未验证 提交 4d236354 编写于 作者: 王明冬 提交者: GitHub

clip op extra information when export model. (#35447)

* clip op extra information when export model,test=ocr

* rename clip_extra parameter to kwargs in save_inference_model, test=ocr
上级 86d4af39
......@@ -460,6 +460,11 @@ void OpDesc::RemoveOutput(const std::string &name) {
need_update_ = true;
}
void OpDesc::RemoveInput(const std::string &name) {
inputs_.erase(name);
need_update_ = true;
}
bool OpDesc::HasProtoAttr(const std::string &name) const {
auto &op_info = OpInfoMap::Instance();
if (op_info.Has(desc_.type())) {
......
......@@ -68,6 +68,8 @@ class OpDesc {
const std::vector<std::string> &args);
void RemoveOutput(const std::string &name);
void RemoveInput(const std::string &name);
bool HasAttr(const std::string &name) const {
return attrs_.find(name) != attrs_.end();
}
......
......@@ -267,6 +267,7 @@ void BindOpDesc(pybind11::module *m) {
self.SetOutput(name, vec_var_name);
})
.def("remove_output", &pd::OpDesc::RemoveOutput)
.def("remove_input", &pd::OpDesc::RemoveInput)
.def("input_arg_names", &pd::OpDesc::InputArgumentNames)
.def("output_arg_names", &pd::OpDesc::OutputArgumentNames)
.def("_rename_input", &pd::OpDesc::RenameInput)
......
......@@ -495,7 +495,8 @@ class ImperativeQuantizeOutputs(object):
executor=exe,
main_program=infer_program.clone(),
model_filename=model_filename,
params_filename=params_filename)
params_filename=params_filename,
clip_extra=True)
if is_dynamic_mode:
paddle.disable_static()
......
......@@ -169,9 +169,11 @@ class TestQuantizationScalePass(unittest.TestCase):
f.write(str(server_program))
with fluid.scope_guard(scope):
fluid.io.save_inference_model('quant_scale_model' + dev_name,
['image', 'label'], [loss], exe,
server_program)
fluid.io.save_inference_model(
'quant_scale_model' + dev_name, ['image', 'label'], [loss],
exe,
server_program,
clip_extra=True)
def test_quant_scale_cuda(self):
if fluid.core.is_compiled_with_cuda():
......
......@@ -141,9 +141,11 @@ class TestQuantizeProgramPass(unittest.TestCase):
qt.convert(test_program, scope)
if not for_ci:
with fluid.scope_guard(scope):
fluid.io.save_inference_model('./infer_model',
['image', 'label'], [loss], exe,
test_program)
fluid.io.save_inference_model(
'./infer_model', ['image', 'label'], [loss],
exe,
test_program,
clip_extra=True)
def test_gpu_1(self):
if fluid.core.is_compiled_with_cuda():
......
......@@ -201,7 +201,8 @@ def train(net_type, use_cuda, save_dirname, is_local):
fluid.io.save_inference_model(
save_dirname, ["pixel"], [predict],
exe,
main_program=train_program)
main_program=train_program,
clip_extra=True)
return
if is_local:
......@@ -258,8 +259,13 @@ def infer(use_cuda, save_dirname=None):
print("infer results: ", results[0])
fluid.io.save_inference_model(save_dirname, feed_target_names,
fetch_targets, exe, inference_program)
fluid.io.save_inference_model(
save_dirname,
feed_target_names,
fetch_targets,
exe,
inference_program,
clip_extra=True)
def main(net_type, use_cuda, is_local=True):
......
......@@ -258,8 +258,11 @@ class TestQuantizeTranspiler(unittest.TestCase):
# Convert parameter to 8-bit.
quant_transpiler.convert_to_int8(test_program, place)
# Save the 8-bit parameter and model file.
fluid.io.save_inference_model('model_8bit', ['image', 'label'],
[loss], exe, test_program)
fluid.io.save_inference_model(
'model_8bit', ['image', 'label'], [loss],
exe,
test_program,
clip_extra=True)
# Test whether the 8-bit parameter and model file can be loaded successfully.
[infer, feed, fetch] = fluid.io.load_inference_model('model_8bit',
exe)
......
......@@ -855,7 +855,8 @@ def save(layer, path, input_spec=None, **configs):
model_filename=model_filename,
params_filename=params_filename,
export_for_deployment=configs._export_for_deployment,
program_only=configs._program_only)
program_only=configs._program_only,
clip_extra=False)
# NOTE(chenweihang): [ Save extra variable info ]
# save_inference_model will lose some important variable information, including:
......@@ -1342,7 +1343,7 @@ class TracedLayer(object):
return self._run(self._build_feed(inputs))
@switch_to_static_graph
def save_inference_model(self, path, feed=None, fetch=None):
def save_inference_model(self, path, feed=None, fetch=None, **kwargs):
"""
Save the TracedLayer to a model for inference. The saved
inference model can be loaded by C++ inference APIs.
......@@ -1360,6 +1361,7 @@ class TracedLayer(object):
saved inference model. If None, all output variables of the
TracedLayer object would be the outputs of the saved inference
model. Default None.
kwargs: Supported keys including 'clip_extra'.set to True if you want to clip extra information for every operator.
Returns:
None
......@@ -1409,7 +1411,7 @@ class TracedLayer(object):
for f in fetch:
check_type(f, "each element of fetch", int,
"fluid.dygraph.jit.TracedLayer.save_inference_model")
clip_extra = kwargs.get('clip_extra', False)
# path check
file_prefix = os.path.basename(path)
if file_prefix == "":
......@@ -1449,4 +1451,5 @@ class TracedLayer(object):
executor=self._exe,
main_program=self._program.clone(),
model_filename=model_filename,
params_filename=params_filename)
params_filename=params_filename,
clip_extra=clip_extra)
......@@ -5135,7 +5135,7 @@ class Program(object):
res._sync_with_cpp()
return res
def _remove_training_info(self):
def _remove_training_info(self, clip_extra=True):
"""
This method will create a new program and do following adjustments on it:
1. Remove all variable's `is_parameter` attribute if exist.
......@@ -5160,6 +5160,71 @@ class Program(object):
for var in block.all_vars():
var.clear_is_parameter()
var.clear_stop_gradient()
if not clip_extra:
continue
for op_idx in range(0, block.op_size()):
op = block.op(op_idx)
if op.type() not in OpProtoHolder.instance().op_proto_map:
continue
proto = OpProtoHolder.instance().get_op_proto(op.type())
remove_input_list = []
for name in op.input_names():
find = False
for input_proto in proto.inputs:
if input_proto.name != name:
continue
if input_proto.extra:
remove_input_list.append(name)
find = True
break
if not find:
remove_input_list.append(name)
for name in remove_input_list:
op.remove_input(name)
remove_output_list = []
for name in op.output_names():
find = False
for output_proto in proto.outputs:
if output_proto.name != name:
continue
if output_proto.extra:
remove_output_list.append(name)
find = True
break
if not find:
remove_output_list.append(name)
for name in remove_output_list:
op.remove_output(name)
remove_attr_list = []
op_quant_name = core.op_proto_and_checker_maker.kOpWithQuantAttrName(
)
quant = bool(op.attr(op_quant_name)
) if op_quant_name in op.attr_names() else False
quant_attrs = [
op_quant_name, "quantization_type", "skip_quant",
"activation_bits", "bit_length", "quantize_weight_bits",
"weight_quant_scale"
]
for name in op.attr_names():
if quant:
if name in quant_attrs:
continue
if name.endswith("_threshold"):
continue
find = False
for attr_proto in proto.attrs:
if attr_proto.name != name:
continue
if attr_proto.extra:
remove_attr_list.append(name)
find = True
break
if not find:
remove_attr_list.append(name)
for name in remove_attr_list:
op.remove_attr(name)
return res
@staticmethod
......
......@@ -1251,7 +1251,8 @@ def save_inference_model(dirname,
model_filename=None,
params_filename=None,
export_for_deployment=True,
program_only=False):
program_only=False,
clip_extra=False):
"""
:api_attr: Static Graph
......@@ -1432,14 +1433,16 @@ def save_inference_model(dirname,
main_program.desc._set_version()
paddle.fluid.core.save_op_version_info(main_program.desc)
with open(model_basename, "wb") as f:
f.write(main_program._remove_training_info()
.desc.serialize_to_string())
f.write(
main_program._remove_training_info(clip_extra=clip_extra)
.desc.serialize_to_string())
else:
# TODO(panyx0718): Save more information so that it can also be used
# for training and more flexible post-processing.
with open(model_basename + ".main_program", "wb") as f:
f.write(main_program._remove_training_info()
.desc.serialize_to_string())
f.write(
main_program._remove_training_info(clip_extra=clip_extra)
.desc.serialize_to_string())
if program_only:
warnings.warn(
......
......@@ -86,8 +86,10 @@ def train(use_cuda, save_dirname, is_local, use_bf16, pure_bf16):
fetch_list=[avg_cost])
if avg_loss_value[0] < 10.0:
if save_dirname is not None:
paddle.static.save_inference_model(save_dirname, [x],
[y_predict], exe)
paddle.static.save_inference_model(
save_dirname, [x], [y_predict],
exe,
clip_extra=False)
return
if math.isnan(float(avg_loss_value)):
sys.exit("got NaN loss, training failed.")
......
......@@ -111,8 +111,13 @@ class QuantDequantTest(unittest.TestCase):
def _save_models(self, dirname, feeded_var_names, target_vars, executor,
program, scope):
with fluid.scope_guard(scope):
fluid.io.save_inference_model(dirname, feeded_var_names,
target_vars, executor, program)
fluid.io.save_inference_model(
dirname,
feeded_var_names,
target_vars,
executor,
program,
clip_extra=True)
def _get_paddle_outs(self, feed, fetch_list, executor, program, scope):
'''
......
......@@ -115,7 +115,8 @@ class TestImperativeStaticModelRunnerMnist(unittest.TestCase):
self.save_dirname, ["img"], [prediction],
exe,
model_filename=self.model_filename,
params_filename=self.params_filename)
params_filename=self.params_filename,
clip_extra=False)
def load_and_train_dygraph(self):
place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
......
......@@ -104,7 +104,8 @@ class TestImperativeStaticModelRunnerWhile(unittest.TestCase):
self.save_dirname, ["img"], [pred],
exe,
model_filename=self.model_filename,
params_filename=self.params_filename)
params_filename=self.params_filename,
clip_extra=False)
def load_and_train_dygraph(self):
place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
......
......@@ -81,6 +81,8 @@ class TestOperator(unittest.TestCase):
self.assertEqual(mul_op.attr("y_num_col_dims"), 1)
self.assertEqual(mul_op.idx, 0)
self.assertEqual(mul_out.op, mul_op)
mul_op.desc.remove_input("X")
self.assertEqual(mul_op.input_names, ["Y"])
def test_mult_input(self):
program = Program()
......
......@@ -447,8 +447,9 @@ def save_inference_model(path_prefix, feed_vars, fetch_vars, executor,
fetch_vars(Variable | list[Variable]): Variables returned by inference.
executor(Executor): The executor that saves the inference model. You can refer
to :ref:`api_guide_executor_en` for more details.
kwargs: Supported keys including 'program'.Attention please, kwargs is used for backward compatibility mainly.
kwargs: Supported keys including 'program' and "clip_extra". Attention please, kwargs is used for backward compatibility mainly.
- program(Program): specify a program if you don't want to use default main program.
- clip_extra(bool): set to True if you want to clip extra information for every operator.
Returns:
None
......@@ -509,9 +510,11 @@ def save_inference_model(path_prefix, feed_vars, fetch_vars, executor,
_check_vars('fetch_vars', fetch_vars)
program = _get_valid_program(kwargs.get('program', None))
clip_extra = kwargs.get('clip_extra', False)
program = normalize_program(program, feed_vars, fetch_vars)
# serialize and save program
program_bytes = _serialize_program(program._remove_training_info())
program_bytes = _serialize_program(
program._remove_training_info(clip_extra=clip_extra))
save_to_file(model_path, program_bytes)
# serialize and save params
params_bytes = _serialize_persistables(program, executor)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册