framework.py 260.4 KB
Newer Older
G
gouzil 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
import collections
X
Xin Pan 已提交
16
from collections import defaultdict
H
huzhiqiang 已提交
17
from collections.abc import Iterable
Q
qiaolongfei 已提交
18
import contextlib
19
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
20
import os
F
fengjiayi 已提交
21
import re
22
import traceback
23
import copy
24
from types import MethodType, FunctionType
25

Y
Yu Yang 已提交
26
import numpy as np
27
import subprocess
S
sneaxiy 已提交
28
import multiprocessing
29
import sys
30
import logging
31
from .proto import framework_pb2
32 33

from . import core
34
from . import unique_name
35 36
import paddle.version as fluid_version
import warnings
37
import functools
38
from .variable_index import _getitem_impl_, _setitem_impl_
Y
Yu Yang 已提交
39

40
__all__ = [
41 42 43 44
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
45
    'name_scope',
J
jianghaicheng 已提交
46
    'ipu_shard_guard',
47
    'set_ipu_shard',
S
sneaxiy 已提交
48 49
    'cuda_places',
    'cpu_places',
50
    'xpu_places',
51
    'mlu_places',
S
sneaxiy 已提交
52
    'cuda_pinned_places',
J
Jiabin Yang 已提交
53
    '_non_static_mode',
L
lujun 已提交
54
    'in_dygraph_mode',
55
    'is_compiled_with_cinn',
C
chengduo 已提交
56
    'is_compiled_with_cuda',
57
    'is_compiled_with_rocm',
58
    'is_compiled_with_xpu',
59
    'is_compiled_with_npu',
60
    'Variable',
61
    'require_version',
62
    'device_guard',
G
guofei 已提交
63 64
    'set_flags',
    'get_flags',
65
]
Y
Yu Yang 已提交
66

Q
qiaolongfei 已提交
67 68 69 70
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
71 72
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
73
_dygraph_tracer_ = None
74
_in_eager_mode_ = os.environ.get('FLAGS_enable_eager_mode', '1') == '1'
75
_global_expected_place_ = None
76
_current_device = None
77
global_prog_seed = 0
78
_current_pipeline_stage = None
79
_already_patch_eager_tensor = False
J
Jiabin Yang 已提交
80
_already_patch_varbase = False
81
_current_cuda_graph_mode = None
82
_global_flags_ = core.globals()
83 84 85 86 87 88
_enable_standalone_executor_ = os.environ.get(
    'FLAGS_USE_STANDALONE_EXECUTOR', None
)
_dy2st_enable_standalone_executor_ = os.environ.get(
    'FLAGS_DY2ST_USE_STANDALONE_EXECUTOR', 1
)
J
Jiabin Yang 已提交
89 90

# Some explanation of our execution system 2022.03
91
# For now we have 3 kinds of execution system, since we refactored dygraph mode to
J
Jiabin Yang 已提交
92
# build a fast execution system for dynamic mode. But we can't just remove all legacy
93
# code once we present the new system for some historical reason. That's why we have
J
Jiabin Yang 已提交
94
# these flags.
95
#
J
Jiabin Yang 已提交
96
# 1. _non_static_mode():
97
# _non_static_mode means  we are now running in legacy dygraph mode or dygraph mode.
J
Jiabin Yang 已提交
98 99 100 101
# 2. dygraph_mode():
# This flags inidicates we are now running in dygraph mode which called eager mode before.
# 3. _in_legacy_dygraph():
# This flags inidicates we are now running in legacy dygraph mode
102
#
J
Jiabin Yang 已提交
103
# They have a relation ship as below:
104
# Both dygraph_mode and _in_legacy_dygraph are _non_static_mode, but if you are running in
J
Jiabin Yang 已提交
105
# dygraph mode means you are not in _in_legacy_dygraph.
106
#
J
Jiabin Yang 已提交
107 108 109 110 111 112
# Why we have to make different of _in_legacy_dygraph and dygraph_mode?
# In some performance issue, we find that python if statement cause server performance problem
# and we need our new dygraph mode becomes as fast as it could be. That's why we make these flags
# to make sure in most case, we find new dygraph mode first with only one if statement.


113 114 115 116 117
def _update_monkey_methods(is_eager):
    """
    Update monkey methods of VarBase or eager.Tensor while
    switching eager mode and legacy mode.
    """
118
    from paddle import _C_ops, _legacy_C_ops
119 120 121
    from .dygraph.varbase_patch_methods import monkey_patch_varbase
    from .dygraph import monkey_patch_math_varbase

122 123 124
    global _already_patch_eager_tensor
    global _already_patch_varbase

125
    assert isinstance(is_eager, bool)
126
    # switch into eager mode
127
    if is_eager:
128
        _legacy_C_ops.switch_to_eager_ops()
129 130 131 132 133 134
        if not _already_patch_eager_tensor:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_eager_tensor = True
    # switch back into legacy mode
135
    else:
136
        _legacy_C_ops.switch_to_core_ops()
137 138 139 140 141
        if not _already_patch_varbase:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_varbase = True
142

143 144 145 146 147 148
    # switch Paddle.Tensor bind type
    _switch_tensor_bind_type(is_eager)


def _switch_tensor_bind_type(is_eager):
    import paddle
149

150 151 152 153 154
    if is_eager:
        paddle.Tensor = core.eager.Tensor
    else:
        paddle.Tensor = core.VarBase
    paddle.Tensor.__qualname__ = 'Tensor'
155 156


J
Jiabin Yang 已提交
157 158 159
def _enable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = False
160
    _update_monkey_methods(is_eager=False)
J
Jiabin Yang 已提交
161 162 163 164 165


def _disable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = True
166
    _update_monkey_methods(is_eager=True)
J
Jiabin Yang 已提交
167 168 169 170 171 172 173


def _in_eager_without_dygraph_check():
    global _in_eager_mode_
    return _in_eager_mode_


174 175 176 177 178 179 180 181 182
# FIXME(dev): We haven't fully verified eager mode on XPU/NPU et.al but
# only GPU/CPU. Remove this after we improve this feature.
_is_first_import_ = True


def _fallback_legacy_dygraph():
    global _in_eager_mode_
    global _is_first_import_
    need_fallback = False
C
Chen Weihang 已提交
183
    # Only enable eager on CPU/GPU/XPU
184 185 186 187 188
    is_not_support = (
        core.is_compiled_with_npu()
        or core.is_compiled_with_ipu()
        or core.is_compiled_with_mlu()
    )
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209

    if _in_eager_mode_ and is_not_support:
        # switch into legacy dygraph mode
        warnings.warn(
            "We will fallback into legacy dygraph on NPU/XPU/MLU/IPU/ROCM devices. Because we only support new eager dygraph mode on CPU/GPU currently. "
        )
        _in_eager_mode_ = False
        if not _is_first_import_:
            _enable_legacy_dygraph()
        need_fallback = True

    need_fallback = False
    _is_first_import_ = False

    return need_fallback


# switch into legacy mode if need while import paddle
_fallback_legacy_dygraph()


J
Jiabin Yang 已提交
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
def in_dygraph_mode():
    """

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .

    Returns:
        bool: Whether paddle runs in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode

    """
    return (_dygraph_tracer_ is not None) and _in_eager_mode_


def _in_legacy_dygraph():
    return (not _in_eager_mode_) and (_dygraph_tracer_ is not None)


def _non_static_mode():
    return _dygraph_tracer_ is not None
246 247 248


@signature_safe_contextmanager
J
Jiabin Yang 已提交
249
def _test_eager_guard(place=None):
C
Chen Weihang 已提交
250 251
    # FIXME(dev): We haven't fully verified eager mode on NPU et.al but
    # only GPU/CPU/XPU. Remove this after we improve this feature.
252 253 254
    already_fallback = _fallback_legacy_dygraph()
    if not already_fallback:
        _disable_legacy_dygraph()
255
    try:
J
Jiabin Yang 已提交
256
        yield
257
    finally:
258 259
        if not already_fallback:
            _enable_legacy_dygraph()
260 261


262 263
global_ipu_index = -1
global_ipu_stage = -1
J
jianghaicheng 已提交
264 265 266 267
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


L
Leo Chen 已提交
268 269 270 271 272 273 274 275 276 277 278
@signature_safe_contextmanager
def _enable_standalone_executor(enable=True):
    global _enable_standalone_executor_
    original_ = _enable_standalone_executor_
    _enable_standalone_executor_ = enable
    try:
        yield
    finally:
        _enable_standalone_executor_ = original_


J
jianghaicheng 已提交
279
@signature_safe_contextmanager
280
def ipu_shard_guard(index=-1, stage=-1):
J
jianghaicheng 已提交
281 282 283 284
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
W
Weilong Wu 已提交
285
        index(int, optional): Specify which ipu the Tensor is computed on, (such as '0, 1, 2, 3').
286
            The default value is -1, which means the Op only run on IPU 0.
W
Weilong Wu 已提交
287
        stage(int, optional): Specify the computation order of the sharded model(such as '0, 1, 2, 3').
288
            The sharded model will be computed from small to large. The default value is -1,
J
jianghaicheng 已提交
289
            which means no pipelining computation order and run Ops in terms of graph.
290

G
gouzil 已提交
291 292 293 294 295 296 297
    Note:
        Only if the enable_manual_shard=True, the 'index' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        Only if the enable_pipelining=True, the 'stage' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        A index is allowed to match none stage or a stage. A stage is only allowed to match a new or
        duplicated index.
J
jianghaicheng 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


332 333 334 335
def set_ipu_shard(call_func, index=-1, stage=-1):
    """
    Shard the ipu with the given call function. Set every ops in call function to the given ipu sharding.

G
gouzil 已提交
336 337 338 339 340
    Note:
        Only when enable_manual_shard=True to set the index to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        Only when enable_pipelining=True to set stage to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        An index supports a corresponding None stage or a stage, and a stage only supports a new index or a duplicate index.

341 342 343 344 345
    Args:
        call_func(Layer|function): Specify the call function to be wrapped.
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is -1, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
346
            The sharded model will be computed from small to large. The default value is -1,
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
            which means no pipelining computation order and run Ops in terms of graph.

    Returns:
        The wrapped call function.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='float32')
            relu = paddle.nn.ReLU()
            relu = paddle.static.set_ipu_shard(relu, index=1, stage=1)
            relu(a)
    """

    def decorate(func):
        def wrapper(*args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return func(*args, **kwargs)

        return wrapper

    from .dygraph.layers import Layer
373

374 375 376 377 378
    if not isinstance(call_func, Layer):
        if callable(call_func):
            return decorate(call_func)
        else:
            raise TypeError(
379 380
                "Unsupported type. Only accept paddle.nn.Layer or function."
            )
381 382 383 384 385 386 387 388 389 390 391 392

    # patch paddle.nn.Layer
    class BlockFn(type(call_func)):
        def __call__(self, *args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return super().__call__(*args, **kwargs)

    BlockFn.__name__ = type(call_func).__name__
    call_func.__class__ = BlockFn
    return call_func


393 394
def require_version(min_version, max_version=None):
    """
395 396 397
    Check if the installed version of PaddlePaddle is in [min_version, max_version],
    if the installed version is lower than ``min_version`` or higher than ``max_version``,
    an exception will be thrown, NO returns if the installed version is satisfied.
398

399 400 401 402
    Args:
        min_version (str): the minimum version required (like '1.4.0').
        max_version (str, optional): the max version required (like '1.6.0'), default is None,
            meaning any version equal or higher than ``min_version`` is acceptable.
403

404 405
    Returns:
        None.
406

407 408 409 410 411 412
    Raises:
        TypeError: if the type of ``min_version`` is not str.
        TypeError: if the type of ``max_version`` is not str or type(None).
        ValueError: if the value of ``min_version`` is not in version format.
        ValueError: if the value of ``max_version`` is not in version format or None.
        Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.
413

414 415
    Examples:
        .. code-block:: python
416

417
            import paddle.fluid as fluid
418

419 420
            # any version >= 0.1.0 is acceptable.
            fluid.require_version('0.1.0')
421

422 423 424
            # if 0.1.0 <= version <= 10.0.0, it is acceptable.
            fluid.require_version(min_version='0.1.0', max_version='10.0.0')
    """
425 426 427
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
428 429
            % (type(min_version))
        )
430 431 432 433

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
434 435
            % (type(max_version))
        )
436 437 438 439 440

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
441 442
            "like '1.5.2.0', but received %s" % min_version
        )
443 444 445 446 447 448

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
449 450
                "like '1.5.2.0', but received %s" % max_version
            )
451 452

    version_installed = [
453 454 455 456
        fluid_version.major,
        fluid_version.minor,
        fluid_version.patch,
        fluid_version.rc,
457 458 459 460
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
461
        for i in range(len(ver_a)):
462 463 464 465 466 467 468 469 470 471 472
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
473 474 475
                "please make sure the version is good with your code."
                % (min_version, max_version, fluid_version.full_version)
            )
476 477 478 479
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
480 481 482
                "please make sure the version is good with your code."
                % (min_version, fluid_version.full_version)
            )
483 484 485
        return

    min_version_split = min_version.split('.')
486 487 488
    min_version_to_check = (
        min_version_split + zero_version[len(min_version_split) :]
    )
489 490 491

    if max_version is not None:
        max_version_split = max_version.split('.')
492 493 494
        max_version_to_check = (
            max_version_split + zero_version[len(max_version_split) :]
        )
495

496 497 498 499
        if (
            version_cmp(version_installed, max_version_to_check) > 0
            or version_cmp(version_installed, min_version_to_check) < 0
        ):
500 501
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
502 503
                % (min_version, max_version, fluid_version.full_version)
            )
504 505 506 507 508
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
509 510
                % (min_version, fluid_version.full_version, min_version)
            )
511 512


513 514
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
515 516 517
        assert not _non_static_mode(), (
            "We don't support %s in dynamic graph mode" % func.__name__
        )
518 519 520 521 522 523 524
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
525 526 527 528
        assert _non_static_mode(), (
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
529 530 531 532 533
        return func(*args, **kwargs)

    return __impl__


534 535 536
def _non_static_only_(func):
    def __impl__(*args, **kwargs):
        from .dygraph.base import in_declarative_mode
537 538 539 540 541

        assert _non_static_mode() or in_declarative_mode(), (
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
542 543 544 545 546
        return func(*args, **kwargs)

    return __impl__


547 548
def _static_only_(func):
    def __impl__(*args, **kwargs):
549 550 551 552
        assert not _non_static_mode(), (
            "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode."
            % func.__name__
        )
553 554 555 556 557
        return func(*args, **kwargs)

    return __impl__


558 559 560 561 562
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


563 564 565 566 567 568
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
569
# same base class.
570 571 572
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
573 574 575 576
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
577 578
            % (func.__name__, func.__name__)
        )
579 580 581 582

    return __impl__


T
tangwei12 已提交
583 584
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
585 586 587 588 589 590 591 592 593
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
594 595
                DeprecationWarning,
            )
596 597 598 599 600 601 602
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


603 604
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
605
static_only = wrap_decorator(_static_only_)
606
fake_interface_only = wrap_decorator(_fake_interface_only_)
607
non_static_only = wrap_decorator(_non_static_only_)
608 609


L
lujun 已提交
610 611
def _dygraph_tracer():
    return _dygraph_tracer_
612

W
Wu Yi 已提交
613

614 615 616 617
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
618
def _current_expected_place():
619 620 621
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
622 623 624 625 626
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
627
                _global_expected_place_ = core.CUDAPlace(_cuda_ids()[0])
628 629 630 631 632
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
633 634 635 636 637 638
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
639
                _global_expected_place_ = core.XPUPlace(_xpu_ids()[0])
640 641 642 643 644
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
645 646 647 648 649 650
        elif core.is_compiled_with_mlu():
            try:
                device_count = core.get_mlu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
651
                _global_expected_place_ = core.MLUPlace(_mlu_ids()[0])
652 653 654 655 656
            else:
                warnings.warn(
                    "You are using MLU version Paddle, but your MLU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
672
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
673 674


L
Leo Chen 已提交
675 676
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
677 678
    """
    convert VarBase tp numpy
T
tangwei12 已提交
679

680 681 682
    Args:
        var_base(VarBase) : the VarBase to convert
    Returns (np.ndarray): the np.ndarray contain the value of VarBase
L
Leo Chen 已提交
683 684 685 686 687 688 689 690 691
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
692
def _cpu_num():
693
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
694 695 696 697 698 699 700
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
701 702 703
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()
                )
            )
C
chengduo 已提交
704
        os.environ['CPU_NUM'] = str(1)
705
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
706 707 708 709 710 711 712 713
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
714
        device_ids = range(core.get_cuda_device_count())
C
chengduo 已提交
715
    return device_ids
S
sneaxiy 已提交
716 717


718 719 720 721 722
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
723
        device_ids = range(core.get_xpu_device_count())
724 725 726
    return device_ids


727 728 729 730 731
def _npu_ids():
    npus_env = os.getenv("FLAGS_selected_npus")
    if npus_env:
        device_ids = [int(s) for s in npus_env.split(",")]
    else:
732
        device_ids = range(core.get_npu_device_count())
733 734 735
    return device_ids


736 737 738 739 740
def _mlu_ids():
    mlus_env = os.getenv("FLAGS_selected_mlus")
    if mlus_env:
        device_ids = [int(s) for s in mlus_env.split(",")]
    else:
741
        device_ids = range(core.get_mlu_device_count())
742 743 744
    return device_ids


745 746 747 748 749 750 751 752 753 754 755 756 757 758 759
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
def is_compiled_with_npu():
    """
    Whether this whl package can be used to run the model on NPU.

    Returns (bool): support npu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_npu = fluid.is_compiled_with_npu()
    """
    return core.is_compiled_with_npu()


775 776 777 778 779 780 781
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
782

783 784 785 786 787 788
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

Z
Zman 已提交
789 790
    Returns:
        None
791 792 793 794 795 796 797 798 799 800

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


801 802 803 804 805 806 807 808 809 810 811 812 813 814 815
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

    Returns (bool): `True` if CINN is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
816 817 818 819
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

820
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
821 822 823 824

    Examples:
        .. code-block:: python

825
            import paddle
826
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
827 828 829 830
    """
    return core.is_compiled_with_cuda()


831 832 833 834 835 836 837 838 839 840
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
841
            support_gpu = paddle.device.is_compiled_with_rocm()
842 843 844 845
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
846
def cuda_places(device_ids=None):
L
lujun 已提交
847
    """
848
    Note:
849 850 851
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
852
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
853 854

    If :code:`device_ids` is None, environment variable of
855
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
856
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
857
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
858
    If :code:`FLAGS_selected_gpus` is not set, all visible
859
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
860 861

    If :code:`device_ids` is not None, it should be the device
862
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
863
    the returned list would be
C
Chen Weihang 已提交
864
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
865

866
    Parameters:
867
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
868 869

    Returns:
C
Chen Weihang 已提交
870
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
871 872

    Examples:
873

L
lujun 已提交
874 875
        .. code-block:: python

C
Chen Weihang 已提交
876 877
            import paddle
            import paddle.static as static
T
tangwei12 已提交
878

879
            # required: gpu
880

C
Chen Weihang 已提交
881 882 883
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
884 885

    """
886
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
887
    if device_ids is None:
C
chengduo 已提交
888
        device_ids = _cuda_ids()
S
sneaxiy 已提交
889 890 891 892 893
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


894 895 896 897
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
898 899 900 901 902 903 904 905 906
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
907
        the returned list would be
S
sunzhongkai588 已提交
908
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
909

910 911 912 913 914 915
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
916

917 918
            # required: xpu

919 920
            import paddle
            import paddle.static as static
921

922 923 924
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
925
    assert core.is_compiled_with_xpu(), "Not compiled with XPU"
926 927 928 929 930 931 932
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


933 934 935 936
def npu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_npus` environment variable to set the visible NPU device.
937

938 939 940 941 942 943 944 945 946
    This function creates a list of :code:`paddle.NPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_npus` would be checked first. For example, if
    :code:`FLAGS_selected_npus=0,1,2`, the returned list would
    be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    If :code:`FLAGS_selected_npus` is not set, all visible
    npu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of NPUs. For example, if :code:`device_ids=[0,1,2]`,
947
    the returned list would be
948
    [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
949

950 951 952 953 954 955 956 957 958 959 960
    Parameters:
        device_ids (list or tuple of int, optional): list of NPU device ids.
    Returns:
        list of paddle.NPUPlace: Created NPU place list.
    Examples:
        .. code-block:: python

            # required: npu

            import paddle
            import paddle.static as static
961

962 963 964
            paddle.enable_static()
            npu_places = static.npu_places()
    """
965
    assert core.is_compiled_with_npu(), "Not compiled with NPU"
966 967 968 969 970 971 972
    if device_ids is None:
        device_ids = _npu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.NPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
973
def cpu_places(device_count=None):
L
lujun 已提交
974
    """
C
Chen Weihang 已提交
975
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
976

S
add doc  
sneaxiy 已提交
977
    If :code:`device_count` is None, the device count would
978
    be determined by environment variable :code:`CPU_NUM`.
C
chengduo 已提交
979 980
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
981 982
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
983

984 985
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
986 987

    Returns:
C
Chen Weihang 已提交
988
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
989 990

    Examples:
991

L
lujun 已提交
992 993
        .. code-block:: python

C
Chen Weihang 已提交
994 995
            import paddle
            import paddle.static as static
T
tangwei12 已提交
996

C
Chen Weihang 已提交
997 998 999
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
1000 1001
    """

S
sneaxiy 已提交
1002 1003 1004 1005 1006 1007
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
1008
    """
1009
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
1010 1011

    If :code:`device_count` is None, the device count would
1012
    be determined by environment variable :code:`CPU_NUM`.
1013 1014 1015 1016
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
1017

1018 1019
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
1020 1021

    Returns:
1022
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
1023 1024 1025 1026

    Examples:
        .. code-block:: python

1027
            import paddle.fluid as fluid
L
lujun 已提交
1028 1029 1030 1031 1032
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
1033
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
1034
    if device_count is None:
1035 1036
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
1037 1038


1039 1040
def mlu_places(device_ids=None):
    """
G
gouzil 已提交
1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053
    This function creates a list of :code:`paddle.device.MLUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_mlus` would be checked first. For example, if
    :code:`FLAGS_selected_mlus=0,1,2`, the returned list would
    be [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].
    If :code:`FLAGS_selected_mlus` is not set, all visible
    mlu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of MLUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be
    [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].

    Note:
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
        For multi-card tasks, please use `FLAGS_selected_mlus` environment variable to set the visible MLU device.

    Parameters:
        device_ids (list or tuple of int, optional): list of MLU device ids.

    Returns:
        list of paddle.device.MLUPlace: Created MLU place list.

    Examples:
        .. code-block:: python

            # required: mlu

            import paddle
            import paddle.static as static

            paddle.enable_static()
            mlu_places = static.mlu_places()
    """
1073
    assert core.is_compiled_with_mlu(), "Not compiled with MLU"
1074 1075 1076 1077 1078 1079 1080
    if device_ids is None:
        device_ids = _mlu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.MLUPlace(dev_id) for dev_id in device_ids]


1081
class NameScope:
1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
1092 1093 1094
            new_child = NameScope(
                prefix + "_%d" % len(self._children[prefix]), self
            )
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
1108
@signature_safe_contextmanager
1109 1110
def name_scope(prefix=None):
    """
1111

1112
    Generate hierarchical name prefix for the operators in Static Graph.
1113

1114
    Note:
T
Tao Luo 已提交
1115 1116
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
1117
        Don't use it in dygraph, since it will cause memory leak.
1118 1119

    Args:
T
Tao Luo 已提交
1120
        prefix(str, optional): prefix. Default is none.
1121 1122

    Examples:
1123

1124
        .. code-block:: python
T
Tink_Y 已提交
1125

1126 1127 1128
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
1129
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
1130
             b = a + 1
1131
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
1132
                c = b * 1
1133
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
1134
                d = c / 1
1135 1136 1137
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
1138 1139
                g = f - 1

1140
          # Op are created in the default main program.
1141
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
1157 1158
    """
    # TODO(panyx0718): Only [0-9a-z].
1159
    # in dygraph we don't need namescope since it will cause mem leak
J
Jiabin Yang 已提交
1160
    if _non_static_mode():
L
Leo Chen 已提交
1161 1162
        yield
    else:
T
tianshuo78520a 已提交
1163
        assert prefix, "namescope prefix can not be empty."
1164 1165
        global _name_scope
        _name_scope = _name_scope.child(prefix)
1166 1167 1168 1169
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
1182 1183
def generate_control_dev_var_name():
    import random
1184

W
Wu Yi 已提交
1185
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
1186 1187 1188 1189


def grad_var_name(var_name):
    """
1190 1191
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
1192 1193 1194
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
1195

1196
def convert_np_dtype_to_dtype_(np_dtype):
1197
    """
1198
    Convert the data type in numpy to the data type in Paddle.
1199

1200
    Args:
1201 1202
        np_dtype (np.dtype|str): The data type in numpy or valid data type
            string.
1203

1204
    Returns:
1205
        core.VarDesc.VarType: The data type in Paddle.
1206 1207

    """
1208 1209
    # Convert the data type string to numpy data type.
    if isinstance(np_dtype, str) and np_dtype == "bfloat16":
1210 1211 1212
        dtype = np.uint16
    else:
        dtype = np.dtype(np_dtype)
1213

1214
    if dtype == np.float32:
1215
        return core.VarDesc.VarType.FP32
1216
    elif dtype == np.float64:
1217
        return core.VarDesc.VarType.FP64
1218
    elif dtype == np.float16:
1219
        return core.VarDesc.VarType.FP16
1220
    elif dtype == np.int32:
1221
        return core.VarDesc.VarType.INT32
1222
    elif dtype == np.int16:
1223
        return core.VarDesc.VarType.INT16
1224
    elif dtype == np.int64:
1225
        return core.VarDesc.VarType.INT64
1226
    elif dtype == np.bool_:
1227
        return core.VarDesc.VarType.BOOL
1228
    elif dtype == np.uint16:
1229 1230 1231
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
1232 1233
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
1234 1235
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
1236 1237 1238 1239
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
1240
    else:
M
minqiyang 已提交
1241
        raise ValueError("Not supported numpy dtype %s" % dtype)
1242 1243 1244


def dtype_is_floating(dtype):
1245 1246 1247
    """
    Check the data type is floating or not.
    Args:
1248
        dtype(np.dtype|core.VarDesc.VarType): data type.
1249 1250 1251 1252 1253
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1254
    if not isinstance(dtype, core.VarDesc.VarType):
1255 1256
        dtype = convert_np_dtype_to_dtype_(dtype)

1257
    return dtype in [
1258 1259 1260
        core.VarDesc.VarType.FP16,
        core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64,
1261
    ]
1262 1263


Y
Yang Yang(Tony) 已提交
1264
def _debug_string_(proto, throw_on_error=True):
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1276
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1277
    if not proto.IsInitialized(error_fields) and throw_on_error:
1278 1279
        raise ValueError(
            "{0} are not initialized.\nThe message is {1}:\n".format(
1280 1281 1282
                error_fields, proto
            )
        )
Y
Yu Yang 已提交
1283 1284 1285
    return proto.__str__()


1286 1287 1288 1289 1290 1291 1292 1293
def _varbase_creator(
    type=core.VarDesc.VarType.LOD_TENSOR,
    name=None,
    shape=None,
    dtype=None,
    persistable=None,
    **kwargs
):
1294 1295 1296 1297
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

J
Jiabin Yang 已提交
1298
    if _in_eager_mode_:
1299
        eager_tensor = core.eager.Tensor(
1300
            dtype if dtype else core.VarDesc.VarType.FP32,
1301 1302
            list(shape) if shape else [],
            name,
1303
            type if type else core.VarDesc.VarType.LOD_TENSOR,
1304 1305
            True if persistable else False,
        )
1306 1307
        eager_tensor.retain_grads()
        return eager_tensor
J
Jiabin Yang 已提交
1308
    else:
1309 1310 1311 1312 1313 1314 1315
        return core.VarBase(
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            type if type else core.VarDesc.VarType.LOD_TENSOR,
            True if persistable else False,
        )
1316 1317


1318 1319 1320 1321 1322 1323 1324
def _all_is_type(vals, expected_type):
    """
    Return True if type of each element is expected_type.

    NOTE: BuiltIn all() will always return True if vals is empty.
    """
    assert isinstance(vals, (list, tuple))
1325 1326
    if not vals:
        return False
1327 1328 1329
    return all(isinstance(v, expected_type) for v in vals)


1330 1331 1332 1333 1334
class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1335
            return issubclass(t, core.eager.Tensor)
1336
        else:
J
Jiabin Yang 已提交
1337 1338
            if _in_legacy_dygraph():
                return issubclass(t, core.VarBase)
1339 1340 1341 1342 1343 1344 1345 1346
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1347
            return issubclass(t, EagerParamBase)
1348
        else:
J
Jiabin Yang 已提交
1349 1350
            if _in_legacy_dygraph():
                return issubclass(t, ParamBase)
1351 1352 1353
            return issubclass(t, Parameter)


1354
class Variable(metaclass=VariableMetaClass):
1355
    """
J
Jiabin Yang 已提交
1356

U
ustiniankw 已提交
1357 1358 1359 1360
    Notes:
        The constructor of Variable should not be invoked directly.

        In Static Graph Mode: Please use ** `Block.create_var` ** to create a Static variable which has no data until being feed.
1361

U
ustiniankw 已提交
1362
        In Dygraph Mode: Please use ** :ref:`api_fluid_dygraph_to_variable` ** to create a dygraph variable with real data.
J
Jiabin Yang 已提交
1363 1364

    In Fluid, every input and output of an OP is a variable. In most
1365
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1366 1367
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1368

1369
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1370
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1371

T
tianshuo78520a 已提交
1372
    Most of a Variable's member variables can be set to be None. It mean
1373
    it is not available or will be specified later.
1374

1375
    Examples:
1376 1377
        In Static Graph Mode:

1378 1379
        .. code-block:: python

1380
            import paddle.fluid as fluid
1381
            cur_program = fluid.Program()
1382 1383 1384 1385
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1386

J
Jiabin Yang 已提交
1387
        In `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_  Mode:
1388 1389 1390 1391 1392 1393 1394 1395 1396

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1397 1398
    """

1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
    def __init__(
        self,
        block,
        type=core.VarDesc.VarType.LOD_TENSOR,
        name=None,
        shape=None,
        dtype=None,
        lod_level=None,
        capacity=None,
        persistable=None,
        error_clip=None,
        stop_gradient=False,
        is_data=False,
        need_check_feed=False,
        belong_to_optimizer=False,
        **kwargs
    ):
Y
Yu Yang 已提交
1416 1417
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1418
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1419

Y
Yu Yang 已提交
1420
        if dtype is not None:
1421
            if not isinstance(dtype, core.VarDesc.VarType):
1422
                dtype = convert_np_dtype_to_dtype_(dtype)
1423

S
Steffy-zxf 已提交
1424 1425 1426 1427
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

1428 1429 1430
        if type == core.VarDesc.VarType.SPARSE_COO:
            lod_level = None

H
hong 已提交
1431 1432
        self.belong_to_optimizer = belong_to_optimizer

1433 1434 1435
        self.error_clip = error_clip

        is_new_var = False
1436
        self.desc = self.block.desc.find_var(name.encode())
1437

1438
        if self.desc is None:
1439
            self.desc = self.block.desc.var(name.encode())
1440
            is_new_var = True
1441

1442 1443 1444
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
1445 1446 1447 1448 1449
            raise ValueError(
                "Variable '{0}' has been created before. The "
                "previous type is {1}, the new type is {2}. They"
                " are not matched".format(self.name, self.desc.type(), type)
            )
1450

1451
        if shape is not None:
1452
            if is_new_var:
1453 1454 1455 1456 1457 1458
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1459 1460
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1461 1462
                        "matched.".format(self.name, old_shape, shape)
                    )
1463 1464 1465 1466 1467 1468
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
1469 1470 1471 1472 1473 1474
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous data type is {1}, the new "
                        "data type is {2}. They are not "
                        "matched.".format(self.name, old_dtype, dtype)
                    )
1475 1476 1477 1478 1479 1480

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
1481 1482 1483 1484 1485 1486
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous lod_level is {1}, the new "
                        "lod_level is {2}. They are not "
                        "matched".format(self.name, self.lod_level, lod_level)
                    )
1487 1488 1489 1490 1491 1492
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1493 1494
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1495
                        "persistable is {2}. They are not matched".format(
1496 1497 1498
                            self.name, self.persistable, persistable
                        )
                    )
1499

1500 1501
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1502

1503 1504 1505 1506 1507 1508 1509
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1510

1511 1512
        self.block.vars[name] = self
        self.op = None
1513
        self.stop_gradient = stop_gradient
1514
        self.is_data = is_data
Y
Yu Yang 已提交
1515

1516 1517
    def detach(self):
        """
U
ustiniankw 已提交
1518

1519
        Returns a new Variable, detached from the current graph.
1520 1521
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1522

1523
        Returns:
U
ustiniankw 已提交
1524
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable), The detached Variable.
1525 1526 1527 1528

        Examples:
            .. code-block:: python

1529
                import paddle
1530

1531 1532 1533 1534
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1535

1536 1537
                # create a detached Variable
                y = x.detach()
U
ustiniankw 已提交
1538

1539
        """
1540

1541 1542 1543 1544
        assert (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ), "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"
1545 1546 1547 1548 1549 1550

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
1551 1552
            stop_gradient=True,
        )
1553

1554 1555 1556
        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]}
        )
1557
        return output
1558

1559
    @fake_interface_only
1560
    def numpy(self):
1561
        """
J
Jiabin Yang 已提交
1562
        **Notes**:
T
tianshuo78520a 已提交
1563
            **This API is ONLY available in Dygraph mode**
1564

J
Jiabin Yang 已提交
1565
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1566 1567 1568 1569 1570

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1571
            ndarray: dtype is same as current Variable
1572 1573 1574 1575 1576 1577

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1578
                from paddle.fluid.dygraph import Linear
1579 1580 1581 1582
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1583
                    linear = Linear(32, 64)
1584
                    data = to_variable(data)
1585
                    x = linear(data)
1586 1587 1588
                    print(x.numpy())

        """
1589
        pass
1590

1591
    @fake_interface_only
1592
    def backward(self, retain_graph=False):
1593
        """
J
Jiabin Yang 已提交
1594
        **Notes**:
T
tianshuo78520a 已提交
1595
            **This API is ONLY available in Dygraph mode**
1596

1597
        Run backward of current Graph which starts from current Tensor.
1598

J
Jiabin Yang 已提交
1599
        Args:
1600 1601 1602 1603
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1604

J
Jiabin Yang 已提交
1605 1606
        Returns:
            NoneType: None
1607 1608 1609 1610 1611

        Examples:
            .. code-block:: python

                import numpy as np
1612 1613
                import paddle
                paddle.disable_static()
1614 1615

                x = np.ones([2, 2], np.float32)
1616 1617 1618 1619 1620 1621 1622
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1623 1624
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1625
                loss.backward()
1626 1627

        """
1628
        pass
1629

1630
    @fake_interface_only
1631
    def gradient(self):
1632
        """
J
Jiabin Yang 已提交
1633
        **Notes**:
T
tianshuo78520a 已提交
1634
            **This API is ONLY available in Dygraph mode**
1635 1636 1637

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1638
        Returns:
1639
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1640 1641 1642 1643

        Examples:
            .. code-block:: python

1644
                import paddle
1645 1646 1647
                import paddle.fluid as fluid
                import numpy as np

1648
                # example1: return ndarray
1649 1650 1651 1652 1653 1654 1655 1656
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
1657
                    loss2 = paddle.sum(ret2)
1658
                    loss2.backward()
1659 1660
                    print(loss2.gradient())

1661 1662
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
1663 1664 1665 1666 1667
                    embedding = paddle.nn.Embedding(
                        20,
                        32,
                        weight_attr='emb.w',
                        sparse=True)
1668 1669 1670 1671 1672 1673 1674
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1675
        """
1676
        pass
1677

1678
    @fake_interface_only
1679
    def clear_gradient(self):
1680
        """
J
Jiabin Yang 已提交
1681
        **Notes**:
T
tianshuo78520a 已提交
1682
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1683 1684

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1685

J
Jiabin Yang 已提交
1686
        Clear  (set to ``0`` ) the Gradient of Current Variable
1687 1688 1689 1690 1691 1692

        Returns:  None

        Examples:
            .. code-block:: python

1693
                import paddle
1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704
                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
1705
                    loss2 = paddle.sum(ret2)
1706
                    loss2.backward()
1707 1708 1709 1710 1711
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1712
        pass
X
Xin Pan 已提交
1713

1714 1715 1716 1717
    @fake_interface_only
    def register_hook(self, hook):
        pass

1718
    def __str__(self):
1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1735 1736
                import paddle
                import paddle.static as static
1737

1738 1739 1740
                paddle.enable_static()

                cur_program = static.Program()
1741 1742 1743 1744 1745 1746
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1747 1748
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1749 1750 1751 1752
        if (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ):
1753
            dtype_str = str(self.dtype).split('.')[1]
1754 1755 1756 1757 1758 1759 1760
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".format(
                name=self.name,
                type=type_str,
                shape=self.shape,
                dtype=dtype_str,
                stop_gradient=self.stop_gradient,
            )
1761
        else:
1762
            var_str = "{name} : {type})".format(name=self.name, type=type_str)
1763

1764
        if self.is_parameter:
1765 1766 1767 1768 1769 1770 1771 1772 1773 1774
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1775 1776 1777 1778
        from paddle.distributed.auto_parallel.dist_context import (
            get_default_distributed_context,
        )

1779
        dist_context = get_default_distributed_context()
1780 1781
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1782 1783 1784
            var_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_tensor
            )
1785

1786
        return var_str
Y
Yang Yang(Tony) 已提交
1787

F
update  
fengjiayi 已提交
1788
    def to_string(self, throw_on_error, with_details=False):
1789 1790 1791
        """
        Get debug string.

J
Jiabin Yang 已提交
1792 1793 1794 1795 1796
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1797

1798 1799
        Returns:
            str: The debug string.
1800 1801 1802 1803 1804

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1805
                import paddle
1806

1807
                paddle.enable_static()
1808 1809 1810 1811 1812
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1813
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1814
                print("=============with detail===============")
1815
                print(new_variable.to_string(True, True))
1816
        """
1817
        assert isinstance(throw_on_error, bool) and isinstance(
1818 1819
            with_details, bool
        )
1820
        protostr = self.desc.serialize_to_string()
1821
        proto = framework_pb2.VarDesc.FromString(bytes(protostr))
F
update  
fengjiayi 已提交
1822 1823
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1824
            additional_attr = ("error_clip",)
F
update  
fengjiayi 已提交
1825
            for attr_name in additional_attr:
1826
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
1827

F
update  
fengjiayi 已提交
1828
        return res_str
1829 1830 1831

    __repr__ = __str__

1832 1833 1834
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
1835

1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1859
    @property
1860
    def stop_gradient(self):
J
Jiabin Yang 已提交
1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
        """
        Indicating if we stop gradient from current Variable

        **Notes: This Property has default value as** ``True`` **in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1876 1877
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1878 1879 1880
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1881 1882
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1883 1884 1885 1886
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1887
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1888 1889
                assert (out1.gradient() == 0).all()
        """
1890
        return self.desc.stop_gradient()
1891

1892 1893
    @stop_gradient.setter
    def stop_gradient(self, s):
1894
        self.desc.set_stop_gradient(s)
1895

1896 1897
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

            **2. In** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, this property should not be changed**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1919
        return self.desc.persistable()
1920

Y
Yu Yang 已提交
1921 1922
    @persistable.setter
    def persistable(self, p):
1923
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1924

1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1950 1951
    @property
    def name(self):
J
Jiabin Yang 已提交
1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
        """
        Indicating name of current Variable

        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode. This is how we achieve Parameter sharing**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1968
        return self.desc.name()
Y
Yu Yang 已提交
1969

1970 1971 1972 1973 1974 1975
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1976 1977
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1978

1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
          print(x.grad_name) # output is "x@GRAD"

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1990 1991
    @name.setter
    def name(self, new_name):
1992
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1993

Y
Yu Yang 已提交
1994 1995
    @property
    def shape(self):
J
Jiabin Yang 已提交
1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
2013
        # convert to tuple, make it as same as numpy API.
2014
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
2015 2016

    @property
F
fengjiayi 已提交
2017
    def dtype(self):
J
Jiabin Yang 已提交
2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
2034
        return self.desc.dtype()
Y
Yu Yang 已提交
2035 2036 2037

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

            **2. Don't support this property in** `Dygraph <../../user_guides/howto/dygraph/DyGraph.html>`_ **mode, it's value should be** ``0(int)``

        Examples:
          .. code-block:: python

2051
            import paddle
J
Jiabin Yang 已提交
2052
            import paddle.fluid as fluid
2053 2054

            paddle.enable_static()
J
Jiabin Yang 已提交
2055 2056 2057 2058 2059 2060 2061
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
2062 2063
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
2064 2065
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
2066
        return self.desc.lod_level()
Y
Yu Yang 已提交
2067

Y
Yu Yang 已提交
2068 2069
    @property
    def type(self):
J
Jiabin Yang 已提交
2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
2086
        return self.desc.type()
Y
Yu Yang 已提交
2087

2088 2089 2090
    @property
    def T(self):
        """
U
ustiniankw 已提交
2091

2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
U
ustiniankw 已提交
2110

2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
2123 2124
            stop_gradient=False,
        )
2125 2126 2127 2128 2129
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
2130 2131 2132 2133 2134 2135 2136 2137 2138
            stop_gradient=False,
        )

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out], 'XShape': [input_shape]},
            attrs={'axis': perm},
        )
2139 2140
        return out

2141 2142 2143
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
2144
        Variable. It remains in the current graph, that is, the cloned Variable
2145 2146 2147 2148
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
U
ustiniankw 已提交
2149
            Variable, The cloned Variable.
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
2169 2170
            stop_gradient=self.stop_gradient,
        )
2171

2172 2173 2174
        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]}
        )
2175 2176
        return output

W
Wu Yi 已提交
2177
    def _set_error_clip(self, error_clip):
2178
        """
U
ustiniankw 已提交
2179

2180 2181 2182 2183 2184 2185 2186
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
U
ustiniankw 已提交
2187

2188
        """
2189 2190
        self.error_clip = error_clip

2191 2192
    def _set_info(self, key, value):
        """
U
ustiniankw 已提交
2193

2194 2195 2196 2197 2198 2199
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

2200
        Returns:
2201
            None
U
ustiniankw 已提交
2202

2203 2204 2205 2206 2207 2208 2209
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
U
ustiniankw 已提交
2210

2211 2212 2213 2214 2215
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

2216
        Returns:
2217
            object
U
ustiniankw 已提交
2218

2219 2220 2221 2222 2223
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

2224 2225
    def _slice_indices(self, slice, length):
        """
U
ustiniankw 已提交
2226

2227
        Reference implementation for the slice.indices method.
U
ustiniankw 已提交
2228

2229 2230 2231 2232 2233 2234 2235 2236
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
2237
            raise ValueError("slice step can not be zero")
2238 2239 2240 2241 2242 2243 2244 2245 2246 2247

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
2248 2249 2250
            start = (
                max(start + length, lower) if start < 0 else min(start, upper)
            )
2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
2296 2297 2298
                if (index > 0 and index >= self.shape[index]) or (
                    index < 0 and (index + self.shape[index]) < 0
                ):
2299
                    raise IndexError("invalid index")
2300 2301 2302 2303 2304
                start = (
                    max(start + self.shape[index], 0)
                    if start < 0
                    else min(start, self.shape[index])
                )
2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2318
    def _cloneVar(self, copy=False):
2319 2320
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2321
                name=unique_name.generate_with_ignorable_key(self.name),
2322 2323
                dtype=self.dtype,
            )
2324 2325 2326 2327
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2328
        new_var = self._cloneVar()
2329 2330 2331 2332 2333 2334
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes, 'starts': starts, 'ends': ends},
        )
2335 2336 2337
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2338
        new_var = self._cloneVar()
2339 2340 2341 2342 2343 2344 2345 2346
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={
                'axis': axis,
            },
        )
2347 2348 2349 2350 2351
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2352
                return self._cloneVar(True)
2353 2354 2355 2356 2357 2358 2359
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
2360 2361 2362
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2363 2364 2365
                        start += step
                else:
                    while start > stop:
2366 2367 2368
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2369 2370 2371 2372
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2373
                return self._cloneVar(True)
2374
            index = int(item)
2375 2376 2377
            if (index > 0 and index >= self.shape[axis]) or (
                index < 0 and (index + self.shape[axis]) < 0
            ):
2378 2379 2380 2381 2382 2383
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2384
        return _getitem_impl_(self, item)
2385

2386
    def __setitem__(self, item, value):
2387
        return _setitem_impl_(self, item, value)
2388

2389 2390
    def get_value(self, scope=None):
        """
2391
        Get the value of variable in given scope.
2392 2393

        Args:
2394
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2395 2396 2397 2398
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
U
ustiniankw 已提交
2399
            Tensor, the value in given scope.
2400 2401 2402 2403 2404

        Examples:
            .. code-block:: python

                import paddle
2405
                import paddle.static as static
2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
2430 2431
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file.
2432 2433
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
2434

2435 2436
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2437 2438 2439 2440
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2441 2442 2443 2444 2445

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
2446 2447 2448
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2449 2450 2451 2452 2453
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
U
ustiniankw 已提交
2454

2455
        Set the value to the tensor in given scope.
2456 2457 2458

        Args:
            value(Tensor/ndarray) : The value to be set.
2459
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2460 2461 2462 2463 2464
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
2465

2466 2467 2468 2469
        Examples:
            .. code-block:: python

                import paddle
2470
                import paddle.static as static
2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
U
ustiniankw 已提交
2494

2495 2496 2497
        '''

        # The 'framework' is a low-level module, and 'executor'
2498
        # can not be imported at the begainning of this file.
2499 2500 2501 2502 2503
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
2504 2505 2506 2507
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".format(
                    type(value)
                )
            )
2508 2509 2510

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2511 2512 2513 2514
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2515 2516 2517 2518 2519 2520

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
2521 2522 2523
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2524 2525 2526 2527 2528 2529 2530 2531 2532 2533

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
2534 2535 2536 2537
                    "{} expected a shape {}, but the received shape is {}.".format(
                        self.name, list(t.shape()), list(value_shape)
                    )
                )
2538 2539 2540 2541 2542 2543 2544 2545 2546 2547

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2548 2549 2550 2551
        elif p.is_npu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.NPUPlace(p.npu_device_id())
2552 2553 2554 2555
        elif p.is_mlu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.MLUPlace(p.mlu_device_id())
2556 2557 2558 2559 2560 2561 2562
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2563 2564
    def size(self):
        """
U
ustiniankw 已提交
2565

2566 2567 2568
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
U
ustiniankw 已提交
2569
            Variable, the number of elements for current Variable
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
U
ustiniankw 已提交
2583

2584 2585 2586 2587
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
2588 2589
            dtype=core.VarDesc.VarType.INT64,
        )
2590

2591 2592 2593
        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]}
        )
2594 2595
        return output

2596 2597
    def _set_attr(self, name, val):
        """
U
ustiniankw 已提交
2598

2599 2600 2601 2602 2603
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
U
ustiniankw 已提交
2604

2605 2606 2607 2608 2609
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
U
ustiniankw 已提交
2610

2611 2612 2613 2614 2615 2616
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2617 2618
            bool, True if has this attribute.

2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

2640
    def attr(self, name):
2641 2642 2643 2644 2645 2646 2647
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2648
            int|str|list, The attribute value. The return value
2649 2650 2651 2652 2653
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
2654
    def dist_attr(self):
2655
        """
2656
        Get distributed attribute of this Variable.
2657
        """
2658
        return self.desc.dist_attr
2659

2660 2661
    @dist_attr.setter
    def dist_attr(self, dist_attr):
2662
        """
2663
        Set distributed attribute of this Variable.
2664
        """
2665
        self.desc.dist_attr = dist_attr
2666

Y
Yu Yang 已提交
2667

F
fengjiayi 已提交
2668 2669 2670
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2671

2672 2673
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2674 2675 2676 2677
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2678
        op_proto = framework_pb2.OpProto.FromString(bytes(pbstr))
F
fengjiayi 已提交
2679 2680 2681 2682
        ret_values.append(op_proto)
    return ret_values


2683
class OpProtoHolder:
2684 2685 2686 2687
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2688 2689 2690 2691 2692 2693 2694 2695
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
2696 2697
            self.__class__, '_instance'
        ), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2698 2699 2700 2701 2702 2703
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2704 2705 2706 2707 2708 2709 2710 2711
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2712 2713
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2714 2715
        return self.op_proto_map[type]

2716 2717
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2718
        custom_op_names = []
2719 2720 2721
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2722 2723 2724
                custom_op_names.append(proto.type)

        return custom_op_names
2725

2726 2727 2728 2729
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2730
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2731
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2732
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
2733
            core.op_proto_and_checker_maker.kOpDeviceAttrName(),
2734 2735
        }

F
fengjiayi 已提交
2736

2737
class Operator:
2738
    """
2739 2740 2741 2742 2743 2744 2745
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2746
        type(str): The type of operator. Default None.
2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2767
        Block.append_op or Block._prepend_op instead.
2768 2769 2770 2771

    Examples:
        .. code-block:: python

2772
            import paddle.fluid as fluid
2773
            cur_program = fluid.Program()
2774 2775 2776 2777 2778
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2779
    """
2780

2781
    OP_WITHOUT_KERNEL_SET = {
2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812
        'feed',
        'fetch',
        'recurrent',
        'go',
        'rnn_memory_helper_grad',
        'conditional_block',
        'while',
        'send',
        'recv',
        'listen_and_serv',
        'fl_listen_and_serv',
        'ncclInit',
        'select',
        'checkpoint_notify',
        'gen_bkcl_id',
        'c_gen_bkcl_id',
        'gen_nccl_id',
        'c_gen_nccl_id',
        'c_comm_init',
        'c_sync_calc_stream',
        'c_sync_comm_stream',
        'queue_generator',
        'dequeue',
        'enqueue',
        'heter_listen_and_serv',
        'c_wait_comm',
        'c_wait_compute',
        'c_gen_hccl_id',
        'c_comm_init_hccl',
        'copy_cross_scope',
        'c_gen_cncl_id',
2813
    }
2814

2815 2816 2817
    def __init__(
        self, block, desc, type=None, inputs=None, outputs=None, attrs=None
    ):
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827
        # read attr type index from op proto to avoid unexpected type
        # conversions, e.g. narrowing conversion like double to float
        try:
            proto = OpProtoHolder.instance().get_op_proto(type)
            self._attr_types = {}
            for attr in proto.attrs:
                self._attr_types[attr.name] = attr.type
        except ValueError:
            pass

J
Jiabin Yang 已提交
2828
        if _non_static_mode():
2829 2830
            if type is None:
                raise ValueError(
2831 2832
                    "`type` to initialized an Operator can not be None."
                )
J
Jiabin Yang 已提交
2833
            self._type = type
M
minqiyang 已提交
2834
            self.attrs = attrs if attrs else {}
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

2845 2846 2847
            # attr for static mode cuda graph
            self._cuda_graph_attr = _current_cuda_graph_mode

2848 2849 2850
            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
2851
                op_attrs[
2852 2853
                    op_maker.kOpRoleAttrName()
                ] = self.block.program._op_role
2854 2855

            role_var_name = op_maker.kOpRoleVarAttrName()
2856 2857 2858 2859
            if (
                len(self.block.program._op_role_var) != 0
                and role_var_name not in op_attrs
            ):
2860
                op_attrs[role_var_name] = self.block.program._op_role_var
2861 2862 2863 2864 2865

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2866 2867 2868 2869 2870
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2871 2872 2873
                return
            if type is None:
                raise ValueError(
2874 2875
                    "`type` to initialized an Operator can not be None."
                )
2876 2877
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2878 2879 2880
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
2881
                        '  File "{}", line {}, in {}'.format(
2882 2883 2884 2885 2886 2887
                            frame[0], frame[1], frame[2]
                        )
                    )
                    op_attrs[callstack_var_name].append(
                        '    {}'.format(frame[3])
                    )
2888 2889 2890 2891 2892 2893 2894

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2895 2896 2897 2898 2899 2900 2901 2902
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
2903 2904 2905
                    warnings.warn(
                        "The Op(%s) is not support to set device." % type
                    )
2906
                if 'force_cpu' in op_attrs:
2907
                    if (
2908 2909
                        type == 'less_than'
                        and op_attrs['force_cpu'] is not None
2910
                    ) or op_attrs['force_cpu'] != False:
2911 2912 2913
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
2914 2915
                            "used at the same time." % type
                        )
2916
            if _current_pipeline_stage is not None:
2917 2918 2919 2920 2921
                pipeline_attr_name = (
                    'pipeline_stage' + core.kAutoParallelSuffix()
                )
                self._update_desc_attr(
                    pipeline_attr_name, _current_pipeline_stage
2922
                )
2923

2924 2925 2926 2927 2928 2929 2930 2931 2932
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
2933 2934 2935
                    assert (
                        found or in_proto.dispensable
                    ), "Input {} not found".format(in_proto.name)
2936 2937
                    if found:
                        in_args = inputs[in_proto.name]
2938
                        if not isinstance(in_args, (list, tuple)):
2939 2940 2941 2942
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
2943 2944
                                % (in_proto.name, len(in_args))
                            )
2945
                        in_arg_names = []
2946
                        for index, arg in enumerate(in_args):
2947
                            if isinstance(arg, str):
2948
                                in_arg_names.append(arg)
2949
                            elif isinstance(arg, bytes):
2950
                                in_arg_names.append(arg.decode())
2951
                            elif isinstance(arg, (Variable, core.VarBase)):
2952
                                in_arg_names.append(arg.name)
2953
                            else:
2954 2955 2956 2957
                                raise TypeError(
                                    "The type of '%s' in operator %s should be "
                                    "one of [basestring(), str, Varibale] in python2, "
                                    "or one of [str, bytes, Variable] in python3."
2958 2959 2960
                                    "but received : %s"
                                    % (in_proto.name, type, arg)
                                )
2961 2962 2963 2964 2965 2966 2967 2968 2969
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
2970
                        raise ValueError(
2971 2972 2973 2974 2975 2976
                            (
                                "Incorrect setting for output(s) of "
                                "operator \"%s\", should set: [%s]."
                            )
                            % (type, m.name)
                        )
2977 2978 2979 2980 2981 2982 2983 2984 2985
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
2986 2987
                            % (out_proto.name, len(out_args))
                        )
2988 2989
                    out_arg_names = []
                    for arg in out_args:
2990
                        if isinstance(arg, str):
2991 2992
                            out_arg_names.append(arg)
                        else:
2993
                            out_arg_names.append(arg.name)
2994
                        # TODO(minqiyang): could we remove variable's op in static mode?
J
Jiabin Yang 已提交
2995
                        if not _non_static_mode():
2996
                            if isinstance(arg, str):
2997 2998 2999
                                block.var(arg).op = self
                            else:
                                arg.op = self
3000 3001
                    self.desc.set_output(out_proto.name, out_arg_names)

3002
            extra_attrs_map = core.get_op_extra_attrs(type)
3003 3004 3005 3006 3007
            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
3008 3009 3010
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
3011 3012 3013
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)
3014
                for attr_name in extra_attrs_map.keys():
3015 3016 3017 3018 3019 3020
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
                        self._update_desc_attr(
                            attr_name, extra_attrs_map[attr_name]
                        )
3021 3022
                    else:
                        self._update_desc_attr(attr_name, op_attrs[attr_name])
3023

J
jianghaicheng 已提交
3024 3025
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
3026
                if global_ipu_index >= 0:
3027 3028 3029
                    self._update_desc_attr(
                        ipu_index_attr_name, global_ipu_index
                    )
3030
                if global_ipu_stage >= 0:
3031 3032 3033
                    self._update_desc_attr(
                        ipu_stage_attr_name, global_ipu_stage
                    )
J
jianghaicheng 已提交
3034

3035 3036 3037 3038 3039
            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
3040
    def _has_kernel(self, op_type):
3041 3042
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
3043
    def to_string(self, throw_on_error):
3044
        """
3045 3046
        Get debug string.

3047
        Args:
3048 3049
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
3050

3051 3052
        Returns:
            str: The debug string.
3053 3054

        """
3055
        protostr = self.desc.serialize_to_string()
3056
        proto = framework_pb2.OpDesc.FromString(bytes(protostr))
Y
Yang Yang(Tony) 已提交
3057 3058
        return _debug_string_(proto, throw_on_error)

3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3091
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3092 3093
            type(skip_op_callstack)
        )
3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

3120 3121 3122
            attr_type = self.desc.attr_type(name, True)
            if attr_type == core.AttrType.VAR:
                attr_var_name = self.desc.attr(name, True).name()
3123 3124 3125
                a = "{name} = Var['{value}']".format(
                    name=name, type=attr_type, value=attr_var_name
                )
3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.VARS:
                attr_var_names = [
                    "'%s'" % var.name() for var in self.desc.attr(name, True)
                ]
                a = "{name} = Vars[{value}]".format(
3136 3137
                    name=name, type=attr_type, value=','.join(attr_var_names)
                )
3138 3139 3140 3141 3142
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3143 3144
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
3145 3146
                    name=name, type=attr_type, value=self._block_attr_id(name)
                )
3147 3148 3149 3150 3151 3152 3153
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
3154 3155
                    name=name, type=attr_type, value=self._blocks_attr_ids(name)
                )
3156 3157 3158 3159 3160
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3161
            # it is bytes of serialized protobuf
3162 3163 3164 3165 3166
            if (
                is_compiled_with_cinn()
                and self.type == 'cinn_launch'
                and name == 'compilation_key'
            ):
3167 3168
                key = self.desc.attr(name)
                v = core.get_serialize_comile_key(key)
3169 3170 3171 3172 3173 3174 3175 3176 3177
                prog = Program()
                prog = prog.parse_from_string(v)
                s = prog._to_readable_code()
                lines = s.split('\n')
                value = '\n'.join(['      ' + line for line in lines])
                value = '\n' + value
            else:
                value = self.desc.attr(name)

3178 3179 3180
            a = "{name} = {value}".format(
                name=name, type=attr_type, value=value
            )
3181

3182 3183 3184 3185
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

3186 3187 3188 3189
        from paddle.distributed.auto_parallel.dist_context import (
            get_default_distributed_context,
        )

3190
        dist_context = get_default_distributed_context()
3191 3192
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
3193 3194 3195
            attrs_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_op
            )
3196

3197
        if outputs_str != "{}":
3198 3199 3200 3201 3202 3203
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".format(
                outputs=outputs_str,
                op_type=self.type,
                inputs=inputs_str,
                attrs=attrs_str,
            )
3204
        else:
3205 3206 3207
            op_str = "{op_type}(inputs={inputs}, {attrs})".format(
                op_type=self.type, inputs=inputs_str, attrs=attrs_str
            )
3208 3209
        return op_str

Y
Yang Yang(Tony) 已提交
3210
    def __str__(self):
3211
        return self._to_readable_code()
3212 3213 3214

    __repr__ = __str__

F
fengjiayi 已提交
3215 3216
    @property
    def type(self):
3217
        return self.desc.type()
F
fengjiayi 已提交
3218 3219

    def input(self, name):
3220
        r"""
U
ustiniankw 已提交
3221

3222
        Get the input arguments according to the input parameter name.
3223

3224 3225
        Args:
            name(str): The input parameter name.
3226

3227
        Returns:
U
ustiniankw 已提交
3228
            list, return the list of argument names that associated with \
3229
                the specific parameter name.
U
ustiniankw 已提交
3230

3231
        """
F
fengjiayi 已提交
3232 3233
        return self.desc.input(name)

W
Wu Yi 已提交
3234
    def _rename_input(self, old_name, new_name):
3235 3236 3237 3238 3239 3240 3241 3242 3243 3244
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
3245
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
3246

W
Wu Yi 已提交
3247
    def _rename_output(self, old_name, new_name):
3248 3249 3250 3251 3252 3253 3254 3255 3256 3257
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
3258
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
3259

F
fengjiayi 已提交
3260 3261 3262 3263
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
3264 3265 3266 3267 3268 3269 3270 3271
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
3272
    def output(self, name):
3273
        r"""
3274
        Get output arguments by the output parameter name.
3275

3276 3277
        Args:
            name(str): The output parameter name.
3278

3279 3280 3281
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
3282
        """
F
fengjiayi 已提交
3283 3284 3285 3286 3287 3288
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

3289 3290 3291 3292 3293 3294
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
3295 3296
            "Can't find op itself in it's block. It could be a bug of Paddle."
        )
3297

F
fengjiayi 已提交
3298
    def has_attr(self, name):
3299
        """
3300 3301
        Whether this Operator has the attribute with name or not.

3302
        Args:
3303
            name(str): the attribute name.
3304

3305 3306
        Returns:
            bool: True if has this attribute.
3307 3308

        """
F
fengjiayi 已提交
3309 3310 3311
        return self.desc.has_attr(name)

    def attr_type(self, name):
3312
        """
3313
        Get the type of attribute by attribute's name.
3314

3315 3316
        Args:
            name(str): the attribute name.
3317

3318 3319
        Returns:
            core.AttrType: the attribute type.
3320
        """
3321
        return self.desc.attr_type(name, True)
F
fengjiayi 已提交
3322

W
Wu Yi 已提交
3323
    def _set_attr(self, name, val):
3324 3325 3326 3327 3328 3329 3330 3331 3332 3333
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
3334 3335
        self._update_desc_attr(name, val)

3336 3337 3338
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
3350 3351 3352 3353 3354
        if isinstance(val, Variable):
            self.desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            self.desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
Q
Qiyang Min 已提交
3355
            self.desc.set_block_attr(name, val.desc)
3356
        elif isinstance(val, list) and val and _all_is_type(val, Block):
3357
            self.desc.set_blocks_attr(name, [v.desc for v in val])
3358 3359 3360
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
Q
Qiyang Min 已提交
3361 3362
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398
            self._update_desc_plain_attr(name, val)

    def _update_desc_plain_attr(self, name, val):
        desc = self.desc
        if not hasattr(self, "_attr_types") or (name not in self._attr_types):
            desc._set_attr(name, val)
            return

        type_index = self._attr_types[name]
        if type_index == core.AttrType.BOOL:
            desc._set_bool_attr(name, val)
        elif type_index == core.AttrType.INT:
            desc._set_int32_attr(name, val)
        elif type_index == core.AttrType.LONG:
            desc._set_int64_attr(name, val)
        elif type_index == core.AttrType.FLOAT:
            desc._set_float32_attr(name, val)
        # elif type_index == core.AttrType.FLOAT64:
        #     desc._set_float64_attr(name, val)
        elif type_index == core.AttrType.STRING:
            desc._set_str_attr(name, val)
        elif type_index == core.AttrType.BOOLS:
            desc._set_bools_attr(name, val)
        elif type_index == core.AttrType.INTS:
            desc._set_int32s_attr(name, val)
        elif type_index == core.AttrType.LONGS:
            desc._set_int64s_attr(name, val)
        elif type_index == core.AttrType.FLOATS:
            desc._set_float32s_attr(name, val)
        elif type_index == core.AttrType.FLOAT64S:
            desc._set_float64s_attr(name, val)
        elif type_index == core.AttrType.STRINGS:
            desc._set_strs_attr(name, val)
        else:
            # defaults to old methods
            desc._set_attr(name, val)
Y
yuyang18 已提交
3399

F
fengjiayi 已提交
3400 3401
    @property
    def attr_names(self):
3402
        return self.desc.attr_names(True)
F
fengjiayi 已提交
3403 3404

    def attr(self, name):
3405
        """
3406 3407
        Get the attribute by name.

3408
        Args:
3409
            name(str): the attribute name.
3410

3411 3412
        Returns:
            bool|int|str|float|list: The attribute value. The return value
3413 3414
            can be any valid attribute type.
        """
F
fengjiayi 已提交
3415
        return self.desc.attr(name)
Y
Yu Yang 已提交
3416

W
Wu Yi 已提交
3417
    def _block_attr_id(self, name):
3418
        """
G
gongweibao 已提交
3419
        Get the block attribute's id by name.
3420

3421 3422
        Args:
            name(str): the attribute name.
3423

3424 3425
        Returns:
            int: the block index.
3426
        """
W
Wu Yi 已提交
3427
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
3428

W
Wu Yi 已提交
3429
    def _block_attr(self, name):
G
gongweibao 已提交
3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
3440
        id = self._block_attr_id(name)
3441
        assert id >= 0 and id < len(self.block.program.blocks)
G
gongweibao 已提交
3442 3443
        return self.block.program.blocks[id]

W
Wu Yi 已提交
3444
    def _blocks_attr(self, name):
G
gongweibao 已提交
3445 3446 3447 3448 3449 3450 3451 3452 3453 3454
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
3455
        for i in self._blocks_attr_ids(name):
3456
            assert i >= 0 and i < len(self.block.program.blocks)
G
gongweibao 已提交
3457 3458 3459 3460
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
3461
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
3472
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
3473

3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484
    def _var_attr(self, name):
        """
        Get the Variable attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variable: the Variable attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3485 3486 3487 3488 3489
        assert (
            attr_type == core.AttrType.VAR
        ), "Required type attr({}) is Variable, but received {}".format(
            name, attr_type
        )
3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
        attr_var_name = self.desc.attr(name, True).name()
        return self.block._var_recursive(attr_var_name)

    def _vars_attr(self, name):
        """
        Get the Variables attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variables: the Variables attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3504 3505 3506 3507 3508
        assert (
            attr_type == core.AttrType.VARS
        ), "Required type attr({}) is list[Variable], but received {}".format(
            name, attr_type
        )
3509 3510 3511 3512 3513 3514
        attr_vars = [
            self.block._var_recursive(var.name())
            for var in self.desc.attr(name, True)
        ]
        return attr_vars

J
JiayiFeng 已提交
3515
    def all_attrs(self):
F
fengjiayi 已提交
3516
        """
3517 3518 3519
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3520
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3521 3522 3523 3524
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
3525
            attr_type = self.desc.attr_type(n, True)
G
gongweibao 已提交
3526
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3527
                attr_map[n] = self._block_attr(n)
3528
            elif attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3529
                attr_map[n] = self._blocks_attr(n)
3530 3531 3532 3533 3534 3535
            elif attr_type == core.AttrType.VAR:
                attr_map[n] = self._var_attr(n)
            elif attr_type == core.AttrType.VARS:
                attr_map[n] = self._vars_attr(n)
            else:
                attr_map[n] = self.attr(n)
G
gongweibao 已提交
3536

F
fengjiayi 已提交
3537 3538
        return attr_map

3539 3540 3541
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3542 3543 3544 3545

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3546 3547 3548
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3549 3550 3551 3552 3553 3554 3555 3556

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3557 3558
            return False

3559 3560 3561 3562 3563 3564
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3565
    @property
3566
    def dist_attr(self):
3567
        """
3568
        Get distributed attribute of this Variable.
3569
        """
3570
        return self.desc.dist_attr
3571

3572 3573
    @dist_attr.setter
    def dist_attr(self, dist_attr):
3574
        """
3575
        Set distributed attribute of this Variable.
3576
        """
3577
        self.desc.dist_attr = dist_attr
3578

Y
Yu Yang 已提交
3579

3580
class Block:
3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3595
        use `Program._create_block()` to create a block.
3596 3597 3598 3599

    Examples:
        .. code-block:: python

3600 3601 3602
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3603 3604 3605 3606 3607 3608 3609 3610 3611
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3612
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3613
        self.desc = program.desc.block(idx)
3614
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3615
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3616
        self.program = program
3617
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
3618

3619
    def __str__(self):
3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3654
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3655 3656
            type(skip_op_callstack)
        )
3657 3658 3659 3660 3661 3662 3663
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
3664 3665
                op._to_readable_code(skip_op_callstack)
            )
3666 3667
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3668

F
fengjiayi 已提交
3669 3670
    def to_string(self, throw_on_error, with_details=False):
        """
3671 3672
        Get debug string.

F
fengjiayi 已提交
3673 3674
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3675
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3676
            with_details(bool): more details about variables and parameters
3677 3678
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3679

3680 3681
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3682
        """
3683
        assert isinstance(throw_on_error, bool) and isinstance(
3684 3685
            with_details, bool
        )
F
fengjiayi 已提交
3686
        if with_details:
F
fengjiayi 已提交
3687
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3688
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
3689 3690 3691
                self.idx,
                self.parent_idx,
            )
3692
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3693
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
3694 3695
                    r"\n    \1", var.to_string(throw_on_error, with_details)
                )
F
fengjiayi 已提交
3696
            for op in self.ops:
F
fengjiayi 已提交
3697
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
3698 3699
                    r"\n    \1", op.to_string(throw_on_error)
                )
F
fengjiayi 已提交
3700 3701 3702
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3703
            proto = framework_pb2.BlockDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
3704 3705
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3706 3707 3708

    __repr__ = __str__

Y
Yu Yang 已提交
3709 3710
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3711
        return self.desc.parent
Y
Yu Yang 已提交
3712

Y
Yu Yang 已提交
3713 3714 3715 3716
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3717
    def _set_forward_block_idx(self, idx):
3718 3719 3720 3721 3722 3723 3724 3725 3726
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3727
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3728

3729 3730 3731 3732 3733 3734 3735 3736
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3737 3738
    @property
    def idx(self):
Y
Yu Yang 已提交
3739
        return self.desc.id
Y
Yu Yang 已提交
3740

Q
Qiao Longfei 已提交
3741
    def var(self, name):
3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3755
        if not isinstance(name, str):
M
minqiyang 已提交
3756
            raise TypeError(
3757 3758 3759
                "var require string as parameter, but get %s instead."
                % (type(name))
            )
Y
Yu Yang 已提交
3760 3761
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3762
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3763
        return v
Q
Qiao Longfei 已提交
3764

X
Xin Pan 已提交
3765
    def _find_var_recursive(self, name):
3766 3767 3768 3769 3770 3771 3772
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3773
            Variable: the Variable with the giving name. Or None if not found.
3774
        """
Y
Yu Yang 已提交
3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3799
        return None
Y
Yu Yang 已提交
3800

X
Xin Pan 已提交
3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3820

Q
Qiao Longfei 已提交
3821
    def all_parameters(self):
3822
        return list(self.iter_parameters())
3823

3824
    def iter_parameters(self):
3825 3826 3827 3828 3829
        return (
            item[1]
            for item in self.vars.items()
            if isinstance(item[1], Parameter)
        )
Q
Qiao Longfei 已提交
3830

Y
Yu Yang 已提交
3831
    def create_var(self, *args, **kwargs):
J
Jiabin Yang 已提交
3832
        if _non_static_mode():
L
Leo Chen 已提交
3833 3834
            var = _varbase_creator(*args, **kwargs)
        else:
3835 3836 3837
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3838
        return var
Y
Yu Yang 已提交
3839

Q
Qiao Longfei 已提交
3840 3841 3842
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3843
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3844 3845
        """
        Rename variable in vars and ops' inputs and outputs
3846 3847

        Args:
3848 3849
            name(str|bytes): the name that need to be renamed.
            new_name(str|bytes): the name that need to rename to.
3850 3851 3852 3853 3854 3855 3856 3857

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3858
        """
3859 3860
        # Ensure the type of name and new_name is str
        name = name.decode() if isinstance(name, bytes) else name
3861 3862 3863
        new_name = (
            new_name.decode() if isinstance(new_name, bytes) else new_name
        )
M
minqiyang 已提交
3864

T
typhoonzero 已提交
3865
        if not self.has_var(name):
3866
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3867 3868
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3869
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3870 3871 3872 3873 3874 3875
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3876
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3877 3878 3879 3880
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3881
        orig_var_type = v.type
3882
        self.desc._rename_var(name.encode(), new_name.encode())
W
Wu Yi 已提交
3883
        # NOTE: v is destroyed by C++ after calling _rename_var.
3884
        d = self.desc.find_var(new_name.encode())
T
typhoonzero 已提交
3885
        if var_type == "Parameter":
L
Leo Chen 已提交
3886
            if in_dygraph_mode():
3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897
                var = EagerParamBase(
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
3898
            else:
J
Jiabin Yang 已提交
3899
                if _in_legacy_dygraph():
3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910
                    var = ParamBase(
                        d.shape(),
                        d.dtype(),
                        type=orig_var_type,
                        name=new_name,
                        stop_gradient=stop_gradient,
                        trainable=trainable,
                        optimize_attr=optimize_attr,
                        regularizer=regularizer,
                        error_clip=error_clip,
                    )
J
Jiabin Yang 已提交
3911
                else:
3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923
                    var = Parameter(
                        self,
                        d.shape(),
                        d.dtype(),
                        type=orig_var_type,
                        name=new_name,
                        stop_gradient=stop_gradient,
                        trainable=trainable,
                        optimize_attr=optimize_attr,
                        regularizer=regularizer,
                        error_clip=error_clip,
                    )
T
typhoonzero 已提交
3924
        elif var_type == "Variable":
3925 3926 3927 3928 3929 3930 3931
            var = Variable(
                self,
                type=orig_var_type,
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient,
            )
T
wip  
typhoonzero 已提交
3932

W
Wu Yi 已提交
3933
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3934 3935 3936
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3937
        self._sync_with_cpp()
3938
        return var
T
typhoonzero 已提交
3939

3940 3941 3942
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
3943
        self.desc._remove_var(name.encode())
3944 3945
        del self.vars[name]

Y
Yu Yang 已提交
3946 3947
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3948
        param = None
L
Leo Chen 已提交
3949
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3950
            param = EagerParamBase(*args, **kwargs)
L
Leo Chen 已提交
3951
        else:
J
Jiabin Yang 已提交
3952 3953 3954 3955
            if _in_legacy_dygraph():
                param = ParamBase(*args, **kwargs)
            else:
                param = Parameter(global_block, *args, **kwargs)
3956

3957
        if 'initializer' in kwargs:
3958 3959 3960 3961 3962

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3963
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3964
                        # are treated as initialization ops that cause error.
3965
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3966 3967
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
3968 3969 3970
                            "c_broadcast",
                            "c_sync_comm_stream",
                            "coalesce_tensor",
3971
                        ]:
3972
                            continue
3973 3974 3975 3976 3977 3978 3979
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
3980 3981 3982 3983 3984 3985
                raise RuntimeError(
                    "param "
                    + param.name
                    + " is inited by multiple init ops "
                    + str(init_ops)
                )
3986
            elif init_ops_len == 1:
3987
                # TODO already inited, do nothing, should log a warning
3988 3989 3990
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3991
        return param
Y
Yu Yang 已提交
3992

Y
Yu Yang 已提交
3993
    def append_op(self, *args, **kwargs):
3994 3995 3996 3997 3998 3999
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
J
Jiabin Yang 已提交
4000
        if _non_static_mode():
4001
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
4002
            inplace_map = kwargs.get("inplace_map", None)
J
Jiabin Yang 已提交
4003
            type = kwargs.get("type", None)
4004 4005 4006
            warnings.warn(
                "Op `%s` is executed through `append_op` under the dynamic mode, "
                "the corresponding API implementation needs to be upgraded to "
4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017
                "using `_C_ops` method." % type,
                DeprecationWarning,
            )
            op = Operator(
                block=self,
                desc=None,
                type=type,
                inputs=None,
                outputs=None,
                attrs=attrs,
            )
4018

M
minqiyang 已提交
4019 4020 4021
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
4022
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
4023

4024 4025 4026 4027 4028 4029 4030 4031
            _dygraph_tracer().trace_op(
                type,
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
                inplace_map,
            )
M
minqiyang 已提交
4032
        else:
4033 4034
            from paddle.fluid.dygraph.base import param_guard

4035
            op_desc = self.desc.append_op()
4036 4037 4038 4039 4040 4041
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
4042 4043 4044 4045 4046 4047 4048 4049
                op = Operator(
                    block=self,
                    desc=op_desc,
                    type=kwargs.get("type", None),
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None),
                )
4050

M
minqiyang 已提交
4051
            self.ops.append(op)
M
minqiyang 已提交
4052

4053 4054
        return op

W
Wu Yi 已提交
4055
    def _insert_op(self, index, *args, **kwargs):
4056 4057 4058 4059 4060 4061 4062 4063 4064
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
4065
        self._sync_with_cpp()
F
fangshuixun007 已提交
4066
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
4067

4068 4069
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
4070
        Insert an Operator according to the giving arguments,
4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
4085 4086 4087 4088 4089 4090 4091 4092 4093
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
4094 4095
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
4096
        self.desc._remove_op(index, index + 1)
4097 4098
        del self.ops[index]

W
Wu Yi 已提交
4099
    def _slice_ops(self, start, end):
4100 4101 4102 4103 4104 4105 4106 4107 4108 4109
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
4110
        return self.ops[start:end]
Y
Yancey1989 已提交
4111

W
Wu Yi 已提交
4112
    def _prepend_op(self, *args, **kwargs):
J
Jiabin Yang 已提交
4113
        if _non_static_mode():
J
Jiabin Yang 已提交
4114 4115
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126
            op = Operator(
                self, None, type=type, inputs=None, outputs=None, attrs=attrs
            )

            _dygraph_tracer().trace_op(
                type,
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
            )
M
minqiyang 已提交
4127
        else:
4128
            op_desc = self.desc._prepend_op()
4129 4130 4131 4132 4133 4134 4135 4136
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None),
            )
M
minqiyang 已提交
4137
            self.ops.insert(0, op)
4138

Y
Yu Yang 已提交
4139 4140
        return op

W
Wu Yi 已提交
4141
    def _sync_with_cpp(self):
4142
        """
4143 4144
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
4145
        """
Q
Qiao Longfei 已提交
4146 4147 4148
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
4149 4150 4151 4152
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
4153 4154 4155 4156 4157 4158 4159 4160
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient,
                    )
4161
                else:
4162 4163 4164 4165 4166 4167
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient,
                    )
Q
Qiao Longfei 已提交
4168

4169
        # sync variables removed from c++ end
4170
        for var in list(self.vars.keys()):
4171
            if not self.desc.find_var(var.encode()):
4172 4173
                self.vars.pop(var)

Q
Qiao Longfei 已提交
4174
        # sync operators from cpp
4175 4176 4177 4178
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
4195 4196 4197 4198 4199

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
4200
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
4201 4202 4203 4204 4205 4206 4207

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

4208 4209 4210 4211 4212
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
4213 4214 4215 4216 4217 4218
                self.ops
            ) and ops_in_cpp_index < len(ops_in_cpp):
                if (
                    self.ops[ops_in_python_index].desc
                    != ops_in_cpp[ops_in_cpp_index]
                ):
4219 4220 4221 4222 4223
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
4224 4225 4226 4227
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
4228
    def _copy_param_info_from(self, other):
4229
        """
4230 4231
        Copy the information of parameters from the other block.

4232
        Args:
4233 4234 4235 4236 4237
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
4238 4239 4240 4241 4242

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
4243
            raise TypeError(
4244 4245
                "_copy_param_info_from should be invoked with Block"
            )
4246
        for p in other.iter_parameters():
4247 4248 4249
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
4250 4251
                # if the Parameter is pruned, v may be None
                continue
4252
            assert isinstance(v, Variable)
4253
            new_p = None
L
Leo Chen 已提交
4254
            if in_dygraph_mode():
4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266
                new_p = EagerParamBase(
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4267
            else:
J
Jiabin Yang 已提交
4268
                if _in_legacy_dygraph():
4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280
                    new_p = ParamBase(
                        shape=v.shape,
                        dtype=v.dtype,
                        type=v.type,
                        lod_level=v.lod_level,
                        stop_gradient=p.stop_gradient,
                        trainable=p.trainable,
                        optimize_attr=p.optimize_attr,
                        regularizer=p.regularizer,
                        error_clip=p.error_clip,
                        name=v.name,
                    )
J
Jiabin Yang 已提交
4281 4282 4283 4284 4285 4286 4287
                else:
                    new_p = Parameter(
                        block=self,
                        shape=v.shape,
                        dtype=v.dtype,
                        type=v.type,
                        lod_level=v.lod_level
4288 4289
                        if v.type == core.VarDesc.VarType.LOD_TENSOR
                        else None,
J
Jiabin Yang 已提交
4290 4291 4292 4293 4294
                        stop_gradient=p.stop_gradient,
                        trainable=p.trainable,
                        optimize_attr=p.optimize_attr,
                        regularizer=p.regularizer,
                        error_clip=p.error_clip,
4295 4296
                        name=v.name,
                    )
4297 4298
            self.vars[new_p.name] = new_p

4299
    def _clone_variable(self, var, force_persistable=True):
4300 4301
        """
        Clone a variable into current block.
4302

4303 4304
        Args:
            var: the variable to be cloned.
4305 4306 4307
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
4308 4309

        Returns:
4310
            Variable: the new  variable cloned from 'var' in current block.
4311 4312
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
4313 4314 4315
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
4316 4317 4318
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
tangwei12 已提交
4319
        elif var.type == core.VarDesc.VarType.RAW:
4320 4321 4322
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
typhoonzero 已提交
4323 4324 4325 4326 4327 4328
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
4329
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4330
                is_data=var.is_data,
4331 4332
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4333 4334 4335 4336 4337 4338 4339
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
4340
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4341
                is_data=var.is_data,
4342 4343
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4344
        return ret_var
4345

Y
Yu Yang 已提交
4346

4347 4348 4349 4350
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
4351
# of some old Python Variables(all old Python Operators) may have
4352
# been destructed.
4353 4354 4355
def _apply_pass(
    main_program, startup_program, pass_name, pass_attrs={}, pass_attr_types={}
):
4356 4357 4358 4359
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
4360 4361 4362 4363 4364 4365 4366
    attrs = core.apply_pass(
        tmp_main_program,
        tmp_startup_program,
        pass_name,
        pass_attrs,
        pass_attr_types,
    )
4367 4368 4369 4370 4371
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


4372
class IrNode:
4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4384 4385 4386
        assert isinstance(
            node, core.Node
        ), 'node must be the instance of core.Node.'
4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

4468
    def remove_input_by_id(self, node_id):
4469 4470 4471 4472 4473 4474
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4475
        self.node.remove_input(node_id)
4476

4477
    def remove_input(self, node):
4478 4479 4480 4481
        """
        Remove a node from inputs.

        Args:
4482
            node(IrNode): the node being removed.
4483
        """
4484
        self.node.remove_input(node.node)
4485

4486
    def append_input(self, node):
4487 4488 4489 4490
        """
        Append a node in inputs.

        Args:
4491
            node(IrNode): the node being appended.
4492
        """
4493
        self.node.append_input(node.node)
4494 4495 4496 4497 4498 4499 4500 4501

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

4502
    def remove_output_by_id(self, node_id):
4503 4504 4505 4506 4507 4508
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4509
        self.node.remove_output(node_id)
4510

4511
    def remove_output(self, node):
4512 4513 4514 4515
        """
        Remove a node from outputs.

        Args:
4516
            node(IrNode): the node being removed.
4517
        """
4518
        self.node.remove_output(node.node)
4519

4520
    def append_output(self, node):
4521 4522 4523 4524
        """
        Append a node in outputs.

        Args:
4525
            node(IrNode): the node being appended.
4526
        """
4527
        self.node.append_output(node.node)
4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4562 4563 4564
        assert (
            isinstance(node, core.Node) and node.is_var()
        ), 'node must be the instance of core.Node and it must be a variable node.'
4565
        super().__init__(node)
4566 4567 4568 4569 4570 4571 4572 4573 4574
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
4575 4576 4577
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4578 4579 4580 4581 4582 4583 4584 4585 4586
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
4587 4588 4589
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4590 4591
        return self.node.var().persistable()

4592 4593 4594 4595 4596 4597 4598
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
4599 4600 4601
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4602 4603 4604 4605 4606 4607 4608 4609 4610
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
4611 4612 4613
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4614 4615 4616 4617 4618 4619 4620 4621 4622
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
4623 4624 4625
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4626 4627
        return self.node.var().shape()

4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4661 4662 4663
        assert (
            isinstance(node, core.Node) and node.is_op()
        ), 'node must be the instance of core.Node and it must be a operator node.'
4664
        super().__init__(node)
4665 4666 4667 4668 4669 4670 4671 4672 4673 4674
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
4675 4676 4677
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4678 4679
        self.node.op()._rename_input(old_input_name, new_input_name)

4680 4681 4682 4683 4684 4685 4686 4687
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
4688 4689 4690
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4691 4692
        self.node.op()._rename_output(old_output_name, new_output_name)

4693 4694 4695 4696 4697 4698 4699 4700 4701 4702
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4703 4704 4705
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4718 4719 4720
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4721 4722 4723 4724 4725 4726 4727 4728 4729
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
4730 4731 4732
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4733 4734
        return self.node.op().set_type(new_type)

4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
4749 4750 4751
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4752
        desc = self.node.op()
4753 4754 4755 4756 4757
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
4758
            desc.set_block_attr(name, val.desc)
4759
        elif isinstance(val, list) and val and _all_is_type(val, Block):
4760
            desc.set_blocks_attr(name, [v.desc for v in val])
4761 4762 4763
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
4764 4765 4766 4767
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4768 4769 4770 4771 4772 4773 4774
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
4775 4776 4777
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4778 4779 4780 4781 4782 4783 4784 4785 4786
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
4787 4788 4789
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4790 4791
        return self.node.op().output_arg_names()

4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4813
class IrGraph:
4814
    """
4815
    Python IrGraph. Beneath it is a core.Graph, which is used for
4816
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4817 4818
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4819 4820 4821 4822
    """

    def __init__(self, graph, for_test=False):
        """
4823 4824
        Construct an IrGraph using core.Graph.

4825 4826 4827 4828 4829
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
4830 4831
            graph, core.Graph
        ), 'graph must be the instance of core.Graph.'
4832 4833 4834
        self.graph = graph
        self._for_test = for_test

4835 4836 4837 4838
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4839 4840 4841
        Warns:
            The method only clones the graph structure, not its attributes.

4842 4843 4844
        Returns:
            IrGraph: A new and duplicated graph.
        """
4845
        g = self.graph.clone()
4846 4847
        return IrGraph(g, self._for_test)

4848
    def is_test(self):
4849 4850 4851
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4852 4853
        return self._for_test

W
WangZhen 已提交
4854
    def all_nodes(self):
4855 4856 4857
        """
        Return all nodes included in the graph as a set.
        """
4858
        return {IrNode(node) for node in self.graph.nodes()}
4859

4860
    def all_var_nodes(self):
4861 4862 4863
        """
        Return all variable nodes included in the graph as a set.
        """
4864
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4865

4866
    def all_persistable_nodes(self):
4867 4868 4869
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4870 4871
        persistable_nodes = set()
        for node in self.graph.nodes():
4872 4873 4874 4875 4876
            if (
                node.is_var()
                and node.var() is not None
                and node.var().persistable()
            ):
W
WangZhen 已提交
4877
                persistable_nodes.add(node)
4878
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4879

4880
    def all_op_nodes(self):
4881 4882 4883
        """
        Return all operator nodes included in the graph as a set.
        """
4884
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4885

4886 4887 4888 4889 4890 4891
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
4892
            IrGraph(self.graph.get_sub_graph(i), for_test=for_test)
4893 4894 4895 4896 4897 4898 4899 4900 4901
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4902
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4914
            IrVarNode: the created persistable variable node.
4915
        """
4916 4917 4918 4919 4920
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4921
        return IrVarNode(self.graph.create_var_node(var_desc))
4922 4923

    def create_var_node(self, name, var_type, shape, var_dtype):
4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4935
            IrVarNode: the created variable node.
4936 4937
        """

4938 4939 4940 4941
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4942
        return IrVarNode(self.graph.create_var_node(var_desc))
4943

4944 4945 4946 4947 4948 4949
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4950
    def create_var_node_from_desc(self, var_desc):
4951 4952 4953 4954 4955 4956 4957 4958
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4959
            IrVarNode: the created variable node.
4960
        """
4961
        return IrVarNode(self.graph.create_var_node(var_desc))
4962 4963

    def create_op_node(self, op_type, attrs, inputs, outputs):
4964 4965 4966 4967 4968 4969 4970
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4971
            outputs(dict): the outputs of the operator node.
4972 4973

        Returns:
4974
            IrOpNode: the created operator node.
4975
        """
4976 4977
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4978
        for attr, value in attrs.items():
4979
            self._update_desc_attr(op_desc, attr, value)
4980
        for input_name, var_nodes in inputs.items():
4981 4982
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
4983 4984 4985
            op_desc.set_input(
                input_name, [var_node.name() for var_node in var_nodes]
            )
4986
        for output_name, var_nodes in outputs.items():
4987 4988
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
4989 4990 4991
            op_desc.set_output(
                output_name, [var_node.name() for var_node in var_nodes]
            )
4992
        return IrOpNode(self.graph.create_op_node(op_desc))
4993 4994

    def create_op_node_from_desc(self, op_desc):
4995 4996 4997 4998 4999 5000 5001
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
5002
            IrOpNode: the created operator node.
5003
        """
5004
        return IrOpNode(self.graph.create_op_node(op_desc))
5005 5006

    def update_input_link(self, old_input_node, new_input_node, op_node):
5007 5008 5009 5010
        """
        Update the input's link of a operator node.

        Args:
5011 5012 5013
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
5014
        """
5015 5016 5017 5018 5019
        assert (
            old_input_node.node in self.graph.nodes()
            and new_input_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
5020 5021 5022 5023
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
5024
        op_node.rename_input(old_input_node.name(), new_input_node.name())
5025

5026 5027 5028 5029 5030 5031 5032 5033 5034
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
5035 5036 5037 5038 5039
        assert (
            old_output_node.node in self.graph.nodes()
            and new_output_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
5040 5041 5042 5043 5044 5045
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

5046
    def link_to(self, node_in, node_out):
5047 5048 5049 5050
        """
        Connect two nodes.

        Args:
5051 5052
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
5053
        """
5054
        assert node_in.node in self.graph.nodes(), (
5055 5056
            'node_in(%s) must be in the graph nodes.' % node_in.node.name()
        )
5057
        assert node_out.node in self.graph.nodes(), (
5058 5059
            'node_out(%s) must be in the graph nodes.' % node_out.node.name()
        )
5060 5061
        node_in.append_output(node_out)
        node_out.append_input(node_in)
5062 5063

    def safe_remove_nodes(self, remove_nodes):
5064 5065 5066 5067 5068 5069 5070
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
5071
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
5072 5073 5074 5075
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
5076 5077
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
5078

Z
Zhen Wang 已提交
5079 5080 5081 5082 5083 5084 5085 5086
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5087
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
5088 5089 5090 5091
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5092
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
5093 5094 5095
                        ]
                    else:
                        var_nodes[each_var_name].append(
5096 5097
                            self._find_node_by_name(node.outputs, each_var_name)
                        )
Z
Zhen Wang 已提交
5098 5099
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
5100
    def has_circle(self):
5101 5102 5103 5104 5105 5106
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
5107 5108 5109
        return core.has_circle(self.graph)

    def graph_num(self):
5110 5111 5112 5113 5114 5115
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
5116 5117 5118
        return core.graph_num(self.graph)

    def topology_sort(self):
5119 5120 5121
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
5122
        Notes: the `graph` can not contain a circle.
5123 5124

        Returns:
Z
Zhen Wang 已提交
5125
            list(IrNode): nodes in topology order.
5126
        """
5127
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
5128
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
5129 5130

    def build_adjacency_list(self):
5131 5132 5133 5134
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
5135
            dict{IrNode: set(IrNode)}: the adjacency list.
5136
        """
5137 5138
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
5139
        for k, v in adj_list.items():
5140 5141
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
5142

5143 5144 5145 5146 5147 5148 5149 5150
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
5151
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
5152 5153 5154 5155 5156
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

5157 5158
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
5159 5160 5161 5162
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True,
            )
5163 5164
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
5165 5166 5167
                print(
                    'The {} is saved as the dot filetype.'.format(dot_file_path)
                )
5168

5169
        remove_ctr_vars = set()
5170
        if remove_ctr_var:
5171
            for node in self.all_var_nodes():
5172 5173 5174
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
5175 5176
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

5177 5178
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
5179 5180 5181 5182 5183 5184
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
5185 5186 5187 5188
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
5189 5190
        if not os.path.exists(save_path):
            os.makedirs(save_path)
5191 5192 5193 5194 5195 5196 5197
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
5198 5199 5200
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
5201
        WARN: When the graph includes backward operator nodes, the
5202 5203 5204 5205 5206 5207
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
5208
        convert_pass = core.get_pass('graph_to_program_pass')
5209 5210
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
5211 5212 5213 5214
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

5215 5216 5217 5218 5219 5220 5221 5222
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
5223
        assert target_node is not None, (
5224 5225
            "Cannot find the target node (%s)in the giving set." % node_name
        )
5226 5227
        return target_node

5228 5229 5230 5231
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
5232 5233 5234 5235 5236
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
5237
            desc.set_block_attr(name, val.desc)
5238
        elif isinstance(val, list) and val and _all_is_type(val, Block):
5239
            desc.set_blocks_attr(name, [v.desc for v in val])
5240 5241 5242
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
5243 5244 5245 5246 5247
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


5248
class Program:
D
dzhwinter 已提交
5249
    """
5250
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
5251
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
5252
    it will contain nested block.
5253

J
Jiabin Yang 已提交
5254 5255 5256
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
5257

J
Jiabin Yang 已提交
5258
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
5259
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
5260 5261 5262 5263 5264 5265 5266
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
5267
    **Notes**:
5268 5269 5270
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
5271 5272

    Returns:
J
Jiabin Yang 已提交
5273
        Program: An empty Program.
D
dzhwinter 已提交
5274 5275

    Examples:
5276 5277
        .. code-block:: python

5278 5279 5280 5281
            import paddle
            import paddle.static as static

            paddle.enable_static()
5282

5283 5284 5285 5286 5287
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
5288
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
5289 5290 5291

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
5292 5293 5294

    """

5295 5296
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
5297 5298
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
5299 5300
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
5301
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
5302
        self.__op_role_var = []
T
tangwei12 已提交
5303

5304 5305
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
5306
        self._is_distributed = False
5307
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
5308
        self._is_chief = False
5309 5310 5311
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
5312
        self._endpoints = []
5313 5314 5315
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
5316
        self._trainers_endpoints = []
5317
        # the distributed lookup table names
T
tangwei12 已提交
5318
        self._distributed_lookup_table = None
5319 5320 5321

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
5322 5323
        self._use_lamb = False

5324 5325 5326
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
5327

5328 5329 5330
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
5331
        self._program_config = None
5332

H
hutuxian 已提交
5333 5334 5335
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

5336 5337 5338
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

5339 5340 5341
        # appending gradients times
        self._appending_grad_times = 0

5342 5343
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
5344 5345
            "__auto_checkpoint_program__"
        )
5346

5347 5348
        # compiled program, i.e. Graph
        self._graph = None
5349 5350
        # to tag whether is startup_program
        self._is_start_up_program_ = False
5351

5352
    def _find_var_class_kwargs(self, new_desc):
5353 5354 5355 5356 5357 5358 5359 5360
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

5361 5362 5363 5364
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
5365
            if idx > (len(self.blocks) - 1):
5366
                self._create_block()
5367 5368 5369 5370 5371 5372 5373 5374 5375 5376
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
                    'shape': get_var_desc_attr_or_none(
                        new_var_desc,
                        "shape",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'dtype': get_var_desc_attr_or_none(
                        new_var_desc,
                        "dtype",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'lod_level': get_var_desc_attr_or_none(
                        new_var_desc,
                        "lod_level",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'error_clip': old_var.error_clip
                    if old_var is not None
                    else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None
                    else False,
                    'is_data': old_var.is_data
                    if old_var is not None
                    else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None
                    else False,
5418 5419 5420
                }

                if isinstance(old_var, Parameter):
5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437
                    kwargs.update(
                        {
                            'trainable': old_var.trainable,
                            'optimize_attr': old_var.optimize_attr,
                            'regularizer': old_var.regularizer,
                            'do_model_average': old_var.do_model_average,
                            'need_clip': old_var.need_clip,
                            'is_distributed': old_var.is_distributed,
                            'is_parameter': old_var.is_parameter,
                        }
                    )
                    block_new_vars.append(
                        {
                            'class': Parameter,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5438 5439
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
5440 5441 5442 5443 5444 5445
                    block_new_vars.append(
                        {
                            'class': Variable,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5446 5447 5448 5449 5450 5451 5452

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
5453
        assert block_num == self.desc.num_blocks()
5454 5455

        # clear old blocks and desc
5456 5457 5458 5459 5460 5461 5462 5463 5464
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
5465

5466
        del desc
5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

5486 5487 5488 5489 5490 5491 5492 5493 5494 5495
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

5496 5497
                import paddle
                import paddle.static as static
5498

5499 5500 5501
                paddle.enable_static()

                prog = static.default_main_program()
5502 5503 5504 5505 5506
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
5507
                prog1 = static.default_main_program()
5508 5509 5510 5511 5512 5513 5514 5515
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
5516
    @property
5517
    def _op_role(self):
Y
yuyang18 已提交
5518 5519 5520 5521 5522 5523 5524 5525
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
5526
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
5527 5528 5529 5530
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
5531 5532
        return self._current_role

5533 5534
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
5535 5536 5537
        self._current_role = role

    @property
5538
    def _op_role_var(self):
Y
yuyang18 已提交
5539
        """
5540
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
5541

5542
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
5543 5544 5545

        Notes: This is a very low-level API. Users should not use it directly.
        """
5546
        return self.__op_role_var
Y
yuyang18 已提交
5547

5548
    @signature_safe_contextmanager
5549 5550 5551 5552 5553
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
5554 5555 5556 5557
        try:
            yield
        finally:
            self._current_role = tmp_role
5558

S
rename  
sneaxiy 已提交
5559
    @signature_safe_contextmanager
W
Wu Yi 已提交
5560
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
5561 5562 5563 5564 5565 5566 5567
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
5568
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
5569 5570 5571

        Examples:

5572
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
5573
            >>> p, g = backward(...)
W
Wu Yi 已提交
5574
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
5575 5576
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
5577
        tmp_role = self._current_role
5578
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
5579

Y
yuyang18 已提交
5580 5581
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
5582
        self.__op_role_var = [
5583 5584 5585
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
5586 5587 5588 5589 5590
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
5591

S
rename  
sneaxiy 已提交
5592
    @signature_safe_contextmanager
X
Xin Pan 已提交
5593
    def _lr_schedule_guard(self, is_with_opt=False):
5594 5595 5596 5597 5598 5599 5600
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
5601 5602 5603 5604
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
5605 5606 5607

        Examples:

5608
            >>> import paddle.fluid as fluid
5609 5610 5611 5612
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
5613 5614

        tmp_role = self._current_role
5615
        tmp_var = self.__op_role_var
5616

5617 5618
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
5619 5620
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
5621
        # TODO(typhoonzero): how to set target learning rate var
5622
        self.__op_role_var = []
5623 5624 5625 5626 5627
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
5628

5629
    def __str__(self):
Y
yuyang18 已提交
5630 5631 5632 5633 5634 5635 5636 5637 5638
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5659 5660
            import paddle
            import paddle.static as static
5661

5662 5663 5664
            paddle.enable_static()

            cur_program = static.Program()
5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5676
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
5677 5678
            type(skip_op_callstack)
        )
5679 5680 5681
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5682
            program_str += '\n'
5683
        return program_str
Y
Yang Yang(Tony) 已提交
5684

F
fengjiayi 已提交
5685 5686 5687
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5688

J
Jiabin Yang 已提交
5689 5690 5691
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5692

J
Jiabin Yang 已提交
5693
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5694

H
haowang101779990 已提交
5695
        Returns:
J
Jiabin Yang 已提交
5696
            str: The debug string describe current Program.
Y
yuyang18 已提交
5697 5698

        Raises:
J
Jiabin Yang 已提交
5699
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5700

5701 5702 5703
        Examples:
            .. code-block:: python

5704 5705 5706 5707
                import paddle
                import paddle.static as static

                paddle.enable_static()
5708

5709 5710 5711
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5712
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5713
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5714
                print("program string without detail: {}".format(prog_string))
5715
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5716
        """
5717 5718 5719
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
5720 5721
            type(throw_on_error)
        )
5722 5723 5724
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
5725 5726
            type(with_details)
        )
5727

F
fengjiayi 已提交
5728 5729 5730 5731 5732 5733
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
5734
            proto = framework_pb2.ProgramDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
5735 5736
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5737

W
Wu Yi 已提交
5738
    def _get_desc(self):
Y
yuyang18 已提交
5739 5740 5741 5742 5743 5744 5745
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5746 5747
        return self.desc

X
version  
Xin Pan 已提交
5748 5749 5750
    def _version(self):
        return self.desc._version()

5751
    def clone(self, for_test=False):
Y
yuyang18 已提交
5752
        """
5753
        .. note:::
5754 5755
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` .
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` .
5756
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5757

5758
        Create a new Program with forward content of original one when ``for_test=True``.
5759
        Create a new Program as same as the original one when ``for_test=False``.
5760

5761
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5762 5763 5764
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5765

5766 5767
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5768 5769
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
5770
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
5771

J
Jiabin Yang 已提交
5772
        For Example:
5773
          ::
L
Luo Tao 已提交
5774

5775 5776 5777 5778 5779 5780
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
5781
            pred = static.nn.fc(x=img, size=10, actvation='relu')
5782
            loss = paddle.mean(pred)
5783
            # Here we use clone before Momentum
5784 5785
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
5786
            optimizer.minimize(loss)
5787

J
Jiabin Yang 已提交
5788
        Args:
5789

5790 5791
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
5792

J
Jiabin Yang 已提交
5793
        Returns:
5794
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
5795

Y
yuyang18 已提交
5796 5797 5798

        Examples:

5799 5800 5801 5802 5803 5804 5805
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5806 5807
            .. code-block:: python

5808
                import paddle
5809 5810

                def print_prog(prog):
5811
                    for name, value in sorted(prog.block(0).vars.items()):
5812 5813 5814 5815 5816
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
5817
                        for key, value in sorted(op.all_attrs().items()):
5818 5819 5820 5821
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5822
            1. To clone a test program, the sample code is:
5823 5824
                .. code-block:: python

5825 5826 5827 5828 5829 5830
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5831 5832

                    def print_prog(prog):
5833
                        for name, value in sorted(prog.block(0).vars.items()):
5834 5835 5836 5837 5838
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
5839
                            for key, value in sorted(op.all_attrs().items()):
5840 5841 5842
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5843 5844
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5845 5846 5847

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5848 5849 5850
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5851
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5852 5853
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5854
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5855 5856
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5857
                            test_program = train_program.clone(for_test=True)
5858
                    print_prog(test_program)
J
Jiabin Yang 已提交
5859 5860 5861 5862

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5863
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5864 5865 5866 5867
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5868 5869 5870
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5871 5872 5873
                            sgd.minimize(avg_loss)


5874
            2. The clone method can be avoid if you create program for training and program for testing individually.
5875 5876
                .. code-block:: python

5877 5878 5879 5880 5881 5882
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5883 5884

                    def print_prog(prog):
5885
                        for name, value in sorted(prog.block(0).vars.items()):
5886 5887 5888 5889 5890
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
5891
                            for key, value in sorted(op.all_attrs().items()):
5892 5893
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5894

5895
                    def network():
5896
                        img = static.data(name='image', shape=[None, 784])
5897
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5898 5899
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5900
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5901 5902
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5903 5904
                        return avg_loss

5905 5906 5907 5908 5909
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5910
                            avg_loss = network()
5911
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5912
                            sgd.minimize(avg_loss)
5913
                    # the test startup program is not used.
5914 5915
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5916 5917
                            avg_loss = network()
                    print_prog(test_program_2)
5918

5919
            The two code snippets above will generate and print same programs.
5920
        """
5921

T
tangwei12 已提交
5922
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5923 5924 5925
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5926
        pruned_origin_block_id_map = None
5927
        if for_test:
5928 5929
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
5930 5931
                self.desc
            )
5932 5933
            forward_prog.blocks = [
                Block(forward_prog, i)
5934
                for i in range(forward_prog.desc.num_blocks())
5935 5936 5937
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5938
        else:
5939
            p = Program()
G
gongweibao 已提交
5940 5941
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5942
            p.desc = core.ProgramDesc(self.desc)
5943
            p.blocks = [Block(p, i) for i in range(self.desc.num_blocks())]
G
gongweibao 已提交
5944 5945

            p._current_role = self._current_role
5946
            p.__op_role_var = self.__op_role_var
5947
            p._appending_grad_times = self._appending_grad_times
5948 5949
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
5950

T
tangwei12 已提交
5951
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5952
            # its desc.
W
Wu Yi 已提交
5953
            p._sync_with_cpp()
5954

W
Wu Yi 已提交
5955
        p._copy_param_info_from(self)
5956
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5957
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5958
        return p
5959

5960
    def _prune(self, targets):
Y
yuyang18 已提交
5961 5962 5963 5964 5965 5966 5967 5968
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5969
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5970 5971 5972 5973
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5974
        """
5975
        return self._prune_with_input([], targets)
5976 5977

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5978
        """
5979
        Prune operators and variables which are not needed to generate
5980 5981
        :code:`targets`. Prune operators and variables which are needed
        to generate feeded_var
5982 5983 5984 5985 5986 5987 5988

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5989
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5990 5991 5992 5993 5994 5995
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5996
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5997 5998 5999
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

6000 6001
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
6002 6003
        if not isinstance(targets, list):
            targets = [targets]
6004 6005

        for var in feeded_var_names:
6006
            if not isinstance(var, str):
6007 6008
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
6009 6010
                    "str, but received %s." % type(var)
                )
6011

6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

6028 6029 6030 6031
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
6032
                    name = t.name
6033
                elif isinstance(t, str):
6034
                    name = str(t)
6035
                else:
6036 6037
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
6038 6039
                        "Variable or Operator, but received %s." % type(t)
                    )
6040 6041 6042 6043 6044 6045

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
6046 6047 6048
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
6049

6050 6051 6052 6053 6054 6055 6056 6057 6058
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
6059
                        # Skip optimize op except for optimize op in targets,
6060 6061 6062 6063 6064
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
6065

6066
                if target_op is not None:
6067 6068 6069
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
6070

6071
        res = Program()
6072
        res.desc, pruned_origin_block_id_map = core.prune(
6073 6074
            self.desc, set(feeded_var_names), targets_idx
        )
6075
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6076
        res._sync_with_cpp()
6077 6078 6079 6080 6081

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

6082 6083
        return res

X
Xin Pan 已提交
6084
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
6085
        """
F
fengjiayi 已提交
6086 6087 6088 6089 6090
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

6091
        3. change the :code:`is_test`
Y
yuyang18 已提交
6092 6093 6094
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

6095
        Args:
X
Xin Pan 已提交
6096 6097
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
6098

Y
yuyang18 已提交
6099 6100 6101 6102 6103 6104
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
6105
        res = Program()
6106
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
6107 6108 6109 6110

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
6111
        if prune_read_op:
6112
            while True:
6113 6114 6115 6116
                if (
                    read_op_idx >= root_block.op_size()
                    or root_block.op(read_op_idx).type() == 'read'
                ):
6117 6118 6119 6120 6121 6122
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
6123
                    root_block._remove_var(var.name().encode())
F
fengjiayi 已提交
6124 6125

        # change all `is_test` attributes to True
6126
        for i in range(res.desc.num_blocks()):
6127
            block = res.desc.block(i)
6128
            for j in range(block.op_size()):
6129 6130
                op = block.op(j)
                if op.has_attr('is_test'):
6131
                    op._set_bool_attr('is_test', True)
6132 6133 6134
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
6135
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6136
        res._sync_with_cpp()
6137 6138
        return res

6139
    def _remove_training_info(self, clip_extra=True):
6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

6154
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
6155 6156
        res._sync_with_cpp()

6157 6158
        # Note: The op_role and op_role_var cann't be deleted currently,
        # and we will try to remove them in the future.
6159
        common_clipped_attrs_list = ['op_callstack', 'with_quant_attr']
6160

6161
        for i in range(res.desc.num_blocks()):
6162 6163 6164 6165
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
6166 6167
            if not clip_extra:
                continue
6168 6169 6170 6171
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
6172 6173 6174

                extra_attrs_map = core.get_op_extra_attrs(op.type())

6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
6188 6189 6190
                # The extra input of op will be removed in the future
                # for name in remove_input_list:
                #     op.remove_input(name)
6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
6204
                # The extra output of op will be removed in the future
6205 6206
                for name in remove_output_list:
                    op.remove_output(name)
6207

6208 6209 6210 6211 6212 6213 6214
                op_quant_name = (
                    core.op_proto_and_checker_maker.kOpWithQuantAttrName()
                )
                quant = (
                    bool(op.attr(op_quant_name))
                    if op_quant_name in op.attr_names()
                    else False
6215 6216
                )
                quant_attrs = [
6217 6218 6219 6220 6221 6222 6223
                    op_quant_name,
                    "quantization_type",
                    "skip_quant",
                    "activation_bits",
                    "bit_length",
                    "quantize_weight_bits",
                    "weight_quant_scale",
6224
                ]
6225 6226
                for extra_attr_name in extra_attrs_map.keys():
                    op.remove_attr(extra_attr_name)
6227
                remove_attr_list = []
6228 6229 6230 6231 6232 6233
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
6234
                    if len(extra_attrs_map) > 0:
6235
                        if name in common_clipped_attrs_list:
6236
                            op.remove_attr(name)
6237
                        continue
6238 6239 6240 6241 6242 6243 6244 6245 6246 6247
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
6248 6249
        return res

6250 6251
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
6252
        """
6253
        .. note::
6254
            1. All information about parameters will be lost after serialization;
6255
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6256

6257 6258
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
6259

J
Jiabin Yang 已提交
6260
        Args:
Y
yuyang18 已提交
6261

J
Jiabin Yang 已提交
6262
            binary_str_type (str): the binary prootbuf string.
6263

J
Jiabin Yang 已提交
6264 6265
        Returns:
            Program: A deserialized Program.
6266 6267 6268 6269

        Examples:
            .. code-block:: python

6270 6271 6272 6273
                import paddle
                import paddle.static as static

                paddle.enable_static()
6274

6275 6276 6277 6278
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
6279

6280
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
6281

6282
                    z = paddle.matmul(x=x, y=y)
6283

6284 6285
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
6286

6287
                    print(static.default_main_program())
6288
                    print(prog_restored)
Y
yuyang18 已提交
6289
        """
6290 6291
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
6292
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
W
Wu Yi 已提交
6293
        p._sync_with_cpp()
6294
        return p
Y
Yu Yang 已提交
6295

6296
    @staticmethod
6297
    def _construct_from_desc(desc):
6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
6309
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
6310 6311 6312
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
6313 6314
    @property
    def random_seed(self):
Y
yuyang18 已提交
6315
        """
J
Jiabin Yang 已提交
6316
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
6317 6318
        the random seed from random device.

6319
        .. note::
6320
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
6321 6322 6323

        Returns:
            int64: Random seed in current Program
6324

6325 6326 6327 6328

        Examples:
            .. code-block:: python

6329 6330 6331
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
6332

6333 6334 6335
                paddle.enable_static()

                prog = static.default_main_program()
6336
                random_seed = prog.random_seed
6337
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
6338 6339 6340
                print(random_seed)
                ## 0
                ## the default random seed is 0
6341

6342
                # Here we need to set random seed before we use paddle.nn.functional.dropout
6343
                prog.random_seed = 1
6344
                z_var = F.dropout(x_var, 0.7)
6345

6346
                print(prog.random_seed)
6347 6348
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
6349
        """
D
dzhwinter 已提交
6350 6351
        return self._seed

Q
qiaolongfei 已提交
6352 6353
    @property
    def num_blocks(self):
Y
yuyang18 已提交
6354
        """
6355 6356
        The number of :ref:`api_guide_Block_en`  in this Program.

6357
        .. note::
6358
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
6359 6360 6361

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
6362

6363 6364 6365 6366

        Examples:
            .. code-block:: python

6367 6368 6369 6370
                import paddle
                import paddle.static as static

                paddle.enable_static()
6371

6372
                prog = static.default_main_program()
6373 6374
                num_blocks = prog.num_blocks
                print(num_blocks)
6375

6376 6377
                # print result:
                # 1
Y
yuyang18 已提交
6378
        """
Q
qiaolongfei 已提交
6379 6380
        return self.desc.num_blocks()

D
dzhwinter 已提交
6381 6382 6383
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
6384 6385
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
6386 6387
                % type(seed)
            )
D
dzhwinter 已提交
6388 6389
        self._seed = seed

Y
Yu Yang 已提交
6390
    def __repr__(self):
6391
        return self.__str__()
6392

Y
Yu Yang 已提交
6393
    def global_block(self):
Y
yuyang18 已提交
6394
        """
6395 6396
        .. note::
            This API has no effect in Dygraph mode.
6397 6398 6399

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
6400 6401
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
6402

6403 6404 6405 6406

        Examples:
            .. code-block:: python

6407 6408 6409 6410
                import paddle
                import paddle.static as static

                paddle.enable_static()
6411

6412
                prog = static.default_main_program()
6413 6414
                gb_block = prog.global_block()
                print(gb_block)
6415

Y
yuyang18 已提交
6416
        """
Y
Yu Yang 已提交
6417 6418
        return self.blocks[0]

Q
Qiao Longfei 已提交
6419
    def block(self, index):
Y
yuyang18 已提交
6420
        """
6421 6422
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6423

6424 6425
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
6426 6427
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
6428

J
Jiabin Yang 已提交
6429 6430
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
6431 6432 6433 6434

        Examples:
            .. code-block:: python

6435 6436 6437 6438
                import paddle
                import paddle.static as static

                paddle.enable_static()
6439

6440
                prog = static.default_main_program()
6441 6442
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
6443
        """
Q
Qiao Longfei 已提交
6444 6445
        return self.blocks[index]

Y
Yu Yang 已提交
6446
    def current_block(self):
Y
yuyang18 已提交
6447
        """
6448 6449
        .. note::
            This API has no effect in Dygraph mode.
6450

J
Jiabin Yang 已提交
6451 6452
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
6453

J
Jiabin Yang 已提交
6454 6455
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
6456

6457 6458 6459
        Examples:
            .. code-block:: python

6460 6461 6462 6463
                import paddle
                import paddle.static as static

                paddle.enable_static()
6464

6465
                prog = static.default_main_program()
6466 6467
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
6468
        """
Y
Yu Yang 已提交
6469 6470
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
6471
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
6472 6473 6474 6475 6476
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
6477

Y
yuyang18 已提交
6478 6479 6480 6481 6482
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
6483
        new_block_idx = len(self.blocks)
6484 6485 6486 6487 6488
        parent = (
            self.current_block()
            if parent_idx is None
            else self.block(parent_idx)
        )
F
update  
fengjiayi 已提交
6489
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
6490 6491 6492 6493
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
6494
    def _rollback(self):
Y
yuyang18 已提交
6495 6496 6497 6498 6499
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
6500 6501
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
6502
    def _sync_with_cpp(self):
Y
yuyang18 已提交
6503 6504 6505 6506 6507 6508 6509 6510 6511 6512
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
6513 6514 6515
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
6516
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
6517

W
Wu Yi 已提交
6518
    def _copy_param_info_from(self, other):
6519
        """
6520
        Copy the information of parameters from other program.
D
dzhwinter 已提交
6521

Y
yuyang18 已提交
6522 6523 6524
        Notes: This is a very low level API. Users should not invoke it
        directly.

6525 6526 6527 6528 6529 6530 6531
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6532 6533
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6534 6535
                % type(other)
            )
6536

W
Wu Yi 已提交
6537
        self.global_block()._copy_param_info_from(other.global_block())
6538

6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6550 6551
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6552 6553
                % type(other)
            )
6554 6555
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
6556
        self._parameters_on_pservers = other._parameters_on_pservers
6557
        self._endpoints = other._endpoints
6558
        self._ps_endpoint = other._ps_endpoint
6559 6560
        self._distributed_lookup_table = other._distributed_lookup_table

6561
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
6562 6563
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
6564

Y
yuyang18 已提交
6565 6566 6567
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
6568 6569
        Args:
            other(Program): Other program
6570
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
6571 6572
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is
            cloned from block 0 in other, etc. Default is None, which means default mapped,
6573
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
6574 6575 6576 6577 6578

        Returns:
            None
        """
        if not isinstance(other, Program):
6579 6580
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6581 6582
                % type(other)
            )
F
fengjiayi 已提交
6583

6584 6585
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
6586
                i: i for i in range(self.desc.num_blocks())
6587
            }
6588 6589 6590

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
6591 6592
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
6593
            for var in list(block.vars.values()):
6594 6595 6596 6597 6598 6599 6600
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
6601

6602
    def list_vars(self):
Y
yuyang18 已提交
6603
        """
6604
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
6605

J
Jiabin Yang 已提交
6606
        Returns:
6607
            iterable Tensors: The Generator will yield every Tensor in this program.
6608 6609 6610 6611

        Examples:
            .. code-block:: python

6612 6613
                import paddle
                import paddle.static as static
6614

6615 6616 6617 6618 6619
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
6620 6621
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
6622

6623 6624
                # var img : LOD_TENSOR.shape(-1, 1, 28, 28).dtype(float32).stop_gradient(True)
                # var label : LOD_TENSOR.shape(-1, 1).dtype(int64).stop_gradient(True)
Y
yuyang18 已提交
6625
        """
6626
        for each_block in self.blocks:
6627
            for each_var in list(each_block.vars.values()):
6628 6629
                yield each_var

6630 6631 6632 6633 6634 6635 6636 6637 6638 6639
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

6640 6641 6642 6643
                import paddle
                import paddle.static as static

                paddle.enable_static()
6644

6645 6646
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
6647
                hidden = static.nn.fc(x=data, size=10)
6648 6649
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
6650 6651 6652 6653 6654 6655 6656

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
6657 6658
                # persist trainable param fc_0.w_0 : LOD_TENSOR.shape(13, 10).dtype(float32).stop_gradient(False)
                # persist trainable param fc_0.b_0 : LOD_TENSOR.shape(10,).dtype(float32).stop_gradient(False)
6659 6660 6661 6662 6663 6664 6665 6666 6667 6668
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

6669 6670 6671 6672 6673 6674 6675 6676 6677
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
6678 6679 6680
            mode(str, optional): Source of the obtained parameters and buffers.
                    'opt' :  The return value only contains the variable in the optimizer.
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.
6681 6682
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
6683
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
6711
        # can not be imported at the begainning of this file.
6712 6713
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
6714

6715 6716
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
6717 6718 6719 6720
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".format(
                    type(scope)
                )
            )
6721 6722 6723 6724 6725

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
6726 6727
            raise TypeError(
                "Type of `mode` should be string, but received {}.".format(
6728 6729 6730
                    type(mode)
                )
            )
6731 6732 6733 6734 6735

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
6736 6737 6738 6739 6740
            if (
                var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH
                or var.desc.type() == core.VarDesc.VarType.FETCH_LIST
                or var.desc.type() == core.VarDesc.VarType.READER
            ):
6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
6759 6760 6761 6762
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".format(
                        mode
                    )
                )
6763 6764 6765 6766 6767 6768 6769 6770

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
6771 6772 6773 6774
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".format(
                        var.name
                    )
                )
6775 6776 6777 6778 6779 6780
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
6781
        Set parameters and persistable buffers in state_dict to program.
6782
        An exception will throw if shape or dtype of the parameters is not match.
6783

6784 6785 6786 6787
        .. note::
            This function MUST called after run start_up_program

        Args:
6788
            state_dict(dict): the dict store parameters and persistable buffers.
6789 6790
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
6791
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6792 6793
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
6794

6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
6824 6825 6826
                    type(state_dict)
                )
            )
6827 6828

        vars_dict = {var.name: var for var in self.list_vars()}
6829 6830 6831
        condition = (
            True if 'StructuredToParameterName@@' in state_dict else False
        )
6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
6843 6844
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
6845 6846
                except TypeError as err:
                    warnings.warn(
6847 6848
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
6849
            else:
6850
                warnings.warn(
6851 6852 6853 6854 6855 6856
                    (
                        "Skip loading for '{0}'. Because '{0}' not in the program.".format(
                            name
                        )
                    )
                )
6857

Y
Yu Yang 已提交
6858

6859
class Parameter(Variable, metaclass=ParameterMetaClass):
6860
    """
6861
    Parameter is derived from Variable. A parameter is a persistable
6862
    Variable, and will be updated by optimizers after each iteration.
6863
    The training of a neural network is essentially the updating of
6864 6865
    its parameters.

6866
    Relative to a general Variable, a Parameter has several its own
6867 6868
    member variables:

6869 6870 6871 6872 6873 6874 6875 6876 6877 6878
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
6879
        need_clip (bool): Whether the parameter gradient need to be cliped
6880
            in optimizer. Default is True.
6881 6882
    """

6883 6884 6885 6886 6887 6888 6889 6890
    def __init__(
        self,
        block,
        shape,
        dtype,
        type=core.VarDesc.VarType.LOD_TENSOR,
        **kwargs
    ):
6891 6892 6893 6894 6895
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6896 6897
        for each in shape:
            if each < 0:
6898 6899
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911
                    % list(shape)
                )

        Variable.__init__(
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
            **kwargs
        )
Y
Yu Yang 已提交
6912 6913 6914 6915
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6916 6917
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6918
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6919

6920 6921
        self.need_clip = kwargs.get('need_clip', True)

6922 6923
        self.is_distributed = False

6924 6925
        self.is_parameter = True

F
fengjiayi 已提交
6926
    def __str__(self):
6927
        return self._to_readable_code()
F
fengjiayi 已提交
6928

F
update  
fengjiayi 已提交
6929 6930 6931
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6932

F
update  
fengjiayi 已提交
6933 6934 6935 6936 6937 6938 6939 6940
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6941 6942 6943 6944 6945 6946 6947 6948 6949
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6950
        """
6951
        assert isinstance(throw_on_error, bool) and isinstance(
6952 6953
            with_details, bool
        )
F
update  
fengjiayi 已提交
6954 6955
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
6956 6957 6958 6959 6960 6961 6962
            additional_attr = (
                "trainable",
                "optimize_attr",
                "regularizer",
                "do_model_average",
                "need_clip",
            )
F
update  
fengjiayi 已提交
6963
            for attr_name in additional_attr:
6964
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
F
update  
fengjiayi 已提交
6965 6966
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6967 6968 6969 6970
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6971

6972 6973
class ParamBase(core.VarBase):
    """
6974 6975
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode).
    A ParamBase is a persistable Tensor, and will be updated by optimizers
6976
    after each iteration.
6977 6978 6979
    The training of a neural network is essentially the updating of
    its ParamBase.

6980
    Relative to a general Tensor, a ParamBase has several its own
6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
6993
        need_clip (bool): Whether the parameter gradient need to be cliped
6994
            in optimizer. Default is True.
6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
7008 7009
                    % list(shape)
                )
7010 7011 7012 7013 7014 7015 7016

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

7017
        super().__init__(
7018 7019 7020 7021 7022 7023
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            core.VarDesc.VarType.LOD_TENSOR,
            True,
        )
7024

7025 7026
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
7027 7028 7029 7030 7031 7032 7033

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

7034 7035
        self.need_clip = kwargs.get('need_clip', True)

7036
        self.is_distributed = kwargs.get('is_distributed', False)
7037
        # self.block = default_main_program().global_block()
7038

7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
7050 7051
                type(trainable),
            )
7052

7053
    def __str__(self):
7054
        """
7055
        Convert a ParamBase object to a readable string.
7056

7057
        Returns(str): A readable string.
7058 7059 7060 7061

        Examples:
            .. code-block:: python

7062
                import paddle
7063 7064 7065 7066 7067 7068 7069
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
7070
        """
7071
        return "Parameter containing:\n{tensor}".format(
7072
            tensor=super().__str__()
7073
        )
7074

7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
7086

7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

7105 7106 7107 7108
    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
7109 7110 7111 7112 7113 7114
        return new_param

    __repr__ = __str__


if hasattr(core, "eager"):
7115
    _core_eager_eagertensor = core.eager.Tensor
7116 7117 7118 7119 7120 7121
else:
    _core_eager_eagertensor = object


class EagerParamBase(_core_eager_eagertensor):
    """
7122 7123
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode).
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers
7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
7141
        need_clip (bool): Whether the parameter gradient need to be cliped
7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
7156 7157
                    % list(shape)
                )
7158 7159 7160 7161 7162 7163 7164

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

7165 7166 7167
        if isinstance(shape, core.eager.Tensor):
            shape = shape.numpy()

7168
        super().__init__(
7169 7170 7171 7172 7173 7174
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            core.VarDesc.VarType.LOD_TENSOR,
            True,
        )
7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
7189 7190 7191
        # hook functions for lazy initialization
        self._init_func = None
        self._init_op_creator = None
7192 7193

    def set_init_func(self, obj):
7194
        self._init_func = obj
7195 7196 7197

    @dygraph_only
    def initialize(self):
7198 7199 7200
        assert (
            self._init_func is not None
        ), "Required self._init_func is not None, but received None."
7201
        self._init_func()
7202
        # clear function handle to release resource
7203
        self._init_func = None
7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
7216 7217
                type(trainable),
            )
7218

7219 7220 7221 7222
    def _create_init_op(self, block):
        """
        Call init_op_creator function to create initializer operation in block.
        """
7223 7224 7225
        assert (
            self._init_op_creator is not None
        ), "Required self._init_op_creator is not None, but received None."
7226 7227
        self._init_op_creator(block)

7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246
    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
7247
            tensor=super().__str__()
7248
        )
7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
7284 7285
        return new_param

7286 7287 7288
    __repr__ = __str__


Y
Yu Yang 已提交
7289
# program is a global instance.
Y
Yu Yang 已提交
7290 7291
_main_program_ = Program()
_startup_program_ = Program()
7292
_startup_program_._is_start_up_program_ = True
7293

7294

7295
def default_startup_program():
Y
Yu Yang 已提交
7296
    """
Y
yuyang18 已提交
7297 7298
    Get default/global startup program.

7299
    The :code:`paddle.nn` function will append the initialization operators into startup program.
7300
    The :code:`startup_program` will initialize the parameters by the OPs.
T
tangwei12 已提交
7301

7302 7303
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
7304

7305 7306
    Returns:
        Program: current default startup program.
7307

7308
    Returns type:
7309 7310 7311 7312

    Examples:
        .. code-block:: python

7313
            import paddle
7314

7315
            paddle.enable_static()
7316 7317 7318 7319
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
7320
    """
Y
Yu Yang 已提交
7321
    return _startup_program_
7322

7323

7324
def default_main_program():
Y
Yu Yang 已提交
7325
    """
7326
    This API can be used to get ``default main program`` which store the
7327
    descriptions of Ops and tensors.
T
tangwei12 已提交
7328

7329 7330
    For example ``z = paddle.add(x, y)`` will create a new ``add``
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` .
Y
yuyang18 已提交
7331

7332
    The ``default main program`` is the default value for ``Program`` parameter in
7333
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
7334
    :code:`default_main_program` when the program is not specified.
7335

7336
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
7337

Y
Yu Yang 已提交
7338
    Returns:
7339
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
7340 7341 7342 7343

    Examples:
        ..  code-block:: python

7344
            import paddle
7345

7346
            paddle.enable_static()
7347
            # Sample Network:
7348 7349 7350
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
7351

7352 7353 7354
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
7355
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
7356
    """
Y
Yu Yang 已提交
7357
    return _main_program_
Y
Yu Yang 已提交
7358 7359 7360 7361 7362


def switch_main_program(program):
    """
    Switch the main program to a new program.
7363

Y
Yu Yang 已提交
7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
7378
    Switch the startup program to a new program
Y
Yu Yang 已提交
7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
7391
@signature_safe_contextmanager
Y
Yu Yang 已提交
7392 7393
def program_guard(main_program, startup_program=None):
    """
7394 7395
    :api_attr: Static Graph

7396 7397 7398
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
7399

G
guofei 已提交
7400
    Args:
7401
        main_program(Program): New main program inside ``with`` statement.
7402 7403
        startup_program(Program, optional): New startup program inside ``with``
            statement. :code:`None` means not changing startup program,
G
guofei 已提交
7404 7405 7406
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
7407
    Examples:
7408
       .. code-block:: python
T
tangwei12 已提交
7409

7410
          import paddle
Y
yuyang18 已提交
7411

7412 7413 7414 7415 7416
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
7417
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
7418 7419 7420

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
7421

Y
Yu Yang 已提交
7422
    Examples:
7423
       .. code-block:: python
Y
yuyang18 已提交
7424

7425
          import paddle
7426

7427 7428 7429 7430 7431
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
7432

Y
Yu Yang 已提交
7433
    """
7434
    from .data_feeder import check_type
7435 7436 7437 7438

    check_type(
        main_program, 'main_program', Program, 'paddle.static.program_guard'
    )
Y
Yu Yang 已提交
7439 7440
    main_program = switch_main_program(main_program)
    if startup_program is not None:
7441 7442 7443 7444 7445 7446
        check_type(
            startup_program,
            'startup_program',
            Program,
            'paddle.static.program_guard',
        )
7447 7448
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
7449
        startup_program = switch_startup_program(startup_program)
7450 7451 7452 7453 7454 7455
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
7456 7457


W
Wu Yi 已提交
7458
def _get_var(name, program=None):
X
xuwei06 已提交
7459
    """
Y
yuyang18 已提交
7460
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
7461

X
xuwei06 已提交
7462 7463 7464
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
7465
        If None, default_global_program() will be used.
X
xuwei06 已提交
7466 7467 7468 7469 7470 7471 7472

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
7473
    assert isinstance(program, Program)
X
xuwei06 已提交
7474 7475

    return program.global_block().var(name)
7476 7477


S
rename  
sneaxiy 已提交
7478
@signature_safe_contextmanager
L
lujun 已提交
7479 7480
def _dygraph_guard(tracer):
    global _dygraph_tracer_
7481
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
7482
    _dygraph_tracer_ = tracer
7483
    core._switch_tracer(tracer)
M
minqiyang 已提交
7484

7485 7486 7487
    try:
        yield
    finally:
7488 7489
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
7490 7491


S
rename  
sneaxiy 已提交
7492
@signature_safe_contextmanager
L
lujun 已提交
7493
def _dygraph_place_guard(place):
7494 7495 7496
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
7497 7498
    _set_dygraph_tracer_expected_place(place)

7499 7500 7501
    try:
        yield
    finally:
7502
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
7503
        _set_dygraph_tracer_expected_place(_global_expected_place_)
7504 7505


7506 7507 7508 7509 7510 7511 7512 7513 7514 7515
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
7516

7517 7518
    Note:
        The API only supports static mode.
7519 7520 7521 7522

    A context manager that specifies the device on which the OP will be placed.

    Args:
7523
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
7524
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs.
7525 7526 7527 7528 7529 7530 7531
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
7532

7533
        .. code-block:: python
7534

7535
            # required: gpu
Z
Zhang Ting 已提交
7536
            import paddle
7537

Z
Zhang Ting 已提交
7538 7539 7540
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
7541
            if support_gpu:
Z
Zhang Ting 已提交
7542
                place = paddle.CUDAPlace(0)
7543 7544

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
7545 7546 7547
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
7548

Z
Zhang Ting 已提交
7549
            with paddle.static.device_guard("cpu"):
7550
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
7551 7552
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
7553
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
7554
                out = paddle.reshape(data1, shape=shape)
7555

Z
Zhang Ting 已提交
7556 7557
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
7558 7559 7560
            result = exe.run(fetch_list=[out])
    """

7561 7562 7563 7564 7565
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
7566
    if device not in ['cpu', 'gpu', 'npu', 'xpu', 'mlu', '', None]:
7567
        raise ValueError(
7568
            "The Attr(device) should be 'cpu' 'npu' 'xpu' 'mlu' or 'gpu', and it can also be empty string or None "
7569 7570
            "when there is no need to specify device. But received %s" % device
        )
7571 7572
    if index:
        device = ":".join([device, index])
7573
    pre_device = switch_device(device)
7574 7575 7576 7577
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
7578 7579


7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599
def _switch_cuda_graph_mode(cuda_graph_attr):
    global _current_cuda_graph_mode
    pre_mode = _current_cuda_graph_mode
    _current_cuda_graph_mode = cuda_graph_attr
    return pre_mode


@signature_safe_contextmanager
def _cuda_graph_guard(cuda_graph_attr=None):
    """

    Note:
        The API only supports static mode.

    A context manager that specifies the cuda_graph_mode which indicating the cuda graph capture under static mode.

    Args:
        cuda_graph_attr(str|None): The cuda graph attr with the format of:
                                   cuda_graph_capture_mode;memory_pool_id;cuda_graph_id
    """
7600 7601
    assert (
        not _non_static_mode()
7602
    ), "cuda_graph_guard only works under static mode"
7603 7604
    assert (
        core.is_compiled_with_cuda()
7605 7606 7607 7608 7609 7610 7611 7612
    ), "cuda_graph_guard context can be only used when Paddle is compiled with cuda"
    pre_mode = _switch_cuda_graph_mode(cuda_graph_attr)
    try:
        yield
    finally:
        _switch_cuda_graph_mode(pre_mode)


G
guofei 已提交
7613 7614 7615
def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
7616
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7617 7618 7619 7620 7621 7622 7623

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

7624 7625
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
7626 7627 7628 7629
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
7630 7631
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
7632 7633
        else:
            raise ValueError(
7634 7635
                "Flag %s cannot set its value through this function." % (key)
            )
G
guofei 已提交
7636 7637 7638 7639 7640


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
7641
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7642 7643 7644 7645 7646 7647 7648 7649 7650 7651

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

7652
            import paddle
G
guofei 已提交
7653 7654

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
7655
            res = paddle.get_flags(flags)
G
guofei 已提交
7656 7657 7658 7659 7660 7661
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
7662
            if _global_flags().is_public(key):
7663
                value = _global_flags()[key]
G
guofei 已提交
7664 7665 7666 7667
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
7668 7669 7670
                    'Flag %s cannot get its value through this function.'
                    % (key)
                )
G
guofei 已提交
7671
    elif isinstance(flags, str):
7672
        if _global_flags().is_public(flags):
7673
            value = _global_flags()[flags]
G
guofei 已提交
7674 7675 7676 7677
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
7678 7679
                'Flag %s cannot get its value through this function.' % (flags)
            )
G
guofei 已提交
7680 7681 7682
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
7683 7684 7685 7686 7687 7688


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702
    if isinstance(
        place,
        (
            core.Place,
            core.XPUPlace,
            core.CPUPlace,
            core.CUDAPinnedPlace,
            core.CUDAPlace,
            core.NPUPlace,
            core.IPUPlace,
            core.MLUPlace,
            core.CustomPlace,
        ),
    ):
7703 7704 7705 7706
        return place

    if not isinstance(place, str):
        raise ValueError(
7707 7708
            "place only support string which is 'Place' and so on."
        )
7709 7710

    place = place.lower()
7711
    if place == "cpu":
7712
        return core.CPUPlace()
7713

7714
    if place == "device":
7715 7716
        return core.Place()

7717
    # GPU
7718 7719 7720 7721
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
7722 7723 7724
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with CUDA".format(avaliable_gpu_place)
            )
7725 7726 7727 7728 7729 7730 7731 7732 7733
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
7734 7735

    # XPU
7736 7737 7738 7739
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
7740 7741 7742
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with XPU".format(avaliable_xpu_place)
            )
7743 7744 7745 7746
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
7747 7748 7749 7750 7751 7752

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
7753 7754 7755
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with NPU".format(avaliable_npu_place)
            )
7756 7757 7758 7759 7760
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

J
jianghaicheng 已提交
7761 7762 7763 7764 7765
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
7766 7767 7768
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with IPU".format(avaliable_ipu_place)
            )
J
jianghaicheng 已提交
7769 7770 7771 7772 7773
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

7774 7775 7776 7777 7778
    # MLU
    avaliable_mlu_place = re.match(r'mlu:\d+', place)
    if avaliable_mlu_place:
        if not core.is_compiled_with_mlu():
            raise ValueError(
7779 7780 7781
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with MLU".format(avaliable_mlu_place)
            )
7782 7783 7784 7785 7786
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.MLUPlace(device_id)

7787
    raise ValueError(
7788 7789 7790 7791
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace, IPUPlace, MLUPlace and NPUPlace, but received {}.".format(
            place
        )
    )
7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret