 6779 6780
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".format(
                        var.name
                    )
                )
6781 6782 6783 6784 6785 6786
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
6787
        Set parameters and persistable buffers in state_dict to program.
6788
        An exception will throw if shape or dtype of the parameters is not match.
6789

6790 6791 6792 6793
        .. note::
            This function MUST called after run start_up_program

        Args:
6794
            state_dict(dict): the dict store parameters and persistable buffers.
6795 6796
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
6797
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6798 6799
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
6800

6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
6830 6831 6832
                    type(state_dict)
                )
            )
6833 6834

        vars_dict = {var.name: var for var in self.list_vars()}
6835 6836 6837
        condition = (
            True if 'StructuredToParameterName@@' in state_dict else False
        )
6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
6849 6850
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
6851 6852
                except TypeError as err:
                    warnings.warn(
6853 6854
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
6855
            else:
6856
                warnings.warn(
6857 6858 6859 6860 6861 6862
                    (
                        "Skip loading for '{0}'. Because '{0}' not in the program.".format(
                            name
                        )
                    )
                )
6863

Y
Yu Yang 已提交
6864

6865
class Parameter(Variable, metaclass=ParameterMetaClass):
6866
    """
6867
    Parameter is derived from Variable. A parameter is a persistable
6868
    Variable, and will be updated by optimizers after each iteration.
6869
    The training of a neural network is essentially the updating of
6870 6871
    its parameters.

6872
    Relative to a general Variable, a Parameter has several its own
6873 6874
    member variables:

6875 6876 6877 6878 6879 6880 6881 6882 6883 6884
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
6885
        need_clip (bool): Whether the parameter gradient need to be cliped
6886
            in optimizer. Default is True.
6887 6888
    """

6889 6890 6891 6892 6893 6894
    def __init__(
        self,
        block,
        shape,
        dtype,
        type=core.VarDesc.VarType.LOD_TENSOR,
6895
        **kwargs,
6896
    ):
6897 6898 6899 6900 6901
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6902 6903
        for each in shape:
            if each < 0:
6904 6905
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
6906 6907 6908 6909 6910 6911 6912 6913 6914 6915
                    % list(shape)
                )

        Variable.__init__(
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
6916
            **kwargs,
6917
        )
Y
Yu Yang 已提交
6918 6919 6920 6921
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6922 6923
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6924
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6925

6926 6927
        self.need_clip = kwargs.get('need_clip', True)

6928 6929
        self.is_distributed = False

6930 6931
        self.is_parameter = True

F
fengjiayi 已提交
6932
    def __str__(self):
6933
        return self._to_readable_code()
F
fengjiayi 已提交
6934

F
update  
fengjiayi 已提交
6935 6936 6937
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6938

F
update  
fengjiayi 已提交
6939 6940 6941 6942 6943 6944 6945 6946
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6947 6948 6949 6950
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
G
GGBond8488 已提交
6951
                import paddle
6952 6953

                prog = fluid.default_main_program()
G
GGBond8488 已提交
6954
                rlt = paddle.static.data("fake_data", shape=[-1,1,1], dtype='float32')
6955 6956
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6957
        """
6958
        assert isinstance(throw_on_error, bool) and isinstance(
6959 6960
            with_details, bool
        )
F
update  
fengjiayi 已提交
6961 6962
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
6963 6964 6965 6966 6967 6968 6969
            additional_attr = (
                "trainable",
                "optimize_attr",
                "regularizer",
                "do_model_average",
                "need_clip",
            )
F
update  
fengjiayi 已提交
6970
            for attr_name in additional_attr:
6971
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
F
update  
fengjiayi 已提交
6972 6973
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6974 6975 6976 6977
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6978

W
wanghuancoder 已提交
6979
class EagerParamBase(core.eager.Tensor):
6980
    """
6981 6982
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode).
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers
6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
7000
        need_clip (bool): Whether the parameter gradient need to be cliped
7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
7015 7016
                    % list(shape)
                )
7017 7018 7019 7020 7021 7022 7023

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

7024 7025 7026
        if isinstance(shape, core.eager.Tensor):
            shape = shape.numpy()

7027
        super().__init__(
7028 7029 7030 7031 7032 7033
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            core.VarDesc.VarType.LOD_TENSOR,
            True,
        )
7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
7048 7049 7050
        # hook functions for lazy initialization
        self._init_func = None
        self._init_op_creator = None
7051 7052

    def set_init_func(self, obj):
7053
        self._init_func = obj
7054 7055 7056

    @dygraph_only
    def initialize(self):
7057 7058 7059
        assert (
            self._init_func is not None
        ), "Required self._init_func is not None, but received None."
7060
        self._init_func(self, None)
7061
        # clear function handle to release resource
7062
        self._init_func = None
7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
7075 7076
                type(trainable),
            )
7077

7078 7079 7080 7081
    def _create_init_op(self, block):
        """
        Call init_op_creator function to create initializer operation in block.
        """
7082 7083 7084
        assert (
            self._init_op_creator is not None
        ), "Required self._init_op_creator is not None, but received None."
7085
        self._init_op_creator(self, block)
7086

7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105
    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
7106
            tensor=super().__str__()
7107
        )
7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
7137 7138
        new_param._init_func = self._init_func
        new_param._init_op_creator = self._init_op_creator
7139 7140 7141 7142 7143 7144
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
7145 7146
        return new_param

7147 7148 7149
    __repr__ = __str__


Y
Yu Yang 已提交
7150
# program is a global instance.
Y
Yu Yang 已提交
7151 7152
_main_program_ = Program()
_startup_program_ = Program()
7153
_startup_program_._is_start_up_program_ = True
7154

7155

7156
def default_startup_program():
Y
Yu Yang 已提交
7157
    """
Y
yuyang18 已提交
7158 7159
    Get default/global startup program.

7160
    The :code:`paddle.nn` function will append the initialization operators into startup program.
7161
    The :code:`startup_program` will initialize the parameters by the OPs.
T
tangwei12 已提交
7162

7163 7164
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
7165

7166 7167
    Returns:
        Program: current default startup program.
7168

7169
    Returns type:
7170 7171 7172 7173

    Examples:
        .. code-block:: python

7174
            import paddle
7175

7176
            paddle.enable_static()
7177 7178 7179 7180
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
7181
    """
Y
Yu Yang 已提交
7182
    return _startup_program_
7183

7184

7185
def default_main_program():
Y
Yu Yang 已提交
7186
    """
7187
    This API can be used to get ``default main program`` which store the
7188
    descriptions of Ops and tensors.
T
tangwei12 已提交
7189

7190 7191
    For example ``z = paddle.add(x, y)`` will create a new ``add``
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` .
Y
yuyang18 已提交
7192

7193
    The ``default main program`` is the default value for ``Program`` parameter in
7194
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
7195
    :code:`default_main_program` when the program is not specified.
7196

7197
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
7198

Y
Yu Yang 已提交
7199
    Returns:
7200
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
7201 7202 7203 7204

    Examples:
        ..  code-block:: python

7205
            import paddle
7206

7207
            paddle.enable_static()
7208
            # Sample Network:
7209 7210 7211
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
7212

7213 7214 7215
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
7216
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
7217
    """
Y
Yu Yang 已提交
7218
    return _main_program_
Y
Yu Yang 已提交
7219 7220 7221 7222 7223


def switch_main_program(program):
    """
    Switch the main program to a new program.
7224

Y
Yu Yang 已提交
7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
7239
    Switch the startup program to a new program
Y
Yu Yang 已提交
7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
7252
@signature_safe_contextmanager
Y
Yu Yang 已提交
7253 7254
def program_guard(main_program, startup_program=None):
    """
7255 7256
    :api_attr: Static Graph

7257 7258 7259
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
7260

G
guofei 已提交
7261
    Args:
7262
        main_program(Program): New main program inside ``with`` statement.
7263 7264
        startup_program(Program, optional): New startup program inside ``with``
            statement. :code:`None` means not changing startup program,
G
guofei 已提交
7265 7266 7267
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
7268
    Examples:
7269
       .. code-block:: python
T
tangwei12 已提交
7270

7271
          import paddle
Y
yuyang18 已提交
7272

7273 7274 7275 7276 7277
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
7278
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
7279 7280 7281

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
7282

Y
Yu Yang 已提交
7283
    Examples:
7284
       .. code-block:: python
Y
yuyang18 已提交
7285

7286
          import paddle
7287

7288 7289 7290 7291 7292
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
7293

Y
Yu Yang 已提交
7294
    """
7295
    from .data_feeder import check_type
7296 7297 7298 7299

    check_type(
        main_program, 'main_program', Program, 'paddle.static.program_guard'
    )
Y
Yu Yang 已提交
7300 7301
    main_program = switch_main_program(main_program)
    if startup_program is not None:
7302 7303 7304 7305 7306 7307
        check_type(
            startup_program,
            'startup_program',
            Program,
            'paddle.static.program_guard',
        )
7308 7309
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
7310
        startup_program = switch_startup_program(startup_program)
7311 7312 7313 7314 7315 7316
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
7317 7318


W
Wu Yi 已提交
7319
def _get_var(name, program=None):
X
xuwei06 已提交
7320
    """
Y
yuyang18 已提交
7321
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
7322

X
xuwei06 已提交
7323 7324 7325
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
7326
        If None, default_global_program() will be used.
X
xuwei06 已提交
7327 7328 7329 7330 7331 7332 7333

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
7334
    assert isinstance(program, Program)
X
xuwei06 已提交
7335 7336

    return program.global_block().var(name)
7337 7338


7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351
@signature_safe_contextmanager
def dygraph_guard_if_declarative():
    from .dygraph.base import in_declarative_mode
    from .dygraph import Tracer

    if in_declarative_mode():
        # Under @paddle.jit.to_static decorator, we switch back dygraph mode temporarily.
        with _dygraph_guard(tracer=Tracer()):
            yield
    else:
        yield


S
rename  
sneaxiy 已提交
7352
@signature_safe_contextmanager
L
lujun 已提交
7353
def _dygraph_guard(tracer):
7354 7355 7356 7357
    tmp_tracer = global_var._dygraph_tracer_
    global_var._dygraph_tracer_ = tracer
    if tracer is not None:
        core._switch_tracer(tracer)
M
minqiyang 已提交
7358

C
Charles-hit 已提交
7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370
    try:
        yield
    finally:
        if tmp_tracer is not None:
            core._switch_tracer(tmp_tracer)
        global_var._dygraph_tracer_ = tmp_tracer


@signature_safe_contextmanager
def _static_guard():
    tmp_tracer = global_var._dygraph_tracer_
    global_var._dygraph_tracer_ = None
7371 7372 7373
    try:
        yield
    finally:
7374 7375 7376
        if tmp_tracer is not None:
            core._switch_tracer(tmp_tracer)
        global_var._dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
7377 7378


S
rename  
sneaxiy 已提交
7379
@signature_safe_contextmanager
L
lujun 已提交
7380
def _dygraph_place_guard(place):
7381 7382 7383
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
7384 7385
    _set_dygraph_tracer_expected_place(place)

7386 7387 7388
    try:
        yield
    finally:
7389
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
7390
        _set_dygraph_tracer_expected_place(_global_expected_place_)
7391 7392


7393 7394 7395 7396 7397 7398 7399 7400 7401 7402
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
7403

7404
    Note:
7405
        The API only supports static graph mode.
7406 7407 7408 7409

    A context manager that specifies the device on which the OP will be placed.

    Args:
7410
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
7411
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs.
7412 7413 7414 7415 7416 7417 7418
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
7419

7420
        .. code-block:: python
7421

7422
            # required: gpu
Z
Zhang Ting 已提交
7423
            import paddle
7424

Z
Zhang Ting 已提交
7425 7426 7427
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
7428
            if support_gpu:
Z
Zhang Ting 已提交
7429
                place = paddle.CUDAPlace(0)
7430 7431

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
7432 7433 7434
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
7435

Z
Zhang Ting 已提交
7436
            with paddle.static.device_guard("cpu"):
7437
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
7438 7439
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
7440
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
7441
                out = paddle.reshape(data1, shape=shape)
7442

Z
Zhang Ting 已提交
7443 7444
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
7445 7446 7447
            result = exe.run(fetch_list=[out])
    """

7448 7449 7450 7451 7452
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
K
Kim Yann 已提交
7453
    if device not in ['cpu', 'gpu', 'xpu', '', None]:
7454
        raise ValueError(
K
Kim Yann 已提交
7455
            "The Attr(device) should be 'cpu' 'npu' or 'gpu', and it can also be empty string or None "
7456 7457
            "when there is no need to specify device. But received %s" % device
        )
7458 7459
    if index:
        device = ":".join([device, index])
7460
    pre_device = switch_device(device)
7461 7462 7463 7464
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
7465 7466


7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478
def _switch_cuda_graph_mode(cuda_graph_attr):
    global _current_cuda_graph_mode
    pre_mode = _current_cuda_graph_mode
    _current_cuda_graph_mode = cuda_graph_attr
    return pre_mode


@signature_safe_contextmanager
def _cuda_graph_guard(cuda_graph_attr=None):
    """

    Note:
7479
        The API only supports static graph mode.
7480

7481
    A context manager that specifies the cuda_graph_mode which indicating the cuda graph capture under static graph mode.
7482 7483 7484 7485 7486

    Args:
        cuda_graph_attr(str|None): The cuda graph attr with the format of:
                                   cuda_graph_capture_mode;memory_pool_id;cuda_graph_id
    """
7487 7488
    assert (
        not _non_static_mode()
7489
    ), "cuda_graph_guard only works under static graph mode"
7490 7491
    assert (
        core.is_compiled_with_cuda()
7492 7493 7494 7495 7496 7497 7498 7499
    ), "cuda_graph_guard context can be only used when Paddle is compiled with cuda"
    pre_mode = _switch_cuda_graph_mode(cuda_graph_attr)
    try:
        yield
    finally:
        _switch_cuda_graph_mode(pre_mode)


G
guofei 已提交
7500 7501 7502
def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
7503
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7504 7505 7506 7507 7508 7509 7510

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

7511 7512
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
7513 7514 7515 7516
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
7517 7518
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
7519 7520
        else:
            raise ValueError(
7521 7522
                "Flag %s cannot set its value through this function." % (key)
            )
G
guofei 已提交
7523 7524 7525 7526 7527


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
7528
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7529 7530 7531 7532 7533 7534 7535 7536 7537 7538

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

7539
            import paddle
G
guofei 已提交
7540 7541

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
7542
            res = paddle.get_flags(flags)
G
guofei 已提交
7543 7544 7545 7546 7547 7548
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
7549
            if _global_flags().is_public(key):
7550
                value = _global_flags()[key]
G
guofei 已提交
7551 7552 7553 7554
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
7555 7556 7557
                    'Flag %s cannot get its value through this function.'
                    % (key)
                )
G
guofei 已提交
7558
    elif isinstance(flags, str):
7559
        if _global_flags().is_public(flags):
7560
            value = _global_flags()[flags]
G
guofei 已提交
7561 7562 7563 7564
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
7565 7566
                'Flag %s cannot get its value through this function.' % (flags)
            )
G
guofei 已提交
7567 7568 7569
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
7570 7571 7572 7573 7574 7575


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587
    if isinstance(
        place,
        (
            core.Place,
            core.XPUPlace,
            core.CPUPlace,
            core.CUDAPinnedPlace,
            core.CUDAPlace,
            core.IPUPlace,
            core.CustomPlace,
        ),
    ):
7588 7589 7590 7591
        return place

    if not isinstance(place, str):
        raise ValueError(
7592 7593
            "place only support string which is 'Place' and so on."
        )
7594 7595

    place = place.lower()
7596
    if place == "cpu":
7597
        return core.CPUPlace()
7598

7599
    if place == "device":
7600 7601
        return core.Place()

7602
    # GPU
7603 7604 7605 7606
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
7607
                "The device should not be {}, since PaddlePaddle is "
7608
                "not compiled with CUDA".format(avaliable_gpu_place.group())
7609
            )
7610 7611 7612 7613 7614 7615 7616 7617 7618
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
7619 7620

    # XPU
7621 7622 7623 7624
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
7625
                "The device should not be {}, since PaddlePaddle is "
7626
                "not compiled with XPU".format(avaliable_xpu_place.group())
7627
            )
7628 7629 7630 7631
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
7632

J
jianghaicheng 已提交
7633 7634 7635 7636 7637
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
7638
                "The device should not be {}, since PaddlePaddle is "
7639
                "not compiled with IPU".format(avaliable_ipu_place.group())
7640
            )
J
jianghaicheng 已提交
7641 7642 7643 7644 7645
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

7646
    raise ValueError(
K
Kim Yann 已提交
7647
        f"Paddle supports CPUPlace, CUDAPlace, CUDAPinnedPlace, XPUPlace and IPUPlace, but received {place}."
7648
    )
7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret