framework.py 261.0 KB
Newer Older
G
gouzil 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
import collections
X
Xin Pan 已提交
16
from collections import defaultdict
H
huzhiqiang 已提交
17
from collections.abc import Iterable
Q
qiaolongfei 已提交
18
import contextlib
19
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
20
import os
F
fengjiayi 已提交
21
import re
22
import traceback
23
import copy
24
from types import MethodType, FunctionType
25

Y
Yu Yang 已提交
26
import numpy as np
27
import subprocess
S
sneaxiy 已提交
28
import multiprocessing
29
import sys
30
import logging
R
risemeup1 已提交
31 32 33

from .proto import framework_pb2, data_feed_pb2

34 35

from . import core
36
from . import unique_name
37 38
import paddle.version as fluid_version
import warnings
39
import functools
40
from .variable_index import _getitem_impl_, _setitem_impl_
41
import threading
Y
Yu Yang 已提交
42

43
__all__ = [
44 45 46 47
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
48
    'name_scope',
J
jianghaicheng 已提交
49
    'ipu_shard_guard',
50
    'set_ipu_shard',
S
sneaxiy 已提交
51 52
    'cuda_places',
    'cpu_places',
53
    'xpu_places',
54
    'mlu_places',
S
sneaxiy 已提交
55
    'cuda_pinned_places',
J
Jiabin Yang 已提交
56
    '_non_static_mode',
L
lujun 已提交
57
    'in_dygraph_mode',
58
    'is_compiled_with_cinn',
C
chengduo 已提交
59
    'is_compiled_with_cuda',
60
    'is_compiled_with_rocm',
61
    'is_compiled_with_xpu',
62
    'is_compiled_with_npu',
63
    'Variable',
64
    'require_version',
65
    'device_guard',
G
guofei 已提交
66 67
    'set_flags',
    'get_flags',
68
]
Y
Yu Yang 已提交
69

Q
qiaolongfei 已提交
70 71 72 73
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
74 75
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
# use thread local to create thread save global variables.
class GlobalThreadLocal(threading.local):
    def __init__(self):
        """
        init the thread local data.
        TODO(xiongkun): how to access another thread local data ?
        """
        global _dygraph_tracer_
        self._in_declarative_mode_ = False
        self._functional_dygraph_context_manager = None
        self._dygraph_tracer_ = _dygraph_tracer_
        self._in_eager_mode_ = True

    def __str__(self):
        strings = []
        strings.append(
            "_in_declarative_mode_:" + str(self._in_declarative_mode_)
        )
        strings.append(
            "_functional_dygraph_context_manager:"
            + str(self._functional_dygraph_context_manager)
        )
        strings.append("_dygraph_tracer_:" + str(self._dygraph_tracer_))
        strings.append("_in_eager_mode_:" + str(self._in_eager_mode_))
        return "\n".join(strings)

    def __setattr__(self, name, val):
        if name == '_dygraph_tracer_':
            global _dygraph_tracer_
            _dygraph_tracer_ = val
        self.__dict__[name] = val


L
lujun 已提交
109
_dygraph_tracer_ = None
110 111
global_var = GlobalThreadLocal()

112
_global_expected_place_ = None
113
_current_device = None
114
global_prog_seed = 0
115
_current_pipeline_stage = None
116
_already_patch_eager_tensor = False
J
Jiabin Yang 已提交
117
_already_patch_varbase = False
118
_current_cuda_graph_mode = None
119
_global_flags_ = core.globals()
120 121 122 123 124 125
_enable_standalone_executor_ = os.environ.get(
    'FLAGS_USE_STANDALONE_EXECUTOR', None
)
_dy2st_enable_standalone_executor_ = os.environ.get(
    'FLAGS_DY2ST_USE_STANDALONE_EXECUTOR', 1
)
126 127 128
_cuda_graph_enable_standalone_executor_ = os.environ.get(
    'FLAGS_CUDA_GRAPH_USE_STANDALONE_EXECUTOR', 0
)
J
Jiabin Yang 已提交
129 130

# Some explanation of our execution system 2022.03
131
# For now we have 3 kinds of execution system, since we refactored dygraph mode to
J
Jiabin Yang 已提交
132
# build a fast execution system for dynamic mode. But we can't just remove all legacy
133
# code once we present the new system for some historical reason. That's why we have
J
Jiabin Yang 已提交
134
# these flags.
135
#
J
Jiabin Yang 已提交
136
# 1. _non_static_mode():
137
# _non_static_mode means  we are now running in legacy dygraph mode or dygraph mode.
J
Jiabin Yang 已提交
138 139 140
# 2. dygraph_mode():
# This flags inidicates we are now running in dygraph mode which called eager mode before.
# 3. _in_legacy_dygraph():
姜永久 已提交
141
# This flags has been deprecated
142
#
J
Jiabin Yang 已提交
143
# They have a relation ship as below:
姜永久 已提交
144
# Since _in_legacy_graph is deprecated, so dygraph_mode is _non_static_mode
145
#
J
Jiabin Yang 已提交
146 147 148 149 150 151
# Why we have to make different of _in_legacy_dygraph and dygraph_mode?
# In some performance issue, we find that python if statement cause server performance problem
# and we need our new dygraph mode becomes as fast as it could be. That's why we make these flags
# to make sure in most case, we find new dygraph mode first with only one if statement.


152 153 154 155 156
def _update_monkey_methods(is_eager):
    """
    Update monkey methods of VarBase or eager.Tensor while
    switching eager mode and legacy mode.
    """
157
    from paddle import _C_ops, _legacy_C_ops
158 159 160
    from .dygraph.varbase_patch_methods import monkey_patch_varbase
    from .dygraph import monkey_patch_math_varbase

161 162 163
    global _already_patch_eager_tensor
    global _already_patch_varbase

164
    assert isinstance(is_eager, bool)
165
    # switch into eager mode
166
    if is_eager:
167 168 169 170 171 172
        if not _already_patch_eager_tensor:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_eager_tensor = True
    # switch back into legacy mode
173
    else:
174 175 176 177 178
        if not _already_patch_varbase:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_varbase = True
179

180 181 182 183 184 185
    # switch Paddle.Tensor bind type
    _switch_tensor_bind_type(is_eager)


def _switch_tensor_bind_type(is_eager):
    import paddle
186

187 188 189 190 191
    if is_eager:
        paddle.Tensor = core.eager.Tensor
    else:
        paddle.Tensor = core.VarBase
    paddle.Tensor.__qualname__ = 'Tensor'
192 193


J
Jiabin Yang 已提交
194
def _enable_legacy_dygraph():
195
    global_var._in_eager_mode_ = False
196
    _update_monkey_methods(is_eager=False)
J
Jiabin Yang 已提交
197 198 199


def _disable_legacy_dygraph():
200
    global_var._in_eager_mode_ = True
201
    _update_monkey_methods(is_eager=True)
J
Jiabin Yang 已提交
202 203 204


def _in_eager_without_dygraph_check():
205
    return global_var._in_eager_mode_
J
Jiabin Yang 已提交
206 207


208 209 210 211 212 213 214 215
# FIXME(dev): We haven't fully verified eager mode on XPU/NPU et.al but
# only GPU/CPU. Remove this after we improve this feature.
_is_first_import_ = True


def _fallback_legacy_dygraph():
    global _is_first_import_
    need_fallback = False
C
Chen Weihang 已提交
216
    # Only enable eager on CPU/GPU/XPU
217 218 219 220 221
    is_not_support = (
        core.is_compiled_with_npu()
        or core.is_compiled_with_ipu()
        or core.is_compiled_with_mlu()
    )
222

223
    if global_var._in_eager_mode_ and is_not_support:
224 225 226 227
        # switch into legacy dygraph mode
        warnings.warn(
            "We will fallback into legacy dygraph on NPU/XPU/MLU/IPU/ROCM devices. Because we only support new eager dygraph mode on CPU/GPU currently. "
        )
228
        global_var._in_eager_mode_ = False
229 230 231 232 233 234 235 236 237 238 239 240 241 242
        if not _is_first_import_:
            _enable_legacy_dygraph()
        need_fallback = True

    need_fallback = False
    _is_first_import_ = False

    return need_fallback


# switch into legacy mode if need while import paddle
_fallback_legacy_dygraph()


J
Jiabin Yang 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
def in_dygraph_mode():
    """

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .

    Returns:
        bool: Whether paddle runs in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
264
            print(paddle.in_dynamic_mode())  # False, Now we are in static graph mode
J
Jiabin Yang 已提交
265 266 267 268 269

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode

    """
270 271 272
    return (
        global_var._dygraph_tracer_ is not None
    ) and global_var._in_eager_mode_
J
Jiabin Yang 已提交
273 274 275


def _non_static_mode():
276
    return global_var._dygraph_tracer_ is not None
277 278 279


@signature_safe_contextmanager
J
Jiabin Yang 已提交
280
def _test_eager_guard(place=None):
C
Chen Weihang 已提交
281 282
    # FIXME(dev): We haven't fully verified eager mode on NPU et.al but
    # only GPU/CPU/XPU. Remove this after we improve this feature.
283 284 285
    already_fallback = _fallback_legacy_dygraph()
    if not already_fallback:
        _disable_legacy_dygraph()
286
    try:
J
Jiabin Yang 已提交
287
        yield
288
    finally:
289
        pass
290 291


292 293
global_ipu_index = -1
global_ipu_stage = -1
J
jianghaicheng 已提交
294 295 296 297
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


L
Leo Chen 已提交
298 299 300 301 302 303 304 305 306 307 308
@signature_safe_contextmanager
def _enable_standalone_executor(enable=True):
    global _enable_standalone_executor_
    original_ = _enable_standalone_executor_
    _enable_standalone_executor_ = enable
    try:
        yield
    finally:
        _enable_standalone_executor_ = original_


J
jianghaicheng 已提交
309
@signature_safe_contextmanager
310
def ipu_shard_guard(index=-1, stage=-1):
J
jianghaicheng 已提交
311 312 313 314
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
W
Weilong Wu 已提交
315
        index(int, optional): Specify which ipu the Tensor is computed on, (such as '0, 1, 2, 3').
316
            The default value is -1, which means the Op only run on IPU 0.
W
Weilong Wu 已提交
317
        stage(int, optional): Specify the computation order of the sharded model(such as '0, 1, 2, 3').
318
            The sharded model will be computed from small to large. The default value is -1,
J
jianghaicheng 已提交
319
            which means no pipelining computation order and run Ops in terms of graph.
320

G
gouzil 已提交
321 322 323 324 325 326 327
    Note:
        Only if the enable_manual_shard=True, the 'index' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        Only if the enable_pipelining=True, the 'stage' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        A index is allowed to match none stage or a stage. A stage is only allowed to match a new or
        duplicated index.
J
jianghaicheng 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


362 363 364 365
def set_ipu_shard(call_func, index=-1, stage=-1):
    """
    Shard the ipu with the given call function. Set every ops in call function to the given ipu sharding.

G
gouzil 已提交
366 367 368 369 370
    Note:
        Only when enable_manual_shard=True to set the index to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        Only when enable_pipelining=True to set stage to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        An index supports a corresponding None stage or a stage, and a stage only supports a new index or a duplicate index.

371 372 373 374 375
    Args:
        call_func(Layer|function): Specify the call function to be wrapped.
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is -1, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
376
            The sharded model will be computed from small to large. The default value is -1,
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
            which means no pipelining computation order and run Ops in terms of graph.

    Returns:
        The wrapped call function.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='float32')
            relu = paddle.nn.ReLU()
            relu = paddle.static.set_ipu_shard(relu, index=1, stage=1)
            relu(a)
    """

    def decorate(func):
        def wrapper(*args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return func(*args, **kwargs)

        return wrapper

    from .dygraph.layers import Layer
403

404 405 406 407 408
    if not isinstance(call_func, Layer):
        if callable(call_func):
            return decorate(call_func)
        else:
            raise TypeError(
409 410
                "Unsupported type. Only accept paddle.nn.Layer or function."
            )
411 412 413 414 415 416 417 418 419 420 421 422

    # patch paddle.nn.Layer
    class BlockFn(type(call_func)):
        def __call__(self, *args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return super().__call__(*args, **kwargs)

    BlockFn.__name__ = type(call_func).__name__
    call_func.__class__ = BlockFn
    return call_func


423 424
def require_version(min_version, max_version=None):
    """
425 426 427
    Check if the installed version of PaddlePaddle is in [min_version, max_version],
    if the installed version is lower than ``min_version`` or higher than ``max_version``,
    an exception will be thrown, NO returns if the installed version is satisfied.
428

429 430 431 432
    Args:
        min_version (str): the minimum version required (like '1.4.0').
        max_version (str, optional): the max version required (like '1.6.0'), default is None,
            meaning any version equal or higher than ``min_version`` is acceptable.
433

434 435
    Returns:
        None.
436

437 438 439 440 441 442
    Raises:
        TypeError: if the type of ``min_version`` is not str.
        TypeError: if the type of ``max_version`` is not str or type(None).
        ValueError: if the value of ``min_version`` is not in version format.
        ValueError: if the value of ``max_version`` is not in version format or None.
        Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.
443

444 445
    Examples:
        .. code-block:: python
446

447
            import paddle.fluid as fluid
448

449 450
            # any version >= 0.1.0 is acceptable.
            fluid.require_version('0.1.0')
451

452 453 454
            # if 0.1.0 <= version <= 10.0.0, it is acceptable.
            fluid.require_version(min_version='0.1.0', max_version='10.0.0')
    """
455 456 457
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
458 459
            % (type(min_version))
        )
460 461 462 463

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
464 465
            % (type(max_version))
        )
466 467 468 469 470

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
471 472
            "like '1.5.2.0', but received %s" % min_version
        )
473 474 475 476 477 478

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
479 480
                "like '1.5.2.0', but received %s" % max_version
            )
481 482

    version_installed = [
483 484 485 486
        fluid_version.major,
        fluid_version.minor,
        fluid_version.patch,
        fluid_version.rc,
487 488 489 490
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
491
        for i in range(len(ver_a)):
492 493 494 495 496 497 498 499 500 501 502
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
503 504 505
                "please make sure the version is good with your code."
                % (min_version, max_version, fluid_version.full_version)
            )
506 507 508 509
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
510 511 512
                "please make sure the version is good with your code."
                % (min_version, fluid_version.full_version)
            )
513 514 515
        return

    min_version_split = min_version.split('.')
516 517 518
    min_version_to_check = (
        min_version_split + zero_version[len(min_version_split) :]
    )
519 520 521

    if max_version is not None:
        max_version_split = max_version.split('.')
522 523 524
        max_version_to_check = (
            max_version_split + zero_version[len(max_version_split) :]
        )
525

526 527 528 529
        if (
            version_cmp(version_installed, max_version_to_check) > 0
            or version_cmp(version_installed, min_version_to_check) < 0
        ):
530 531
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
532 533
                % (min_version, max_version, fluid_version.full_version)
            )
534 535 536 537 538
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
539 540
                % (min_version, fluid_version.full_version, min_version)
            )
541 542


543 544
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
545 546 547
        assert not _non_static_mode(), (
            "We don't support %s in dynamic graph mode" % func.__name__
        )
548 549 550 551 552 553 554
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
555 556 557 558
        assert _non_static_mode(), (
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
559 560 561 562 563
        return func(*args, **kwargs)

    return __impl__


564 565 566
def _non_static_only_(func):
    def __impl__(*args, **kwargs):
        from .dygraph.base import in_declarative_mode
567 568 569 570 571

        assert _non_static_mode() or in_declarative_mode(), (
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
572 573 574 575 576
        return func(*args, **kwargs)

    return __impl__


577 578
def _static_only_(func):
    def __impl__(*args, **kwargs):
579 580 581 582
        assert not _non_static_mode(), (
            "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode."
            % func.__name__
        )
583 584 585 586 587
        return func(*args, **kwargs)

    return __impl__


588 589 590 591 592
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


593 594 595 596 597 598
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
599
# same base class.
600 601 602
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
603 604
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
R
Ryan 已提交
605
            "  2. If you are using `@paddle.jit.to_static`, you can call `paddle.jit.enable_to_static(False)`. "
606
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
607 608
            % (func.__name__, func.__name__)
        )
609 610 611 612

    return __impl__


T
tangwei12 已提交
613 614
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
615 616 617 618 619 620 621 622 623
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
624 625
                DeprecationWarning,
            )
626 627 628 629 630 631 632
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


633 634
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
635
static_only = wrap_decorator(_static_only_)
636
fake_interface_only = wrap_decorator(_fake_interface_only_)
637
non_static_only = wrap_decorator(_non_static_only_)
638 639


L
lujun 已提交
640
def _dygraph_tracer():
641
    return global_var._dygraph_tracer_
642

W
Wu Yi 已提交
643

644 645 646 647
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
648
def _current_expected_place():
649 650 651
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
652 653 654 655 656
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
657
                _global_expected_place_ = core.CUDAPlace(_cuda_ids()[0])
658 659 660 661 662
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
663 664 665 666 667 668
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
669
                _global_expected_place_ = core.XPUPlace(_xpu_ids()[0])
670 671 672 673 674
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
675 676 677 678 679 680
        elif core.is_compiled_with_mlu():
            try:
                device_count = core.get_mlu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
681
                _global_expected_place_ = core.MLUPlace(_mlu_ids()[0])
682 683 684 685 686
            else:
                warnings.warn(
                    "You are using MLU version Paddle, but your MLU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
        elif core.is_compiled_with_custom_device("npu"):
            # TODO(duanyanhui): Optimize DeviceManager and Return all expected places when device registered in DeviceManager is greater than 1.
            try:
                device_count = core.get_custom_device_count("npu")
            except Exception as e:
                device_count = 0
            if device_count > 0:
                _global_expected_place_ = core.CustomPlace(
                    "npu", _custom_device_ids("npu")[0]
                )
            else:
                warnings.warn(
                    "You are using NPU version Paddle, but your NPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
702 703 704 705 706 707 708
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
709 710
    if global_var._dygraph_tracer_ is not None:
        global_var._dygraph_tracer_._expected_place = place
711 712 713 714 715


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
716
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
717 718


L
Leo Chen 已提交
719 720
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
721 722
    """
    convert VarBase tp numpy
T
tangwei12 已提交
723

724 725 726
    Args:
        var_base(VarBase) : the VarBase to convert
    Returns (np.ndarray): the np.ndarray contain the value of VarBase
L
Leo Chen 已提交
727 728 729 730 731 732 733 734 735
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
736
def _cpu_num():
737
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
738 739 740 741 742 743 744
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
745 746 747
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()
                )
            )
C
chengduo 已提交
748
        os.environ['CPU_NUM'] = str(1)
749
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
750 751 752 753 754 755 756 757
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
758
        device_ids = range(core.get_cuda_device_count())
C
chengduo 已提交
759
    return device_ids
S
sneaxiy 已提交
760 761


762 763 764 765 766
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
767
        device_ids = range(core.get_xpu_device_count())
768 769 770
    return device_ids


771 772 773 774 775
def _npu_ids():
    npus_env = os.getenv("FLAGS_selected_npus")
    if npus_env:
        device_ids = [int(s) for s in npus_env.split(",")]
    else:
776
        device_ids = range(core.get_npu_device_count())
777 778 779
    return device_ids


780 781 782 783 784 785 786 787 788
def _custom_device_ids(device_type):
    custom_devices_env = os.getenv("FLAGS_selected_" + device_type + "s")
    if custom_devices_env:
        device_ids = [int(s) for s in custom_devices_env.split(",")]
    else:
        device_ids = range(core.get_custom_device_count(device_type))
    return device_ids


789 790 791 792 793
def _mlu_ids():
    mlus_env = os.getenv("FLAGS_selected_mlus")
    if mlus_env:
        device_ids = [int(s) for s in mlus_env.split(",")]
    else:
794
        device_ids = range(core.get_mlu_device_count())
795 796 797
    return device_ids


798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


813 814 815 816 817 818 819 820 821 822 823 824 825 826 827
def is_compiled_with_npu():
    """
    Whether this whl package can be used to run the model on NPU.

    Returns (bool): support npu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_npu = fluid.is_compiled_with_npu()
    """
    return core.is_compiled_with_npu()


828 829 830 831 832 833 834
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
835

836 837 838 839 840 841
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

Z
Zman 已提交
842 843
    Returns:
        None
844 845 846 847 848 849 850 851 852 853

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

    Returns (bool): `True` if CINN is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
869 870 871 872
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

873
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
874 875 876 877

    Examples:
        .. code-block:: python

878
            import paddle
879
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
880 881 882 883
    """
    return core.is_compiled_with_cuda()


884 885 886 887 888 889 890 891 892 893
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
894
            support_gpu = paddle.device.is_compiled_with_rocm()
895 896 897 898
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
899
def cuda_places(device_ids=None):
L
lujun 已提交
900
    """
901
    Note:
902 903 904
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
905
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
906 907

    If :code:`device_ids` is None, environment variable of
908
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
909
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
910
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
911
    If :code:`FLAGS_selected_gpus` is not set, all visible
912
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
913 914

    If :code:`device_ids` is not None, it should be the device
915
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
916
    the returned list would be
C
Chen Weihang 已提交
917
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
918

919
    Parameters:
920
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
921 922

    Returns:
C
Chen Weihang 已提交
923
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
924 925

    Examples:
926

L
lujun 已提交
927 928
        .. code-block:: python

C
Chen Weihang 已提交
929 930
            import paddle
            import paddle.static as static
T
tangwei12 已提交
931

932
            # required: gpu
933

C
Chen Weihang 已提交
934 935 936
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
937 938

    """
939
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
940
    if device_ids is None:
C
chengduo 已提交
941
        device_ids = _cuda_ids()
S
sneaxiy 已提交
942 943 944 945 946
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


947 948 949 950
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
951 952 953 954 955 956 957 958 959
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
960
        the returned list would be
S
sunzhongkai588 已提交
961
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
962

963 964 965 966 967 968
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
969

970 971
            # required: xpu

972 973
            import paddle
            import paddle.static as static
974

975 976 977
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
978
    assert core.is_compiled_with_xpu(), "Not compiled with XPU"
979 980 981 982 983 984 985
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


986 987
def npu_places(device_ids=None):
    """
988 989

    Note:
990
        For multi-card tasks, please use `FLAGS_selected_npus` environment variable to set the visible NPU device.
991

992 993 994 995 996 997 998 999 1000
    This function creates a list of :code:`paddle.NPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_npus` would be checked first. For example, if
    :code:`FLAGS_selected_npus=0,1,2`, the returned list would
    be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    If :code:`FLAGS_selected_npus` is not set, all visible
    npu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of NPUs. For example, if :code:`device_ids=[0,1,2]`,
1001
    the returned list would be
1002
    [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
1003

1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
    Parameters:
        device_ids (list or tuple of int, optional): list of NPU device ids.
    Returns:
        list of paddle.NPUPlace: Created NPU place list.
    Examples:
        .. code-block:: python

            # required: npu

            import paddle
            import paddle.static as static
1015

1016 1017 1018
            paddle.enable_static()
            npu_places = static.npu_places()
    """
1019
    assert core.is_compiled_with_npu(), "Not compiled with NPU"
1020 1021 1022 1023 1024 1025 1026
    if device_ids is None:
        device_ids = _npu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.NPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
1027
def cpu_places(device_count=None):
L
lujun 已提交
1028
    """
C
Chen Weihang 已提交
1029
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
1030

S
add doc  
sneaxiy 已提交
1031
    If :code:`device_count` is None, the device count would
1032
    be determined by environment variable :code:`CPU_NUM`.
C
chengduo 已提交
1033 1034
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
1035 1036
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
1037

1038 1039
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
1040 1041

    Returns:
C
Chen Weihang 已提交
1042
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
1043 1044

    Examples:
1045

L
lujun 已提交
1046 1047
        .. code-block:: python

C
Chen Weihang 已提交
1048 1049
            import paddle
            import paddle.static as static
T
tangwei12 已提交
1050

C
Chen Weihang 已提交
1051 1052 1053
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
1054 1055
    """

S
sneaxiy 已提交
1056 1057 1058 1059 1060 1061
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
1062
    """
1063
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
1064 1065

    If :code:`device_count` is None, the device count would
1066
    be determined by environment variable :code:`CPU_NUM`.
1067 1068 1069 1070
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
1071

1072 1073
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
1074 1075

    Returns:
1076
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
1077 1078 1079 1080

    Examples:
        .. code-block:: python

1081
            import paddle.fluid as fluid
L
lujun 已提交
1082 1083 1084 1085 1086
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
1087
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
1088
    if device_count is None:
1089 1090
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
1091 1092


1093 1094
def mlu_places(device_ids=None):
    """
G
gouzil 已提交
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
    This function creates a list of :code:`paddle.device.MLUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_mlus` would be checked first. For example, if
    :code:`FLAGS_selected_mlus=0,1,2`, the returned list would
    be [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].
    If :code:`FLAGS_selected_mlus` is not set, all visible
    mlu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of MLUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be
    [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].

    Note:
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126
        For multi-card tasks, please use `FLAGS_selected_mlus` environment variable to set the visible MLU device.

    Parameters:
        device_ids (list or tuple of int, optional): list of MLU device ids.

    Returns:
        list of paddle.device.MLUPlace: Created MLU place list.

    Examples:
        .. code-block:: python

            # required: mlu

            import paddle
            import paddle.static as static

            paddle.enable_static()
            mlu_places = static.mlu_places()
    """
1127
    assert core.is_compiled_with_mlu(), "Not compiled with MLU"
1128 1129 1130 1131 1132 1133 1134
    if device_ids is None:
        device_ids = _mlu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.MLUPlace(dev_id) for dev_id in device_ids]


1135
class NameScope:
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
1146 1147 1148
            new_child = NameScope(
                prefix + "_%d" % len(self._children[prefix]), self
            )
1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
1162
@signature_safe_contextmanager
1163 1164
def name_scope(prefix=None):
    """
1165

1166
    Generate hierarchical name prefix for the operators in Static Graph.
1167

1168
    Note:
T
Tao Luo 已提交
1169 1170
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
1171
        Don't use it in dygraph, since it will cause memory leak.
1172 1173

    Args:
T
Tao Luo 已提交
1174
        prefix(str, optional): prefix. Default is none.
1175 1176

    Examples:
1177

1178
        .. code-block:: python
T
Tink_Y 已提交
1179

1180 1181 1182
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
1183
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
1184
             b = a + 1
1185
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
1186
                c = b * 1
1187
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
1188
                d = c / 1
1189 1190 1191
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
1192 1193
                g = f - 1

1194
          # Op are created in the default main program.
1195
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
1211 1212
    """
    # TODO(panyx0718): Only [0-9a-z].
1213
    # in dygraph we don't need namescope since it will cause mem leak
J
Jiabin Yang 已提交
1214
    if _non_static_mode():
L
Leo Chen 已提交
1215 1216
        yield
    else:
T
tianshuo78520a 已提交
1217
        assert prefix, "namescope prefix can not be empty."
1218 1219
        global _name_scope
        _name_scope = _name_scope.child(prefix)
1220 1221 1222 1223
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
1236 1237
def generate_control_dev_var_name():
    import random
1238

W
Wu Yi 已提交
1239
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
1240 1241 1242 1243


def grad_var_name(var_name):
    """
1244 1245
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
1246 1247 1248
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
1249

1250
def convert_np_dtype_to_dtype_(np_dtype):
1251
    """
1252
    Convert the data type in numpy to the data type in Paddle.
1253

1254
    Args:
1255 1256
        np_dtype (np.dtype|str): The data type in numpy or valid data type
            string.
1257

1258
    Returns:
1259
        core.VarDesc.VarType: The data type in Paddle.
1260 1261

    """
1262 1263
    # Convert the data type string to numpy data type.
    if isinstance(np_dtype, str) and np_dtype == "bfloat16":
1264 1265 1266
        dtype = np.uint16
    else:
        dtype = np.dtype(np_dtype)
1267

1268
    if dtype == np.float32:
1269
        return core.VarDesc.VarType.FP32
1270
    elif dtype == np.float64:
1271
        return core.VarDesc.VarType.FP64
1272
    elif dtype == np.float16:
1273
        return core.VarDesc.VarType.FP16
1274
    elif dtype == np.int32:
1275
        return core.VarDesc.VarType.INT32
1276
    elif dtype == np.int16:
1277
        return core.VarDesc.VarType.INT16
1278
    elif dtype == np.int64:
1279
        return core.VarDesc.VarType.INT64
1280
    elif dtype == np.bool_:
1281
        return core.VarDesc.VarType.BOOL
1282
    elif dtype == np.uint16:
1283 1284 1285
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
1286 1287
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
1288 1289
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
1290 1291 1292 1293
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
1294
    else:
M
minqiyang 已提交
1295
        raise ValueError("Not supported numpy dtype %s" % dtype)
1296 1297 1298


def dtype_is_floating(dtype):
1299 1300 1301
    """
    Check the data type is floating or not.
    Args:
1302
        dtype(np.dtype|core.VarDesc.VarType): data type.
1303 1304 1305 1306 1307
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1308
    if not isinstance(dtype, core.VarDesc.VarType):
1309 1310
        dtype = convert_np_dtype_to_dtype_(dtype)

1311
    return dtype in [
1312 1313 1314
        core.VarDesc.VarType.FP16,
        core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64,
1315
    ]
1316 1317


Y
Yang Yang(Tony) 已提交
1318
def _debug_string_(proto, throw_on_error=True):
1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1330
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1331
    if not proto.IsInitialized(error_fields) and throw_on_error:
1332 1333
        raise ValueError(
            "{0} are not initialized.\nThe message is {1}:\n".format(
1334 1335 1336
                error_fields, proto
            )
        )
Y
Yu Yang 已提交
1337 1338 1339
    return proto.__str__()


1340 1341 1342 1343 1344 1345
def _varbase_creator(
    type=core.VarDesc.VarType.LOD_TENSOR,
    name=None,
    shape=None,
    dtype=None,
    persistable=None,
1346
    **kwargs,
1347
):
1348 1349 1350 1351
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

1352
    if global_var._in_eager_mode_:
1353
        eager_tensor = core.eager.Tensor(
1354
            dtype if dtype else core.VarDesc.VarType.FP32,
1355 1356
            list(shape) if shape else [],
            name,
1357
            type if type else core.VarDesc.VarType.LOD_TENSOR,
1358 1359
            True if persistable else False,
        )
1360 1361
        eager_tensor.retain_grads()
        return eager_tensor
J
Jiabin Yang 已提交
1362
    else:
1363 1364 1365 1366 1367 1368 1369
        return core.VarBase(
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            type if type else core.VarDesc.VarType.LOD_TENSOR,
            True if persistable else False,
        )
1370 1371


1372 1373 1374 1375 1376 1377 1378
def _all_is_type(vals, expected_type):
    """
    Return True if type of each element is expected_type.

    NOTE: BuiltIn all() will always return True if vals is empty.
    """
    assert isinstance(vals, (list, tuple))
1379 1380
    if not vals:
        return False
1381 1382 1383
    return all(isinstance(v, expected_type) for v in vals)


1384 1385 1386 1387 1388
class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1389
            return issubclass(t, core.eager.Tensor)
1390 1391 1392 1393 1394 1395 1396 1397 1398
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1399
            return issubclass(t, EagerParamBase)
1400 1401 1402 1403
        else:
            return issubclass(t, Parameter)


1404
class Variable(metaclass=VariableMetaClass):
1405
    """
J
Jiabin Yang 已提交
1406

U
ustiniankw 已提交
1407 1408 1409 1410
    Notes:
        The constructor of Variable should not be invoked directly.

        In Static Graph Mode: Please use ** `Block.create_var` ** to create a Static variable which has no data until being feed.
1411

U
ustiniankw 已提交
1412
        In Dygraph Mode: Please use ** :ref:`api_fluid_dygraph_to_variable` ** to create a dygraph variable with real data.
J
Jiabin Yang 已提交
1413 1414

    In Fluid, every input and output of an OP is a variable. In most
1415
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1416 1417
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1418

1419
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1420
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1421

T
tianshuo78520a 已提交
1422
    Most of a Variable's member variables can be set to be None. It mean
1423
    it is not available or will be specified later.
1424

1425
    Examples:
1426 1427
        In Static Graph Mode:

1428 1429
        .. code-block:: python

1430
            import paddle.fluid as fluid
1431
            cur_program = fluid.Program()
1432 1433 1434 1435
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1436

1437
        In Dygraph  Mode:
1438 1439 1440 1441 1442 1443 1444 1445 1446

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1447 1448
    """

1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
    def __init__(
        self,
        block,
        type=core.VarDesc.VarType.LOD_TENSOR,
        name=None,
        shape=None,
        dtype=None,
        lod_level=None,
        capacity=None,
        persistable=None,
        error_clip=None,
        stop_gradient=False,
        is_data=False,
        need_check_feed=False,
        belong_to_optimizer=False,
1464
        **kwargs,
1465
    ):
Y
Yu Yang 已提交
1466 1467
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1468
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1469

Y
Yu Yang 已提交
1470
        if dtype is not None:
1471
            if not isinstance(dtype, core.VarDesc.VarType):
1472
                dtype = convert_np_dtype_to_dtype_(dtype)
1473

S
Steffy-zxf 已提交
1474 1475 1476 1477
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

1478 1479 1480
        if type == core.VarDesc.VarType.SPARSE_COO:
            lod_level = None

H
hong 已提交
1481 1482
        self.belong_to_optimizer = belong_to_optimizer

1483 1484 1485
        self.error_clip = error_clip

        is_new_var = False
1486
        self.desc = self.block.desc.find_var(name.encode())
1487

1488
        if self.desc is None:
1489
            self.desc = self.block.desc.var(name.encode())
1490
            is_new_var = True
1491

1492 1493 1494
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
1495 1496 1497 1498 1499
            raise ValueError(
                "Variable '{0}' has been created before. The "
                "previous type is {1}, the new type is {2}. They"
                " are not matched".format(self.name, self.desc.type(), type)
            )
1500

1501
        if shape is not None:
1502
            if is_new_var:
1503 1504 1505 1506 1507 1508
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1509 1510
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1511 1512
                        "matched.".format(self.name, old_shape, shape)
                    )
1513 1514 1515 1516 1517 1518
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
1519 1520 1521 1522 1523 1524
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous data type is {1}, the new "
                        "data type is {2}. They are not "
                        "matched.".format(self.name, old_dtype, dtype)
                    )
1525 1526 1527 1528 1529 1530

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
1531 1532 1533 1534 1535 1536
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous lod_level is {1}, the new "
                        "lod_level is {2}. They are not "
                        "matched".format(self.name, self.lod_level, lod_level)
                    )
1537 1538 1539 1540 1541 1542
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1543 1544
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1545
                        "persistable is {2}. They are not matched".format(
1546 1547 1548
                            self.name, self.persistable, persistable
                        )
                    )
1549

1550 1551
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1552

1553 1554 1555 1556 1557 1558 1559
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1560

1561 1562
        self.block.vars[name] = self
        self.op = None
1563
        self.stop_gradient = stop_gradient
1564
        self.is_data = is_data
Y
Yu Yang 已提交
1565

1566 1567
    def detach(self):
        """
U
ustiniankw 已提交
1568

1569
        Returns a new Variable, detached from the current graph.
1570 1571
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1572

1573
        Returns:
U
ustiniankw 已提交
1574
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable), The detached Variable.
1575 1576 1577 1578

        Examples:
            .. code-block:: python

1579
                import paddle
1580

1581 1582 1583 1584
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1585

1586 1587
                # create a detached Variable
                y = x.detach()
U
ustiniankw 已提交
1588

1589
        """
1590

1591 1592 1593 1594
        assert (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ), "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"
1595 1596 1597 1598 1599 1600

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
1601 1602
            stop_gradient=True,
        )
1603

1604 1605 1606
        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]}
        )
1607
        return output
1608

1609
    @fake_interface_only
1610
    def numpy(self):
1611
        """
J
Jiabin Yang 已提交
1612
        **Notes**:
T
tianshuo78520a 已提交
1613
            **This API is ONLY available in Dygraph mode**
1614

J
Jiabin Yang 已提交
1615
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1616 1617 1618 1619 1620

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1621
            ndarray: dtype is same as current Variable
1622 1623 1624 1625 1626 1627

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1628
                from paddle.fluid.dygraph import Linear
1629 1630 1631 1632
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1633
                    linear = Linear(32, 64)
1634
                    data = to_variable(data)
1635
                    x = linear(data)
1636 1637 1638
                    print(x.numpy())

        """
1639
        pass
1640

1641
    @fake_interface_only
1642
    def backward(self, retain_graph=False):
1643
        """
J
Jiabin Yang 已提交
1644
        **Notes**:
T
tianshuo78520a 已提交
1645
            **This API is ONLY available in Dygraph mode**
1646

1647
        Run backward of current Graph which starts from current Tensor.
1648

J
Jiabin Yang 已提交
1649
        Args:
1650 1651 1652 1653
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1654

J
Jiabin Yang 已提交
1655 1656
        Returns:
            NoneType: None
1657 1658 1659 1660 1661

        Examples:
            .. code-block:: python

                import numpy as np
1662 1663
                import paddle
                paddle.disable_static()
1664 1665

                x = np.ones([2, 2], np.float32)
1666 1667 1668 1669 1670 1671 1672
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1673 1674
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1675
                loss.backward()
1676 1677

        """
1678
        pass
1679

1680
    @fake_interface_only
1681
    def gradient(self):
1682
        """
J
Jiabin Yang 已提交
1683
        **Notes**:
T
tianshuo78520a 已提交
1684
            **This API is ONLY available in Dygraph mode**
1685 1686 1687

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1688
        Returns:
1689
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1690 1691 1692 1693

        Examples:
            .. code-block:: python

1694
                import paddle
1695 1696 1697
                import paddle.fluid as fluid
                import numpy as np

1698
                # example1: return ndarray
1699 1700 1701 1702 1703 1704 1705
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
1706
                    ret2 = paddle.add_n(inputs2)
1707
                    loss2 = paddle.sum(ret2)
1708
                    loss2.backward()
1709 1710
                    print(loss2.gradient())

1711 1712
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
1713 1714 1715 1716 1717
                    embedding = paddle.nn.Embedding(
                        20,
                        32,
                        weight_attr='emb.w',
                        sparse=True)
1718 1719 1720 1721 1722 1723 1724
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1725
        """
1726
        pass
1727

1728
    @fake_interface_only
1729
    def clear_gradient(self):
1730
        """
J
Jiabin Yang 已提交
1731
        **Notes**:
T
tianshuo78520a 已提交
1732
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1733 1734

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1735

J
Jiabin Yang 已提交
1736
        Clear  (set to ``0`` ) the Gradient of Current Variable
1737 1738 1739 1740 1741 1742

        Returns:  None

        Examples:
            .. code-block:: python

1743
                import paddle
1744 1745 1746 1747 1748 1749 1750 1751 1752 1753
                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
1754
                    ret2 = paddle.add_n(inputs2)
1755
                    loss2 = paddle.sum(ret2)
1756
                    loss2.backward()
1757 1758 1759 1760 1761
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1762
        pass
X
Xin Pan 已提交
1763

1764 1765 1766 1767
    @fake_interface_only
    def register_hook(self, hook):
        pass

1768
    def __str__(self):
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1785 1786
                import paddle
                import paddle.static as static
1787

1788 1789 1790
                paddle.enable_static()

                cur_program = static.Program()
1791 1792 1793 1794 1795 1796
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1797 1798
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1799 1800 1801 1802
        if (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ):
1803
            dtype_str = str(self.dtype).split('.')[1]
1804 1805 1806 1807 1808 1809 1810
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".format(
                name=self.name,
                type=type_str,
                shape=self.shape,
                dtype=dtype_str,
                stop_gradient=self.stop_gradient,
            )
1811
        else:
1812
            var_str = "{name} : {type})".format(name=self.name, type=type_str)
1813

1814
        if self.is_parameter:
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1825 1826 1827 1828
        from paddle.distributed.auto_parallel.dist_context import (
            get_default_distributed_context,
        )

1829
        dist_context = get_default_distributed_context()
1830 1831
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1832 1833 1834
            var_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_tensor
            )
1835

1836
        return var_str
Y
Yang Yang(Tony) 已提交
1837

F
update  
fengjiayi 已提交
1838
    def to_string(self, throw_on_error, with_details=False):
1839 1840 1841
        """
        Get debug string.

J
Jiabin Yang 已提交
1842 1843 1844 1845 1846
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1847

1848 1849
        Returns:
            str: The debug string.
1850 1851 1852 1853 1854

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1855
                import paddle
1856

1857
                paddle.enable_static()
1858 1859 1860 1861 1862
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1863
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1864
                print("=============with detail===============")
1865
                print(new_variable.to_string(True, True))
1866
        """
1867
        assert isinstance(throw_on_error, bool) and isinstance(
1868 1869
            with_details, bool
        )
1870
        protostr = self.desc.serialize_to_string()
1871
        proto = framework_pb2.VarDesc.FromString(bytes(protostr))
F
update  
fengjiayi 已提交
1872 1873
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1874
            additional_attr = ("error_clip",)
F
update  
fengjiayi 已提交
1875
            for attr_name in additional_attr:
1876
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
1877

F
update  
fengjiayi 已提交
1878
        return res_str
1879 1880 1881

    __repr__ = __str__

1882 1883 1884
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
1885

1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1909
    @property
1910
    def stop_gradient(self):
J
Jiabin Yang 已提交
1911 1912 1913
        """
        Indicating if we stop gradient from current Variable

1914
        **Notes: This Property has default value as** ``True`` **in** Dygraph **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``
J
Jiabin Yang 已提交
1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1926 1927
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1928 1929 1930
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1931 1932
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1933 1934 1935 1936
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1937
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1938 1939
                assert (out1.gradient() == 0).all()
        """
1940
        return self.desc.stop_gradient()
1941

1942 1943
    @stop_gradient.setter
    def stop_gradient(self, s):
1944
        self.desc.set_stop_gradient(s)
1945

1946 1947
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1948 1949 1950 1951 1952 1953 1954 1955
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

1956
            **2. In** Dygraph **mode, this property should not be changed**
J
Jiabin Yang 已提交
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1969
        return self.desc.persistable()
1970

Y
Yu Yang 已提交
1971 1972
    @persistable.setter
    def persistable(self, p):
1973
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1974

1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
2000 2001
    @property
    def name(self):
J
Jiabin Yang 已提交
2002 2003 2004
        """
        Indicating name of current Variable

2005
        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** Dygraph **mode. This is how we achieve Parameter sharing**
J
Jiabin Yang 已提交
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
2018
        return self.desc.name()
Y
Yu Yang 已提交
2019

2020 2021 2022 2023 2024 2025
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
2026 2027
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
2028

2029 2030 2031 2032 2033 2034
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
2035
          print(x.grad_name) # output is ``x@GRAD``
2036 2037 2038 2039

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
2040 2041
    @name.setter
    def name(self, new_name):
2042
        self.desc.set_name(new_name)
T
typhoonzero 已提交
2043

Y
Yu Yang 已提交
2044 2045
    @property
    def shape(self):
J
Jiabin Yang 已提交
2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
2063
        # convert to tuple, make it as same as numpy API.
2064
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
2065 2066

    @property
F
fengjiayi 已提交
2067
    def dtype(self):
J
Jiabin Yang 已提交
2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
2084
        return self.desc.dtype()
Y
Yu Yang 已提交
2085 2086 2087

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
2088 2089 2090 2091 2092 2093 2094 2095
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

2096
            **2. Don't support this property in** Dygraph **mode, it's value should be** ``0(int)``
J
Jiabin Yang 已提交
2097 2098 2099 2100

        Examples:
          .. code-block:: python

2101
            import paddle
J
Jiabin Yang 已提交
2102
            import paddle.fluid as fluid
2103 2104

            paddle.enable_static()
J
Jiabin Yang 已提交
2105 2106 2107 2108 2109 2110 2111
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
2112 2113
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
2114 2115
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
2116
        return self.desc.lod_level()
Y
Yu Yang 已提交
2117

Y
Yu Yang 已提交
2118 2119
    @property
    def type(self):
J
Jiabin Yang 已提交
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
2136
        return self.desc.type()
Y
Yu Yang 已提交
2137

2138 2139 2140
    @property
    def T(self):
        """
U
ustiniankw 已提交
2141

2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
U
ustiniankw 已提交
2160

2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
2173 2174
            stop_gradient=False,
        )
2175 2176 2177 2178 2179
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
2180 2181 2182 2183 2184 2185 2186 2187 2188
            stop_gradient=False,
        )

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out], 'XShape': [input_shape]},
            attrs={'axis': perm},
        )
2189 2190
        return out

2191 2192 2193
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
2194
        Variable. It remains in the current graph, that is, the cloned Variable
2195 2196 2197 2198
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
U
ustiniankw 已提交
2199
            Variable, The cloned Variable.
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
2219 2220
            stop_gradient=self.stop_gradient,
        )
2221

2222 2223 2224
        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]}
        )
2225 2226
        return output

W
Wu Yi 已提交
2227
    def _set_error_clip(self, error_clip):
2228
        """
U
ustiniankw 已提交
2229

2230 2231 2232 2233 2234 2235 2236
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
U
ustiniankw 已提交
2237

2238
        """
2239 2240
        self.error_clip = error_clip

2241 2242
    def _set_info(self, key, value):
        """
U
ustiniankw 已提交
2243

2244 2245 2246 2247 2248 2249
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

2250
        Returns:
2251
            None
U
ustiniankw 已提交
2252

2253 2254 2255 2256 2257 2258 2259
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
U
ustiniankw 已提交
2260

2261 2262 2263 2264 2265
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

2266
        Returns:
2267
            object
U
ustiniankw 已提交
2268

2269 2270 2271 2272 2273
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

2274 2275
    def _slice_indices(self, slice, length):
        """
U
ustiniankw 已提交
2276

2277
        Reference implementation for the slice.indices method.
U
ustiniankw 已提交
2278

2279 2280 2281 2282 2283 2284 2285 2286
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
2287
            raise ValueError("slice step can not be zero")
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
2298 2299 2300
            start = (
                max(start + length, lower) if start < 0 else min(start, upper)
            )
2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
2346 2347 2348
                if (index > 0 and index >= self.shape[index]) or (
                    index < 0 and (index + self.shape[index]) < 0
                ):
2349
                    raise IndexError("invalid index")
2350 2351 2352 2353 2354
                start = (
                    max(start + self.shape[index], 0)
                    if start < 0
                    else min(start, self.shape[index])
                )
2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2368
    def _cloneVar(self, copy=False):
2369 2370
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2371
                name=unique_name.generate_with_ignorable_key(self.name),
2372 2373
                dtype=self.dtype,
            )
2374 2375 2376 2377
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2378
        new_var = self._cloneVar()
2379 2380 2381 2382 2383 2384
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes, 'starts': starts, 'ends': ends},
        )
2385 2386 2387
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2388
        new_var = self._cloneVar()
2389 2390 2391 2392 2393 2394 2395 2396
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={
                'axis': axis,
            },
        )
2397 2398 2399 2400 2401
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2402
                return self._cloneVar(True)
2403 2404 2405 2406 2407 2408 2409
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
2410 2411 2412
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2413 2414 2415
                        start += step
                else:
                    while start > stop:
2416 2417 2418
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2419 2420 2421 2422
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2423
                return self._cloneVar(True)
2424
            index = int(item)
2425 2426 2427
            if (index > 0 and index >= self.shape[axis]) or (
                index < 0 and (index + self.shape[axis]) < 0
            ):
2428 2429 2430 2431 2432 2433
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2434
        return _getitem_impl_(self, item)
2435

2436
    def __setitem__(self, item, value):
2437
        return _setitem_impl_(self, item, value)
2438

2439 2440
    def get_value(self, scope=None):
        """
2441
        Get the value of variable in given scope.
2442 2443

        Args:
2444
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2445 2446 2447 2448
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
U
ustiniankw 已提交
2449
            Tensor, the value in given scope.
2450 2451 2452 2453 2454

        Examples:
            .. code-block:: python

                import paddle
2455
                import paddle.static as static
2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
2480 2481
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file.
2482 2483
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
2484

2485 2486
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2487 2488 2489 2490
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2491 2492 2493 2494 2495

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
2496 2497 2498
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2499 2500 2501 2502 2503
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
U
ustiniankw 已提交
2504

2505
        Set the value to the tensor in given scope.
2506 2507 2508

        Args:
            value(Tensor/ndarray) : The value to be set.
2509
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2510 2511 2512 2513 2514
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
2515

2516 2517 2518 2519
        Examples:
            .. code-block:: python

                import paddle
2520
                import paddle.static as static
2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
U
ustiniankw 已提交
2544

2545 2546 2547
        '''

        # The 'framework' is a low-level module, and 'executor'
2548
        # can not be imported at the begainning of this file.
2549 2550 2551 2552 2553
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
2554 2555 2556 2557
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".format(
                    type(value)
                )
            )
2558 2559 2560

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2561 2562 2563 2564
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2565 2566 2567 2568 2569 2570

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
2571 2572 2573
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2574 2575 2576 2577 2578 2579 2580 2581 2582 2583

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
2584 2585 2586 2587
                    "{} expected a shape {}, but the received shape is {}.".format(
                        self.name, list(t.shape()), list(value_shape)
                    )
                )
2588 2589 2590 2591 2592 2593 2594 2595 2596 2597

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2598 2599 2600 2601
        elif p.is_npu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.NPUPlace(p.npu_device_id())
2602 2603 2604 2605
        elif p.is_mlu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.MLUPlace(p.mlu_device_id())
2606 2607 2608 2609 2610 2611 2612
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2613 2614
    def size(self):
        """
U
ustiniankw 已提交
2615

2616 2617 2618
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
U
ustiniankw 已提交
2619
            Variable, the number of elements for current Variable
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
U
ustiniankw 已提交
2633

2634 2635 2636 2637
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
2638 2639
            dtype=core.VarDesc.VarType.INT64,
        )
2640

2641 2642 2643
        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]}
        )
2644 2645
        return output

2646 2647
    def _set_attr(self, name, val):
        """
U
ustiniankw 已提交
2648

2649 2650 2651 2652 2653
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
U
ustiniankw 已提交
2654

2655 2656 2657 2658 2659
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
U
ustiniankw 已提交
2660

2661 2662 2663 2664 2665 2666
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2667 2668
            bool, True if has this attribute.

2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

2690
    def attr(self, name):
2691 2692 2693 2694 2695 2696 2697
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2698
            int|str|list, The attribute value. The return value
2699 2700 2701 2702 2703
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
2704
    def dist_attr(self):
2705
        """
2706
        Get distributed attribute of this Variable.
2707
        """
2708
        return self.desc.dist_attr
2709

2710 2711
    @dist_attr.setter
    def dist_attr(self, dist_attr):
2712
        """
2713
        Set distributed attribute of this Variable.
2714
        """
2715
        self.desc.dist_attr = dist_attr
2716

Y
Yu Yang 已提交
2717

F
fengjiayi 已提交
2718 2719 2720
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2721

2722 2723
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2724 2725 2726 2727
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2728
        op_proto = framework_pb2.OpProto.FromString(bytes(pbstr))
F
fengjiayi 已提交
2729 2730 2731 2732
        ret_values.append(op_proto)
    return ret_values


2733
class OpProtoHolder:
2734 2735 2736 2737
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2738 2739 2740 2741 2742 2743 2744 2745
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
2746 2747
            self.__class__, '_instance'
        ), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2748 2749 2750 2751 2752 2753
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2754 2755 2756 2757 2758 2759 2760 2761
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2762 2763
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2764 2765
        return self.op_proto_map[type]

2766 2767
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2768
        custom_op_names = []
2769 2770 2771
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2772 2773 2774
                custom_op_names.append(proto.type)

        return custom_op_names
2775

2776 2777 2778
    def has_op_proto(self, type):
        return type in self.op_proto_map

2779 2780 2781 2782
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2783
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2784
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2785
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
2786
            core.op_proto_and_checker_maker.kOpDeviceAttrName(),
2787 2788
        }

F
fengjiayi 已提交
2789

2790
class Operator:
2791
    """
2792 2793 2794 2795 2796 2797 2798
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2799
        type(str): The type of operator. Default None.
2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2820
        Block.append_op or Block._prepend_op instead.
2821 2822 2823 2824

    Examples:
        .. code-block:: python

2825
            import paddle.fluid as fluid
2826
            cur_program = fluid.Program()
2827 2828 2829 2830 2831
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2832
    """
2833

2834
    OP_WITHOUT_KERNEL_SET = {
2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865
        'feed',
        'fetch',
        'recurrent',
        'go',
        'rnn_memory_helper_grad',
        'conditional_block',
        'while',
        'send',
        'recv',
        'listen_and_serv',
        'fl_listen_and_serv',
        'ncclInit',
        'select',
        'checkpoint_notify',
        'gen_bkcl_id',
        'c_gen_bkcl_id',
        'gen_nccl_id',
        'c_gen_nccl_id',
        'c_comm_init',
        'c_sync_calc_stream',
        'c_sync_comm_stream',
        'queue_generator',
        'dequeue',
        'enqueue',
        'heter_listen_and_serv',
        'c_wait_comm',
        'c_wait_compute',
        'c_gen_hccl_id',
        'c_comm_init_hccl',
        'copy_cross_scope',
        'c_gen_cncl_id',
2866
    }
2867

2868 2869 2870
    def __init__(
        self, block, desc, type=None, inputs=None, outputs=None, attrs=None
    ):
2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
        # read attr type index from op proto to avoid unexpected type
        # conversions, e.g. narrowing conversion like double to float
        try:
            proto = OpProtoHolder.instance().get_op_proto(type)
            self._attr_types = {}
            for attr in proto.attrs:
                self._attr_types[attr.name] = attr.type
        except ValueError:
            pass

J
Jiabin Yang 已提交
2881
        if _non_static_mode():
2882 2883
            if type is None:
                raise ValueError(
2884 2885
                    "`type` to initialized an Operator can not be None."
                )
J
Jiabin Yang 已提交
2886
            self._type = type
M
minqiyang 已提交
2887
            self.attrs = attrs if attrs else {}
2888
        else:
2889 2890
            self.legacy_attrs = attrs if attrs else {}

2891 2892 2893 2894 2895 2896 2897 2898 2899
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

2900
            # attr for static graph mode cuda graph
2901 2902
            self._cuda_graph_attr = _current_cuda_graph_mode

2903 2904 2905
            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
2906
                op_attrs[
2907 2908
                    op_maker.kOpRoleAttrName()
                ] = self.block.program._op_role
2909 2910

            role_var_name = op_maker.kOpRoleVarAttrName()
2911 2912 2913 2914
            if (
                len(self.block.program._op_role_var) != 0
                and role_var_name not in op_attrs
            ):
2915
                op_attrs[role_var_name] = self.block.program._op_role_var
2916 2917 2918 2919 2920

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2921 2922 2923 2924 2925
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2926 2927 2928
                return
            if type is None:
                raise ValueError(
2929 2930
                    "`type` to initialized an Operator can not be None."
                )
2931 2932
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2933 2934 2935
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
2936
                        '  File "{}", line {}, in {}'.format(
2937 2938 2939 2940 2941 2942
                            frame[0], frame[1], frame[2]
                        )
                    )
                    op_attrs[callstack_var_name].append(
                        '    {}'.format(frame[3])
                    )
2943 2944 2945 2946 2947 2948 2949

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2950 2951 2952 2953 2954 2955 2956 2957
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
2958 2959 2960
                    warnings.warn(
                        "The Op(%s) is not support to set device." % type
                    )
2961
                if 'force_cpu' in op_attrs:
2962
                    if (
2963 2964
                        type == 'less_than'
                        and op_attrs['force_cpu'] is not None
2965
                    ) or op_attrs['force_cpu'] != False:
2966 2967 2968
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
2969 2970
                            "used at the same time." % type
                        )
2971
            if _current_pipeline_stage is not None:
2972 2973 2974 2975 2976
                pipeline_attr_name = (
                    'pipeline_stage' + core.kAutoParallelSuffix()
                )
                self._update_desc_attr(
                    pipeline_attr_name, _current_pipeline_stage
2977
                )
2978

2979 2980 2981 2982 2983 2984 2985 2986 2987
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
2988 2989 2990
                    assert (
                        found or in_proto.dispensable
                    ), "Input {} not found".format(in_proto.name)
2991 2992
                    if found:
                        in_args = inputs[in_proto.name]
2993
                        if not isinstance(in_args, (list, tuple)):
2994 2995 2996 2997
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
2998 2999
                                % (in_proto.name, len(in_args))
                            )
3000
                        in_arg_names = []
3001
                        for index, arg in enumerate(in_args):
3002
                            if isinstance(arg, str):
3003
                                in_arg_names.append(arg)
3004
                            elif isinstance(arg, bytes):
3005
                                in_arg_names.append(arg.decode())
3006
                            elif isinstance(arg, (Variable, core.VarBase)):
3007
                                in_arg_names.append(arg.name)
3008
                            else:
3009
                                raise TypeError(
3010 3011
                                    f"The type of '%{in_proto.name}' in operator {type} should be "
                                    f"one of [str, bytes, Variable]. but received : {arg}"
3012
                                )
3013 3014 3015 3016 3017 3018 3019 3020 3021
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
3022
                        raise ValueError(
3023 3024 3025 3026 3027 3028
                            (
                                "Incorrect setting for output(s) of "
                                "operator \"%s\", should set: [%s]."
                            )
                            % (type, m.name)
                        )
3029 3030 3031 3032 3033 3034 3035 3036 3037
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
3038 3039
                            % (out_proto.name, len(out_args))
                        )
3040 3041
                    out_arg_names = []
                    for arg in out_args:
3042
                        if isinstance(arg, str):
3043 3044
                            out_arg_names.append(arg)
                        else:
3045
                            out_arg_names.append(arg.name)
3046
                        # TODO(minqiyang): could we remove variable's op in static graph mode?
J
Jiabin Yang 已提交
3047
                        if not _non_static_mode():
3048
                            if isinstance(arg, str):
3049 3050 3051
                                block.var(arg).op = self
                            else:
                                arg.op = self
3052 3053
                    self.desc.set_output(out_proto.name, out_arg_names)

3054
            extra_attrs_map = core.get_op_extra_attrs(type)
3055 3056 3057 3058 3059
            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
3060 3061 3062
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
3063 3064 3065
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)
3066
                for attr_name in extra_attrs_map.keys():
3067 3068 3069 3070 3071 3072
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
                        self._update_desc_attr(
                            attr_name, extra_attrs_map[attr_name]
                        )
3073 3074
                    else:
                        self._update_desc_attr(attr_name, op_attrs[attr_name])
3075

J
jianghaicheng 已提交
3076 3077
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
3078
                if global_ipu_index >= 0:
3079 3080 3081
                    self._update_desc_attr(
                        ipu_index_attr_name, global_ipu_index
                    )
3082
                if global_ipu_stage >= 0:
3083 3084 3085
                    self._update_desc_attr(
                        ipu_stage_attr_name, global_ipu_stage
                    )
J
jianghaicheng 已提交
3086

3087
            self.desc.check_attrs()
3088 3089 3090 3091 3092

            # record all attrs needed by creating op
            for item in self.desc.attr_names():
                self.legacy_attrs[item] = self.desc.attr(item)

3093 3094 3095 3096
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
3097
    def _has_kernel(self, op_type):
3098 3099
        return op_type not in self.OP_WITHOUT_KERNEL_SET

3100 3101 3102 3103
    def _get_runtime_attrs(self):
        """Record all attrs needed by creating op. This api is only for to_prim process."""
        return self.legacy_attrs

Y
Yang Yang(Tony) 已提交
3104
    def to_string(self, throw_on_error):
3105
        """
3106 3107
        Get debug string.

3108
        Args:
3109 3110
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
3111

3112 3113
        Returns:
            str: The debug string.
3114 3115

        """
3116
        protostr = self.desc.serialize_to_string()
3117
        proto = framework_pb2.OpDesc.FromString(bytes(protostr))
Y
Yang Yang(Tony) 已提交
3118 3119
        return _debug_string_(proto, throw_on_error)

3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3152
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3153 3154
            type(skip_op_callstack)
        )
3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

3181 3182 3183
            attr_type = self.desc.attr_type(name, True)
            if attr_type == core.AttrType.VAR:
                attr_var_name = self.desc.attr(name, True).name()
3184 3185 3186
                a = "{name} = Var['{value}']".format(
                    name=name, type=attr_type, value=attr_var_name
                )
3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.VARS:
                attr_var_names = [
                    "'%s'" % var.name() for var in self.desc.attr(name, True)
                ]
                a = "{name} = Vars[{value}]".format(
3197 3198
                    name=name, type=attr_type, value=','.join(attr_var_names)
                )
3199 3200 3201 3202 3203
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3204 3205
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
3206 3207
                    name=name, type=attr_type, value=self._block_attr_id(name)
                )
3208 3209 3210 3211 3212 3213 3214
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
3215 3216
                    name=name, type=attr_type, value=self._blocks_attr_ids(name)
                )
3217 3218 3219 3220 3221
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3222
            # it is bytes of serialized protobuf
3223 3224 3225 3226 3227
            if (
                is_compiled_with_cinn()
                and self.type == 'cinn_launch'
                and name == 'compilation_key'
            ):
3228 3229
                key = self.desc.attr(name)
                v = core.get_serialize_comile_key(key)
3230 3231 3232 3233 3234 3235 3236 3237 3238
                prog = Program()
                prog = prog.parse_from_string(v)
                s = prog._to_readable_code()
                lines = s.split('\n')
                value = '\n'.join(['      ' + line for line in lines])
                value = '\n' + value
            else:
                value = self.desc.attr(name)

3239 3240 3241
            a = "{name} = {value}".format(
                name=name, type=attr_type, value=value
            )
3242

3243 3244 3245 3246
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

3247 3248 3249 3250
        from paddle.distributed.auto_parallel.dist_context import (
            get_default_distributed_context,
        )

3251
        dist_context = get_default_distributed_context()
3252 3253
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
3254 3255 3256
            attrs_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_op
            )
3257

3258
        if outputs_str != "{}":
3259 3260 3261 3262 3263 3264
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".format(
                outputs=outputs_str,
                op_type=self.type,
                inputs=inputs_str,
                attrs=attrs_str,
            )
3265
        else:
3266 3267 3268
            op_str = "{op_type}(inputs={inputs}, {attrs})".format(
                op_type=self.type, inputs=inputs_str, attrs=attrs_str
            )
3269 3270
        return op_str

Y
Yang Yang(Tony) 已提交
3271
    def __str__(self):
3272
        return self._to_readable_code()
3273 3274 3275

    __repr__ = __str__

F
fengjiayi 已提交
3276 3277
    @property
    def type(self):
3278
        return self.desc.type()
F
fengjiayi 已提交
3279 3280

    def input(self, name):
3281
        r"""
U
ustiniankw 已提交
3282

3283
        Get the input arguments according to the input parameter name.
3284

3285 3286
        Args:
            name(str): The input parameter name.
3287

3288
        Returns:
U
ustiniankw 已提交
3289
            list, return the list of argument names that associated with \
3290
                the specific parameter name.
U
ustiniankw 已提交
3291

3292
        """
F
fengjiayi 已提交
3293 3294
        return self.desc.input(name)

W
Wu Yi 已提交
3295
    def _rename_input(self, old_name, new_name):
3296 3297 3298 3299 3300 3301 3302 3303 3304 3305
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
3306
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
3307

W
Wu Yi 已提交
3308
    def _rename_output(self, old_name, new_name):
3309 3310 3311 3312 3313 3314 3315 3316 3317 3318
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
3319
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
3320

F
fengjiayi 已提交
3321 3322 3323 3324
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
3325 3326 3327 3328 3329 3330 3331 3332
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
3333
    def output(self, name):
3334
        r"""
3335
        Get output arguments by the output parameter name.
3336

3337 3338
        Args:
            name(str): The output parameter name.
3339

3340 3341 3342
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
3343
        """
F
fengjiayi 已提交
3344 3345 3346 3347 3348 3349
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

3350 3351 3352 3353 3354 3355
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
3356 3357
            "Can't find op itself in it's block. It could be a bug of Paddle."
        )
3358

F
fengjiayi 已提交
3359
    def has_attr(self, name):
3360
        """
3361 3362
        Whether this Operator has the attribute with name or not.

3363
        Args:
3364
            name(str): the attribute name.
3365

3366 3367
        Returns:
            bool: True if has this attribute.
3368 3369

        """
F
fengjiayi 已提交
3370 3371 3372
        return self.desc.has_attr(name)

    def attr_type(self, name):
3373
        """
3374
        Get the type of attribute by attribute's name.
3375

3376 3377
        Args:
            name(str): the attribute name.
3378

3379 3380
        Returns:
            core.AttrType: the attribute type.
3381
        """
3382
        return self.desc.attr_type(name, True)
F
fengjiayi 已提交
3383

W
Wu Yi 已提交
3384
    def _set_attr(self, name, val):
3385 3386 3387 3388 3389 3390 3391 3392 3393 3394
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
3395 3396
        self._update_desc_attr(name, val)

3397 3398 3399
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
3411 3412 3413 3414 3415
        if isinstance(val, Variable):
            self.desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            self.desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
Q
Qiyang Min 已提交
3416
            self.desc.set_block_attr(name, val.desc)
3417
        elif isinstance(val, list) and val and _all_is_type(val, Block):
3418
            self.desc.set_blocks_attr(name, [v.desc for v in val])
3419 3420 3421
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
Q
Qiyang Min 已提交
3422 3423
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
            self._update_desc_plain_attr(name, val)

    def _update_desc_plain_attr(self, name, val):
        desc = self.desc
        if not hasattr(self, "_attr_types") or (name not in self._attr_types):
            desc._set_attr(name, val)
            return

        type_index = self._attr_types[name]
        if type_index == core.AttrType.BOOL:
            desc._set_bool_attr(name, val)
        elif type_index == core.AttrType.INT:
            desc._set_int32_attr(name, val)
        elif type_index == core.AttrType.LONG:
            desc._set_int64_attr(name, val)
        elif type_index == core.AttrType.FLOAT:
            desc._set_float32_attr(name, val)
        # elif type_index == core.AttrType.FLOAT64:
        #     desc._set_float64_attr(name, val)
        elif type_index == core.AttrType.STRING:
            desc._set_str_attr(name, val)
        elif type_index == core.AttrType.BOOLS:
            desc._set_bools_attr(name, val)
        elif type_index == core.AttrType.INTS:
            desc._set_int32s_attr(name, val)
        elif type_index == core.AttrType.LONGS:
            desc._set_int64s_attr(name, val)
        elif type_index == core.AttrType.FLOATS:
            desc._set_float32s_attr(name, val)
        elif type_index == core.AttrType.FLOAT64S:
            desc._set_float64s_attr(name, val)
        elif type_index == core.AttrType.STRINGS:
            desc._set_strs_attr(name, val)
        else:
            # defaults to old methods
            desc._set_attr(name, val)
Y
yuyang18 已提交
3460

F
fengjiayi 已提交
3461 3462
    @property
    def attr_names(self):
3463
        return self.desc.attr_names(True)
F
fengjiayi 已提交
3464 3465

    def attr(self, name):
3466
        """
3467 3468
        Get the attribute by name.

3469
        Args:
3470
            name(str): the attribute name.
3471

3472 3473
        Returns:
            bool|int|str|float|list: The attribute value. The return value
3474 3475
            can be any valid attribute type.
        """
F
fengjiayi 已提交
3476
        return self.desc.attr(name)
Y
Yu Yang 已提交
3477

W
Wu Yi 已提交
3478
    def _block_attr_id(self, name):
3479
        """
G
gongweibao 已提交
3480
        Get the block attribute's id by name.
3481

3482 3483
        Args:
            name(str): the attribute name.
3484

3485 3486
        Returns:
            int: the block index.
3487
        """
W
Wu Yi 已提交
3488
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
3489

W
Wu Yi 已提交
3490
    def _block_attr(self, name):
G
gongweibao 已提交
3491 3492 3493 3494 3495 3496 3497 3498 3499 3500
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
3501
        id = self._block_attr_id(name)
3502
        assert id >= 0 and id < len(self.block.program.blocks)
G
gongweibao 已提交
3503 3504
        return self.block.program.blocks[id]

W
Wu Yi 已提交
3505
    def _blocks_attr(self, name):
G
gongweibao 已提交
3506 3507 3508 3509 3510 3511 3512 3513 3514 3515
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
3516
        for i in self._blocks_attr_ids(name):
3517
            assert i >= 0 and i < len(self.block.program.blocks)
G
gongweibao 已提交
3518 3519 3520 3521
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
3522
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
3523 3524 3525 3526 3527 3528 3529 3530 3531 3532
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
3533
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
3534

3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545
    def _var_attr(self, name):
        """
        Get the Variable attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variable: the Variable attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3546 3547 3548 3549 3550
        assert (
            attr_type == core.AttrType.VAR
        ), "Required type attr({}) is Variable, but received {}".format(
            name, attr_type
        )
3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
        attr_var_name = self.desc.attr(name, True).name()
        return self.block._var_recursive(attr_var_name)

    def _vars_attr(self, name):
        """
        Get the Variables attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variables: the Variables attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3565 3566 3567 3568 3569
        assert (
            attr_type == core.AttrType.VARS
        ), "Required type attr({}) is list[Variable], but received {}".format(
            name, attr_type
        )
3570 3571 3572 3573 3574 3575
        attr_vars = [
            self.block._var_recursive(var.name())
            for var in self.desc.attr(name, True)
        ]
        return attr_vars

J
JiayiFeng 已提交
3576
    def all_attrs(self):
F
fengjiayi 已提交
3577
        """
3578 3579 3580
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3581
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3582 3583 3584 3585
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
3586
            attr_type = self.desc.attr_type(n, True)
G
gongweibao 已提交
3587
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3588
                attr_map[n] = self._block_attr(n)
3589
            elif attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3590
                attr_map[n] = self._blocks_attr(n)
3591 3592 3593 3594 3595 3596
            elif attr_type == core.AttrType.VAR:
                attr_map[n] = self._var_attr(n)
            elif attr_type == core.AttrType.VARS:
                attr_map[n] = self._vars_attr(n)
            else:
                attr_map[n] = self.attr(n)
G
gongweibao 已提交
3597

F
fengjiayi 已提交
3598 3599
        return attr_map

3600 3601 3602
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3603 3604 3605 3606

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3607 3608 3609
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3610 3611 3612 3613 3614 3615 3616 3617

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3618 3619
            return False

3620 3621 3622 3623 3624 3625
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3626
    @property
3627
    def dist_attr(self):
3628
        """
3629
        Get distributed attribute of this Variable.
3630
        """
3631
        return self.desc.dist_attr
3632

3633 3634
    @dist_attr.setter
    def dist_attr(self, dist_attr):
3635
        """
3636
        Set distributed attribute of this Variable.
3637
        """
3638
        self.desc.dist_attr = dist_attr
3639

Y
Yu Yang 已提交
3640

3641
class Block:
3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3656
        use `Program._create_block()` to create a block.
3657 3658 3659 3660

    Examples:
        .. code-block:: python

3661 3662 3663
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3664 3665 3666 3667 3668 3669 3670 3671 3672
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3673
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3674
        self.desc = program.desc.block(idx)
3675
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3676
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3677
        self.program = program
3678
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
3679

3680
    def __str__(self):
3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3715
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3716 3717
            type(skip_op_callstack)
        )
3718 3719 3720 3721 3722 3723 3724
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
3725 3726
                op._to_readable_code(skip_op_callstack)
            )
3727 3728
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3729

F
fengjiayi 已提交
3730 3731
    def to_string(self, throw_on_error, with_details=False):
        """
3732 3733
        Get debug string.

F
fengjiayi 已提交
3734 3735
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3736
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3737
            with_details(bool): more details about variables and parameters
3738 3739
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3740

3741 3742
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3743
        """
3744
        assert isinstance(throw_on_error, bool) and isinstance(
3745 3746
            with_details, bool
        )
F
fengjiayi 已提交
3747
        if with_details:
F
fengjiayi 已提交
3748
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3749
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
3750 3751 3752
                self.idx,
                self.parent_idx,
            )
3753
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3754
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
3755 3756
                    r"\n    \1", var.to_string(throw_on_error, with_details)
                )
F
fengjiayi 已提交
3757
            for op in self.ops:
F
fengjiayi 已提交
3758
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
3759 3760
                    r"\n    \1", op.to_string(throw_on_error)
                )
F
fengjiayi 已提交
3761 3762 3763
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3764
            proto = framework_pb2.BlockDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
3765 3766
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3767 3768 3769

    __repr__ = __str__

Y
Yu Yang 已提交
3770 3771
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3772
        return self.desc.parent
Y
Yu Yang 已提交
3773

Y
Yu Yang 已提交
3774 3775 3776 3777
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3778
    def _set_forward_block_idx(self, idx):
3779 3780 3781 3782 3783 3784 3785 3786 3787
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3788
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3789

3790 3791 3792 3793 3794 3795 3796 3797
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3798 3799
    @property
    def idx(self):
Y
Yu Yang 已提交
3800
        return self.desc.id
Y
Yu Yang 已提交
3801

Q
Qiao Longfei 已提交
3802
    def var(self, name):
3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3816
        if not isinstance(name, str):
M
minqiyang 已提交
3817
            raise TypeError(
3818 3819 3820
                "var require string as parameter, but get %s instead."
                % (type(name))
            )
Y
Yu Yang 已提交
3821 3822
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3823
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3824
        return v
Q
Qiao Longfei 已提交
3825

X
Xin Pan 已提交
3826
    def _find_var_recursive(self, name):
3827 3828 3829 3830 3831 3832 3833
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3834
            Variable: the Variable with the giving name. Or None if not found.
3835
        """
Y
Yu Yang 已提交
3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3860
        return None
Y
Yu Yang 已提交
3861

X
Xin Pan 已提交
3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3881

Q
Qiao Longfei 已提交
3882
    def all_parameters(self):
3883
        return list(self.iter_parameters())
3884

3885
    def iter_parameters(self):
3886 3887 3888 3889 3890
        return (
            item[1]
            for item in self.vars.items()
            if isinstance(item[1], Parameter)
        )
Q
Qiao Longfei 已提交
3891

Y
Yu Yang 已提交
3892
    def create_var(self, *args, **kwargs):
J
Jiabin Yang 已提交
3893
        if _non_static_mode():
L
Leo Chen 已提交
3894 3895
            var = _varbase_creator(*args, **kwargs)
        else:
3896 3897 3898
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3899
        return var
Y
Yu Yang 已提交
3900

Q
Qiao Longfei 已提交
3901 3902 3903
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3904
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3905 3906
        """
        Rename variable in vars and ops' inputs and outputs
3907 3908

        Args:
3909 3910
            name(str|bytes): the name that need to be renamed.
            new_name(str|bytes): the name that need to rename to.
3911 3912 3913 3914 3915 3916 3917 3918

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3919
        """
3920 3921
        # Ensure the type of name and new_name is str
        name = name.decode() if isinstance(name, bytes) else name
3922 3923 3924
        new_name = (
            new_name.decode() if isinstance(new_name, bytes) else new_name
        )
M
minqiyang 已提交
3925

T
typhoonzero 已提交
3926
        if not self.has_var(name):
3927
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3928 3929
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3930
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3931 3932 3933 3934 3935 3936
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3937
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3938 3939 3940 3941
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3942
        orig_var_type = v.type
3943
        self.desc._rename_var(name.encode(), new_name.encode())
W
Wu Yi 已提交
3944
        # NOTE: v is destroyed by C++ after calling _rename_var.
3945
        d = self.desc.find_var(new_name.encode())
T
typhoonzero 已提交
3946
        if var_type == "Parameter":
L
Leo Chen 已提交
3947
            if in_dygraph_mode():
3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958
                var = EagerParamBase(
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
3959
            else:
姜永久 已提交
3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971
                var = Parameter(
                    self,
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
T
typhoonzero 已提交
3972
        elif var_type == "Variable":
3973 3974 3975 3976 3977 3978 3979
            var = Variable(
                self,
                type=orig_var_type,
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient,
            )
T
wip  
typhoonzero 已提交
3980

W
Wu Yi 已提交
3981
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3982 3983 3984
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3985
        self._sync_with_cpp()
3986
        return var
T
typhoonzero 已提交
3987

3988 3989 3990
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
3991
        self.desc._remove_var(name.encode())
3992 3993
        del self.vars[name]

Y
Yu Yang 已提交
3994 3995
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3996
        param = None
L
Leo Chen 已提交
3997
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3998
            param = EagerParamBase(*args, **kwargs)
L
Leo Chen 已提交
3999
        else:
姜永久 已提交
4000
            param = Parameter(global_block, *args, **kwargs)
4001

4002
        if 'initializer' in kwargs:
4003 4004 4005 4006 4007

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
4008
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
4009
                        # are treated as initialization ops that cause error.
4010
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
4011 4012
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
4013 4014 4015
                            "c_broadcast",
                            "c_sync_comm_stream",
                            "coalesce_tensor",
4016
                        ]:
4017
                            continue
4018 4019 4020 4021 4022 4023 4024
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
4025 4026 4027 4028 4029 4030
                raise RuntimeError(
                    "param "
                    + param.name
                    + " is inited by multiple init ops "
                    + str(init_ops)
                )
4031
            elif init_ops_len == 1:
4032
                # TODO already inited, do nothing, should log a warning
4033 4034 4035
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
4036
        return param
Y
Yu Yang 已提交
4037

Y
Yu Yang 已提交
4038
    def append_op(self, *args, **kwargs):
4039 4040 4041 4042 4043 4044
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
J
Jiabin Yang 已提交
4045
        if _non_static_mode():
4046
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
4047
            inplace_map = kwargs.get("inplace_map", None)
J
Jiabin Yang 已提交
4048
            type = kwargs.get("type", None)
4049 4050 4051
            warnings.warn(
                "Op `%s` is executed through `append_op` under the dynamic mode, "
                "the corresponding API implementation needs to be upgraded to "
4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062
                "using `_C_ops` method." % type,
                DeprecationWarning,
            )
            op = Operator(
                block=self,
                desc=None,
                type=type,
                inputs=None,
                outputs=None,
                attrs=attrs,
            )
4063

M
minqiyang 已提交
4064 4065
            # record ops in tracer rather than blocks
            #
4066
            # TODO(minqiyang): add op stop_gradient support in static graph mode too.
L
lujun 已提交
4067
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
4068

4069 4070 4071 4072 4073 4074 4075 4076
            _dygraph_tracer().trace_op(
                type,
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
                inplace_map,
            )
M
minqiyang 已提交
4077
        else:
4078 4079
            from paddle.fluid.dygraph.base import param_guard

4080
            op_desc = self.desc.append_op()
4081 4082 4083 4084 4085 4086
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
4087 4088 4089 4090 4091 4092 4093 4094
                op = Operator(
                    block=self,
                    desc=op_desc,
                    type=kwargs.get("type", None),
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None),
                )
4095

M
minqiyang 已提交
4096
            self.ops.append(op)
M
minqiyang 已提交
4097

4098 4099
        return op

W
Wu Yi 已提交
4100
    def _insert_op(self, index, *args, **kwargs):
4101 4102 4103 4104 4105 4106 4107 4108 4109
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
4110
        self._sync_with_cpp()
F
fangshuixun007 已提交
4111
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
4112

4113 4114
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
4115
        Insert an Operator according to the giving arguments,
4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
4130 4131 4132 4133 4134 4135 4136 4137 4138
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
4139 4140
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
4141
        self.desc._remove_op(index, index + 1)
4142 4143
        del self.ops[index]

W
Wu Yi 已提交
4144
    def _slice_ops(self, start, end):
4145 4146 4147 4148 4149 4150 4151 4152 4153 4154
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
4155
        return self.ops[start:end]
Y
Yancey1989 已提交
4156

W
Wu Yi 已提交
4157
    def _prepend_op(self, *args, **kwargs):
J
Jiabin Yang 已提交
4158
        if _non_static_mode():
J
Jiabin Yang 已提交
4159 4160
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171
            op = Operator(
                self, None, type=type, inputs=None, outputs=None, attrs=attrs
            )

            _dygraph_tracer().trace_op(
                type,
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
            )
M
minqiyang 已提交
4172
        else:
4173
            op_desc = self.desc._prepend_op()
4174 4175 4176 4177 4178 4179 4180 4181
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None),
            )
M
minqiyang 已提交
4182
            self.ops.insert(0, op)
4183

Y
Yu Yang 已提交
4184 4185
        return op

W
Wu Yi 已提交
4186
    def _sync_with_cpp(self):
4187
        """
4188 4189
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
4190
        """
Q
Qiao Longfei 已提交
4191 4192 4193
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
4194 4195 4196 4197
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
4198 4199 4200 4201 4202 4203 4204 4205
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient,
                    )
4206
                else:
4207 4208 4209 4210 4211 4212
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient,
                    )
Q
Qiao Longfei 已提交
4213

4214
        # sync variables removed from c++ end
4215
        for var in list(self.vars.keys()):
4216
            if not self.desc.find_var(var.encode()):
4217 4218
                self.vars.pop(var)

Q
Qiao Longfei 已提交
4219
        # sync operators from cpp
4220 4221 4222 4223
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
4240 4241 4242 4243 4244

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
4245
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
4246 4247 4248 4249 4250 4251 4252

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

4253 4254 4255 4256 4257
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
4258 4259 4260 4261 4262 4263
                self.ops
            ) and ops_in_cpp_index < len(ops_in_cpp):
                if (
                    self.ops[ops_in_python_index].desc
                    != ops_in_cpp[ops_in_cpp_index]
                ):
4264 4265 4266 4267 4268
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
4269 4270 4271 4272
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
4273
    def _copy_param_info_from(self, other):
4274
        """
4275 4276
        Copy the information of parameters from the other block.

4277
        Args:
4278 4279 4280 4281 4282
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
4283 4284 4285 4286 4287

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
4288
            raise TypeError(
4289 4290
                "_copy_param_info_from should be invoked with Block"
            )
4291
        for p in other.iter_parameters():
4292 4293 4294
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
4295 4296
                # if the Parameter is pruned, v may be None
                continue
4297
            assert isinstance(v, Variable)
4298
            new_p = None
L
Leo Chen 已提交
4299
            if in_dygraph_mode():
4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311
                new_p = EagerParamBase(
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4312
            else:
姜永久 已提交
4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327
                new_p = Parameter(
                    block=self,
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR
                    else None,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4328 4329
            self.vars[new_p.name] = new_p

4330
    def _clone_variable(self, var, force_persistable=True):
4331 4332
        """
        Clone a variable into current block.
4333

4334 4335
        Args:
            var: the variable to be cloned.
4336 4337 4338
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
4339 4340

        Returns:
4341
            Variable: the new  variable cloned from 'var' in current block.
4342 4343
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
4344 4345 4346
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
4347 4348 4349
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
tangwei12 已提交
4350
        elif var.type == core.VarDesc.VarType.RAW:
4351 4352 4353
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
typhoonzero 已提交
4354 4355 4356 4357 4358 4359
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
4360
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4361
                is_data=var.is_data,
4362 4363
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4364 4365 4366 4367 4368 4369 4370
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
4371
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4372
                is_data=var.is_data,
4373 4374
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4375
        return ret_var
4376

Y
Yu Yang 已提交
4377

4378 4379 4380 4381
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
4382
# of some old Python Variables(all old Python Operators) may have
4383
# been destructed.
4384 4385 4386
def _apply_pass(
    main_program, startup_program, pass_name, pass_attrs={}, pass_attr_types={}
):
4387 4388 4389 4390
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
4391 4392 4393 4394 4395 4396 4397
    attrs = core.apply_pass(
        tmp_main_program,
        tmp_startup_program,
        pass_name,
        pass_attrs,
        pass_attr_types,
    )
4398 4399 4400 4401 4402
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


4403
class IrNode:
4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4415 4416 4417
        assert isinstance(
            node, core.Node
        ), 'node must be the instance of core.Node.'
4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

4499
    def remove_input_by_id(self, node_id):
4500 4501 4502 4503 4504 4505
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4506
        self.node.remove_input(node_id)
4507

4508
    def remove_input(self, node):
4509 4510 4511 4512
        """
        Remove a node from inputs.

        Args:
4513
            node(IrNode): the node being removed.
4514
        """
4515
        self.node.remove_input(node.node)
4516

4517
    def append_input(self, node):
4518 4519 4520 4521
        """
        Append a node in inputs.

        Args:
4522
            node(IrNode): the node being appended.
4523
        """
4524
        self.node.append_input(node.node)
4525 4526 4527 4528 4529 4530 4531 4532

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

4533
    def remove_output_by_id(self, node_id):
4534 4535 4536 4537 4538 4539
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4540
        self.node.remove_output(node_id)
4541

4542
    def remove_output(self, node):
4543 4544 4545 4546
        """
        Remove a node from outputs.

        Args:
4547
            node(IrNode): the node being removed.
4548
        """
4549
        self.node.remove_output(node.node)
4550

4551
    def append_output(self, node):
4552 4553 4554 4555
        """
        Append a node in outputs.

        Args:
4556
            node(IrNode): the node being appended.
4557
        """
4558
        self.node.append_output(node.node)
4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4593 4594 4595
        assert (
            isinstance(node, core.Node) and node.is_var()
        ), 'node must be the instance of core.Node and it must be a variable node.'
4596
        super().__init__(node)
4597 4598 4599 4600 4601 4602 4603 4604 4605
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
4606 4607 4608
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4609 4610 4611 4612 4613 4614 4615 4616 4617
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
4618 4619 4620
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4621 4622
        return self.node.var().persistable()

4623 4624 4625 4626 4627 4628 4629
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
4630 4631 4632
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4633 4634 4635 4636 4637 4638 4639 4640 4641
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
4642 4643 4644
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4645 4646 4647 4648 4649 4650 4651 4652 4653
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
4654 4655 4656
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4657 4658
        return self.node.var().shape()

4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4692 4693 4694
        assert (
            isinstance(node, core.Node) and node.is_op()
        ), 'node must be the instance of core.Node and it must be a operator node.'
4695
        super().__init__(node)
4696 4697 4698 4699 4700 4701 4702 4703 4704 4705
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
4706 4707 4708
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4709 4710
        self.node.op()._rename_input(old_input_name, new_input_name)

4711 4712 4713 4714 4715 4716 4717 4718
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
4719 4720 4721
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4722 4723
        self.node.op()._rename_output(old_output_name, new_output_name)

4724 4725 4726 4727 4728 4729 4730 4731 4732 4733
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4734 4735 4736
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4749 4750 4751
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4752 4753 4754 4755 4756 4757 4758 4759 4760
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
4761 4762 4763
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4764 4765
        return self.node.op().set_type(new_type)

4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
4780 4781 4782
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4783
        desc = self.node.op()
4784 4785 4786 4787 4788
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
4789
            desc.set_block_attr(name, val.desc)
4790
        elif isinstance(val, list) and val and _all_is_type(val, Block):
4791
            desc.set_blocks_attr(name, [v.desc for v in val])
4792 4793 4794
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
4795 4796 4797 4798
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4799 4800 4801 4802 4803 4804 4805
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
4806 4807 4808
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4809 4810 4811 4812 4813 4814 4815 4816 4817
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
4818 4819 4820
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4821 4822
        return self.node.op().output_arg_names()

4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4844
class IrGraph:
4845
    """
4846
    Python IrGraph. Beneath it is a core.Graph, which is used for
4847
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4848 4849
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4850 4851 4852 4853
    """

    def __init__(self, graph, for_test=False):
        """
4854 4855
        Construct an IrGraph using core.Graph.

4856 4857 4858 4859 4860
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
4861 4862
            graph, core.Graph
        ), 'graph must be the instance of core.Graph.'
4863 4864 4865
        self.graph = graph
        self._for_test = for_test

4866 4867 4868 4869
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4870 4871 4872
        Warns:
            The method only clones the graph structure, not its attributes.

4873 4874 4875
        Returns:
            IrGraph: A new and duplicated graph.
        """
4876
        g = self.graph.clone()
4877 4878
        return IrGraph(g, self._for_test)

4879
    def is_test(self):
4880 4881 4882
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4883 4884
        return self._for_test

W
WangZhen 已提交
4885
    def all_nodes(self):
4886 4887 4888
        """
        Return all nodes included in the graph as a set.
        """
4889
        return {IrNode(node) for node in self.graph.nodes()}
4890

4891
    def all_var_nodes(self):
4892 4893 4894
        """
        Return all variable nodes included in the graph as a set.
        """
4895
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4896

4897
    def all_persistable_nodes(self):
4898 4899 4900
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4901 4902
        persistable_nodes = set()
        for node in self.graph.nodes():
4903 4904 4905 4906 4907
            if (
                node.is_var()
                and node.var() is not None
                and node.var().persistable()
            ):
W
WangZhen 已提交
4908
                persistable_nodes.add(node)
4909
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4910

4911
    def all_op_nodes(self):
4912 4913 4914
        """
        Return all operator nodes included in the graph as a set.
        """
4915
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4916

4917 4918 4919 4920 4921 4922
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
4923
            IrGraph(self.graph.get_sub_graph(i), for_test=for_test)
4924 4925 4926 4927 4928 4929 4930 4931 4932
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4933
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4945
            IrVarNode: the created persistable variable node.
4946
        """
4947 4948 4949 4950 4951
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4952
        return IrVarNode(self.graph.create_var_node(var_desc))
4953 4954

    def create_var_node(self, name, var_type, shape, var_dtype):
4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4966
            IrVarNode: the created variable node.
4967 4968
        """

4969 4970 4971 4972
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4973
        return IrVarNode(self.graph.create_var_node(var_desc))
4974

4975 4976 4977 4978 4979 4980
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4981
    def create_var_node_from_desc(self, var_desc):
4982 4983 4984 4985 4986 4987 4988 4989
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4990
            IrVarNode: the created variable node.
4991
        """
4992
        return IrVarNode(self.graph.create_var_node(var_desc))
4993 4994

    def create_op_node(self, op_type, attrs, inputs, outputs):
4995 4996 4997 4998 4999 5000 5001
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
5002
            outputs(dict): the outputs of the operator node.
5003 5004

        Returns:
5005
            IrOpNode: the created operator node.
5006
        """
5007 5008
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
5009
        for attr, value in attrs.items():
5010
            self._update_desc_attr(op_desc, attr, value)
5011
        for input_name, var_nodes in inputs.items():
5012 5013
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
5014 5015 5016
            op_desc.set_input(
                input_name, [var_node.name() for var_node in var_nodes]
            )
5017
        for output_name, var_nodes in outputs.items():
5018 5019
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
5020 5021 5022
            op_desc.set_output(
                output_name, [var_node.name() for var_node in var_nodes]
            )
5023
        return IrOpNode(self.graph.create_op_node(op_desc))
5024 5025

    def create_op_node_from_desc(self, op_desc):
5026 5027 5028 5029 5030 5031 5032
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
5033
            IrOpNode: the created operator node.
5034
        """
5035
        return IrOpNode(self.graph.create_op_node(op_desc))
5036 5037

    def update_input_link(self, old_input_node, new_input_node, op_node):
5038 5039 5040 5041
        """
        Update the input's link of a operator node.

        Args:
5042 5043 5044
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
5045
        """
5046 5047 5048 5049 5050
        assert (
            old_input_node.node in self.graph.nodes()
            and new_input_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
5051 5052 5053 5054
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
5055
        op_node.rename_input(old_input_node.name(), new_input_node.name())
5056

5057 5058 5059 5060 5061 5062 5063 5064 5065
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
5066 5067 5068 5069 5070
        assert (
            old_output_node.node in self.graph.nodes()
            and new_output_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
5071 5072 5073 5074 5075 5076
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

5077
    def link_to(self, node_in, node_out):
5078 5079 5080 5081
        """
        Connect two nodes.

        Args:
5082 5083
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
5084
        """
5085
        assert node_in.node in self.graph.nodes(), (
5086 5087
            'node_in(%s) must be in the graph nodes.' % node_in.node.name()
        )
5088
        assert node_out.node in self.graph.nodes(), (
5089 5090
            'node_out(%s) must be in the graph nodes.' % node_out.node.name()
        )
5091 5092
        node_in.append_output(node_out)
        node_out.append_input(node_in)
5093 5094

    def safe_remove_nodes(self, remove_nodes):
5095 5096 5097 5098 5099 5100 5101
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
5102
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
5103 5104 5105 5106
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
5107 5108
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
5109

Z
Zhen Wang 已提交
5110 5111 5112 5113 5114 5115 5116 5117
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5118
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
5119 5120 5121 5122
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5123
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
5124 5125 5126
                        ]
                    else:
                        var_nodes[each_var_name].append(
5127 5128
                            self._find_node_by_name(node.outputs, each_var_name)
                        )
Z
Zhen Wang 已提交
5129 5130
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
5131
    def has_circle(self):
5132 5133 5134 5135 5136 5137
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
5138 5139 5140
        return core.has_circle(self.graph)

    def graph_num(self):
5141 5142 5143 5144 5145 5146
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
5147 5148 5149
        return core.graph_num(self.graph)

    def topology_sort(self):
5150 5151 5152
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
5153
        Notes: the `graph` can not contain a circle.
5154 5155

        Returns:
Z
Zhen Wang 已提交
5156
            list(IrNode): nodes in topology order.
5157
        """
5158
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
5159
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
5160 5161

    def build_adjacency_list(self):
5162 5163 5164 5165
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
5166
            dict{IrNode: set(IrNode)}: the adjacency list.
5167
        """
5168 5169
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
5170
        for k, v in adj_list.items():
5171 5172
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
5173

5174 5175 5176 5177 5178 5179 5180 5181
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
5182
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
5183 5184 5185 5186 5187
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

5188 5189
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
5190 5191 5192 5193
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True,
            )
5194 5195
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
5196 5197 5198
                print(
                    'The {} is saved as the dot filetype.'.format(dot_file_path)
                )
5199

5200
        remove_ctr_vars = set()
5201
        if remove_ctr_var:
5202
            for node in self.all_var_nodes():
5203 5204 5205
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
5206 5207
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

5208 5209
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
5210 5211 5212 5213 5214 5215
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
5216 5217 5218 5219
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
5220 5221
        if not os.path.exists(save_path):
            os.makedirs(save_path)
5222 5223 5224 5225 5226 5227 5228
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
5229 5230 5231
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
5232
        WARN: When the graph includes backward operator nodes, the
5233 5234 5235 5236 5237 5238
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
5239
        convert_pass = core.get_pass('graph_to_program_pass')
5240 5241
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
5242 5243 5244 5245
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

5246 5247 5248 5249 5250 5251 5252 5253
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
5254
        assert target_node is not None, (
5255 5256
            "Cannot find the target node (%s)in the giving set." % node_name
        )
5257 5258
        return target_node

5259 5260 5261 5262
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
5263 5264 5265 5266 5267
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
5268
            desc.set_block_attr(name, val.desc)
5269
        elif isinstance(val, list) and val and _all_is_type(val, Block):
5270
            desc.set_blocks_attr(name, [v.desc for v in val])
5271 5272 5273
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
5274 5275 5276 5277 5278
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


5279
class Program:
D
dzhwinter 已提交
5280
    """
5281
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
5282
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
5283
    it will contain nested block.
5284

J
Jiabin Yang 已提交
5285 5286 5287
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
5288

J
Jiabin Yang 已提交
5289
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
5290
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
5291 5292 5293 5294 5295 5296 5297
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
5298
    **Notes**:
5299 5300 5301
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
5302 5303

    Returns:
J
Jiabin Yang 已提交
5304
        Program: An empty Program.
D
dzhwinter 已提交
5305 5306

    Examples:
5307 5308
        .. code-block:: python

5309 5310 5311 5312
            import paddle
            import paddle.static as static

            paddle.enable_static()
5313

5314 5315 5316 5317 5318
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
5319
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
5320 5321 5322

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
5323 5324 5325

    """

5326 5327
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
5328 5329
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
5330 5331
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
5332
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
5333
        self.__op_role_var = []
T
tangwei12 已提交
5334

5335 5336
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
5337
        self._is_distributed = False
5338
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
5339
        self._is_chief = False
5340 5341 5342
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
5343
        self._endpoints = []
5344 5345 5346
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
5347
        self._trainers_endpoints = []
5348
        # the distributed lookup table names
T
tangwei12 已提交
5349
        self._distributed_lookup_table = None
5350 5351 5352

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
5353 5354
        self._use_lamb = False

5355 5356 5357
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
5358

5359 5360 5361
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
5362
        self._program_config = None
5363

H
hutuxian 已提交
5364 5365 5366
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

5367 5368 5369
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

5370 5371 5372
        # appending gradients times
        self._appending_grad_times = 0

5373 5374
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
5375 5376
            "__auto_checkpoint_program__"
        )
5377

5378 5379
        # compiled program, i.e. Graph
        self._graph = None
5380 5381
        # to tag whether is startup_program
        self._is_start_up_program_ = False
5382

5383
    def _find_var_class_kwargs(self, new_desc):
5384 5385 5386 5387 5388 5389 5390 5391
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

5392 5393 5394 5395
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
5396
            if idx > (len(self.blocks) - 1):
5397
                self._create_block()
5398 5399 5400 5401 5402 5403 5404 5405 5406 5407
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
                    'shape': get_var_desc_attr_or_none(
                        new_var_desc,
                        "shape",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'dtype': get_var_desc_attr_or_none(
                        new_var_desc,
                        "dtype",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'lod_level': get_var_desc_attr_or_none(
                        new_var_desc,
                        "lod_level",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'error_clip': old_var.error_clip
                    if old_var is not None
                    else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None
                    else False,
                    'is_data': old_var.is_data
                    if old_var is not None
                    else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None
                    else False,
5449 5450 5451
                }

                if isinstance(old_var, Parameter):
5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468
                    kwargs.update(
                        {
                            'trainable': old_var.trainable,
                            'optimize_attr': old_var.optimize_attr,
                            'regularizer': old_var.regularizer,
                            'do_model_average': old_var.do_model_average,
                            'need_clip': old_var.need_clip,
                            'is_distributed': old_var.is_distributed,
                            'is_parameter': old_var.is_parameter,
                        }
                    )
                    block_new_vars.append(
                        {
                            'class': Parameter,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5469 5470
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
5471 5472 5473 5474 5475 5476
                    block_new_vars.append(
                        {
                            'class': Variable,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5477 5478 5479 5480 5481 5482 5483

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
5484
        assert block_num == self.desc.num_blocks()
5485 5486

        # clear old blocks and desc
5487 5488 5489 5490 5491 5492 5493 5494 5495
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
5496

5497
        del desc
5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

5517 5518 5519 5520 5521 5522 5523 5524 5525 5526
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

5527 5528
                import paddle
                import paddle.static as static
5529

5530 5531 5532
                paddle.enable_static()

                prog = static.default_main_program()
5533 5534 5535 5536 5537
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
5538
                prog1 = static.default_main_program()
5539 5540 5541 5542 5543 5544 5545 5546
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
5547
    @property
5548
    def _op_role(self):
Y
yuyang18 已提交
5549 5550 5551 5552 5553 5554 5555 5556
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
5557
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
5558 5559 5560 5561
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
5562 5563
        return self._current_role

5564 5565
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
5566 5567 5568
        self._current_role = role

    @property
5569
    def _op_role_var(self):
Y
yuyang18 已提交
5570
        """
5571
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
5572

5573
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
5574 5575 5576

        Notes: This is a very low-level API. Users should not use it directly.
        """
5577
        return self.__op_role_var
Y
yuyang18 已提交
5578

5579
    @signature_safe_contextmanager
5580 5581 5582 5583 5584
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
5585 5586 5587 5588
        try:
            yield
        finally:
            self._current_role = tmp_role
5589

S
rename  
sneaxiy 已提交
5590
    @signature_safe_contextmanager
W
Wu Yi 已提交
5591
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
5592 5593 5594 5595 5596 5597 5598
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
5599
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
5600 5601 5602

        Examples:

5603
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
5604
            >>> p, g = backward(...)
W
Wu Yi 已提交
5605
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
5606 5607
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
5608
        tmp_role = self._current_role
5609
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
5610

Y
yuyang18 已提交
5611 5612
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
5613
        self.__op_role_var = [
5614 5615 5616
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
5617 5618 5619 5620 5621
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
5622

S
rename  
sneaxiy 已提交
5623
    @signature_safe_contextmanager
X
Xin Pan 已提交
5624
    def _lr_schedule_guard(self, is_with_opt=False):
5625 5626 5627 5628 5629 5630 5631
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
5632 5633 5634 5635
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
5636 5637 5638

        Examples:

5639
            >>> import paddle.fluid as fluid
5640 5641 5642 5643
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
5644 5645

        tmp_role = self._current_role
5646
        tmp_var = self.__op_role_var
5647

5648 5649
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
5650 5651
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
5652
        # TODO(typhoonzero): how to set target learning rate var
5653
        self.__op_role_var = []
5654 5655 5656 5657 5658
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
5659

5660
    def __str__(self):
Y
yuyang18 已提交
5661 5662 5663 5664 5665 5666 5667 5668 5669
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5690 5691
            import paddle
            import paddle.static as static
5692

5693 5694 5695
            paddle.enable_static()

            cur_program = static.Program()
5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5707
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
5708 5709
            type(skip_op_callstack)
        )
5710 5711 5712
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5713
            program_str += '\n'
5714
        return program_str
Y
Yang Yang(Tony) 已提交
5715

F
fengjiayi 已提交
5716 5717 5718
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5719

J
Jiabin Yang 已提交
5720 5721 5722
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5723

J
Jiabin Yang 已提交
5724
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5725

H
haowang101779990 已提交
5726
        Returns:
J
Jiabin Yang 已提交
5727
            str: The debug string describe current Program.
Y
yuyang18 已提交
5728 5729

        Raises:
J
Jiabin Yang 已提交
5730
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5731

5732 5733 5734
        Examples:
            .. code-block:: python

5735 5736 5737 5738
                import paddle
                import paddle.static as static

                paddle.enable_static()
5739

5740 5741 5742
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5743
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5744
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5745
                print("program string without detail: {}".format(prog_string))
5746
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5747
        """
5748 5749 5750
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
5751 5752
            type(throw_on_error)
        )
5753 5754 5755
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
5756 5757
            type(with_details)
        )
5758

F
fengjiayi 已提交
5759 5760 5761 5762 5763 5764
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
5765
            proto = framework_pb2.ProgramDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
5766 5767
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5768

W
Wu Yi 已提交
5769
    def _get_desc(self):
Y
yuyang18 已提交
5770 5771 5772 5773 5774 5775 5776
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5777 5778
        return self.desc

X
version  
Xin Pan 已提交
5779 5780 5781
    def _version(self):
        return self.desc._version()

5782
    def clone(self, for_test=False):
Y
yuyang18 已提交
5783
        """
5784
        .. note:::
5785 5786
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` .
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` .
5787
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5788

5789
        Create a new Program with forward content of original one when ``for_test=True``.
5790
        Create a new Program as same as the original one when ``for_test=False``.
5791

5792
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5793 5794 5795
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5796

5797 5798
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5799 5800
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
5801
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
5802

J
Jiabin Yang 已提交
5803
        For Example:
5804
          ::
L
Luo Tao 已提交
5805

5806 5807 5808 5809 5810 5811
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
5812
            pred = static.nn.fc(x=img, size=10, actvation='relu')
5813
            loss = paddle.mean(pred)
5814
            # Here we use clone before Momentum
5815 5816
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
5817
            optimizer.minimize(loss)
5818

J
Jiabin Yang 已提交
5819
        Args:
5820

5821 5822
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
5823

J
Jiabin Yang 已提交
5824
        Returns:
5825
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
5826

Y
yuyang18 已提交
5827 5828 5829

        Examples:

5830 5831 5832 5833 5834 5835 5836
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5837 5838
            .. code-block:: python

5839
                import paddle
5840 5841

                def print_prog(prog):
5842
                    for name, value in sorted(prog.block(0).vars.items()):
5843 5844 5845 5846 5847
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
5848
                        for key, value in sorted(op.all_attrs().items()):
5849 5850 5851 5852
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5853
            1. To clone a test program, the sample code is:
5854 5855
                .. code-block:: python

5856 5857 5858 5859 5860 5861
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5862 5863

                    def print_prog(prog):
5864
                        for name, value in sorted(prog.block(0).vars.items()):
5865 5866 5867 5868 5869
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
5870
                            for key, value in sorted(op.all_attrs().items()):
5871 5872 5873
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5874 5875
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5876 5877 5878

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5879 5880 5881
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5882
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5883 5884
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5885
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5886 5887
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5888
                            test_program = train_program.clone(for_test=True)
5889
                    print_prog(test_program)
J
Jiabin Yang 已提交
5890 5891 5892 5893

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5894
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5895 5896 5897 5898
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5899 5900 5901
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5902 5903 5904
                            sgd.minimize(avg_loss)


5905
            2. The clone method can be avoid if you create program for training and program for testing individually.
5906 5907
                .. code-block:: python

5908 5909 5910 5911 5912 5913
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5914 5915

                    def print_prog(prog):
5916
                        for name, value in sorted(prog.block(0).vars.items()):
5917 5918 5919 5920 5921
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
5922
                            for key, value in sorted(op.all_attrs().items()):
5923 5924
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5925

5926
                    def network():
5927
                        img = static.data(name='image', shape=[None, 784])
5928
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5929 5930
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5931
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5932 5933
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5934 5935
                        return avg_loss

5936 5937 5938 5939 5940
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5941
                            avg_loss = network()
5942
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5943
                            sgd.minimize(avg_loss)
5944
                    # the test startup program is not used.
5945 5946
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5947 5948
                            avg_loss = network()
                    print_prog(test_program_2)
5949

5950
            The two code snippets above will generate and print same programs.
5951
        """
5952

T
tangwei12 已提交
5953
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5954 5955 5956
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5957
        pruned_origin_block_id_map = None
5958
        if for_test:
5959 5960
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
5961 5962
                self.desc
            )
5963 5964
            forward_prog.blocks = [
                Block(forward_prog, i)
5965
                for i in range(forward_prog.desc.num_blocks())
5966 5967 5968
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5969
        else:
5970
            p = Program()
G
gongweibao 已提交
5971 5972
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5973
            p.desc = core.ProgramDesc(self.desc)
5974
            p.blocks = [Block(p, i) for i in range(self.desc.num_blocks())]
G
gongweibao 已提交
5975 5976

            p._current_role = self._current_role
5977
            p.__op_role_var = self.__op_role_var
5978
            p._appending_grad_times = self._appending_grad_times
5979 5980
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
5981

T
tangwei12 已提交
5982
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5983
            # its desc.
W
Wu Yi 已提交
5984
            p._sync_with_cpp()
5985

W
Wu Yi 已提交
5986
        p._copy_param_info_from(self)
5987
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5988
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5989
        return p
5990

5991
    def _prune(self, targets):
Y
yuyang18 已提交
5992 5993 5994 5995 5996 5997 5998 5999
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
6000
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
6001 6002 6003 6004
                need to be pruned

        Returns:
            Program:  A new, pruned program.
6005
        """
6006
        return self._prune_with_input([], targets)
6007 6008

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
6009
        """
6010
        Prune operators and variables which are not needed to generate
6011 6012
        :code:`targets`. Prune operators and variables which are needed
        to generate feeded_var
6013 6014 6015 6016 6017 6018 6019

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
6020
            targets(list|Variable|Operator): A list of variables, operators, or variable names
6021 6022 6023 6024 6025 6026
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
6027
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
6028 6029 6030
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

6031 6032
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
6033 6034
        if not isinstance(targets, list):
            targets = [targets]
6035 6036

        for var in feeded_var_names:
6037
            if not isinstance(var, str):
6038 6039
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
6040 6041
                    "str, but received %s." % type(var)
                )
6042

6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

6059 6060 6061 6062
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
6063
                    name = t.name
6064
                elif isinstance(t, str):
6065
                    name = str(t)
6066
                else:
6067 6068
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
6069 6070
                        "Variable or Operator, but received %s." % type(t)
                    )
6071 6072 6073 6074 6075 6076

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
6077 6078 6079
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
6080

6081 6082 6083 6084 6085 6086 6087 6088 6089
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
6090
                        # Skip optimize op except for optimize op in targets,
6091 6092 6093 6094 6095
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
6096

6097
                if target_op is not None:
6098 6099 6100
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
6101

6102
        res = Program()
6103
        res.desc, pruned_origin_block_id_map = core.prune(
6104 6105
            self.desc, set(feeded_var_names), targets_idx
        )
6106
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6107
        res._sync_with_cpp()
6108 6109 6110 6111 6112

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

6113 6114
        return res

X
Xin Pan 已提交
6115
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
6116
        """
F
fengjiayi 已提交
6117 6118 6119 6120 6121
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

6122
        3. change the :code:`is_test`
Y
yuyang18 已提交
6123 6124 6125
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

6126
        Args:
X
Xin Pan 已提交
6127 6128
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
6129

Y
yuyang18 已提交
6130 6131 6132 6133 6134 6135
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
6136
        res = Program()
6137
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
6138 6139 6140 6141

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
6142
        if prune_read_op:
6143
            while True:
6144 6145 6146 6147
                if (
                    read_op_idx >= root_block.op_size()
                    or root_block.op(read_op_idx).type() == 'read'
                ):
6148 6149 6150 6151 6152 6153
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
6154
                    root_block._remove_var(var.name().encode())
F
fengjiayi 已提交
6155 6156

        # change all `is_test` attributes to True
6157
        for i in range(res.desc.num_blocks()):
6158
            block = res.desc.block(i)
6159
            for j in range(block.op_size()):
6160 6161
                op = block.op(j)
                if op.has_attr('is_test'):
6162
                    op._set_bool_attr('is_test', True)
6163 6164 6165
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
6166
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6167
        res._sync_with_cpp()
6168 6169
        return res

6170
    def _remove_training_info(self, clip_extra=True):
6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

6185
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
6186 6187
        res._sync_with_cpp()

6188 6189
        # Note: The op_role and op_role_var cann't be deleted currently,
        # and we will try to remove them in the future.
6190
        common_clipped_attrs_list = ['op_callstack', 'with_quant_attr']
6191

6192
        for i in range(res.desc.num_blocks()):
6193 6194 6195 6196
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
6197 6198
            if not clip_extra:
                continue
6199 6200 6201 6202
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
6203 6204 6205

                extra_attrs_map = core.get_op_extra_attrs(op.type())

6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
6219 6220 6221
                # The extra input of op will be removed in the future
                # for name in remove_input_list:
                #     op.remove_input(name)
6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
6235
                # The extra output of op will be removed in the future
6236 6237
                for name in remove_output_list:
                    op.remove_output(name)
6238

6239 6240 6241 6242 6243 6244 6245
                op_quant_name = (
                    core.op_proto_and_checker_maker.kOpWithQuantAttrName()
                )
                quant = (
                    bool(op.attr(op_quant_name))
                    if op_quant_name in op.attr_names()
                    else False
6246 6247
                )
                quant_attrs = [
6248 6249 6250 6251 6252 6253 6254
                    op_quant_name,
                    "quantization_type",
                    "skip_quant",
                    "activation_bits",
                    "bit_length",
                    "quantize_weight_bits",
                    "weight_quant_scale",
6255
                ]
6256 6257
                for extra_attr_name in extra_attrs_map.keys():
                    op.remove_attr(extra_attr_name)
6258
                remove_attr_list = []
6259 6260 6261 6262 6263 6264
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
6265
                    if len(extra_attrs_map) > 0:
6266
                        if name in common_clipped_attrs_list:
6267
                            op.remove_attr(name)
6268
                        continue
6269 6270 6271 6272 6273 6274 6275 6276 6277 6278
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
6279 6280
        return res

6281 6282
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
6283
        """
6284
        .. note::
6285
            1. All information about parameters will be lost after serialization;
6286
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6287

6288 6289
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
6290

J
Jiabin Yang 已提交
6291
        Args:
Y
yuyang18 已提交
6292

J
Jiabin Yang 已提交
6293
            binary_str_type (str): the binary prootbuf string.
6294

J
Jiabin Yang 已提交
6295 6296
        Returns:
            Program: A deserialized Program.
6297 6298 6299 6300

        Examples:
            .. code-block:: python

6301 6302 6303 6304
                import paddle
                import paddle.static as static

                paddle.enable_static()
6305

6306 6307 6308 6309
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
6310

6311
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
6312

6313
                    z = paddle.matmul(x=x, y=y)
6314

6315 6316
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
6317

6318
                    print(static.default_main_program())
6319
                    print(prog_restored)
Y
yuyang18 已提交
6320
        """
6321 6322
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
6323
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
W
Wu Yi 已提交
6324
        p._sync_with_cpp()
6325
        return p
Y
Yu Yang 已提交
6326

6327
    @staticmethod
6328
    def _construct_from_desc(desc):
6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
6340
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
6341 6342 6343
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
6344 6345
    @property
    def random_seed(self):
Y
yuyang18 已提交
6346
        """
J
Jiabin Yang 已提交
6347
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
6348 6349
        the random seed from random device.

6350
        .. note::
6351
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
6352 6353 6354

        Returns:
            int64: Random seed in current Program
6355

6356 6357 6358 6359

        Examples:
            .. code-block:: python

6360 6361 6362
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
6363

6364 6365 6366
                paddle.enable_static()

                prog = static.default_main_program()
6367
                random_seed = prog.random_seed
6368
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
6369 6370 6371
                print(random_seed)
                ## 0
                ## the default random seed is 0
6372

6373
                # Here we need to set random seed before we use paddle.nn.functional.dropout
6374
                prog.random_seed = 1
6375
                z_var = F.dropout(x_var, 0.7)
6376

6377
                print(prog.random_seed)
6378 6379
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
6380
        """
D
dzhwinter 已提交
6381 6382
        return self._seed

Q
qiaolongfei 已提交
6383 6384
    @property
    def num_blocks(self):
Y
yuyang18 已提交
6385
        """
6386 6387
        The number of :ref:`api_guide_Block_en`  in this Program.

6388
        .. note::
6389
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
6390 6391 6392

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
6393

6394 6395 6396 6397

        Examples:
            .. code-block:: python

6398 6399 6400 6401
                import paddle
                import paddle.static as static

                paddle.enable_static()
6402

6403
                prog = static.default_main_program()
6404 6405
                num_blocks = prog.num_blocks
                print(num_blocks)
6406

6407 6408
                # print result:
                # 1
Y
yuyang18 已提交
6409
        """
Q
qiaolongfei 已提交
6410 6411
        return self.desc.num_blocks()

D
dzhwinter 已提交
6412 6413 6414
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
6415 6416
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
6417 6418
                % type(seed)
            )
D
dzhwinter 已提交
6419 6420
        self._seed = seed

Y
Yu Yang 已提交
6421
    def __repr__(self):
6422
        return self.__str__()
6423

Y
Yu Yang 已提交
6424
    def global_block(self):
Y
yuyang18 已提交
6425
        """
6426 6427
        .. note::
            This API has no effect in Dygraph mode.
6428 6429 6430

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
6431 6432
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
6433

6434 6435 6436 6437

        Examples:
            .. code-block:: python

6438 6439 6440 6441
                import paddle
                import paddle.static as static

                paddle.enable_static()
6442

6443
                prog = static.default_main_program()
6444 6445
                gb_block = prog.global_block()
                print(gb_block)
6446

Y
yuyang18 已提交
6447
        """
Y
Yu Yang 已提交
6448 6449
        return self.blocks[0]

Q
Qiao Longfei 已提交
6450
    def block(self, index):
Y
yuyang18 已提交
6451
        """
6452 6453
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6454

6455 6456
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
6457 6458
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
6459

J
Jiabin Yang 已提交
6460 6461
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
6462 6463 6464 6465

        Examples:
            .. code-block:: python

6466 6467 6468 6469
                import paddle
                import paddle.static as static

                paddle.enable_static()
6470

6471
                prog = static.default_main_program()
6472 6473
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
6474
        """
Q
Qiao Longfei 已提交
6475 6476
        return self.blocks[index]

Y
Yu Yang 已提交
6477
    def current_block(self):
Y
yuyang18 已提交
6478
        """
6479 6480
        .. note::
            This API has no effect in Dygraph mode.
6481

J
Jiabin Yang 已提交
6482 6483
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
6484

J
Jiabin Yang 已提交
6485 6486
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
6487

6488 6489 6490
        Examples:
            .. code-block:: python

6491 6492 6493 6494
                import paddle
                import paddle.static as static

                paddle.enable_static()
6495

6496
                prog = static.default_main_program()
6497 6498
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
6499
        """
Y
Yu Yang 已提交
6500 6501
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
6502
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
6503 6504 6505 6506 6507
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
6508

Y
yuyang18 已提交
6509 6510 6511 6512 6513
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
6514
        new_block_idx = len(self.blocks)
6515 6516 6517 6518 6519
        parent = (
            self.current_block()
            if parent_idx is None
            else self.block(parent_idx)
        )
F
update  
fengjiayi 已提交
6520
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
6521 6522 6523 6524
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
6525
    def _rollback(self):
Y
yuyang18 已提交
6526 6527 6528 6529 6530
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
6531 6532
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
6533
    def _sync_with_cpp(self):
Y
yuyang18 已提交
6534 6535 6536 6537 6538 6539 6540 6541 6542 6543
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
6544 6545 6546
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
6547
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
6548

W
Wu Yi 已提交
6549
    def _copy_param_info_from(self, other):
6550
        """
6551
        Copy the information of parameters from other program.
D
dzhwinter 已提交
6552

Y
yuyang18 已提交
6553 6554 6555
        Notes: This is a very low level API. Users should not invoke it
        directly.

6556 6557 6558 6559 6560 6561 6562
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6563 6564
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6565 6566
                % type(other)
            )
6567

W
Wu Yi 已提交
6568
        self.global_block()._copy_param_info_from(other.global_block())
6569

6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6581 6582
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6583 6584
                % type(other)
            )
6585 6586
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
6587
        self._parameters_on_pservers = other._parameters_on_pservers
6588
        self._endpoints = other._endpoints
6589
        self._ps_endpoint = other._ps_endpoint
6590 6591
        self._distributed_lookup_table = other._distributed_lookup_table

6592
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
6593 6594
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
6595

Y
yuyang18 已提交
6596 6597 6598
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
6599 6600
        Args:
            other(Program): Other program
6601
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
6602 6603
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is
            cloned from block 0 in other, etc. Default is None, which means default mapped,
6604
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
6605 6606 6607 6608 6609

        Returns:
            None
        """
        if not isinstance(other, Program):
6610 6611
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6612 6613
                % type(other)
            )
F
fengjiayi 已提交
6614

6615 6616
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
6617
                i: i for i in range(self.desc.num_blocks())
6618
            }
6619 6620 6621

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
6622 6623
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
6624
            for var in list(block.vars.values()):
6625 6626 6627 6628 6629 6630 6631
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
6632

6633
    def list_vars(self):
Y
yuyang18 已提交
6634
        """
6635
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
6636

J
Jiabin Yang 已提交
6637
        Returns:
6638
            iterable Tensors: The Generator will yield every Tensor in this program.
6639 6640 6641 6642

        Examples:
            .. code-block:: python

6643 6644
                import paddle
                import paddle.static as static
6645

6646 6647 6648 6649 6650
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
6651 6652
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
6653

6654 6655
                # var img : LOD_TENSOR.shape(-1, 1, 28, 28).dtype(float32).stop_gradient(True)
                # var label : LOD_TENSOR.shape(-1, 1).dtype(int64).stop_gradient(True)
Y
yuyang18 已提交
6656
        """
6657
        for each_block in self.blocks:
6658
            for each_var in list(each_block.vars.values()):
6659 6660
                yield each_var

6661 6662 6663 6664 6665 6666 6667 6668 6669 6670
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

6671 6672 6673 6674
                import paddle
                import paddle.static as static

                paddle.enable_static()
6675

6676 6677
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
6678
                hidden = static.nn.fc(x=data, size=10)
6679 6680
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
6681 6682 6683 6684 6685 6686 6687

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
6688 6689
                # persist trainable param fc_0.w_0 : LOD_TENSOR.shape(13, 10).dtype(float32).stop_gradient(False)
                # persist trainable param fc_0.b_0 : LOD_TENSOR.shape(10,).dtype(float32).stop_gradient(False)
6690 6691 6692 6693 6694 6695 6696 6697 6698 6699
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

6700 6701 6702 6703 6704 6705 6706 6707 6708
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
6709 6710 6711
            mode(str, optional): Source of the obtained parameters and buffers.
                    'opt' :  The return value only contains the variable in the optimizer.
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.
6712 6713
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
6714
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
6742
        # can not be imported at the begainning of this file.
6743 6744
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
6745

6746 6747
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
6748 6749 6750 6751
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".format(
                    type(scope)
                )
            )
6752 6753 6754 6755 6756

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
6757 6758
            raise TypeError(
                "Type of `mode` should be string, but received {}.".format(
6759 6760 6761
                    type(mode)
                )
            )
6762 6763 6764 6765 6766

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
6767 6768 6769 6770 6771
            if (
                var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH
                or var.desc.type() == core.VarDesc.VarType.FETCH_LIST
                or var.desc.type() == core.VarDesc.VarType.READER
            ):
6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
6790 6791 6792 6793
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".format(
                        mode
                    )
                )
6794 6795 6796 6797 6798 6799 6800 6801

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
6802 6803 6804 6805
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".format(
                        var.name
                    )
                )
6806 6807 6808 6809 6810 6811
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
6812
        Set parameters and persistable buffers in state_dict to program.
6813
        An exception will throw if shape or dtype of the parameters is not match.
6814

6815 6816 6817 6818
        .. note::
            This function MUST called after run start_up_program

        Args:
6819
            state_dict(dict): the dict store parameters and persistable buffers.
6820 6821
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
6822
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6823 6824
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
6825

6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
6855 6856 6857
                    type(state_dict)
                )
            )
6858 6859

        vars_dict = {var.name: var for var in self.list_vars()}
6860 6861 6862
        condition = (
            True if 'StructuredToParameterName@@' in state_dict else False
        )
6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
6874 6875
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
6876 6877
                except TypeError as err:
                    warnings.warn(
6878 6879
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
6880
            else:
6881
                warnings.warn(
6882 6883 6884 6885 6886 6887
                    (
                        "Skip loading for '{0}'. Because '{0}' not in the program.".format(
                            name
                        )
                    )
                )
6888

Y
Yu Yang 已提交
6889

6890
class Parameter(Variable, metaclass=ParameterMetaClass):
6891
    """
6892
    Parameter is derived from Variable. A parameter is a persistable
6893
    Variable, and will be updated by optimizers after each iteration.
6894
    The training of a neural network is essentially the updating of
6895 6896
    its parameters.

6897
    Relative to a general Variable, a Parameter has several its own
6898 6899
    member variables:

6900 6901 6902 6903 6904 6905 6906 6907 6908 6909
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
6910
        need_clip (bool): Whether the parameter gradient need to be cliped
6911
            in optimizer. Default is True.
6912 6913
    """

6914 6915 6916 6917 6918 6919
    def __init__(
        self,
        block,
        shape,
        dtype,
        type=core.VarDesc.VarType.LOD_TENSOR,
6920
        **kwargs,
6921
    ):
6922 6923 6924 6925 6926
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6927 6928
        for each in shape:
            if each < 0:
6929 6930
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
6931 6932 6933 6934 6935 6936 6937 6938 6939 6940
                    % list(shape)
                )

        Variable.__init__(
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
6941
            **kwargs,
6942
        )
Y
Yu Yang 已提交
6943 6944 6945 6946
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6947 6948
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6949
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6950

6951 6952
        self.need_clip = kwargs.get('need_clip', True)

6953 6954
        self.is_distributed = False

6955 6956
        self.is_parameter = True

F
fengjiayi 已提交
6957
    def __str__(self):
6958
        return self._to_readable_code()
F
fengjiayi 已提交
6959

F
update  
fengjiayi 已提交
6960 6961 6962
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6963

F
update  
fengjiayi 已提交
6964 6965 6966 6967 6968 6969 6970 6971
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6972 6973 6974 6975
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
G
GGBond8488 已提交
6976
                import paddle
6977 6978

                prog = fluid.default_main_program()
G
GGBond8488 已提交
6979
                rlt = paddle.static.data("fake_data", shape=[-1,1,1], dtype='float32')
6980 6981
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6982
        """
6983
        assert isinstance(throw_on_error, bool) and isinstance(
6984 6985
            with_details, bool
        )
F
update  
fengjiayi 已提交
6986 6987
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
6988 6989 6990 6991 6992 6993 6994
            additional_attr = (
                "trainable",
                "optimize_attr",
                "regularizer",
                "do_model_average",
                "need_clip",
            )
F
update  
fengjiayi 已提交
6995
            for attr_name in additional_attr:
6996
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
F
update  
fengjiayi 已提交
6997 6998
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6999 7000 7001 7002
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
7003

7004 7005
class ParamBase(core.VarBase):
    """
7006 7007
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode).
    A ParamBase is a persistable Tensor, and will be updated by optimizers
7008
    after each iteration.
7009 7010 7011
    The training of a neural network is essentially the updating of
    its ParamBase.

7012
    Relative to a general Tensor, a ParamBase has several its own
7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
7025
        need_clip (bool): Whether the parameter gradient need to be cliped
7026
            in optimizer. Default is True.
7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
7040 7041
                    % list(shape)
                )
7042 7043 7044 7045 7046 7047 7048

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

7049
        super().__init__(
7050 7051 7052 7053 7054 7055
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            core.VarDesc.VarType.LOD_TENSOR,
            True,
        )
7056

7057 7058
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
7059 7060 7061 7062 7063 7064 7065

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

7066 7067
        self.need_clip = kwargs.get('need_clip', True)

7068
        self.is_distributed = kwargs.get('is_distributed', False)
7069
        # self.block = default_main_program().global_block()
7070

7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
7082 7083
                type(trainable),
            )
7084

7085
    def __str__(self):
7086
        """
7087
        Convert a ParamBase object to a readable string.
7088

7089
        Returns(str): A readable string.
7090 7091 7092 7093

        Examples:
            .. code-block:: python

7094
                import paddle
7095 7096 7097 7098 7099 7100 7101
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
7102
        """
7103
        return "Parameter containing:\n{tensor}".format(
7104
            tensor=super().__str__()
7105
        )
7106

7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
7118

7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

7137 7138 7139 7140
    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
7141 7142 7143 7144 7145 7146
        return new_param

    __repr__ = __str__


if hasattr(core, "eager"):
7147
    _core_eager_eagertensor = core.eager.Tensor
7148 7149 7150 7151 7152 7153
else:
    _core_eager_eagertensor = object


class EagerParamBase(_core_eager_eagertensor):
    """
7154 7155
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode).
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers
7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
7173
        need_clip (bool): Whether the parameter gradient need to be cliped
7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
7188 7189
                    % list(shape)
                )
7190 7191 7192 7193 7194 7195 7196

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

7197 7198 7199
        if isinstance(shape, core.eager.Tensor):
            shape = shape.numpy()

7200
        super().__init__(
7201 7202 7203 7204 7205 7206
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            core.VarDesc.VarType.LOD_TENSOR,
            True,
        )
7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
7221 7222 7223
        # hook functions for lazy initialization
        self._init_func = None
        self._init_op_creator = None
7224 7225

    def set_init_func(self, obj):
7226
        self._init_func = obj
7227 7228 7229

    @dygraph_only
    def initialize(self):
7230 7231 7232
        assert (
            self._init_func is not None
        ), "Required self._init_func is not None, but received None."
7233
        self._init_func()
7234
        # clear function handle to release resource
7235
        self._init_func = None
7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
7248 7249
                type(trainable),
            )
7250

7251 7252 7253 7254
    def _create_init_op(self, block):
        """
        Call init_op_creator function to create initializer operation in block.
        """
7255 7256 7257
        assert (
            self._init_op_creator is not None
        ), "Required self._init_op_creator is not None, but received None."
7258 7259
        self._init_op_creator(block)

7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278
    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
7279
            tensor=super().__str__()
7280
        )
7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
7316 7317
        return new_param

7318 7319 7320
    __repr__ = __str__


Y
Yu Yang 已提交
7321
# program is a global instance.
Y
Yu Yang 已提交
7322 7323
_main_program_ = Program()
_startup_program_ = Program()
7324
_startup_program_._is_start_up_program_ = True
7325

7326

7327
def default_startup_program():
Y
Yu Yang 已提交
7328
    """
Y
yuyang18 已提交
7329 7330
    Get default/global startup program.

7331
    The :code:`paddle.nn` function will append the initialization operators into startup program.
7332
    The :code:`startup_program` will initialize the parameters by the OPs.
T
tangwei12 已提交
7333

7334 7335
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
7336

7337 7338
    Returns:
        Program: current default startup program.
7339

7340
    Returns type:
7341 7342 7343 7344

    Examples:
        .. code-block:: python

7345
            import paddle
7346

7347
            paddle.enable_static()
7348 7349 7350 7351
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
7352
    """
Y
Yu Yang 已提交
7353
    return _startup_program_
7354

7355

7356
def default_main_program():
Y
Yu Yang 已提交
7357
    """
7358
    This API can be used to get ``default main program`` which store the
7359
    descriptions of Ops and tensors.
T
tangwei12 已提交
7360

7361 7362
    For example ``z = paddle.add(x, y)`` will create a new ``add``
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` .
Y
yuyang18 已提交
7363

7364
    The ``default main program`` is the default value for ``Program`` parameter in
7365
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
7366
    :code:`default_main_program` when the program is not specified.
7367

7368
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
7369

Y
Yu Yang 已提交
7370
    Returns:
7371
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
7372 7373 7374 7375

    Examples:
        ..  code-block:: python

7376
            import paddle
7377

7378
            paddle.enable_static()
7379
            # Sample Network:
7380 7381 7382
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
7383

7384 7385 7386
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
7387
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
7388
    """
Y
Yu Yang 已提交
7389
    return _main_program_
Y
Yu Yang 已提交
7390 7391 7392 7393 7394


def switch_main_program(program):
    """
    Switch the main program to a new program.
7395

Y
Yu Yang 已提交
7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
7410
    Switch the startup program to a new program
Y
Yu Yang 已提交
7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
7423
@signature_safe_contextmanager
Y
Yu Yang 已提交
7424 7425
def program_guard(main_program, startup_program=None):
    """
7426 7427
    :api_attr: Static Graph

7428 7429 7430
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
7431

G
guofei 已提交
7432
    Args:
7433
        main_program(Program): New main program inside ``with`` statement.
7434 7435
        startup_program(Program, optional): New startup program inside ``with``
            statement. :code:`None` means not changing startup program,
G
guofei 已提交
7436 7437 7438
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
7439
    Examples:
7440
       .. code-block:: python
T
tangwei12 已提交
7441

7442
          import paddle
Y
yuyang18 已提交
7443

7444 7445 7446 7447 7448
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
7449
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
7450 7451 7452

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
7453

Y
Yu Yang 已提交
7454
    Examples:
7455
       .. code-block:: python
Y
yuyang18 已提交
7456

7457
          import paddle
7458

7459 7460 7461 7462 7463
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
7464

Y
Yu Yang 已提交
7465
    """
7466
    from .data_feeder import check_type
7467 7468 7469 7470

    check_type(
        main_program, 'main_program', Program, 'paddle.static.program_guard'
    )
Y
Yu Yang 已提交
7471 7472
    main_program = switch_main_program(main_program)
    if startup_program is not None:
7473 7474 7475 7476 7477 7478
        check_type(
            startup_program,
            'startup_program',
            Program,
            'paddle.static.program_guard',
        )
7479 7480
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
7481
        startup_program = switch_startup_program(startup_program)
7482 7483 7484 7485 7486 7487
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
7488 7489


W
Wu Yi 已提交
7490
def _get_var(name, program=None):
X
xuwei06 已提交
7491
    """
Y
yuyang18 已提交
7492
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
7493

X
xuwei06 已提交
7494 7495 7496
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
7497
        If None, default_global_program() will be used.
X
xuwei06 已提交
7498 7499 7500 7501 7502 7503 7504

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
7505
    assert isinstance(program, Program)
X
xuwei06 已提交
7506 7507

    return program.global_block().var(name)
7508 7509


S
rename  
sneaxiy 已提交
7510
@signature_safe_contextmanager
L
lujun 已提交
7511
def _dygraph_guard(tracer):
7512 7513 7514 7515
    tmp_tracer = global_var._dygraph_tracer_
    global_var._dygraph_tracer_ = tracer
    if tracer is not None:
        core._switch_tracer(tracer)
M
minqiyang 已提交
7516

7517 7518 7519
    try:
        yield
    finally:
7520 7521 7522
        if tmp_tracer is not None:
            core._switch_tracer(tmp_tracer)
        global_var._dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
7523 7524


S
rename  
sneaxiy 已提交
7525
@signature_safe_contextmanager
L
lujun 已提交
7526
def _dygraph_place_guard(place):
7527 7528 7529
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
7530 7531
    _set_dygraph_tracer_expected_place(place)

7532 7533 7534
    try:
        yield
    finally:
7535
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
7536
        _set_dygraph_tracer_expected_place(_global_expected_place_)
7537 7538


7539 7540 7541 7542 7543 7544 7545 7546 7547 7548
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
7549

7550
    Note:
7551
        The API only supports static graph mode.
7552 7553 7554 7555

    A context manager that specifies the device on which the OP will be placed.

    Args:
7556
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
7557
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs.
7558 7559 7560 7561 7562 7563 7564
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
7565

7566
        .. code-block:: python
7567

7568
            # required: gpu
Z
Zhang Ting 已提交
7569
            import paddle
7570

Z
Zhang Ting 已提交
7571 7572 7573
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
7574
            if support_gpu:
Z
Zhang Ting 已提交
7575
                place = paddle.CUDAPlace(0)
7576 7577

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
7578 7579 7580
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
7581

Z
Zhang Ting 已提交
7582
            with paddle.static.device_guard("cpu"):
7583
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
7584 7585
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
7586
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
7587
                out = paddle.reshape(data1, shape=shape)
7588

Z
Zhang Ting 已提交
7589 7590
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
7591 7592 7593
            result = exe.run(fetch_list=[out])
    """

7594 7595 7596 7597 7598
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
7599
    if device not in ['cpu', 'gpu', 'npu', 'xpu', 'mlu', '', None]:
7600
        raise ValueError(
7601
            "The Attr(device) should be 'cpu' 'npu' 'xpu' 'mlu' or 'gpu', and it can also be empty string or None "
7602 7603
            "when there is no need to specify device. But received %s" % device
        )
7604 7605
    if index:
        device = ":".join([device, index])
7606
    pre_device = switch_device(device)
7607 7608 7609 7610
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
7611 7612


7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624
def _switch_cuda_graph_mode(cuda_graph_attr):
    global _current_cuda_graph_mode
    pre_mode = _current_cuda_graph_mode
    _current_cuda_graph_mode = cuda_graph_attr
    return pre_mode


@signature_safe_contextmanager
def _cuda_graph_guard(cuda_graph_attr=None):
    """

    Note:
7625
        The API only supports static graph mode.
7626

7627
    A context manager that specifies the cuda_graph_mode which indicating the cuda graph capture under static graph mode.
7628 7629 7630 7631 7632

    Args:
        cuda_graph_attr(str|None): The cuda graph attr with the format of:
                                   cuda_graph_capture_mode;memory_pool_id;cuda_graph_id
    """
7633 7634
    assert (
        not _non_static_mode()
7635
    ), "cuda_graph_guard only works under static graph mode"
7636 7637
    assert (
        core.is_compiled_with_cuda()
7638 7639 7640 7641 7642 7643 7644 7645
    ), "cuda_graph_guard context can be only used when Paddle is compiled with cuda"
    pre_mode = _switch_cuda_graph_mode(cuda_graph_attr)
    try:
        yield
    finally:
        _switch_cuda_graph_mode(pre_mode)


G
guofei 已提交
7646 7647 7648
def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
7649
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7650 7651 7652 7653 7654 7655 7656

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

7657 7658
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
7659 7660 7661 7662
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
7663 7664
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
7665 7666
        else:
            raise ValueError(
7667 7668
                "Flag %s cannot set its value through this function." % (key)
            )
G
guofei 已提交
7669 7670 7671 7672 7673


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
7674
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7675 7676 7677 7678 7679 7680 7681 7682 7683 7684

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

7685
            import paddle
G
guofei 已提交
7686 7687

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
7688
            res = paddle.get_flags(flags)
G
guofei 已提交
7689 7690 7691 7692 7693 7694
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
7695
            if _global_flags().is_public(key):
7696
                value = _global_flags()[key]
G
guofei 已提交
7697 7698 7699 7700
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
7701 7702 7703
                    'Flag %s cannot get its value through this function.'
                    % (key)
                )
G
guofei 已提交
7704
    elif isinstance(flags, str):
7705
        if _global_flags().is_public(flags):
7706
            value = _global_flags()[flags]
G
guofei 已提交
7707 7708 7709 7710
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
7711 7712
                'Flag %s cannot get its value through this function.' % (flags)
            )
G
guofei 已提交
7713 7714 7715
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
7716 7717 7718 7719 7720 7721


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735
    if isinstance(
        place,
        (
            core.Place,
            core.XPUPlace,
            core.CPUPlace,
            core.CUDAPinnedPlace,
            core.CUDAPlace,
            core.NPUPlace,
            core.IPUPlace,
            core.MLUPlace,
            core.CustomPlace,
        ),
    ):
7736 7737 7738 7739
        return place

    if not isinstance(place, str):
        raise ValueError(
7740 7741
            "place only support string which is 'Place' and so on."
        )
7742 7743

    place = place.lower()
7744
    if place == "cpu":
7745
        return core.CPUPlace()
7746

7747
    if place == "device":
7748 7749
        return core.Place()

7750
    # GPU
7751 7752 7753 7754
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
7755
                "The device should not be {}, since PaddlePaddle is "
7756
                "not compiled with CUDA".format(avaliable_gpu_place.group())
7757
            )
7758 7759 7760 7761 7762 7763 7764 7765 7766
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
7767 7768

    # XPU
7769 7770 7771 7772
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
7773
                "The device should not be {}, since PaddlePaddle is "
7774
                "not compiled with XPU".format(avaliable_xpu_place.group())
7775
            )
7776 7777 7778 7779
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
7780 7781 7782 7783 7784 7785

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
7786
                "The device should not be {}, since PaddlePaddle is "
7787
                "not compiled with NPU".format(avaliable_npu_place.group())
7788
            )
7789 7790 7791 7792 7793
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

J
jianghaicheng 已提交
7794 7795 7796 7797 7798
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
7799
                "The device should not be {}, since PaddlePaddle is "
7800
                "not compiled with IPU".format(avaliable_ipu_place.group())
7801
            )
J
jianghaicheng 已提交
7802 7803 7804 7805 7806
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

7807 7808 7809 7810 7811
    # MLU
    avaliable_mlu_place = re.match(r'mlu:\d+', place)
    if avaliable_mlu_place:
        if not core.is_compiled_with_mlu():
            raise ValueError(
7812
                "The device should not be {}, since PaddlePaddle is "
7813
                "not compiled with MLU".format(avaliable_mlu_place.group())
7814
            )
7815 7816 7817 7818 7819
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.MLUPlace(device_id)

7820
    raise ValueError(
7821 7822 7823 7824
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace, IPUPlace, MLUPlace and NPUPlace, but received {}.".format(
            place
        )
    )
7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret