framework.py 258.2 KB
Newer Older
G
gouzil 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
import collections
X
Xin Pan 已提交
16
from collections import defaultdict
H
huzhiqiang 已提交
17
from collections.abc import Iterable
Q
qiaolongfei 已提交
18
import contextlib
19
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
20
import os
F
fengjiayi 已提交
21
import re
22
import traceback
23
import copy
24
from types import MethodType, FunctionType
25

Y
Yu Yang 已提交
26
import numpy as np
27
import subprocess
S
sneaxiy 已提交
28
import multiprocessing
29
import sys
30
import logging
31
from .proto import framework_pb2
32 33

from . import core
34
from . import unique_name
35 36
import paddle.version as fluid_version
import warnings
37
import functools
38
from .variable_index import _getitem_impl_, _setitem_impl_
Y
Yu Yang 已提交
39

40
__all__ = [
41 42 43 44
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
45
    'name_scope',
J
jianghaicheng 已提交
46
    'ipu_shard_guard',
47
    'set_ipu_shard',
S
sneaxiy 已提交
48 49
    'cuda_places',
    'cpu_places',
50
    'xpu_places',
51
    'mlu_places',
S
sneaxiy 已提交
52
    'cuda_pinned_places',
J
Jiabin Yang 已提交
53
    '_non_static_mode',
L
lujun 已提交
54
    'in_dygraph_mode',
55
    'is_compiled_with_cinn',
C
chengduo 已提交
56
    'is_compiled_with_cuda',
57
    'is_compiled_with_rocm',
58
    'is_compiled_with_xpu',
59
    'is_compiled_with_npu',
60
    'Variable',
61
    'require_version',
62
    'device_guard',
G
guofei 已提交
63 64
    'set_flags',
    'get_flags',
65
]
Y
Yu Yang 已提交
66

Q
qiaolongfei 已提交
67 68 69 70
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
71 72
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
73
_dygraph_tracer_ = None
74
_in_eager_mode_ = True
75
_global_expected_place_ = None
76
_current_device = None
77
global_prog_seed = 0
78
_current_pipeline_stage = None
79
_already_patch_eager_tensor = False
J
Jiabin Yang 已提交
80
_already_patch_varbase = False
81
_current_cuda_graph_mode = None
82
_global_flags_ = core.globals()
83 84 85 86 87 88
_enable_standalone_executor_ = os.environ.get(
    'FLAGS_USE_STANDALONE_EXECUTOR', None
)
_dy2st_enable_standalone_executor_ = os.environ.get(
    'FLAGS_DY2ST_USE_STANDALONE_EXECUTOR', 1
)
J
Jiabin Yang 已提交
89 90

# Some explanation of our execution system 2022.03
91
# For now we have 3 kinds of execution system, since we refactored dygraph mode to
J
Jiabin Yang 已提交
92
# build a fast execution system for dynamic mode. But we can't just remove all legacy
93
# code once we present the new system for some historical reason. That's why we have
J
Jiabin Yang 已提交
94
# these flags.
95
#
J
Jiabin Yang 已提交
96
# 1. _non_static_mode():
97
# _non_static_mode means  we are now running in legacy dygraph mode or dygraph mode.
J
Jiabin Yang 已提交
98 99 100
# 2. dygraph_mode():
# This flags inidicates we are now running in dygraph mode which called eager mode before.
# 3. _in_legacy_dygraph():
姜永久 已提交
101
# This flags has been deprecated
102
#
J
Jiabin Yang 已提交
103
# They have a relation ship as below:
姜永久 已提交
104
# Since _in_legacy_graph is deprecated, so dygraph_mode is _non_static_mode
105
#
J
Jiabin Yang 已提交
106 107 108 109 110 111
# Why we have to make different of _in_legacy_dygraph and dygraph_mode?
# In some performance issue, we find that python if statement cause server performance problem
# and we need our new dygraph mode becomes as fast as it could be. That's why we make these flags
# to make sure in most case, we find new dygraph mode first with only one if statement.


112 113 114 115 116
def _update_monkey_methods(is_eager):
    """
    Update monkey methods of VarBase or eager.Tensor while
    switching eager mode and legacy mode.
    """
117
    from paddle import _C_ops, _legacy_C_ops
118 119 120
    from .dygraph.varbase_patch_methods import monkey_patch_varbase
    from .dygraph import monkey_patch_math_varbase

121 122 123
    global _already_patch_eager_tensor
    global _already_patch_varbase

124
    assert isinstance(is_eager, bool)
125
    # switch into eager mode
126
    if is_eager:
127 128 129 130 131 132
        if not _already_patch_eager_tensor:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_eager_tensor = True
    # switch back into legacy mode
133
    else:
134 135 136 137 138
        if not _already_patch_varbase:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_varbase = True
139

140 141 142 143 144 145
    # switch Paddle.Tensor bind type
    _switch_tensor_bind_type(is_eager)


def _switch_tensor_bind_type(is_eager):
    import paddle
146

147 148 149 150 151
    if is_eager:
        paddle.Tensor = core.eager.Tensor
    else:
        paddle.Tensor = core.VarBase
    paddle.Tensor.__qualname__ = 'Tensor'
152 153


J
Jiabin Yang 已提交
154 155 156
def _enable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = False
157
    _update_monkey_methods(is_eager=False)
J
Jiabin Yang 已提交
158 159 160 161 162


def _disable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = True
163
    _update_monkey_methods(is_eager=True)
J
Jiabin Yang 已提交
164 165 166 167 168 169 170


def _in_eager_without_dygraph_check():
    global _in_eager_mode_
    return _in_eager_mode_


171 172 173 174 175 176 177 178 179
# FIXME(dev): We haven't fully verified eager mode on XPU/NPU et.al but
# only GPU/CPU. Remove this after we improve this feature.
_is_first_import_ = True


def _fallback_legacy_dygraph():
    global _in_eager_mode_
    global _is_first_import_
    need_fallback = False
C
Chen Weihang 已提交
180
    # Only enable eager on CPU/GPU/XPU
181 182 183 184 185
    is_not_support = (
        core.is_compiled_with_npu()
        or core.is_compiled_with_ipu()
        or core.is_compiled_with_mlu()
    )
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206

    if _in_eager_mode_ and is_not_support:
        # switch into legacy dygraph mode
        warnings.warn(
            "We will fallback into legacy dygraph on NPU/XPU/MLU/IPU/ROCM devices. Because we only support new eager dygraph mode on CPU/GPU currently. "
        )
        _in_eager_mode_ = False
        if not _is_first_import_:
            _enable_legacy_dygraph()
        need_fallback = True

    need_fallback = False
    _is_first_import_ = False

    return need_fallback


# switch into legacy mode if need while import paddle
_fallback_legacy_dygraph()


J
Jiabin Yang 已提交
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
def in_dygraph_mode():
    """

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .

    Returns:
        bool: Whether paddle runs in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
228
            print(paddle.in_dynamic_mode())  # False, Now we are in static graph mode
J
Jiabin Yang 已提交
229 230 231 232 233 234 235 236 237 238

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode

    """
    return (_dygraph_tracer_ is not None) and _in_eager_mode_


def _non_static_mode():
    return _dygraph_tracer_ is not None
239 240 241


@signature_safe_contextmanager
J
Jiabin Yang 已提交
242
def _test_eager_guard(place=None):
C
Chen Weihang 已提交
243 244
    # FIXME(dev): We haven't fully verified eager mode on NPU et.al but
    # only GPU/CPU/XPU. Remove this after we improve this feature.
245 246 247
    already_fallback = _fallback_legacy_dygraph()
    if not already_fallback:
        _disable_legacy_dygraph()
248
    try:
J
Jiabin Yang 已提交
249
        yield
250
    finally:
251
        pass
252 253


254 255
global_ipu_index = -1
global_ipu_stage = -1
J
jianghaicheng 已提交
256 257 258 259
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


L
Leo Chen 已提交
260 261 262 263 264 265 266 267 268 269 270
@signature_safe_contextmanager
def _enable_standalone_executor(enable=True):
    global _enable_standalone_executor_
    original_ = _enable_standalone_executor_
    _enable_standalone_executor_ = enable
    try:
        yield
    finally:
        _enable_standalone_executor_ = original_


J
jianghaicheng 已提交
271
@signature_safe_contextmanager
272
def ipu_shard_guard(index=-1, stage=-1):
J
jianghaicheng 已提交
273 274 275 276
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
W
Weilong Wu 已提交
277
        index(int, optional): Specify which ipu the Tensor is computed on, (such as '0, 1, 2, 3').
278
            The default value is -1, which means the Op only run on IPU 0.
W
Weilong Wu 已提交
279
        stage(int, optional): Specify the computation order of the sharded model(such as '0, 1, 2, 3').
280
            The sharded model will be computed from small to large. The default value is -1,
J
jianghaicheng 已提交
281
            which means no pipelining computation order and run Ops in terms of graph.
282

G
gouzil 已提交
283 284 285 286 287 288 289
    Note:
        Only if the enable_manual_shard=True, the 'index' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        Only if the enable_pipelining=True, the 'stage' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        A index is allowed to match none stage or a stage. A stage is only allowed to match a new or
        duplicated index.
J
jianghaicheng 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


324 325 326 327
def set_ipu_shard(call_func, index=-1, stage=-1):
    """
    Shard the ipu with the given call function. Set every ops in call function to the given ipu sharding.

G
gouzil 已提交
328 329 330 331 332
    Note:
        Only when enable_manual_shard=True to set the index to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        Only when enable_pipelining=True to set stage to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        An index supports a corresponding None stage or a stage, and a stage only supports a new index or a duplicate index.

333 334 335 336 337
    Args:
        call_func(Layer|function): Specify the call function to be wrapped.
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is -1, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
338
            The sharded model will be computed from small to large. The default value is -1,
339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
            which means no pipelining computation order and run Ops in terms of graph.

    Returns:
        The wrapped call function.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='float32')
            relu = paddle.nn.ReLU()
            relu = paddle.static.set_ipu_shard(relu, index=1, stage=1)
            relu(a)
    """

    def decorate(func):
        def wrapper(*args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return func(*args, **kwargs)

        return wrapper

    from .dygraph.layers import Layer
365

366 367 368 369 370
    if not isinstance(call_func, Layer):
        if callable(call_func):
            return decorate(call_func)
        else:
            raise TypeError(
371 372
                "Unsupported type. Only accept paddle.nn.Layer or function."
            )
373 374 375 376 377 378 379 380 381 382 383 384

    # patch paddle.nn.Layer
    class BlockFn(type(call_func)):
        def __call__(self, *args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return super().__call__(*args, **kwargs)

    BlockFn.__name__ = type(call_func).__name__
    call_func.__class__ = BlockFn
    return call_func


385 386
def require_version(min_version, max_version=None):
    """
387 388 389
    Check if the installed version of PaddlePaddle is in [min_version, max_version],
    if the installed version is lower than ``min_version`` or higher than ``max_version``,
    an exception will be thrown, NO returns if the installed version is satisfied.
390

391 392 393 394
    Args:
        min_version (str): the minimum version required (like '1.4.0').
        max_version (str, optional): the max version required (like '1.6.0'), default is None,
            meaning any version equal or higher than ``min_version`` is acceptable.
395

396 397
    Returns:
        None.
398

399 400 401 402 403 404
    Raises:
        TypeError: if the type of ``min_version`` is not str.
        TypeError: if the type of ``max_version`` is not str or type(None).
        ValueError: if the value of ``min_version`` is not in version format.
        ValueError: if the value of ``max_version`` is not in version format or None.
        Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.
405

406 407
    Examples:
        .. code-block:: python
408

409
            import paddle.fluid as fluid
410

411 412
            # any version >= 0.1.0 is acceptable.
            fluid.require_version('0.1.0')
413

414 415 416
            # if 0.1.0 <= version <= 10.0.0, it is acceptable.
            fluid.require_version(min_version='0.1.0', max_version='10.0.0')
    """
417 418 419
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
420 421
            % (type(min_version))
        )
422 423 424 425

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
426 427
            % (type(max_version))
        )
428 429 430 431 432

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
433 434
            "like '1.5.2.0', but received %s" % min_version
        )
435 436 437 438 439 440

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
441 442
                "like '1.5.2.0', but received %s" % max_version
            )
443 444

    version_installed = [
445 446 447 448
        fluid_version.major,
        fluid_version.minor,
        fluid_version.patch,
        fluid_version.rc,
449 450 451 452
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
453
        for i in range(len(ver_a)):
454 455 456 457 458 459 460 461 462 463 464
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
465 466 467
                "please make sure the version is good with your code."
                % (min_version, max_version, fluid_version.full_version)
            )
468 469 470 471
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
472 473 474
                "please make sure the version is good with your code."
                % (min_version, fluid_version.full_version)
            )
475 476 477
        return

    min_version_split = min_version.split('.')
478 479 480
    min_version_to_check = (
        min_version_split + zero_version[len(min_version_split) :]
    )
481 482 483

    if max_version is not None:
        max_version_split = max_version.split('.')
484 485 486
        max_version_to_check = (
            max_version_split + zero_version[len(max_version_split) :]
        )
487

488 489 490 491
        if (
            version_cmp(version_installed, max_version_to_check) > 0
            or version_cmp(version_installed, min_version_to_check) < 0
        ):
492 493
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
494 495
                % (min_version, max_version, fluid_version.full_version)
            )
496 497 498 499 500
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
501 502
                % (min_version, fluid_version.full_version, min_version)
            )
503 504


505 506
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
507 508 509
        assert not _non_static_mode(), (
            "We don't support %s in dynamic graph mode" % func.__name__
        )
510 511 512 513 514 515 516
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
517 518 519 520
        assert _non_static_mode(), (
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
521 522 523 524 525
        return func(*args, **kwargs)

    return __impl__


526 527 528
def _non_static_only_(func):
    def __impl__(*args, **kwargs):
        from .dygraph.base import in_declarative_mode
529 530 531 532 533

        assert _non_static_mode() or in_declarative_mode(), (
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
534 535 536 537 538
        return func(*args, **kwargs)

    return __impl__


539 540
def _static_only_(func):
    def __impl__(*args, **kwargs):
541 542 543 544
        assert not _non_static_mode(), (
            "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode."
            % func.__name__
        )
545 546 547 548 549
        return func(*args, **kwargs)

    return __impl__


550 551 552 553 554
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


555 556 557 558 559 560
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
561
# same base class.
562 563 564
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
565 566 567 568
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
569 570
            % (func.__name__, func.__name__)
        )
571 572 573 574

    return __impl__


T
tangwei12 已提交
575 576
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
577 578 579 580 581 582 583 584 585
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
586 587
                DeprecationWarning,
            )
588 589 590 591 592 593 594
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


595 596
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
597
static_only = wrap_decorator(_static_only_)
598
fake_interface_only = wrap_decorator(_fake_interface_only_)
599
non_static_only = wrap_decorator(_non_static_only_)
600 601


L
lujun 已提交
602 603
def _dygraph_tracer():
    return _dygraph_tracer_
604

W
Wu Yi 已提交
605

606 607 608 609
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
610
def _current_expected_place():
611 612 613
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
614 615 616 617 618
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
619
                _global_expected_place_ = core.CUDAPlace(_cuda_ids()[0])
620 621 622 623 624
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
625 626 627 628 629 630
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
631
                _global_expected_place_ = core.XPUPlace(_xpu_ids()[0])
632 633 634 635 636
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
637 638 639 640 641 642
        elif core.is_compiled_with_mlu():
            try:
                device_count = core.get_mlu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
643
                _global_expected_place_ = core.MLUPlace(_mlu_ids()[0])
644 645 646 647 648
            else:
                warnings.warn(
                    "You are using MLU version Paddle, but your MLU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
664
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
665 666


L
Leo Chen 已提交
667 668
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
669 670
    """
    convert VarBase tp numpy
T
tangwei12 已提交
671

672 673 674
    Args:
        var_base(VarBase) : the VarBase to convert
    Returns (np.ndarray): the np.ndarray contain the value of VarBase
L
Leo Chen 已提交
675 676 677 678 679 680 681 682 683
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
684
def _cpu_num():
685
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
686 687 688 689 690 691 692
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
693 694 695
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()
                )
            )
C
chengduo 已提交
696
        os.environ['CPU_NUM'] = str(1)
697
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
698 699 700 701 702 703 704 705
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
706
        device_ids = range(core.get_cuda_device_count())
C
chengduo 已提交
707
    return device_ids
S
sneaxiy 已提交
708 709


710 711 712 713 714
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
715
        device_ids = range(core.get_xpu_device_count())
716 717 718
    return device_ids


719 720 721 722 723
def _npu_ids():
    npus_env = os.getenv("FLAGS_selected_npus")
    if npus_env:
        device_ids = [int(s) for s in npus_env.split(",")]
    else:
724
        device_ids = range(core.get_npu_device_count())
725 726 727
    return device_ids


728 729 730 731 732
def _mlu_ids():
    mlus_env = os.getenv("FLAGS_selected_mlus")
    if mlus_env:
        device_ids = [int(s) for s in mlus_env.split(",")]
    else:
733
        device_ids = range(core.get_mlu_device_count())
734 735 736
    return device_ids


737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
def is_compiled_with_npu():
    """
    Whether this whl package can be used to run the model on NPU.

    Returns (bool): support npu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_npu = fluid.is_compiled_with_npu()
    """
    return core.is_compiled_with_npu()


767 768 769 770 771 772 773
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
774

775 776 777 778 779 780
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

Z
Zman 已提交
781 782
    Returns:
        None
783 784 785 786 787 788 789 790 791 792

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

    Returns (bool): `True` if CINN is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
808 809 810 811
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

812
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
813 814 815 816

    Examples:
        .. code-block:: python

817
            import paddle
818
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
819 820 821 822
    """
    return core.is_compiled_with_cuda()


823 824 825 826 827 828 829 830 831 832
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
833
            support_gpu = paddle.device.is_compiled_with_rocm()
834 835 836 837
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
838
def cuda_places(device_ids=None):
L
lujun 已提交
839
    """
840
    Note:
841 842 843
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
844
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
845 846

    If :code:`device_ids` is None, environment variable of
847
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
848
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
849
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
850
    If :code:`FLAGS_selected_gpus` is not set, all visible
851
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
852 853

    If :code:`device_ids` is not None, it should be the device
854
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
855
    the returned list would be
C
Chen Weihang 已提交
856
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
857

858
    Parameters:
859
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
860 861

    Returns:
C
Chen Weihang 已提交
862
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
863 864

    Examples:
865

L
lujun 已提交
866 867
        .. code-block:: python

C
Chen Weihang 已提交
868 869
            import paddle
            import paddle.static as static
T
tangwei12 已提交
870

871
            # required: gpu
872

C
Chen Weihang 已提交
873 874 875
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
876 877

    """
878
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
879
    if device_ids is None:
C
chengduo 已提交
880
        device_ids = _cuda_ids()
S
sneaxiy 已提交
881 882 883 884 885
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


886 887 888 889
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
890 891 892 893 894 895 896 897 898
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
899
        the returned list would be
S
sunzhongkai588 已提交
900
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
901

902 903 904 905 906 907
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
908

909 910
            # required: xpu

911 912
            import paddle
            import paddle.static as static
913

914 915 916
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
917
    assert core.is_compiled_with_xpu(), "Not compiled with XPU"
918 919 920 921 922 923 924
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


925 926
def npu_places(device_ids=None):
    """
927 928

    Note:
929
        For multi-card tasks, please use `FLAGS_selected_npus` environment variable to set the visible NPU device.
930

931 932 933 934 935 936 937 938 939
    This function creates a list of :code:`paddle.NPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_npus` would be checked first. For example, if
    :code:`FLAGS_selected_npus=0,1,2`, the returned list would
    be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    If :code:`FLAGS_selected_npus` is not set, all visible
    npu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of NPUs. For example, if :code:`device_ids=[0,1,2]`,
940
    the returned list would be
941
    [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
942

943 944 945 946 947 948 949 950 951 952 953
    Parameters:
        device_ids (list or tuple of int, optional): list of NPU device ids.
    Returns:
        list of paddle.NPUPlace: Created NPU place list.
    Examples:
        .. code-block:: python

            # required: npu

            import paddle
            import paddle.static as static
954

955 956 957
            paddle.enable_static()
            npu_places = static.npu_places()
    """
958
    assert core.is_compiled_with_npu(), "Not compiled with NPU"
959 960 961 962 963 964 965
    if device_ids is None:
        device_ids = _npu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.NPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
966
def cpu_places(device_count=None):
L
lujun 已提交
967
    """
C
Chen Weihang 已提交
968
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
969

S
add doc  
sneaxiy 已提交
970
    If :code:`device_count` is None, the device count would
971
    be determined by environment variable :code:`CPU_NUM`.
C
chengduo 已提交
972 973
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
974 975
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
976

977 978
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
979 980

    Returns:
C
Chen Weihang 已提交
981
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
982 983

    Examples:
984

L
lujun 已提交
985 986
        .. code-block:: python

C
Chen Weihang 已提交
987 988
            import paddle
            import paddle.static as static
T
tangwei12 已提交
989

C
Chen Weihang 已提交
990 991 992
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
993 994
    """

S
sneaxiy 已提交
995 996 997 998 999 1000
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
1001
    """
1002
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
1003 1004

    If :code:`device_count` is None, the device count would
1005
    be determined by environment variable :code:`CPU_NUM`.
1006 1007 1008 1009
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
1010

1011 1012
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
1013 1014

    Returns:
1015
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
1016 1017 1018 1019

    Examples:
        .. code-block:: python

1020
            import paddle.fluid as fluid
L
lujun 已提交
1021 1022 1023 1024 1025
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
1026
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
1027
    if device_count is None:
1028 1029
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
1030 1031


1032 1033
def mlu_places(device_ids=None):
    """
G
gouzil 已提交
1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046
    This function creates a list of :code:`paddle.device.MLUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_mlus` would be checked first. For example, if
    :code:`FLAGS_selected_mlus=0,1,2`, the returned list would
    be [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].
    If :code:`FLAGS_selected_mlus` is not set, all visible
    mlu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of MLUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be
    [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].

    Note:
1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
        For multi-card tasks, please use `FLAGS_selected_mlus` environment variable to set the visible MLU device.

    Parameters:
        device_ids (list or tuple of int, optional): list of MLU device ids.

    Returns:
        list of paddle.device.MLUPlace: Created MLU place list.

    Examples:
        .. code-block:: python

            # required: mlu

            import paddle
            import paddle.static as static

            paddle.enable_static()
            mlu_places = static.mlu_places()
    """
1066
    assert core.is_compiled_with_mlu(), "Not compiled with MLU"
1067 1068 1069 1070 1071 1072 1073
    if device_ids is None:
        device_ids = _mlu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.MLUPlace(dev_id) for dev_id in device_ids]


1074
class NameScope:
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
1085 1086 1087
            new_child = NameScope(
                prefix + "_%d" % len(self._children[prefix]), self
            )
1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
1101
@signature_safe_contextmanager
1102 1103
def name_scope(prefix=None):
    """
1104

1105
    Generate hierarchical name prefix for the operators in Static Graph.
1106

1107
    Note:
T
Tao Luo 已提交
1108 1109
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
1110
        Don't use it in dygraph, since it will cause memory leak.
1111 1112

    Args:
T
Tao Luo 已提交
1113
        prefix(str, optional): prefix. Default is none.
1114 1115

    Examples:
1116

1117
        .. code-block:: python
T
Tink_Y 已提交
1118

1119 1120 1121
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
1122
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
1123
             b = a + 1
1124
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
1125
                c = b * 1
1126
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
1127
                d = c / 1
1128 1129 1130
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
1131 1132
                g = f - 1

1133
          # Op are created in the default main program.
1134
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
1150 1151
    """
    # TODO(panyx0718): Only [0-9a-z].
1152
    # in dygraph we don't need namescope since it will cause mem leak
J
Jiabin Yang 已提交
1153
    if _non_static_mode():
L
Leo Chen 已提交
1154 1155
        yield
    else:
T
tianshuo78520a 已提交
1156
        assert prefix, "namescope prefix can not be empty."
1157 1158
        global _name_scope
        _name_scope = _name_scope.child(prefix)
1159 1160 1161 1162
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
1175 1176
def generate_control_dev_var_name():
    import random
1177

W
Wu Yi 已提交
1178
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
1179 1180 1181 1182


def grad_var_name(var_name):
    """
1183 1184
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
1185 1186 1187
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
1188

1189
def convert_np_dtype_to_dtype_(np_dtype):
1190
    """
1191
    Convert the data type in numpy to the data type in Paddle.
1192

1193
    Args:
1194 1195
        np_dtype (np.dtype|str): The data type in numpy or valid data type
            string.
1196

1197
    Returns:
1198
        core.VarDesc.VarType: The data type in Paddle.
1199 1200

    """
1201 1202
    # Convert the data type string to numpy data type.
    if isinstance(np_dtype, str) and np_dtype == "bfloat16":
1203 1204 1205
        dtype = np.uint16
    else:
        dtype = np.dtype(np_dtype)
1206

1207
    if dtype == np.float32:
1208
        return core.VarDesc.VarType.FP32
1209
    elif dtype == np.float64:
1210
        return core.VarDesc.VarType.FP64
1211
    elif dtype == np.float16:
1212
        return core.VarDesc.VarType.FP16
1213
    elif dtype == np.int32:
1214
        return core.VarDesc.VarType.INT32
1215
    elif dtype == np.int16:
1216
        return core.VarDesc.VarType.INT16
1217
    elif dtype == np.int64:
1218
        return core.VarDesc.VarType.INT64
1219
    elif dtype == np.bool_:
1220
        return core.VarDesc.VarType.BOOL
1221
    elif dtype == np.uint16:
1222 1223 1224
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
1225 1226
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
1227 1228
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
1229 1230 1231 1232
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
1233
    else:
M
minqiyang 已提交
1234
        raise ValueError("Not supported numpy dtype %s" % dtype)
1235 1236 1237


def dtype_is_floating(dtype):
1238 1239 1240
    """
    Check the data type is floating or not.
    Args:
1241
        dtype(np.dtype|core.VarDesc.VarType): data type.
1242 1243 1244 1245 1246
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1247
    if not isinstance(dtype, core.VarDesc.VarType):
1248 1249
        dtype = convert_np_dtype_to_dtype_(dtype)

1250
    return dtype in [
1251 1252 1253
        core.VarDesc.VarType.FP16,
        core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64,
1254
    ]
1255 1256


Y
Yang Yang(Tony) 已提交
1257
def _debug_string_(proto, throw_on_error=True):
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1269
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1270
    if not proto.IsInitialized(error_fields) and throw_on_error:
1271 1272
        raise ValueError(
            "{0} are not initialized.\nThe message is {1}:\n".format(
1273 1274 1275
                error_fields, proto
            )
        )
Y
Yu Yang 已提交
1276 1277 1278
    return proto.__str__()


1279 1280 1281 1282 1283 1284
def _varbase_creator(
    type=core.VarDesc.VarType.LOD_TENSOR,
    name=None,
    shape=None,
    dtype=None,
    persistable=None,
1285
    **kwargs,
1286
):
1287 1288 1289 1290
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

J
Jiabin Yang 已提交
1291
    if _in_eager_mode_:
1292
        eager_tensor = core.eager.Tensor(
1293
            dtype if dtype else core.VarDesc.VarType.FP32,
1294 1295
            list(shape) if shape else [],
            name,
1296
            type if type else core.VarDesc.VarType.LOD_TENSOR,
1297 1298
            True if persistable else False,
        )
1299 1300
        eager_tensor.retain_grads()
        return eager_tensor
J
Jiabin Yang 已提交
1301
    else:
1302 1303 1304 1305 1306 1307 1308
        return core.VarBase(
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            type if type else core.VarDesc.VarType.LOD_TENSOR,
            True if persistable else False,
        )
1309 1310


1311 1312 1313 1314 1315 1316 1317
def _all_is_type(vals, expected_type):
    """
    Return True if type of each element is expected_type.

    NOTE: BuiltIn all() will always return True if vals is empty.
    """
    assert isinstance(vals, (list, tuple))
1318 1319
    if not vals:
        return False
1320 1321 1322
    return all(isinstance(v, expected_type) for v in vals)


1323 1324 1325 1326 1327
class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1328
            return issubclass(t, core.eager.Tensor)
1329 1330 1331 1332 1333 1334 1335 1336 1337
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1338
            return issubclass(t, EagerParamBase)
1339 1340 1341 1342
        else:
            return issubclass(t, Parameter)


1343
class Variable(metaclass=VariableMetaClass):
1344
    """
J
Jiabin Yang 已提交
1345

U
ustiniankw 已提交
1346 1347 1348 1349
    Notes:
        The constructor of Variable should not be invoked directly.

        In Static Graph Mode: Please use ** `Block.create_var` ** to create a Static variable which has no data until being feed.
1350

U
ustiniankw 已提交
1351
        In Dygraph Mode: Please use ** :ref:`api_fluid_dygraph_to_variable` ** to create a dygraph variable with real data.
J
Jiabin Yang 已提交
1352 1353

    In Fluid, every input and output of an OP is a variable. In most
1354
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1355 1356
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1357

1358
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1359
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1360

T
tianshuo78520a 已提交
1361
    Most of a Variable's member variables can be set to be None. It mean
1362
    it is not available or will be specified later.
1363

1364
    Examples:
1365 1366
        In Static Graph Mode:

1367 1368
        .. code-block:: python

1369
            import paddle.fluid as fluid
1370
            cur_program = fluid.Program()
1371 1372 1373 1374
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1375

1376
        In Dygraph  Mode:
1377 1378 1379 1380 1381 1382 1383 1384 1385

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1386 1387
    """

1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402
    def __init__(
        self,
        block,
        type=core.VarDesc.VarType.LOD_TENSOR,
        name=None,
        shape=None,
        dtype=None,
        lod_level=None,
        capacity=None,
        persistable=None,
        error_clip=None,
        stop_gradient=False,
        is_data=False,
        need_check_feed=False,
        belong_to_optimizer=False,
1403
        **kwargs,
1404
    ):
Y
Yu Yang 已提交
1405 1406
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1407
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1408

Y
Yu Yang 已提交
1409
        if dtype is not None:
1410
            if not isinstance(dtype, core.VarDesc.VarType):
1411
                dtype = convert_np_dtype_to_dtype_(dtype)
1412

S
Steffy-zxf 已提交
1413 1414 1415 1416
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

1417 1418 1419
        if type == core.VarDesc.VarType.SPARSE_COO:
            lod_level = None

H
hong 已提交
1420 1421
        self.belong_to_optimizer = belong_to_optimizer

1422 1423 1424
        self.error_clip = error_clip

        is_new_var = False
1425
        self.desc = self.block.desc.find_var(name.encode())
1426

1427
        if self.desc is None:
1428
            self.desc = self.block.desc.var(name.encode())
1429
            is_new_var = True
1430

1431 1432 1433
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
1434 1435 1436 1437 1438
            raise ValueError(
                "Variable '{0}' has been created before. The "
                "previous type is {1}, the new type is {2}. They"
                " are not matched".format(self.name, self.desc.type(), type)
            )
1439

1440
        if shape is not None:
1441
            if is_new_var:
1442 1443 1444 1445 1446 1447
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1448 1449
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1450 1451
                        "matched.".format(self.name, old_shape, shape)
                    )
1452 1453 1454 1455 1456 1457
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
1458 1459 1460 1461 1462 1463
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous data type is {1}, the new "
                        "data type is {2}. They are not "
                        "matched.".format(self.name, old_dtype, dtype)
                    )
1464 1465 1466 1467 1468 1469

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
1470 1471 1472 1473 1474 1475
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous lod_level is {1}, the new "
                        "lod_level is {2}. They are not "
                        "matched".format(self.name, self.lod_level, lod_level)
                    )
1476 1477 1478 1479 1480 1481
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1482 1483
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1484
                        "persistable is {2}. They are not matched".format(
1485 1486 1487
                            self.name, self.persistable, persistable
                        )
                    )
1488

1489 1490
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1491

1492 1493 1494 1495 1496 1497 1498
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1499

1500 1501
        self.block.vars[name] = self
        self.op = None
1502
        self.stop_gradient = stop_gradient
1503
        self.is_data = is_data
Y
Yu Yang 已提交
1504

1505 1506
    def detach(self):
        """
U
ustiniankw 已提交
1507

1508
        Returns a new Variable, detached from the current graph.
1509 1510
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1511

1512
        Returns:
U
ustiniankw 已提交
1513
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable), The detached Variable.
1514 1515 1516 1517

        Examples:
            .. code-block:: python

1518
                import paddle
1519

1520 1521 1522 1523
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1524

1525 1526
                # create a detached Variable
                y = x.detach()
U
ustiniankw 已提交
1527

1528
        """
1529

1530 1531 1532 1533
        assert (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ), "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"
1534 1535 1536 1537 1538 1539

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
1540 1541
            stop_gradient=True,
        )
1542

1543 1544 1545
        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]}
        )
1546
        return output
1547

1548
    @fake_interface_only
1549
    def numpy(self):
1550
        """
J
Jiabin Yang 已提交
1551
        **Notes**:
T
tianshuo78520a 已提交
1552
            **This API is ONLY available in Dygraph mode**
1553

J
Jiabin Yang 已提交
1554
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1555 1556 1557 1558 1559

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1560
            ndarray: dtype is same as current Variable
1561 1562 1563 1564 1565 1566

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1567
                from paddle.fluid.dygraph import Linear
1568 1569 1570 1571
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1572
                    linear = Linear(32, 64)
1573
                    data = to_variable(data)
1574
                    x = linear(data)
1575 1576 1577
                    print(x.numpy())

        """
1578
        pass
1579

1580
    @fake_interface_only
1581
    def backward(self, retain_graph=False):
1582
        """
J
Jiabin Yang 已提交
1583
        **Notes**:
T
tianshuo78520a 已提交
1584
            **This API is ONLY available in Dygraph mode**
1585

1586
        Run backward of current Graph which starts from current Tensor.
1587

J
Jiabin Yang 已提交
1588
        Args:
1589 1590 1591 1592
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1593

J
Jiabin Yang 已提交
1594 1595
        Returns:
            NoneType: None
1596 1597 1598 1599 1600

        Examples:
            .. code-block:: python

                import numpy as np
1601 1602
                import paddle
                paddle.disable_static()
1603 1604

                x = np.ones([2, 2], np.float32)
1605 1606 1607 1608 1609 1610 1611
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1612 1613
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1614
                loss.backward()
1615 1616

        """
1617
        pass
1618

1619
    @fake_interface_only
1620
    def gradient(self):
1621
        """
J
Jiabin Yang 已提交
1622
        **Notes**:
T
tianshuo78520a 已提交
1623
            **This API is ONLY available in Dygraph mode**
1624 1625 1626

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1627
        Returns:
1628
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1629 1630 1631 1632

        Examples:
            .. code-block:: python

1633
                import paddle
1634 1635 1636
                import paddle.fluid as fluid
                import numpy as np

1637
                # example1: return ndarray
1638 1639 1640 1641 1642 1643 1644 1645
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
1646
                    loss2 = paddle.sum(ret2)
1647
                    loss2.backward()
1648 1649
                    print(loss2.gradient())

1650 1651
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
1652 1653 1654 1655 1656
                    embedding = paddle.nn.Embedding(
                        20,
                        32,
                        weight_attr='emb.w',
                        sparse=True)
1657 1658 1659 1660 1661 1662 1663
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1664
        """
1665
        pass
1666

1667
    @fake_interface_only
1668
    def clear_gradient(self):
1669
        """
J
Jiabin Yang 已提交
1670
        **Notes**:
T
tianshuo78520a 已提交
1671
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1672 1673

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1674

J
Jiabin Yang 已提交
1675
        Clear  (set to ``0`` ) the Gradient of Current Variable
1676 1677 1678 1679 1680 1681

        Returns:  None

        Examples:
            .. code-block:: python

1682
                import paddle
1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693
                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
1694
                    loss2 = paddle.sum(ret2)
1695
                    loss2.backward()
1696 1697 1698 1699 1700
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1701
        pass
X
Xin Pan 已提交
1702

1703 1704 1705 1706
    @fake_interface_only
    def register_hook(self, hook):
        pass

1707
    def __str__(self):
1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1724 1725
                import paddle
                import paddle.static as static
1726

1727 1728 1729
                paddle.enable_static()

                cur_program = static.Program()
1730 1731 1732 1733 1734 1735
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1736 1737
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1738 1739 1740 1741
        if (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ):
1742
            dtype_str = str(self.dtype).split('.')[1]
1743 1744 1745 1746 1747 1748 1749
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".format(
                name=self.name,
                type=type_str,
                shape=self.shape,
                dtype=dtype_str,
                stop_gradient=self.stop_gradient,
            )
1750
        else:
1751
            var_str = "{name} : {type})".format(name=self.name, type=type_str)
1752

1753
        if self.is_parameter:
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1764 1765 1766 1767
        from paddle.distributed.auto_parallel.dist_context import (
            get_default_distributed_context,
        )

1768
        dist_context = get_default_distributed_context()
1769 1770
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1771 1772 1773
            var_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_tensor
            )
1774

1775
        return var_str
Y
Yang Yang(Tony) 已提交
1776

F
update  
fengjiayi 已提交
1777
    def to_string(self, throw_on_error, with_details=False):
1778 1779 1780
        """
        Get debug string.

J
Jiabin Yang 已提交
1781 1782 1783 1784 1785
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1786

1787 1788
        Returns:
            str: The debug string.
1789 1790 1791 1792 1793

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1794
                import paddle
1795

1796
                paddle.enable_static()
1797 1798 1799 1800 1801
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1802
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1803
                print("=============with detail===============")
1804
                print(new_variable.to_string(True, True))
1805
        """
1806
        assert isinstance(throw_on_error, bool) and isinstance(
1807 1808
            with_details, bool
        )
1809
        protostr = self.desc.serialize_to_string()
1810
        proto = framework_pb2.VarDesc.FromString(bytes(protostr))
F
update  
fengjiayi 已提交
1811 1812
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1813
            additional_attr = ("error_clip",)
F
update  
fengjiayi 已提交
1814
            for attr_name in additional_attr:
1815
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
1816

F
update  
fengjiayi 已提交
1817
        return res_str
1818 1819 1820

    __repr__ = __str__

1821 1822 1823
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
1824

1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1848
    @property
1849
    def stop_gradient(self):
J
Jiabin Yang 已提交
1850 1851 1852
        """
        Indicating if we stop gradient from current Variable

1853
        **Notes: This Property has default value as** ``True`` **in** Dygraph **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``
J
Jiabin Yang 已提交
1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1865 1866
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1867 1868 1869
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1870 1871
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1872 1873 1874 1875
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1876
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1877 1878
                assert (out1.gradient() == 0).all()
        """
1879
        return self.desc.stop_gradient()
1880

1881 1882
    @stop_gradient.setter
    def stop_gradient(self, s):
1883
        self.desc.set_stop_gradient(s)
1884

1885 1886
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1887 1888 1889 1890 1891 1892 1893 1894
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

1895
            **2. In** Dygraph **mode, this property should not be changed**
J
Jiabin Yang 已提交
1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1908
        return self.desc.persistable()
1909

Y
Yu Yang 已提交
1910 1911
    @persistable.setter
    def persistable(self, p):
1912
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1913

1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1939 1940
    @property
    def name(self):
J
Jiabin Yang 已提交
1941 1942 1943
        """
        Indicating name of current Variable

1944
        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** Dygraph **mode. This is how we achieve Parameter sharing**
J
Jiabin Yang 已提交
1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1957
        return self.desc.name()
Y
Yu Yang 已提交
1958

1959 1960 1961 1962 1963 1964
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1965 1966
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1967

1968 1969 1970 1971 1972 1973
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
1974
          print(x.grad_name) # output is ``x@GRAD``
1975 1976 1977 1978

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1979 1980
    @name.setter
    def name(self, new_name):
1981
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1982

Y
Yu Yang 已提交
1983 1984
    @property
    def shape(self):
J
Jiabin Yang 已提交
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
2002
        # convert to tuple, make it as same as numpy API.
2003
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
2004 2005

    @property
F
fengjiayi 已提交
2006
    def dtype(self):
J
Jiabin Yang 已提交
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
2023
        return self.desc.dtype()
Y
Yu Yang 已提交
2024 2025 2026

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
2027 2028 2029 2030 2031 2032 2033 2034
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

2035
            **2. Don't support this property in** Dygraph **mode, it's value should be** ``0(int)``
J
Jiabin Yang 已提交
2036 2037 2038 2039

        Examples:
          .. code-block:: python

2040
            import paddle
J
Jiabin Yang 已提交
2041
            import paddle.fluid as fluid
2042 2043

            paddle.enable_static()
J
Jiabin Yang 已提交
2044 2045 2046 2047 2048 2049 2050
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
2051 2052
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
2053 2054
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
2055
        return self.desc.lod_level()
Y
Yu Yang 已提交
2056

Y
Yu Yang 已提交
2057 2058
    @property
    def type(self):
J
Jiabin Yang 已提交
2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
2075
        return self.desc.type()
Y
Yu Yang 已提交
2076

2077 2078 2079
    @property
    def T(self):
        """
U
ustiniankw 已提交
2080

2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
U
ustiniankw 已提交
2099

2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
2112 2113
            stop_gradient=False,
        )
2114 2115 2116 2117 2118
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
2119 2120 2121 2122 2123 2124 2125 2126 2127
            stop_gradient=False,
        )

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out], 'XShape': [input_shape]},
            attrs={'axis': perm},
        )
2128 2129
        return out

2130 2131 2132
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
2133
        Variable. It remains in the current graph, that is, the cloned Variable
2134 2135 2136 2137
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
U
ustiniankw 已提交
2138
            Variable, The cloned Variable.
2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
2158 2159
            stop_gradient=self.stop_gradient,
        )
2160

2161 2162 2163
        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]}
        )
2164 2165
        return output

W
Wu Yi 已提交
2166
    def _set_error_clip(self, error_clip):
2167
        """
U
ustiniankw 已提交
2168

2169 2170 2171 2172 2173 2174 2175
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
U
ustiniankw 已提交
2176

2177
        """
2178 2179
        self.error_clip = error_clip

2180 2181
    def _set_info(self, key, value):
        """
U
ustiniankw 已提交
2182

2183 2184 2185 2186 2187 2188
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

2189
        Returns:
2190
            None
U
ustiniankw 已提交
2191

2192 2193 2194 2195 2196 2197 2198
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
U
ustiniankw 已提交
2199

2200 2201 2202 2203 2204
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

2205
        Returns:
2206
            object
U
ustiniankw 已提交
2207

2208 2209 2210 2211 2212
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

2213 2214
    def _slice_indices(self, slice, length):
        """
U
ustiniankw 已提交
2215

2216
        Reference implementation for the slice.indices method.
U
ustiniankw 已提交
2217

2218 2219 2220 2221 2222 2223 2224 2225
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
2226
            raise ValueError("slice step can not be zero")
2227 2228 2229 2230 2231 2232 2233 2234 2235 2236

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
2237 2238 2239
            start = (
                max(start + length, lower) if start < 0 else min(start, upper)
            )
2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
2285 2286 2287
                if (index > 0 and index >= self.shape[index]) or (
                    index < 0 and (index + self.shape[index]) < 0
                ):
2288
                    raise IndexError("invalid index")
2289 2290 2291 2292 2293
                start = (
                    max(start + self.shape[index], 0)
                    if start < 0
                    else min(start, self.shape[index])
                )
2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2307
    def _cloneVar(self, copy=False):
2308 2309
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2310
                name=unique_name.generate_with_ignorable_key(self.name),
2311 2312
                dtype=self.dtype,
            )
2313 2314 2315 2316
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2317
        new_var = self._cloneVar()
2318 2319 2320 2321 2322 2323
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes, 'starts': starts, 'ends': ends},
        )
2324 2325 2326
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2327
        new_var = self._cloneVar()
2328 2329 2330 2331 2332 2333 2334 2335
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={
                'axis': axis,
            },
        )
2336 2337 2338 2339 2340
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2341
                return self._cloneVar(True)
2342 2343 2344 2345 2346 2347 2348
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
2349 2350 2351
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2352 2353 2354
                        start += step
                else:
                    while start > stop:
2355 2356 2357
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2358 2359 2360 2361
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2362
                return self._cloneVar(True)
2363
            index = int(item)
2364 2365 2366
            if (index > 0 and index >= self.shape[axis]) or (
                index < 0 and (index + self.shape[axis]) < 0
            ):
2367 2368 2369 2370 2371 2372
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2373
        return _getitem_impl_(self, item)
2374

2375
    def __setitem__(self, item, value):
2376
        return _setitem_impl_(self, item, value)
2377

2378 2379
    def get_value(self, scope=None):
        """
2380
        Get the value of variable in given scope.
2381 2382

        Args:
2383
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2384 2385 2386 2387
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
U
ustiniankw 已提交
2388
            Tensor, the value in given scope.
2389 2390 2391 2392 2393

        Examples:
            .. code-block:: python

                import paddle
2394
                import paddle.static as static
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
2419 2420
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file.
2421 2422
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
2423

2424 2425
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2426 2427 2428 2429
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2430 2431 2432 2433 2434

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
2435 2436 2437
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2438 2439 2440 2441 2442
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
U
ustiniankw 已提交
2443

2444
        Set the value to the tensor in given scope.
2445 2446 2447

        Args:
            value(Tensor/ndarray) : The value to be set.
2448
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2449 2450 2451 2452 2453
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
2454

2455 2456 2457 2458
        Examples:
            .. code-block:: python

                import paddle
2459
                import paddle.static as static
2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
U
ustiniankw 已提交
2483

2484 2485 2486
        '''

        # The 'framework' is a low-level module, and 'executor'
2487
        # can not be imported at the begainning of this file.
2488 2489 2490 2491 2492
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
2493 2494 2495 2496
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".format(
                    type(value)
                )
            )
2497 2498 2499

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2500 2501 2502 2503
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2504 2505 2506 2507 2508 2509

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
2510 2511 2512
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2513 2514 2515 2516 2517 2518 2519 2520 2521 2522

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
2523 2524 2525 2526
                    "{} expected a shape {}, but the received shape is {}.".format(
                        self.name, list(t.shape()), list(value_shape)
                    )
                )
2527 2528 2529 2530 2531 2532 2533 2534 2535 2536

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2537 2538 2539 2540
        elif p.is_npu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.NPUPlace(p.npu_device_id())
2541 2542 2543 2544
        elif p.is_mlu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.MLUPlace(p.mlu_device_id())
2545 2546 2547 2548 2549 2550 2551
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2552 2553
    def size(self):
        """
U
ustiniankw 已提交
2554

2555 2556 2557
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
U
ustiniankw 已提交
2558
            Variable, the number of elements for current Variable
2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
U
ustiniankw 已提交
2572

2573 2574 2575 2576
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
2577 2578
            dtype=core.VarDesc.VarType.INT64,
        )
2579

2580 2581 2582
        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]}
        )
2583 2584
        return output

2585 2586
    def _set_attr(self, name, val):
        """
U
ustiniankw 已提交
2587

2588 2589 2590 2591 2592
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
U
ustiniankw 已提交
2593

2594 2595 2596 2597 2598
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
U
ustiniankw 已提交
2599

2600 2601 2602 2603 2604 2605
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2606 2607
            bool, True if has this attribute.

2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

2629
    def attr(self, name):
2630 2631 2632 2633 2634 2635 2636
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2637
            int|str|list, The attribute value. The return value
2638 2639 2640 2641 2642
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
2643
    def dist_attr(self):
2644
        """
2645
        Get distributed attribute of this Variable.
2646
        """
2647
        return self.desc.dist_attr
2648

2649 2650
    @dist_attr.setter
    def dist_attr(self, dist_attr):
2651
        """
2652
        Set distributed attribute of this Variable.
2653
        """
2654
        self.desc.dist_attr = dist_attr
2655

Y
Yu Yang 已提交
2656

F
fengjiayi 已提交
2657 2658 2659
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2660

2661 2662
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2663 2664 2665 2666
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2667
        op_proto = framework_pb2.OpProto.FromString(bytes(pbstr))
F
fengjiayi 已提交
2668 2669 2670 2671
        ret_values.append(op_proto)
    return ret_values


2672
class OpProtoHolder:
2673 2674 2675 2676
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2677 2678 2679 2680 2681 2682 2683 2684
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
2685 2686
            self.__class__, '_instance'
        ), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2687 2688 2689 2690 2691 2692
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2693 2694 2695 2696 2697 2698 2699 2700
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2701 2702
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2703 2704
        return self.op_proto_map[type]

2705 2706
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2707
        custom_op_names = []
2708 2709 2710
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2711 2712 2713
                custom_op_names.append(proto.type)

        return custom_op_names
2714

2715 2716 2717 2718
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2719
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2720
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2721
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
2722
            core.op_proto_and_checker_maker.kOpDeviceAttrName(),
2723 2724
        }

F
fengjiayi 已提交
2725

2726
class Operator:
2727
    """
2728 2729 2730 2731 2732 2733 2734
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2735
        type(str): The type of operator. Default None.
2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2756
        Block.append_op or Block._prepend_op instead.
2757 2758 2759 2760

    Examples:
        .. code-block:: python

2761
            import paddle.fluid as fluid
2762
            cur_program = fluid.Program()
2763 2764 2765 2766 2767
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2768
    """
2769

2770
    OP_WITHOUT_KERNEL_SET = {
2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801
        'feed',
        'fetch',
        'recurrent',
        'go',
        'rnn_memory_helper_grad',
        'conditional_block',
        'while',
        'send',
        'recv',
        'listen_and_serv',
        'fl_listen_and_serv',
        'ncclInit',
        'select',
        'checkpoint_notify',
        'gen_bkcl_id',
        'c_gen_bkcl_id',
        'gen_nccl_id',
        'c_gen_nccl_id',
        'c_comm_init',
        'c_sync_calc_stream',
        'c_sync_comm_stream',
        'queue_generator',
        'dequeue',
        'enqueue',
        'heter_listen_and_serv',
        'c_wait_comm',
        'c_wait_compute',
        'c_gen_hccl_id',
        'c_comm_init_hccl',
        'copy_cross_scope',
        'c_gen_cncl_id',
2802
    }
2803

2804 2805 2806
    def __init__(
        self, block, desc, type=None, inputs=None, outputs=None, attrs=None
    ):
2807 2808 2809 2810 2811 2812 2813 2814 2815 2816
        # read attr type index from op proto to avoid unexpected type
        # conversions, e.g. narrowing conversion like double to float
        try:
            proto = OpProtoHolder.instance().get_op_proto(type)
            self._attr_types = {}
            for attr in proto.attrs:
                self._attr_types[attr.name] = attr.type
        except ValueError:
            pass

J
Jiabin Yang 已提交
2817
        if _non_static_mode():
2818 2819
            if type is None:
                raise ValueError(
2820 2821
                    "`type` to initialized an Operator can not be None."
                )
J
Jiabin Yang 已提交
2822
            self._type = type
M
minqiyang 已提交
2823
            self.attrs = attrs if attrs else {}
2824 2825 2826 2827 2828 2829 2830 2831 2832 2833
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

2834
            # attr for static graph mode cuda graph
2835 2836
            self._cuda_graph_attr = _current_cuda_graph_mode

2837 2838 2839
            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
2840
                op_attrs[
2841 2842
                    op_maker.kOpRoleAttrName()
                ] = self.block.program._op_role
2843 2844

            role_var_name = op_maker.kOpRoleVarAttrName()
2845 2846 2847 2848
            if (
                len(self.block.program._op_role_var) != 0
                and role_var_name not in op_attrs
            ):
2849
                op_attrs[role_var_name] = self.block.program._op_role_var
2850 2851 2852 2853 2854

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2855 2856 2857 2858 2859
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2860 2861 2862
                return
            if type is None:
                raise ValueError(
2863 2864
                    "`type` to initialized an Operator can not be None."
                )
2865 2866
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2867 2868 2869
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
2870
                        '  File "{}", line {}, in {}'.format(
2871 2872 2873 2874 2875 2876
                            frame[0], frame[1], frame[2]
                        )
                    )
                    op_attrs[callstack_var_name].append(
                        '    {}'.format(frame[3])
                    )
2877 2878 2879 2880 2881 2882 2883

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2884 2885 2886 2887 2888 2889 2890 2891
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
2892 2893 2894
                    warnings.warn(
                        "The Op(%s) is not support to set device." % type
                    )
2895
                if 'force_cpu' in op_attrs:
2896
                    if (
2897 2898
                        type == 'less_than'
                        and op_attrs['force_cpu'] is not None
2899
                    ) or op_attrs['force_cpu'] != False:
2900 2901 2902
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
2903 2904
                            "used at the same time." % type
                        )
2905
            if _current_pipeline_stage is not None:
2906 2907 2908 2909 2910
                pipeline_attr_name = (
                    'pipeline_stage' + core.kAutoParallelSuffix()
                )
                self._update_desc_attr(
                    pipeline_attr_name, _current_pipeline_stage
2911
                )
2912

2913 2914 2915 2916 2917 2918 2919 2920 2921
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
2922 2923 2924
                    assert (
                        found or in_proto.dispensable
                    ), "Input {} not found".format(in_proto.name)
2925 2926
                    if found:
                        in_args = inputs[in_proto.name]
2927
                        if not isinstance(in_args, (list, tuple)):
2928 2929 2930 2931
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
2932 2933
                                % (in_proto.name, len(in_args))
                            )
2934
                        in_arg_names = []
2935
                        for index, arg in enumerate(in_args):
2936
                            if isinstance(arg, str):
2937
                                in_arg_names.append(arg)
2938
                            elif isinstance(arg, bytes):
2939
                                in_arg_names.append(arg.decode())
2940
                            elif isinstance(arg, (Variable, core.VarBase)):
2941
                                in_arg_names.append(arg.name)
2942
                            else:
2943
                                raise TypeError(
2944 2945
                                    f"The type of '%{in_proto.name}' in operator {type} should be "
                                    f"one of [str, bytes, Variable]. but received : {arg}"
2946
                                )
2947 2948 2949 2950 2951 2952 2953 2954 2955
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
2956
                        raise ValueError(
2957 2958 2959 2960 2961 2962
                            (
                                "Incorrect setting for output(s) of "
                                "operator \"%s\", should set: [%s]."
                            )
                            % (type, m.name)
                        )
2963 2964 2965 2966 2967 2968 2969 2970 2971
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
2972 2973
                            % (out_proto.name, len(out_args))
                        )
2974 2975
                    out_arg_names = []
                    for arg in out_args:
2976
                        if isinstance(arg, str):
2977 2978
                            out_arg_names.append(arg)
                        else:
2979
                            out_arg_names.append(arg.name)
2980
                        # TODO(minqiyang): could we remove variable's op in static graph mode?
J
Jiabin Yang 已提交
2981
                        if not _non_static_mode():
2982
                            if isinstance(arg, str):
2983 2984 2985
                                block.var(arg).op = self
                            else:
                                arg.op = self
2986 2987
                    self.desc.set_output(out_proto.name, out_arg_names)

2988
            extra_attrs_map = core.get_op_extra_attrs(type)
2989 2990 2991 2992 2993
            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
2994 2995 2996
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
2997 2998 2999
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)
3000
                for attr_name in extra_attrs_map.keys():
3001 3002 3003 3004 3005 3006
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
                        self._update_desc_attr(
                            attr_name, extra_attrs_map[attr_name]
                        )
3007 3008
                    else:
                        self._update_desc_attr(attr_name, op_attrs[attr_name])
3009

J
jianghaicheng 已提交
3010 3011
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
3012
                if global_ipu_index >= 0:
3013 3014 3015
                    self._update_desc_attr(
                        ipu_index_attr_name, global_ipu_index
                    )
3016
                if global_ipu_stage >= 0:
3017 3018 3019
                    self._update_desc_attr(
                        ipu_stage_attr_name, global_ipu_stage
                    )
J
jianghaicheng 已提交
3020

3021 3022 3023 3024 3025
            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
3026
    def _has_kernel(self, op_type):
3027 3028
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
3029
    def to_string(self, throw_on_error):
3030
        """
3031 3032
        Get debug string.

3033
        Args:
3034 3035
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
3036

3037 3038
        Returns:
            str: The debug string.
3039 3040

        """
3041
        protostr = self.desc.serialize_to_string()
3042
        proto = framework_pb2.OpDesc.FromString(bytes(protostr))
Y
Yang Yang(Tony) 已提交
3043 3044
        return _debug_string_(proto, throw_on_error)

3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3077
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3078 3079
            type(skip_op_callstack)
        )
3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

3106 3107 3108
            attr_type = self.desc.attr_type(name, True)
            if attr_type == core.AttrType.VAR:
                attr_var_name = self.desc.attr(name, True).name()
3109 3110 3111
                a = "{name} = Var['{value}']".format(
                    name=name, type=attr_type, value=attr_var_name
                )
3112 3113 3114 3115 3116 3117 3118 3119 3120 3121
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.VARS:
                attr_var_names = [
                    "'%s'" % var.name() for var in self.desc.attr(name, True)
                ]
                a = "{name} = Vars[{value}]".format(
3122 3123
                    name=name, type=attr_type, value=','.join(attr_var_names)
                )
3124 3125 3126 3127 3128
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3129 3130
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
3131 3132
                    name=name, type=attr_type, value=self._block_attr_id(name)
                )
3133 3134 3135 3136 3137 3138 3139
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
3140 3141
                    name=name, type=attr_type, value=self._blocks_attr_ids(name)
                )
3142 3143 3144 3145 3146
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3147
            # it is bytes of serialized protobuf
3148 3149 3150 3151 3152
            if (
                is_compiled_with_cinn()
                and self.type == 'cinn_launch'
                and name == 'compilation_key'
            ):
3153 3154
                key = self.desc.attr(name)
                v = core.get_serialize_comile_key(key)
3155 3156 3157 3158 3159 3160 3161 3162 3163
                prog = Program()
                prog = prog.parse_from_string(v)
                s = prog._to_readable_code()
                lines = s.split('\n')
                value = '\n'.join(['      ' + line for line in lines])
                value = '\n' + value
            else:
                value = self.desc.attr(name)

3164 3165 3166
            a = "{name} = {value}".format(
                name=name, type=attr_type, value=value
            )
3167

3168 3169 3170 3171
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

3172 3173 3174 3175
        from paddle.distributed.auto_parallel.dist_context import (
            get_default_distributed_context,
        )

3176
        dist_context = get_default_distributed_context()
3177 3178
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
3179 3180 3181
            attrs_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_op
            )
3182

3183
        if outputs_str != "{}":
3184 3185 3186 3187 3188 3189
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".format(
                outputs=outputs_str,
                op_type=self.type,
                inputs=inputs_str,
                attrs=attrs_str,
            )
3190
        else:
3191 3192 3193
            op_str = "{op_type}(inputs={inputs}, {attrs})".format(
                op_type=self.type, inputs=inputs_str, attrs=attrs_str
            )
3194 3195
        return op_str

Y
Yang Yang(Tony) 已提交
3196
    def __str__(self):
3197
        return self._to_readable_code()
3198 3199 3200

    __repr__ = __str__

F
fengjiayi 已提交
3201 3202
    @property
    def type(self):
3203
        return self.desc.type()
F
fengjiayi 已提交
3204 3205

    def input(self, name):
3206
        r"""
U
ustiniankw 已提交
3207

3208
        Get the input arguments according to the input parameter name.
3209

3210 3211
        Args:
            name(str): The input parameter name.
3212

3213
        Returns:
U
ustiniankw 已提交
3214
            list, return the list of argument names that associated with \
3215
                the specific parameter name.
U
ustiniankw 已提交
3216

3217
        """
F
fengjiayi 已提交
3218 3219
        return self.desc.input(name)

W
Wu Yi 已提交
3220
    def _rename_input(self, old_name, new_name):
3221 3222 3223 3224 3225 3226 3227 3228 3229 3230
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
3231
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
3232

W
Wu Yi 已提交
3233
    def _rename_output(self, old_name, new_name):
3234 3235 3236 3237 3238 3239 3240 3241 3242 3243
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
3244
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
3245

F
fengjiayi 已提交
3246 3247 3248 3249
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
3250 3251 3252 3253 3254 3255 3256 3257
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
3258
    def output(self, name):
3259
        r"""
3260
        Get output arguments by the output parameter name.
3261

3262 3263
        Args:
            name(str): The output parameter name.
3264

3265 3266 3267
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
3268
        """
F
fengjiayi 已提交
3269 3270 3271 3272 3273 3274
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

3275 3276 3277 3278 3279 3280
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
3281 3282
            "Can't find op itself in it's block. It could be a bug of Paddle."
        )
3283

F
fengjiayi 已提交
3284
    def has_attr(self, name):
3285
        """
3286 3287
        Whether this Operator has the attribute with name or not.

3288
        Args:
3289
            name(str): the attribute name.
3290

3291 3292
        Returns:
            bool: True if has this attribute.
3293 3294

        """
F
fengjiayi 已提交
3295 3296 3297
        return self.desc.has_attr(name)

    def attr_type(self, name):
3298
        """
3299
        Get the type of attribute by attribute's name.
3300

3301 3302
        Args:
            name(str): the attribute name.
3303

3304 3305
        Returns:
            core.AttrType: the attribute type.
3306
        """
3307
        return self.desc.attr_type(name, True)
F
fengjiayi 已提交
3308

W
Wu Yi 已提交
3309
    def _set_attr(self, name, val):
3310 3311 3312 3313 3314 3315 3316 3317 3318 3319
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
3320 3321
        self._update_desc_attr(name, val)

3322 3323 3324
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
3336 3337 3338 3339 3340
        if isinstance(val, Variable):
            self.desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            self.desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
Q
Qiyang Min 已提交
3341
            self.desc.set_block_attr(name, val.desc)
3342
        elif isinstance(val, list) and val and _all_is_type(val, Block):
3343
            self.desc.set_blocks_attr(name, [v.desc for v in val])
3344 3345 3346
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
Q
Qiyang Min 已提交
3347 3348
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384
            self._update_desc_plain_attr(name, val)

    def _update_desc_plain_attr(self, name, val):
        desc = self.desc
        if not hasattr(self, "_attr_types") or (name not in self._attr_types):
            desc._set_attr(name, val)
            return

        type_index = self._attr_types[name]
        if type_index == core.AttrType.BOOL:
            desc._set_bool_attr(name, val)
        elif type_index == core.AttrType.INT:
            desc._set_int32_attr(name, val)
        elif type_index == core.AttrType.LONG:
            desc._set_int64_attr(name, val)
        elif type_index == core.AttrType.FLOAT:
            desc._set_float32_attr(name, val)
        # elif type_index == core.AttrType.FLOAT64:
        #     desc._set_float64_attr(name, val)
        elif type_index == core.AttrType.STRING:
            desc._set_str_attr(name, val)
        elif type_index == core.AttrType.BOOLS:
            desc._set_bools_attr(name, val)
        elif type_index == core.AttrType.INTS:
            desc._set_int32s_attr(name, val)
        elif type_index == core.AttrType.LONGS:
            desc._set_int64s_attr(name, val)
        elif type_index == core.AttrType.FLOATS:
            desc._set_float32s_attr(name, val)
        elif type_index == core.AttrType.FLOAT64S:
            desc._set_float64s_attr(name, val)
        elif type_index == core.AttrType.STRINGS:
            desc._set_strs_attr(name, val)
        else:
            # defaults to old methods
            desc._set_attr(name, val)
Y
yuyang18 已提交
3385

F
fengjiayi 已提交
3386 3387
    @property
    def attr_names(self):
3388
        return self.desc.attr_names(True)
F
fengjiayi 已提交
3389 3390

    def attr(self, name):
3391
        """
3392 3393
        Get the attribute by name.

3394
        Args:
3395
            name(str): the attribute name.
3396

3397 3398
        Returns:
            bool|int|str|float|list: The attribute value. The return value
3399 3400
            can be any valid attribute type.
        """
F
fengjiayi 已提交
3401
        return self.desc.attr(name)
Y
Yu Yang 已提交
3402

W
Wu Yi 已提交
3403
    def _block_attr_id(self, name):
3404
        """
G
gongweibao 已提交
3405
        Get the block attribute's id by name.
3406

3407 3408
        Args:
            name(str): the attribute name.
3409

3410 3411
        Returns:
            int: the block index.
3412
        """
W
Wu Yi 已提交
3413
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
3414

W
Wu Yi 已提交
3415
    def _block_attr(self, name):
G
gongweibao 已提交
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
3426
        id = self._block_attr_id(name)
3427
        assert id >= 0 and id < len(self.block.program.blocks)
G
gongweibao 已提交
3428 3429
        return self.block.program.blocks[id]

W
Wu Yi 已提交
3430
    def _blocks_attr(self, name):
G
gongweibao 已提交
3431 3432 3433 3434 3435 3436 3437 3438 3439 3440
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
3441
        for i in self._blocks_attr_ids(name):
3442
            assert i >= 0 and i < len(self.block.program.blocks)
G
gongweibao 已提交
3443 3444 3445 3446
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
3447
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
3448 3449 3450 3451 3452 3453 3454 3455 3456 3457
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
3458
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
3459

3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470
    def _var_attr(self, name):
        """
        Get the Variable attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variable: the Variable attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3471 3472 3473 3474 3475
        assert (
            attr_type == core.AttrType.VAR
        ), "Required type attr({}) is Variable, but received {}".format(
            name, attr_type
        )
3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
        attr_var_name = self.desc.attr(name, True).name()
        return self.block._var_recursive(attr_var_name)

    def _vars_attr(self, name):
        """
        Get the Variables attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variables: the Variables attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3490 3491 3492 3493 3494
        assert (
            attr_type == core.AttrType.VARS
        ), "Required type attr({}) is list[Variable], but received {}".format(
            name, attr_type
        )
3495 3496 3497 3498 3499 3500
        attr_vars = [
            self.block._var_recursive(var.name())
            for var in self.desc.attr(name, True)
        ]
        return attr_vars

J
JiayiFeng 已提交
3501
    def all_attrs(self):
F
fengjiayi 已提交
3502
        """
3503 3504 3505
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3506
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3507 3508 3509 3510
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
3511
            attr_type = self.desc.attr_type(n, True)
G
gongweibao 已提交
3512
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3513
                attr_map[n] = self._block_attr(n)
3514
            elif attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3515
                attr_map[n] = self._blocks_attr(n)
3516 3517 3518 3519 3520 3521
            elif attr_type == core.AttrType.VAR:
                attr_map[n] = self._var_attr(n)
            elif attr_type == core.AttrType.VARS:
                attr_map[n] = self._vars_attr(n)
            else:
                attr_map[n] = self.attr(n)
G
gongweibao 已提交
3522

F
fengjiayi 已提交
3523 3524
        return attr_map

3525 3526 3527
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3528 3529 3530 3531

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3532 3533 3534
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3535 3536 3537 3538 3539 3540 3541 3542

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3543 3544
            return False

3545 3546 3547 3548 3549 3550
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3551
    @property
3552
    def dist_attr(self):
3553
        """
3554
        Get distributed attribute of this Variable.
3555
        """
3556
        return self.desc.dist_attr
3557

3558 3559
    @dist_attr.setter
    def dist_attr(self, dist_attr):
3560
        """
3561
        Set distributed attribute of this Variable.
3562
        """
3563
        self.desc.dist_attr = dist_attr
3564

Y
Yu Yang 已提交
3565

3566
class Block:
3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3581
        use `Program._create_block()` to create a block.
3582 3583 3584 3585

    Examples:
        .. code-block:: python

3586 3587 3588
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3589 3590 3591 3592 3593 3594 3595 3596 3597
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3598
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3599
        self.desc = program.desc.block(idx)
3600
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3601
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3602
        self.program = program
3603
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
3604

3605
    def __str__(self):
3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3640
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3641 3642
            type(skip_op_callstack)
        )
3643 3644 3645 3646 3647 3648 3649
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
3650 3651
                op._to_readable_code(skip_op_callstack)
            )
3652 3653
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3654

F
fengjiayi 已提交
3655 3656
    def to_string(self, throw_on_error, with_details=False):
        """
3657 3658
        Get debug string.

F
fengjiayi 已提交
3659 3660
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3661
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3662
            with_details(bool): more details about variables and parameters
3663 3664
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3665

3666 3667
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3668
        """
3669
        assert isinstance(throw_on_error, bool) and isinstance(
3670 3671
            with_details, bool
        )
F
fengjiayi 已提交
3672
        if with_details:
F
fengjiayi 已提交
3673
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3674
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
3675 3676 3677
                self.idx,
                self.parent_idx,
            )
3678
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3679
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
3680 3681
                    r"\n    \1", var.to_string(throw_on_error, with_details)
                )
F
fengjiayi 已提交
3682
            for op in self.ops:
F
fengjiayi 已提交
3683
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
3684 3685
                    r"\n    \1", op.to_string(throw_on_error)
                )
F
fengjiayi 已提交
3686 3687 3688
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3689
            proto = framework_pb2.BlockDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
3690 3691
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3692 3693 3694

    __repr__ = __str__

Y
Yu Yang 已提交
3695 3696
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3697
        return self.desc.parent
Y
Yu Yang 已提交
3698

Y
Yu Yang 已提交
3699 3700 3701 3702
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3703
    def _set_forward_block_idx(self, idx):
3704 3705 3706 3707 3708 3709 3710 3711 3712
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3713
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3714

3715 3716 3717 3718 3719 3720 3721 3722
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3723 3724
    @property
    def idx(self):
Y
Yu Yang 已提交
3725
        return self.desc.id
Y
Yu Yang 已提交
3726

Q
Qiao Longfei 已提交
3727
    def var(self, name):
3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3741
        if not isinstance(name, str):
M
minqiyang 已提交
3742
            raise TypeError(
3743 3744 3745
                "var require string as parameter, but get %s instead."
                % (type(name))
            )
Y
Yu Yang 已提交
3746 3747
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3748
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3749
        return v
Q
Qiao Longfei 已提交
3750

X
Xin Pan 已提交
3751
    def _find_var_recursive(self, name):
3752 3753 3754 3755 3756 3757 3758
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3759
            Variable: the Variable with the giving name. Or None if not found.
3760
        """
Y
Yu Yang 已提交
3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3785
        return None
Y
Yu Yang 已提交
3786

X
Xin Pan 已提交
3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3806

Q
Qiao Longfei 已提交
3807
    def all_parameters(self):
3808
        return list(self.iter_parameters())
3809

3810
    def iter_parameters(self):
3811 3812 3813 3814 3815
        return (
            item[1]
            for item in self.vars.items()
            if isinstance(item[1], Parameter)
        )
Q
Qiao Longfei 已提交
3816

Y
Yu Yang 已提交
3817
    def create_var(self, *args, **kwargs):
J
Jiabin Yang 已提交
3818
        if _non_static_mode():
L
Leo Chen 已提交
3819 3820
            var = _varbase_creator(*args, **kwargs)
        else:
3821 3822 3823
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3824
        return var
Y
Yu Yang 已提交
3825

Q
Qiao Longfei 已提交
3826 3827 3828
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3829
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3830 3831
        """
        Rename variable in vars and ops' inputs and outputs
3832 3833

        Args:
3834 3835
            name(str|bytes): the name that need to be renamed.
            new_name(str|bytes): the name that need to rename to.
3836 3837 3838 3839 3840 3841 3842 3843

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3844
        """
3845 3846
        # Ensure the type of name and new_name is str
        name = name.decode() if isinstance(name, bytes) else name
3847 3848 3849
        new_name = (
            new_name.decode() if isinstance(new_name, bytes) else new_name
        )
M
minqiyang 已提交
3850

T
typhoonzero 已提交
3851
        if not self.has_var(name):
3852
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3853 3854
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3855
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3856 3857 3858 3859 3860 3861
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3862
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3863 3864 3865 3866
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3867
        orig_var_type = v.type
3868
        self.desc._rename_var(name.encode(), new_name.encode())
W
Wu Yi 已提交
3869
        # NOTE: v is destroyed by C++ after calling _rename_var.
3870
        d = self.desc.find_var(new_name.encode())
T
typhoonzero 已提交
3871
        if var_type == "Parameter":
L
Leo Chen 已提交
3872
            if in_dygraph_mode():
3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883
                var = EagerParamBase(
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
3884
            else:
姜永久 已提交
3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896
                var = Parameter(
                    self,
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
T
typhoonzero 已提交
3897
        elif var_type == "Variable":
3898 3899 3900 3901 3902 3903 3904
            var = Variable(
                self,
                type=orig_var_type,
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient,
            )
T
wip  
typhoonzero 已提交
3905

W
Wu Yi 已提交
3906
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3907 3908 3909
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3910
        self._sync_with_cpp()
3911
        return var
T
typhoonzero 已提交
3912

3913 3914 3915
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
3916
        self.desc._remove_var(name.encode())
3917 3918
        del self.vars[name]

Y
Yu Yang 已提交
3919 3920
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3921
        param = None
L
Leo Chen 已提交
3922
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3923
            param = EagerParamBase(*args, **kwargs)
L
Leo Chen 已提交
3924
        else:
姜永久 已提交
3925
            param = Parameter(global_block, *args, **kwargs)
3926

3927
        if 'initializer' in kwargs:
3928 3929 3930 3931 3932

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3933
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3934
                        # are treated as initialization ops that cause error.
3935
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3936 3937
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
3938 3939 3940
                            "c_broadcast",
                            "c_sync_comm_stream",
                            "coalesce_tensor",
3941
                        ]:
3942
                            continue
3943 3944 3945 3946 3947 3948 3949
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
3950 3951 3952 3953 3954 3955
                raise RuntimeError(
                    "param "
                    + param.name
                    + " is inited by multiple init ops "
                    + str(init_ops)
                )
3956
            elif init_ops_len == 1:
3957
                # TODO already inited, do nothing, should log a warning
3958 3959 3960
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3961
        return param
Y
Yu Yang 已提交
3962

Y
Yu Yang 已提交
3963
    def append_op(self, *args, **kwargs):
3964 3965 3966 3967 3968 3969
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
J
Jiabin Yang 已提交
3970
        if _non_static_mode():
3971
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
3972
            inplace_map = kwargs.get("inplace_map", None)
J
Jiabin Yang 已提交
3973
            type = kwargs.get("type", None)
3974 3975 3976
            warnings.warn(
                "Op `%s` is executed through `append_op` under the dynamic mode, "
                "the corresponding API implementation needs to be upgraded to "
3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987
                "using `_C_ops` method." % type,
                DeprecationWarning,
            )
            op = Operator(
                block=self,
                desc=None,
                type=type,
                inputs=None,
                outputs=None,
                attrs=attrs,
            )
3988

M
minqiyang 已提交
3989 3990
            # record ops in tracer rather than blocks
            #
3991
            # TODO(minqiyang): add op stop_gradient support in static graph mode too.
L
lujun 已提交
3992
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3993

3994 3995 3996 3997 3998 3999 4000 4001
            _dygraph_tracer().trace_op(
                type,
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
                inplace_map,
            )
M
minqiyang 已提交
4002
        else:
4003 4004
            from paddle.fluid.dygraph.base import param_guard

4005
            op_desc = self.desc.append_op()
4006 4007 4008 4009 4010 4011
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
4012 4013 4014 4015 4016 4017 4018 4019
                op = Operator(
                    block=self,
                    desc=op_desc,
                    type=kwargs.get("type", None),
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None),
                )
4020

M
minqiyang 已提交
4021
            self.ops.append(op)
M
minqiyang 已提交
4022

4023 4024
        return op

W
Wu Yi 已提交
4025
    def _insert_op(self, index, *args, **kwargs):
4026 4027 4028 4029 4030 4031 4032 4033 4034
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
4035
        self._sync_with_cpp()
F
fangshuixun007 已提交
4036
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
4037

4038 4039
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
4040
        Insert an Operator according to the giving arguments,
4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
4055 4056 4057 4058 4059 4060 4061 4062 4063
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
4064 4065
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
4066
        self.desc._remove_op(index, index + 1)
4067 4068
        del self.ops[index]

W
Wu Yi 已提交
4069
    def _slice_ops(self, start, end):
4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
4080
        return self.ops[start:end]
Y
Yancey1989 已提交
4081

W
Wu Yi 已提交
4082
    def _prepend_op(self, *args, **kwargs):
J
Jiabin Yang 已提交
4083
        if _non_static_mode():
J
Jiabin Yang 已提交
4084 4085
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096
            op = Operator(
                self, None, type=type, inputs=None, outputs=None, attrs=attrs
            )

            _dygraph_tracer().trace_op(
                type,
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
            )
M
minqiyang 已提交
4097
        else:
4098
            op_desc = self.desc._prepend_op()
4099 4100 4101 4102 4103 4104 4105 4106
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None),
            )
M
minqiyang 已提交
4107
            self.ops.insert(0, op)
4108

Y
Yu Yang 已提交
4109 4110
        return op

W
Wu Yi 已提交
4111
    def _sync_with_cpp(self):
4112
        """
4113 4114
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
4115
        """
Q
Qiao Longfei 已提交
4116 4117 4118
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
4119 4120 4121 4122
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
4123 4124 4125 4126 4127 4128 4129 4130
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient,
                    )
4131
                else:
4132 4133 4134 4135 4136 4137
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient,
                    )
Q
Qiao Longfei 已提交
4138

4139
        # sync variables removed from c++ end
4140
        for var in list(self.vars.keys()):
4141
            if not self.desc.find_var(var.encode()):
4142 4143
                self.vars.pop(var)

Q
Qiao Longfei 已提交
4144
        # sync operators from cpp
4145 4146 4147 4148
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
4165 4166 4167 4168 4169

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
4170
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
4171 4172 4173 4174 4175 4176 4177

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

4178 4179 4180 4181 4182
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
4183 4184 4185 4186 4187 4188
                self.ops
            ) and ops_in_cpp_index < len(ops_in_cpp):
                if (
                    self.ops[ops_in_python_index].desc
                    != ops_in_cpp[ops_in_cpp_index]
                ):
4189 4190 4191 4192 4193
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
4194 4195 4196 4197
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
4198
    def _copy_param_info_from(self, other):
4199
        """
4200 4201
        Copy the information of parameters from the other block.

4202
        Args:
4203 4204 4205 4206 4207
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
4208 4209 4210 4211 4212

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
4213
            raise TypeError(
4214 4215
                "_copy_param_info_from should be invoked with Block"
            )
4216
        for p in other.iter_parameters():
4217 4218 4219
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
4220 4221
                # if the Parameter is pruned, v may be None
                continue
4222
            assert isinstance(v, Variable)
4223
            new_p = None
L
Leo Chen 已提交
4224
            if in_dygraph_mode():
4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236
                new_p = EagerParamBase(
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4237
            else:
姜永久 已提交
4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252
                new_p = Parameter(
                    block=self,
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR
                    else None,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4253 4254
            self.vars[new_p.name] = new_p

4255
    def _clone_variable(self, var, force_persistable=True):
4256 4257
        """
        Clone a variable into current block.
4258

4259 4260
        Args:
            var: the variable to be cloned.
4261 4262 4263
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
4264 4265

        Returns:
4266
            Variable: the new  variable cloned from 'var' in current block.
4267 4268
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
4269 4270 4271
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
4272 4273 4274
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
tangwei12 已提交
4275
        elif var.type == core.VarDesc.VarType.RAW:
4276 4277 4278
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
typhoonzero 已提交
4279 4280 4281 4282 4283 4284
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
4285
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4286
                is_data=var.is_data,
4287 4288
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4289 4290 4291 4292 4293 4294 4295
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
4296
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4297
                is_data=var.is_data,
4298 4299
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4300
        return ret_var
4301

Y
Yu Yang 已提交
4302

4303 4304 4305 4306
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
4307
# of some old Python Variables(all old Python Operators) may have
4308
# been destructed.
4309 4310 4311
def _apply_pass(
    main_program, startup_program, pass_name, pass_attrs={}, pass_attr_types={}
):
4312 4313 4314 4315
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
4316 4317 4318 4319 4320 4321 4322
    attrs = core.apply_pass(
        tmp_main_program,
        tmp_startup_program,
        pass_name,
        pass_attrs,
        pass_attr_types,
    )
4323 4324 4325 4326 4327
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


4328
class IrNode:
4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4340 4341 4342
        assert isinstance(
            node, core.Node
        ), 'node must be the instance of core.Node.'
4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

4424
    def remove_input_by_id(self, node_id):
4425 4426 4427 4428 4429 4430
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4431
        self.node.remove_input(node_id)
4432

4433
    def remove_input(self, node):
4434 4435 4436 4437
        """
        Remove a node from inputs.

        Args:
4438
            node(IrNode): the node being removed.
4439
        """
4440
        self.node.remove_input(node.node)
4441

4442
    def append_input(self, node):
4443 4444 4445 4446
        """
        Append a node in inputs.

        Args:
4447
            node(IrNode): the node being appended.
4448
        """
4449
        self.node.append_input(node.node)
4450 4451 4452 4453 4454 4455 4456 4457

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

4458
    def remove_output_by_id(self, node_id):
4459 4460 4461 4462 4463 4464
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4465
        self.node.remove_output(node_id)
4466

4467
    def remove_output(self, node):
4468 4469 4470 4471
        """
        Remove a node from outputs.

        Args:
4472
            node(IrNode): the node being removed.
4473
        """
4474
        self.node.remove_output(node.node)
4475

4476
    def append_output(self, node):
4477 4478 4479 4480
        """
        Append a node in outputs.

        Args:
4481
            node(IrNode): the node being appended.
4482
        """
4483
        self.node.append_output(node.node)
4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4518 4519 4520
        assert (
            isinstance(node, core.Node) and node.is_var()
        ), 'node must be the instance of core.Node and it must be a variable node.'
4521
        super().__init__(node)
4522 4523 4524 4525 4526 4527 4528 4529 4530
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
4531 4532 4533
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4534 4535 4536 4537 4538 4539 4540 4541 4542
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
4543 4544 4545
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4546 4547
        return self.node.var().persistable()

4548 4549 4550 4551 4552 4553 4554
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
4555 4556 4557
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4558 4559 4560 4561 4562 4563 4564 4565 4566
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
4567 4568 4569
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4570 4571 4572 4573 4574 4575 4576 4577 4578
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
4579 4580 4581
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4582 4583
        return self.node.var().shape()

4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4617 4618 4619
        assert (
            isinstance(node, core.Node) and node.is_op()
        ), 'node must be the instance of core.Node and it must be a operator node.'
4620
        super().__init__(node)
4621 4622 4623 4624 4625 4626 4627 4628 4629 4630
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
4631 4632 4633
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4634 4635
        self.node.op()._rename_input(old_input_name, new_input_name)

4636 4637 4638 4639 4640 4641 4642 4643
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
4644 4645 4646
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4647 4648
        self.node.op()._rename_output(old_output_name, new_output_name)

4649 4650 4651 4652 4653 4654 4655 4656 4657 4658
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4659 4660 4661
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4674 4675 4676
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4677 4678 4679 4680 4681 4682 4683 4684 4685
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
4686 4687 4688
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4689 4690
        return self.node.op().set_type(new_type)

4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
4705 4706 4707
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4708
        desc = self.node.op()
4709 4710 4711 4712 4713
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
4714
            desc.set_block_attr(name, val.desc)
4715
        elif isinstance(val, list) and val and _all_is_type(val, Block):
4716
            desc.set_blocks_attr(name, [v.desc for v in val])
4717 4718 4719
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
4720 4721 4722 4723
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4724 4725 4726 4727 4728 4729 4730
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
4731 4732 4733
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4734 4735 4736 4737 4738 4739 4740 4741 4742
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
4743 4744 4745
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4746 4747
        return self.node.op().output_arg_names()

4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4769
class IrGraph:
4770
    """
4771
    Python IrGraph. Beneath it is a core.Graph, which is used for
4772
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4773 4774
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4775 4776 4777 4778
    """

    def __init__(self, graph, for_test=False):
        """
4779 4780
        Construct an IrGraph using core.Graph.

4781 4782 4783 4784 4785
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
4786 4787
            graph, core.Graph
        ), 'graph must be the instance of core.Graph.'
4788 4789 4790
        self.graph = graph
        self._for_test = for_test

4791 4792 4793 4794
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4795 4796 4797
        Warns:
            The method only clones the graph structure, not its attributes.

4798 4799 4800
        Returns:
            IrGraph: A new and duplicated graph.
        """
4801
        g = self.graph.clone()
4802 4803
        return IrGraph(g, self._for_test)

4804
    def is_test(self):
4805 4806 4807
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4808 4809
        return self._for_test

W
WangZhen 已提交
4810
    def all_nodes(self):
4811 4812 4813
        """
        Return all nodes included in the graph as a set.
        """
4814
        return {IrNode(node) for node in self.graph.nodes()}
4815

4816
    def all_var_nodes(self):
4817 4818 4819
        """
        Return all variable nodes included in the graph as a set.
        """
4820
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4821

4822
    def all_persistable_nodes(self):
4823 4824 4825
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4826 4827
        persistable_nodes = set()
        for node in self.graph.nodes():
4828 4829 4830 4831 4832
            if (
                node.is_var()
                and node.var() is not None
                and node.var().persistable()
            ):
W
WangZhen 已提交
4833
                persistable_nodes.add(node)
4834
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4835

4836
    def all_op_nodes(self):
4837 4838 4839
        """
        Return all operator nodes included in the graph as a set.
        """
4840
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4841

4842 4843 4844 4845 4846 4847
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
4848
            IrGraph(self.graph.get_sub_graph(i), for_test=for_test)
4849 4850 4851 4852 4853 4854 4855 4856 4857
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4858
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4870
            IrVarNode: the created persistable variable node.
4871
        """
4872 4873 4874 4875 4876
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4877
        return IrVarNode(self.graph.create_var_node(var_desc))
4878 4879

    def create_var_node(self, name, var_type, shape, var_dtype):
4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4891
            IrVarNode: the created variable node.
4892 4893
        """

4894 4895 4896 4897
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4898
        return IrVarNode(self.graph.create_var_node(var_desc))
4899

4900 4901 4902 4903 4904 4905
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4906
    def create_var_node_from_desc(self, var_desc):
4907 4908 4909 4910 4911 4912 4913 4914
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4915
            IrVarNode: the created variable node.
4916
        """
4917
        return IrVarNode(self.graph.create_var_node(var_desc))
4918 4919

    def create_op_node(self, op_type, attrs, inputs, outputs):
4920 4921 4922 4923 4924 4925 4926
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4927
            outputs(dict): the outputs of the operator node.
4928 4929

        Returns:
4930
            IrOpNode: the created operator node.
4931
        """
4932 4933
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4934
        for attr, value in attrs.items():
4935
            self._update_desc_attr(op_desc, attr, value)
4936
        for input_name, var_nodes in inputs.items():
4937 4938
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
4939 4940 4941
            op_desc.set_input(
                input_name, [var_node.name() for var_node in var_nodes]
            )
4942
        for output_name, var_nodes in outputs.items():
4943 4944
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
4945 4946 4947
            op_desc.set_output(
                output_name, [var_node.name() for var_node in var_nodes]
            )
4948
        return IrOpNode(self.graph.create_op_node(op_desc))
4949 4950

    def create_op_node_from_desc(self, op_desc):
4951 4952 4953 4954 4955 4956 4957
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4958
            IrOpNode: the created operator node.
4959
        """
4960
        return IrOpNode(self.graph.create_op_node(op_desc))
4961 4962

    def update_input_link(self, old_input_node, new_input_node, op_node):
4963 4964 4965 4966
        """
        Update the input's link of a operator node.

        Args:
4967 4968 4969
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4970
        """
4971 4972 4973 4974 4975
        assert (
            old_input_node.node in self.graph.nodes()
            and new_input_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4976 4977 4978 4979
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
4980
        op_node.rename_input(old_input_node.name(), new_input_node.name())
4981

4982 4983 4984 4985 4986 4987 4988 4989 4990
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
4991 4992 4993 4994 4995
        assert (
            old_output_node.node in self.graph.nodes()
            and new_output_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
4996 4997 4998 4999 5000 5001
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

5002
    def link_to(self, node_in, node_out):
5003 5004 5005 5006
        """
        Connect two nodes.

        Args:
5007 5008
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
5009
        """
5010
        assert node_in.node in self.graph.nodes(), (
5011 5012
            'node_in(%s) must be in the graph nodes.' % node_in.node.name()
        )
5013
        assert node_out.node in self.graph.nodes(), (
5014 5015
            'node_out(%s) must be in the graph nodes.' % node_out.node.name()
        )
5016 5017
        node_in.append_output(node_out)
        node_out.append_input(node_in)
5018 5019

    def safe_remove_nodes(self, remove_nodes):
5020 5021 5022 5023 5024 5025 5026
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
5027
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
5028 5029 5030 5031
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
5032 5033
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
5034

Z
Zhen Wang 已提交
5035 5036 5037 5038 5039 5040 5041 5042
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5043
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
5044 5045 5046 5047
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5048
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
5049 5050 5051
                        ]
                    else:
                        var_nodes[each_var_name].append(
5052 5053
                            self._find_node_by_name(node.outputs, each_var_name)
                        )
Z
Zhen Wang 已提交
5054 5055
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
5056
    def has_circle(self):
5057 5058 5059 5060 5061 5062
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
5063 5064 5065
        return core.has_circle(self.graph)

    def graph_num(self):
5066 5067 5068 5069 5070 5071
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
5072 5073 5074
        return core.graph_num(self.graph)

    def topology_sort(self):
5075 5076 5077
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
5078
        Notes: the `graph` can not contain a circle.
5079 5080

        Returns:
Z
Zhen Wang 已提交
5081
            list(IrNode): nodes in topology order.
5082
        """
5083
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
5084
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
5085 5086

    def build_adjacency_list(self):
5087 5088 5089 5090
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
5091
            dict{IrNode: set(IrNode)}: the adjacency list.
5092
        """
5093 5094
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
5095
        for k, v in adj_list.items():
5096 5097
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
5098

5099 5100 5101 5102 5103 5104 5105 5106
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
5107
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
5108 5109 5110 5111 5112
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

5113 5114
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
5115 5116 5117 5118
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True,
            )
5119 5120
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
5121 5122 5123
                print(
                    'The {} is saved as the dot filetype.'.format(dot_file_path)
                )
5124

5125
        remove_ctr_vars = set()
5126
        if remove_ctr_var:
5127
            for node in self.all_var_nodes():
5128 5129 5130
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
5131 5132
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

5133 5134
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
5135 5136 5137 5138 5139 5140
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
5141 5142 5143 5144
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
5145 5146
        if not os.path.exists(save_path):
            os.makedirs(save_path)
5147 5148 5149 5150 5151 5152 5153
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
5154 5155 5156
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
5157
        WARN: When the graph includes backward operator nodes, the
5158 5159 5160 5161 5162 5163
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
5164
        convert_pass = core.get_pass('graph_to_program_pass')
5165 5166
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
5167 5168 5169 5170
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

5171 5172 5173 5174 5175 5176 5177 5178
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
5179
        assert target_node is not None, (
5180 5181
            "Cannot find the target node (%s)in the giving set." % node_name
        )
5182 5183
        return target_node

5184 5185 5186 5187
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
5188 5189 5190 5191 5192
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
5193
            desc.set_block_attr(name, val.desc)
5194
        elif isinstance(val, list) and val and _all_is_type(val, Block):
5195
            desc.set_blocks_attr(name, [v.desc for v in val])
5196 5197 5198
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
5199 5200 5201 5202 5203
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


5204
class Program:
D
dzhwinter 已提交
5205
    """
5206
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
5207
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
5208
    it will contain nested block.
5209

J
Jiabin Yang 已提交
5210 5211 5212
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
5213

J
Jiabin Yang 已提交
5214
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
5215
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
5216 5217 5218 5219 5220 5221 5222
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
5223
    **Notes**:
5224 5225 5226
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
5227 5228

    Returns:
J
Jiabin Yang 已提交
5229
        Program: An empty Program.
D
dzhwinter 已提交
5230 5231

    Examples:
5232 5233
        .. code-block:: python

5234 5235 5236 5237
            import paddle
            import paddle.static as static

            paddle.enable_static()
5238

5239 5240 5241 5242 5243
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
5244
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
5245 5246 5247

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
5248 5249 5250

    """

5251 5252
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
5253 5254
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
5255 5256
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
5257
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
5258
        self.__op_role_var = []
T
tangwei12 已提交
5259

5260 5261
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
5262
        self._is_distributed = False
5263
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
5264
        self._is_chief = False
5265 5266 5267
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
5268
        self._endpoints = []
5269 5270 5271
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
5272
        self._trainers_endpoints = []
5273
        # the distributed lookup table names
T
tangwei12 已提交
5274
        self._distributed_lookup_table = None
5275 5276 5277

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
5278 5279
        self._use_lamb = False

5280 5281 5282
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
5283

5284 5285 5286
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
5287
        self._program_config = None
5288

H
hutuxian 已提交
5289 5290 5291
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

5292 5293 5294
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

5295 5296 5297
        # appending gradients times
        self._appending_grad_times = 0

5298 5299
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
5300 5301
            "__auto_checkpoint_program__"
        )
5302

5303 5304
        # compiled program, i.e. Graph
        self._graph = None
5305 5306
        # to tag whether is startup_program
        self._is_start_up_program_ = False
5307

5308
    def _find_var_class_kwargs(self, new_desc):
5309 5310 5311 5312 5313 5314 5315 5316
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

5317 5318 5319 5320
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
5321
            if idx > (len(self.blocks) - 1):
5322
                self._create_block()
5323 5324 5325 5326 5327 5328 5329 5330 5331 5332
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
                    'shape': get_var_desc_attr_or_none(
                        new_var_desc,
                        "shape",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'dtype': get_var_desc_attr_or_none(
                        new_var_desc,
                        "dtype",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'lod_level': get_var_desc_attr_or_none(
                        new_var_desc,
                        "lod_level",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'error_clip': old_var.error_clip
                    if old_var is not None
                    else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None
                    else False,
                    'is_data': old_var.is_data
                    if old_var is not None
                    else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None
                    else False,
5374 5375 5376
                }

                if isinstance(old_var, Parameter):
5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393
                    kwargs.update(
                        {
                            'trainable': old_var.trainable,
                            'optimize_attr': old_var.optimize_attr,
                            'regularizer': old_var.regularizer,
                            'do_model_average': old_var.do_model_average,
                            'need_clip': old_var.need_clip,
                            'is_distributed': old_var.is_distributed,
                            'is_parameter': old_var.is_parameter,
                        }
                    )
                    block_new_vars.append(
                        {
                            'class': Parameter,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5394 5395
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
5396 5397 5398 5399 5400 5401
                    block_new_vars.append(
                        {
                            'class': Variable,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5402 5403 5404 5405 5406 5407 5408

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
5409
        assert block_num == self.desc.num_blocks()
5410 5411

        # clear old blocks and desc
5412 5413 5414 5415 5416 5417 5418 5419 5420
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
5421

5422
        del desc
5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

5442 5443 5444 5445 5446 5447 5448 5449 5450 5451
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

5452 5453
                import paddle
                import paddle.static as static
5454

5455 5456 5457
                paddle.enable_static()

                prog = static.default_main_program()
5458 5459 5460 5461 5462
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
5463
                prog1 = static.default_main_program()
5464 5465 5466 5467 5468 5469 5470 5471
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
5472
    @property
5473
    def _op_role(self):
Y
yuyang18 已提交
5474 5475 5476 5477 5478 5479 5480 5481
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
5482
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
5483 5484 5485 5486
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
5487 5488
        return self._current_role

5489 5490
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
5491 5492 5493
        self._current_role = role

    @property
5494
    def _op_role_var(self):
Y
yuyang18 已提交
5495
        """
5496
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
5497

5498
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
5499 5500 5501

        Notes: This is a very low-level API. Users should not use it directly.
        """
5502
        return self.__op_role_var
Y
yuyang18 已提交
5503

5504
    @signature_safe_contextmanager
5505 5506 5507 5508 5509
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
5510 5511 5512 5513
        try:
            yield
        finally:
            self._current_role = tmp_role
5514

S
rename  
sneaxiy 已提交
5515
    @signature_safe_contextmanager
W
Wu Yi 已提交
5516
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
5517 5518 5519 5520 5521 5522 5523
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
5524
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
5525 5526 5527

        Examples:

5528
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
5529
            >>> p, g = backward(...)
W
Wu Yi 已提交
5530
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
5531 5532
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
5533
        tmp_role = self._current_role
5534
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
5535

Y
yuyang18 已提交
5536 5537
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
5538
        self.__op_role_var = [
5539 5540 5541
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
5542 5543 5544 5545 5546
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
5547

S
rename  
sneaxiy 已提交
5548
    @signature_safe_contextmanager
X
Xin Pan 已提交
5549
    def _lr_schedule_guard(self, is_with_opt=False):
5550 5551 5552 5553 5554 5555 5556
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
5557 5558 5559 5560
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
5561 5562 5563

        Examples:

5564
            >>> import paddle.fluid as fluid
5565 5566 5567 5568
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
5569 5570

        tmp_role = self._current_role
5571
        tmp_var = self.__op_role_var
5572

5573 5574
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
5575 5576
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
5577
        # TODO(typhoonzero): how to set target learning rate var
5578
        self.__op_role_var = []
5579 5580 5581 5582 5583
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
5584

5585
    def __str__(self):
Y
yuyang18 已提交
5586 5587 5588 5589 5590 5591 5592 5593 5594
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5615 5616
            import paddle
            import paddle.static as static
5617

5618 5619 5620
            paddle.enable_static()

            cur_program = static.Program()
5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5632
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
5633 5634
            type(skip_op_callstack)
        )
5635 5636 5637
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5638
            program_str += '\n'
5639
        return program_str
Y
Yang Yang(Tony) 已提交
5640

F
fengjiayi 已提交
5641 5642 5643
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5644

J
Jiabin Yang 已提交
5645 5646 5647
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5648

J
Jiabin Yang 已提交
5649
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5650

H
haowang101779990 已提交
5651
        Returns:
J
Jiabin Yang 已提交
5652
            str: The debug string describe current Program.
Y
yuyang18 已提交
5653 5654

        Raises:
J
Jiabin Yang 已提交
5655
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5656

5657 5658 5659
        Examples:
            .. code-block:: python

5660 5661 5662 5663
                import paddle
                import paddle.static as static

                paddle.enable_static()
5664

5665 5666 5667
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5668
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5669
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5670
                print("program string without detail: {}".format(prog_string))
5671
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5672
        """
5673 5674 5675
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
5676 5677
            type(throw_on_error)
        )
5678 5679 5680
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
5681 5682
            type(with_details)
        )
5683

F
fengjiayi 已提交
5684 5685 5686 5687 5688 5689
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
5690
            proto = framework_pb2.ProgramDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
5691 5692
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5693

W
Wu Yi 已提交
5694
    def _get_desc(self):
Y
yuyang18 已提交
5695 5696 5697 5698 5699 5700 5701
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5702 5703
        return self.desc

X
version  
Xin Pan 已提交
5704 5705 5706
    def _version(self):
        return self.desc._version()

5707
    def clone(self, for_test=False):
Y
yuyang18 已提交
5708
        """
5709
        .. note:::
5710 5711
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` .
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` .
5712
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5713

5714
        Create a new Program with forward content of original one when ``for_test=True``.
5715
        Create a new Program as same as the original one when ``for_test=False``.
5716

5717
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5718 5719 5720
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5721

5722 5723
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5724 5725
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
5726
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
5727

J
Jiabin Yang 已提交
5728
        For Example:
5729
          ::
L
Luo Tao 已提交
5730

5731 5732 5733 5734 5735 5736
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
5737
            pred = static.nn.fc(x=img, size=10, actvation='relu')
5738
            loss = paddle.mean(pred)
5739
            # Here we use clone before Momentum
5740 5741
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
5742
            optimizer.minimize(loss)
5743

J
Jiabin Yang 已提交
5744
        Args:
5745

5746 5747
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
5748

J
Jiabin Yang 已提交
5749
        Returns:
5750
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
5751

Y
yuyang18 已提交
5752 5753 5754

        Examples:

5755 5756 5757 5758 5759 5760 5761
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5762 5763
            .. code-block:: python

5764
                import paddle
5765 5766

                def print_prog(prog):
5767
                    for name, value in sorted(prog.block(0).vars.items()):
5768 5769 5770 5771 5772
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
5773
                        for key, value in sorted(op.all_attrs().items()):
5774 5775 5776 5777
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5778
            1. To clone a test program, the sample code is:
5779 5780
                .. code-block:: python

5781 5782 5783 5784 5785 5786
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5787 5788

                    def print_prog(prog):
5789
                        for name, value in sorted(prog.block(0).vars.items()):
5790 5791 5792 5793 5794
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
5795
                            for key, value in sorted(op.all_attrs().items()):
5796 5797 5798
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5799 5800
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5801 5802 5803

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5804 5805 5806
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5807
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5808 5809
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5810
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5811 5812
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5813
                            test_program = train_program.clone(for_test=True)
5814
                    print_prog(test_program)
J
Jiabin Yang 已提交
5815 5816 5817 5818

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5819
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5820 5821 5822 5823
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5824 5825 5826
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5827 5828 5829
                            sgd.minimize(avg_loss)


5830
            2. The clone method can be avoid if you create program for training and program for testing individually.
5831 5832
                .. code-block:: python

5833 5834 5835 5836 5837 5838
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5839 5840

                    def print_prog(prog):
5841
                        for name, value in sorted(prog.block(0).vars.items()):
5842 5843 5844 5845 5846
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
5847
                            for key, value in sorted(op.all_attrs().items()):
5848 5849
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5850

5851
                    def network():
5852
                        img = static.data(name='image', shape=[None, 784])
5853
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5854 5855
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5856
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5857 5858
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5859 5860
                        return avg_loss

5861 5862 5863 5864 5865
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5866
                            avg_loss = network()
5867
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5868
                            sgd.minimize(avg_loss)
5869
                    # the test startup program is not used.
5870 5871
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5872 5873
                            avg_loss = network()
                    print_prog(test_program_2)
5874

5875
            The two code snippets above will generate and print same programs.
5876
        """
5877

T
tangwei12 已提交
5878
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5879 5880 5881
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5882
        pruned_origin_block_id_map = None
5883
        if for_test:
5884 5885
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
5886 5887
                self.desc
            )
5888 5889
            forward_prog.blocks = [
                Block(forward_prog, i)
5890
                for i in range(forward_prog.desc.num_blocks())
5891 5892 5893
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5894
        else:
5895
            p = Program()
G
gongweibao 已提交
5896 5897
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5898
            p.desc = core.ProgramDesc(self.desc)
5899
            p.blocks = [Block(p, i) for i in range(self.desc.num_blocks())]
G
gongweibao 已提交
5900 5901

            p._current_role = self._current_role
5902
            p.__op_role_var = self.__op_role_var
5903
            p._appending_grad_times = self._appending_grad_times
5904 5905
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
5906

T
tangwei12 已提交
5907
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5908
            # its desc.
W
Wu Yi 已提交
5909
            p._sync_with_cpp()
5910

W
Wu Yi 已提交
5911
        p._copy_param_info_from(self)
5912
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5913
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5914
        return p
5915

5916
    def _prune(self, targets):
Y
yuyang18 已提交
5917 5918 5919 5920 5921 5922 5923 5924
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5925
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5926 5927 5928 5929
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5930
        """
5931
        return self._prune_with_input([], targets)
5932 5933

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5934
        """
5935
        Prune operators and variables which are not needed to generate
5936 5937
        :code:`targets`. Prune operators and variables which are needed
        to generate feeded_var
5938 5939 5940 5941 5942 5943 5944

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5945
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5946 5947 5948 5949 5950 5951
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5952
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5953 5954 5955
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5956 5957
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
5958 5959
        if not isinstance(targets, list):
            targets = [targets]
5960 5961

        for var in feeded_var_names:
5962
            if not isinstance(var, str):
5963 5964
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
5965 5966
                    "str, but received %s." % type(var)
                )
5967

5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

5984 5985 5986 5987
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
5988
                    name = t.name
5989
                elif isinstance(t, str):
5990
                    name = str(t)
5991
                else:
5992 5993
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
5994 5995
                        "Variable or Operator, but received %s." % type(t)
                    )
5996 5997 5998 5999 6000 6001

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
6002 6003 6004
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
6005

6006 6007 6008 6009 6010 6011 6012 6013 6014
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
6015
                        # Skip optimize op except for optimize op in targets,
6016 6017 6018 6019 6020
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
6021

6022
                if target_op is not None:
6023 6024 6025
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
6026

6027
        res = Program()
6028
        res.desc, pruned_origin_block_id_map = core.prune(
6029 6030
            self.desc, set(feeded_var_names), targets_idx
        )
6031
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6032
        res._sync_with_cpp()
6033 6034 6035 6036 6037

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

6038 6039
        return res

X
Xin Pan 已提交
6040
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
6041
        """
F
fengjiayi 已提交
6042 6043 6044 6045 6046
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

6047
        3. change the :code:`is_test`
Y
yuyang18 已提交
6048 6049 6050
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

6051
        Args:
X
Xin Pan 已提交
6052 6053
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
6054

Y
yuyang18 已提交
6055 6056 6057 6058 6059 6060
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
6061
        res = Program()
6062
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
6063 6064 6065 6066

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
6067
        if prune_read_op:
6068
            while True:
6069 6070 6071 6072
                if (
                    read_op_idx >= root_block.op_size()
                    or root_block.op(read_op_idx).type() == 'read'
                ):
6073 6074 6075 6076 6077 6078
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
6079
                    root_block._remove_var(var.name().encode())
F
fengjiayi 已提交
6080 6081

        # change all `is_test` attributes to True
6082
        for i in range(res.desc.num_blocks()):
6083
            block = res.desc.block(i)
6084
            for j in range(block.op_size()):
6085 6086
                op = block.op(j)
                if op.has_attr('is_test'):
6087
                    op._set_bool_attr('is_test', True)
6088 6089 6090
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
6091
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6092
        res._sync_with_cpp()
6093 6094
        return res

6095
    def _remove_training_info(self, clip_extra=True):
6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

6110
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
6111 6112
        res._sync_with_cpp()

6113 6114
        # Note: The op_role and op_role_var cann't be deleted currently,
        # and we will try to remove them in the future.
6115
        common_clipped_attrs_list = ['op_callstack', 'with_quant_attr']
6116

6117
        for i in range(res.desc.num_blocks()):
6118 6119 6120 6121
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
6122 6123
            if not clip_extra:
                continue
6124 6125 6126 6127
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
6128 6129 6130

                extra_attrs_map = core.get_op_extra_attrs(op.type())

6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
6144 6145 6146
                # The extra input of op will be removed in the future
                # for name in remove_input_list:
                #     op.remove_input(name)
6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
6160
                # The extra output of op will be removed in the future
6161 6162
                for name in remove_output_list:
                    op.remove_output(name)
6163

6164 6165 6166 6167 6168 6169 6170
                op_quant_name = (
                    core.op_proto_and_checker_maker.kOpWithQuantAttrName()
                )
                quant = (
                    bool(op.attr(op_quant_name))
                    if op_quant_name in op.attr_names()
                    else False
6171 6172
                )
                quant_attrs = [
6173 6174 6175 6176 6177 6178 6179
                    op_quant_name,
                    "quantization_type",
                    "skip_quant",
                    "activation_bits",
                    "bit_length",
                    "quantize_weight_bits",
                    "weight_quant_scale",
6180
                ]
6181 6182
                for extra_attr_name in extra_attrs_map.keys():
                    op.remove_attr(extra_attr_name)
6183
                remove_attr_list = []
6184 6185 6186 6187 6188 6189
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
6190
                    if len(extra_attrs_map) > 0:
6191
                        if name in common_clipped_attrs_list:
6192
                            op.remove_attr(name)
6193
                        continue
6194 6195 6196 6197 6198 6199 6200 6201 6202 6203
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
6204 6205
        return res

6206 6207
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
6208
        """
6209
        .. note::
6210
            1. All information about parameters will be lost after serialization;
6211
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6212

6213 6214
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
6215

J
Jiabin Yang 已提交
6216
        Args:
Y
yuyang18 已提交
6217

J
Jiabin Yang 已提交
6218
            binary_str_type (str): the binary prootbuf string.
6219

J
Jiabin Yang 已提交
6220 6221
        Returns:
            Program: A deserialized Program.
6222 6223 6224 6225

        Examples:
            .. code-block:: python

6226 6227 6228 6229
                import paddle
                import paddle.static as static

                paddle.enable_static()
6230

6231 6232 6233 6234
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
6235

6236
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
6237

6238
                    z = paddle.matmul(x=x, y=y)
6239

6240 6241
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
6242

6243
                    print(static.default_main_program())
6244
                    print(prog_restored)
Y
yuyang18 已提交
6245
        """
6246 6247
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
6248
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
W
Wu Yi 已提交
6249
        p._sync_with_cpp()
6250
        return p
Y
Yu Yang 已提交
6251

6252
    @staticmethod
6253
    def _construct_from_desc(desc):
6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
6265
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
6266 6267 6268
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
6269 6270
    @property
    def random_seed(self):
Y
yuyang18 已提交
6271
        """
J
Jiabin Yang 已提交
6272
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
6273 6274
        the random seed from random device.

6275
        .. note::
6276
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
6277 6278 6279

        Returns:
            int64: Random seed in current Program
6280

6281 6282 6283 6284

        Examples:
            .. code-block:: python

6285 6286 6287
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
6288

6289 6290 6291
                paddle.enable_static()

                prog = static.default_main_program()
6292
                random_seed = prog.random_seed
6293
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
6294 6295 6296
                print(random_seed)
                ## 0
                ## the default random seed is 0
6297

6298
                # Here we need to set random seed before we use paddle.nn.functional.dropout
6299
                prog.random_seed = 1
6300
                z_var = F.dropout(x_var, 0.7)
6301

6302
                print(prog.random_seed)
6303 6304
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
6305
        """
D
dzhwinter 已提交
6306 6307
        return self._seed

Q
qiaolongfei 已提交
6308 6309
    @property
    def num_blocks(self):
Y
yuyang18 已提交
6310
        """
6311 6312
        The number of :ref:`api_guide_Block_en`  in this Program.

6313
        .. note::
6314
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
6315 6316 6317

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
6318

6319 6320 6321 6322

        Examples:
            .. code-block:: python

6323 6324 6325 6326
                import paddle
                import paddle.static as static

                paddle.enable_static()
6327

6328
                prog = static.default_main_program()
6329 6330
                num_blocks = prog.num_blocks
                print(num_blocks)
6331

6332 6333
                # print result:
                # 1
Y
yuyang18 已提交
6334
        """
Q
qiaolongfei 已提交
6335 6336
        return self.desc.num_blocks()

D
dzhwinter 已提交
6337 6338 6339
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
6340 6341
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
6342 6343
                % type(seed)
            )
D
dzhwinter 已提交
6344 6345
        self._seed = seed

Y
Yu Yang 已提交
6346
    def __repr__(self):
6347
        return self.__str__()
6348

Y
Yu Yang 已提交
6349
    def global_block(self):
Y
yuyang18 已提交
6350
        """
6351 6352
        .. note::
            This API has no effect in Dygraph mode.
6353 6354 6355

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
6356 6357
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
6358

6359 6360 6361 6362

        Examples:
            .. code-block:: python

6363 6364 6365 6366
                import paddle
                import paddle.static as static

                paddle.enable_static()
6367

6368
                prog = static.default_main_program()
6369 6370
                gb_block = prog.global_block()
                print(gb_block)
6371

Y
yuyang18 已提交
6372
        """
Y
Yu Yang 已提交
6373 6374
        return self.blocks[0]

Q
Qiao Longfei 已提交
6375
    def block(self, index):
Y
yuyang18 已提交
6376
        """
6377 6378
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6379

6380 6381
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
6382 6383
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
6384

J
Jiabin Yang 已提交
6385 6386
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
6387 6388 6389 6390

        Examples:
            .. code-block:: python

6391 6392 6393 6394
                import paddle
                import paddle.static as static

                paddle.enable_static()
6395

6396
                prog = static.default_main_program()
6397 6398
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
6399
        """
Q
Qiao Longfei 已提交
6400 6401
        return self.blocks[index]

Y
Yu Yang 已提交
6402
    def current_block(self):
Y
yuyang18 已提交
6403
        """
6404 6405
        .. note::
            This API has no effect in Dygraph mode.
6406

J
Jiabin Yang 已提交
6407 6408
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
6409

J
Jiabin Yang 已提交
6410 6411
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
6412

6413 6414 6415
        Examples:
            .. code-block:: python

6416 6417 6418 6419
                import paddle
                import paddle.static as static

                paddle.enable_static()
6420

6421
                prog = static.default_main_program()
6422 6423
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
6424
        """
Y
Yu Yang 已提交
6425 6426
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
6427
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
6428 6429 6430 6431 6432
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
6433

Y
yuyang18 已提交
6434 6435 6436 6437 6438
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
6439
        new_block_idx = len(self.blocks)
6440 6441 6442 6443 6444
        parent = (
            self.current_block()
            if parent_idx is None
            else self.block(parent_idx)
        )
F
update  
fengjiayi 已提交
6445
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
6446 6447 6448 6449
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
6450
    def _rollback(self):
Y
yuyang18 已提交
6451 6452 6453 6454 6455
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
6456 6457
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
6458
    def _sync_with_cpp(self):
Y
yuyang18 已提交
6459 6460 6461 6462 6463 6464 6465 6466 6467 6468
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
6469 6470 6471
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
6472
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
6473

W
Wu Yi 已提交
6474
    def _copy_param_info_from(self, other):
6475
        """
6476
        Copy the information of parameters from other program.
D
dzhwinter 已提交
6477

Y
yuyang18 已提交
6478 6479 6480
        Notes: This is a very low level API. Users should not invoke it
        directly.

6481 6482 6483 6484 6485 6486 6487
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6488 6489
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6490 6491
                % type(other)
            )
6492

W
Wu Yi 已提交
6493
        self.global_block()._copy_param_info_from(other.global_block())
6494

6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6506 6507
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6508 6509
                % type(other)
            )
6510 6511
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
6512
        self._parameters_on_pservers = other._parameters_on_pservers
6513
        self._endpoints = other._endpoints
6514
        self._ps_endpoint = other._ps_endpoint
6515 6516
        self._distributed_lookup_table = other._distributed_lookup_table

6517
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
6518 6519
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
6520

Y
yuyang18 已提交
6521 6522 6523
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
6524 6525
        Args:
            other(Program): Other program
6526
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
6527 6528
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is
            cloned from block 0 in other, etc. Default is None, which means default mapped,
6529
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
6530 6531 6532 6533 6534

        Returns:
            None
        """
        if not isinstance(other, Program):
6535 6536
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6537 6538
                % type(other)
            )
F
fengjiayi 已提交
6539

6540 6541
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
6542
                i: i for i in range(self.desc.num_blocks())
6543
            }
6544 6545 6546

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
6547 6548
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
6549
            for var in list(block.vars.values()):
6550 6551 6552 6553 6554 6555 6556
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
6557

6558
    def list_vars(self):
Y
yuyang18 已提交
6559
        """
6560
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
6561

J
Jiabin Yang 已提交
6562
        Returns:
6563
            iterable Tensors: The Generator will yield every Tensor in this program.
6564 6565 6566 6567

        Examples:
            .. code-block:: python

6568 6569
                import paddle
                import paddle.static as static
6570

6571 6572 6573 6574 6575
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
6576 6577
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
6578

6579 6580
                # var img : LOD_TENSOR.shape(-1, 1, 28, 28).dtype(float32).stop_gradient(True)
                # var label : LOD_TENSOR.shape(-1, 1).dtype(int64).stop_gradient(True)
Y
yuyang18 已提交
6581
        """
6582
        for each_block in self.blocks:
6583
            for each_var in list(each_block.vars.values()):
6584 6585
                yield each_var

6586 6587 6588 6589 6590 6591 6592 6593 6594 6595
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

6596 6597 6598 6599
                import paddle
                import paddle.static as static

                paddle.enable_static()
6600

6601 6602
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
6603
                hidden = static.nn.fc(x=data, size=10)
6604 6605
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
6606 6607 6608 6609 6610 6611 6612

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
6613 6614
                # persist trainable param fc_0.w_0 : LOD_TENSOR.shape(13, 10).dtype(float32).stop_gradient(False)
                # persist trainable param fc_0.b_0 : LOD_TENSOR.shape(10,).dtype(float32).stop_gradient(False)
6615 6616 6617 6618 6619 6620 6621 6622 6623 6624
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

6625 6626 6627 6628 6629 6630 6631 6632 6633
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
6634 6635 6636
            mode(str, optional): Source of the obtained parameters and buffers.
                    'opt' :  The return value only contains the variable in the optimizer.
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.
6637 6638
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
6639
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
6667
        # can not be imported at the begainning of this file.
6668 6669
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
6670

6671 6672
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
6673 6674 6675 6676
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".format(
                    type(scope)
                )
            )
6677 6678 6679 6680 6681

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
6682 6683
            raise TypeError(
                "Type of `mode` should be string, but received {}.".format(
6684 6685 6686
                    type(mode)
                )
            )
6687 6688 6689 6690 6691

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
6692 6693 6694 6695 6696
            if (
                var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH
                or var.desc.type() == core.VarDesc.VarType.FETCH_LIST
                or var.desc.type() == core.VarDesc.VarType.READER
            ):
6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
6715 6716 6717 6718
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".format(
                        mode
                    )
                )
6719 6720 6721 6722 6723 6724 6725 6726

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
6727 6728 6729 6730
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".format(
                        var.name
                    )
                )
6731 6732 6733 6734 6735 6736
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
6737
        Set parameters and persistable buffers in state_dict to program.
6738
        An exception will throw if shape or dtype of the parameters is not match.
6739

6740 6741 6742 6743
        .. note::
            This function MUST called after run start_up_program

        Args:
6744
            state_dict(dict): the dict store parameters and persistable buffers.
6745 6746
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
6747
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6748 6749
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
6750

6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
6780 6781 6782
                    type(state_dict)
                )
            )
6783 6784

        vars_dict = {var.name: var for var in self.list_vars()}
6785 6786 6787
        condition = (
            True if 'StructuredToParameterName@@' in state_dict else False
        )
6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
6799 6800
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
6801 6802
                except TypeError as err:
                    warnings.warn(
6803 6804
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
6805
            else:
6806
                warnings.warn(
6807 6808 6809 6810 6811 6812
                    (
                        "Skip loading for '{0}'. Because '{0}' not in the program.".format(
                            name
                        )
                    )
                )
6813

Y
Yu Yang 已提交
6814

6815
class Parameter(Variable, metaclass=ParameterMetaClass):
6816
    """
6817
    Parameter is derived from Variable. A parameter is a persistable
6818
    Variable, and will be updated by optimizers after each iteration.
6819
    The training of a neural network is essentially the updating of
6820 6821
    its parameters.

6822
    Relative to a general Variable, a Parameter has several its own
6823 6824
    member variables:

6825 6826 6827 6828 6829 6830 6831 6832 6833 6834
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
6835
        need_clip (bool): Whether the parameter gradient need to be cliped
6836
            in optimizer. Default is True.
6837 6838
    """

6839 6840 6841 6842 6843 6844
    def __init__(
        self,
        block,
        shape,
        dtype,
        type=core.VarDesc.VarType.LOD_TENSOR,
6845
        **kwargs,
6846
    ):
6847 6848 6849 6850 6851
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6852 6853
        for each in shape:
            if each < 0:
6854 6855
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
6856 6857 6858 6859 6860 6861 6862 6863 6864 6865
                    % list(shape)
                )

        Variable.__init__(
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
6866
            **kwargs,
6867
        )
Y
Yu Yang 已提交
6868 6869 6870 6871
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6872 6873
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6874
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6875

6876 6877
        self.need_clip = kwargs.get('need_clip', True)

6878 6879
        self.is_distributed = False

6880 6881
        self.is_parameter = True

F
fengjiayi 已提交
6882
    def __str__(self):
6883
        return self._to_readable_code()
F
fengjiayi 已提交
6884

F
update  
fengjiayi 已提交
6885 6886 6887
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6888

F
update  
fengjiayi 已提交
6889 6890 6891 6892 6893 6894 6895 6896
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6897 6898 6899 6900 6901 6902 6903 6904 6905
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6906
        """
6907
        assert isinstance(throw_on_error, bool) and isinstance(
6908 6909
            with_details, bool
        )
F
update  
fengjiayi 已提交
6910 6911
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
6912 6913 6914 6915 6916 6917 6918
            additional_attr = (
                "trainable",
                "optimize_attr",
                "regularizer",
                "do_model_average",
                "need_clip",
            )
F
update  
fengjiayi 已提交
6919
            for attr_name in additional_attr:
6920
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
F
update  
fengjiayi 已提交
6921 6922
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6923 6924 6925 6926
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6927

6928 6929
class ParamBase(core.VarBase):
    """
6930 6931
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode).
    A ParamBase is a persistable Tensor, and will be updated by optimizers
6932
    after each iteration.
6933 6934 6935
    The training of a neural network is essentially the updating of
    its ParamBase.

6936
    Relative to a general Tensor, a ParamBase has several its own
6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
6949
        need_clip (bool): Whether the parameter gradient need to be cliped
6950
            in optimizer. Default is True.
6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
6964 6965
                    % list(shape)
                )
6966 6967 6968 6969 6970 6971 6972

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

6973
        super().__init__(
6974 6975 6976 6977 6978 6979
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            core.VarDesc.VarType.LOD_TENSOR,
            True,
        )
6980

6981 6982
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
6983 6984 6985 6986 6987 6988 6989

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

6990 6991
        self.need_clip = kwargs.get('need_clip', True)

6992
        self.is_distributed = kwargs.get('is_distributed', False)
6993
        # self.block = default_main_program().global_block()
6994

6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
7006 7007
                type(trainable),
            )
7008

7009
    def __str__(self):
7010
        """
7011
        Convert a ParamBase object to a readable string.
7012

7013
        Returns(str): A readable string.
7014 7015 7016 7017

        Examples:
            .. code-block:: python

7018
                import paddle
7019 7020 7021 7022 7023 7024 7025
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
7026
        """
7027
        return "Parameter containing:\n{tensor}".format(
7028
            tensor=super().__str__()
7029
        )
7030

7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
7042

7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

7061 7062 7063 7064
    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
7065 7066 7067 7068 7069 7070
        return new_param

    __repr__ = __str__


if hasattr(core, "eager"):
7071
    _core_eager_eagertensor = core.eager.Tensor
7072 7073 7074 7075 7076 7077
else:
    _core_eager_eagertensor = object


class EagerParamBase(_core_eager_eagertensor):
    """
7078 7079
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode).
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers
7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
7097
        need_clip (bool): Whether the parameter gradient need to be cliped
7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
7112 7113
                    % list(shape)
                )
7114 7115 7116 7117 7118 7119 7120

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

7121 7122 7123
        if isinstance(shape, core.eager.Tensor):
            shape = shape.numpy()

7124
        super().__init__(
7125 7126 7127 7128 7129 7130
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            core.VarDesc.VarType.LOD_TENSOR,
            True,
        )
7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
7145 7146 7147
        # hook functions for lazy initialization
        self._init_func = None
        self._init_op_creator = None
7148 7149

    def set_init_func(self, obj):
7150
        self._init_func = obj
7151 7152 7153

    @dygraph_only
    def initialize(self):
7154 7155 7156
        assert (
            self._init_func is not None
        ), "Required self._init_func is not None, but received None."
7157
        self._init_func()
7158
        # clear function handle to release resource
7159
        self._init_func = None
7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
7172 7173
                type(trainable),
            )
7174

7175 7176 7177 7178
    def _create_init_op(self, block):
        """
        Call init_op_creator function to create initializer operation in block.
        """
7179 7180 7181
        assert (
            self._init_op_creator is not None
        ), "Required self._init_op_creator is not None, but received None."
7182 7183
        self._init_op_creator(block)

7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202
    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
7203
            tensor=super().__str__()
7204
        )
7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
7240 7241
        return new_param

7242 7243 7244
    __repr__ = __str__


Y
Yu Yang 已提交
7245
# program is a global instance.
Y
Yu Yang 已提交
7246 7247
_main_program_ = Program()
_startup_program_ = Program()
7248
_startup_program_._is_start_up_program_ = True
7249

7250

7251
def default_startup_program():
Y
Yu Yang 已提交
7252
    """
Y
yuyang18 已提交
7253 7254
    Get default/global startup program.

7255
    The :code:`paddle.nn` function will append the initialization operators into startup program.
7256
    The :code:`startup_program` will initialize the parameters by the OPs.
T
tangwei12 已提交
7257

7258 7259
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
7260

7261 7262
    Returns:
        Program: current default startup program.
7263

7264
    Returns type:
7265 7266 7267 7268

    Examples:
        .. code-block:: python

7269
            import paddle
7270

7271
            paddle.enable_static()
7272 7273 7274 7275
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
7276
    """
Y
Yu Yang 已提交
7277
    return _startup_program_
7278

7279

7280
def default_main_program():
Y
Yu Yang 已提交
7281
    """
7282
    This API can be used to get ``default main program`` which store the
7283
    descriptions of Ops and tensors.
T
tangwei12 已提交
7284

7285 7286
    For example ``z = paddle.add(x, y)`` will create a new ``add``
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` .
Y
yuyang18 已提交
7287

7288
    The ``default main program`` is the default value for ``Program`` parameter in
7289
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
7290
    :code:`default_main_program` when the program is not specified.
7291

7292
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
7293

Y
Yu Yang 已提交
7294
    Returns:
7295
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
7296 7297 7298 7299

    Examples:
        ..  code-block:: python

7300
            import paddle
7301

7302
            paddle.enable_static()
7303
            # Sample Network:
7304 7305 7306
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
7307

7308 7309 7310
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
7311
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
7312
    """
Y
Yu Yang 已提交
7313
    return _main_program_
Y
Yu Yang 已提交
7314 7315 7316 7317 7318


def switch_main_program(program):
    """
    Switch the main program to a new program.
7319

Y
Yu Yang 已提交
7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
7334
    Switch the startup program to a new program
Y
Yu Yang 已提交
7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
7347
@signature_safe_contextmanager
Y
Yu Yang 已提交
7348 7349
def program_guard(main_program, startup_program=None):
    """
7350 7351
    :api_attr: Static Graph

7352 7353 7354
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
7355

G
guofei 已提交
7356
    Args:
7357
        main_program(Program): New main program inside ``with`` statement.
7358 7359
        startup_program(Program, optional): New startup program inside ``with``
            statement. :code:`None` means not changing startup program,
G
guofei 已提交
7360 7361 7362
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
7363
    Examples:
7364
       .. code-block:: python
T
tangwei12 已提交
7365

7366
          import paddle
Y
yuyang18 已提交
7367

7368 7369 7370 7371 7372
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
7373
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
7374 7375 7376

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
7377

Y
Yu Yang 已提交
7378
    Examples:
7379
       .. code-block:: python
Y
yuyang18 已提交
7380

7381
          import paddle
7382

7383 7384 7385 7386 7387
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
7388

Y
Yu Yang 已提交
7389
    """
7390
    from .data_feeder import check_type
7391 7392 7393 7394

    check_type(
        main_program, 'main_program', Program, 'paddle.static.program_guard'
    )
Y
Yu Yang 已提交
7395 7396
    main_program = switch_main_program(main_program)
    if startup_program is not None:
7397 7398 7399 7400 7401 7402
        check_type(
            startup_program,
            'startup_program',
            Program,
            'paddle.static.program_guard',
        )
7403 7404
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
7405
        startup_program = switch_startup_program(startup_program)
7406 7407 7408 7409 7410 7411
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
7412 7413


W
Wu Yi 已提交
7414
def _get_var(name, program=None):
X
xuwei06 已提交
7415
    """
Y
yuyang18 已提交
7416
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
7417

X
xuwei06 已提交
7418 7419 7420
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
7421
        If None, default_global_program() will be used.
X
xuwei06 已提交
7422 7423 7424 7425 7426 7427 7428

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
7429
    assert isinstance(program, Program)
X
xuwei06 已提交
7430 7431

    return program.global_block().var(name)
7432 7433


S
rename  
sneaxiy 已提交
7434
@signature_safe_contextmanager
L
lujun 已提交
7435 7436
def _dygraph_guard(tracer):
    global _dygraph_tracer_
7437
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
7438
    _dygraph_tracer_ = tracer
7439
    core._switch_tracer(tracer)
M
minqiyang 已提交
7440

7441 7442 7443
    try:
        yield
    finally:
7444 7445
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
7446 7447


S
rename  
sneaxiy 已提交
7448
@signature_safe_contextmanager
L
lujun 已提交
7449
def _dygraph_place_guard(place):
7450 7451 7452
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
7453 7454
    _set_dygraph_tracer_expected_place(place)

7455 7456 7457
    try:
        yield
    finally:
7458
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
7459
        _set_dygraph_tracer_expected_place(_global_expected_place_)
7460 7461


7462 7463 7464 7465 7466 7467 7468 7469 7470 7471
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
7472

7473
    Note:
7474
        The API only supports static graph mode.
7475 7476 7477 7478

    A context manager that specifies the device on which the OP will be placed.

    Args:
7479
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
7480
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs.
7481 7482 7483 7484 7485 7486 7487
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
7488

7489
        .. code-block:: python
7490

7491
            # required: gpu
Z
Zhang Ting 已提交
7492
            import paddle
7493

Z
Zhang Ting 已提交
7494 7495 7496
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
7497
            if support_gpu:
Z
Zhang Ting 已提交
7498
                place = paddle.CUDAPlace(0)
7499 7500

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
7501 7502 7503
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
7504

Z
Zhang Ting 已提交
7505
            with paddle.static.device_guard("cpu"):
7506
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
7507 7508
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
7509
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
7510
                out = paddle.reshape(data1, shape=shape)
7511

Z
Zhang Ting 已提交
7512 7513
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
7514 7515 7516
            result = exe.run(fetch_list=[out])
    """

7517 7518 7519 7520 7521
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
7522
    if device not in ['cpu', 'gpu', 'npu', 'xpu', 'mlu', '', None]:
7523
        raise ValueError(
7524
            "The Attr(device) should be 'cpu' 'npu' 'xpu' 'mlu' or 'gpu', and it can also be empty string or None "
7525 7526
            "when there is no need to specify device. But received %s" % device
        )
7527 7528
    if index:
        device = ":".join([device, index])
7529
    pre_device = switch_device(device)
7530 7531 7532 7533
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
7534 7535


7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547
def _switch_cuda_graph_mode(cuda_graph_attr):
    global _current_cuda_graph_mode
    pre_mode = _current_cuda_graph_mode
    _current_cuda_graph_mode = cuda_graph_attr
    return pre_mode


@signature_safe_contextmanager
def _cuda_graph_guard(cuda_graph_attr=None):
    """

    Note:
7548
        The API only supports static graph mode.
7549

7550
    A context manager that specifies the cuda_graph_mode which indicating the cuda graph capture under static graph mode.
7551 7552 7553 7554 7555

    Args:
        cuda_graph_attr(str|None): The cuda graph attr with the format of:
                                   cuda_graph_capture_mode;memory_pool_id;cuda_graph_id
    """
7556 7557
    assert (
        not _non_static_mode()
7558
    ), "cuda_graph_guard only works under static graph mode"
7559 7560
    assert (
        core.is_compiled_with_cuda()
7561 7562 7563 7564 7565 7566 7567 7568
    ), "cuda_graph_guard context can be only used when Paddle is compiled with cuda"
    pre_mode = _switch_cuda_graph_mode(cuda_graph_attr)
    try:
        yield
    finally:
        _switch_cuda_graph_mode(pre_mode)


G
guofei 已提交
7569 7570 7571
def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
7572
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7573 7574 7575 7576 7577 7578 7579

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

7580 7581
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
7582 7583 7584 7585
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
7586 7587
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
7588 7589
        else:
            raise ValueError(
7590 7591
                "Flag %s cannot set its value through this function." % (key)
            )
G
guofei 已提交
7592 7593 7594 7595 7596


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
7597
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7598 7599 7600 7601 7602 7603 7604 7605 7606 7607

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

7608
            import paddle
G
guofei 已提交
7609 7610

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
7611
            res = paddle.get_flags(flags)
G
guofei 已提交
7612 7613 7614 7615 7616 7617
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
7618
            if _global_flags().is_public(key):
7619
                value = _global_flags()[key]
G
guofei 已提交
7620 7621 7622 7623
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
7624 7625 7626
                    'Flag %s cannot get its value through this function.'
                    % (key)
                )
G
guofei 已提交
7627
    elif isinstance(flags, str):
7628
        if _global_flags().is_public(flags):
7629
            value = _global_flags()[flags]
G
guofei 已提交
7630 7631 7632 7633
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
7634 7635
                'Flag %s cannot get its value through this function.' % (flags)
            )
G
guofei 已提交
7636 7637 7638
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
7639 7640 7641 7642 7643 7644


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658
    if isinstance(
        place,
        (
            core.Place,
            core.XPUPlace,
            core.CPUPlace,
            core.CUDAPinnedPlace,
            core.CUDAPlace,
            core.NPUPlace,
            core.IPUPlace,
            core.MLUPlace,
            core.CustomPlace,
        ),
    ):
7659 7660 7661 7662
        return place

    if not isinstance(place, str):
        raise ValueError(
7663 7664
            "place only support string which is 'Place' and so on."
        )
7665 7666

    place = place.lower()
7667
    if place == "cpu":
7668
        return core.CPUPlace()
7669

7670
    if place == "device":
7671 7672
        return core.Place()

7673
    # GPU
7674 7675 7676 7677
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
7678 7679 7680
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with CUDA".format(avaliable_gpu_place)
            )
7681 7682 7683 7684 7685 7686 7687 7688 7689
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
7690 7691

    # XPU
7692 7693 7694 7695
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
7696 7697 7698
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with XPU".format(avaliable_xpu_place)
            )
7699 7700 7701 7702
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
7703 7704 7705 7706 7707 7708

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
7709 7710 7711
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with NPU".format(avaliable_npu_place)
            )
7712 7713 7714 7715 7716
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

J
jianghaicheng 已提交
7717 7718 7719 7720 7721
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
7722 7723 7724
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with IPU".format(avaliable_ipu_place)
            )
J
jianghaicheng 已提交
7725 7726 7727 7728 7729
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

7730 7731 7732 7733 7734
    # MLU
    avaliable_mlu_place = re.match(r'mlu:\d+', place)
    if avaliable_mlu_place:
        if not core.is_compiled_with_mlu():
            raise ValueError(
7735 7736 7737
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with MLU".format(avaliable_mlu_place)
            )
7738 7739 7740 7741 7742
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.MLUPlace(device_id)

7743
    raise ValueError(
7744 7745 7746 7747
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace, IPUPlace, MLUPlace and NPUPlace, but received {}.".format(
            place
        )
    )
7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret