framework.py 264.4 KB
Newer Older
G
gouzil 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Y
Yu Yang 已提交
14
import collections
X
Xin Pan 已提交
15
from collections import defaultdict
H
huzhiqiang 已提交
16
from collections.abc import Iterable
Q
qiaolongfei 已提交
17
import contextlib
18
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
19
import os
F
fengjiayi 已提交
20
import re
21
import traceback
22
import copy
23
from types import MethodType, FunctionType
24

Y
Yu Yang 已提交
25
import numpy as np
26
import subprocess
S
sneaxiy 已提交
27
import multiprocessing
28
import sys
29
import logging
R
risemeup1 已提交
30 31 32

from .proto import framework_pb2, data_feed_pb2

33 34

from . import core
35
from . import unique_name
36 37
import paddle.version as fluid_version
import warnings
38
import functools
39
from .variable_index import _getitem_impl_, _setitem_impl_
40
import threading
Y
Yu Yang 已提交
41

42
__all__ = [
43 44 45 46
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
47
    'name_scope',
J
jianghaicheng 已提交
48
    'ipu_shard_guard',
49
    'set_ipu_shard',
S
sneaxiy 已提交
50 51
    'cuda_places',
    'cpu_places',
52
    'xpu_places',
53
    'mlu_places',
S
sneaxiy 已提交
54
    'cuda_pinned_places',
J
Jiabin Yang 已提交
55
    '_non_static_mode',
L
lujun 已提交
56
    'in_dygraph_mode',
57
    'is_compiled_with_cinn',
C
chengduo 已提交
58
    'is_compiled_with_cuda',
59
    'is_compiled_with_rocm',
60
    'is_compiled_with_xpu',
61
    'is_compiled_with_npu',
62
    'Variable',
63
    'require_version',
64
    'device_guard',
G
guofei 已提交
65 66
    'set_flags',
    'get_flags',
67
]
Y
Yu Yang 已提交
68

Q
qiaolongfei 已提交
69 70 71 72
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
73 74
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
# use thread local to create thread save global variables.
class GlobalThreadLocal(threading.local):
    def __init__(self):
        """
        init the thread local data.
        TODO(xiongkun): how to access another thread local data ?
        """
        global _dygraph_tracer_
        self._in_declarative_mode_ = False
        self._functional_dygraph_context_manager = None
        self._dygraph_tracer_ = _dygraph_tracer_
        self._in_eager_mode_ = True

    def __str__(self):
        strings = []
        strings.append(
            "_in_declarative_mode_:" + str(self._in_declarative_mode_)
        )
        strings.append(
            "_functional_dygraph_context_manager:"
            + str(self._functional_dygraph_context_manager)
        )
        strings.append("_dygraph_tracer_:" + str(self._dygraph_tracer_))
        strings.append("_in_eager_mode_:" + str(self._in_eager_mode_))
        return "\n".join(strings)

    def __setattr__(self, name, val):
        if name == '_dygraph_tracer_':
            global _dygraph_tracer_
            _dygraph_tracer_ = val
        self.__dict__[name] = val


L
lujun 已提交
108
_dygraph_tracer_ = None
109 110
global_var = GlobalThreadLocal()

111
_global_expected_place_ = None
112
_current_device = None
113
global_prog_seed = 0
114
_current_pipeline_stage = None
115
_already_patch_eager_tensor = False
J
Jiabin Yang 已提交
116
_already_patch_varbase = False
117
_current_cuda_graph_mode = None
118
_global_flags_ = core.globals()
119 120 121 122 123 124
_enable_standalone_executor_ = os.environ.get(
    'FLAGS_USE_STANDALONE_EXECUTOR', None
)
_dy2st_enable_standalone_executor_ = os.environ.get(
    'FLAGS_DY2ST_USE_STANDALONE_EXECUTOR', 1
)
125 126 127
_cuda_graph_enable_standalone_executor_ = os.environ.get(
    'FLAGS_CUDA_GRAPH_USE_STANDALONE_EXECUTOR', 0
)
J
Jiabin Yang 已提交
128

129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172

# special_op_attrs, extra_op_attrs are prepared for printing warnings
# when turning on FLAGS_print_extra_attrs
special_op_attrs = {
    "elementwise_add": [{"axis": -1}],
    "elementwise_sub": [{"axis": -1}],
    "elementwise_mul": [{"axis": -1}],
    "elementwise_div": [{"axis": -1}],
    "elementwise_max": [{"axis": -1}],
    "elementwise_min": [{"axis": -1}],
    "elementwise_pow": [{"axis": -1}],
    "elementwise_mod": [{"axis": -1}],
    "elementwise_floordiv": [{"axis": -1}],
    "less_than": [{"axis": -1}],
    "less_equal": [{"axis": -1}],
    "greater_than": [{"axis": -1}],
    "greater_equal": [{"axis": -1}],
    "equal": [{"axis": -1}],
    "not_equal": [{"axis": -1}],
    "amax": [{"reduce_all": False}],
    "amin": [{"reduce_all": False}],
    "any": [{"reduce_all": False}],
    "frobenius_norm": [{"reduce_all": False}],
    "logsumexp": [{"reduce_all": False}],
    "reduce_max": [{"reduce_all": False}],
    "reduce_min": [{"reduce_all": False}],
    "reduce_mean": [{"reduce_all": False}],
    "reduce_prod": [{"reduce_all": False}],
    "reduce_sum": [{"reduce_all": False}],
}

extra_op_attrs = {
    "gather": ["overwrite"],
    "graph_reindex": ["flag_buffer_hashtable"],
    "graph_sample_neighbors": ["flag_perm_buffer"],
    "relu6": ["threshold"],
    "swish": ["beta"],
    "hsigmoid_loss": ["remote_prefetch"],
    "max_pool2d_with_index": ["global_pooling"],
    "uniform": ["diag_num"],
    "unique": ["is_sorted"],
}


J
Jiabin Yang 已提交
173
# Some explanation of our execution system 2022.03
174
# For now we have 3 kinds of execution system, since we refactored dygraph mode to
J
Jiabin Yang 已提交
175
# build a fast execution system for dynamic mode. But we can't just remove all legacy
176
# code once we present the new system for some historical reason. That's why we have
J
Jiabin Yang 已提交
177
# these flags.
178
#
J
Jiabin Yang 已提交
179
# 1. _non_static_mode():
180
# _non_static_mode means  we are now running in legacy dygraph mode or dygraph mode.
J
Jiabin Yang 已提交
181 182 183
# 2. dygraph_mode():
# This flags inidicates we are now running in dygraph mode which called eager mode before.
# 3. _in_legacy_dygraph():
姜永久 已提交
184
# This flags has been deprecated
185
#
J
Jiabin Yang 已提交
186
# They have a relation ship as below:
姜永久 已提交
187
# Since _in_legacy_graph is deprecated, so dygraph_mode is _non_static_mode
188
#
J
Jiabin Yang 已提交
189 190 191 192 193 194
# Why we have to make different of _in_legacy_dygraph and dygraph_mode?
# In some performance issue, we find that python if statement cause server performance problem
# and we need our new dygraph mode becomes as fast as it could be. That's why we make these flags
# to make sure in most case, we find new dygraph mode first with only one if statement.


195 196 197 198 199
def _update_monkey_methods(is_eager):
    """
    Update monkey methods of VarBase or eager.Tensor while
    switching eager mode and legacy mode.
    """
200
    from paddle import _C_ops, _legacy_C_ops
201 202 203
    from .dygraph.varbase_patch_methods import monkey_patch_varbase
    from .dygraph import monkey_patch_math_varbase

204 205 206
    global _already_patch_eager_tensor
    global _already_patch_varbase

207
    assert isinstance(is_eager, bool)
208
    # switch into eager mode
209
    if is_eager:
210 211 212 213 214 215
        if not _already_patch_eager_tensor:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_eager_tensor = True
    # switch back into legacy mode
216
    else:
217 218 219 220 221
        if not _already_patch_varbase:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_varbase = True
222

223 224 225 226 227 228
    # switch Paddle.Tensor bind type
    _switch_tensor_bind_type(is_eager)


def _switch_tensor_bind_type(is_eager):
    import paddle
229

230 231 232 233 234
    if is_eager:
        paddle.Tensor = core.eager.Tensor
    else:
        paddle.Tensor = core.VarBase
    paddle.Tensor.__qualname__ = 'Tensor'
235 236


J
Jiabin Yang 已提交
237
def _enable_legacy_dygraph():
238
    global_var._in_eager_mode_ = False
239
    _update_monkey_methods(is_eager=False)
J
Jiabin Yang 已提交
240 241 242


def _disable_legacy_dygraph():
243
    global_var._in_eager_mode_ = True
244
    _update_monkey_methods(is_eager=True)
J
Jiabin Yang 已提交
245 246 247


def _in_eager_without_dygraph_check():
248
    return global_var._in_eager_mode_
J
Jiabin Yang 已提交
249 250


251 252 253 254 255 256 257 258
# FIXME(dev): We haven't fully verified eager mode on XPU/NPU et.al but
# only GPU/CPU. Remove this after we improve this feature.
_is_first_import_ = True


def _fallback_legacy_dygraph():
    global _is_first_import_
    need_fallback = False
C
Chen Weihang 已提交
259
    # Only enable eager on CPU/GPU/XPU
260 261 262 263 264
    is_not_support = (
        core.is_compiled_with_npu()
        or core.is_compiled_with_ipu()
        or core.is_compiled_with_mlu()
    )
265

266
    if global_var._in_eager_mode_ and is_not_support:
267 268 269 270
        # switch into legacy dygraph mode
        warnings.warn(
            "We will fallback into legacy dygraph on NPU/XPU/MLU/IPU/ROCM devices. Because we only support new eager dygraph mode on CPU/GPU currently. "
        )
271
        global_var._in_eager_mode_ = False
272 273 274 275 276 277 278 279 280 281 282 283 284 285
        if not _is_first_import_:
            _enable_legacy_dygraph()
        need_fallback = True

    need_fallback = False
    _is_first_import_ = False

    return need_fallback


# switch into legacy mode if need while import paddle
_fallback_legacy_dygraph()


J
Jiabin Yang 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
def in_dygraph_mode():
    """

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .

    Returns:
        bool: Whether paddle runs in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
307
            print(paddle.in_dynamic_mode())  # False, Now we are in static graph mode
J
Jiabin Yang 已提交
308 309 310 311 312

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode

    """
313 314 315
    return (
        global_var._dygraph_tracer_ is not None
    ) and global_var._in_eager_mode_
J
Jiabin Yang 已提交
316 317 318


def _non_static_mode():
319
    return global_var._dygraph_tracer_ is not None
320 321 322


@signature_safe_contextmanager
J
Jiabin Yang 已提交
323
def _test_eager_guard(place=None):
C
Chen Weihang 已提交
324 325
    # FIXME(dev): We haven't fully verified eager mode on NPU et.al but
    # only GPU/CPU/XPU. Remove this after we improve this feature.
326 327 328
    already_fallback = _fallback_legacy_dygraph()
    if not already_fallback:
        _disable_legacy_dygraph()
329
    try:
J
Jiabin Yang 已提交
330
        yield
331
    finally:
332
        pass
333 334


335 336
global_ipu_index = -1
global_ipu_stage = -1
J
jianghaicheng 已提交
337 338 339 340
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


L
Leo Chen 已提交
341 342 343 344 345 346 347 348 349 350 351
@signature_safe_contextmanager
def _enable_standalone_executor(enable=True):
    global _enable_standalone_executor_
    original_ = _enable_standalone_executor_
    _enable_standalone_executor_ = enable
    try:
        yield
    finally:
        _enable_standalone_executor_ = original_


J
jianghaicheng 已提交
352
@signature_safe_contextmanager
353
def ipu_shard_guard(index=-1, stage=-1):
J
jianghaicheng 已提交
354 355 356 357
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
W
Weilong Wu 已提交
358
        index(int, optional): Specify which ipu the Tensor is computed on, (such as '0, 1, 2, 3').
359
            The default value is -1, which means the Op only run on IPU 0.
W
Weilong Wu 已提交
360
        stage(int, optional): Specify the computation order of the sharded model(such as '0, 1, 2, 3').
361
            The sharded model will be computed from small to large. The default value is -1,
J
jianghaicheng 已提交
362
            which means no pipelining computation order and run Ops in terms of graph.
363

G
gouzil 已提交
364 365 366 367 368 369 370
    Note:
        Only if the enable_manual_shard=True, the 'index' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        Only if the enable_pipelining=True, the 'stage' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        A index is allowed to match none stage or a stage. A stage is only allowed to match a new or
        duplicated index.
J
jianghaicheng 已提交
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


405 406 407 408
def set_ipu_shard(call_func, index=-1, stage=-1):
    """
    Shard the ipu with the given call function. Set every ops in call function to the given ipu sharding.

G
gouzil 已提交
409 410 411 412 413
    Note:
        Only when enable_manual_shard=True to set the index to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        Only when enable_pipelining=True to set stage to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        An index supports a corresponding None stage or a stage, and a stage only supports a new index or a duplicate index.

414 415 416 417 418
    Args:
        call_func(Layer|function): Specify the call function to be wrapped.
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is -1, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
419
            The sharded model will be computed from small to large. The default value is -1,
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
            which means no pipelining computation order and run Ops in terms of graph.

    Returns:
        The wrapped call function.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='float32')
            relu = paddle.nn.ReLU()
            relu = paddle.static.set_ipu_shard(relu, index=1, stage=1)
            relu(a)
    """

    def decorate(func):
        def wrapper(*args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return func(*args, **kwargs)

        return wrapper

    from .dygraph.layers import Layer
446

447 448 449 450 451
    if not isinstance(call_func, Layer):
        if callable(call_func):
            return decorate(call_func)
        else:
            raise TypeError(
452 453
                "Unsupported type. Only accept paddle.nn.Layer or function."
            )
454 455 456 457 458 459 460 461 462 463 464 465

    # patch paddle.nn.Layer
    class BlockFn(type(call_func)):
        def __call__(self, *args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return super().__call__(*args, **kwargs)

    BlockFn.__name__ = type(call_func).__name__
    call_func.__class__ = BlockFn
    return call_func


466 467
def require_version(min_version, max_version=None):
    """
468 469 470
    Check if the installed version of PaddlePaddle is in [min_version, max_version],
    if the installed version is lower than ``min_version`` or higher than ``max_version``,
    an exception will be thrown, NO returns if the installed version is satisfied.
471

472 473 474 475
    Args:
        min_version (str): the minimum version required (like '1.4.0').
        max_version (str, optional): the max version required (like '1.6.0'), default is None,
            meaning any version equal or higher than ``min_version`` is acceptable.
476

477 478
    Returns:
        None.
479

480 481 482 483 484 485
    Raises:
        TypeError: if the type of ``min_version`` is not str.
        TypeError: if the type of ``max_version`` is not str or type(None).
        ValueError: if the value of ``min_version`` is not in version format.
        ValueError: if the value of ``max_version`` is not in version format or None.
        Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.
486

487 488
    Examples:
        .. code-block:: python
489

490
            import paddle.fluid as fluid
491

492 493
            # any version >= 0.1.0 is acceptable.
            fluid.require_version('0.1.0')
494

495 496 497
            # if 0.1.0 <= version <= 10.0.0, it is acceptable.
            fluid.require_version(min_version='0.1.0', max_version='10.0.0')
    """
498 499 500
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
501 502
            % (type(min_version))
        )
503 504 505 506

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
507 508
            % (type(max_version))
        )
509 510 511 512 513

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
514 515
            "like '1.5.2.0', but received %s" % min_version
        )
516 517 518 519 520 521

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
522 523
                "like '1.5.2.0', but received %s" % max_version
            )
524 525

    version_installed = [
526 527 528 529
        fluid_version.major,
        fluid_version.minor,
        fluid_version.patch,
        fluid_version.rc,
530 531 532 533
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
534
        for i in range(len(ver_a)):
535 536 537 538 539 540 541 542 543 544 545
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
546 547 548
                "please make sure the version is good with your code."
                % (min_version, max_version, fluid_version.full_version)
            )
549 550 551 552
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
553 554 555
                "please make sure the version is good with your code."
                % (min_version, fluid_version.full_version)
            )
556 557 558
        return

    min_version_split = min_version.split('.')
559 560 561
    min_version_to_check = (
        min_version_split + zero_version[len(min_version_split) :]
    )
562 563 564

    if max_version is not None:
        max_version_split = max_version.split('.')
565 566 567
        max_version_to_check = (
            max_version_split + zero_version[len(max_version_split) :]
        )
568

569 570 571 572
        if (
            version_cmp(version_installed, max_version_to_check) > 0
            or version_cmp(version_installed, min_version_to_check) < 0
        ):
573 574
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
575 576
                % (min_version, max_version, fluid_version.full_version)
            )
577 578 579 580 581
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
582 583
                % (min_version, fluid_version.full_version, min_version)
            )
584 585


586 587
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
588 589 590
        assert not _non_static_mode(), (
            "We don't support %s in dynamic graph mode" % func.__name__
        )
591 592 593 594 595 596 597
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
598 599 600 601
        assert _non_static_mode(), (
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
602 603 604 605 606
        return func(*args, **kwargs)

    return __impl__


607 608 609
def _non_static_only_(func):
    def __impl__(*args, **kwargs):
        from .dygraph.base import in_declarative_mode
610 611 612 613 614

        assert _non_static_mode() or in_declarative_mode(), (
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
615 616 617 618 619
        return func(*args, **kwargs)

    return __impl__


620 621
def _static_only_(func):
    def __impl__(*args, **kwargs):
622 623 624 625
        assert not _non_static_mode(), (
            "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode."
            % func.__name__
        )
626 627 628 629 630
        return func(*args, **kwargs)

    return __impl__


631 632 633 634 635
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


636 637 638 639 640 641
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
642
# same base class.
643 644 645
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
646 647
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
R
Ryan 已提交
648
            "  2. If you are using `@paddle.jit.to_static`, you can call `paddle.jit.enable_to_static(False)`. "
649
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
650 651
            % (func.__name__, func.__name__)
        )
652 653 654 655

    return __impl__


T
tangwei12 已提交
656 657
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
658 659 660 661 662 663 664 665 666
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
667 668
                DeprecationWarning,
            )
669 670 671 672 673 674 675
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


676 677
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
678
static_only = wrap_decorator(_static_only_)
679
fake_interface_only = wrap_decorator(_fake_interface_only_)
680
non_static_only = wrap_decorator(_non_static_only_)
681 682


L
lujun 已提交
683
def _dygraph_tracer():
684
    return global_var._dygraph_tracer_
685

W
Wu Yi 已提交
686

687 688 689 690
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
691
def _current_expected_place():
692 693 694
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
695 696 697 698 699
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
700
                _global_expected_place_ = core.CUDAPlace(_cuda_ids()[0])
701 702 703 704 705
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
706 707 708 709 710 711
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
712
                _global_expected_place_ = core.XPUPlace(_xpu_ids()[0])
713 714 715 716 717
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
718 719 720 721 722 723
        elif core.is_compiled_with_mlu():
            try:
                device_count = core.get_mlu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
724
                _global_expected_place_ = core.MLUPlace(_mlu_ids()[0])
725 726 727 728 729
            else:
                warnings.warn(
                    "You are using MLU version Paddle, but your MLU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
        elif core.is_compiled_with_custom_device("npu"):
            # TODO(duanyanhui): Optimize DeviceManager and Return all expected places when device registered in DeviceManager is greater than 1.
            try:
                device_count = core.get_custom_device_count("npu")
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CustomPlace(
                    "npu", _custom_device_ids("npu")[0]
                )
            else:
                warnings.warn(
                    "You are using NPU version Paddle, but your NPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
745 746 747 748 749 750 751
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
752 753
    if global_var._dygraph_tracer_ is not None:
        global_var._dygraph_tracer_._expected_place = place
754 755 756 757 758


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
759
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
760 761


L
Leo Chen 已提交
762 763
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
764 765
    """
    convert VarBase tp numpy
T
tangwei12 已提交
766

767 768 769
    Args:
        var_base(VarBase) : the VarBase to convert
    Returns (np.ndarray): the np.ndarray contain the value of VarBase
L
Leo Chen 已提交
770 771 772 773 774 775 776 777 778
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
779
def _cpu_num():
780
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
781 782 783 784 785 786 787
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
788 789 790
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()
                )
            )
C
chengduo 已提交
791
        os.environ['CPU_NUM'] = str(1)
792
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
793 794 795 796 797 798 799 800
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
801
        device_ids = range(core.get_cuda_device_count())
C
chengduo 已提交
802
    return device_ids
S
sneaxiy 已提交
803 804


805 806 807 808 809
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
810
        device_ids = range(core.get_xpu_device_count())
811 812 813
    return device_ids


814 815 816 817 818
def _npu_ids():
    npus_env = os.getenv("FLAGS_selected_npus")
    if npus_env:
        device_ids = [int(s) for s in npus_env.split(",")]
    else:
819
        device_ids = range(core.get_npu_device_count())
820 821 822
    return device_ids


823 824 825 826 827 828 829 830 831
def _custom_device_ids(device_type):
    custom_devices_env = os.getenv("FLAGS_selected_" + device_type + "s")
    if custom_devices_env:
        device_ids = [int(s) for s in custom_devices_env.split(",")]
    else:
        device_ids = range(core.get_custom_device_count(device_type))
    return device_ids


832 833 834 835 836
def _mlu_ids():
    mlus_env = os.getenv("FLAGS_selected_mlus")
    if mlus_env:
        device_ids = [int(s) for s in mlus_env.split(",")]
    else:
837
        device_ids = range(core.get_mlu_device_count())
838 839 840
    return device_ids


841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


856 857 858 859 860 861 862 863 864 865 866 867 868 869 870
def is_compiled_with_npu():
    """
    Whether this whl package can be used to run the model on NPU.

    Returns (bool): support npu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_npu = fluid.is_compiled_with_npu()
    """
    return core.is_compiled_with_npu()


871 872 873 874 875 876 877
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
878

879 880 881 882 883 884
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

Z
Zman 已提交
885 886
    Returns:
        None
887 888 889 890 891 892 893 894 895 896

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

    Returns (bool): `True` if CINN is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
912 913 914 915
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

916
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
917 918 919 920

    Examples:
        .. code-block:: python

921
            import paddle
922
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
923 924 925 926
    """
    return core.is_compiled_with_cuda()


927 928 929 930 931 932 933 934 935 936
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
937
            support_gpu = paddle.device.is_compiled_with_rocm()
938 939 940 941
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
942
def cuda_places(device_ids=None):
L
lujun 已提交
943
    """
944
    Note:
945 946 947
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
948
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
949 950

    If :code:`device_ids` is None, environment variable of
951
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
952
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
953
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
954
    If :code:`FLAGS_selected_gpus` is not set, all visible
955
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
956 957

    If :code:`device_ids` is not None, it should be the device
958
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
959
    the returned list would be
C
Chen Weihang 已提交
960
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
961

962
    Parameters:
963
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
964 965

    Returns:
C
Chen Weihang 已提交
966
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
967 968

    Examples:
969

L
lujun 已提交
970 971
        .. code-block:: python

C
Chen Weihang 已提交
972 973
            import paddle
            import paddle.static as static
T
tangwei12 已提交
974

975
            # required: gpu
976

C
Chen Weihang 已提交
977 978 979
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
980 981

    """
982
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
983
    if device_ids is None:
C
chengduo 已提交
984
        device_ids = _cuda_ids()
S
sneaxiy 已提交
985 986 987 988 989
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


990 991 992 993
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
994 995 996 997 998 999 1000 1001 1002
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
1003
        the returned list would be
S
sunzhongkai588 已提交
1004
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
1005

1006 1007 1008 1009 1010 1011
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
1012

1013 1014
            # required: xpu

1015 1016
            import paddle
            import paddle.static as static
1017

1018 1019 1020
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
1021
    assert core.is_compiled_with_xpu(), "Not compiled with XPU"
1022 1023 1024 1025 1026 1027 1028
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


1029 1030
def npu_places(device_ids=None):
    """
1031 1032

    Note:
1033
        For multi-card tasks, please use `FLAGS_selected_npus` environment variable to set the visible NPU device.
1034

1035 1036 1037 1038 1039 1040 1041 1042 1043
    This function creates a list of :code:`paddle.NPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_npus` would be checked first. For example, if
    :code:`FLAGS_selected_npus=0,1,2`, the returned list would
    be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    If :code:`FLAGS_selected_npus` is not set, all visible
    npu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of NPUs. For example, if :code:`device_ids=[0,1,2]`,
1044
    the returned list would be
1045
    [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
1046

1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057
    Parameters:
        device_ids (list or tuple of int, optional): list of NPU device ids.
    Returns:
        list of paddle.NPUPlace: Created NPU place list.
    Examples:
        .. code-block:: python

            # required: npu

            import paddle
            import paddle.static as static
1058

1059 1060 1061
            paddle.enable_static()
            npu_places = static.npu_places()
    """
1062
    assert core.is_compiled_with_npu(), "Not compiled with NPU"
1063 1064 1065 1066 1067 1068 1069
    if device_ids is None:
        device_ids = _npu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.NPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
1070
def cpu_places(device_count=None):
L
lujun 已提交
1071
    """
C
Chen Weihang 已提交
1072
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
1073

S
add doc  
sneaxiy 已提交
1074
    If :code:`device_count` is None, the device count would
1075
    be determined by environment variable :code:`CPU_NUM`.
C
chengduo 已提交
1076 1077
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
1078 1079
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
1080

1081 1082
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
1083 1084

    Returns:
C
Chen Weihang 已提交
1085
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
1086 1087

    Examples:
1088

L
lujun 已提交
1089 1090
        .. code-block:: python

C
Chen Weihang 已提交
1091 1092
            import paddle
            import paddle.static as static
T
tangwei12 已提交
1093

C
Chen Weihang 已提交
1094 1095 1096
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
1097 1098
    """

S
sneaxiy 已提交
1099 1100 1101 1102 1103 1104
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
1105
    """
1106
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
1107 1108

    If :code:`device_count` is None, the device count would
1109
    be determined by environment variable :code:`CPU_NUM`.
1110 1111 1112 1113
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
1114

1115 1116
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
1117 1118

    Returns:
1119
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
1120 1121 1122 1123

    Examples:
        .. code-block:: python

1124
            import paddle.fluid as fluid
L
lujun 已提交
1125 1126 1127 1128 1129
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
1130
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
1131
    if device_count is None:
1132 1133
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
1134 1135


1136 1137
def mlu_places(device_ids=None):
    """
G
gouzil 已提交
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150
    This function creates a list of :code:`paddle.device.MLUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_mlus` would be checked first. For example, if
    :code:`FLAGS_selected_mlus=0,1,2`, the returned list would
    be [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].
    If :code:`FLAGS_selected_mlus` is not set, all visible
    mlu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of MLUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be
    [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].

    Note:
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169
        For multi-card tasks, please use `FLAGS_selected_mlus` environment variable to set the visible MLU device.

    Parameters:
        device_ids (list or tuple of int, optional): list of MLU device ids.

    Returns:
        list of paddle.device.MLUPlace: Created MLU place list.

    Examples:
        .. code-block:: python

            # required: mlu

            import paddle
            import paddle.static as static

            paddle.enable_static()
            mlu_places = static.mlu_places()
    """
1170
    assert core.is_compiled_with_mlu(), "Not compiled with MLU"
1171 1172 1173 1174 1175 1176 1177
    if device_ids is None:
        device_ids = _mlu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.MLUPlace(dev_id) for dev_id in device_ids]


1178
class NameScope:
1179 1180 1181 1182 1183 1184 1185 1186 1187 1188
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
1189 1190 1191
            new_child = NameScope(
                prefix + "_%d" % len(self._children[prefix]), self
            )
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
1205
@signature_safe_contextmanager
1206 1207
def name_scope(prefix=None):
    """
1208

1209
    Generate hierarchical name prefix for the operators in Static Graph.
1210

1211
    Note:
T
Tao Luo 已提交
1212 1213
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
1214
        Don't use it in dygraph, since it will cause memory leak.
1215 1216

    Args:
T
Tao Luo 已提交
1217
        prefix(str, optional): prefix. Default is none.
1218 1219

    Examples:
1220

1221
        .. code-block:: python
T
Tink_Y 已提交
1222

1223 1224 1225
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
1226
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
1227
             b = a + 1
1228
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
1229
                c = b * 1
1230
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
1231
                d = c / 1
1232 1233 1234
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
1235 1236
                g = f - 1

1237
          # Op are created in the default main program.
1238
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
1254 1255
    """
    # TODO(panyx0718): Only [0-9a-z].
1256
    # in dygraph we don't need namescope since it will cause mem leak
J
Jiabin Yang 已提交
1257
    if _non_static_mode():
L
Leo Chen 已提交
1258 1259
        yield
    else:
T
tianshuo78520a 已提交
1260
        assert prefix, "namescope prefix can not be empty."
1261 1262
        global _name_scope
        _name_scope = _name_scope.child(prefix)
1263 1264 1265 1266
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
1279 1280
def generate_control_dev_var_name():
    import random
1281

W
Wu Yi 已提交
1282
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
1283 1284 1285 1286


def grad_var_name(var_name):
    """
1287 1288
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
1289 1290 1291
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
1292

1293
def convert_np_dtype_to_dtype_(np_dtype):
1294
    """
1295
    Convert the data type in numpy to the data type in Paddle.
1296

1297
    Args:
1298 1299
        np_dtype (np.dtype|str): The data type in numpy or valid data type
            string.
1300

1301
    Returns:
1302
        core.VarDesc.VarType: The data type in Paddle.
1303 1304

    """
1305 1306
    # Convert the data type string to numpy data type.
    if isinstance(np_dtype, str) and np_dtype == "bfloat16":
1307 1308 1309
        dtype = np.uint16
    else:
        dtype = np.dtype(np_dtype)
1310

1311
    if dtype == np.float32:
1312
        return core.VarDesc.VarType.FP32
1313
    elif dtype == np.float64:
1314
        return core.VarDesc.VarType.FP64
1315
    elif dtype == np.float16:
1316
        return core.VarDesc.VarType.FP16
1317
    elif dtype == np.int32:
1318
        return core.VarDesc.VarType.INT32
1319
    elif dtype == np.int16:
1320
        return core.VarDesc.VarType.INT16
1321
    elif dtype == np.int64:
1322
        return core.VarDesc.VarType.INT64
1323
    elif dtype == np.bool_:
1324
        return core.VarDesc.VarType.BOOL
1325
    elif dtype == np.uint16:
1326 1327 1328
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
1329 1330
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
1331 1332
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
1333 1334 1335 1336
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
1337
    else:
M
minqiyang 已提交
1338
        raise ValueError("Not supported numpy dtype %s" % dtype)
1339 1340 1341


def dtype_is_floating(dtype):
1342 1343 1344
    """
    Check the data type is floating or not.
    Args:
1345
        dtype(np.dtype|core.VarDesc.VarType): data type.
1346 1347 1348 1349 1350
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1351
    if not isinstance(dtype, core.VarDesc.VarType):
1352 1353
        dtype = convert_np_dtype_to_dtype_(dtype)

1354
    return dtype in [
1355 1356 1357
        core.VarDesc.VarType.FP16,
        core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64,
1358
    ]
1359 1360


Y
Yang Yang(Tony) 已提交
1361
def _debug_string_(proto, throw_on_error=True):
1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1373
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1374
    if not proto.IsInitialized(error_fields) and throw_on_error:
1375 1376
        raise ValueError(
            "{0} are not initialized.\nThe message is {1}:\n".format(
1377 1378 1379
                error_fields, proto
            )
        )
Y
Yu Yang 已提交
1380 1381 1382
    return proto.__str__()


1383 1384 1385 1386 1387 1388
def _varbase_creator(
    type=core.VarDesc.VarType.LOD_TENSOR,
    name=None,
    shape=None,
    dtype=None,
    persistable=None,
1389
    **kwargs,
1390
):
1391 1392 1393 1394
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

1395
    if global_var._in_eager_mode_:
1396
        eager_tensor = core.eager.Tensor(
1397
            dtype if dtype else core.VarDesc.VarType.FP32,
1398 1399
            list(shape) if shape else [],
            name,
1400
            type if type else core.VarDesc.VarType.LOD_TENSOR,
1401 1402
            True if persistable else False,
        )
1403 1404
        eager_tensor.retain_grads()
        return eager_tensor
J
Jiabin Yang 已提交
1405
    else:
1406 1407 1408 1409 1410 1411 1412
        return core.VarBase(
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            type if type else core.VarDesc.VarType.LOD_TENSOR,
            True if persistable else False,
        )
1413 1414


1415 1416 1417 1418 1419 1420 1421
def _all_is_type(vals, expected_type):
    """
    Return True if type of each element is expected_type.

    NOTE: BuiltIn all() will always return True if vals is empty.
    """
    assert isinstance(vals, (list, tuple))
1422 1423
    if not vals:
        return False
1424 1425 1426
    return all(isinstance(v, expected_type) for v in vals)


1427 1428 1429 1430 1431
class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1432
            return issubclass(t, core.eager.Tensor)
1433 1434 1435 1436 1437 1438 1439 1440 1441
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1442
            return issubclass(t, EagerParamBase)
1443 1444 1445 1446
        else:
            return issubclass(t, Parameter)


1447
class Variable(metaclass=VariableMetaClass):
1448
    """
J
Jiabin Yang 已提交
1449

U
ustiniankw 已提交
1450 1451 1452 1453
    Notes:
        The constructor of Variable should not be invoked directly.

        In Static Graph Mode: Please use ** `Block.create_var` ** to create a Static variable which has no data until being feed.
1454

U
ustiniankw 已提交
1455
        In Dygraph Mode: Please use ** :ref:`api_fluid_dygraph_to_variable` ** to create a dygraph variable with real data.
J
Jiabin Yang 已提交
1456 1457

    In Fluid, every input and output of an OP is a variable. In most
1458
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1459 1460
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1461

1462
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1463
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1464

T
tianshuo78520a 已提交
1465
    Most of a Variable's member variables can be set to be None. It mean
1466
    it is not available or will be specified later.
1467

1468
    Examples:
1469 1470
        In Static Graph Mode:

1471 1472
        .. code-block:: python

1473
            import paddle.fluid as fluid
1474
            cur_program = fluid.Program()
1475 1476 1477 1478
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1479

1480
        In Dygraph  Mode:
1481 1482 1483 1484 1485 1486 1487 1488 1489

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1490 1491
    """

1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506
    def __init__(
        self,
        block,
        type=core.VarDesc.VarType.LOD_TENSOR,
        name=None,
        shape=None,
        dtype=None,
        lod_level=None,
        capacity=None,
        persistable=None,
        error_clip=None,
        stop_gradient=False,
        is_data=False,
        need_check_feed=False,
        belong_to_optimizer=False,
1507
        **kwargs,
1508
    ):
Y
Yu Yang 已提交
1509 1510
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1511
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1512

Y
Yu Yang 已提交
1513
        if dtype is not None:
1514
            if not isinstance(dtype, core.VarDesc.VarType):
1515
                dtype = convert_np_dtype_to_dtype_(dtype)
1516

S
Steffy-zxf 已提交
1517 1518 1519 1520
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

1521 1522 1523
        if type == core.VarDesc.VarType.SPARSE_COO:
            lod_level = None

H
hong 已提交
1524 1525
        self.belong_to_optimizer = belong_to_optimizer

1526 1527 1528
        self.error_clip = error_clip

        is_new_var = False
1529
        self.desc = self.block.desc.find_var(name.encode())
1530

1531
        if self.desc is None:
1532
            self.desc = self.block.desc.var(name.encode())
1533
            is_new_var = True
1534

1535 1536 1537
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
1538 1539 1540 1541 1542
            raise ValueError(
                "Variable '{0}' has been created before. The "
                "previous type is {1}, the new type is {2}. They"
                " are not matched".format(self.name, self.desc.type(), type)
            )
1543

1544
        if shape is not None:
1545
            if is_new_var:
1546 1547 1548 1549 1550 1551
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1552 1553
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1554 1555
                        "matched.".format(self.name, old_shape, shape)
                    )
1556 1557 1558 1559 1560 1561
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
1562 1563 1564 1565 1566 1567
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous data type is {1}, the new "
                        "data type is {2}. They are not "
                        "matched.".format(self.name, old_dtype, dtype)
                    )
1568 1569 1570 1571 1572 1573

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
1574 1575 1576 1577 1578 1579
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous lod_level is {1}, the new "
                        "lod_level is {2}. They are not "
                        "matched".format(self.name, self.lod_level, lod_level)
                    )
1580 1581 1582 1583 1584 1585
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1586 1587
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1588
                        "persistable is {2}. They are not matched".format(
1589 1590 1591
                            self.name, self.persistable, persistable
                        )
                    )
1592

1593 1594
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1595

1596 1597 1598 1599 1600 1601 1602
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1603

1604 1605
        self.block.vars[name] = self
        self.op = None
1606
        self.stop_gradient = stop_gradient
1607
        self.is_data = is_data
Y
Yu Yang 已提交
1608

1609 1610
    def detach(self):
        """
U
ustiniankw 已提交
1611

1612
        Returns a new Variable, detached from the current graph.
1613 1614
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1615

1616
        Returns:
U
ustiniankw 已提交
1617
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable), The detached Variable.
1618 1619 1620 1621

        Examples:
            .. code-block:: python

1622
                import paddle
1623

1624 1625 1626 1627
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1628

1629 1630
                # create a detached Variable
                y = x.detach()
U
ustiniankw 已提交
1631

1632
        """
1633

1634 1635 1636 1637
        assert (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ), "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"
1638 1639 1640 1641 1642 1643

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
1644 1645
            stop_gradient=True,
        )
1646

1647 1648 1649
        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]}
        )
1650
        return output
1651

1652
    @fake_interface_only
1653
    def numpy(self):
1654
        """
J
Jiabin Yang 已提交
1655
        **Notes**:
T
tianshuo78520a 已提交
1656
            **This API is ONLY available in Dygraph mode**
1657

J
Jiabin Yang 已提交
1658
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1659 1660 1661 1662 1663

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1664
            ndarray: dtype is same as current Variable
1665 1666 1667 1668 1669 1670

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1671
                from paddle.fluid.dygraph import Linear
1672 1673 1674 1675
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1676
                    linear = Linear(32, 64)
1677
                    data = to_variable(data)
1678
                    x = linear(data)
1679 1680 1681
                    print(x.numpy())

        """
1682
        pass
1683

1684
    @fake_interface_only
1685
    def backward(self, retain_graph=False):
1686
        """
J
Jiabin Yang 已提交
1687
        **Notes**:
T
tianshuo78520a 已提交
1688
            **This API is ONLY available in Dygraph mode**
1689

1690
        Run backward of current Graph which starts from current Tensor.
1691

J
Jiabin Yang 已提交
1692
        Args:
1693 1694 1695 1696
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1697

J
Jiabin Yang 已提交
1698 1699
        Returns:
            NoneType: None
1700 1701 1702 1703 1704

        Examples:
            .. code-block:: python

                import numpy as np
1705 1706
                import paddle
                paddle.disable_static()
1707 1708

                x = np.ones([2, 2], np.float32)
1709 1710 1711 1712 1713 1714 1715
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1716 1717
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1718
                loss.backward()
1719 1720

        """
1721
        pass
1722

1723
    @fake_interface_only
1724
    def gradient(self):
1725
        """
J
Jiabin Yang 已提交
1726
        **Notes**:
T
tianshuo78520a 已提交
1727
            **This API is ONLY available in Dygraph mode**
1728 1729 1730

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1731
        Returns:
1732
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1733 1734 1735 1736

        Examples:
            .. code-block:: python

1737
                import paddle
1738 1739 1740
                import paddle.fluid as fluid
                import numpy as np

1741
                # example1: return ndarray
1742 1743 1744 1745 1746 1747 1748
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
1749
                    ret2 = paddle.add_n(inputs2)
1750
                    loss2 = paddle.sum(ret2)
1751
                    loss2.backward()
1752 1753
                    print(loss2.gradient())

1754 1755
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
1756 1757 1758 1759 1760
                    embedding = paddle.nn.Embedding(
                        20,
                        32,
                        weight_attr='emb.w',
                        sparse=True)
1761 1762 1763 1764 1765 1766 1767
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1768
        """
1769
        pass
1770

1771
    @fake_interface_only
1772
    def clear_gradient(self):
1773
        """
J
Jiabin Yang 已提交
1774
        **Notes**:
T
tianshuo78520a 已提交
1775
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1776 1777

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1778

J
Jiabin Yang 已提交
1779
        Clear  (set to ``0`` ) the Gradient of Current Variable
1780 1781 1782 1783 1784 1785

        Returns:  None

        Examples:
            .. code-block:: python

1786
                import paddle
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796
                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
1797
                    ret2 = paddle.add_n(inputs2)
1798
                    loss2 = paddle.sum(ret2)
1799
                    loss2.backward()
1800 1801 1802 1803 1804
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1805
        pass
X
Xin Pan 已提交
1806

1807 1808 1809 1810
    @fake_interface_only
    def register_hook(self, hook):
        pass

1811
    def __str__(self):
1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1828 1829
                import paddle
                import paddle.static as static
1830

1831 1832 1833
                paddle.enable_static()

                cur_program = static.Program()
1834 1835 1836 1837 1838 1839
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1840 1841
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1842 1843 1844 1845
        if (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ):
1846
            dtype_str = str(self.dtype).split('.')[1]
1847 1848 1849 1850 1851 1852 1853
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".format(
                name=self.name,
                type=type_str,
                shape=self.shape,
                dtype=dtype_str,
                stop_gradient=self.stop_gradient,
            )
1854
        else:
1855
            var_str = "{name} : {type})".format(name=self.name, type=type_str)
1856

1857
        if self.is_parameter:
1858 1859 1860 1861 1862 1863 1864 1865 1866 1867
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1868 1869 1870 1871
        from paddle.distributed.auto_parallel.dist_context import (
            get_default_distributed_context,
        )

1872
        dist_context = get_default_distributed_context()
1873 1874
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1875 1876 1877
            var_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_tensor
            )
1878

1879
        return var_str
Y
Yang Yang(Tony) 已提交
1880

F
update  
fengjiayi 已提交
1881
    def to_string(self, throw_on_error, with_details=False):
1882 1883 1884
        """
        Get debug string.

J
Jiabin Yang 已提交
1885 1886 1887 1888 1889
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1890

1891 1892
        Returns:
            str: The debug string.
1893 1894 1895 1896 1897

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1898
                import paddle
1899

1900
                paddle.enable_static()
1901 1902 1903 1904 1905
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1906
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1907
                print("=============with detail===============")
1908
                print(new_variable.to_string(True, True))
1909
        """
1910
        assert isinstance(throw_on_error, bool) and isinstance(
1911 1912
            with_details, bool
        )
1913
        protostr = self.desc.serialize_to_string()
1914
        proto = framework_pb2.VarDesc.FromString(bytes(protostr))
F
update  
fengjiayi 已提交
1915 1916
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1917
            additional_attr = ("error_clip",)
F
update  
fengjiayi 已提交
1918
            for attr_name in additional_attr:
1919
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
1920

F
update  
fengjiayi 已提交
1921
        return res_str
1922 1923 1924

    __repr__ = __str__

1925 1926 1927
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
1928

1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1952
    @property
1953
    def stop_gradient(self):
J
Jiabin Yang 已提交
1954 1955 1956
        """
        Indicating if we stop gradient from current Variable

1957
        **Notes: This Property has default value as** ``True`` **in** Dygraph **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``
J
Jiabin Yang 已提交
1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1969 1970
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1971 1972 1973
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1974 1975
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1976 1977 1978 1979
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1980
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1981 1982
                assert (out1.gradient() == 0).all()
        """
1983
        return self.desc.stop_gradient()
1984

1985 1986
    @stop_gradient.setter
    def stop_gradient(self, s):
1987
        self.desc.set_stop_gradient(s)
1988

1989 1990
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1991 1992 1993 1994 1995 1996 1997 1998
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

1999
            **2. In** Dygraph **mode, this property should not be changed**
J
Jiabin Yang 已提交
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
2012
        return self.desc.persistable()
2013

Y
Yu Yang 已提交
2014 2015
    @persistable.setter
    def persistable(self, p):
2016
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
2017

2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
2043 2044
    @property
    def name(self):
J
Jiabin Yang 已提交
2045 2046 2047
        """
        Indicating name of current Variable

2048
        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** Dygraph **mode. This is how we achieve Parameter sharing**
J
Jiabin Yang 已提交
2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
2061
        return self.desc.name()
Y
Yu Yang 已提交
2062

2063 2064 2065 2066 2067 2068
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
2069 2070
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
2071

2072 2073 2074 2075 2076 2077
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
2078
          print(x.grad_name) # output is ``x@GRAD``
2079 2080 2081 2082

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
2083 2084
    @name.setter
    def name(self, new_name):
2085
        self.desc.set_name(new_name)
T
typhoonzero 已提交
2086

Y
Yu Yang 已提交
2087 2088
    @property
    def shape(self):
J
Jiabin Yang 已提交
2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
2106
        # convert to tuple, make it as same as numpy API.
2107
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
2108 2109

    @property
F
fengjiayi 已提交
2110
    def dtype(self):
J
Jiabin Yang 已提交
2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
2127
        return self.desc.dtype()
Y
Yu Yang 已提交
2128 2129 2130

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
2131 2132 2133 2134 2135 2136 2137 2138
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

2139
            **2. Don't support this property in** Dygraph **mode, it's value should be** ``0(int)``
J
Jiabin Yang 已提交
2140 2141 2142 2143

        Examples:
          .. code-block:: python

2144
            import paddle
J
Jiabin Yang 已提交
2145
            import paddle.fluid as fluid
2146 2147

            paddle.enable_static()
J
Jiabin Yang 已提交
2148 2149 2150 2151 2152 2153 2154
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
2155 2156
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
2157 2158
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
2159
        return self.desc.lod_level()
Y
Yu Yang 已提交
2160

Y
Yu Yang 已提交
2161 2162
    @property
    def type(self):
J
Jiabin Yang 已提交
2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
2179
        return self.desc.type()
Y
Yu Yang 已提交
2180

2181 2182 2183
    @property
    def T(self):
        """
U
ustiniankw 已提交
2184

2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
U
ustiniankw 已提交
2203

2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
2216 2217
            stop_gradient=False,
        )
2218 2219 2220 2221 2222
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
2223 2224 2225 2226 2227 2228 2229 2230 2231
            stop_gradient=False,
        )

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out], 'XShape': [input_shape]},
            attrs={'axis': perm},
        )
2232 2233
        return out

2234 2235 2236
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
2237
        Variable. It remains in the current graph, that is, the cloned Variable
2238 2239 2240 2241
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
U
ustiniankw 已提交
2242
            Variable, The cloned Variable.
2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
2262 2263
            stop_gradient=self.stop_gradient,
        )
2264

2265 2266 2267
        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]}
        )
2268 2269
        return output

W
Wu Yi 已提交
2270
    def _set_error_clip(self, error_clip):
2271
        """
U
ustiniankw 已提交
2272

2273 2274 2275 2276 2277 2278 2279
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
U
ustiniankw 已提交
2280

2281
        """
2282 2283
        self.error_clip = error_clip

2284 2285
    def _set_info(self, key, value):
        """
U
ustiniankw 已提交
2286

2287 2288 2289 2290 2291 2292
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

2293
        Returns:
2294
            None
U
ustiniankw 已提交
2295

2296 2297 2298 2299 2300 2301 2302
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
U
ustiniankw 已提交
2303

2304 2305 2306 2307 2308
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

2309
        Returns:
2310
            object
U
ustiniankw 已提交
2311

2312 2313 2314 2315 2316
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

2317 2318
    def _slice_indices(self, slice, length):
        """
U
ustiniankw 已提交
2319

2320
        Reference implementation for the slice.indices method.
U
ustiniankw 已提交
2321

2322 2323 2324 2325 2326 2327 2328 2329
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
2330
            raise ValueError("slice step can not be zero")
2331 2332 2333 2334 2335 2336 2337 2338 2339 2340

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
2341 2342 2343
            start = (
                max(start + length, lower) if start < 0 else min(start, upper)
            )
2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
2389 2390 2391
                if (index > 0 and index >= self.shape[index]) or (
                    index < 0 and (index + self.shape[index]) < 0
                ):
2392
                    raise IndexError("invalid index")
2393 2394 2395 2396 2397
                start = (
                    max(start + self.shape[index], 0)
                    if start < 0
                    else min(start, self.shape[index])
                )
2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2411
    def _cloneVar(self, copy=False):
2412 2413
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2414
                name=unique_name.generate_with_ignorable_key(self.name),
2415 2416
                dtype=self.dtype,
            )
2417 2418 2419 2420
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2421
        new_var = self._cloneVar()
2422 2423 2424 2425 2426 2427
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes, 'starts': starts, 'ends': ends},
        )
2428 2429 2430
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2431
        new_var = self._cloneVar()
2432 2433 2434 2435 2436 2437 2438 2439
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={
                'axis': axis,
            },
        )
2440 2441 2442 2443 2444
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2445
                return self._cloneVar(True)
2446 2447 2448 2449 2450 2451 2452
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
2453 2454 2455
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2456 2457 2458
                        start += step
                else:
                    while start > stop:
2459 2460 2461
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2462 2463 2464 2465
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2466
                return self._cloneVar(True)
2467
            index = int(item)
2468 2469 2470
            if (index > 0 and index >= self.shape[axis]) or (
                index < 0 and (index + self.shape[axis]) < 0
            ):
2471 2472 2473 2474 2475 2476
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2477
        return _getitem_impl_(self, item)
2478

2479
    def __setitem__(self, item, value):
2480
        return _setitem_impl_(self, item, value)
2481

2482 2483
    def get_value(self, scope=None):
        """
2484
        Get the value of variable in given scope.
2485 2486

        Args:
2487
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2488 2489 2490 2491
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
U
ustiniankw 已提交
2492
            Tensor, the value in given scope.
2493 2494 2495 2496 2497

        Examples:
            .. code-block:: python

                import paddle
2498
                import paddle.static as static
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
2523 2524
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file.
2525 2526
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
2527

2528 2529
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2530 2531 2532 2533
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2534 2535 2536 2537 2538

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
2539 2540 2541
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2542 2543 2544 2545 2546
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
U
ustiniankw 已提交
2547

2548
        Set the value to the tensor in given scope.
2549 2550 2551

        Args:
            value(Tensor/ndarray) : The value to be set.
2552
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2553 2554 2555 2556 2557
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
2558

2559 2560 2561 2562
        Examples:
            .. code-block:: python

                import paddle
2563
                import paddle.static as static
2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
U
ustiniankw 已提交
2587

2588 2589 2590
        '''

        # The 'framework' is a low-level module, and 'executor'
2591
        # can not be imported at the begainning of this file.
2592 2593 2594 2595 2596
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
2597 2598 2599 2600
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".format(
                    type(value)
                )
            )
2601 2602 2603

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2604 2605 2606 2607
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2608 2609 2610 2611 2612 2613

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
2614 2615 2616
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
2627 2628 2629 2630
                    "{} expected a shape {}, but the received shape is {}.".format(
                        self.name, list(t.shape()), list(value_shape)
                    )
                )
2631 2632 2633 2634 2635 2636 2637 2638 2639 2640

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2641 2642 2643 2644
        elif p.is_npu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.NPUPlace(p.npu_device_id())
2645 2646 2647 2648
        elif p.is_mlu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.MLUPlace(p.mlu_device_id())
2649 2650 2651 2652 2653 2654 2655
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2656 2657
    def size(self):
        """
U
ustiniankw 已提交
2658

2659 2660 2661
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
U
ustiniankw 已提交
2662
            Variable, the number of elements for current Variable
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
U
ustiniankw 已提交
2676

2677 2678 2679 2680
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
2681 2682
            dtype=core.VarDesc.VarType.INT64,
        )
2683

2684 2685 2686
        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]}
        )
2687 2688
        return output

2689 2690
    def _set_attr(self, name, val):
        """
U
ustiniankw 已提交
2691

2692 2693 2694 2695 2696
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
U
ustiniankw 已提交
2697

2698 2699 2700 2701 2702
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
U
ustiniankw 已提交
2703

2704 2705 2706 2707 2708 2709
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2710 2711
            bool, True if has this attribute.

2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

2733
    def attr(self, name):
2734 2735 2736 2737 2738 2739 2740
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2741
            int|str|list, The attribute value. The return value
2742 2743 2744 2745 2746
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
2747
    def dist_attr(self):
2748
        """
2749
        Get distributed attribute of this Variable.
2750
        """
2751
        return self.desc.dist_attr
2752

2753 2754
    @dist_attr.setter
    def dist_attr(self, dist_attr):
2755
        """
2756
        Set distributed attribute of this Variable.
2757
        """
2758
        self.desc.dist_attr = dist_attr
2759

Y
Yu Yang 已提交
2760

F
fengjiayi 已提交
2761 2762 2763
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2764

2765 2766
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2767 2768 2769 2770
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2771
        op_proto = framework_pb2.OpProto.FromString(bytes(pbstr))
F
fengjiayi 已提交
2772 2773 2774 2775
        ret_values.append(op_proto)
    return ret_values


2776
class OpProtoHolder:
2777 2778 2779 2780
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2781 2782 2783 2784 2785 2786 2787 2788
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
2789 2790
            self.__class__, '_instance'
        ), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2791 2792 2793 2794 2795 2796
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2797 2798 2799 2800 2801 2802 2803 2804
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2805 2806
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2807 2808
        return self.op_proto_map[type]

2809 2810
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2811
        custom_op_names = []
2812 2813 2814
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2815 2816 2817
                custom_op_names.append(proto.type)

        return custom_op_names
2818

2819 2820 2821
    def has_op_proto(self, type):
        return type in self.op_proto_map

2822 2823 2824 2825
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2826
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2827
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2828
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
2829
            core.op_proto_and_checker_maker.kOpDeviceAttrName(),
2830 2831
        }

F
fengjiayi 已提交
2832

2833
class Operator:
2834
    """
2835 2836 2837 2838 2839 2840 2841
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2842
        type(str): The type of operator. Default None.
2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2863
        Block.append_op or Block._prepend_op instead.
2864 2865 2866 2867

    Examples:
        .. code-block:: python

2868
            import paddle.fluid as fluid
2869
            cur_program = fluid.Program()
2870 2871 2872 2873 2874
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2875
    """
2876

2877
    OP_WITHOUT_KERNEL_SET = {
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
        'feed',
        'fetch',
        'recurrent',
        'go',
        'rnn_memory_helper_grad',
        'conditional_block',
        'while',
        'send',
        'recv',
        'listen_and_serv',
        'fl_listen_and_serv',
        'ncclInit',
        'select',
        'checkpoint_notify',
        'gen_bkcl_id',
        'c_gen_bkcl_id',
        'gen_nccl_id',
        'c_gen_nccl_id',
        'c_comm_init',
        'c_sync_calc_stream',
        'c_sync_comm_stream',
        'queue_generator',
        'dequeue',
        'enqueue',
        'heter_listen_and_serv',
        'c_wait_comm',
        'c_wait_compute',
        'c_gen_hccl_id',
        'c_comm_init_hccl',
        'copy_cross_scope',
        'c_gen_cncl_id',
2909
    }
2910

2911 2912 2913
    def __init__(
        self, block, desc, type=None, inputs=None, outputs=None, attrs=None
    ):
2914 2915 2916 2917 2918 2919 2920 2921 2922 2923
        # read attr type index from op proto to avoid unexpected type
        # conversions, e.g. narrowing conversion like double to float
        try:
            proto = OpProtoHolder.instance().get_op_proto(type)
            self._attr_types = {}
            for attr in proto.attrs:
                self._attr_types[attr.name] = attr.type
        except ValueError:
            pass

J
Jiabin Yang 已提交
2924
        if _non_static_mode():
2925 2926
            if type is None:
                raise ValueError(
2927 2928
                    "`type` to initialized an Operator can not be None."
                )
J
Jiabin Yang 已提交
2929
            self._type = type
M
minqiyang 已提交
2930
            self.attrs = attrs if attrs else {}
2931
        else:
2932 2933
            self.legacy_attrs = attrs if attrs else {}

2934 2935 2936 2937 2938 2939 2940 2941 2942
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

2943
            # attr for static graph mode cuda graph
2944 2945
            self._cuda_graph_attr = _current_cuda_graph_mode

2946 2947 2948
            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
2949
                op_attrs[
2950 2951
                    op_maker.kOpRoleAttrName()
                ] = self.block.program._op_role
2952 2953

            role_var_name = op_maker.kOpRoleVarAttrName()
2954 2955 2956 2957
            if (
                len(self.block.program._op_role_var) != 0
                and role_var_name not in op_attrs
            ):
2958
                op_attrs[role_var_name] = self.block.program._op_role_var
2959 2960 2961 2962 2963

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2964 2965 2966 2967 2968
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2969 2970 2971
                return
            if type is None:
                raise ValueError(
2972 2973
                    "`type` to initialized an Operator can not be None."
                )
2974 2975
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2976 2977 2978
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
2979
                        '  File "{}", line {}, in {}'.format(
2980 2981 2982 2983 2984 2985
                            frame[0], frame[1], frame[2]
                        )
                    )
                    op_attrs[callstack_var_name].append(
                        '    {}'.format(frame[3])
                    )
2986 2987 2988 2989 2990 2991 2992

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2993 2994 2995 2996 2997 2998 2999 3000
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
3001 3002 3003
                    warnings.warn(
                        "The Op(%s) is not support to set device." % type
                    )
3004
                if 'force_cpu' in op_attrs:
3005
                    if (
3006 3007
                        type == 'less_than'
                        and op_attrs['force_cpu'] is not None
3008
                    ) or op_attrs['force_cpu'] != False:
3009 3010 3011
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
3012 3013
                            "used at the same time." % type
                        )
3014
            if _current_pipeline_stage is not None:
3015 3016 3017 3018 3019
                pipeline_attr_name = (
                    'pipeline_stage' + core.kAutoParallelSuffix()
                )
                self._update_desc_attr(
                    pipeline_attr_name, _current_pipeline_stage
3020
                )
3021

3022 3023 3024 3025 3026 3027 3028 3029 3030
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
3031 3032 3033
                    assert (
                        found or in_proto.dispensable
                    ), "Input {} not found".format(in_proto.name)
3034 3035
                    if found:
                        in_args = inputs[in_proto.name]
3036
                        if not isinstance(in_args, (list, tuple)):
3037 3038 3039 3040
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
3041 3042
                                % (in_proto.name, len(in_args))
                            )
3043
                        in_arg_names = []
3044
                        for index, arg in enumerate(in_args):
3045
                            if isinstance(arg, str):
3046
                                in_arg_names.append(arg)
3047
                            elif isinstance(arg, bytes):
3048
                                in_arg_names.append(arg.decode())
3049
                            elif isinstance(arg, (Variable, core.VarBase)):
3050
                                in_arg_names.append(arg.name)
3051
                            else:
3052
                                raise TypeError(
3053 3054
                                    f"The type of '%{in_proto.name}' in operator {type} should be "
                                    f"one of [str, bytes, Variable]. but received : {arg}"
3055
                                )
3056 3057 3058 3059 3060 3061 3062 3063 3064
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
3065
                        raise ValueError(
3066 3067 3068 3069 3070 3071
                            (
                                "Incorrect setting for output(s) of "
                                "operator \"%s\", should set: [%s]."
                            )
                            % (type, m.name)
                        )
3072 3073 3074 3075 3076 3077 3078 3079 3080
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
3081 3082
                            % (out_proto.name, len(out_args))
                        )
3083 3084
                    out_arg_names = []
                    for arg in out_args:
3085
                        if isinstance(arg, str):
3086 3087
                            out_arg_names.append(arg)
                        else:
3088
                            out_arg_names.append(arg.name)
3089
                        # TODO(minqiyang): could we remove variable's op in static graph mode?
J
Jiabin Yang 已提交
3090
                        if not _non_static_mode():
3091
                            if isinstance(arg, str):
3092 3093 3094
                                block.var(arg).op = self
                            else:
                                arg.op = self
3095 3096
                    self.desc.set_output(out_proto.name, out_arg_names)

3097
            extra_attrs_map = core.get_op_extra_attrs(type)
3098 3099 3100 3101 3102
            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
3103 3104 3105
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
3106 3107 3108
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)
3109
                for attr_name in extra_attrs_map.keys():
3110 3111 3112 3113 3114
                    if os.environ.get('FLAGS_print_extra_attrs', '0') == '1':
                        warnings.warn(
                            "op %s use extra_attr: %s" % (type, attr_name)
                        )

3115 3116 3117 3118 3119 3120
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
                        self._update_desc_attr(
                            attr_name, extra_attrs_map[attr_name]
                        )
3121 3122
                    else:
                        self._update_desc_attr(attr_name, op_attrs[attr_name])
3123

3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
                if os.environ.get('FLAGS_print_extra_attrs', '0') == '1':
                    if type in extra_op_attrs:
                        attrs = extra_op_attrs.get(type, [])
                        for attr in attrs:
                            if attr in op_attrs.keys():
                                warnings.warn(
                                    "op %s use extra_attr: %s" % (type, attr)
                                )

                    if type in special_op_attrs:
                        attrs = special_op_attrs.get(type, [])
                        for attr in attrs:
                            a_name = list(attr.keys())[0]
                            default_value = list(attr.values())[0]
                            if (
                                a_name in op_attrs.keys()
                                and default_value != op_attrs[a_name]
                            ):
                                warnings.warn(
                                    "op %s's attr %s = %s is not the default value: %s"
                                    % (
                                        type,
                                        a_name,
                                        op_attrs[a_name],
                                        default_value,
                                    )
                                )

J
jianghaicheng 已提交
3152 3153
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
3154
                if global_ipu_index >= 0:
3155 3156 3157
                    self._update_desc_attr(
                        ipu_index_attr_name, global_ipu_index
                    )
3158
                if global_ipu_stage >= 0:
3159 3160 3161
                    self._update_desc_attr(
                        ipu_stage_attr_name, global_ipu_stage
                    )
J
jianghaicheng 已提交
3162

3163
            self.desc.check_attrs()
3164 3165 3166 3167 3168

            # record all attrs needed by creating op
            for item in self.desc.attr_names():
                self.legacy_attrs[item] = self.desc.attr(item)

3169 3170 3171 3172
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
3173
    def _has_kernel(self, op_type):
3174 3175
        return op_type not in self.OP_WITHOUT_KERNEL_SET

3176 3177 3178 3179
    def _get_runtime_attrs(self):
        """Record all attrs needed by creating op. This api is only for to_prim process."""
        return self.legacy_attrs

Y
Yang Yang(Tony) 已提交
3180
    def to_string(self, throw_on_error):
3181
        """
3182 3183
        Get debug string.

3184
        Args:
3185 3186
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
3187

3188 3189
        Returns:
            str: The debug string.
3190 3191

        """
3192
        protostr = self.desc.serialize_to_string()
3193
        proto = framework_pb2.OpDesc.FromString(bytes(protostr))
Y
Yang Yang(Tony) 已提交
3194 3195
        return _debug_string_(proto, throw_on_error)

3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3228
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3229 3230
            type(skip_op_callstack)
        )
3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

3257 3258 3259
            attr_type = self.desc.attr_type(name, True)
            if attr_type == core.AttrType.VAR:
                attr_var_name = self.desc.attr(name, True).name()
3260 3261 3262
                a = "{name} = Var['{value}']".format(
                    name=name, type=attr_type, value=attr_var_name
                )
3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.VARS:
                attr_var_names = [
                    "'%s'" % var.name() for var in self.desc.attr(name, True)
                ]
                a = "{name} = Vars[{value}]".format(
3273 3274
                    name=name, type=attr_type, value=','.join(attr_var_names)
                )
3275 3276 3277 3278 3279
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3280 3281
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
3282 3283
                    name=name, type=attr_type, value=self._block_attr_id(name)
                )
3284 3285 3286 3287 3288 3289 3290
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
3291 3292
                    name=name, type=attr_type, value=self._blocks_attr_ids(name)
                )
3293 3294 3295 3296 3297
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3298
            # it is bytes of serialized protobuf
3299 3300 3301 3302 3303
            if (
                is_compiled_with_cinn()
                and self.type == 'cinn_launch'
                and name == 'compilation_key'
            ):
3304 3305
                key = self.desc.attr(name)
                v = core.get_serialize_comile_key(key)
3306 3307 3308 3309 3310 3311 3312 3313 3314
                prog = Program()
                prog = prog.parse_from_string(v)
                s = prog._to_readable_code()
                lines = s.split('\n')
                value = '\n'.join(['      ' + line for line in lines])
                value = '\n' + value
            else:
                value = self.desc.attr(name)

3315 3316 3317
            a = "{name} = {value}".format(
                name=name, type=attr_type, value=value
            )
3318

3319 3320 3321 3322
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

3323 3324 3325 3326
        from paddle.distributed.auto_parallel.dist_context import (
            get_default_distributed_context,
        )

3327
        dist_context = get_default_distributed_context()
3328 3329
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
3330 3331 3332
            attrs_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_op
            )
3333

3334
        if outputs_str != "{}":
3335 3336 3337 3338 3339 3340
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".format(
                outputs=outputs_str,
                op_type=self.type,
                inputs=inputs_str,
                attrs=attrs_str,
            )
3341
        else:
3342 3343 3344
            op_str = "{op_type}(inputs={inputs}, {attrs})".format(
                op_type=self.type, inputs=inputs_str, attrs=attrs_str
            )
3345 3346
        return op_str

Y
Yang Yang(Tony) 已提交
3347
    def __str__(self):
3348
        return self._to_readable_code()
3349 3350 3351

    __repr__ = __str__

F
fengjiayi 已提交
3352 3353
    @property
    def type(self):
3354
        return self.desc.type()
F
fengjiayi 已提交
3355 3356

    def input(self, name):
3357
        r"""
U
ustiniankw 已提交
3358

3359
        Get the input arguments according to the input parameter name.
3360

3361 3362
        Args:
            name(str): The input parameter name.
3363

3364
        Returns:
U
ustiniankw 已提交
3365
            list, return the list of argument names that associated with \
3366
                the specific parameter name.
U
ustiniankw 已提交
3367

3368
        """
F
fengjiayi 已提交
3369 3370
        return self.desc.input(name)

W
Wu Yi 已提交
3371
    def _rename_input(self, old_name, new_name):
3372 3373 3374 3375 3376 3377 3378 3379 3380 3381
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
3382
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
3383

W
Wu Yi 已提交
3384
    def _rename_output(self, old_name, new_name):
3385 3386 3387 3388 3389 3390 3391 3392 3393 3394
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
3395
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
3396

F
fengjiayi 已提交
3397 3398 3399 3400
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
3401 3402 3403 3404 3405 3406 3407 3408
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
3409
    def output(self, name):
3410
        r"""
3411
        Get output arguments by the output parameter name.
3412

3413 3414
        Args:
            name(str): The output parameter name.
3415

3416 3417 3418
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
3419
        """
F
fengjiayi 已提交
3420 3421 3422 3423 3424 3425
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

3426 3427 3428 3429 3430 3431
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
3432 3433
            "Can't find op itself in it's block. It could be a bug of Paddle."
        )
3434

F
fengjiayi 已提交
3435
    def has_attr(self, name):
3436
        """
3437 3438
        Whether this Operator has the attribute with name or not.

3439
        Args:
3440
            name(str): the attribute name.
3441

3442 3443
        Returns:
            bool: True if has this attribute.
3444 3445

        """
F
fengjiayi 已提交
3446 3447 3448
        return self.desc.has_attr(name)

    def attr_type(self, name):
3449
        """
3450
        Get the type of attribute by attribute's name.
3451

3452 3453
        Args:
            name(str): the attribute name.
3454

3455 3456
        Returns:
            core.AttrType: the attribute type.
3457
        """
3458
        return self.desc.attr_type(name, True)
F
fengjiayi 已提交
3459

W
Wu Yi 已提交
3460
    def _set_attr(self, name, val):
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
3471 3472
        self._update_desc_attr(name, val)

3473 3474 3475
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
3487 3488 3489 3490 3491
        if isinstance(val, Variable):
            self.desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            self.desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
Q
Qiyang Min 已提交
3492
            self.desc.set_block_attr(name, val.desc)
3493
        elif isinstance(val, list) and val and _all_is_type(val, Block):
3494
            self.desc.set_blocks_attr(name, [v.desc for v in val])
3495 3496 3497
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
Q
Qiyang Min 已提交
3498 3499
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
            self._update_desc_plain_attr(name, val)

    def _update_desc_plain_attr(self, name, val):
        desc = self.desc
        if not hasattr(self, "_attr_types") or (name not in self._attr_types):
            desc._set_attr(name, val)
            return

        type_index = self._attr_types[name]
        if type_index == core.AttrType.BOOL:
            desc._set_bool_attr(name, val)
        elif type_index == core.AttrType.INT:
            desc._set_int32_attr(name, val)
        elif type_index == core.AttrType.LONG:
            desc._set_int64_attr(name, val)
        elif type_index == core.AttrType.FLOAT:
            desc._set_float32_attr(name, val)
        # elif type_index == core.AttrType.FLOAT64:
        #     desc._set_float64_attr(name, val)
        elif type_index == core.AttrType.STRING:
            desc._set_str_attr(name, val)
        elif type_index == core.AttrType.BOOLS:
            desc._set_bools_attr(name, val)
        elif type_index == core.AttrType.INTS:
            desc._set_int32s_attr(name, val)
        elif type_index == core.AttrType.LONGS:
            desc._set_int64s_attr(name, val)
        elif type_index == core.AttrType.FLOATS:
            desc._set_float32s_attr(name, val)
        elif type_index == core.AttrType.FLOAT64S:
            desc._set_float64s_attr(name, val)
        elif type_index == core.AttrType.STRINGS:
            desc._set_strs_attr(name, val)
        else:
            # defaults to old methods
            desc._set_attr(name, val)
Y
yuyang18 已提交
3536

F
fengjiayi 已提交
3537 3538
    @property
    def attr_names(self):
3539
        return self.desc.attr_names(True)
F
fengjiayi 已提交
3540 3541

    def attr(self, name):
3542
        """
3543 3544
        Get the attribute by name.

3545
        Args:
3546
            name(str): the attribute name.
3547

3548 3549
        Returns:
            bool|int|str|float|list: The attribute value. The return value
3550 3551
            can be any valid attribute type.
        """
F
fengjiayi 已提交
3552
        return self.desc.attr(name)
Y
Yu Yang 已提交
3553

W
Wu Yi 已提交
3554
    def _block_attr_id(self, name):
3555
        """
G
gongweibao 已提交
3556
        Get the block attribute's id by name.
3557

3558 3559
        Args:
            name(str): the attribute name.
3560

3561 3562
        Returns:
            int: the block index.
3563
        """
W
Wu Yi 已提交
3564
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
3565

W
Wu Yi 已提交
3566
    def _block_attr(self, name):
G
gongweibao 已提交
3567 3568 3569 3570 3571 3572 3573 3574 3575 3576
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
3577
        id = self._block_attr_id(name)
3578
        assert id >= 0 and id < len(self.block.program.blocks)
G
gongweibao 已提交
3579 3580
        return self.block.program.blocks[id]

W
Wu Yi 已提交
3581
    def _blocks_attr(self, name):
G
gongweibao 已提交
3582 3583 3584 3585 3586 3587 3588 3589 3590 3591
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
3592
        for i in self._blocks_attr_ids(name):
3593
            assert i >= 0 and i < len(self.block.program.blocks)
G
gongweibao 已提交
3594 3595 3596 3597
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
3598
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
3599 3600 3601 3602 3603 3604 3605 3606 3607 3608
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
3609
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
3610

3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621
    def _var_attr(self, name):
        """
        Get the Variable attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variable: the Variable attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3622 3623 3624 3625 3626
        assert (
            attr_type == core.AttrType.VAR
        ), "Required type attr({}) is Variable, but received {}".format(
            name, attr_type
        )
3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
        attr_var_name = self.desc.attr(name, True).name()
        return self.block._var_recursive(attr_var_name)

    def _vars_attr(self, name):
        """
        Get the Variables attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variables: the Variables attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3641 3642 3643 3644 3645
        assert (
            attr_type == core.AttrType.VARS
        ), "Required type attr({}) is list[Variable], but received {}".format(
            name, attr_type
        )
3646 3647 3648 3649 3650 3651
        attr_vars = [
            self.block._var_recursive(var.name())
            for var in self.desc.attr(name, True)
        ]
        return attr_vars

J
JiayiFeng 已提交
3652
    def all_attrs(self):
F
fengjiayi 已提交
3653
        """
3654 3655 3656
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3657
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3658 3659 3660 3661
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
3662
            attr_type = self.desc.attr_type(n, True)
G
gongweibao 已提交
3663
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3664
                attr_map[n] = self._block_attr(n)
3665
            elif attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3666
                attr_map[n] = self._blocks_attr(n)
3667 3668 3669 3670 3671 3672
            elif attr_type == core.AttrType.VAR:
                attr_map[n] = self._var_attr(n)
            elif attr_type == core.AttrType.VARS:
                attr_map[n] = self._vars_attr(n)
            else:
                attr_map[n] = self.attr(n)
G
gongweibao 已提交
3673

F
fengjiayi 已提交
3674 3675
        return attr_map

3676 3677 3678
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3679 3680 3681 3682

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3683 3684 3685
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3686 3687 3688 3689 3690 3691 3692 3693

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3694 3695
            return False

3696 3697 3698 3699 3700 3701
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3702
    @property
3703
    def dist_attr(self):
3704
        """
3705
        Get distributed attribute of this Variable.
3706
        """
3707
        return self.desc.dist_attr
3708

3709 3710
    @dist_attr.setter
    def dist_attr(self, dist_attr):
3711
        """
3712
        Set distributed attribute of this Variable.
3713
        """
3714
        self.desc.dist_attr = dist_attr
3715

Y
Yu Yang 已提交
3716

3717
class Block:
3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3732
        use `Program._create_block()` to create a block.
3733 3734 3735 3736

    Examples:
        .. code-block:: python

3737 3738 3739
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3740 3741 3742 3743 3744 3745 3746 3747 3748
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3749
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3750
        self.desc = program.desc.block(idx)
3751
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3752
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3753
        self.program = program
3754
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
3755

3756
    def __str__(self):
3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3791
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3792 3793
            type(skip_op_callstack)
        )
3794 3795 3796 3797 3798 3799 3800
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
3801 3802
                op._to_readable_code(skip_op_callstack)
            )
3803 3804
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3805

F
fengjiayi 已提交
3806 3807
    def to_string(self, throw_on_error, with_details=False):
        """
3808 3809
        Get debug string.

F
fengjiayi 已提交
3810 3811
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3812
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3813
            with_details(bool): more details about variables and parameters
3814 3815
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3816

3817 3818
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3819
        """
3820
        assert isinstance(throw_on_error, bool) and isinstance(
3821 3822
            with_details, bool
        )
F
fengjiayi 已提交
3823
        if with_details:
F
fengjiayi 已提交
3824
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3825
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
3826 3827 3828
                self.idx,
                self.parent_idx,
            )
3829
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3830
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
3831 3832
                    r"\n    \1", var.to_string(throw_on_error, with_details)
                )
F
fengjiayi 已提交
3833
            for op in self.ops:
F
fengjiayi 已提交
3834
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
3835 3836
                    r"\n    \1", op.to_string(throw_on_error)
                )
F
fengjiayi 已提交
3837 3838 3839
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3840
            proto = framework_pb2.BlockDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
3841 3842
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3843 3844 3845

    __repr__ = __str__

Y
Yu Yang 已提交
3846 3847
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3848
        return self.desc.parent
Y
Yu Yang 已提交
3849

Y
Yu Yang 已提交
3850 3851 3852 3853
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3854
    def _set_forward_block_idx(self, idx):
3855 3856 3857 3858 3859 3860 3861 3862 3863
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3864
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3865

3866 3867 3868 3869 3870 3871 3872 3873
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3874 3875
    @property
    def idx(self):
Y
Yu Yang 已提交
3876
        return self.desc.id
Y
Yu Yang 已提交
3877

Q
Qiao Longfei 已提交
3878
    def var(self, name):
3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3892
        if not isinstance(name, str):
M
minqiyang 已提交
3893
            raise TypeError(
3894 3895 3896
                "var require string as parameter, but get %s instead."
                % (type(name))
            )
Y
Yu Yang 已提交
3897 3898
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3899
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3900
        return v
Q
Qiao Longfei 已提交
3901

X
Xin Pan 已提交
3902
    def _find_var_recursive(self, name):
3903 3904 3905 3906 3907 3908 3909
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3910
            Variable: the Variable with the giving name. Or None if not found.
3911
        """
Y
Yu Yang 已提交
3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3936
        return None
Y
Yu Yang 已提交
3937

X
Xin Pan 已提交
3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3957

Q
Qiao Longfei 已提交
3958
    def all_parameters(self):
3959
        return list(self.iter_parameters())
3960

3961
    def iter_parameters(self):
3962 3963 3964 3965 3966
        return (
            item[1]
            for item in self.vars.items()
            if isinstance(item[1], Parameter)
        )
Q
Qiao Longfei 已提交
3967

Y
Yu Yang 已提交
3968
    def create_var(self, *args, **kwargs):
J
Jiabin Yang 已提交
3969
        if _non_static_mode():
L
Leo Chen 已提交
3970 3971
            var = _varbase_creator(*args, **kwargs)
        else:
3972 3973 3974
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3975
        return var
Y
Yu Yang 已提交
3976

Q
Qiao Longfei 已提交
3977 3978 3979
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3980
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3981 3982
        """
        Rename variable in vars and ops' inputs and outputs
3983 3984

        Args:
3985 3986
            name(str|bytes): the name that need to be renamed.
            new_name(str|bytes): the name that need to rename to.
3987 3988 3989 3990 3991 3992 3993 3994

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3995
        """
3996 3997
        # Ensure the type of name and new_name is str
        name = name.decode() if isinstance(name, bytes) else name
3998 3999 4000
        new_name = (
            new_name.decode() if isinstance(new_name, bytes) else new_name
        )
M
minqiyang 已提交
4001

T
typhoonzero 已提交
4002
        if not self.has_var(name):
4003
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
4004 4005
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
4006
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
4007 4008 4009 4010 4011 4012
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
4013
            var_type = "Variable"
T
wip  
typhoonzero 已提交
4014 4015 4016 4017
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
4018
        orig_var_type = v.type
4019
        self.desc._rename_var(name.encode(), new_name.encode())
W
Wu Yi 已提交
4020
        # NOTE: v is destroyed by C++ after calling _rename_var.
4021
        d = self.desc.find_var(new_name.encode())
T
typhoonzero 已提交
4022
        if var_type == "Parameter":
L
Leo Chen 已提交
4023
            if in_dygraph_mode():
4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034
                var = EagerParamBase(
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
4035
            else:
姜永久 已提交
4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
                var = Parameter(
                    self,
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
T
typhoonzero 已提交
4048
        elif var_type == "Variable":
4049 4050 4051 4052 4053 4054 4055
            var = Variable(
                self,
                type=orig_var_type,
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient,
            )
T
wip  
typhoonzero 已提交
4056

W
Wu Yi 已提交
4057
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
4058 4059 4060
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
4061
        self._sync_with_cpp()
4062
        return var
T
typhoonzero 已提交
4063

4064 4065 4066
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
4067
        self.desc._remove_var(name.encode())
4068 4069
        del self.vars[name]

Y
Yu Yang 已提交
4070 4071
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
4072
        param = None
L
Leo Chen 已提交
4073
        if in_dygraph_mode():
J
Jiabin Yang 已提交
4074
            param = EagerParamBase(*args, **kwargs)
L
Leo Chen 已提交
4075
        else:
姜永久 已提交
4076
            param = Parameter(global_block, *args, **kwargs)
4077

4078
        if 'initializer' in kwargs:
4079 4080 4081 4082 4083

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
4084
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
4085
                        # are treated as initialization ops that cause error.
4086
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
4087 4088
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
4089 4090 4091
                            "c_broadcast",
                            "c_sync_comm_stream",
                            "coalesce_tensor",
4092
                        ]:
4093
                            continue
4094 4095 4096 4097 4098 4099 4100
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
4101 4102 4103 4104 4105 4106
                raise RuntimeError(
                    "param "
                    + param.name
                    + " is inited by multiple init ops "
                    + str(init_ops)
                )
4107
            elif init_ops_len == 1:
4108
                # TODO already inited, do nothing, should log a warning
4109 4110 4111
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
4112
        return param
Y
Yu Yang 已提交
4113

Y
Yu Yang 已提交
4114
    def append_op(self, *args, **kwargs):
4115 4116 4117 4118 4119 4120
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
J
Jiabin Yang 已提交
4121
        if _non_static_mode():
4122
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
4123
            inplace_map = kwargs.get("inplace_map", None)
J
Jiabin Yang 已提交
4124
            type = kwargs.get("type", None)
4125 4126 4127
            warnings.warn(
                "Op `%s` is executed through `append_op` under the dynamic mode, "
                "the corresponding API implementation needs to be upgraded to "
4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138
                "using `_C_ops` method." % type,
                DeprecationWarning,
            )
            op = Operator(
                block=self,
                desc=None,
                type=type,
                inputs=None,
                outputs=None,
                attrs=attrs,
            )
4139

M
minqiyang 已提交
4140 4141
            # record ops in tracer rather than blocks
            #
4142
            # TODO(minqiyang): add op stop_gradient support in static graph mode too.
L
lujun 已提交
4143
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
4144

4145 4146 4147 4148 4149 4150 4151 4152
            _dygraph_tracer().trace_op(
                type,
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
                inplace_map,
            )
M
minqiyang 已提交
4153
        else:
4154 4155
            from paddle.fluid.dygraph.base import param_guard

4156
            op_desc = self.desc.append_op()
4157 4158 4159 4160 4161 4162
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
4163 4164 4165 4166 4167 4168 4169 4170
                op = Operator(
                    block=self,
                    desc=op_desc,
                    type=kwargs.get("type", None),
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None),
                )
4171

M
minqiyang 已提交
4172
            self.ops.append(op)
M
minqiyang 已提交
4173

4174 4175
        return op

W
Wu Yi 已提交
4176
    def _insert_op(self, index, *args, **kwargs):
4177 4178 4179 4180 4181 4182 4183 4184 4185
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
4186
        self._sync_with_cpp()
F
fangshuixun007 已提交
4187
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
4188

4189 4190
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
4191
        Insert an Operator according to the giving arguments,
4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
4206 4207 4208 4209 4210 4211 4212 4213 4214
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
4215 4216
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
4217
        self.desc._remove_op(index, index + 1)
4218 4219
        del self.ops[index]

W
Wu Yi 已提交
4220
    def _slice_ops(self, start, end):
4221 4222 4223 4224 4225 4226 4227 4228 4229 4230
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
4231
        return self.ops[start:end]
Y
Yancey1989 已提交
4232

W
Wu Yi 已提交
4233
    def _prepend_op(self, *args, **kwargs):
J
Jiabin Yang 已提交
4234
        if _non_static_mode():
J
Jiabin Yang 已提交
4235 4236
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247
            op = Operator(
                self, None, type=type, inputs=None, outputs=None, attrs=attrs
            )

            _dygraph_tracer().trace_op(
                type,
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
            )
M
minqiyang 已提交
4248
        else:
4249
            op_desc = self.desc._prepend_op()
4250 4251 4252 4253 4254 4255 4256 4257
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None),
            )
M
minqiyang 已提交
4258
            self.ops.insert(0, op)
4259

Y
Yu Yang 已提交
4260 4261
        return op

W
Wu Yi 已提交
4262
    def _sync_with_cpp(self):
4263
        """
4264 4265
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
4266
        """
Q
Qiao Longfei 已提交
4267 4268 4269
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
4270 4271 4272 4273
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
4274 4275 4276 4277 4278 4279 4280 4281
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient,
                    )
4282
                else:
4283 4284 4285 4286 4287 4288
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient,
                    )
Q
Qiao Longfei 已提交
4289

4290
        # sync variables removed from c++ end
4291
        for var in list(self.vars.keys()):
4292
            if not self.desc.find_var(var.encode()):
4293 4294
                self.vars.pop(var)

Q
Qiao Longfei 已提交
4295
        # sync operators from cpp
4296 4297 4298 4299
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
4316 4317 4318 4319 4320

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
4321
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
4322 4323 4324 4325 4326 4327 4328

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

4329 4330 4331 4332 4333
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
4334 4335 4336 4337 4338 4339
                self.ops
            ) and ops_in_cpp_index < len(ops_in_cpp):
                if (
                    self.ops[ops_in_python_index].desc
                    != ops_in_cpp[ops_in_cpp_index]
                ):
4340 4341 4342 4343 4344
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
4345 4346 4347 4348
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
4349
    def _copy_param_info_from(self, other):
4350
        """
4351 4352
        Copy the information of parameters from the other block.

4353
        Args:
4354 4355 4356 4357 4358
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
4359 4360 4361 4362 4363

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
4364
            raise TypeError(
4365 4366
                "_copy_param_info_from should be invoked with Block"
            )
4367
        for p in other.iter_parameters():
4368 4369 4370
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
4371 4372
                # if the Parameter is pruned, v may be None
                continue
4373
            assert isinstance(v, Variable)
4374
            new_p = None
L
Leo Chen 已提交
4375
            if in_dygraph_mode():
4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387
                new_p = EagerParamBase(
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4388
            else:
姜永久 已提交
4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403
                new_p = Parameter(
                    block=self,
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR
                    else None,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4404 4405
            self.vars[new_p.name] = new_p

4406
    def _clone_variable(self, var, force_persistable=True):
4407 4408
        """
        Clone a variable into current block.
4409

4410 4411
        Args:
            var: the variable to be cloned.
4412 4413 4414
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
4415 4416

        Returns:
4417
            Variable: the new  variable cloned from 'var' in current block.
4418 4419
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
4420 4421 4422
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
4423 4424 4425
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
tangwei12 已提交
4426
        elif var.type == core.VarDesc.VarType.RAW:
4427 4428 4429
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
typhoonzero 已提交
4430 4431 4432 4433 4434 4435
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
4436
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4437
                is_data=var.is_data,
4438 4439
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4440 4441 4442 4443 4444 4445 4446
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
4447
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4448
                is_data=var.is_data,
4449 4450
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4451
        return ret_var
4452

Y
Yu Yang 已提交
4453

4454 4455 4456 4457
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
4458
# of some old Python Variables(all old Python Operators) may have
4459
# been destructed.
4460 4461 4462
def _apply_pass(
    main_program, startup_program, pass_name, pass_attrs={}, pass_attr_types={}
):
4463 4464 4465 4466
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
4467 4468 4469 4470 4471 4472 4473
    attrs = core.apply_pass(
        tmp_main_program,
        tmp_startup_program,
        pass_name,
        pass_attrs,
        pass_attr_types,
    )
4474 4475 4476 4477 4478
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


4479
class IrNode:
4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4491 4492 4493
        assert isinstance(
            node, core.Node
        ), 'node must be the instance of core.Node.'
4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

4575
    def remove_input_by_id(self, node_id):
4576 4577 4578 4579 4580 4581
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4582
        self.node.remove_input(node_id)
4583

4584
    def remove_input(self, node):
4585 4586 4587 4588
        """
        Remove a node from inputs.

        Args:
4589
            node(IrNode): the node being removed.
4590
        """
4591
        self.node.remove_input(node.node)
4592

4593
    def append_input(self, node):
4594 4595 4596 4597
        """
        Append a node in inputs.

        Args:
4598
            node(IrNode): the node being appended.
4599
        """
4600
        self.node.append_input(node.node)
4601 4602 4603 4604 4605 4606 4607 4608

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

4609
    def remove_output_by_id(self, node_id):
4610 4611 4612 4613 4614 4615
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4616
        self.node.remove_output(node_id)
4617

4618
    def remove_output(self, node):
4619 4620 4621 4622
        """
        Remove a node from outputs.

        Args:
4623
            node(IrNode): the node being removed.
4624
        """
4625
        self.node.remove_output(node.node)
4626

4627
    def append_output(self, node):
4628 4629 4630 4631
        """
        Append a node in outputs.

        Args:
4632
            node(IrNode): the node being appended.
4633
        """
4634
        self.node.append_output(node.node)
4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4669 4670 4671
        assert (
            isinstance(node, core.Node) and node.is_var()
        ), 'node must be the instance of core.Node and it must be a variable node.'
4672
        super().__init__(node)
4673 4674 4675 4676 4677 4678 4679 4680 4681
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
4682 4683 4684
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4685 4686 4687 4688 4689 4690 4691 4692 4693
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
4694 4695 4696
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4697 4698
        return self.node.var().persistable()

4699 4700 4701 4702 4703 4704 4705
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
4706 4707 4708
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4709 4710 4711 4712 4713 4714 4715 4716 4717
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
4718 4719 4720
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4721 4722 4723 4724 4725 4726 4727 4728 4729
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
4730 4731 4732
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4733 4734
        return self.node.var().shape()

4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4768 4769 4770
        assert (
            isinstance(node, core.Node) and node.is_op()
        ), 'node must be the instance of core.Node and it must be a operator node.'
4771
        super().__init__(node)
4772 4773 4774 4775 4776 4777 4778 4779 4780 4781
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
4782 4783 4784
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4785 4786
        self.node.op()._rename_input(old_input_name, new_input_name)

4787 4788 4789 4790 4791 4792 4793 4794
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
4795 4796 4797
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4798 4799
        self.node.op()._rename_output(old_output_name, new_output_name)

4800 4801 4802 4803 4804 4805 4806 4807 4808 4809
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4810 4811 4812
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4825 4826 4827
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4828 4829 4830 4831 4832 4833 4834 4835 4836
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
4837 4838 4839
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4840 4841
        return self.node.op().set_type(new_type)

4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
4856 4857 4858
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4859
        desc = self.node.op()
4860 4861 4862 4863 4864
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
4865
            desc.set_block_attr(name, val.desc)
4866
        elif isinstance(val, list) and val and _all_is_type(val, Block):
4867
            desc.set_blocks_attr(name, [v.desc for v in val])
4868 4869 4870
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
4871 4872 4873 4874
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4875 4876 4877 4878 4879 4880 4881
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
4882 4883 4884
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4885 4886 4887 4888 4889 4890 4891 4892 4893
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
4894 4895 4896
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4897 4898
        return self.node.op().output_arg_names()

4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4920
class IrGraph:
4921
    """
4922
    Python IrGraph. Beneath it is a core.Graph, which is used for
4923
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4924 4925
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4926 4927 4928 4929
    """

    def __init__(self, graph, for_test=False):
        """
4930 4931
        Construct an IrGraph using core.Graph.

4932 4933 4934 4935 4936
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
4937 4938
            graph, core.Graph
        ), 'graph must be the instance of core.Graph.'
4939 4940 4941
        self.graph = graph
        self._for_test = for_test

4942 4943 4944 4945
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4946 4947 4948
        Warns:
            The method only clones the graph structure, not its attributes.

4949 4950 4951
        Returns:
            IrGraph: A new and duplicated graph.
        """
4952
        g = self.graph.clone()
4953 4954
        return IrGraph(g, self._for_test)

4955
    def is_test(self):
4956 4957 4958
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4959 4960
        return self._for_test

W
WangZhen 已提交
4961
    def all_nodes(self):
4962 4963 4964
        """
        Return all nodes included in the graph as a set.
        """
4965
        return {IrNode(node) for node in self.graph.nodes()}
4966

4967
    def all_var_nodes(self):
4968 4969 4970
        """
        Return all variable nodes included in the graph as a set.
        """
4971
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4972

4973
    def all_persistable_nodes(self):
4974 4975 4976
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4977 4978
        persistable_nodes = set()
        for node in self.graph.nodes():
4979 4980 4981 4982 4983
            if (
                node.is_var()
                and node.var() is not None
                and node.var().persistable()
            ):
W
WangZhen 已提交
4984
                persistable_nodes.add(node)
4985
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4986

4987
    def all_op_nodes(self):
4988 4989 4990
        """
        Return all operator nodes included in the graph as a set.
        """
4991
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4992

4993 4994 4995 4996 4997 4998
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
4999
            IrGraph(self.graph.get_sub_graph(i), for_test=for_test)
5000 5001 5002 5003 5004 5005 5006 5007 5008
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

5009
    def create_persistable_node(self, name, var_type, shape, var_dtype):
5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
5021
            IrVarNode: the created persistable variable node.
5022
        """
5023 5024 5025 5026 5027
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
5028
        return IrVarNode(self.graph.create_var_node(var_desc))
5029 5030

    def create_var_node(self, name, var_type, shape, var_dtype):
5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
5042
            IrVarNode: the created variable node.
5043 5044
        """

5045 5046 5047 5048
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
5049
        return IrVarNode(self.graph.create_var_node(var_desc))
5050

5051 5052 5053 5054 5055 5056
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

5057
    def create_var_node_from_desc(self, var_desc):
5058 5059 5060 5061 5062 5063 5064 5065
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
5066
            IrVarNode: the created variable node.
5067
        """
5068
        return IrVarNode(self.graph.create_var_node(var_desc))
5069 5070

    def create_op_node(self, op_type, attrs, inputs, outputs):
5071 5072 5073 5074 5075 5076 5077
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
5078
            outputs(dict): the outputs of the operator node.
5079 5080

        Returns:
5081
            IrOpNode: the created operator node.
5082
        """
5083 5084
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
5085
        for attr, value in attrs.items():
5086
            self._update_desc_attr(op_desc, attr, value)
5087
        for input_name, var_nodes in inputs.items():
5088 5089
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
5090 5091 5092
            op_desc.set_input(
                input_name, [var_node.name() for var_node in var_nodes]
            )
5093
        for output_name, var_nodes in outputs.items():
5094 5095
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
5096 5097 5098
            op_desc.set_output(
                output_name, [var_node.name() for var_node in var_nodes]
            )
5099
        return IrOpNode(self.graph.create_op_node(op_desc))
5100 5101

    def create_op_node_from_desc(self, op_desc):
5102 5103 5104 5105 5106 5107 5108
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
5109
            IrOpNode: the created operator node.
5110
        """
5111
        return IrOpNode(self.graph.create_op_node(op_desc))
5112 5113

    def update_input_link(self, old_input_node, new_input_node, op_node):
5114 5115 5116 5117
        """
        Update the input's link of a operator node.

        Args:
5118 5119 5120
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
5121
        """
5122 5123 5124 5125 5126
        assert (
            old_input_node.node in self.graph.nodes()
            and new_input_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
5127 5128 5129 5130
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
5131
        op_node.rename_input(old_input_node.name(), new_input_node.name())
5132

5133 5134 5135 5136 5137 5138 5139 5140 5141
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
5142 5143 5144 5145 5146
        assert (
            old_output_node.node in self.graph.nodes()
            and new_output_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
5147 5148 5149 5150 5151 5152
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

5153
    def link_to(self, node_in, node_out):
5154 5155 5156 5157
        """
        Connect two nodes.

        Args:
5158 5159
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
5160
        """
5161
        assert node_in.node in self.graph.nodes(), (
5162 5163
            'node_in(%s) must be in the graph nodes.' % node_in.node.name()
        )
5164
        assert node_out.node in self.graph.nodes(), (
5165 5166
            'node_out(%s) must be in the graph nodes.' % node_out.node.name()
        )
5167 5168
        node_in.append_output(node_out)
        node_out.append_input(node_in)
5169 5170

    def safe_remove_nodes(self, remove_nodes):
5171 5172 5173 5174 5175 5176 5177
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
5178
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
5179 5180 5181 5182
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
5183 5184
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
5185

Z
Zhen Wang 已提交
5186 5187 5188 5189 5190 5191 5192 5193
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5194
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
5195 5196 5197 5198
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5199
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
5200 5201 5202
                        ]
                    else:
                        var_nodes[each_var_name].append(
5203 5204
                            self._find_node_by_name(node.outputs, each_var_name)
                        )
Z
Zhen Wang 已提交
5205 5206
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
5207
    def has_circle(self):
5208 5209 5210 5211 5212 5213
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
5214 5215 5216
        return core.has_circle(self.graph)

    def graph_num(self):
5217 5218 5219 5220 5221 5222
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
5223 5224 5225
        return core.graph_num(self.graph)

    def topology_sort(self):
5226 5227 5228
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
5229
        Notes: the `graph` can not contain a circle.
5230 5231

        Returns:
Z
Zhen Wang 已提交
5232
            list(IrNode): nodes in topology order.
5233
        """
5234
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
5235
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
5236 5237

    def build_adjacency_list(self):
5238 5239 5240 5241
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
5242
            dict{IrNode: set(IrNode)}: the adjacency list.
5243
        """
5244 5245
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
5246
        for k, v in adj_list.items():
5247 5248
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
5249

5250 5251 5252 5253 5254 5255 5256 5257
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
5258
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
5259 5260 5261 5262 5263
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

5264 5265
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
5266 5267 5268 5269
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True,
            )
5270 5271
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
5272 5273 5274
                print(
                    'The {} is saved as the dot filetype.'.format(dot_file_path)
                )
5275

5276
        remove_ctr_vars = set()
5277
        if remove_ctr_var:
5278
            for node in self.all_var_nodes():
5279 5280 5281
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
5282 5283
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

5284 5285
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
5286 5287 5288 5289 5290 5291
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
5292 5293 5294 5295
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
5296 5297
        if not os.path.exists(save_path):
            os.makedirs(save_path)
5298 5299 5300 5301 5302 5303 5304
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
5305 5306 5307
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
5308
        WARN: When the graph includes backward operator nodes, the
5309 5310 5311 5312 5313 5314
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
5315
        convert_pass = core.get_pass('graph_to_program_pass')
5316 5317
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
5318 5319 5320 5321
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

5322 5323 5324 5325 5326 5327 5328 5329
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
5330
        assert target_node is not None, (
5331 5332
            "Cannot find the target node (%s)in the giving set." % node_name
        )
5333 5334
        return target_node

5335 5336 5337 5338
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
5339 5340 5341 5342 5343
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
5344
            desc.set_block_attr(name, val.desc)
5345
        elif isinstance(val, list) and val and _all_is_type(val, Block):
5346
            desc.set_blocks_attr(name, [v.desc for v in val])
5347 5348 5349
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
5350 5351 5352 5353 5354
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


5355
class Program:
D
dzhwinter 已提交
5356
    """
5357
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
5358
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
5359
    it will contain nested block.
5360

J
Jiabin Yang 已提交
5361 5362 5363
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
5364

J
Jiabin Yang 已提交
5365
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
5366
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
5367 5368 5369 5370 5371 5372 5373
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
5374
    **Notes**:
5375 5376 5377
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
5378 5379

    Returns:
J
Jiabin Yang 已提交
5380
        Program: An empty Program.
D
dzhwinter 已提交
5381 5382

    Examples:
5383 5384
        .. code-block:: python

5385 5386 5387 5388
            import paddle
            import paddle.static as static

            paddle.enable_static()
5389

5390 5391 5392 5393 5394
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
5395
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
5396 5397 5398

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
5399 5400 5401

    """

5402 5403
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
5404 5405
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
5406 5407
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
5408
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
5409
        self.__op_role_var = []
T
tangwei12 已提交
5410

5411 5412
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
5413
        self._is_distributed = False
5414
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
5415
        self._is_chief = False
5416 5417 5418
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
5419
        self._endpoints = []
5420 5421 5422
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
5423
        self._trainers_endpoints = []
5424
        # the distributed lookup table names
T
tangwei12 已提交
5425
        self._distributed_lookup_table = None
5426 5427 5428

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
5429 5430
        self._use_lamb = False

5431 5432 5433
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
5434

5435 5436 5437
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
5438
        self._program_config = None
5439

H
hutuxian 已提交
5440 5441 5442
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

5443 5444 5445
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

5446 5447 5448
        # appending gradients times
        self._appending_grad_times = 0

5449 5450
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
5451 5452
            "__auto_checkpoint_program__"
        )
5453

5454 5455
        # compiled program, i.e. Graph
        self._graph = None
5456 5457
        # to tag whether is startup_program
        self._is_start_up_program_ = False
5458

5459
    def _find_var_class_kwargs(self, new_desc):
5460 5461 5462 5463 5464 5465 5466 5467
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

5468 5469 5470 5471
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
5472
            if idx > (len(self.blocks) - 1):
5473
                self._create_block()
5474 5475 5476 5477 5478 5479 5480 5481 5482 5483
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
                    'shape': get_var_desc_attr_or_none(
                        new_var_desc,
                        "shape",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'dtype': get_var_desc_attr_or_none(
                        new_var_desc,
                        "dtype",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'lod_level': get_var_desc_attr_or_none(
                        new_var_desc,
                        "lod_level",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'error_clip': old_var.error_clip
                    if old_var is not None
                    else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None
                    else False,
                    'is_data': old_var.is_data
                    if old_var is not None
                    else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None
                    else False,
5525 5526 5527
                }

                if isinstance(old_var, Parameter):
5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544
                    kwargs.update(
                        {
                            'trainable': old_var.trainable,
                            'optimize_attr': old_var.optimize_attr,
                            'regularizer': old_var.regularizer,
                            'do_model_average': old_var.do_model_average,
                            'need_clip': old_var.need_clip,
                            'is_distributed': old_var.is_distributed,
                            'is_parameter': old_var.is_parameter,
                        }
                    )
                    block_new_vars.append(
                        {
                            'class': Parameter,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5545 5546
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
5547 5548 5549 5550 5551 5552
                    block_new_vars.append(
                        {
                            'class': Variable,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5553 5554 5555 5556 5557 5558 5559

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
5560
        assert block_num == self.desc.num_blocks()
5561 5562

        # clear old blocks and desc
5563 5564 5565 5566 5567 5568 5569 5570 5571
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
5572

5573
        del desc
5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

5593 5594 5595 5596 5597 5598 5599 5600 5601 5602
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

5603 5604
                import paddle
                import paddle.static as static
5605

5606 5607 5608
                paddle.enable_static()

                prog = static.default_main_program()
5609 5610 5611 5612 5613
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
5614
                prog1 = static.default_main_program()
5615 5616 5617 5618 5619 5620 5621 5622
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
5623
    @property
5624
    def _op_role(self):
Y
yuyang18 已提交
5625 5626 5627 5628 5629 5630 5631 5632
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
5633
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
5634 5635 5636 5637
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
5638 5639
        return self._current_role

5640 5641
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
5642 5643 5644
        self._current_role = role

    @property
5645
    def _op_role_var(self):
Y
yuyang18 已提交
5646
        """
5647
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
5648

5649
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
5650 5651 5652

        Notes: This is a very low-level API. Users should not use it directly.
        """
5653
        return self.__op_role_var
Y
yuyang18 已提交
5654

5655
    @signature_safe_contextmanager
5656 5657 5658 5659 5660
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
5661 5662 5663 5664
        try:
            yield
        finally:
            self._current_role = tmp_role
5665

S
rename  
sneaxiy 已提交
5666
    @signature_safe_contextmanager
W
Wu Yi 已提交
5667
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
5668 5669 5670 5671 5672 5673 5674
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
5675
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
5676 5677 5678

        Examples:

5679
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
5680
            >>> p, g = backward(...)
W
Wu Yi 已提交
5681
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
5682 5683
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
5684
        tmp_role = self._current_role
5685
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
5686

Y
yuyang18 已提交
5687 5688
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
5689
        self.__op_role_var = [
5690 5691 5692
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
5693 5694 5695 5696 5697
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
5698

S
rename  
sneaxiy 已提交
5699
    @signature_safe_contextmanager
X
Xin Pan 已提交
5700
    def _lr_schedule_guard(self, is_with_opt=False):
5701 5702 5703 5704 5705 5706 5707
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
5708 5709 5710 5711
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
5712 5713 5714

        Examples:

5715
            >>> import paddle.fluid as fluid
5716 5717 5718 5719
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
5720 5721

        tmp_role = self._current_role
5722
        tmp_var = self.__op_role_var
5723

5724 5725
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
5726 5727
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
5728
        # TODO(typhoonzero): how to set target learning rate var
5729
        self.__op_role_var = []
5730 5731 5732 5733 5734
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
5735

5736
    def __str__(self):
Y
yuyang18 已提交
5737 5738 5739 5740 5741 5742 5743 5744 5745
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5766 5767
            import paddle
            import paddle.static as static
5768

5769 5770 5771
            paddle.enable_static()

            cur_program = static.Program()
5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5783
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
5784 5785
            type(skip_op_callstack)
        )
5786 5787 5788
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5789
            program_str += '\n'
5790
        return program_str
Y
Yang Yang(Tony) 已提交
5791

F
fengjiayi 已提交
5792 5793 5794
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5795

J
Jiabin Yang 已提交
5796 5797 5798
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5799

J
Jiabin Yang 已提交
5800
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5801

H
haowang101779990 已提交
5802
        Returns:
J
Jiabin Yang 已提交
5803
            str: The debug string describe current Program.
Y
yuyang18 已提交
5804 5805

        Raises:
J
Jiabin Yang 已提交
5806
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5807

5808 5809 5810
        Examples:
            .. code-block:: python

5811 5812 5813 5814
                import paddle
                import paddle.static as static

                paddle.enable_static()
5815

5816 5817 5818
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5819
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5820
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5821
                print("program string without detail: {}".format(prog_string))
5822
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5823
        """
5824 5825 5826
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
5827 5828
            type(throw_on_error)
        )
5829 5830 5831
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
5832 5833
            type(with_details)
        )
5834

F
fengjiayi 已提交
5835 5836 5837 5838 5839 5840
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
5841
            proto = framework_pb2.ProgramDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
5842 5843
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5844

W
Wu Yi 已提交
5845
    def _get_desc(self):
Y
yuyang18 已提交
5846 5847 5848 5849 5850 5851 5852
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5853 5854
        return self.desc

X
version  
Xin Pan 已提交
5855 5856 5857
    def _version(self):
        return self.desc._version()

5858
    def clone(self, for_test=False):
Y
yuyang18 已提交
5859
        """
5860
        .. note:::
5861 5862
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` .
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` .
5863
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5864

5865
        Create a new Program with forward content of original one when ``for_test=True``.
5866
        Create a new Program as same as the original one when ``for_test=False``.
5867

5868
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5869 5870 5871
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5872

5873 5874
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5875 5876
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
5877
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
5878

J
Jiabin Yang 已提交
5879
        For Example:
5880
          ::
L
Luo Tao 已提交
5881

5882 5883 5884 5885 5886 5887
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
5888
            pred = static.nn.fc(x=img, size=10, actvation='relu')
5889
            loss = paddle.mean(pred)
5890
            # Here we use clone before Momentum
5891 5892
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
5893
            optimizer.minimize(loss)
5894

J
Jiabin Yang 已提交
5895
        Args:
5896

5897 5898
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
5899

J
Jiabin Yang 已提交
5900
        Returns:
5901
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
5902

Y
yuyang18 已提交
5903 5904 5905

        Examples:

5906 5907 5908 5909 5910 5911 5912
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5913 5914
            .. code-block:: python

5915
                import paddle
5916 5917

                def print_prog(prog):
5918
                    for name, value in sorted(prog.block(0).vars.items()):
5919 5920 5921 5922 5923
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
5924
                        for key, value in sorted(op.all_attrs().items()):
5925 5926 5927 5928
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5929
            1. To clone a test program, the sample code is:
5930 5931
                .. code-block:: python

5932 5933 5934 5935 5936 5937
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5938 5939

                    def print_prog(prog):
5940
                        for name, value in sorted(prog.block(0).vars.items()):
5941 5942 5943 5944 5945
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
5946
                            for key, value in sorted(op.all_attrs().items()):
5947 5948 5949
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5950 5951
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5952 5953 5954

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5955 5956 5957
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5958
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5959 5960
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5961
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5962 5963
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5964
                            test_program = train_program.clone(for_test=True)
5965
                    print_prog(test_program)
J
Jiabin Yang 已提交
5966 5967 5968 5969

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5970
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5971 5972 5973 5974
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5975 5976 5977
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5978 5979 5980
                            sgd.minimize(avg_loss)


5981
            2. The clone method can be avoid if you create program for training and program for testing individually.
5982 5983
                .. code-block:: python

5984 5985 5986 5987 5988 5989
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5990 5991

                    def print_prog(prog):
5992
                        for name, value in sorted(prog.block(0).vars.items()):
5993 5994 5995 5996 5997
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
5998
                            for key, value in sorted(op.all_attrs().items()):
5999 6000
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
6001

6002
                    def network():
6003
                        img = static.data(name='image', shape=[None, 784])
6004
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
6005 6006
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
6007
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
6008 6009
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
6010 6011
                        return avg_loss

6012 6013 6014 6015 6016
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
6017
                            avg_loss = network()
6018
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
6019
                            sgd.minimize(avg_loss)
6020
                    # the test startup program is not used.
6021 6022
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
6023 6024
                            avg_loss = network()
                    print_prog(test_program_2)
6025

6026
            The two code snippets above will generate and print same programs.
6027
        """
6028

T
tangwei12 已提交
6029
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
6030 6031 6032
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

6033
        pruned_origin_block_id_map = None
6034
        if for_test:
6035 6036
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
6037 6038
                self.desc
            )
6039 6040
            forward_prog.blocks = [
                Block(forward_prog, i)
6041
                for i in range(forward_prog.desc.num_blocks())
6042 6043 6044
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
6045
        else:
6046
            p = Program()
G
gongweibao 已提交
6047 6048
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
6049
            p.desc = core.ProgramDesc(self.desc)
6050
            p.blocks = [Block(p, i) for i in range(self.desc.num_blocks())]
G
gongweibao 已提交
6051 6052

            p._current_role = self._current_role
6053
            p.__op_role_var = self.__op_role_var
6054
            p._appending_grad_times = self._appending_grad_times
6055 6056
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
6057

T
tangwei12 已提交
6058
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
6059
            # its desc.
W
Wu Yi 已提交
6060
            p._sync_with_cpp()
6061

W
Wu Yi 已提交
6062
        p._copy_param_info_from(self)
6063
        p._copy_data_info_from(self, pruned_origin_block_id_map)
6064
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
6065
        return p
6066

6067
    def _prune(self, targets):
Y
yuyang18 已提交
6068 6069 6070 6071 6072 6073 6074 6075
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
6076
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
6077 6078 6079 6080
                need to be pruned

        Returns:
            Program:  A new, pruned program.
6081
        """
6082
        return self._prune_with_input([], targets)
6083 6084

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
6085
        """
6086
        Prune operators and variables which are not needed to generate
6087 6088
        :code:`targets`. Prune operators and variables which are needed
        to generate feeded_var
6089 6090 6091 6092 6093 6094 6095

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
6096
            targets(list|Variable|Operator): A list of variables, operators, or variable names
6097 6098 6099 6100 6101 6102
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
6103
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
6104 6105 6106
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

6107 6108
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
6109 6110
        if not isinstance(targets, list):
            targets = [targets]
6111 6112

        for var in feeded_var_names:
6113
            if not isinstance(var, str):
6114 6115
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
6116 6117
                    "str, but received %s." % type(var)
                )
6118

6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

6135 6136 6137 6138
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
6139
                    name = t.name
6140
                elif isinstance(t, str):
6141
                    name = str(t)
6142
                else:
6143 6144
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
6145 6146
                        "Variable or Operator, but received %s." % type(t)
                    )
6147 6148 6149 6150 6151 6152

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
6153 6154 6155
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
6156

6157 6158 6159 6160 6161 6162 6163 6164 6165
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
6166
                        # Skip optimize op except for optimize op in targets,
6167 6168 6169 6170 6171
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
6172

6173
                if target_op is not None:
6174 6175 6176
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
6177

6178
        res = Program()
6179
        res.desc, pruned_origin_block_id_map = core.prune(
6180 6181
            self.desc, set(feeded_var_names), targets_idx
        )
6182
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6183
        res._sync_with_cpp()
6184 6185 6186 6187 6188

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

6189 6190
        return res

X
Xin Pan 已提交
6191
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
6192
        """
F
fengjiayi 已提交
6193 6194 6195 6196 6197
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

6198
        3. change the :code:`is_test`
Y
yuyang18 已提交
6199 6200 6201
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

6202
        Args:
X
Xin Pan 已提交
6203 6204
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
6205

Y
yuyang18 已提交
6206 6207 6208 6209 6210 6211
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
6212
        res = Program()
6213
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
6214 6215 6216 6217

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
6218
        if prune_read_op:
6219
            while True:
6220 6221 6222 6223
                if (
                    read_op_idx >= root_block.op_size()
                    or root_block.op(read_op_idx).type() == 'read'
                ):
6224 6225 6226 6227 6228 6229
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
6230
                    root_block._remove_var(var.name().encode())
F
fengjiayi 已提交
6231 6232

        # change all `is_test` attributes to True
6233
        for i in range(res.desc.num_blocks()):
6234
            block = res.desc.block(i)
6235
            for j in range(block.op_size()):
6236 6237
                op = block.op(j)
                if op.has_attr('is_test'):
6238
                    op._set_bool_attr('is_test', True)
6239 6240 6241
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
6242
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6243
        res._sync_with_cpp()
6244 6245
        return res

6246
    def _remove_training_info(self, clip_extra=True):
6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

6261
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
6262 6263
        res._sync_with_cpp()

6264 6265
        # Note: The op_role and op_role_var cann't be deleted currently,
        # and we will try to remove them in the future.
6266
        common_clipped_attrs_list = ['op_callstack', 'with_quant_attr']
6267

6268
        for i in range(res.desc.num_blocks()):
6269 6270 6271 6272
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
6273 6274
            if not clip_extra:
                continue
6275 6276 6277 6278
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
6279 6280 6281

                extra_attrs_map = core.get_op_extra_attrs(op.type())

6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
6295 6296 6297
                # The extra input of op will be removed in the future
                # for name in remove_input_list:
                #     op.remove_input(name)
6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
6311
                # The extra output of op will be removed in the future
6312 6313
                for name in remove_output_list:
                    op.remove_output(name)
6314

6315 6316 6317 6318 6319 6320 6321
                op_quant_name = (
                    core.op_proto_and_checker_maker.kOpWithQuantAttrName()
                )
                quant = (
                    bool(op.attr(op_quant_name))
                    if op_quant_name in op.attr_names()
                    else False
6322 6323
                )
                quant_attrs = [
6324 6325 6326 6327 6328 6329 6330
                    op_quant_name,
                    "quantization_type",
                    "skip_quant",
                    "activation_bits",
                    "bit_length",
                    "quantize_weight_bits",
                    "weight_quant_scale",
6331
                ]
6332 6333
                for extra_attr_name in extra_attrs_map.keys():
                    op.remove_attr(extra_attr_name)
6334
                remove_attr_list = []
6335 6336 6337 6338 6339 6340
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
6341
                    if len(extra_attrs_map) > 0:
6342
                        if name in common_clipped_attrs_list:
6343
                            op.remove_attr(name)
6344
                        continue
6345 6346 6347 6348 6349 6350 6351 6352 6353 6354
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
6355 6356
        return res

6357 6358
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
6359
        """
6360
        .. note::
6361
            1. All information about parameters will be lost after serialization;
6362
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6363

6364 6365
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
6366

J
Jiabin Yang 已提交
6367
        Args:
Y
yuyang18 已提交
6368

J
Jiabin Yang 已提交
6369
            binary_str_type (str): the binary prootbuf string.
6370

J
Jiabin Yang 已提交
6371 6372
        Returns:
            Program: A deserialized Program.
6373 6374 6375 6376

        Examples:
            .. code-block:: python

6377 6378 6379 6380
                import paddle
                import paddle.static as static

                paddle.enable_static()
6381

6382 6383 6384 6385
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
6386

6387
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
6388

6389
                    z = paddle.matmul(x=x, y=y)
6390

6391 6392
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
6393

6394
                    print(static.default_main_program())
6395
                    print(prog_restored)
Y
yuyang18 已提交
6396
        """
6397 6398
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
6399
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
W
Wu Yi 已提交
6400
        p._sync_with_cpp()
6401
        return p
Y
Yu Yang 已提交
6402

6403
    @staticmethod
6404
    def _construct_from_desc(desc):
6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
6416
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
6417 6418 6419
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
6420 6421
    @property
    def random_seed(self):
Y
yuyang18 已提交
6422
        """
J
Jiabin Yang 已提交
6423
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
6424 6425
        the random seed from random device.

6426
        .. note::
6427
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
6428 6429 6430

        Returns:
            int64: Random seed in current Program
6431

6432 6433 6434 6435

        Examples:
            .. code-block:: python

6436 6437 6438
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
6439

6440 6441 6442
                paddle.enable_static()

                prog = static.default_main_program()
6443
                random_seed = prog.random_seed
6444
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
6445 6446 6447
                print(random_seed)
                ## 0
                ## the default random seed is 0
6448

6449
                # Here we need to set random seed before we use paddle.nn.functional.dropout
6450
                prog.random_seed = 1
6451
                z_var = F.dropout(x_var, 0.7)
6452

6453
                print(prog.random_seed)
6454 6455
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
6456
        """
D
dzhwinter 已提交
6457 6458
        return self._seed

Q
qiaolongfei 已提交
6459 6460
    @property
    def num_blocks(self):
Y
yuyang18 已提交
6461
        """
6462 6463
        The number of :ref:`api_guide_Block_en`  in this Program.

6464
        .. note::
6465
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
6466 6467 6468

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
6469

6470 6471 6472 6473

        Examples:
            .. code-block:: python

6474 6475 6476 6477
                import paddle
                import paddle.static as static

                paddle.enable_static()
6478

6479
                prog = static.default_main_program()
6480 6481
                num_blocks = prog.num_blocks
                print(num_blocks)
6482

6483 6484
                # print result:
                # 1
Y
yuyang18 已提交
6485
        """
Q
qiaolongfei 已提交
6486 6487
        return self.desc.num_blocks()

D
dzhwinter 已提交
6488 6489 6490
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
6491 6492
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
6493 6494
                % type(seed)
            )
D
dzhwinter 已提交
6495 6496
        self._seed = seed

Y
Yu Yang 已提交
6497
    def __repr__(self):
6498
        return self.__str__()
6499

Y
Yu Yang 已提交
6500
    def global_block(self):
Y
yuyang18 已提交
6501
        """
6502 6503
        .. note::
            This API has no effect in Dygraph mode.
6504 6505 6506

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
6507 6508
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
6509

6510 6511 6512 6513

        Examples:
            .. code-block:: python

6514 6515 6516 6517
                import paddle
                import paddle.static as static

                paddle.enable_static()
6518

6519
                prog = static.default_main_program()
6520 6521
                gb_block = prog.global_block()
                print(gb_block)
6522

Y
yuyang18 已提交
6523
        """
Y
Yu Yang 已提交
6524 6525
        return self.blocks[0]

Q
Qiao Longfei 已提交
6526
    def block(self, index):
Y
yuyang18 已提交
6527
        """
6528 6529
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6530

6531 6532
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
6533 6534
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
6535

J
Jiabin Yang 已提交
6536 6537
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
6538 6539 6540 6541

        Examples:
            .. code-block:: python

6542 6543 6544 6545
                import paddle
                import paddle.static as static

                paddle.enable_static()
6546

6547
                prog = static.default_main_program()
6548 6549
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
6550
        """
Q
Qiao Longfei 已提交
6551 6552
        return self.blocks[index]

Y
Yu Yang 已提交
6553
    def current_block(self):
Y
yuyang18 已提交
6554
        """
6555 6556
        .. note::
            This API has no effect in Dygraph mode.
6557

J
Jiabin Yang 已提交
6558 6559
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
6560

J
Jiabin Yang 已提交
6561 6562
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
6563

6564 6565 6566
        Examples:
            .. code-block:: python

6567 6568 6569 6570
                import paddle
                import paddle.static as static

                paddle.enable_static()
6571

6572
                prog = static.default_main_program()
6573 6574
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
6575
        """
Y
Yu Yang 已提交
6576 6577
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
6578
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
6579 6580 6581 6582 6583
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
6584

Y
yuyang18 已提交
6585 6586 6587 6588 6589
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
6590
        new_block_idx = len(self.blocks)
6591 6592 6593 6594 6595
        parent = (
            self.current_block()
            if parent_idx is None
            else self.block(parent_idx)
        )
F
update  
fengjiayi 已提交
6596
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
6597 6598 6599 6600
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
6601
    def _rollback(self):
Y
yuyang18 已提交
6602 6603 6604 6605 6606
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
6607 6608
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
6609
    def _sync_with_cpp(self):
Y
yuyang18 已提交
6610 6611 6612 6613 6614 6615 6616 6617 6618 6619
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
6620 6621 6622
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
6623
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
6624

W
Wu Yi 已提交
6625
    def _copy_param_info_from(self, other):
6626
        """
6627
        Copy the information of parameters from other program.
D
dzhwinter 已提交
6628

Y
yuyang18 已提交
6629 6630 6631
        Notes: This is a very low level API. Users should not invoke it
        directly.

6632 6633 6634 6635 6636 6637 6638
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6639 6640
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6641 6642
                % type(other)
            )
6643

W
Wu Yi 已提交
6644
        self.global_block()._copy_param_info_from(other.global_block())
6645

6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6657 6658
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6659 6660
                % type(other)
            )
6661 6662
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
6663
        self._parameters_on_pservers = other._parameters_on_pservers
6664
        self._endpoints = other._endpoints
6665
        self._ps_endpoint = other._ps_endpoint
6666 6667
        self._distributed_lookup_table = other._distributed_lookup_table

6668
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
6669 6670
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
6671

Y
yuyang18 已提交
6672 6673 6674
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
6675 6676
        Args:
            other(Program): Other program
6677
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
6678 6679
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is
            cloned from block 0 in other, etc. Default is None, which means default mapped,
6680
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
6681 6682 6683 6684 6685

        Returns:
            None
        """
        if not isinstance(other, Program):
6686 6687
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6688 6689
                % type(other)
            )
F
fengjiayi 已提交
6690

6691 6692
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
6693
                i: i for i in range(self.desc.num_blocks())
6694
            }
6695 6696 6697

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
6698 6699
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
6700
            for var in list(block.vars.values()):
6701 6702 6703 6704 6705 6706 6707
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
6708

6709
    def list_vars(self):
Y
yuyang18 已提交
6710
        """
6711
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
6712

J
Jiabin Yang 已提交
6713
        Returns:
6714
            iterable Tensors: The Generator will yield every Tensor in this program.
6715 6716 6717 6718

        Examples:
            .. code-block:: python

6719 6720
                import paddle
                import paddle.static as static
6721

6722 6723 6724 6725 6726
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
6727 6728
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
6729

6730 6731
                # var img : LOD_TENSOR.shape(-1, 1, 28, 28).dtype(float32).stop_gradient(True)
                # var label : LOD_TENSOR.shape(-1, 1).dtype(int64).stop_gradient(True)
Y
yuyang18 已提交
6732
        """
6733
        for each_block in self.blocks:
6734
            for each_var in list(each_block.vars.values()):
6735 6736
                yield each_var

6737 6738 6739 6740 6741 6742 6743 6744 6745 6746
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

6747 6748 6749 6750
                import paddle
                import paddle.static as static

                paddle.enable_static()
6751

6752 6753
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
6754
                hidden = static.nn.fc(x=data, size=10)
6755 6756
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
6757 6758 6759 6760 6761 6762 6763

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
6764 6765
                # persist trainable param fc_0.w_0 : LOD_TENSOR.shape(13, 10).dtype(float32).stop_gradient(False)
                # persist trainable param fc_0.b_0 : LOD_TENSOR.shape(10,).dtype(float32).stop_gradient(False)
6766 6767 6768 6769 6770 6771 6772 6773 6774 6775
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

6776 6777 6778 6779 6780 6781 6782 6783 6784
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
6785 6786 6787
            mode(str, optional): Source of the obtained parameters and buffers.
                    'opt' :  The return value only contains the variable in the optimizer.
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.
6788 6789
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
6790
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
6818
        # can not be imported at the begainning of this file.
6819 6820
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
6821

6822 6823
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
6824 6825 6826 6827
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".format(
                    type(scope)
                )
            )
6828 6829 6830 6831 6832

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
6833 6834
            raise TypeError(
                "Type of `mode` should be string, but received {}.".format(
6835 6836 6837
                    type(mode)
                )
            )
6838 6839 6840 6841 6842

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
6843 6844 6845 6846 6847
            if (
                var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH
                or var.desc.type() == core.VarDesc.VarType.FETCH_LIST
                or var.desc.type() == core.VarDesc.VarType.READER
            ):
6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
6866 6867 6868 6869
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".format(
                        mode
                    )
                )
6870 6871 6872 6873 6874 6875 6876 6877

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
6878 6879 6880 6881
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".format(
                        var.name
                    )
                )
6882 6883 6884 6885 6886 6887
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
6888
        Set parameters and persistable buffers in state_dict to program.
6889
        An exception will throw if shape or dtype of the parameters is not match.
6890

6891 6892 6893 6894
        .. note::
            This function MUST called after run start_up_program

        Args:
6895
            state_dict(dict): the dict store parameters and persistable buffers.
6896 6897
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
6898
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6899 6900
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
6901

6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
6931 6932 6933
                    type(state_dict)
                )
            )
6934 6935

        vars_dict = {var.name: var for var in self.list_vars()}
6936 6937 6938
        condition = (
            True if 'StructuredToParameterName@@' in state_dict else False
        )
6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
6950 6951
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
6952 6953
                except TypeError as err:
                    warnings.warn(
6954 6955
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
6956
            else:
6957
                warnings.warn(
6958 6959 6960 6961 6962 6963
                    (
                        "Skip loading for '{0}'. Because '{0}' not in the program.".format(
                            name
                        )
                    )
                )
6964

Y
Yu Yang 已提交
6965

6966
class Parameter(Variable, metaclass=ParameterMetaClass):
6967
    """
6968
    Parameter is derived from Variable. A parameter is a persistable
6969
    Variable, and will be updated by optimizers after each iteration.
6970
    The training of a neural network is essentially the updating of
6971 6972
    its parameters.

6973
    Relative to a general Variable, a Parameter has several its own
6974 6975
    member variables:

6976 6977 6978 6979 6980 6981 6982 6983 6984 6985
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
6986
        need_clip (bool): Whether the parameter gradient need to be cliped
6987
            in optimizer. Default is True.
6988 6989
    """

6990 6991 6992 6993 6994 6995
    def __init__(
        self,
        block,
        shape,
        dtype,
        type=core.VarDesc.VarType.LOD_TENSOR,
6996
        **kwargs,
6997
    ):
6998 6999 7000 7001 7002
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
7003 7004
        for each in shape:
            if each < 0:
7005 7006
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
7007 7008 7009 7010 7011 7012 7013 7014 7015 7016
                    % list(shape)
                )

        Variable.__init__(
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
7017
            **kwargs,
7018
        )
Y
Yu Yang 已提交
7019 7020 7021 7022
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

7023 7024
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
7025
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
7026

7027 7028
        self.need_clip = kwargs.get('need_clip', True)

7029 7030
        self.is_distributed = False

7031 7032
        self.is_parameter = True

F
fengjiayi 已提交
7033
    def __str__(self):
7034
        return self._to_readable_code()
F
fengjiayi 已提交
7035

F
update  
fengjiayi 已提交
7036 7037 7038
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
7039

F
update  
fengjiayi 已提交
7040 7041 7042 7043 7044 7045 7046 7047
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

7048 7049 7050 7051
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
G
GGBond8488 已提交
7052
                import paddle
7053 7054

                prog = fluid.default_main_program()
G
GGBond8488 已提交
7055
                rlt = paddle.static.data("fake_data", shape=[-1,1,1], dtype='float32')
7056 7057
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
7058
        """
7059
        assert isinstance(throw_on_error, bool) and isinstance(
7060 7061
            with_details, bool
        )
F
update  
fengjiayi 已提交
7062 7063
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
7064 7065 7066 7067 7068 7069 7070
            additional_attr = (
                "trainable",
                "optimize_attr",
                "regularizer",
                "do_model_average",
                "need_clip",
            )
F
update  
fengjiayi 已提交
7071
            for attr_name in additional_attr:
7072
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
F
update  
fengjiayi 已提交
7073 7074
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
7075 7076 7077 7078
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
7079

7080 7081
class ParamBase(core.VarBase):
    """
7082 7083
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode).
    A ParamBase is a persistable Tensor, and will be updated by optimizers
7084
    after each iteration.
7085 7086 7087
    The training of a neural network is essentially the updating of
    its ParamBase.

7088
    Relative to a general Tensor, a ParamBase has several its own
7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
7101
        need_clip (bool): Whether the parameter gradient need to be cliped
7102
            in optimizer. Default is True.
7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
7116 7117
                    % list(shape)
                )
7118 7119 7120 7121 7122 7123 7124

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

7125
        super().__init__(
7126 7127 7128 7129 7130 7131
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            core.VarDesc.VarType.LOD_TENSOR,
            True,
        )
7132

7133 7134
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
7135 7136 7137 7138 7139 7140 7141

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

7142 7143
        self.need_clip = kwargs.get('need_clip', True)

7144
        self.is_distributed = kwargs.get('is_distributed', False)
7145
        # self.block = default_main_program().global_block()
7146

7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
7158 7159
                type(trainable),
            )
7160

7161
    def __str__(self):
7162
        """
7163
        Convert a ParamBase object to a readable string.
7164

7165
        Returns(str): A readable string.
7166 7167 7168 7169

        Examples:
            .. code-block:: python

7170
                import paddle
7171 7172 7173 7174 7175 7176 7177
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
7178
        """
7179
        return "Parameter containing:\n{tensor}".format(
7180
            tensor=super().__str__()
7181
        )
7182

7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
7194

7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

7213 7214 7215 7216
    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
7217 7218 7219 7220 7221 7222
        return new_param

    __repr__ = __str__


if hasattr(core, "eager"):
7223
    _core_eager_eagertensor = core.eager.Tensor
7224 7225 7226 7227 7228 7229
else:
    _core_eager_eagertensor = object


class EagerParamBase(_core_eager_eagertensor):
    """
7230 7231
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode).
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers
7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
7249
        need_clip (bool): Whether the parameter gradient need to be cliped
7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
7264 7265
                    % list(shape)
                )
7266 7267 7268 7269 7270 7271 7272

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

7273 7274 7275
        if isinstance(shape, core.eager.Tensor):
            shape = shape.numpy()

7276
        super().__init__(
7277 7278 7279 7280 7281 7282
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            core.VarDesc.VarType.LOD_TENSOR,
            True,
        )
7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
7297 7298 7299
        # hook functions for lazy initialization
        self._init_func = None
        self._init_op_creator = None
7300 7301

    def set_init_func(self, obj):
7302
        self._init_func = obj
7303 7304 7305

    @dygraph_only
    def initialize(self):
7306 7307 7308
        assert (
            self._init_func is not None
        ), "Required self._init_func is not None, but received None."
7309
        self._init_func(self, None)
7310
        # clear function handle to release resource
7311
        self._init_func = None
7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
7324 7325
                type(trainable),
            )
7326

7327 7328 7329 7330
    def _create_init_op(self, block):
        """
        Call init_op_creator function to create initializer operation in block.
        """
7331 7332 7333
        assert (
            self._init_op_creator is not None
        ), "Required self._init_op_creator is not None, but received None."
7334
        self._init_op_creator(self, block)
7335

7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354
    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
7355
            tensor=super().__str__()
7356
        )
7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
7386 7387
        new_param._init_func = self._init_func
        new_param._init_op_creator = self._init_op_creator
7388 7389 7390 7391 7392 7393
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
7394 7395
        return new_param

7396 7397 7398
    __repr__ = __str__


Y
Yu Yang 已提交
7399
# program is a global instance.
Y
Yu Yang 已提交
7400 7401
_main_program_ = Program()
_startup_program_ = Program()
7402
_startup_program_._is_start_up_program_ = True
7403

7404

7405
def default_startup_program():
Y
Yu Yang 已提交
7406
    """
Y
yuyang18 已提交
7407 7408
    Get default/global startup program.

7409
    The :code:`paddle.nn` function will append the initialization operators into startup program.
7410
    The :code:`startup_program` will initialize the parameters by the OPs.
T
tangwei12 已提交
7411

7412 7413
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
7414

7415 7416
    Returns:
        Program: current default startup program.
7417

7418
    Returns type:
7419 7420 7421 7422

    Examples:
        .. code-block:: python

7423
            import paddle
7424

7425
            paddle.enable_static()
7426 7427 7428 7429
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
7430
    """
Y
Yu Yang 已提交
7431
    return _startup_program_
7432

7433

7434
def default_main_program():
Y
Yu Yang 已提交
7435
    """
7436
    This API can be used to get ``default main program`` which store the
7437
    descriptions of Ops and tensors.
T
tangwei12 已提交
7438

7439 7440
    For example ``z = paddle.add(x, y)`` will create a new ``add``
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` .
Y
yuyang18 已提交
7441

7442
    The ``default main program`` is the default value for ``Program`` parameter in
7443
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
7444
    :code:`default_main_program` when the program is not specified.
7445

7446
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
7447

Y
Yu Yang 已提交
7448
    Returns:
7449
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
7450 7451 7452 7453

    Examples:
        ..  code-block:: python

7454
            import paddle
7455

7456
            paddle.enable_static()
7457
            # Sample Network:
7458 7459 7460
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
7461

7462 7463 7464
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
7465
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
7466
    """
Y
Yu Yang 已提交
7467
    return _main_program_
Y
Yu Yang 已提交
7468 7469 7470 7471 7472


def switch_main_program(program):
    """
    Switch the main program to a new program.
7473

Y
Yu Yang 已提交
7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
7488
    Switch the startup program to a new program
Y
Yu Yang 已提交
7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
7501
@signature_safe_contextmanager
Y
Yu Yang 已提交
7502 7503
def program_guard(main_program, startup_program=None):
    """
7504 7505
    :api_attr: Static Graph

7506 7507 7508
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
7509

G
guofei 已提交
7510
    Args:
7511
        main_program(Program): New main program inside ``with`` statement.
7512 7513
        startup_program(Program, optional): New startup program inside ``with``
            statement. :code:`None` means not changing startup program,
G
guofei 已提交
7514 7515 7516
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
7517
    Examples:
7518
       .. code-block:: python
T
tangwei12 已提交
7519

7520
          import paddle
Y
yuyang18 已提交
7521

7522 7523 7524 7525 7526
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
7527
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
7528 7529 7530

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
7531

Y
Yu Yang 已提交
7532
    Examples:
7533
       .. code-block:: python
Y
yuyang18 已提交
7534

7535
          import paddle
7536

7537 7538 7539 7540 7541
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
7542

Y
Yu Yang 已提交
7543
    """
7544
    from .data_feeder import check_type
7545 7546 7547 7548

    check_type(
        main_program, 'main_program', Program, 'paddle.static.program_guard'
    )
Y
Yu Yang 已提交
7549 7550
    main_program = switch_main_program(main_program)
    if startup_program is not None:
7551 7552 7553 7554 7555 7556
        check_type(
            startup_program,
            'startup_program',
            Program,
            'paddle.static.program_guard',
        )
7557 7558
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
7559
        startup_program = switch_startup_program(startup_program)
7560 7561 7562 7563 7564 7565
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
7566 7567


W
Wu Yi 已提交
7568
def _get_var(name, program=None):
X
xuwei06 已提交
7569
    """
Y
yuyang18 已提交
7570
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
7571

X
xuwei06 已提交
7572 7573 7574
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
7575
        If None, default_global_program() will be used.
X
xuwei06 已提交
7576 7577 7578 7579 7580 7581 7582

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
7583
    assert isinstance(program, Program)
X
xuwei06 已提交
7584 7585

    return program.global_block().var(name)
7586 7587


S
rename  
sneaxiy 已提交
7588
@signature_safe_contextmanager
L
lujun 已提交
7589
def _dygraph_guard(tracer):
7590 7591 7592 7593
    tmp_tracer = global_var._dygraph_tracer_
    global_var._dygraph_tracer_ = tracer
    if tracer is not None:
        core._switch_tracer(tracer)
M
minqiyang 已提交
7594

C
Charles-hit 已提交
7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606
    try:
        yield
    finally:
        if tmp_tracer is not None:
            core._switch_tracer(tmp_tracer)
        global_var._dygraph_tracer_ = tmp_tracer


@signature_safe_contextmanager
def _static_guard():
    tmp_tracer = global_var._dygraph_tracer_
    global_var._dygraph_tracer_ = None
7607 7608 7609
    try:
        yield
    finally:
7610 7611 7612
        if tmp_tracer is not None:
            core._switch_tracer(tmp_tracer)
        global_var._dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
7613 7614


S
rename  
sneaxiy 已提交
7615
@signature_safe_contextmanager
L
lujun 已提交
7616
def _dygraph_place_guard(place):
7617 7618 7619
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
7620 7621
    _set_dygraph_tracer_expected_place(place)

7622 7623 7624
    try:
        yield
    finally:
7625
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
7626
        _set_dygraph_tracer_expected_place(_global_expected_place_)
7627 7628


7629 7630 7631 7632 7633 7634 7635 7636 7637 7638
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
7639

7640
    Note:
7641
        The API only supports static graph mode.
7642 7643 7644 7645

    A context manager that specifies the device on which the OP will be placed.

    Args:
7646
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
7647
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs.
7648 7649 7650 7651 7652 7653 7654
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
7655

7656
        .. code-block:: python
7657

7658
            # required: gpu
Z
Zhang Ting 已提交
7659
            import paddle
7660

Z
Zhang Ting 已提交
7661 7662 7663
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
7664
            if support_gpu:
Z
Zhang Ting 已提交
7665
                place = paddle.CUDAPlace(0)
7666 7667

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
7668 7669 7670
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
7671

Z
Zhang Ting 已提交
7672
            with paddle.static.device_guard("cpu"):
7673
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
7674 7675
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
7676
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
7677
                out = paddle.reshape(data1, shape=shape)
7678

Z
Zhang Ting 已提交
7679 7680
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
7681 7682 7683
            result = exe.run(fetch_list=[out])
    """

7684 7685 7686 7687 7688
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
7689
    if device not in ['cpu', 'gpu', 'npu', 'xpu', 'mlu', '', None]:
7690
        raise ValueError(
7691
            "The Attr(device) should be 'cpu' 'npu' 'xpu' 'mlu' or 'gpu', and it can also be empty string or None "
7692 7693
            "when there is no need to specify device. But received %s" % device
        )
7694 7695
    if index:
        device = ":".join([device, index])
7696
    pre_device = switch_device(device)
7697 7698 7699 7700
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
7701 7702


7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714
def _switch_cuda_graph_mode(cuda_graph_attr):
    global _current_cuda_graph_mode
    pre_mode = _current_cuda_graph_mode
    _current_cuda_graph_mode = cuda_graph_attr
    return pre_mode


@signature_safe_contextmanager
def _cuda_graph_guard(cuda_graph_attr=None):
    """

    Note:
7715
        The API only supports static graph mode.
7716

7717
    A context manager that specifies the cuda_graph_mode which indicating the cuda graph capture under static graph mode.
7718 7719 7720 7721 7722

    Args:
        cuda_graph_attr(str|None): The cuda graph attr with the format of:
                                   cuda_graph_capture_mode;memory_pool_id;cuda_graph_id
    """
7723 7724
    assert (
        not _non_static_mode()
7725
    ), "cuda_graph_guard only works under static graph mode"
7726 7727
    assert (
        core.is_compiled_with_cuda()
7728 7729 7730 7731 7732 7733 7734 7735
    ), "cuda_graph_guard context can be only used when Paddle is compiled with cuda"
    pre_mode = _switch_cuda_graph_mode(cuda_graph_attr)
    try:
        yield
    finally:
        _switch_cuda_graph_mode(pre_mode)


G
guofei 已提交
7736 7737 7738
def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
7739
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7740 7741 7742 7743 7744 7745 7746

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

7747 7748
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
7749 7750 7751 7752
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
7753 7754
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
7755 7756
        else:
            raise ValueError(
7757 7758
                "Flag %s cannot set its value through this function." % (key)
            )
G
guofei 已提交
7759 7760 7761 7762 7763


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
7764
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7765 7766 7767 7768 7769 7770 7771 7772 7773 7774

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

7775
            import paddle
G
guofei 已提交
7776 7777

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
7778
            res = paddle.get_flags(flags)
G
guofei 已提交
7779 7780 7781 7782 7783 7784
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
7785
            if _global_flags().is_public(key):
7786
                value = _global_flags()[key]
G
guofei 已提交
7787 7788 7789 7790
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
7791 7792 7793
                    'Flag %s cannot get its value through this function.'
                    % (key)
                )
G
guofei 已提交
7794
    elif isinstance(flags, str):
7795
        if _global_flags().is_public(flags):
7796
            value = _global_flags()[flags]
G
guofei 已提交
7797 7798 7799 7800
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
7801 7802
                'Flag %s cannot get its value through this function.' % (flags)
            )
G
guofei 已提交
7803 7804 7805
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
7806 7807 7808 7809 7810 7811


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825
    if isinstance(
        place,
        (
            core.Place,
            core.XPUPlace,
            core.CPUPlace,
            core.CUDAPinnedPlace,
            core.CUDAPlace,
            core.NPUPlace,
            core.IPUPlace,
            core.MLUPlace,
            core.CustomPlace,
        ),
    ):
7826 7827 7828 7829
        return place

    if not isinstance(place, str):
        raise ValueError(
7830 7831
            "place only support string which is 'Place' and so on."
        )
7832 7833

    place = place.lower()
7834
    if place == "cpu":
7835
        return core.CPUPlace()
7836

7837
    if place == "device":
7838 7839
        return core.Place()

7840
    # GPU
7841 7842 7843 7844
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
7845
                "The device should not be {}, since PaddlePaddle is "
7846
                "not compiled with CUDA".format(avaliable_gpu_place.group())
7847
            )
7848 7849 7850 7851 7852 7853 7854 7855 7856
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
7857 7858

    # XPU
7859 7860 7861 7862
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
7863
                "The device should not be {}, since PaddlePaddle is "
7864
                "not compiled with XPU".format(avaliable_xpu_place.group())
7865
            )
7866 7867 7868 7869
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
7870 7871 7872 7873 7874 7875

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
7876
                "The device should not be {}, since PaddlePaddle is "
7877
                "not compiled with NPU".format(avaliable_npu_place.group())
7878
            )
7879 7880 7881 7882 7883
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

J
jianghaicheng 已提交
7884 7885 7886 7887 7888
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
7889
                "The device should not be {}, since PaddlePaddle is "
7890
                "not compiled with IPU".format(avaliable_ipu_place.group())
7891
            )
J
jianghaicheng 已提交
7892 7893 7894 7895 7896
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

7897 7898 7899 7900 7901
    # MLU
    avaliable_mlu_place = re.match(r'mlu:\d+', place)
    if avaliable_mlu_place:
        if not core.is_compiled_with_mlu():
            raise ValueError(
7902
                "The device should not be {}, since PaddlePaddle is "
7903
                "not compiled with MLU".format(avaliable_mlu_place.group())
7904
            )
7905 7906 7907 7908 7909
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.MLUPlace(device_id)

7910
    raise ValueError(
7911 7912 7913 7914
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace, IPUPlace, MLUPlace and NPUPlace, but received {}.".format(
            place
        )
    )
7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret