framework.py 255.6 KB
Newer Older
G
gouzil 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

import textwrap
Y
Yu Yang 已提交
16
import collections
X
Xin Pan 已提交
17
from collections import defaultdict
H
huzhiqiang 已提交
18
from collections.abc import Iterable
Q
qiaolongfei 已提交
19
import contextlib
20
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
21
import os
F
fengjiayi 已提交
22
import re
23
import traceback
24
import copy
25
from types import MethodType, FunctionType
26

Y
Yu Yang 已提交
27
import numpy as np
28
import subprocess
S
sneaxiy 已提交
29
import multiprocessing
30
import sys
31
import logging
R
risemeup1 已提交
32 33 34

from .proto import framework_pb2, data_feed_pb2

35
from . import core
36
from . import unique_name
37 38
import paddle.version as fluid_version
import warnings
39
import functools
40
from .variable_index import _getitem_impl_, _setitem_impl_
41
import threading
Y
Yu Yang 已提交
42

43
__all__ = [
44 45 46 47
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
48
    'name_scope',
J
jianghaicheng 已提交
49
    'ipu_shard_guard',
50
    'set_ipu_shard',
S
sneaxiy 已提交
51 52
    'cuda_places',
    'cpu_places',
53
    'xpu_places',
S
sneaxiy 已提交
54
    'cuda_pinned_places',
J
Jiabin Yang 已提交
55
    '_non_static_mode',
L
lujun 已提交
56
    'in_dygraph_mode',
57
    'is_compiled_with_cinn',
C
chengduo 已提交
58
    'is_compiled_with_cuda',
59
    'is_compiled_with_rocm',
60
    'is_compiled_with_xpu',
61
    'Variable',
62
    'require_version',
63
    'device_guard',
G
guofei 已提交
64 65
    'set_flags',
    'get_flags',
66
]
Y
Yu Yang 已提交
67

Q
qiaolongfei 已提交
68 69 70 71
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
72 73
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

74

75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
# use thread local to create thread save global variables.
class GlobalThreadLocal(threading.local):
    def __init__(self):
        """
        init the thread local data.
        TODO(xiongkun): how to access another thread local data ?
        """
        global _dygraph_tracer_
        self._in_declarative_mode_ = False
        self._functional_dygraph_context_manager = None
        self._dygraph_tracer_ = _dygraph_tracer_

    def __str__(self):
        strings = []
        strings.append(
            "_in_declarative_mode_:" + str(self._in_declarative_mode_)
        )
        strings.append(
            "_functional_dygraph_context_manager:"
            + str(self._functional_dygraph_context_manager)
        )
        strings.append("_dygraph_tracer_:" + str(self._dygraph_tracer_))
        return "\n".join(strings)

    def __setattr__(self, name, val):
        if name == '_dygraph_tracer_':
            global _dygraph_tracer_
            _dygraph_tracer_ = val
        self.__dict__[name] = val


L
lujun 已提交
106
_dygraph_tracer_ = None
107 108
global_var = GlobalThreadLocal()

109
_global_expected_place_ = None
110
_current_device = None
111
global_prog_seed = 0
112
_current_pipeline_stage = None
113
_current_cuda_graph_mode = None
114
_global_flags_ = core.globals()
115

J
Jiabin Yang 已提交
116

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
# special_op_attrs, extra_op_attrs are prepared for printing warnings
# when turning on FLAGS_print_extra_attrs
special_op_attrs = {
    "elementwise_add": [{"axis": -1}],
    "elementwise_sub": [{"axis": -1}],
    "elementwise_mul": [{"axis": -1}],
    "elementwise_div": [{"axis": -1}],
    "elementwise_max": [{"axis": -1}],
    "elementwise_min": [{"axis": -1}],
    "elementwise_pow": [{"axis": -1}],
    "elementwise_mod": [{"axis": -1}],
    "elementwise_floordiv": [{"axis": -1}],
    "less_than": [{"axis": -1}],
    "less_equal": [{"axis": -1}],
    "greater_than": [{"axis": -1}],
    "greater_equal": [{"axis": -1}],
    "equal": [{"axis": -1}],
    "not_equal": [{"axis": -1}],
    "amax": [{"reduce_all": False}],
    "amin": [{"reduce_all": False}],
    "any": [{"reduce_all": False}],
    "frobenius_norm": [{"reduce_all": False}],
    "logsumexp": [{"reduce_all": False}],
    "reduce_max": [{"reduce_all": False}],
    "reduce_min": [{"reduce_all": False}],
    "reduce_mean": [{"reduce_all": False}],
    "reduce_prod": [{"reduce_all": False}],
    "reduce_sum": [{"reduce_all": False}],
}

extra_op_attrs = {
    "gather": ["overwrite"],
    "graph_reindex": ["flag_buffer_hashtable"],
    "graph_sample_neighbors": ["flag_perm_buffer"],
    "relu6": ["threshold"],
    "swish": ["beta"],
    "hsigmoid_loss": ["remote_prefetch"],
    "max_pool2d_with_index": ["global_pooling"],
    "uniform": ["diag_num"],
    "unique": ["is_sorted"],
}

J
Jiabin Yang 已提交
159
# Some explanation of our execution system 2022.03
160
# For now we have 3 kinds of execution system, since we refactored dygraph mode to
J
Jiabin Yang 已提交
161
# build a fast execution system for dynamic mode. But we can't just remove all legacy
162
# code once we present the new system for some historical reason. That's why we have
J
Jiabin Yang 已提交
163
# these flags.
164
#
J
Jiabin Yang 已提交
165
# 1. _non_static_mode():
166
# _non_static_mode means  we are now running in legacy dygraph mode or dygraph mode.
J
Jiabin Yang 已提交
167 168 169
# 2. dygraph_mode():
# This flags inidicates we are now running in dygraph mode which called eager mode before.
# 3. _in_legacy_dygraph():
姜永久 已提交
170
# This flags has been deprecated
171
#
J
Jiabin Yang 已提交
172
# They have a relation ship as below:
姜永久 已提交
173
# Since _in_legacy_graph is deprecated, so dygraph_mode is _non_static_mode
174
#
J
Jiabin Yang 已提交
175 176 177 178 179 180
# Why we have to make different of _in_legacy_dygraph and dygraph_mode?
# In some performance issue, we find that python if statement cause server performance problem
# and we need our new dygraph mode becomes as fast as it could be. That's why we make these flags
# to make sure in most case, we find new dygraph mode first with only one if statement.


K
Kim Yann 已提交
181
# FIXME(dev): We haven't fully verified eager mode on XPU et.al but
182 183 184 185
# only GPU/CPU. Remove this after we improve this feature.
_is_first_import_ = True


J
Jiabin Yang 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
def in_dygraph_mode():
    """

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .

    Returns:
        bool: Whether paddle runs in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
207
            print(paddle.in_dynamic_mode())  # False, Now we are in static graph mode
J
Jiabin Yang 已提交
208 209 210 211 212

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode

    """
213
    return global_var._dygraph_tracer_ is not None
J
Jiabin Yang 已提交
214 215 216


def _non_static_mode():
217
    return global_var._dygraph_tracer_ is not None
218 219


220 221
global_ipu_index = -1
global_ipu_stage = -1
J
jianghaicheng 已提交
222 223 224 225 226
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


@signature_safe_contextmanager
227
def ipu_shard_guard(index=-1, stage=-1):
J
jianghaicheng 已提交
228 229 230 231
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
W
Weilong Wu 已提交
232
        index(int, optional): Specify which ipu the Tensor is computed on, (such as '0, 1, 2, 3').
233
            The default value is -1, which means the Op only run on IPU 0.
W
Weilong Wu 已提交
234
        stage(int, optional): Specify the computation order of the sharded model(such as '0, 1, 2, 3').
235
            The sharded model will be computed from small to large. The default value is -1,
J
jianghaicheng 已提交
236
            which means no pipelining computation order and run Ops in terms of graph.
237

G
gouzil 已提交
238 239 240 241 242 243 244
    Note:
        Only if the enable_manual_shard=True, the 'index' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        Only if the enable_pipelining=True, the 'stage' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        A index is allowed to match none stage or a stage. A stage is only allowed to match a new or
        duplicated index.
J
jianghaicheng 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


279 280 281 282
def set_ipu_shard(call_func, index=-1, stage=-1):
    """
    Shard the ipu with the given call function. Set every ops in call function to the given ipu sharding.

G
gouzil 已提交
283 284 285 286 287
    Note:
        Only when enable_manual_shard=True to set the index to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        Only when enable_pipelining=True to set stage to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        An index supports a corresponding None stage or a stage, and a stage only supports a new index or a duplicate index.

288 289 290 291 292
    Args:
        call_func(Layer|function): Specify the call function to be wrapped.
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is -1, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
293
            The sharded model will be computed from small to large. The default value is -1,
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
            which means no pipelining computation order and run Ops in terms of graph.

    Returns:
        The wrapped call function.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='float32')
            relu = paddle.nn.ReLU()
            relu = paddle.static.set_ipu_shard(relu, index=1, stage=1)
            relu(a)
    """

    def decorate(func):
        def wrapper(*args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return func(*args, **kwargs)

        return wrapper

319
    from paddle.nn import Layer
320

321 322 323 324 325
    if not isinstance(call_func, Layer):
        if callable(call_func):
            return decorate(call_func)
        else:
            raise TypeError(
326 327
                "Unsupported type. Only accept paddle.nn.Layer or function."
            )
328 329 330 331 332 333 334 335 336 337 338 339

    # patch paddle.nn.Layer
    class BlockFn(type(call_func)):
        def __call__(self, *args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return super().__call__(*args, **kwargs)

    BlockFn.__name__ = type(call_func).__name__
    call_func.__class__ = BlockFn
    return call_func


340 341
def require_version(min_version, max_version=None):
    """
342 343 344
    Check if the installed version of PaddlePaddle is in [min_version, max_version],
    if the installed version is lower than ``min_version`` or higher than ``max_version``,
    an exception will be thrown, NO returns if the installed version is satisfied.
345

346 347 348 349
    Args:
        min_version (str): the minimum version required (like '1.4.0').
        max_version (str, optional): the max version required (like '1.6.0'), default is None,
            meaning any version equal or higher than ``min_version`` is acceptable.
350

351 352
    Returns:
        None.
353

354 355 356 357 358 359
    Raises:
        TypeError: if the type of ``min_version`` is not str.
        TypeError: if the type of ``max_version`` is not str or type(None).
        ValueError: if the value of ``min_version`` is not in version format.
        ValueError: if the value of ``max_version`` is not in version format or None.
        Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.
360

361 362
    Examples:
        .. code-block:: python
363

364
            import paddle.fluid as fluid
365

366 367
            # any version >= 0.1.0 is acceptable.
            fluid.require_version('0.1.0')
368

369 370 371
            # if 0.1.0 <= version <= 10.0.0, it is acceptable.
            fluid.require_version(min_version='0.1.0', max_version='10.0.0')
    """
372 373 374
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
375 376
            % (type(min_version))
        )
377 378 379 380

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
381 382
            % (type(max_version))
        )
383 384 385 386 387

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
388 389
            "like '1.5.2.0', but received %s" % min_version
        )
390 391 392 393 394 395

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
396 397
                "like '1.5.2.0', but received %s" % max_version
            )
398 399

    version_installed = [
400 401 402 403
        fluid_version.major,
        fluid_version.minor,
        fluid_version.patch,
        fluid_version.rc,
404 405 406 407
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
408
        for i in range(len(ver_a)):
409 410 411 412 413 414 415 416 417 418 419
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
420 421 422
                "please make sure the version is good with your code."
                % (min_version, max_version, fluid_version.full_version)
            )
423 424 425 426
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
427 428 429
                "please make sure the version is good with your code."
                % (min_version, fluid_version.full_version)
            )
430 431 432
        return

    min_version_split = min_version.split('.')
433 434 435
    min_version_to_check = (
        min_version_split + zero_version[len(min_version_split) :]
    )
436 437 438

    if max_version is not None:
        max_version_split = max_version.split('.')
439 440 441
        max_version_to_check = (
            max_version_split + zero_version[len(max_version_split) :]
        )
442

443 444 445 446
        if (
            version_cmp(version_installed, max_version_to_check) > 0
            or version_cmp(version_installed, min_version_to_check) < 0
        ):
447 448
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
449 450
                % (min_version, max_version, fluid_version.full_version)
            )
451 452 453 454 455
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
456 457
                % (min_version, fluid_version.full_version, min_version)
            )
458 459


460 461
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
462 463 464
        assert not _non_static_mode(), (
            "We don't support %s in dynamic graph mode" % func.__name__
        )
465 466 467 468 469 470 471
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
472 473 474 475
        assert _non_static_mode(), (
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
476 477 478 479 480
        return func(*args, **kwargs)

    return __impl__


481 482 483
def _non_static_only_(func):
    def __impl__(*args, **kwargs):
        from .dygraph.base import in_declarative_mode
484 485 486 487 488

        assert _non_static_mode() or in_declarative_mode(), (
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
489 490 491 492 493
        return func(*args, **kwargs)

    return __impl__


494 495
def _static_only_(func):
    def __impl__(*args, **kwargs):
496 497 498 499
        assert not _non_static_mode(), (
            "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode."
            % func.__name__
        )
500 501 502 503 504
        return func(*args, **kwargs)

    return __impl__


505 506 507 508 509
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


510
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
W
wanghuancoder 已提交
511 512
# used to make Variable and Tensor has same interfaces, like numpy. Since Tensor is not exposed in our
# official docments, logically, we want to keep Tensor and logically consistent. While, actually,
513 514
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
W
wanghuancoder 已提交
515
# TODO(zhiqiu): We should make Tensor consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
516
# same base class.
517 518 519
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
520 521
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
R
Ryan 已提交
522
            "  2. If you are using `@paddle.jit.to_static`, you can call `paddle.jit.enable_to_static(False)`. "
523
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
524 525
            % (func.__name__, func.__name__)
        )
526 527 528 529

    return __impl__


T
tangwei12 已提交
530 531
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
532 533 534 535 536 537 538 539 540
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
541 542
                DeprecationWarning,
            )
543 544 545 546 547 548 549
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


550 551
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
552
static_only = wrap_decorator(_static_only_)
553
fake_interface_only = wrap_decorator(_fake_interface_only_)
554
non_static_only = wrap_decorator(_non_static_only_)
555 556


L
lujun 已提交
557
def _dygraph_tracer():
558
    return global_var._dygraph_tracer_
559

W
Wu Yi 已提交
560

561 562 563 564
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
565
def _current_expected_place():
566 567 568
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
569 570 571 572 573
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
574
                _global_expected_place_ = core.CUDAPlace(_cuda_ids()[0])
575 576 577 578 579
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
580 581 582 583 584 585
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
586
                _global_expected_place_ = core.XPUPlace(_xpu_ids()[0])
587 588 589 590 591
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
592 593 594 595 596 597 598
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
599 600
    if global_var._dygraph_tracer_ is not None:
        global_var._dygraph_tracer_._expected_place = place
601 602 603 604 605


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
606
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
607 608


S
sneaxiy 已提交
609
def _cpu_num():
610
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
611 612 613 614 615 616 617
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
618 619 620
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()
                )
            )
C
chengduo 已提交
621
        os.environ['CPU_NUM'] = str(1)
622
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
623 624 625 626 627 628 629 630
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
631
        device_ids = range(core.get_cuda_device_count())
C
chengduo 已提交
632
    return device_ids
S
sneaxiy 已提交
633 634


635 636 637 638 639
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
640
        device_ids = range(core.get_xpu_device_count())
641 642 643
    return device_ids


644 645 646 647 648 649 650 651 652
def _custom_device_ids(device_type):
    custom_devices_env = os.getenv("FLAGS_selected_" + device_type + "s")
    if custom_devices_env:
        device_ids = [int(s) for s in custom_devices_env.split(",")]
    else:
        device_ids = range(core.get_custom_device_count(device_type))
    return device_ids


653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


668 669 670 671 672 673 674
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
675

676 677 678 679 680 681
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

Z
Zman 已提交
682 683
    Returns:
        None
684 685 686 687 688 689 690 691 692 693

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


694 695 696 697
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

698 699
    Returns:
        Bool: `True` if CINN is currently available, otherwise `False`.
700 701 702 703 704 705 706 707 708 709

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
710 711 712 713
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

714 715
    Returns:
        Bool: `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
716 717 718 719

    Examples:
        .. code-block:: python

720
            import paddle
721
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
722 723 724 725
    """
    return core.is_compiled_with_cuda()


726 727 728 729
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

730 731
    Returns:
        Bool: `True` if ROCm is currently available, otherwise `False`.
732 733 734 735 736

    Examples:
        .. code-block:: python

            import paddle
737
            support_gpu = paddle.device.is_compiled_with_rocm()
738 739 740 741
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
742
def cuda_places(device_ids=None):
L
lujun 已提交
743
    """
744
    Note:
745 746 747
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
748
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
749 750

    If :code:`device_ids` is None, environment variable of
751
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
752
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
753
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
754
    If :code:`FLAGS_selected_gpus` is not set, all visible
755
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
756 757

    If :code:`device_ids` is not None, it should be the device
758
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
759
    the returned list would be
C
Chen Weihang 已提交
760
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
761

762
    Parameters:
763
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
764 765

    Returns:
C
Chen Weihang 已提交
766
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
767 768

    Examples:
769

L
lujun 已提交
770 771
        .. code-block:: python

C
Chen Weihang 已提交
772 773
            import paddle
            import paddle.static as static
T
tangwei12 已提交
774

775
            # required: gpu
776

C
Chen Weihang 已提交
777 778 779
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
780 781

    """
782
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
783
    if device_ids is None:
C
chengduo 已提交
784
        device_ids = _cuda_ids()
S
sneaxiy 已提交
785 786 787 788 789
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


790 791 792 793
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
794 795 796 797 798 799 800 801 802
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
803
        the returned list would be
S
sunzhongkai588 已提交
804
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
805

806 807 808 809 810 811
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
812

813 814
            # required: xpu

815 816
            import paddle
            import paddle.static as static
817

818 819 820
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
821
    assert core.is_compiled_with_xpu(), "Not compiled with XPU"
822 823 824 825 826 827 828
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
829
def cpu_places(device_count=None):
L
lujun 已提交
830
    """
C
Chen Weihang 已提交
831
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
832

S
add doc  
sneaxiy 已提交
833
    If :code:`device_count` is None, the device count would
834
    be determined by environment variable :code:`CPU_NUM`.
C
chengduo 已提交
835 836
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
837 838
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
839

840 841
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
842 843

    Returns:
C
Chen Weihang 已提交
844
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
845 846

    Examples:
847

L
lujun 已提交
848 849
        .. code-block:: python

C
Chen Weihang 已提交
850 851
            import paddle
            import paddle.static as static
T
tangwei12 已提交
852

C
Chen Weihang 已提交
853 854 855
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
856 857
    """

S
sneaxiy 已提交
858 859 860 861 862 863
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
864
    """
865
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
866 867

    If :code:`device_count` is None, the device count would
868
    be determined by environment variable :code:`CPU_NUM`.
869 870 871 872
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
873

874 875
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
876 877

    Returns:
878
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
879 880 881 882

    Examples:
        .. code-block:: python

883
            import paddle.fluid as fluid
L
lujun 已提交
884 885 886 887 888
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
889
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
890
    if device_count is None:
891 892
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
893 894


895
class NameScope:
896 897 898 899 900 901 902 903 904 905
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
906 907 908
            new_child = NameScope(
                prefix + "_%d" % len(self._children[prefix]), self
            )
909 910 911 912 913 914 915 916 917 918 919 920 921
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
922
@signature_safe_contextmanager
923 924
def name_scope(prefix=None):
    """
925

926
    Generate hierarchical name prefix for the operators in Static Graph.
927

928
    Note:
T
Tao Luo 已提交
929 930
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
931
        Don't use it in dygraph, since it will cause memory leak.
932 933

    Args:
T
Tao Luo 已提交
934
        prefix(str, optional): prefix. Default is none.
935 936

    Examples:
937

938
        .. code-block:: python
T
Tink_Y 已提交
939

940 941 942
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
943
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
944
             b = a + 1
945
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
946
                c = b * 1
947
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
948
                d = c / 1
949 950 951
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
952 953
                g = f - 1

954
          # Op are created in the default main program.
955
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
971 972
    """
    # TODO(panyx0718): Only [0-9a-z].
973
    # in dygraph we don't need namescope since it will cause mem leak
J
Jiabin Yang 已提交
974
    if _non_static_mode():
L
Leo Chen 已提交
975 976
        yield
    else:
T
tianshuo78520a 已提交
977
        assert prefix, "namescope prefix can not be empty."
978 979
        global _name_scope
        _name_scope = _name_scope.child(prefix)
980 981 982 983
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
984 985 986 987 988 989 990 991 992 993 994 995


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
996 997
def generate_control_dev_var_name():
    import random
998

W
Wu Yi 已提交
999
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
1000 1001 1002 1003


def grad_var_name(var_name):
    """
1004 1005
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
1006 1007 1008
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
1009

1010
def convert_np_dtype_to_dtype_(np_dtype):
1011
    """
1012
    Convert the data type in numpy to the data type in Paddle.
1013

1014
    Args:
1015 1016
        np_dtype (np.dtype|str): The data type in numpy or valid data type
            string.
1017

1018
    Returns:
1019
        core.VarDesc.VarType: The data type in Paddle.
1020 1021

    """
1022 1023
    # Convert the data type string to numpy data type.
    if isinstance(np_dtype, str) and np_dtype == "bfloat16":
1024 1025 1026
        dtype = np.uint16
    else:
        dtype = np.dtype(np_dtype)
1027

1028
    if dtype == np.float32:
1029
        return core.VarDesc.VarType.FP32
1030
    elif dtype == np.float64:
1031
        return core.VarDesc.VarType.FP64
1032
    elif dtype == np.float16:
1033
        return core.VarDesc.VarType.FP16
1034
    elif dtype == np.int32:
1035
        return core.VarDesc.VarType.INT32
1036
    elif dtype == np.int16:
1037
        return core.VarDesc.VarType.INT16
1038
    elif dtype == np.int64:
1039
        return core.VarDesc.VarType.INT64
1040
    elif dtype == np.bool_:
1041
        return core.VarDesc.VarType.BOOL
1042
    elif dtype == np.uint16:
1043 1044 1045
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
1046 1047
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
1048 1049
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
1050 1051 1052 1053
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
1054
    else:
M
minqiyang 已提交
1055
        raise ValueError("Not supported numpy dtype %s" % dtype)
1056 1057 1058


def dtype_is_floating(dtype):
1059 1060 1061
    """
    Check the data type is floating or not.
    Args:
1062
        dtype(np.dtype|core.VarDesc.VarType): data type.
1063 1064 1065 1066 1067
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1068
    if not isinstance(dtype, core.VarDesc.VarType):
1069 1070
        dtype = convert_np_dtype_to_dtype_(dtype)

1071
    return dtype in [
1072 1073 1074
        core.VarDesc.VarType.FP16,
        core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64,
1075
    ]
1076 1077


Y
Yang Yang(Tony) 已提交
1078
def _debug_string_(proto, throw_on_error=True):
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1090
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1091
    if not proto.IsInitialized(error_fields) and throw_on_error:
1092 1093
        raise ValueError(
            "{0} are not initialized.\nThe message is {1}:\n".format(
1094 1095 1096
                error_fields, proto
            )
        )
Y
Yu Yang 已提交
1097 1098 1099
    return proto.__str__()


1100
def _create_tensor(
1101 1102 1103 1104 1105
    type=core.VarDesc.VarType.LOD_TENSOR,
    name=None,
    shape=None,
    dtype=None,
    persistable=None,
1106
    **kwargs,
1107
):
1108 1109 1110 1111
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

W
wanghuancoder 已提交
1112 1113 1114 1115 1116 1117 1118 1119 1120
    eager_tensor = core.eager.Tensor(
        dtype if dtype else core.VarDesc.VarType.FP32,
        list(shape) if shape else [],
        name,
        type if type else core.VarDesc.VarType.LOD_TENSOR,
        True if persistable else False,
    )
    eager_tensor.retain_grads()
    return eager_tensor
1121 1122


1123 1124 1125 1126 1127 1128 1129
def _all_is_type(vals, expected_type):
    """
    Return True if type of each element is expected_type.

    NOTE: BuiltIn all() will always return True if vals is empty.
    """
    assert isinstance(vals, (list, tuple))
1130 1131
    if not vals:
        return False
1132 1133 1134
    return all(isinstance(v, expected_type) for v in vals)


1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
def wrap_as_scalar(number):
    """Wrap a number(either python scalar or numpy scalar) as core.Scalar if
    it is not a scalar.


    Args:
        number (Number): number

    Returns:
        Scalar: A Scalar that contains the value.
    """
    if isinstance(number, core.Scalar):
        return number
    if isinstance(number, (bool, int, float, complex)):
        return core.Scalar(number)
    if isinstance(number, np.number):
        # it is a numpy scalar
        return core.Scalar(number.item())
    else:
        raise TypeError("Cannot wrap {} as core.Scalar".format(number))


def wrap_as_scalars(array):
    """This function is used to convert flat list, or numpy array(not
    necesarily flat) to list of core.Scalar, which correspond to
    std::vector<paddle::experimental::Scalar> in operator runtime.

    Args:
        array (List | np.ndarray): array of numbers

    Returns:
        List: list of core.Scalar, of which each element is a Scalar containing
          the corresponding value.
    """
    if isinstance(array, np.ndarray):
        array = array.ravel().tolist()
    return [wrap_as_scalar(item) for item in array]


def extract_plain_list(array):
    """extract value from a list of core.Scalar.

    Args:
        array (list): Scalars

    Returns:
        list: values extracted from the scalars.
    """
    return [item.value() for item in array]


def canonicalize_attrs(attrs, op_proto):
    """This function is used to canonicalize attributes(as a string->any dict)
    according to the type specification in the OpProto. This is especially
    important for operators that has any attributes of type Scalar or Scalars.

    Though various frontends of phi kernels & paddle operators can wrap variables
    of concrete types into Scalars(a tagged union of several numeric types) or
    vector of Scalars. Paddle operator requires strict type matching.

    Args:
        attrs (Dict[str, Any]): attribute dict intended to pass to an operator.
        op_proto (OpProto): Proto (signature) of the operator.

    Returns:
        Dict[str, Any]: canonicalized attributes.
    """
    canonicalized_attrs = attrs.copy()  # shallow copy is enough here
    for attr in op_proto.attrs:
        attr_name = attr.name
        type_index = attr.type
        if (attr_name not in attrs) or (attrs[attr_name] is None):
            continue

        attr_val = attrs[attr_name]

        # VAR and VARS should be skipped
        if isinstance(attr_val, Variable):
            continue
        if isinstance(attr_val, list) and _all_is_type(attr_val, Variable):
            continue

        # wrap
        if type_index == core.AttrType.SCALAR:
            canonicalized_attrs[attr_name] = core.Scalar(attr_val)
        elif type_index == core.AttrType.SCALARS:
            # it should be a list (or a numpy array)
            if len(attr_val) > 0:
                attr_val = np.array(attr_val).ravel().tolist()
                attr_val = [core.Scalar(x) for x in attr_val]
                canonicalized_attrs[attr_name] = attr_val

    return canonicalized_attrs


1230 1231 1232 1233 1234
class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1235
            return issubclass(t, core.eager.Tensor)
1236 1237 1238 1239 1240 1241 1242 1243 1244
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1245
            return issubclass(t, EagerParamBase)
1246 1247 1248 1249
        else:
            return issubclass(t, Parameter)


1250
class Variable(metaclass=VariableMetaClass):
1251
    """
J
Jiabin Yang 已提交
1252

U
ustiniankw 已提交
1253 1254 1255 1256
    Notes:
        The constructor of Variable should not be invoked directly.

        In Static Graph Mode: Please use ** `Block.create_var` ** to create a Static variable which has no data until being feed.
1257

U
ustiniankw 已提交
1258
        In Dygraph Mode: Please use ** :ref:`api_fluid_dygraph_to_variable` ** to create a dygraph variable with real data.
J
Jiabin Yang 已提交
1259 1260

    In Fluid, every input and output of an OP is a variable. In most
1261
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1262 1263
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1264

1265
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1266
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1267

T
tianshuo78520a 已提交
1268
    Most of a Variable's member variables can be set to be None. It mean
1269
    it is not available or will be specified later.
1270

1271
    Examples:
1272 1273
        In Static Graph Mode:

1274 1275
        .. code-block:: python

1276
            import paddle.fluid as fluid
1277
            cur_program = fluid.Program()
1278 1279 1280 1281
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1282

1283
        In Dygraph  Mode:
1284 1285 1286 1287 1288 1289 1290 1291 1292

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1293 1294
    """

1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
    def __init__(
        self,
        block,
        type=core.VarDesc.VarType.LOD_TENSOR,
        name=None,
        shape=None,
        dtype=None,
        lod_level=None,
        capacity=None,
        persistable=None,
        error_clip=None,
        stop_gradient=False,
        is_data=False,
        need_check_feed=False,
        belong_to_optimizer=False,
1310
        **kwargs,
1311
    ):
Y
Yu Yang 已提交
1312 1313
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1314
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1315

Y
Yu Yang 已提交
1316
        if dtype is not None:
1317
            if not isinstance(dtype, core.VarDesc.VarType):
1318
                dtype = convert_np_dtype_to_dtype_(dtype)
1319

S
Steffy-zxf 已提交
1320 1321 1322 1323
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

1324 1325 1326
        if type == core.VarDesc.VarType.SPARSE_COO:
            lod_level = None

H
hong 已提交
1327 1328
        self.belong_to_optimizer = belong_to_optimizer

1329 1330 1331
        self.error_clip = error_clip

        is_new_var = False
1332
        self.desc = self.block.desc.find_var(name.encode())
1333

1334
        if self.desc is None:
1335
            self.desc = self.block.desc.var(name.encode())
1336
            is_new_var = True
1337

1338 1339 1340
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
1341 1342 1343 1344 1345
            raise ValueError(
                "Variable '{0}' has been created before. The "
                "previous type is {1}, the new type is {2}. They"
                " are not matched".format(self.name, self.desc.type(), type)
            )
1346

1347
        if shape is not None:
1348
            if is_new_var:
1349 1350 1351 1352 1353 1354
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1355 1356
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1357 1358
                        "matched.".format(self.name, old_shape, shape)
                    )
1359 1360 1361 1362 1363 1364
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
1365 1366 1367 1368 1369 1370
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous data type is {1}, the new "
                        "data type is {2}. They are not "
                        "matched.".format(self.name, old_dtype, dtype)
                    )
1371 1372 1373 1374 1375 1376

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
1377 1378 1379 1380 1381 1382
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous lod_level is {1}, the new "
                        "lod_level is {2}. They are not "
                        "matched".format(self.name, self.lod_level, lod_level)
                    )
1383 1384 1385 1386 1387 1388
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1389 1390
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1391
                        "persistable is {2}. They are not matched".format(
1392 1393 1394
                            self.name, self.persistable, persistable
                        )
                    )
1395

1396 1397
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1398

1399 1400 1401 1402 1403 1404 1405
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1406

1407 1408
        self.block.vars[name] = self
        self.op = None
1409
        self.stop_gradient = stop_gradient
1410
        self.is_data = is_data
Y
Yu Yang 已提交
1411

1412 1413
    def detach(self):
        """
U
ustiniankw 已提交
1414

1415
        Returns a new Variable, detached from the current graph.
1416 1417
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1418

1419
        Returns:
U
ustiniankw 已提交
1420
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable), The detached Variable.
1421 1422 1423 1424

        Examples:
            .. code-block:: python

1425
                import paddle
1426

1427 1428 1429 1430
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1431

1432 1433
                # create a detached Variable
                y = x.detach()
U
ustiniankw 已提交
1434

1435
        """
1436

1437 1438 1439 1440
        assert (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ), "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"
1441 1442 1443 1444 1445 1446

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
1447 1448
            stop_gradient=True,
        )
1449

1450 1451 1452
        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]}
        )
1453
        return output
1454

1455
    @fake_interface_only
1456
    def numpy(self):
1457
        """
J
Jiabin Yang 已提交
1458
        **Notes**:
T
tianshuo78520a 已提交
1459
            **This API is ONLY available in Dygraph mode**
1460

J
Jiabin Yang 已提交
1461
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1462 1463 1464 1465 1466

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1467
            ndarray: dtype is same as current Variable
1468 1469 1470 1471 1472 1473

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1474
                from paddle.fluid.dygraph import Linear
1475 1476 1477 1478
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1479
                    linear = Linear(32, 64)
1480
                    data = to_variable(data)
1481
                    x = linear(data)
1482 1483 1484
                    print(x.numpy())

        """
1485
        pass
1486

1487
    @non_static_only
1488
    def backward(self, retain_graph=False):
1489
        """
J
Jiabin Yang 已提交
1490
        **Notes**:
T
tianshuo78520a 已提交
1491
            **This API is ONLY available in Dygraph mode**
1492

1493
        Run backward of current Graph which starts from current Tensor.
1494

J
Jiabin Yang 已提交
1495
        Args:
1496 1497 1498 1499
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1500

J
Jiabin Yang 已提交
1501 1502
        Returns:
            NoneType: None
1503 1504 1505 1506 1507

        Examples:
            .. code-block:: python

                import numpy as np
1508 1509
                import paddle
                paddle.disable_static()
1510 1511

                x = np.ones([2, 2], np.float32)
1512 1513 1514 1515 1516 1517 1518
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1519 1520
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1521
                loss.backward()
1522 1523

        """
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534
        from .backward import append_backward

        if retain_graph is True:
            raise AssertionError(
                "`retain_graph` == True is not supported in @to_static function."
                "please set retain_graph = False."
            )
        param_grad_list = append_backward(self)
        for param, param_grad in param_grad_list:
            # set grad to simulate dygraph loss.backward() in static mode.
            setattr(param, "grad", param_grad)
1535

1536
    @fake_interface_only
1537
    def gradient(self):
1538
        """
J
Jiabin Yang 已提交
1539
        **Notes**:
T
tianshuo78520a 已提交
1540
            **This API is ONLY available in Dygraph mode**
1541 1542 1543

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1544
        Returns:
1545
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1546 1547 1548 1549

        Examples:
            .. code-block:: python

1550
                import paddle
1551 1552 1553
                import paddle.fluid as fluid
                import numpy as np

1554
                # example1: return ndarray
1555 1556 1557 1558 1559 1560 1561
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
1562
                    ret2 = paddle.add_n(inputs2)
1563
                    loss2 = paddle.sum(ret2)
1564
                    loss2.backward()
1565 1566
                    print(loss2.gradient())

1567 1568
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
1569 1570 1571 1572 1573
                    embedding = paddle.nn.Embedding(
                        20,
                        32,
                        weight_attr='emb.w',
                        sparse=True)
1574 1575 1576 1577 1578 1579 1580
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1581
        """
1582
        pass
1583

1584
    @fake_interface_only
1585
    def clear_gradient(self):
1586
        """
J
Jiabin Yang 已提交
1587
        **Notes**:
T
tianshuo78520a 已提交
1588
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1589 1590

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1591

J
Jiabin Yang 已提交
1592
        Clear  (set to ``0`` ) the Gradient of Current Variable
1593 1594 1595 1596 1597 1598

        Returns:  None

        Examples:
            .. code-block:: python

1599
                import paddle
1600 1601 1602 1603 1604 1605 1606 1607 1608 1609
                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
1610
                    ret2 = paddle.add_n(inputs2)
1611
                    loss2 = paddle.sum(ret2)
1612
                    loss2.backward()
1613 1614 1615 1616 1617
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1618
        pass
X
Xin Pan 已提交
1619

1620
    def register_hook(self, hook):
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637
        import paddle

        def backward_hook_wrapper(dy):
            """call the backward hook in ."""
            return hook(np.array(dy))

        def forward_hook_wrapper(x):
            """do nothing but return a new variable."""
            return x

        paddle.static.py_func(
            func=forward_hook_wrapper,
            x=self,
            out=self,
            backward_func=backward_hook_wrapper,
            skip_vars_in_backward_input=[self],
        )
1638

1639
    def __str__(self):
1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1656 1657
                import paddle
                import paddle.static as static
1658

1659 1660 1661
                paddle.enable_static()

                cur_program = static.Program()
1662 1663 1664 1665 1666 1667
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1668 1669
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1670 1671 1672 1673
        if (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ):
1674
            dtype_str = str(self.dtype).split('.')[1]
1675 1676 1677 1678 1679 1680 1681
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".format(
                name=self.name,
                type=type_str,
                shape=self.shape,
                dtype=dtype_str,
                stop_gradient=self.stop_gradient,
            )
1682
        else:
1683
            var_str = "{name} : {type})".format(name=self.name, type=type_str)
1684

1685
        if self.is_parameter:
1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1696 1697 1698 1699
        from paddle.distributed.auto_parallel.dist_context import (
            get_default_distributed_context,
        )

1700
        dist_context = get_default_distributed_context()
1701 1702
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1703 1704 1705
            var_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_tensor
            )
1706

1707
        return var_str
Y
Yang Yang(Tony) 已提交
1708

F
update  
fengjiayi 已提交
1709
    def to_string(self, throw_on_error, with_details=False):
1710 1711 1712
        """
        Get debug string.

J
Jiabin Yang 已提交
1713 1714 1715 1716 1717
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1718

1719 1720
        Returns:
            str: The debug string.
1721 1722 1723 1724 1725

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1726
                import paddle
1727

1728
                paddle.enable_static()
1729 1730 1731 1732 1733
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1734
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1735
                print("=============with detail===============")
1736
                print(new_variable.to_string(True, True))
1737
        """
1738
        assert isinstance(throw_on_error, bool) and isinstance(
1739 1740
            with_details, bool
        )
1741
        protostr = self.desc.serialize_to_string()
1742
        proto = framework_pb2.VarDesc.FromString(bytes(protostr))
F
update  
fengjiayi 已提交
1743 1744
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1745
            additional_attr = ("error_clip",)
F
update  
fengjiayi 已提交
1746
            for attr_name in additional_attr:
1747
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
1748

F
update  
fengjiayi 已提交
1749
        return res_str
1750 1751 1752

    __repr__ = __str__

1753 1754 1755
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
1756

1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1780
    @property
1781
    def stop_gradient(self):
J
Jiabin Yang 已提交
1782 1783 1784
        """
        Indicating if we stop gradient from current Variable

1785
        **Notes: This Property has default value as** ``True`` **in** Dygraph **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``
J
Jiabin Yang 已提交
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1797 1798
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1799 1800 1801
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1802 1803
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1804 1805 1806 1807
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1808
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1809 1810
                assert (out1.gradient() == 0).all()
        """
1811
        return self.desc.stop_gradient()
1812

1813 1814
    @stop_gradient.setter
    def stop_gradient(self, s):
1815
        self.desc.set_stop_gradient(s)
1816

1817 1818
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1819 1820 1821 1822 1823 1824 1825 1826
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

1827
            **2. In** Dygraph **mode, this property should not be changed**
J
Jiabin Yang 已提交
1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1840
        return self.desc.persistable()
1841

Y
Yu Yang 已提交
1842 1843
    @persistable.setter
    def persistable(self, p):
1844
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1845

1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1871 1872
    @property
    def name(self):
J
Jiabin Yang 已提交
1873 1874 1875
        """
        Indicating name of current Variable

1876
        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** Dygraph **mode. This is how we achieve Parameter sharing**
J
Jiabin Yang 已提交
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1889
        return self.desc.name()
Y
Yu Yang 已提交
1890

1891 1892 1893 1894 1895 1896
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1897 1898
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1899

1900 1901 1902
        Examples:
          .. code-block:: python

1903
          import paddle
1904

1905
          x = paddle.static.data(name="x", shape=[-1, 23, 48], dtype='float32')
1906
          print(x.grad_name) # output is ``x@GRAD``
1907 1908 1909 1910

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1911 1912
    @name.setter
    def name(self, new_name):
1913
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1914

Y
Yu Yang 已提交
1915 1916
    @property
    def shape(self):
J
Jiabin Yang 已提交
1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
1934
        # convert to tuple, make it as same as numpy API.
1935
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
1936 1937

    @property
F
fengjiayi 已提交
1938
    def dtype(self):
J
Jiabin Yang 已提交
1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
1955
        return self.desc.dtype()
Y
Yu Yang 已提交
1956 1957 1958

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
1959 1960 1961 1962 1963 1964 1965 1966
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

1967
            **2. Don't support this property in** Dygraph **mode, it's value should be** ``0(int)``
J
Jiabin Yang 已提交
1968 1969 1970 1971

        Examples:
          .. code-block:: python

1972
            import paddle
J
Jiabin Yang 已提交
1973
            import paddle.fluid as fluid
1974 1975

            paddle.enable_static()
J
Jiabin Yang 已提交
1976 1977 1978 1979 1980 1981 1982
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
1983 1984
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
1985 1986
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
1987
        return self.desc.lod_level()
Y
Yu Yang 已提交
1988

Y
Yu Yang 已提交
1989 1990
    @property
    def type(self):
J
Jiabin Yang 已提交
1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
2007
        return self.desc.type()
Y
Yu Yang 已提交
2008

2009 2010 2011
    @property
    def T(self):
        """
U
ustiniankw 已提交
2012

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
U
ustiniankw 已提交
2031

2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
2044 2045
            stop_gradient=False,
        )
2046 2047 2048 2049 2050
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
2051 2052 2053 2054 2055 2056 2057 2058 2059
            stop_gradient=False,
        )

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out], 'XShape': [input_shape]},
            attrs={'axis': perm},
        )
2060 2061
        return out

2062 2063 2064
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
2065
        Variable. It remains in the current graph, that is, the cloned Variable
2066 2067 2068 2069
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
U
ustiniankw 已提交
2070
            Variable, The cloned Variable.
2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
2090 2091
            stop_gradient=self.stop_gradient,
        )
2092

2093 2094 2095
        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]}
        )
2096 2097
        return output

W
Wu Yi 已提交
2098
    def _set_error_clip(self, error_clip):
2099
        """
U
ustiniankw 已提交
2100

2101 2102 2103 2104 2105 2106 2107
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
U
ustiniankw 已提交
2108

2109
        """
2110 2111
        self.error_clip = error_clip

2112 2113
    def _set_info(self, key, value):
        """
U
ustiniankw 已提交
2114

2115 2116 2117 2118 2119 2120
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

2121
        Returns:
2122
            None
U
ustiniankw 已提交
2123

2124 2125 2126 2127 2128 2129 2130
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
U
ustiniankw 已提交
2131

2132 2133 2134 2135 2136
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

2137
        Returns:
2138
            object
U
ustiniankw 已提交
2139

2140 2141 2142 2143 2144
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

2145 2146
    def _slice_indices(self, slice, length):
        """
U
ustiniankw 已提交
2147

2148
        Reference implementation for the slice.indices method.
U
ustiniankw 已提交
2149

2150 2151 2152 2153 2154 2155 2156 2157
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
2158
            raise ValueError("slice step can not be zero")
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
2169 2170 2171
            start = (
                max(start + length, lower) if start < 0 else min(start, upper)
            )
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
2217 2218 2219
                if (index > 0 and index >= self.shape[index]) or (
                    index < 0 and (index + self.shape[index]) < 0
                ):
2220
                    raise IndexError("invalid index")
2221 2222 2223 2224 2225
                start = (
                    max(start + self.shape[index], 0)
                    if start < 0
                    else min(start, self.shape[index])
                )
2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2239
    def _cloneVar(self, copy=False):
2240 2241
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2242
                name=unique_name.generate_with_ignorable_key(self.name),
2243 2244
                dtype=self.dtype,
            )
2245 2246 2247 2248
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2249
        new_var = self._cloneVar()
2250 2251 2252 2253 2254 2255
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes, 'starts': starts, 'ends': ends},
        )
2256 2257 2258
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2259
        new_var = self._cloneVar()
2260 2261 2262 2263 2264 2265 2266 2267
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={
                'axis': axis,
            },
        )
2268 2269 2270 2271 2272
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2273
                return self._cloneVar(True)
2274 2275 2276 2277 2278 2279 2280
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
2281 2282 2283
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2284 2285 2286
                        start += step
                else:
                    while start > stop:
2287 2288 2289
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2290 2291 2292 2293
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2294
                return self._cloneVar(True)
2295
            index = int(item)
2296 2297 2298
            if (index > 0 and index >= self.shape[axis]) or (
                index < 0 and (index + self.shape[axis]) < 0
            ):
2299 2300 2301 2302 2303 2304
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2305
        return _getitem_impl_(self, item)
2306

2307
    def __setitem__(self, item, value):
2308
        return _setitem_impl_(self, item, value)
2309

2310 2311
    def get_value(self, scope=None):
        """
2312
        Get the value of variable in given scope.
2313 2314

        Args:
2315
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2316 2317 2318 2319
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
U
ustiniankw 已提交
2320
            Tensor, the value in given scope.
2321 2322 2323 2324 2325

        Examples:
            .. code-block:: python

                import paddle
2326
                import paddle.static as static
2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
2351 2352
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file.
2353 2354
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
2355

2356 2357
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2358 2359 2360 2361
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2362 2363 2364 2365 2366

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
2367 2368 2369
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2370 2371 2372 2373 2374
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
U
ustiniankw 已提交
2375

2376
        Set the value to the tensor in given scope.
2377 2378 2379

        Args:
            value(Tensor/ndarray) : The value to be set.
2380
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2381 2382 2383 2384 2385
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
2386

2387 2388 2389 2390
        Examples:
            .. code-block:: python

                import paddle
2391
                import paddle.static as static
2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
U
ustiniankw 已提交
2415

2416 2417 2418
        '''

        # The 'framework' is a low-level module, and 'executor'
2419
        # can not be imported at the begainning of this file.
2420 2421 2422 2423 2424
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
2425 2426 2427 2428
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".format(
                    type(value)
                )
            )
2429 2430 2431

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2432 2433 2434 2435
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2436 2437 2438 2439 2440 2441

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
2442 2443 2444
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2445 2446 2447 2448 2449 2450 2451 2452 2453 2454

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
2455 2456 2457 2458
                    "{} expected a shape {}, but the received shape is {}.".format(
                        self.name, list(t.shape()), list(value_shape)
                    )
                )
2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2476 2477
    def size(self):
        """
U
ustiniankw 已提交
2478

2479
        Returns the number of elements for current Variable, which is a int64 Variable with shape [] .
2480 2481

        Returns:
U
ustiniankw 已提交
2482
            Variable, the number of elements for current Variable
2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
U
ustiniankw 已提交
2496

2497 2498 2499 2500
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
2501 2502
            dtype=core.VarDesc.VarType.INT64,
        )
2503

2504 2505 2506
        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]}
        )
2507 2508
        return output

2509 2510
    def _set_attr(self, name, val):
        """
U
ustiniankw 已提交
2511

2512 2513 2514 2515 2516
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
U
ustiniankw 已提交
2517

2518 2519 2520 2521 2522
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
U
ustiniankw 已提交
2523

2524 2525 2526 2527 2528 2529
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2530 2531
            bool, True if has this attribute.

2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

2553
    def attr(self, name):
2554 2555 2556 2557 2558 2559 2560
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2561
            int|str|list, The attribute value. The return value
2562 2563 2564 2565 2566
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
2567
    def dist_attr(self):
2568
        """
2569
        Get distributed attribute of this Variable.
2570
        """
2571
        return self.desc.dist_attr
2572

2573 2574
    @dist_attr.setter
    def dist_attr(self, dist_attr):
2575
        """
2576
        Set distributed attribute of this Variable.
2577
        """
2578
        self.desc.dist_attr = dist_attr
2579

Y
Yu Yang 已提交
2580

F
fengjiayi 已提交
2581 2582 2583
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2584

2585 2586
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2587 2588 2589 2590
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2591
        op_proto = framework_pb2.OpProto.FromString(bytes(pbstr))
F
fengjiayi 已提交
2592 2593 2594 2595
        ret_values.append(op_proto)
    return ret_values


2596
class OpProtoHolder:
2597 2598 2599 2600
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2601 2602 2603 2604 2605 2606 2607 2608
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
2609 2610
            self.__class__, '_instance'
        ), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2611 2612 2613 2614 2615 2616
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2617 2618 2619 2620 2621 2622 2623 2624
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2625 2626
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2627 2628
        return self.op_proto_map[type]

2629 2630
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2631
        custom_op_names = []
2632 2633 2634
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2635 2636 2637
                custom_op_names.append(proto.type)

        return custom_op_names
2638

2639 2640 2641
    def has_op_proto(self, type):
        return type in self.op_proto_map

2642 2643 2644 2645
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2646
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2647
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2648
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
2649
            core.op_proto_and_checker_maker.kOpDeviceAttrName(),
2650 2651
        }

F
fengjiayi 已提交
2652

2653
class Operator:
2654
    """
2655 2656 2657 2658 2659 2660 2661
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2662
        type(str): The type of operator. Default None.
2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2683
        Block.append_op or Block._prepend_op instead.
2684 2685 2686 2687

    Examples:
        .. code-block:: python

2688
            import paddle.fluid as fluid
2689
            cur_program = fluid.Program()
2690 2691 2692 2693 2694
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2695
    """
2696

2697
    OP_WITHOUT_KERNEL_SET = {
2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725
        'feed',
        'fetch',
        'recurrent',
        'go',
        'rnn_memory_helper_grad',
        'conditional_block',
        'while',
        'send',
        'recv',
        'listen_and_serv',
        'fl_listen_and_serv',
        'ncclInit',
        'select',
        'checkpoint_notify',
        'gen_bkcl_id',
        'c_gen_bkcl_id',
        'gen_nccl_id',
        'c_gen_nccl_id',
        'c_comm_init',
        'c_sync_calc_stream',
        'c_sync_comm_stream',
        'queue_generator',
        'dequeue',
        'enqueue',
        'heter_listen_and_serv',
        'c_wait_comm',
        'c_wait_compute',
        'copy_cross_scope',
2726
    }
2727

2728 2729 2730
    def __init__(
        self, block, desc, type=None, inputs=None, outputs=None, attrs=None
    ):
2731 2732 2733 2734 2735 2736 2737 2738 2739 2740
        # read attr type index from op proto to avoid unexpected type
        # conversions, e.g. narrowing conversion like double to float
        try:
            proto = OpProtoHolder.instance().get_op_proto(type)
            self._attr_types = {}
            for attr in proto.attrs:
                self._attr_types[attr.name] = attr.type
        except ValueError:
            pass

J
Jiabin Yang 已提交
2741
        if _non_static_mode():
2742 2743
            if type is None:
                raise ValueError(
2744 2745
                    "`type` to initialized an Operator can not be None."
                )
J
Jiabin Yang 已提交
2746
            self._type = type
M
minqiyang 已提交
2747
            self.attrs = attrs if attrs else {}
2748
        else:
2749

2750 2751 2752 2753 2754 2755 2756 2757 2758
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

2759
            # attr for static graph mode cuda graph
2760 2761
            self._cuda_graph_attr = _current_cuda_graph_mode

2762 2763 2764
            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
2765
                op_attrs[
2766 2767
                    op_maker.kOpRoleAttrName()
                ] = self.block.program._op_role
2768 2769

            role_var_name = op_maker.kOpRoleVarAttrName()
2770 2771 2772 2773
            if (
                len(self.block.program._op_role_var) != 0
                and role_var_name not in op_attrs
            ):
2774
                op_attrs[role_var_name] = self.block.program._op_role_var
2775 2776 2777 2778 2779

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2780 2781 2782 2783 2784
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2785 2786 2787
                return
            if type is None:
                raise ValueError(
2788 2789
                    "`type` to initialized an Operator can not be None."
                )
2790 2791
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2792 2793 2794
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
2795
                        '  File "{}", line {}, in {}'.format(
2796 2797 2798 2799 2800 2801
                            frame[0], frame[1], frame[2]
                        )
                    )
                    op_attrs[callstack_var_name].append(
                        '    {}'.format(frame[3])
                    )
2802 2803 2804 2805 2806 2807 2808

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2809 2810 2811 2812 2813 2814 2815 2816
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
2817 2818 2819
                    warnings.warn(
                        "The Op(%s) is not support to set device." % type
                    )
2820
                if 'force_cpu' in op_attrs:
2821
                    if (
2822 2823
                        type == 'less_than'
                        and op_attrs['force_cpu'] is not None
2824
                    ) or op_attrs['force_cpu'] != False:
2825 2826 2827
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
2828 2829
                            "used at the same time." % type
                        )
2830
            if _current_pipeline_stage is not None:
2831 2832 2833 2834 2835
                pipeline_attr_name = (
                    'pipeline_stage' + core.kAutoParallelSuffix()
                )
                self._update_desc_attr(
                    pipeline_attr_name, _current_pipeline_stage
2836
                )
2837

2838 2839 2840 2841 2842 2843 2844 2845 2846
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
2847 2848 2849
                    assert (
                        found or in_proto.dispensable
                    ), "Input {} not found".format(in_proto.name)
2850 2851
                    if found:
                        in_args = inputs[in_proto.name]
2852
                        if not isinstance(in_args, (list, tuple)):
2853 2854 2855 2856
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
2857 2858
                                % (in_proto.name, len(in_args))
                            )
2859
                        in_arg_names = []
2860
                        for index, arg in enumerate(in_args):
2861
                            if isinstance(arg, str):
2862
                                in_arg_names.append(arg)
2863
                            elif isinstance(arg, bytes):
2864
                                in_arg_names.append(arg.decode())
W
wanghuancoder 已提交
2865
                            elif isinstance(arg, (Variable, core.eager.Tensor)):
2866
                                in_arg_names.append(arg.name)
2867
                            else:
2868
                                raise TypeError(
2869 2870
                                    f"The type of '%{in_proto.name}' in operator {type} should be "
                                    f"one of [str, bytes, Variable]. but received : {arg}"
2871
                                )
2872 2873 2874 2875 2876 2877 2878 2879
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897

                    # FIXME: The outputs of primitive operator currently
                    # doesn't include intermediate output as it will be dropped
                    # in operator codegen, such as xshape output of reshape2.
                    # It will fixed when the operator codegen support
                    # intermediate output.
                    if core._is_bwd_prim_enabled():
                        if not (
                            (m.name in outputs)
                            or m.dispensable
                            or m.intermediate
                        ):
                            raise ValueError(
                                (
                                    "Incorrect setting for output(s) of "
                                    "operator \"%s\", should set: [%s]."
                                )
                                % (type, m.name)
2898
                            )
2899 2900 2901 2902 2903 2904 2905 2906 2907 2908
                    else:
                        if not ((m.name in outputs) or m.dispensable):
                            raise ValueError(
                                (
                                    "Incorrect setting for output(s) of "
                                    "operator \"%s\", should set: [%s]."
                                )
                                % (type, m.name)
                            )

2909 2910 2911 2912 2913 2914 2915 2916 2917
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
2918 2919
                            % (out_proto.name, len(out_args))
                        )
2920 2921
                    out_arg_names = []
                    for arg in out_args:
2922
                        if isinstance(arg, str):
2923 2924
                            out_arg_names.append(arg)
                        else:
2925
                            out_arg_names.append(arg.name)
2926
                        # TODO(minqiyang): could we remove variable's op in static graph mode?
J
Jiabin Yang 已提交
2927
                        if not _non_static_mode():
2928
                            if isinstance(arg, str):
2929 2930 2931
                                block.var(arg).op = self
                            else:
                                arg.op = self
2932 2933
                    self.desc.set_output(out_proto.name, out_arg_names)

2934
            extra_attrs_map = core.get_op_extra_attrs(type)
2935 2936 2937 2938 2939
            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
2940 2941 2942
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
2943 2944 2945
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)
2946
                for attr_name in extra_attrs_map.keys():
2947 2948 2949 2950 2951
                    if os.environ.get('FLAGS_print_extra_attrs', '0') == '1':
                        warnings.warn(
                            "op %s use extra_attr: %s" % (type, attr_name)
                        )

2952 2953 2954 2955 2956 2957
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
                        self._update_desc_attr(
                            attr_name, extra_attrs_map[attr_name]
                        )
2958 2959
                    else:
                        self._update_desc_attr(attr_name, op_attrs[attr_name])
2960

2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988
                if os.environ.get('FLAGS_print_extra_attrs', '0') == '1':
                    if type in extra_op_attrs:
                        attrs = extra_op_attrs.get(type, [])
                        for attr in attrs:
                            if attr in op_attrs.keys():
                                warnings.warn(
                                    "op %s use extra_attr: %s" % (type, attr)
                                )

                    if type in special_op_attrs:
                        attrs = special_op_attrs.get(type, [])
                        for attr in attrs:
                            a_name = list(attr.keys())[0]
                            default_value = list(attr.values())[0]
                            if (
                                a_name in op_attrs.keys()
                                and default_value != op_attrs[a_name]
                            ):
                                warnings.warn(
                                    "op %s's attr %s = %s is not the default value: %s"
                                    % (
                                        type,
                                        a_name,
                                        op_attrs[a_name],
                                        default_value,
                                    )
                                )

J
jianghaicheng 已提交
2989 2990
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
2991
                if global_ipu_index >= 0:
2992 2993 2994
                    self._update_desc_attr(
                        ipu_index_attr_name, global_ipu_index
                    )
2995
                if global_ipu_stage >= 0:
2996 2997 2998
                    self._update_desc_attr(
                        ipu_stage_attr_name, global_ipu_stage
                    )
J
jianghaicheng 已提交
2999

3000
            self.desc.check_attrs()
3001

3002 3003 3004 3005
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
3006
    def _has_kernel(self, op_type):
3007 3008
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
3009
    def to_string(self, throw_on_error):
3010
        """
3011 3012
        Get debug string.

3013
        Args:
3014 3015
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
3016

3017 3018
        Returns:
            str: The debug string.
3019 3020

        """
3021
        protostr = self.desc.serialize_to_string()
3022
        proto = framework_pb2.OpDesc.FromString(bytes(protostr))
Y
Yang Yang(Tony) 已提交
3023 3024
        return _debug_string_(proto, throw_on_error)

3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3057
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3058 3059
            type(skip_op_callstack)
        )
3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

3086 3087 3088
            attr_type = self.desc.attr_type(name, True)
            if attr_type == core.AttrType.VAR:
                attr_var_name = self.desc.attr(name, True).name()
3089 3090 3091
                a = "{name} = Var['{value}']".format(
                    name=name, type=attr_type, value=attr_var_name
                )
3092 3093 3094 3095 3096 3097 3098 3099 3100 3101
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.VARS:
                attr_var_names = [
                    "'%s'" % var.name() for var in self.desc.attr(name, True)
                ]
                a = "{name} = Vars[{value}]".format(
3102 3103
                    name=name, type=attr_type, value=','.join(attr_var_names)
                )
3104 3105 3106 3107 3108
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3109 3110
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
3111 3112
                    name=name, type=attr_type, value=self._block_attr_id(name)
                )
3113 3114 3115 3116 3117 3118 3119
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
3120 3121
                    name=name, type=attr_type, value=self._blocks_attr_ids(name)
                )
3122 3123 3124 3125 3126
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3127
            # it is bytes of serialized protobuf
3128 3129 3130 3131 3132
            if (
                is_compiled_with_cinn()
                and self.type == 'cinn_launch'
                and name == 'compilation_key'
            ):
3133 3134
                key = self.desc.attr(name)
                v = core.get_serialize_comile_key(key)
3135 3136 3137 3138 3139 3140 3141 3142 3143
                prog = Program()
                prog = prog.parse_from_string(v)
                s = prog._to_readable_code()
                lines = s.split('\n')
                value = '\n'.join(['      ' + line for line in lines])
                value = '\n' + value
            else:
                value = self.desc.attr(name)

3144 3145 3146
            a = "{name} = {value}".format(
                name=name, type=attr_type, value=value
            )
3147

3148 3149 3150 3151
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

3152 3153 3154 3155
        from paddle.distributed.auto_parallel.dist_context import (
            get_default_distributed_context,
        )

3156
        dist_context = get_default_distributed_context()
3157 3158
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
3159 3160 3161
            attrs_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_op
            )
3162

3163
        if outputs_str != "{}":
3164 3165 3166 3167 3168 3169
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".format(
                outputs=outputs_str,
                op_type=self.type,
                inputs=inputs_str,
                attrs=attrs_str,
            )
3170
        else:
3171 3172 3173
            op_str = "{op_type}(inputs={inputs}, {attrs})".format(
                op_type=self.type, inputs=inputs_str, attrs=attrs_str
            )
3174 3175
        return op_str

Y
Yang Yang(Tony) 已提交
3176
    def __str__(self):
3177
        return self._to_readable_code()
3178 3179 3180

    __repr__ = __str__

F
fengjiayi 已提交
3181 3182
    @property
    def type(self):
3183
        return self.desc.type()
F
fengjiayi 已提交
3184 3185

    def input(self, name):
3186
        r"""
U
ustiniankw 已提交
3187

3188
        Get the input arguments according to the input parameter name.
3189

3190 3191
        Args:
            name(str): The input parameter name.
3192

3193
        Returns:
U
ustiniankw 已提交
3194
            list, return the list of argument names that associated with \
3195
                the specific parameter name.
U
ustiniankw 已提交
3196

3197
        """
F
fengjiayi 已提交
3198 3199
        return self.desc.input(name)

W
Wu Yi 已提交
3200
    def _rename_input(self, old_name, new_name):
3201 3202 3203 3204 3205 3206 3207 3208 3209 3210
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
3211
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
3212

W
Wu Yi 已提交
3213
    def _rename_output(self, old_name, new_name):
3214 3215 3216 3217 3218 3219 3220 3221 3222 3223
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
3224
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
3225

F
fengjiayi 已提交
3226 3227 3228 3229
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
3230 3231 3232 3233 3234 3235 3236 3237
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
3238
    def output(self, name):
3239
        r"""
3240
        Get output arguments by the output parameter name.
3241

3242 3243
        Args:
            name(str): The output parameter name.
3244

3245 3246 3247
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
3248
        """
F
fengjiayi 已提交
3249 3250 3251 3252 3253 3254
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

3255 3256 3257 3258 3259 3260
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
3261 3262
            "Can't find op itself in it's block. It could be a bug of Paddle."
        )
3263

F
fengjiayi 已提交
3264
    def has_attr(self, name):
3265
        """
3266 3267
        Whether this Operator has the attribute with name or not.

3268
        Args:
3269
            name(str): the attribute name.
3270

3271 3272
        Returns:
            bool: True if has this attribute.
3273 3274

        """
F
fengjiayi 已提交
3275 3276 3277
        return self.desc.has_attr(name)

    def attr_type(self, name):
3278
        """
3279
        Get the type of attribute by attribute's name.
3280

3281 3282
        Args:
            name(str): the attribute name.
3283

3284 3285
        Returns:
            core.AttrType: the attribute type.
3286
        """
3287
        return self.desc.attr_type(name, True)
F
fengjiayi 已提交
3288

W
Wu Yi 已提交
3289
    def _set_attr(self, name, val):
3290 3291 3292 3293 3294 3295 3296 3297 3298 3299
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
3300 3301
        self._update_desc_attr(name, val)

3302 3303 3304
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
3316 3317 3318 3319 3320
        if isinstance(val, Variable):
            self.desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            self.desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
Q
Qiyang Min 已提交
3321
            self.desc.set_block_attr(name, val.desc)
3322
        elif isinstance(val, list) and val and _all_is_type(val, Block):
3323
            self.desc.set_blocks_attr(name, [v.desc for v in val])
3324 3325 3326
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
Q
Qiyang Min 已提交
3327 3328
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
3329 3330 3331 3332 3333 3334 3335 3336 3337
            self._update_desc_plain_attr(name, val)

    def _update_desc_plain_attr(self, name, val):
        desc = self.desc
        if not hasattr(self, "_attr_types") or (name not in self._attr_types):
            desc._set_attr(name, val)
            return

        type_index = self._attr_types[name]
3338 3339 3340 3341 3342 3343
        # if the required attribute is a SCALAR, pass as-is
        if type_index == core.AttrType.SCALAR:
            desc._set_scalar_attr(name, wrap_as_scalar(val))
        elif type_index == core.AttrType.SCALARS:
            desc._set_scalars_attr(name, wrap_as_scalars(val))
        elif type_index == core.AttrType.BOOL:
3344 3345 3346 3347 3348 3349 3350
            desc._set_bool_attr(name, val)
        elif type_index == core.AttrType.INT:
            desc._set_int32_attr(name, val)
        elif type_index == core.AttrType.LONG:
            desc._set_int64_attr(name, val)
        elif type_index == core.AttrType.FLOAT:
            desc._set_float32_attr(name, val)
3351 3352
        elif type_index == core.AttrType.FLOAT64:
            desc._set_float64_attr(name, val)
3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369
        elif type_index == core.AttrType.STRING:
            desc._set_str_attr(name, val)
        elif type_index == core.AttrType.BOOLS:
            desc._set_bools_attr(name, val)
        elif type_index == core.AttrType.INTS:
            desc._set_int32s_attr(name, val)
        elif type_index == core.AttrType.LONGS:
            desc._set_int64s_attr(name, val)
        elif type_index == core.AttrType.FLOATS:
            desc._set_float32s_attr(name, val)
        elif type_index == core.AttrType.FLOAT64S:
            desc._set_float64s_attr(name, val)
        elif type_index == core.AttrType.STRINGS:
            desc._set_strs_attr(name, val)
        else:
            # defaults to old methods
            desc._set_attr(name, val)
Y
yuyang18 已提交
3370

F
fengjiayi 已提交
3371 3372
    @property
    def attr_names(self):
3373
        return self.desc.attr_names(True)
F
fengjiayi 已提交
3374 3375

    def attr(self, name):
3376
        """
3377 3378
        Get the attribute by name.

3379
        Args:
3380
            name(str): the attribute name.
3381

3382 3383
        Returns:
            bool|int|str|float|list: The attribute value. The return value
3384 3385
            can be any valid attribute type.
        """
F
fengjiayi 已提交
3386
        return self.desc.attr(name)
Y
Yu Yang 已提交
3387

W
Wu Yi 已提交
3388
    def _block_attr_id(self, name):
3389
        """
G
gongweibao 已提交
3390
        Get the block attribute's id by name.
3391

3392 3393
        Args:
            name(str): the attribute name.
3394

3395 3396
        Returns:
            int: the block index.
3397
        """
W
Wu Yi 已提交
3398
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
3399

W
Wu Yi 已提交
3400
    def _block_attr(self, name):
G
gongweibao 已提交
3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
3411
        id = self._block_attr_id(name)
3412
        assert id >= 0 and id < len(self.block.program.blocks)
G
gongweibao 已提交
3413 3414
        return self.block.program.blocks[id]

W
Wu Yi 已提交
3415
    def _blocks_attr(self, name):
G
gongweibao 已提交
3416 3417 3418 3419 3420 3421 3422 3423 3424 3425
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
3426
        for i in self._blocks_attr_ids(name):
3427
            assert i >= 0 and i < len(self.block.program.blocks)
G
gongweibao 已提交
3428 3429 3430 3431
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
3432
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
3443
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
3444

3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
    def _var_attr(self, name):
        """
        Get the Variable attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variable: the Variable attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3456 3457 3458 3459 3460
        assert (
            attr_type == core.AttrType.VAR
        ), "Required type attr({}) is Variable, but received {}".format(
            name, attr_type
        )
3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474
        attr_var_name = self.desc.attr(name, True).name()
        return self.block._var_recursive(attr_var_name)

    def _vars_attr(self, name):
        """
        Get the Variables attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variables: the Variables attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3475 3476 3477 3478 3479
        assert (
            attr_type == core.AttrType.VARS
        ), "Required type attr({}) is list[Variable], but received {}".format(
            name, attr_type
        )
3480 3481 3482 3483 3484 3485
        attr_vars = [
            self.block._var_recursive(var.name())
            for var in self.desc.attr(name, True)
        ]
        return attr_vars

J
JiayiFeng 已提交
3486
    def all_attrs(self):
F
fengjiayi 已提交
3487
        """
3488 3489 3490
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3491
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3492 3493 3494 3495
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
3496
            attr_type = self.desc.attr_type(n, True)
G
gongweibao 已提交
3497
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3498
                attr_map[n] = self._block_attr(n)
3499
            elif attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3500
                attr_map[n] = self._blocks_attr(n)
3501 3502 3503 3504 3505 3506
            elif attr_type == core.AttrType.VAR:
                attr_map[n] = self._var_attr(n)
            elif attr_type == core.AttrType.VARS:
                attr_map[n] = self._vars_attr(n)
            else:
                attr_map[n] = self.attr(n)
G
gongweibao 已提交
3507

F
fengjiayi 已提交
3508 3509
        return attr_map

3510 3511 3512
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3513 3514 3515 3516

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3517 3518 3519
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3520 3521 3522 3523 3524 3525 3526 3527

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3528 3529
            return False

3530 3531 3532 3533 3534 3535
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3536
    @property
3537
    def dist_attr(self):
3538
        """
3539
        Get distributed attribute of this Variable.
3540
        """
3541
        return self.desc.dist_attr
3542

3543 3544
    @dist_attr.setter
    def dist_attr(self, dist_attr):
3545
        """
3546
        Set distributed attribute of this Variable.
3547
        """
3548
        self.desc.dist_attr = dist_attr
3549

Y
Yu Yang 已提交
3550

3551
class Block:
3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3566
        use `Program._create_block()` to create a block.
3567 3568 3569 3570

    Examples:
        .. code-block:: python

3571 3572 3573
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3574 3575 3576 3577 3578 3579 3580 3581 3582
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3583
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3584
        self.desc = program.desc.block(idx)
3585
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3586
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3587 3588
        self.program = program

3589
    def __str__(self):
3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3624
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3625 3626
            type(skip_op_callstack)
        )
3627 3628 3629 3630 3631 3632 3633
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
3634 3635
                op._to_readable_code(skip_op_callstack)
            )
3636 3637
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3638

F
fengjiayi 已提交
3639 3640
    def to_string(self, throw_on_error, with_details=False):
        """
3641 3642
        Get debug string.

F
fengjiayi 已提交
3643 3644
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3645
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3646
            with_details(bool): more details about variables and parameters
3647 3648
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3649

3650 3651
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3652
        """
3653
        assert isinstance(throw_on_error, bool) and isinstance(
3654 3655
            with_details, bool
        )
F
fengjiayi 已提交
3656
        if with_details:
F
fengjiayi 已提交
3657
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3658
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
3659 3660 3661
                self.idx,
                self.parent_idx,
            )
3662
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3663
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
3664 3665
                    r"\n    \1", var.to_string(throw_on_error, with_details)
                )
F
fengjiayi 已提交
3666
            for op in self.ops:
F
fengjiayi 已提交
3667
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
3668 3669
                    r"\n    \1", op.to_string(throw_on_error)
                )
F
fengjiayi 已提交
3670 3671 3672
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3673
            proto = framework_pb2.BlockDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
3674 3675
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3676 3677 3678

    __repr__ = __str__

Y
Yu Yang 已提交
3679 3680
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3681
        return self.desc.parent
Y
Yu Yang 已提交
3682

Y
Yu Yang 已提交
3683 3684 3685 3686
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3687
    def _set_forward_block_idx(self, idx):
3688 3689 3690 3691 3692 3693 3694 3695 3696
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3697
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3698

3699 3700 3701 3702 3703 3704 3705 3706
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3707 3708
    @property
    def idx(self):
Y
Yu Yang 已提交
3709
        return self.desc.id
Y
Yu Yang 已提交
3710

Q
Qiao Longfei 已提交
3711
    def var(self, name):
3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3725
        if not isinstance(name, str):
M
minqiyang 已提交
3726
            raise TypeError(
3727 3728 3729
                "var require string as parameter, but get %s instead."
                % (type(name))
            )
Y
Yu Yang 已提交
3730 3731
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3732
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3733
        return v
Q
Qiao Longfei 已提交
3734

X
Xin Pan 已提交
3735
    def _find_var_recursive(self, name):
3736 3737 3738 3739 3740 3741 3742
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3743
            Variable: the Variable with the giving name. Or None if not found.
3744
        """
Y
Yu Yang 已提交
3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3769
        return None
Y
Yu Yang 已提交
3770

X
Xin Pan 已提交
3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3790

Q
Qiao Longfei 已提交
3791
    def all_parameters(self):
3792
        return list(self.iter_parameters())
3793

3794
    def iter_parameters(self):
3795 3796 3797 3798 3799
        return (
            item[1]
            for item in self.vars.items()
            if isinstance(item[1], Parameter)
        )
Q
Qiao Longfei 已提交
3800

Y
Yu Yang 已提交
3801
    def create_var(self, *args, **kwargs):
J
Jiabin Yang 已提交
3802
        if _non_static_mode():
3803
            var = _create_tensor(*args, **kwargs)
L
Leo Chen 已提交
3804
        else:
3805 3806 3807
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3808
        return var
Y
Yu Yang 已提交
3809

Q
Qiao Longfei 已提交
3810 3811 3812
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3813
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3814 3815
        """
        Rename variable in vars and ops' inputs and outputs
3816 3817

        Args:
3818 3819
            name(str|bytes): the name that need to be renamed.
            new_name(str|bytes): the name that need to rename to.
3820 3821 3822 3823 3824 3825 3826 3827

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3828
        """
3829 3830
        # Ensure the type of name and new_name is str
        name = name.decode() if isinstance(name, bytes) else name
3831 3832 3833
        new_name = (
            new_name.decode() if isinstance(new_name, bytes) else new_name
        )
M
minqiyang 已提交
3834

T
typhoonzero 已提交
3835
        if not self.has_var(name):
3836
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3837 3838
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3839
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3840 3841 3842 3843 3844 3845
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3846
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3847 3848 3849 3850
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3851
        orig_var_type = v.type
3852
        self.desc._rename_var(name.encode(), new_name.encode())
W
Wu Yi 已提交
3853
        # NOTE: v is destroyed by C++ after calling _rename_var.
3854
        d = self.desc.find_var(new_name.encode())
T
typhoonzero 已提交
3855
        if var_type == "Parameter":
L
Leo Chen 已提交
3856
            if in_dygraph_mode():
3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867
                var = EagerParamBase(
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
3868
            else:
姜永久 已提交
3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880
                var = Parameter(
                    self,
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
T
typhoonzero 已提交
3881
        elif var_type == "Variable":
3882 3883 3884 3885 3886 3887 3888
            var = Variable(
                self,
                type=orig_var_type,
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient,
            )
T
wip  
typhoonzero 已提交
3889

W
Wu Yi 已提交
3890
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3891 3892 3893
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3894
        self._sync_with_cpp()
3895
        return var
T
typhoonzero 已提交
3896

3897 3898 3899
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
3900
        self.desc._remove_var(name.encode())
3901 3902
        del self.vars[name]

Y
Yu Yang 已提交
3903 3904
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3905
        param = None
L
Leo Chen 已提交
3906
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3907
            param = EagerParamBase(*args, **kwargs)
L
Leo Chen 已提交
3908
        else:
姜永久 已提交
3909
            param = Parameter(global_block, *args, **kwargs)
3910 3911 3912
        # NOTE(Aurelius84): we deliver stop_gradient in append_op, so we
        # need recorde it state and reset it back after calling this API
        stop_gradient = param.stop_gradient
3913

3914
        if 'initializer' in kwargs:
3915 3916 3917 3918 3919

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3920
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3921
                        # are treated as initialization ops that cause error.
3922
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3923 3924
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
3925 3926 3927
                            "c_broadcast",
                            "c_sync_comm_stream",
                            "coalesce_tensor",
3928
                        ]:
3929
                            continue
3930 3931 3932 3933 3934 3935 3936
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
3937 3938 3939 3940 3941 3942
                raise RuntimeError(
                    "param "
                    + param.name
                    + " is inited by multiple init ops "
                    + str(init_ops)
                )
3943
            elif init_ops_len == 1:
3944
                # TODO already inited, do nothing, should log a warning
3945 3946 3947
                pass
            else:
                initializer(param, self)
3948
        param.stop_gradient = stop_gradient
Q
Qiao Longfei 已提交
3949
        return param
Y
Yu Yang 已提交
3950

Y
Yu Yang 已提交
3951
    def append_op(self, *args, **kwargs):
3952 3953 3954 3955 3956 3957
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
3958
        op_type = kwargs.get("type", None)
J
Jiabin Yang 已提交
3959
        if _non_static_mode():
3960
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
3961
            inplace_map = kwargs.get("inplace_map", None)
3962 3963 3964
            warnings.warn(
                "Op `%s` is executed through `append_op` under the dynamic mode, "
                "the corresponding API implementation needs to be upgraded to "
3965 3966 3967 3968 3969 3970
                "using `_C_ops` method." % type,
                DeprecationWarning,
            )
            op = Operator(
                block=self,
                desc=None,
3971
                type=op_type,
3972 3973 3974 3975
                inputs=None,
                outputs=None,
                attrs=attrs,
            )
3976

M
minqiyang 已提交
3977 3978
            # record ops in tracer rather than blocks
            #
3979
            # TODO(minqiyang): add op stop_gradient support in static graph mode too.
L
lujun 已提交
3980
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3981

3982
            _dygraph_tracer().trace_op(
3983
                op_type,
3984 3985 3986 3987 3988 3989
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
                inplace_map,
            )
M
minqiyang 已提交
3990
        else:
3991
            from paddle.fluid.dygraph.base import param_guard
3992
            from paddle.utils import flatten
3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006

            def pass_stop_gradient(ins, outs):
                """
                Set out.stop_gradient = True if all inputs stop_gradient is True.
                """
                need_reset = True
                for var in flatten(ins):
                    if getattr(var, 'stop_gradient', None) is False:
                        need_reset = False
                        break
                if need_reset:
                    for var in flatten(outs):
                        if isinstance(var, Variable):
                            var.stop_gradient = True
4007

4008
            op_desc = self.desc.append_op()
4009 4010
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
W
wanghuancoder 已提交
4011
            # NOTE(Aurelius84): In case of @to_static, all Tensor(s) should
4012 4013
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
4014 4015 4016 4017 4018 4019 4020 4021 4022 4023
            ignore_ops = {
                'conditional_block',
                'conditional_block_grad',
                'recurrent',
                'recurrent_grad',
                'while',
                'while_grad',
            }
            if op_type not in ignore_ops:
                pass_stop_gradient(inputs, outputs)
4024
            with param_guard(inputs), param_guard(outputs):
4025 4026 4027
                op = Operator(
                    block=self,
                    desc=op_desc,
4028
                    type=op_type,
4029 4030 4031 4032
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None),
                )
4033

M
minqiyang 已提交
4034
            self.ops.append(op)
M
minqiyang 已提交
4035

4036 4037
        return op

W
Wu Yi 已提交
4038
    def _insert_op(self, index, *args, **kwargs):
4039 4040 4041 4042 4043 4044 4045 4046 4047
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
4048
        self._sync_with_cpp()
F
fangshuixun007 已提交
4049
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
4050

4051 4052
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
4053
        Insert an Operator according to the giving arguments,
4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
4068 4069 4070 4071 4072 4073 4074 4075 4076
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
4077 4078
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
4079
        self.desc._remove_op(index, index + 1)
4080 4081
        del self.ops[index]

W
Wu Yi 已提交
4082
    def _slice_ops(self, start, end):
4083 4084 4085 4086 4087 4088 4089 4090 4091 4092
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
4093
        return self.ops[start:end]
Y
Yancey1989 已提交
4094

W
Wu Yi 已提交
4095
    def _prepend_op(self, *args, **kwargs):
J
Jiabin Yang 已提交
4096
        if _non_static_mode():
J
Jiabin Yang 已提交
4097 4098
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109
            op = Operator(
                self, None, type=type, inputs=None, outputs=None, attrs=attrs
            )

            _dygraph_tracer().trace_op(
                type,
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
            )
M
minqiyang 已提交
4110
        else:
4111
            op_desc = self.desc._prepend_op()
4112 4113 4114 4115 4116 4117 4118 4119
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None),
            )
M
minqiyang 已提交
4120
            self.ops.insert(0, op)
4121

Y
Yu Yang 已提交
4122 4123
        return op

W
Wu Yi 已提交
4124
    def _sync_with_cpp(self):
4125
        """
4126 4127
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
4128
        """
Q
Qiao Longfei 已提交
4129 4130 4131
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
4132 4133 4134 4135
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
4136 4137 4138 4139 4140 4141 4142 4143
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient,
                    )
4144
                else:
4145 4146 4147 4148 4149 4150
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient,
                    )
Q
Qiao Longfei 已提交
4151

4152
        # sync variables removed from c++ end
4153
        for var in list(self.vars.keys()):
4154
            if not self.desc.find_var(var.encode()):
4155 4156
                self.vars.pop(var)

Q
Qiao Longfei 已提交
4157
        # sync operators from cpp
4158 4159 4160 4161
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
4178 4179 4180 4181 4182

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
4183
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
4184 4185 4186 4187 4188 4189 4190

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

4191 4192 4193 4194 4195
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
4196 4197 4198 4199 4200 4201
                self.ops
            ) and ops_in_cpp_index < len(ops_in_cpp):
                if (
                    self.ops[ops_in_python_index].desc
                    != ops_in_cpp[ops_in_cpp_index]
                ):
4202 4203 4204 4205 4206
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
4207 4208 4209 4210
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
4211
    def _copy_param_info_from(self, other):
4212
        """
4213 4214
        Copy the information of parameters from the other block.

4215
        Args:
4216 4217 4218 4219 4220
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
4221 4222 4223 4224 4225

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
4226
            raise TypeError(
4227 4228
                "_copy_param_info_from should be invoked with Block"
            )
4229
        for p in other.iter_parameters():
4230 4231 4232
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
4233 4234
                # if the Parameter is pruned, v may be None
                continue
4235
            assert isinstance(v, Variable)
4236
            new_p = None
L
Leo Chen 已提交
4237
            if in_dygraph_mode():
4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249
                new_p = EagerParamBase(
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4250
            else:
姜永久 已提交
4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265
                new_p = Parameter(
                    block=self,
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR
                    else None,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4266 4267
            self.vars[new_p.name] = new_p

4268
    def _clone_variable(self, var, force_persistable=True):
4269 4270
        """
        Clone a variable into current block.
4271

4272 4273
        Args:
            var: the variable to be cloned.
4274 4275 4276
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
4277 4278

        Returns:
4279
            Variable: the new  variable cloned from 'var' in current block.
4280 4281
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
4282 4283 4284
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
4285 4286 4287
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
tangwei12 已提交
4288
        elif var.type == core.VarDesc.VarType.RAW:
4289 4290 4291
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
typhoonzero 已提交
4292 4293 4294 4295 4296 4297
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
4298
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4299
                is_data=var.is_data,
4300 4301
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4302 4303 4304 4305 4306 4307 4308
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
4309
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4310
                is_data=var.is_data,
4311 4312
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4313
        return ret_var
4314

Y
Yu Yang 已提交
4315

4316 4317 4318 4319
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
4320
# of some old Python Variables(all old Python Operators) may have
4321
# been destructed.
4322 4323 4324
def _apply_pass(
    main_program, startup_program, pass_name, pass_attrs={}, pass_attr_types={}
):
4325 4326 4327 4328
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
4329 4330 4331 4332 4333 4334 4335
    attrs = core.apply_pass(
        tmp_main_program,
        tmp_startup_program,
        pass_name,
        pass_attrs,
        pass_attr_types,
    )
4336 4337 4338 4339 4340
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


4341
class IrNode:
4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4353 4354 4355
        assert isinstance(
            node, core.Node
        ), 'node must be the instance of core.Node.'
4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

4437
    def remove_input_by_id(self, node_id):
4438 4439 4440 4441 4442 4443
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4444
        self.node.remove_input(node_id)
4445

4446
    def remove_input(self, node):
4447 4448 4449 4450
        """
        Remove a node from inputs.

        Args:
4451
            node(IrNode): the node being removed.
4452
        """
4453
        self.node.remove_input(node.node)
4454

4455
    def append_input(self, node):
4456 4457 4458 4459
        """
        Append a node in inputs.

        Args:
4460
            node(IrNode): the node being appended.
4461
        """
4462
        self.node.append_input(node.node)
4463 4464 4465 4466 4467 4468 4469 4470

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

4471
    def remove_output_by_id(self, node_id):
4472 4473 4474 4475 4476 4477
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4478
        self.node.remove_output(node_id)
4479

4480
    def remove_output(self, node):
4481 4482 4483 4484
        """
        Remove a node from outputs.

        Args:
4485
            node(IrNode): the node being removed.
4486
        """
4487
        self.node.remove_output(node.node)
4488

4489
    def append_output(self, node):
4490 4491 4492 4493
        """
        Append a node in outputs.

        Args:
4494
            node(IrNode): the node being appended.
4495
        """
4496
        self.node.append_output(node.node)
4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4531 4532 4533
        assert (
            isinstance(node, core.Node) and node.is_var()
        ), 'node must be the instance of core.Node and it must be a variable node.'
4534
        super().__init__(node)
4535 4536 4537 4538 4539 4540 4541 4542 4543
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
4544 4545 4546
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4547 4548 4549 4550 4551 4552 4553 4554 4555
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
4556 4557 4558
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4559 4560
        return self.node.var().persistable()

4561 4562 4563 4564 4565 4566 4567
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
4568 4569 4570
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4571 4572 4573 4574 4575 4576 4577 4578 4579
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
4580 4581 4582
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4583 4584 4585 4586 4587 4588 4589 4590 4591
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
4592 4593 4594
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4595 4596
        return self.node.var().shape()

4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4630 4631 4632
        assert (
            isinstance(node, core.Node) and node.is_op()
        ), 'node must be the instance of core.Node and it must be a operator node.'
4633
        super().__init__(node)
4634 4635 4636 4637 4638 4639 4640 4641 4642 4643
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
4644 4645 4646
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4647 4648
        self.node.op()._rename_input(old_input_name, new_input_name)

4649 4650 4651 4652 4653 4654 4655 4656
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
4657 4658 4659
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4660 4661
        self.node.op()._rename_output(old_output_name, new_output_name)

4662 4663 4664 4665 4666 4667 4668 4669 4670 4671
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4672 4673 4674
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4687 4688 4689
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4690 4691 4692 4693 4694 4695 4696 4697 4698
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
4699 4700 4701
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4702 4703
        return self.node.op().set_type(new_type)

4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
4718 4719 4720
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4721
        desc = self.node.op()
4722 4723 4724 4725 4726
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
4727
            desc.set_block_attr(name, val.desc)
4728
        elif isinstance(val, list) and val and _all_is_type(val, Block):
4729
            desc.set_blocks_attr(name, [v.desc for v in val])
4730 4731 4732
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
4733 4734 4735 4736
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4737 4738 4739 4740 4741 4742 4743
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
4744 4745 4746
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4747 4748 4749 4750 4751 4752 4753 4754 4755
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
4756 4757 4758
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4759 4760
        return self.node.op().output_arg_names()

4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4782
class IrGraph:
4783
    """
4784
    Python IrGraph. Beneath it is a core.Graph, which is used for
4785
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4786 4787
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4788 4789 4790 4791
    """

    def __init__(self, graph, for_test=False):
        """
4792 4793
        Construct an IrGraph using core.Graph.

4794 4795 4796 4797 4798
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
4799 4800
            graph, core.Graph
        ), 'graph must be the instance of core.Graph.'
4801 4802 4803
        self.graph = graph
        self._for_test = for_test

4804 4805 4806 4807
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4808 4809 4810
        Warns:
            The method only clones the graph structure, not its attributes.

4811 4812 4813
        Returns:
            IrGraph: A new and duplicated graph.
        """
4814
        g = self.graph.clone()
4815 4816
        return IrGraph(g, self._for_test)

4817
    def is_test(self):
4818 4819 4820
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4821 4822
        return self._for_test

W
WangZhen 已提交
4823
    def all_nodes(self):
4824 4825 4826
        """
        Return all nodes included in the graph as a set.
        """
4827
        return {IrNode(node) for node in self.graph.nodes()}
4828

4829
    def all_var_nodes(self):
4830 4831 4832
        """
        Return all variable nodes included in the graph as a set.
        """
4833
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4834

4835
    def all_persistable_nodes(self):
4836 4837 4838
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4839 4840
        persistable_nodes = set()
        for node in self.graph.nodes():
4841 4842 4843 4844 4845
            if (
                node.is_var()
                and node.var() is not None
                and node.var().persistable()
            ):
W
WangZhen 已提交
4846
                persistable_nodes.add(node)
4847
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4848

4849
    def all_op_nodes(self):
4850 4851 4852
        """
        Return all operator nodes included in the graph as a set.
        """
4853
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4854

4855 4856 4857 4858 4859 4860
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
4861
            IrGraph(self.graph.get_sub_graph(i), for_test=for_test)
4862 4863 4864 4865 4866 4867 4868 4869 4870
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4871
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4883
            IrVarNode: the created persistable variable node.
4884
        """
4885 4886 4887 4888 4889
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4890
        return IrVarNode(self.graph.create_var_node(var_desc))
4891 4892

    def create_var_node(self, name, var_type, shape, var_dtype):
4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4904
            IrVarNode: the created variable node.
4905 4906
        """

4907 4908 4909 4910
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4911
        return IrVarNode(self.graph.create_var_node(var_desc))
4912

4913 4914 4915 4916 4917 4918
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4919
    def create_var_node_from_desc(self, var_desc):
4920 4921 4922 4923 4924 4925 4926 4927
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4928
            IrVarNode: the created variable node.
4929
        """
4930
        return IrVarNode(self.graph.create_var_node(var_desc))
4931 4932

    def create_op_node(self, op_type, attrs, inputs, outputs):
4933 4934 4935 4936 4937 4938 4939
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4940
            outputs(dict): the outputs of the operator node.
4941 4942

        Returns:
4943
            IrOpNode: the created operator node.
4944
        """
4945 4946
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4947
        for attr, value in attrs.items():
4948
            self._update_desc_attr(op_desc, attr, value)
4949
        for input_name, var_nodes in inputs.items():
4950 4951
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
4952 4953 4954
            op_desc.set_input(
                input_name, [var_node.name() for var_node in var_nodes]
            )
4955
        for output_name, var_nodes in outputs.items():
4956 4957
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
4958 4959 4960
            op_desc.set_output(
                output_name, [var_node.name() for var_node in var_nodes]
            )
4961
        return IrOpNode(self.graph.create_op_node(op_desc))
4962 4963

    def create_op_node_from_desc(self, op_desc):
4964 4965 4966 4967 4968 4969 4970
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4971
            IrOpNode: the created operator node.
4972
        """
4973
        return IrOpNode(self.graph.create_op_node(op_desc))
4974 4975

    def update_input_link(self, old_input_node, new_input_node, op_node):
4976 4977 4978 4979
        """
        Update the input's link of a operator node.

        Args:
4980 4981 4982
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4983
        """
4984 4985 4986 4987 4988
        assert (
            old_input_node.node in self.graph.nodes()
            and new_input_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4989 4990 4991 4992
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
4993
        op_node.rename_input(old_input_node.name(), new_input_node.name())
4994

4995 4996 4997 4998 4999 5000 5001 5002 5003
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
5004 5005 5006 5007 5008
        assert (
            old_output_node.node in self.graph.nodes()
            and new_output_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
5009 5010 5011 5012 5013 5014
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

5015
    def link_to(self, node_in, node_out):
5016 5017 5018 5019
        """
        Connect two nodes.

        Args:
5020 5021
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
5022
        """
5023
        assert node_in.node in self.graph.nodes(), (
5024 5025
            'node_in(%s) must be in the graph nodes.' % node_in.node.name()
        )
5026
        assert node_out.node in self.graph.nodes(), (
5027 5028
            'node_out(%s) must be in the graph nodes.' % node_out.node.name()
        )
5029 5030
        node_in.append_output(node_out)
        node_out.append_input(node_in)
5031 5032

    def safe_remove_nodes(self, remove_nodes):
5033 5034 5035 5036 5037 5038 5039
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
5040
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
5041 5042 5043 5044
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
5045 5046
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
5047

Z
Zhen Wang 已提交
5048 5049 5050 5051 5052 5053 5054 5055
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5056
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
5057 5058 5059 5060
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5061
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
5062 5063 5064
                        ]
                    else:
                        var_nodes[each_var_name].append(
5065 5066
                            self._find_node_by_name(node.outputs, each_var_name)
                        )
Z
Zhen Wang 已提交
5067 5068
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
5069
    def has_circle(self):
5070 5071 5072 5073 5074 5075
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
5076 5077 5078
        return core.has_circle(self.graph)

    def graph_num(self):
5079 5080 5081 5082 5083 5084
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
5085 5086 5087
        return core.graph_num(self.graph)

    def topology_sort(self):
5088 5089 5090
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
5091
        Notes: the `graph` can not contain a circle.
5092 5093

        Returns:
Z
Zhen Wang 已提交
5094
            list(IrNode): nodes in topology order.
5095
        """
5096
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
5097
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
5098 5099

    def build_adjacency_list(self):
5100 5101 5102 5103
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
5104
            dict{IrNode: set(IrNode)}: the adjacency list.
5105
        """
5106 5107
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
5108
        for k, v in adj_list.items():
5109 5110
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
5111

5112 5113 5114 5115 5116 5117 5118 5119
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
5120
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
5121 5122 5123 5124 5125
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

5126 5127
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
5128 5129 5130 5131
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True,
            )
5132 5133
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
5134 5135 5136
                print(
                    'The {} is saved as the dot filetype.'.format(dot_file_path)
                )
5137

5138
        remove_ctr_vars = set()
5139
        if remove_ctr_var:
5140
            for node in self.all_var_nodes():
5141 5142 5143
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
5144 5145
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

5146 5147
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
5148 5149 5150 5151 5152 5153
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
5154 5155 5156 5157
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
5158 5159
        if not os.path.exists(save_path):
            os.makedirs(save_path)
5160 5161 5162 5163 5164 5165 5166
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
5167 5168 5169
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
5170
        WARN: When the graph includes backward operator nodes, the
5171 5172 5173 5174 5175 5176
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
5177
        convert_pass = core.get_pass('graph_to_program_pass')
5178 5179
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
5180 5181 5182 5183
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

5184 5185 5186 5187 5188 5189 5190 5191
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
5192
        assert target_node is not None, (
5193 5194
            "Cannot find the target node (%s)in the giving set." % node_name
        )
5195 5196
        return target_node

5197 5198 5199 5200
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
5201 5202 5203 5204 5205
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
5206
            desc.set_block_attr(name, val.desc)
5207
        elif isinstance(val, list) and val and _all_is_type(val, Block):
5208
            desc.set_blocks_attr(name, [v.desc for v in val])
5209 5210 5211
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
5212 5213 5214 5215 5216
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


5217
class Program:
D
dzhwinter 已提交
5218
    """
5219
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
5220
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
5221
    it will contain nested block.
5222

J
Jiabin Yang 已提交
5223 5224 5225
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
5226

J
Jiabin Yang 已提交
5227
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
5228
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
5229 5230 5231 5232 5233 5234 5235
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
5236
    **Notes**:
5237 5238 5239
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
5240 5241

    Returns:
J
Jiabin Yang 已提交
5242
        Program: An empty Program.
D
dzhwinter 已提交
5243 5244

    Examples:
5245 5246
        .. code-block:: python

5247 5248 5249 5250
            import paddle
            import paddle.static as static

            paddle.enable_static()
5251

5252 5253 5254 5255 5256
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
5257
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
5258 5259 5260

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
5261 5262 5263

    """

5264 5265
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
5266 5267
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
5268 5269
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
5270
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
5271
        self.__op_role_var = []
T
tangwei12 已提交
5272

5273 5274
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
5275
        self._is_distributed = False
5276
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
5277
        self._is_chief = False
5278 5279 5280
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
5281
        self._endpoints = []
5282 5283 5284
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
5285
        self._trainers_endpoints = []
5286
        # the distributed lookup table names
T
tangwei12 已提交
5287
        self._distributed_lookup_table = None
5288 5289 5290

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
5291 5292
        self._use_lamb = False

5293 5294 5295
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
5296

5297 5298 5299
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
5300
        self._program_config = None
5301

5302 5303
        self._pass_applied = None

H
hutuxian 已提交
5304 5305 5306
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

5307 5308 5309
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

5310 5311 5312
        # appending gradients times
        self._appending_grad_times = 0

5313 5314
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
5315 5316
            "__auto_checkpoint_program__"
        )
5317

5318 5319
        # compiled program, i.e. Graph
        self._graph = None
5320 5321
        # to tag whether is startup_program
        self._is_start_up_program_ = False
5322

5323
    def _find_var_class_kwargs(self, new_desc):
5324 5325 5326 5327 5328 5329 5330 5331
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

5332 5333 5334 5335
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
5336
            if idx > (len(self.blocks) - 1):
5337
                self._create_block()
5338 5339 5340 5341 5342 5343 5344 5345 5346 5347
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
                    'shape': get_var_desc_attr_or_none(
                        new_var_desc,
                        "shape",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'dtype': get_var_desc_attr_or_none(
                        new_var_desc,
                        "dtype",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'lod_level': get_var_desc_attr_or_none(
                        new_var_desc,
                        "lod_level",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'error_clip': old_var.error_clip
                    if old_var is not None
                    else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None
                    else False,
                    'is_data': old_var.is_data
                    if old_var is not None
                    else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None
                    else False,
5389 5390 5391
                }

                if isinstance(old_var, Parameter):
5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408
                    kwargs.update(
                        {
                            'trainable': old_var.trainable,
                            'optimize_attr': old_var.optimize_attr,
                            'regularizer': old_var.regularizer,
                            'do_model_average': old_var.do_model_average,
                            'need_clip': old_var.need_clip,
                            'is_distributed': old_var.is_distributed,
                            'is_parameter': old_var.is_parameter,
                        }
                    )
                    block_new_vars.append(
                        {
                            'class': Parameter,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5409 5410
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
5411 5412 5413 5414 5415 5416
                    block_new_vars.append(
                        {
                            'class': Variable,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5417 5418 5419 5420 5421 5422 5423

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
5424
        assert block_num == self.desc.num_blocks()
5425 5426

        # clear old blocks and desc
5427 5428 5429 5430 5431 5432 5433 5434 5435
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
5436

5437
        del desc
5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

5457 5458 5459 5460 5461 5462 5463 5464 5465 5466
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

5467 5468
                import paddle
                import paddle.static as static
5469

5470 5471 5472
                paddle.enable_static()

                prog = static.default_main_program()
5473 5474 5475 5476 5477
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
5478
                prog1 = static.default_main_program()
5479 5480 5481 5482 5483 5484 5485 5486
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
5487
    @property
5488
    def _op_role(self):
Y
yuyang18 已提交
5489 5490 5491 5492 5493 5494 5495 5496
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
5497
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
5498 5499 5500 5501
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
5502 5503
        return self._current_role

5504 5505
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
5506 5507 5508
        self._current_role = role

    @property
5509
    def _op_role_var(self):
Y
yuyang18 已提交
5510
        """
5511
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
5512

5513
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
5514 5515 5516

        Notes: This is a very low-level API. Users should not use it directly.
        """
5517
        return self.__op_role_var
Y
yuyang18 已提交
5518

5519
    @signature_safe_contextmanager
5520 5521 5522 5523 5524
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
5525 5526 5527 5528
        try:
            yield
        finally:
            self._current_role = tmp_role
5529

S
rename  
sneaxiy 已提交
5530
    @signature_safe_contextmanager
W
Wu Yi 已提交
5531
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
5532 5533 5534 5535 5536 5537 5538
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
5539
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
5540 5541 5542

        Examples:

5543
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
5544
            >>> p, g = backward(...)
W
Wu Yi 已提交
5545
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
5546 5547
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
5548
        tmp_role = self._current_role
5549
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
5550

Y
yuyang18 已提交
5551 5552
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
5553
        self.__op_role_var = [
5554 5555 5556
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
5557 5558 5559 5560 5561
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
5562

S
rename  
sneaxiy 已提交
5563
    @signature_safe_contextmanager
X
Xin Pan 已提交
5564
    def _lr_schedule_guard(self, is_with_opt=False):
5565 5566 5567 5568 5569 5570 5571
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
5572 5573 5574 5575
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
5576 5577 5578

        Examples:

5579
            >>> import paddle.fluid as fluid
5580 5581 5582 5583
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
5584 5585

        tmp_role = self._current_role
5586
        tmp_var = self.__op_role_var
5587

5588 5589
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
5590 5591
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
5592
        # TODO(typhoonzero): how to set target learning rate var
5593
        self.__op_role_var = []
5594 5595 5596 5597 5598
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
5599

5600
    def __str__(self):
Y
yuyang18 已提交
5601 5602 5603 5604 5605 5606 5607 5608 5609
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5630 5631
            import paddle
            import paddle.static as static
5632

5633 5634 5635
            paddle.enable_static()

            cur_program = static.Program()
5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5647
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
5648 5649
            type(skip_op_callstack)
        )
5650 5651 5652
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5653
            program_str += '\n'
5654
        return program_str
Y
Yang Yang(Tony) 已提交
5655

F
fengjiayi 已提交
5656 5657 5658
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5659

J
Jiabin Yang 已提交
5660 5661 5662
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5663

J
Jiabin Yang 已提交
5664
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5665

H
haowang101779990 已提交
5666
        Returns:
J
Jiabin Yang 已提交
5667
            str: The debug string describe current Program.
Y
yuyang18 已提交
5668 5669

        Raises:
J
Jiabin Yang 已提交
5670
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5671

5672 5673 5674
        Examples:
            .. code-block:: python

5675 5676 5677 5678
                import paddle
                import paddle.static as static

                paddle.enable_static()
5679

5680 5681 5682
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5683
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5684
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5685
                print("program string without detail: {}".format(prog_string))
5686
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5687
        """
5688 5689 5690
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
5691 5692
            type(throw_on_error)
        )
5693 5694 5695
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
5696 5697
            type(with_details)
        )
5698

F
fengjiayi 已提交
5699 5700 5701 5702
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718
            protostr = self.desc.serialize_to_string()
            proto = framework_pb2.ProgramDesc.FromString(bytes(protostr))
            res_str += (
                "version {\n  "
                + textwrap.indent(
                    _debug_string_(proto.version, throw_on_error), "  "
                )
                + "}\n"
            )
            res_str += (
                "op_version_map {\n  "
                + textwrap.indent(
                    _debug_string_(proto.op_version_map, throw_on_error), "  "
                )
                + "}\n"
            )
F
fengjiayi 已提交
5719 5720
        else:
            protostr = self.desc.serialize_to_string()
5721
            proto = framework_pb2.ProgramDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
5722 5723
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5724

W
Wu Yi 已提交
5725
    def _get_desc(self):
Y
yuyang18 已提交
5726 5727 5728 5729 5730 5731 5732
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5733 5734
        return self.desc

X
version  
Xin Pan 已提交
5735 5736 5737
    def _version(self):
        return self.desc._version()

5738
    def clone(self, for_test=False):
Y
yuyang18 已提交
5739
        """
5740
        .. note:::
5741 5742
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` .
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` .
5743
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5744

5745
        Create a new Program with forward content of original one when ``for_test=True``.
5746
        Create a new Program as same as the original one when ``for_test=False``.
5747

5748
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5749 5750 5751
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5752

5753 5754
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5755 5756
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
5757
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
5758

J
Jiabin Yang 已提交
5759
        For Example:
5760
          ::
L
Luo Tao 已提交
5761

5762 5763 5764 5765 5766 5767
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
5768
            pred = static.nn.fc(x=img, size=10, actvation='relu')
5769
            loss = paddle.mean(pred)
5770
            # Here we use clone before Momentum
5771 5772
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
5773
            optimizer.minimize(loss)
5774

J
Jiabin Yang 已提交
5775
        Args:
5776

5777 5778
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
5779

J
Jiabin Yang 已提交
5780
        Returns:
5781
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
5782

Y
yuyang18 已提交
5783 5784 5785

        Examples:

5786 5787 5788 5789 5790 5791 5792
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5793 5794
            .. code-block:: python

5795
                import paddle
5796 5797

                def print_prog(prog):
5798
                    for name, value in sorted(prog.block(0).vars.items()):
5799 5800 5801 5802 5803
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
5804
                        for key, value in sorted(op.all_attrs().items()):
5805 5806 5807 5808
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5809
            1. To clone a test program, the sample code is:
5810 5811
                .. code-block:: python

5812 5813 5814 5815 5816 5817
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5818 5819

                    def print_prog(prog):
5820
                        for name, value in sorted(prog.block(0).vars.items()):
5821 5822 5823 5824 5825
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
5826
                            for key, value in sorted(op.all_attrs().items()):
5827 5828 5829
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5830 5831
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5832 5833 5834

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5835 5836 5837
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5838
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5839 5840
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5841
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5842 5843
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5844
                            test_program = train_program.clone(for_test=True)
5845
                    print_prog(test_program)
J
Jiabin Yang 已提交
5846 5847 5848 5849

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5850
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5851 5852 5853 5854
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5855 5856 5857
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5858 5859 5860
                            sgd.minimize(avg_loss)


5861
            2. The clone method can be avoid if you create program for training and program for testing individually.
5862 5863
                .. code-block:: python

5864 5865 5866 5867 5868 5869
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5870 5871

                    def print_prog(prog):
5872
                        for name, value in sorted(prog.block(0).vars.items()):
5873 5874 5875 5876 5877
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
5878
                            for key, value in sorted(op.all_attrs().items()):
5879 5880
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5881

5882
                    def network():
5883
                        img = static.data(name='image', shape=[None, 784])
5884
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5885 5886
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5887
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5888 5889
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5890 5891
                        return avg_loss

5892 5893 5894 5895 5896
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5897
                            avg_loss = network()
5898
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5899
                            sgd.minimize(avg_loss)
5900
                    # the test startup program is not used.
5901 5902
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5903 5904
                            avg_loss = network()
                    print_prog(test_program_2)
5905

5906
            The two code snippets above will generate and print same programs.
5907
        """
5908

T
tangwei12 已提交
5909
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5910 5911 5912
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5913
        pruned_origin_block_id_map = None
5914
        if for_test:
5915 5916
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
5917 5918
                self.desc
            )
5919 5920
            forward_prog.blocks = [
                Block(forward_prog, i)
5921
                for i in range(forward_prog.desc.num_blocks())
5922 5923 5924
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5925
        else:
5926
            p = Program()
G
gongweibao 已提交
5927 5928
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5929
            p.desc = core.ProgramDesc(self.desc)
5930
            p.blocks = [Block(p, i) for i in range(self.desc.num_blocks())]
G
gongweibao 已提交
5931 5932

            p._current_role = self._current_role
5933
            p.__op_role_var = self.__op_role_var
5934
            p._appending_grad_times = self._appending_grad_times
5935 5936
            if hasattr(self, 'lr_scheduler'):
                p.lr_scheduler = self.lr_scheduler
G
gongweibao 已提交
5937

T
tangwei12 已提交
5938
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5939
            # its desc.
W
Wu Yi 已提交
5940
            p._sync_with_cpp()
5941

W
Wu Yi 已提交
5942
        p._copy_param_info_from(self)
5943
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5944
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5945
        return p
5946

5947
    def _prune(self, targets):
Y
yuyang18 已提交
5948 5949 5950 5951 5952 5953 5954 5955
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5956
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5957 5958 5959 5960
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5961
        """
5962
        return self._prune_with_input([], targets)
5963 5964

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5965
        """
5966
        Prune operators and variables which are not needed to generate
5967 5968
        :code:`targets`. Prune operators and variables which are needed
        to generate feeded_var
5969 5970 5971 5972 5973 5974 5975

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5976
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5977 5978 5979 5980 5981 5982
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5983
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5984 5985 5986
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5987 5988
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
5989 5990
        if not isinstance(targets, list):
            targets = [targets]
5991 5992

        for var in feeded_var_names:
5993
            if not isinstance(var, str):
5994 5995
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
5996 5997
                    "str, but received %s." % type(var)
                )
5998

5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

6015 6016 6017 6018
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
6019
                    name = t.name
6020
                elif isinstance(t, str):
6021
                    name = str(t)
6022
                else:
6023 6024
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
6025 6026
                        "Variable or Operator, but received %s." % type(t)
                    )
6027 6028 6029 6030 6031 6032

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
6033 6034 6035
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
6036

6037 6038 6039 6040 6041 6042 6043 6044 6045
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
6046
                        # Skip optimize op except for optimize op in targets,
6047 6048 6049 6050 6051
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
6052

6053
                if target_op is not None:
6054 6055 6056
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
6057

6058
        res = Program()
6059
        res.desc, pruned_origin_block_id_map = core.prune(
6060 6061
            self.desc, set(feeded_var_names), targets_idx
        )
6062
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6063
        res._sync_with_cpp()
6064 6065 6066 6067 6068

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

6069 6070
        return res

X
Xin Pan 已提交
6071
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
6072
        """
F
fengjiayi 已提交
6073 6074 6075 6076 6077
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

6078
        3. change the :code:`is_test`
Y
yuyang18 已提交
6079 6080 6081
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

6082
        Args:
X
Xin Pan 已提交
6083 6084
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
6085

Y
yuyang18 已提交
6086 6087 6088 6089 6090 6091
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
6092
        res = Program()
6093
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
6094 6095 6096 6097

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
6098
        if prune_read_op:
6099
            while True:
6100 6101 6102 6103
                if (
                    read_op_idx >= root_block.op_size()
                    or root_block.op(read_op_idx).type() == 'read'
                ):
6104 6105 6106 6107 6108 6109
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
6110
                    root_block._remove_var(var.name().encode())
F
fengjiayi 已提交
6111 6112

        # change all `is_test` attributes to True
6113
        for i in range(res.desc.num_blocks()):
6114
            block = res.desc.block(i)
6115
            for j in range(block.op_size()):
6116 6117
                op = block.op(j)
                if op.has_attr('is_test'):
6118
                    op._set_bool_attr('is_test', True)
6119 6120 6121
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
6122
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6123
        res._sync_with_cpp()
6124 6125
        return res

6126
    def _remove_training_info(self, clip_extra=True):
6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

6141
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
6142 6143
        res._sync_with_cpp()

6144 6145
        # Note: The op_role and op_role_var cann't be deleted currently,
        # and we will try to remove them in the future.
6146
        common_clipped_attrs_list = ['op_callstack', 'with_quant_attr']
6147

6148
        for i in range(res.desc.num_blocks()):
6149 6150 6151 6152
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
6153 6154
            if not clip_extra:
                continue
6155 6156 6157 6158
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
6159 6160 6161

                extra_attrs_map = core.get_op_extra_attrs(op.type())

6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
6175 6176 6177
                # The extra input of op will be removed in the future
                # for name in remove_input_list:
                #     op.remove_input(name)
6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
6191
                # The extra output of op will be removed in the future
6192 6193
                for name in remove_output_list:
                    op.remove_output(name)
6194

6195 6196 6197 6198 6199 6200 6201
                op_quant_name = (
                    core.op_proto_and_checker_maker.kOpWithQuantAttrName()
                )
                quant = (
                    bool(op.attr(op_quant_name))
                    if op_quant_name in op.attr_names()
                    else False
6202 6203
                )
                quant_attrs = [
6204 6205 6206 6207 6208 6209 6210
                    op_quant_name,
                    "quantization_type",
                    "skip_quant",
                    "activation_bits",
                    "bit_length",
                    "quantize_weight_bits",
                    "weight_quant_scale",
6211
                ]
6212 6213
                for extra_attr_name in extra_attrs_map.keys():
                    op.remove_attr(extra_attr_name)
6214
                remove_attr_list = []
6215 6216 6217 6218 6219 6220
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
6221
                    if len(extra_attrs_map) > 0:
6222
                        if name in common_clipped_attrs_list:
6223
                            op.remove_attr(name)
6224
                        continue
6225 6226 6227 6228 6229 6230 6231 6232 6233 6234
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
6235 6236
        return res

6237 6238
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
6239
        """
6240
        .. note::
6241
            1. All information about parameters will be lost after serialization;
6242
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6243

6244 6245
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
6246

J
Jiabin Yang 已提交
6247
        Args:
Y
yuyang18 已提交
6248

J
Jiabin Yang 已提交
6249
            binary_str_type (str): the binary prootbuf string.
6250

J
Jiabin Yang 已提交
6251 6252
        Returns:
            Program: A deserialized Program.
6253 6254 6255 6256

        Examples:
            .. code-block:: python

6257 6258 6259 6260
                import paddle
                import paddle.static as static

                paddle.enable_static()
6261

6262 6263 6264 6265
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
6266

6267
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
6268

6269
                    z = paddle.matmul(x=x, y=y)
6270

6271 6272
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
6273

6274
                    print(static.default_main_program())
6275
                    print(prog_restored)
Y
yuyang18 已提交
6276
        """
6277 6278
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
6279
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
W
Wu Yi 已提交
6280
        p._sync_with_cpp()
6281
        return p
Y
Yu Yang 已提交
6282

6283
    @staticmethod
6284
    def _construct_from_desc(desc):
6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
6296
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
6297 6298 6299
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
6300 6301
    @property
    def random_seed(self):
Y
yuyang18 已提交
6302
        """
J
Jiabin Yang 已提交
6303
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
6304 6305
        the random seed from random device.

6306
        .. note::
6307
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
6308 6309 6310

        Returns:
            int64: Random seed in current Program
6311

6312 6313 6314 6315

        Examples:
            .. code-block:: python

6316 6317 6318
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
6319

6320 6321 6322
                paddle.enable_static()

                prog = static.default_main_program()
6323
                random_seed = prog.random_seed
6324
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
6325 6326 6327
                print(random_seed)
                ## 0
                ## the default random seed is 0
6328

6329
                # Here we need to set random seed before we use paddle.nn.functional.dropout
6330
                prog.random_seed = 1
6331
                z_var = F.dropout(x_var, 0.7)
6332

6333
                print(prog.random_seed)
6334 6335
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
6336
        """
D
dzhwinter 已提交
6337 6338
        return self._seed

Q
qiaolongfei 已提交
6339 6340
    @property
    def num_blocks(self):
Y
yuyang18 已提交
6341
        """
6342 6343
        The number of :ref:`api_guide_Block_en`  in this Program.

6344
        .. note::
6345
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
6346 6347 6348

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
6349

6350 6351 6352 6353

        Examples:
            .. code-block:: python

6354 6355 6356 6357
                import paddle
                import paddle.static as static

                paddle.enable_static()
6358

6359
                prog = static.default_main_program()
6360 6361
                num_blocks = prog.num_blocks
                print(num_blocks)
6362

6363 6364
                # print result:
                # 1
Y
yuyang18 已提交
6365
        """
Q
qiaolongfei 已提交
6366 6367
        return self.desc.num_blocks()

D
dzhwinter 已提交
6368 6369 6370
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
6371 6372
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
6373 6374
                % type(seed)
            )
D
dzhwinter 已提交
6375 6376
        self._seed = seed

Y
Yu Yang 已提交
6377
    def __repr__(self):
6378
        return self.__str__()
6379

Y
Yu Yang 已提交
6380
    def global_block(self):
Y
yuyang18 已提交
6381
        """
6382 6383
        .. note::
            This API has no effect in Dygraph mode.
6384 6385 6386

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
6387 6388
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
6389

6390 6391 6392 6393

        Examples:
            .. code-block:: python

6394 6395 6396 6397
                import paddle
                import paddle.static as static

                paddle.enable_static()
6398

6399
                prog = static.default_main_program()
6400 6401
                gb_block = prog.global_block()
                print(gb_block)
6402

Y
yuyang18 已提交
6403
        """
Y
Yu Yang 已提交
6404 6405
        return self.blocks[0]

Q
Qiao Longfei 已提交
6406
    def block(self, index):
Y
yuyang18 已提交
6407
        """
6408 6409
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6410

6411 6412
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
6413 6414
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
6415

J
Jiabin Yang 已提交
6416 6417
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
6418 6419 6420 6421

        Examples:
            .. code-block:: python

6422 6423 6424 6425
                import paddle
                import paddle.static as static

                paddle.enable_static()
6426

6427
                prog = static.default_main_program()
6428 6429
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
6430
        """
Q
Qiao Longfei 已提交
6431 6432
        return self.blocks[index]

Y
Yu Yang 已提交
6433
    def current_block(self):
Y
yuyang18 已提交
6434
        """
6435 6436
        .. note::
            This API has no effect in Dygraph mode.
6437

J
Jiabin Yang 已提交
6438 6439
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
6440

J
Jiabin Yang 已提交
6441 6442
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
6443

6444 6445 6446
        Examples:
            .. code-block:: python

6447 6448 6449 6450
                import paddle
                import paddle.static as static

                paddle.enable_static()
6451

6452
                prog = static.default_main_program()
6453 6454
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
6455
        """
Y
Yu Yang 已提交
6456 6457
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
6458
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
6459 6460 6461 6462 6463
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
6464

Y
yuyang18 已提交
6465 6466 6467 6468 6469
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
6470
        new_block_idx = len(self.blocks)
6471 6472 6473 6474 6475
        parent = (
            self.current_block()
            if parent_idx is None
            else self.block(parent_idx)
        )
F
update  
fengjiayi 已提交
6476
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
6477 6478 6479 6480
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
6481
    def _rollback(self):
Y
yuyang18 已提交
6482 6483 6484 6485 6486
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
6487 6488
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
6489
    def _sync_with_cpp(self):
Y
yuyang18 已提交
6490 6491 6492 6493 6494 6495 6496 6497 6498 6499
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
6500 6501 6502
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
6503
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
6504

W
Wu Yi 已提交
6505
    def _copy_param_info_from(self, other):
6506
        """
6507
        Copy the information of parameters from other program.
D
dzhwinter 已提交
6508

Y
yuyang18 已提交
6509 6510 6511
        Notes: This is a very low level API. Users should not invoke it
        directly.

6512 6513 6514 6515 6516 6517 6518
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6519 6520
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6521 6522
                % type(other)
            )
6523

W
Wu Yi 已提交
6524
        self.global_block()._copy_param_info_from(other.global_block())
6525

6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6537 6538
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6539 6540
                % type(other)
            )
6541 6542
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
6543
        self._parameters_on_pservers = other._parameters_on_pservers
6544
        self._endpoints = other._endpoints
6545
        self._ps_endpoint = other._ps_endpoint
6546 6547
        self._distributed_lookup_table = other._distributed_lookup_table

6548
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
6549 6550
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
6551

Y
yuyang18 已提交
6552 6553 6554
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
6555 6556
        Args:
            other(Program): Other program
6557
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
6558 6559
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is
            cloned from block 0 in other, etc. Default is None, which means default mapped,
6560
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
6561 6562 6563 6564 6565

        Returns:
            None
        """
        if not isinstance(other, Program):
6566 6567
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6568 6569
                % type(other)
            )
F
fengjiayi 已提交
6570

6571 6572
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
6573
                i: i for i in range(self.desc.num_blocks())
6574
            }
6575 6576 6577

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
6578 6579
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
6580
            for var in list(block.vars.values()):
6581 6582 6583 6584 6585 6586 6587
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
6588

6589
    def list_vars(self):
Y
yuyang18 已提交
6590
        """
6591
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
6592

J
Jiabin Yang 已提交
6593
        Returns:
6594
            iterable Tensors: The Generator will yield every Tensor in this program.
6595 6596 6597 6598

        Examples:
            .. code-block:: python

6599 6600
                import paddle
                import paddle.static as static
6601

6602 6603 6604 6605 6606
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
6607 6608
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
6609

6610 6611
                # var img : LOD_TENSOR.shape(-1, 1, 28, 28).dtype(float32).stop_gradient(True)
                # var label : LOD_TENSOR.shape(-1, 1).dtype(int64).stop_gradient(True)
Y
yuyang18 已提交
6612
        """
6613
        for each_block in self.blocks:
6614
            for each_var in list(each_block.vars.values()):
6615 6616
                yield each_var

6617 6618 6619 6620 6621 6622 6623 6624 6625 6626
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

6627 6628 6629 6630
                import paddle
                import paddle.static as static

                paddle.enable_static()
6631

6632 6633
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
6634
                hidden = static.nn.fc(x=data, size=10)
6635 6636
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
6637 6638 6639 6640 6641 6642 6643

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
6644 6645
                # persist trainable param fc_0.w_0 : LOD_TENSOR.shape(13, 10).dtype(float32).stop_gradient(False)
                # persist trainable param fc_0.b_0 : LOD_TENSOR.shape(10,).dtype(float32).stop_gradient(False)
6646 6647 6648 6649 6650 6651 6652 6653 6654 6655
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

6656 6657 6658 6659 6660 6661 6662 6663 6664
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
6665 6666 6667
            mode(str, optional): Source of the obtained parameters and buffers.
                    'opt' :  The return value only contains the variable in the optimizer.
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.
6668 6669
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
6670
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
6698
        # can not be imported at the begainning of this file.
6699 6700
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
6701

6702 6703
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
6704 6705 6706 6707
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".format(
                    type(scope)
                )
            )
6708 6709 6710 6711 6712

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
6713 6714
            raise TypeError(
                "Type of `mode` should be string, but received {}.".format(
6715 6716 6717
                    type(mode)
                )
            )
6718 6719 6720 6721 6722

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
6723 6724 6725 6726 6727
            if (
                var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH
                or var.desc.type() == core.VarDesc.VarType.FETCH_LIST
                or var.desc.type() == core.VarDesc.VarType.READER
            ):
6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
6746 6747 6748 6749
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".format(
                        mode
                    )
                )
6750 6751 6752 6753 6754 6755 6756 6757

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
6758 6759 6760 6761
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".format(
                        var.name
                    )
                )
6762 6763 6764 6765 6766 6767
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
6768
        Set parameters and persistable buffers in state_dict to program.
6769
        An exception will throw if shape or dtype of the parameters is not match.
6770

6771 6772 6773 6774
        .. note::
            This function MUST called after run start_up_program

        Args:
6775
            state_dict(dict): the dict store parameters and persistable buffers.
6776 6777
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
6778
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6779 6780
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
6781

6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
6811 6812 6813
                    type(state_dict)
                )
            )
6814 6815

        vars_dict = {var.name: var for var in self.list_vars()}
6816 6817 6818
        condition = (
            True if 'StructuredToParameterName@@' in state_dict else False
        )
6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
6830 6831
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
6832 6833
                except TypeError as err:
                    warnings.warn(
6834 6835
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
6836
            else:
6837
                warnings.warn(
6838 6839 6840 6841 6842 6843
                    (
                        "Skip loading for '{0}'. Because '{0}' not in the program.".format(
                            name
                        )
                    )
                )
6844

Y
Yu Yang 已提交
6845

6846
class Parameter(Variable, metaclass=ParameterMetaClass):
6847
    """
6848
    Parameter is derived from Variable. A parameter is a persistable
6849
    Variable, and will be updated by optimizers after each iteration.
6850
    The training of a neural network is essentially the updating of
6851 6852
    its parameters.

6853
    Relative to a general Variable, a Parameter has several its own
6854 6855
    member variables:

6856 6857 6858 6859 6860 6861 6862 6863 6864 6865
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
6866
        need_clip (bool): Whether the parameter gradient need to be cliped
6867
            in optimizer. Default is True.
6868 6869
    """

6870 6871 6872 6873 6874 6875
    def __init__(
        self,
        block,
        shape,
        dtype,
        type=core.VarDesc.VarType.LOD_TENSOR,
6876
        **kwargs,
6877
    ):
6878 6879 6880 6881 6882
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6883 6884
        for each in shape:
            if each < 0:
6885 6886
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
6887 6888 6889 6890 6891 6892 6893 6894 6895 6896
                    % list(shape)
                )

        Variable.__init__(
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
6897
            **kwargs,
6898
        )
Y
Yu Yang 已提交
6899 6900 6901 6902
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6903 6904
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6905
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6906

6907 6908
        self.need_clip = kwargs.get('need_clip', True)

6909 6910
        self.is_distributed = False

6911 6912
        self.is_parameter = True

F
fengjiayi 已提交
6913
    def __str__(self):
6914
        return self._to_readable_code()
F
fengjiayi 已提交
6915

F
update  
fengjiayi 已提交
6916 6917 6918
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6919

F
update  
fengjiayi 已提交
6920 6921 6922 6923 6924 6925 6926 6927
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6928 6929 6930 6931
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
G
GGBond8488 已提交
6932
                import paddle
6933 6934

                prog = fluid.default_main_program()
G
GGBond8488 已提交
6935
                rlt = paddle.static.data("fake_data", shape=[-1,1,1], dtype='float32')
6936 6937
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6938
        """
6939
        assert isinstance(throw_on_error, bool) and isinstance(
6940 6941
            with_details, bool
        )
F
update  
fengjiayi 已提交
6942 6943
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
6944 6945 6946 6947 6948 6949 6950
            additional_attr = (
                "trainable",
                "optimize_attr",
                "regularizer",
                "do_model_average",
                "need_clip",
            )
F
update  
fengjiayi 已提交
6951
            for attr_name in additional_attr:
6952
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
F
update  
fengjiayi 已提交
6953 6954
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6955 6956 6957 6958
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6959

W
wanghuancoder 已提交
6960
class EagerParamBase(core.eager.Tensor):
6961
    """
6962 6963
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode).
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers
6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
6981
        need_clip (bool): Whether the parameter gradient need to be cliped
6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
6996 6997
                    % list(shape)
                )
6998 6999 7000 7001 7002 7003 7004

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

7005 7006 7007
        if isinstance(shape, core.eager.Tensor):
            shape = shape.numpy()

7008
        super().__init__(
7009 7010 7011 7012 7013 7014
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            core.VarDesc.VarType.LOD_TENSOR,
            True,
        )
7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
7029 7030 7031
        # hook functions for lazy initialization
        self._init_func = None
        self._init_op_creator = None
7032 7033

    def set_init_func(self, obj):
7034
        self._init_func = obj
7035 7036 7037

    @dygraph_only
    def initialize(self):
7038 7039 7040
        assert (
            self._init_func is not None
        ), "Required self._init_func is not None, but received None."
7041
        self._init_func(self, None)
7042
        # clear function handle to release resource
7043
        self._init_func = None
7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
7056 7057
                type(trainable),
            )
7058

7059 7060 7061 7062
    def _create_init_op(self, block):
        """
        Call init_op_creator function to create initializer operation in block.
        """
7063 7064 7065
        assert (
            self._init_op_creator is not None
        ), "Required self._init_op_creator is not None, but received None."
7066
        self._init_op_creator(self, block)
7067

7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086
    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
7087
            tensor=super().__str__()
7088
        )
7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
7118 7119
        new_param._init_func = self._init_func
        new_param._init_op_creator = self._init_op_creator
7120 7121 7122 7123 7124 7125
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
7126 7127
        return new_param

7128 7129 7130
    __repr__ = __str__


Y
Yu Yang 已提交
7131
# program is a global instance.
Y
Yu Yang 已提交
7132 7133
_main_program_ = Program()
_startup_program_ = Program()
7134
_startup_program_._is_start_up_program_ = True
7135

7136

7137
def default_startup_program():
Y
Yu Yang 已提交
7138
    """
Y
yuyang18 已提交
7139 7140
    Get default/global startup program.

7141
    The :code:`paddle.nn` function will append the initialization operators into startup program.
7142
    The :code:`startup_program` will initialize the parameters by the OPs.
T
tangwei12 已提交
7143

7144 7145
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
7146

7147 7148
    Returns:
        Program: current default startup program.
7149

7150
    Returns type:
7151 7152 7153 7154

    Examples:
        .. code-block:: python

7155
            import paddle
7156

7157
            paddle.enable_static()
7158 7159 7160 7161
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
7162
    """
Y
Yu Yang 已提交
7163
    return _startup_program_
7164

7165

7166
def default_main_program():
Y
Yu Yang 已提交
7167
    """
7168
    This API can be used to get ``default main program`` which store the
7169
    descriptions of Ops and tensors.
T
tangwei12 已提交
7170

7171 7172
    For example ``z = paddle.add(x, y)`` will create a new ``add``
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` .
Y
yuyang18 已提交
7173

7174
    The ``default main program`` is the default value for ``Program`` parameter in
7175
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
7176
    :code:`default_main_program` when the program is not specified.
7177

7178
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
7179

Y
Yu Yang 已提交
7180
    Returns:
7181
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
7182 7183 7184 7185

    Examples:
        ..  code-block:: python

7186
            import paddle
7187

7188
            paddle.enable_static()
7189
            # Sample Network:
7190 7191 7192
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
7193

7194 7195 7196
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
7197
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
7198
    """
Y
Yu Yang 已提交
7199
    return _main_program_
Y
Yu Yang 已提交
7200 7201 7202 7203 7204


def switch_main_program(program):
    """
    Switch the main program to a new program.
7205

Y
Yu Yang 已提交
7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
7220
    Switch the startup program to a new program
Y
Yu Yang 已提交
7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
7233
@signature_safe_contextmanager
Y
Yu Yang 已提交
7234 7235
def program_guard(main_program, startup_program=None):
    """
7236 7237
    :api_attr: Static Graph

7238 7239 7240
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
7241

G
guofei 已提交
7242
    Args:
7243
        main_program(Program): New main program inside ``with`` statement.
7244 7245
        startup_program(Program, optional): New startup program inside ``with``
            statement. :code:`None` means not changing startup program,
G
guofei 已提交
7246 7247 7248
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
7249
    Examples:
7250
       .. code-block:: python
T
tangwei12 已提交
7251

7252
          import paddle
Y
yuyang18 已提交
7253

7254 7255 7256 7257 7258
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
7259
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
7260 7261 7262

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
7263

Y
Yu Yang 已提交
7264
    Examples:
7265
       .. code-block:: python
Y
yuyang18 已提交
7266

7267
          import paddle
7268

7269 7270 7271 7272 7273
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
7274

Y
Yu Yang 已提交
7275
    """
7276
    from .data_feeder import check_type
7277 7278 7279 7280

    check_type(
        main_program, 'main_program', Program, 'paddle.static.program_guard'
    )
Y
Yu Yang 已提交
7281 7282
    main_program = switch_main_program(main_program)
    if startup_program is not None:
7283 7284 7285 7286 7287 7288
        check_type(
            startup_program,
            'startup_program',
            Program,
            'paddle.static.program_guard',
        )
7289 7290
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
7291
        startup_program = switch_startup_program(startup_program)
7292 7293 7294 7295 7296 7297
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
7298 7299


W
Wu Yi 已提交
7300
def _get_var(name, program=None):
X
xuwei06 已提交
7301
    """
Y
yuyang18 已提交
7302
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
7303

X
xuwei06 已提交
7304 7305 7306
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
7307
        If None, default_global_program() will be used.
X
xuwei06 已提交
7308 7309 7310 7311 7312 7313 7314

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
7315
    assert isinstance(program, Program)
X
xuwei06 已提交
7316 7317

    return program.global_block().var(name)
7318 7319


7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332
@signature_safe_contextmanager
def dygraph_guard_if_declarative():
    from .dygraph.base import in_declarative_mode
    from .dygraph import Tracer

    if in_declarative_mode():
        # Under @paddle.jit.to_static decorator, we switch back dygraph mode temporarily.
        with _dygraph_guard(tracer=Tracer()):
            yield
    else:
        yield


S
rename  
sneaxiy 已提交
7333
@signature_safe_contextmanager
L
lujun 已提交
7334
def _dygraph_guard(tracer):
7335 7336 7337 7338
    tmp_tracer = global_var._dygraph_tracer_
    global_var._dygraph_tracer_ = tracer
    if tracer is not None:
        core._switch_tracer(tracer)
M
minqiyang 已提交
7339

C
Charles-hit 已提交
7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351
    try:
        yield
    finally:
        if tmp_tracer is not None:
            core._switch_tracer(tmp_tracer)
        global_var._dygraph_tracer_ = tmp_tracer


@signature_safe_contextmanager
def _static_guard():
    tmp_tracer = global_var._dygraph_tracer_
    global_var._dygraph_tracer_ = None
7352 7353 7354
    try:
        yield
    finally:
7355 7356 7357
        if tmp_tracer is not None:
            core._switch_tracer(tmp_tracer)
        global_var._dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
7358 7359


S
rename  
sneaxiy 已提交
7360
@signature_safe_contextmanager
L
lujun 已提交
7361
def _dygraph_place_guard(place):
7362 7363 7364
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
7365 7366
    _set_dygraph_tracer_expected_place(place)

7367 7368 7369
    try:
        yield
    finally:
7370
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
7371
        _set_dygraph_tracer_expected_place(_global_expected_place_)
7372 7373


7374 7375 7376 7377 7378 7379 7380 7381 7382 7383
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
7384

7385
    Note:
7386
        The API only supports static graph mode.
7387 7388 7389 7390

    A context manager that specifies the device on which the OP will be placed.

    Args:
7391
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
7392
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs.
7393 7394 7395 7396 7397 7398 7399
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
7400

7401
        .. code-block:: python
7402

7403
            # required: gpu
Z
Zhang Ting 已提交
7404
            import paddle
7405

Z
Zhang Ting 已提交
7406 7407 7408
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
7409
            if support_gpu:
Z
Zhang Ting 已提交
7410
                place = paddle.CUDAPlace(0)
7411 7412

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
7413 7414 7415
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
7416

Z
Zhang Ting 已提交
7417
            with paddle.static.device_guard("cpu"):
7418
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
7419 7420
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
7421
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
7422
                out = paddle.reshape(data1, shape=shape)
7423

Z
Zhang Ting 已提交
7424 7425
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
7426 7427 7428
            result = exe.run(fetch_list=[out])
    """

7429 7430 7431 7432 7433
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
7434
    if device not in ['cpu', 'gpu', 'xpu', '', None]:
7435
        raise ValueError(
7436
            "The Attr(device) should be 'cpu' or 'gpu', and it can also be empty string or None "
7437 7438
            "when there is no need to specify device. But received %s" % device
        )
7439 7440
    if index:
        device = ":".join([device, index])
7441
    pre_device = switch_device(device)
7442 7443 7444 7445
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
7446 7447


7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459
def _switch_cuda_graph_mode(cuda_graph_attr):
    global _current_cuda_graph_mode
    pre_mode = _current_cuda_graph_mode
    _current_cuda_graph_mode = cuda_graph_attr
    return pre_mode


@signature_safe_contextmanager
def _cuda_graph_guard(cuda_graph_attr=None):
    """

    Note:
7460
        The API only supports static graph mode.
7461

7462
    A context manager that specifies the cuda_graph_mode which indicating the cuda graph capture under static graph mode.
7463 7464 7465 7466 7467

    Args:
        cuda_graph_attr(str|None): The cuda graph attr with the format of:
                                   cuda_graph_capture_mode;memory_pool_id;cuda_graph_id
    """
7468 7469
    assert (
        not _non_static_mode()
7470
    ), "cuda_graph_guard only works under static graph mode"
7471 7472
    assert (
        core.is_compiled_with_cuda()
7473 7474 7475 7476 7477 7478 7479 7480
    ), "cuda_graph_guard context can be only used when Paddle is compiled with cuda"
    pre_mode = _switch_cuda_graph_mode(cuda_graph_attr)
    try:
        yield
    finally:
        _switch_cuda_graph_mode(pre_mode)


G
guofei 已提交
7481 7482 7483
def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
7484
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7485 7486 7487 7488 7489 7490 7491

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

7492 7493
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
7494 7495 7496 7497
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
7498 7499
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
7500 7501
        else:
            raise ValueError(
7502 7503
                "Flag %s cannot set its value through this function." % (key)
            )
G
guofei 已提交
7504 7505 7506 7507 7508


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
7509
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7510 7511 7512 7513 7514 7515 7516 7517 7518 7519

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

7520
            import paddle
G
guofei 已提交
7521 7522

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
7523
            res = paddle.get_flags(flags)
G
guofei 已提交
7524 7525 7526 7527 7528 7529
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
7530
            if _global_flags().is_public(key):
7531
                value = _global_flags()[key]
G
guofei 已提交
7532 7533 7534 7535
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
7536 7537 7538
                    'Flag %s cannot get its value through this function.'
                    % (key)
                )
G
guofei 已提交
7539
    elif isinstance(flags, str):
7540
        if _global_flags().is_public(flags):
7541
            value = _global_flags()[flags]
G
guofei 已提交
7542 7543 7544 7545
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
7546 7547
                'Flag %s cannot get its value through this function.' % (flags)
            )
G
guofei 已提交
7548 7549 7550
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
7551 7552 7553 7554 7555 7556


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568
    if isinstance(
        place,
        (
            core.Place,
            core.XPUPlace,
            core.CPUPlace,
            core.CUDAPinnedPlace,
            core.CUDAPlace,
            core.IPUPlace,
            core.CustomPlace,
        ),
    ):
7569 7570 7571 7572
        return place

    if not isinstance(place, str):
        raise ValueError(
7573 7574
            "place only support string which is 'Place' and so on."
        )
7575 7576

    place = place.lower()
7577
    if place == "cpu":
7578
        return core.CPUPlace()
7579

7580
    if place == "device":
7581 7582
        return core.Place()

7583
    # GPU
7584 7585 7586 7587
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
7588
                "The device should not be {}, since PaddlePaddle is "
7589
                "not compiled with CUDA".format(avaliable_gpu_place.group())
7590
            )
7591 7592 7593 7594 7595 7596 7597 7598 7599
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
7600 7601

    # XPU
7602 7603 7604 7605
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
7606
                "The device should not be {}, since PaddlePaddle is "
7607
                "not compiled with XPU".format(avaliable_xpu_place.group())
7608
            )
7609 7610 7611 7612
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
7613

J
jianghaicheng 已提交
7614 7615 7616 7617 7618
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
7619
                "The device should not be {}, since PaddlePaddle is "
7620
                "not compiled with IPU".format(avaliable_ipu_place.group())
7621
            )
J
jianghaicheng 已提交
7622 7623 7624 7625 7626
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

7627
    raise ValueError(
K
Kim Yann 已提交
7628
        f"Paddle supports CPUPlace, CUDAPlace, CUDAPinnedPlace, XPUPlace and IPUPlace, but received {place}."
7629
    )
7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret