framework.py 258.2 KB
Newer Older
G
gouzil 已提交
1
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yu Yang 已提交
15
import collections
X
Xin Pan 已提交
16
from collections import defaultdict
H
huzhiqiang 已提交
17
from collections.abc import Iterable
Q
qiaolongfei 已提交
18
import contextlib
19
from .wrapped_decorator import signature_safe_contextmanager, wrap_decorator
P
peizhilin 已提交
20
import os
F
fengjiayi 已提交
21
import re
22
import traceback
23
import copy
24
from types import MethodType, FunctionType
25

Y
Yu Yang 已提交
26
import numpy as np
27
import subprocess
S
sneaxiy 已提交
28
import multiprocessing
29
import sys
30
import logging
31
from .proto import framework_pb2
32 33

from . import core
34
from . import unique_name
35 36
import paddle.version as fluid_version
import warnings
37
import functools
38
from .variable_index import _getitem_impl_, _setitem_impl_
Y
Yu Yang 已提交
39

40
__all__ = [
41 42 43 44
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
45
    'name_scope',
J
jianghaicheng 已提交
46
    'ipu_shard_guard',
47
    'set_ipu_shard',
S
sneaxiy 已提交
48 49
    'cuda_places',
    'cpu_places',
50
    'xpu_places',
51
    'mlu_places',
S
sneaxiy 已提交
52
    'cuda_pinned_places',
J
Jiabin Yang 已提交
53
    '_non_static_mode',
L
lujun 已提交
54
    'in_dygraph_mode',
55
    'is_compiled_with_cinn',
C
chengduo 已提交
56
    'is_compiled_with_cuda',
57
    'is_compiled_with_rocm',
58
    'is_compiled_with_xpu',
59
    'is_compiled_with_npu',
60
    'Variable',
61
    'require_version',
62
    'device_guard',
G
guofei 已提交
63 64
    'set_flags',
    'get_flags',
65
]
Y
Yu Yang 已提交
66

Q
qiaolongfei 已提交
67 68 69 70
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
71 72
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

L
lujun 已提交
73
_dygraph_tracer_ = None
74
_in_eager_mode_ = True
75
_global_expected_place_ = None
76
_current_device = None
77
global_prog_seed = 0
78
_current_pipeline_stage = None
79
_already_patch_eager_tensor = False
J
Jiabin Yang 已提交
80
_already_patch_varbase = False
81
_current_cuda_graph_mode = None
82
_global_flags_ = core.globals()
83 84 85 86 87 88
_enable_standalone_executor_ = os.environ.get(
    'FLAGS_USE_STANDALONE_EXECUTOR', None
)
_dy2st_enable_standalone_executor_ = os.environ.get(
    'FLAGS_DY2ST_USE_STANDALONE_EXECUTOR', 1
)
J
Jiabin Yang 已提交
89 90

# Some explanation of our execution system 2022.03
91
# For now we have 3 kinds of execution system, since we refactored dygraph mode to
J
Jiabin Yang 已提交
92
# build a fast execution system for dynamic mode. But we can't just remove all legacy
93
# code once we present the new system for some historical reason. That's why we have
J
Jiabin Yang 已提交
94
# these flags.
95
#
J
Jiabin Yang 已提交
96
# 1. _non_static_mode():
97
# _non_static_mode means  we are now running in legacy dygraph mode or dygraph mode.
J
Jiabin Yang 已提交
98 99 100
# 2. dygraph_mode():
# This flags inidicates we are now running in dygraph mode which called eager mode before.
# 3. _in_legacy_dygraph():
姜永久 已提交
101
# This flags has been deprecated
102
#
J
Jiabin Yang 已提交
103
# They have a relation ship as below:
姜永久 已提交
104
# Since _in_legacy_graph is deprecated, so dygraph_mode is _non_static_mode
105
#
J
Jiabin Yang 已提交
106 107 108 109 110 111
# Why we have to make different of _in_legacy_dygraph and dygraph_mode?
# In some performance issue, we find that python if statement cause server performance problem
# and we need our new dygraph mode becomes as fast as it could be. That's why we make these flags
# to make sure in most case, we find new dygraph mode first with only one if statement.


112 113 114 115 116
def _update_monkey_methods(is_eager):
    """
    Update monkey methods of VarBase or eager.Tensor while
    switching eager mode and legacy mode.
    """
117
    from paddle import _C_ops, _legacy_C_ops
118 119 120
    from .dygraph.varbase_patch_methods import monkey_patch_varbase
    from .dygraph import monkey_patch_math_varbase

121 122 123
    global _already_patch_eager_tensor
    global _already_patch_varbase

124
    assert isinstance(is_eager, bool)
125
    # switch into eager mode
126
    if is_eager:
127
        _legacy_C_ops.switch_to_eager_ops()
128 129 130 131 132 133
        if not _already_patch_eager_tensor:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_eager_tensor = True
    # switch back into legacy mode
134
    else:
135
        _legacy_C_ops.switch_to_core_ops()
136 137 138 139 140
        if not _already_patch_varbase:
            monkey_patch_varbase()
            monkey_patch_math_varbase()

            _already_patch_varbase = True
141

142 143 144 145 146 147
    # switch Paddle.Tensor bind type
    _switch_tensor_bind_type(is_eager)


def _switch_tensor_bind_type(is_eager):
    import paddle
148

149 150 151 152 153
    if is_eager:
        paddle.Tensor = core.eager.Tensor
    else:
        paddle.Tensor = core.VarBase
    paddle.Tensor.__qualname__ = 'Tensor'
154 155


J
Jiabin Yang 已提交
156 157 158
def _enable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = False
159
    _update_monkey_methods(is_eager=False)
J
Jiabin Yang 已提交
160 161 162 163 164


def _disable_legacy_dygraph():
    global _in_eager_mode_
    _in_eager_mode_ = True
165
    _update_monkey_methods(is_eager=True)
J
Jiabin Yang 已提交
166 167 168 169 170 171 172


def _in_eager_without_dygraph_check():
    global _in_eager_mode_
    return _in_eager_mode_


173 174 175 176 177 178 179 180 181
# FIXME(dev): We haven't fully verified eager mode on XPU/NPU et.al but
# only GPU/CPU. Remove this after we improve this feature.
_is_first_import_ = True


def _fallback_legacy_dygraph():
    global _in_eager_mode_
    global _is_first_import_
    need_fallback = False
C
Chen Weihang 已提交
182
    # Only enable eager on CPU/GPU/XPU
183 184 185 186 187
    is_not_support = (
        core.is_compiled_with_npu()
        or core.is_compiled_with_ipu()
        or core.is_compiled_with_mlu()
    )
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

    if _in_eager_mode_ and is_not_support:
        # switch into legacy dygraph mode
        warnings.warn(
            "We will fallback into legacy dygraph on NPU/XPU/MLU/IPU/ROCM devices. Because we only support new eager dygraph mode on CPU/GPU currently. "
        )
        _in_eager_mode_ = False
        if not _is_first_import_:
            _enable_legacy_dygraph()
        need_fallback = True

    need_fallback = False
    _is_first_import_ = False

    return need_fallback


# switch into legacy mode if need while import paddle
_fallback_legacy_dygraph()


J
Jiabin Yang 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
def in_dygraph_mode():
    """

    .. note::
        Dynamic graph mode is turn ON by default since paddle 2.0.0

    This API checks whether paddle runs in dynamic graph mode.

    You can turn ON static graph mode by `enable_static <../dygraph/base/disable_dygraph_en.html>`_ ,
    and turn OFF static graph mode by `disable_static <../dygraph/base/enable_dygraph_en.html>`_  .

    Returns:
        bool: Whether paddle runs in dynamic graph mode.

    Examples:
        .. code-block:: python

            import paddle
            print(paddle.in_dynamic_mode())  # True, dynamic mode is turn ON by default since paddle 2.0.0

            paddle.enable_static()
            print(paddle.in_dynamic_mode())  # False, Now we are in static mode

            paddle.disable_static()
            print(paddle.in_dynamic_mode())  # True, Now we are in dynamic mode

    """
    return (_dygraph_tracer_ is not None) and _in_eager_mode_


def _non_static_mode():
    return _dygraph_tracer_ is not None
241 242 243


@signature_safe_contextmanager
J
Jiabin Yang 已提交
244
def _test_eager_guard(place=None):
C
Chen Weihang 已提交
245 246
    # FIXME(dev): We haven't fully verified eager mode on NPU et.al but
    # only GPU/CPU/XPU. Remove this after we improve this feature.
247 248 249
    already_fallback = _fallback_legacy_dygraph()
    if not already_fallback:
        _disable_legacy_dygraph()
250
    try:
J
Jiabin Yang 已提交
251
        yield
252
    finally:
253
        pass
254 255


256 257
global_ipu_index = -1
global_ipu_stage = -1
J
jianghaicheng 已提交
258 259 260 261
ipu_index_attr_name = 'ipu_index'
ipu_stage_attr_name = 'ipu_stage'


L
Leo Chen 已提交
262 263 264 265 266 267 268 269 270 271 272
@signature_safe_contextmanager
def _enable_standalone_executor(enable=True):
    global _enable_standalone_executor_
    original_ = _enable_standalone_executor_
    _enable_standalone_executor_ = enable
    try:
        yield
    finally:
        _enable_standalone_executor_ = original_


J
jianghaicheng 已提交
273
@signature_safe_contextmanager
274
def ipu_shard_guard(index=-1, stage=-1):
J
jianghaicheng 已提交
275 276 277 278
    """
    Used to shard the graph on IPUs. Set each Op run on which IPU in the sharding and which stage in the pipelining.

    Args:
W
Weilong Wu 已提交
279
        index(int, optional): Specify which ipu the Tensor is computed on, (such as '0, 1, 2, 3').
280
            The default value is -1, which means the Op only run on IPU 0.
W
Weilong Wu 已提交
281
        stage(int, optional): Specify the computation order of the sharded model(such as '0, 1, 2, 3').
282
            The sharded model will be computed from small to large. The default value is -1,
J
jianghaicheng 已提交
283
            which means no pipelining computation order and run Ops in terms of graph.
284

G
gouzil 已提交
285 286 287 288 289 290 291
    Note:
        Only if the enable_manual_shard=True, the 'index' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        Only if the enable_pipelining=True, the 'stage' is able to be set not -1. Please refer
        to :ref:`api_paddle_static_IpuStrategy`.
        A index is allowed to match none stage or a stage. A stage is only allowed to match a new or
        duplicated index.
J
jianghaicheng 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
            with paddle.static.ipu_shard_guard(index=0, stage=0):
                b = a + 1
            with paddle.static.ipu_shard_guard(index=1, stage=1):
                c = b + 1
            with paddle.static.ipu_shard_guard(index=0, stage=2):
                d = c + 1
    """
    if not core.is_compiled_with_ipu():
        raise ValueError(
            "Can not use this function since PaddlePaddle is not compiled with IPU"
        )

    global global_ipu_index
    global global_ipu_stage
    prev_ipu_index = global_ipu_index
    prev_ipu_stage = global_ipu_stage
    global_ipu_index = index
    global_ipu_stage = stage
    try:
        yield
    finally:
        global_ipu_index = prev_ipu_index
        global_ipu_stage = prev_ipu_stage


326 327 328 329
def set_ipu_shard(call_func, index=-1, stage=-1):
    """
    Shard the ipu with the given call function. Set every ops in call function to the given ipu sharding.

G
gouzil 已提交
330 331 332 333 334
    Note:
        Only when enable_manual_shard=True to set the index to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        Only when enable_pipelining=True to set stage to a value other than -1. please refer to :ref:`api_paddle_static_IpuStrategy` .
        An index supports a corresponding None stage or a stage, and a stage only supports a new index or a duplicate index.

335 336 337 338 339
    Args:
        call_func(Layer|function): Specify the call function to be wrapped.
        index(int, optional): Specify which ipu the Tensor is computed on, (such as ‘0, 1, 2, 3’).
            The default value is -1, which means the Op only run on IPU 0.
        stage(int, optional): Specify the computation order of the sharded model(such as ‘0, 1, 2, 3’).
340
            The sharded model will be computed from small to large. The default value is -1,
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
            which means no pipelining computation order and run Ops in terms of graph.

    Returns:
        The wrapped call function.

    Examples:
        .. code-block:: python

            # required: ipu

            import paddle
            paddle.enable_static()
            a = paddle.static.data(name='data', shape=[None, 1], dtype='float32')
            relu = paddle.nn.ReLU()
            relu = paddle.static.set_ipu_shard(relu, index=1, stage=1)
            relu(a)
    """

    def decorate(func):
        def wrapper(*args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return func(*args, **kwargs)

        return wrapper

    from .dygraph.layers import Layer
367

368 369 370 371 372
    if not isinstance(call_func, Layer):
        if callable(call_func):
            return decorate(call_func)
        else:
            raise TypeError(
373 374
                "Unsupported type. Only accept paddle.nn.Layer or function."
            )
375 376 377 378 379 380 381 382 383 384 385 386

    # patch paddle.nn.Layer
    class BlockFn(type(call_func)):
        def __call__(self, *args, **kwargs):
            with ipu_shard_guard(index=index, stage=stage):
                return super().__call__(*args, **kwargs)

    BlockFn.__name__ = type(call_func).__name__
    call_func.__class__ = BlockFn
    return call_func


387 388
def require_version(min_version, max_version=None):
    """
389 390 391
    Check if the installed version of PaddlePaddle is in [min_version, max_version],
    if the installed version is lower than ``min_version`` or higher than ``max_version``,
    an exception will be thrown, NO returns if the installed version is satisfied.
392

393 394 395 396
    Args:
        min_version (str): the minimum version required (like '1.4.0').
        max_version (str, optional): the max version required (like '1.6.0'), default is None,
            meaning any version equal or higher than ``min_version`` is acceptable.
397

398 399
    Returns:
        None.
400

401 402 403 404 405 406
    Raises:
        TypeError: if the type of ``min_version`` is not str.
        TypeError: if the type of ``max_version`` is not str or type(None).
        ValueError: if the value of ``min_version`` is not in version format.
        ValueError: if the value of ``max_version`` is not in version format or None.
        Exception: if the installed version is lower than ``min_version`` or higher than ``max_version``.
407

408 409
    Examples:
        .. code-block:: python
410

411
            import paddle.fluid as fluid
412

413 414
            # any version >= 0.1.0 is acceptable.
            fluid.require_version('0.1.0')
415

416 417 418
            # if 0.1.0 <= version <= 10.0.0, it is acceptable.
            fluid.require_version(min_version='0.1.0', max_version='10.0.0')
    """
419 420 421
    if not isinstance(min_version, str):
        raise TypeError(
            "The type of 'min_version' in require_version must be str, but received %s."
422 423
            % (type(min_version))
        )
424 425 426 427

    if not isinstance(max_version, (str, type(None))):
        raise TypeError(
            "The type of 'max_version' in require_version must be str or type(None), but received %s."
428 429
            % (type(max_version))
        )
430 431 432 433 434

    check_format = re.match(r'\d+(\.\d+){0,3}', min_version)
    if check_format is None or check_format.group() != min_version:
        raise ValueError(
            "The value of 'min_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
435 436
            "like '1.5.2.0', but received %s" % min_version
        )
437 438 439 440 441 442

    if max_version is not None:
        check_format = re.match(r'\d+(\.\d+){0,3}', max_version)
        if check_format is None or check_format.group() != max_version:
            raise ValueError(
                "The value of 'max_version' in require_version must be in format '\\d+(\\.\\d+){0,3}', "
443 444
                "like '1.5.2.0', but received %s" % max_version
            )
445 446

    version_installed = [
447 448 449 450
        fluid_version.major,
        fluid_version.minor,
        fluid_version.patch,
        fluid_version.rc,
451 452 453 454
    ]
    zero_version = ['0', '0', '0', '0']

    def version_cmp(ver_a, ver_b):
455
        for i in range(len(ver_a)):
456 457 458 459 460 461 462 463 464 465 466
            if int(ver_a[i]) > int(ver_b[i]):
                return 1
            elif int(ver_a[i]) < int(ver_b[i]):
                return -1
        return 0

    if version_cmp(version_installed, zero_version) == 0:
        if max_version is not None:
            warnings.warn(
                "PaddlePaddle version in [%s, %s] required, but %s installed. "
                "Maybe you are using a develop version, "
467 468 469
                "please make sure the version is good with your code."
                % (min_version, max_version, fluid_version.full_version)
            )
470 471 472 473
        else:
            warnings.warn(
                "PaddlePaddle version %s or higher is required, but %s installed, "
                "Maybe you are using a develop version, "
474 475 476
                "please make sure the version is good with your code."
                % (min_version, fluid_version.full_version)
            )
477 478 479
        return

    min_version_split = min_version.split('.')
480 481 482
    min_version_to_check = (
        min_version_split + zero_version[len(min_version_split) :]
    )
483 484 485

    if max_version is not None:
        max_version_split = max_version.split('.')
486 487 488
        max_version_to_check = (
            max_version_split + zero_version[len(max_version_split) :]
        )
489

490 491 492 493
        if (
            version_cmp(version_installed, max_version_to_check) > 0
            or version_cmp(version_installed, min_version_to_check) < 0
        ):
494 495
            raise Exception(
                "VersionError: PaddlePaddle version in [%s, %s] required, but %s installed."
496 497
                % (min_version, max_version, fluid_version.full_version)
            )
498 499 500 501 502
    else:
        if version_cmp(version_installed, min_version_to_check) < 0:
            raise Exception(
                "VersionError: PaddlePaddle version %s or higher is required, but %s installed, "
                "please upgrade your PaddlePaddle to %s or other higher version."
503 504
                % (min_version, fluid_version.full_version, min_version)
            )
505 506


507 508
def _dygraph_not_support_(func):
    def __impl__(*args, **kwargs):
509 510 511
        assert not _non_static_mode(), (
            "We don't support %s in dynamic graph mode" % func.__name__
        )
512 513 514 515 516 517 518
        return func(*args, **kwargs)

    return __impl__


def _dygraph_only_(func):
    def __impl__(*args, **kwargs):
519 520 521 522
        assert _non_static_mode(), (
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
523 524 525 526 527
        return func(*args, **kwargs)

    return __impl__


528 529 530
def _non_static_only_(func):
    def __impl__(*args, **kwargs):
        from .dygraph.base import in_declarative_mode
531 532 533 534 535

        assert _non_static_mode() or in_declarative_mode(), (
            "We only support '%s()' in dynamic graph mode, please call 'paddle.disable_static()' to enter dynamic graph mode."
            % func.__name__
        )
536 537 538 539 540
        return func(*args, **kwargs)

    return __impl__


541 542
def _static_only_(func):
    def __impl__(*args, **kwargs):
543 544 545 546
        assert not _non_static_mode(), (
            "In PaddlePaddle 2.x, we turn on dynamic graph mode by default, and '%s()' is only supported in static graph mode. So if you want to use this api, please call 'paddle.enable_static()' before this api to enter static graph mode."
            % func.__name__
        )
547 548 549 550 551
        return func(*args, **kwargs)

    return __impl__


552 553 554 555 556
def _set_pipeline_stage(stage):
    global _current_pipeline_stage
    _current_pipeline_stage = stage


557 558 559 560 561 562
# NOTE(zhiqiu): This decorator is used for the APIs of Variable which is only
# used to make Variable and VarBase has same interfaces, like numpy. Since VarBase is not exposed in our
# official docments, logically, we want to keep VarBase and logically consistent. While, actually,
# in our implementation, there some APIs not supported, like numpy, because Variable contains the desc.
# So, those APIs are listed under class Variable to generate docs only.
# TODO(zhiqiu): We should make VarBase consistent with Variable in future, for example, by inheritting
T
tangwei12 已提交
563
# same base class.
564 565 566
def _fake_interface_only_(func):
    def __impl__(*args, **kwargs):
        raise AssertionError(
567 568 569 570
            "'%s' only can be called by `paddle.Tensor` in dynamic graph mode. Suggestions:\n"
            "  1. If you are in static graph mode, you can switch to dynamic graph mode by turning off `paddle.enable_static()` or calling `paddle.disable_static()`.\n"
            "  2. If you are using `@paddle.jit.to_static`, you can turn off ProgramTranslator by calling `paddle.jit.ProgramTranslator().enable(False)`. "
            "If you have to translate dynamic graph to static graph, please use other API to replace '%s'."
571 572
            % (func.__name__, func.__name__)
        )
573 574 575 576

    return __impl__


T
tangwei12 已提交
577 578
# NOTE(chenweihang): There is argument name typo (stat_dict, correct name is state_dict)
# in fluid api Layer.set_dict, Optimizer.load, in order to correct the argument without
579 580 581 582 583 584 585 586 587
# introducing compatibility issues, add this decorator
# NOTE(chenweihang): not using `wrap_decorator` here is because `wrap_decorator` will
# move kwargs to args, which doesn't work in this decorate case
def deprecate_stat_dict(func):
    @functools.wraps(func)
    def wrapper(*args, **kwargs):
        if 'stat_dict' in kwargs:
            warnings.warn(
                "The argument `stat_dict` has deprecated, please change it to `state_dict`.",
588 589
                DeprecationWarning,
            )
590 591 592 593 594 595 596
            kwargs['state_dict'] = kwargs['stat_dict']
            kwargs.pop('stat_dict')
        return func(*args, **kwargs)

    return wrapper


597 598
dygraph_not_support = wrap_decorator(_dygraph_not_support_)
dygraph_only = wrap_decorator(_dygraph_only_)
599
static_only = wrap_decorator(_static_only_)
600
fake_interface_only = wrap_decorator(_fake_interface_only_)
601
non_static_only = wrap_decorator(_non_static_only_)
602 603


L
lujun 已提交
604 605
def _dygraph_tracer():
    return _dygraph_tracer_
606

W
Wu Yi 已提交
607

608 609 610 611
def _global_flags():
    return _global_flags_


M
minqiyang 已提交
612
def _current_expected_place():
613 614 615
    global _global_expected_place_
    if _global_expected_place_ is None:
        if core.is_compiled_with_cuda():
616 617 618 619 620
            try:
                device_count = core.get_cuda_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
621
                _global_expected_place_ = core.CUDAPlace(_cuda_ids()[0])
622 623 624 625 626
            else:
                warnings.warn(
                    "You are using GPU version Paddle, but your CUDA device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
627 628 629 630 631 632
        elif core.is_compiled_with_xpu():
            try:
                device_count = core.get_xpu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
633
                _global_expected_place_ = core.XPUPlace(_xpu_ids()[0])
634 635 636 637 638
            else:
                warnings.warn(
                    "You are using XPU version Paddle, but your XPU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
639 640 641 642 643 644
        elif core.is_compiled_with_mlu():
            try:
                device_count = core.get_mlu_device_count()
            except Exception as e:
                device_count = 0
            if device_count > 0:
645
                _global_expected_place_ = core.MLUPlace(_mlu_ids()[0])
646 647 648 649 650
            else:
                warnings.warn(
                    "You are using MLU version Paddle, but your MLU device is not set properly. CPU device will be used by default."
                )
                _global_expected_place_ = core.CPUPlace()
651 652 653 654 655 656 657 658 659 660 661 662 663 664 665
        else:
            _global_expected_place_ = core.CPUPlace()

    return _global_expected_place_


def _set_dygraph_tracer_expected_place(place):
    global _dygraph_tracer_
    if _dygraph_tracer_ is not None:
        _dygraph_tracer_._expected_place = place


def _set_expected_place(place):
    global _global_expected_place_
    _global_expected_place_ = place
J
Jiabin Yang 已提交
666
    _set_dygraph_tracer_expected_place(place)
M
minqiyang 已提交
667 668


L
Leo Chen 已提交
669 670
# TODO(zhiqiu): remove this function.
def _var_base_to_np(var_base):
671 672
    """
    convert VarBase tp numpy
T
tangwei12 已提交
673

674 675 676
    Args:
        var_base(VarBase) : the VarBase to convert
    Returns (np.ndarray): the np.ndarray contain the value of VarBase
L
Leo Chen 已提交
677 678 679 680 681 682 683 684 685
    """

    warnings.warn(
        "paddle.fluid.framework._var_base_to_np is deprecated, please use var_base.numpy() instead of _var_base_to_np(var_base)."
    )

    return var_base.numpy()


S
sneaxiy 已提交
686
def _cpu_num():
687
    if "CPU_NUM" not in os.environ.keys():
C
chengduo 已提交
688 689 690 691 692 693 694
        if multiprocessing.cpu_count() > 1:
            sys.stderr.write(
                '!!! The CPU_NUM is not specified, you should set CPU_NUM in the environment variable list.\n'
                'CPU_NUM indicates that how many CPUPlace are used in the current task.\n'
                'And if this parameter are set as N (equal to the number of physical CPU core) the program may be faster.\n\n'
                'export CPU_NUM={} # for example, set CPU_NUM as number of physical CPU core which is {}.\n\n'
                '!!! The default number of CPU_NUM=1.\n'.format(
695 696 697
                    multiprocessing.cpu_count(), multiprocessing.cpu_count()
                )
            )
C
chengduo 已提交
698
        os.environ['CPU_NUM'] = str(1)
699
    cpu_num = os.environ.get('CPU_NUM')
C
chengduo 已提交
700 701 702 703 704 705 706 707
    return int(cpu_num)


def _cuda_ids():
    gpus_env = os.getenv("FLAGS_selected_gpus")
    if gpus_env:
        device_ids = [int(s) for s in gpus_env.split(",")]
    else:
708
        device_ids = range(core.get_cuda_device_count())
C
chengduo 已提交
709
    return device_ids
S
sneaxiy 已提交
710 711


712 713 714 715 716
def _xpu_ids():
    xpus_env = os.getenv("FLAGS_selected_xpus")
    if xpus_env:
        device_ids = [int(s) for s in xpus_env.split(",")]
    else:
717
        device_ids = range(core.get_xpu_device_count())
718 719 720
    return device_ids


721 722 723 724 725
def _npu_ids():
    npus_env = os.getenv("FLAGS_selected_npus")
    if npus_env:
        device_ids = [int(s) for s in npus_env.split(",")]
    else:
726
        device_ids = range(core.get_npu_device_count())
727 728 729
    return device_ids


730 731 732 733 734
def _mlu_ids():
    mlus_env = os.getenv("FLAGS_selected_mlus")
    if mlus_env:
        device_ids = [int(s) for s in mlus_env.split(",")]
    else:
735
        device_ids = range(core.get_mlu_device_count())
736 737 738
    return device_ids


739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
def is_compiled_with_xpu():
    """
    Whether this whl package can be used to run the model on XPU.

    Returns (bool): support xpu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_xpu = fluid.is_compiled_with_xpu()
    """
    return core.is_compiled_with_xpu()


754 755 756 757 758 759 760 761 762 763 764 765 766 767 768
def is_compiled_with_npu():
    """
    Whether this whl package can be used to run the model on NPU.

    Returns (bool): support npu or not.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            support_npu = fluid.is_compiled_with_npu()
    """
    return core.is_compiled_with_npu()


769 770 771 772 773 774 775
def disable_signal_handler():
    """
    Reset signal handler registered by Paddle.

    Paddle installs signal handlers at C++ level to log debug information upon failing.
    However, conflicts can happen if another python module is making use of such signal.
    Such being the case, one may disblae paddle signal handler via this interface.
776

777 778 779 780 781 782
    Known frameworks that require disabling signal handler includes:
    1. TVM
    2. ADLIK

    Make sure you called paddle.disable_signal_handler() before using above mentioned frameworks.

Z
Zman 已提交
783 784
    Returns:
        None
785 786 787 788 789 790 791 792 793 794

    Examples:
        .. code-block:: python

            import paddle
            paddle.disable_signal_handler()
    """
    core.disable_signal_handler()


795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
def is_compiled_with_cinn():
    """
    Whether this whl package can be used to run the model on CINN.

    Returns (bool): `True` if CINN is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
            support_cinn = paddle.device.is_compiled_with_cinn()
    """
    return core.is_compiled_with_cinn()


C
chengduo 已提交
810 811 812 813
def is_compiled_with_cuda():
    """
    Whether this whl package can be used to run the model on GPU.

814
    Returns (bool): `True` if CUDA is currently available, otherwise `False`.
C
chengduo 已提交
815 816 817 818

    Examples:
        .. code-block:: python

819
            import paddle
820
            support_gpu = paddle.device.is_compiled_with_cuda()
C
chengduo 已提交
821 822 823 824
    """
    return core.is_compiled_with_cuda()


825 826 827 828 829 830 831 832 833 834
def is_compiled_with_rocm():
    """
    Whether this whl package can be used to run the model on AMD or Hygon GPU(ROCm).

    Returns (bool): `True` if ROCm is currently available, otherwise `False`.

    Examples:
        .. code-block:: python

            import paddle
835
            support_gpu = paddle.device.is_compiled_with_rocm()
836 837 838 839
    """
    return core.is_compiled_with_rocm()


S
sneaxiy 已提交
840
def cuda_places(device_ids=None):
L
lujun 已提交
841
    """
842
    Note:
843 844 845
        For multi-card tasks, please use `FLAGS_selected_gpus` environment variable to set the visible GPU device.
        The next version will fix the problem with `CUDA_VISIBLE_DEVICES` environment variable.

C
Chen Weihang 已提交
846
    This function creates a list of :code:`paddle.CUDAPlace` objects.
S
add doc  
sneaxiy 已提交
847 848

    If :code:`device_ids` is None, environment variable of
849
    :code:`FLAGS_selected_gpus` would be checked first. For example, if
S
add doc  
sneaxiy 已提交
850
    :code:`FLAGS_selected_gpus=0,1,2`, the returned list would
C
Chen Weihang 已提交
851
    be [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
S
add doc  
sneaxiy 已提交
852
    If :code:`FLAGS_selected_gpus` is not set, all visible
853
    gpu places would be returned according to the :code:`CUDA_VISIBLE_DEVICES` environment variable.
S
add doc  
sneaxiy 已提交
854 855

    If :code:`device_ids` is not None, it should be the device
856
    ids of GPUs. For example, if :code:`device_ids=[0,1,2]`,
857
    the returned list would be
C
Chen Weihang 已提交
858
    [paddle.CUDAPlace(0), paddle.CUDAPlace(1), paddle.CUDAPlace(2)].
T
tangwei12 已提交
859

860
    Parameters:
861
        device_ids (list|tuple, optional): A list/tuple of int of GPU device ids.
S
add doc  
sneaxiy 已提交
862 863

    Returns:
C
Chen Weihang 已提交
864
        list of paddle.CUDAPlace: Created GPU place list.
L
lujun 已提交
865 866

    Examples:
867

L
lujun 已提交
868 869
        .. code-block:: python

C
Chen Weihang 已提交
870 871
            import paddle
            import paddle.static as static
T
tangwei12 已提交
872

873
            # required: gpu
874

C
Chen Weihang 已提交
875 876 877
            paddle.enable_static()

            cuda_places = static.cuda_places()
L
lujun 已提交
878 879

    """
880
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
881
    if device_ids is None:
C
chengduo 已提交
882
        device_ids = _cuda_ids()
S
sneaxiy 已提交
883 884 885 886 887
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.CUDAPlace(dev_id) for dev_id in device_ids]


888 889 890 891
def xpu_places(device_ids=None):
    """
    **Note**:
        For multi-card tasks, please use `FLAGS_selected_xpus` environment variable to set the visible XPU device.
S
sunzhongkai588 已提交
892 893 894 895 896 897 898 899 900
        This function creates a list of :code:`paddle.XPUPlace` objects.
        If :code:`device_ids` is None, environment variable of
        :code:`FLAGS_selected_xpus` would be checked first. For example, if
        :code:`FLAGS_selected_xpus=0,1,2`, the returned list would
        be [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
        If :code:`FLAGS_selected_xpus` is not set, all visible
        xpu places would be returned.
        If :code:`device_ids` is not None, it should be the device
        ids of XPUs. For example, if :code:`device_ids=[0,1,2]`,
901
        the returned list would be
S
sunzhongkai588 已提交
902
        [paddle.XPUPlace(0), paddle.XPUPlace(1), paddle.XPUPlace(2)].
903

904 905 906 907 908 909
    Parameters:
        device_ids (list or tuple of int, optional): list of XPU device ids.
    Returns:
        list of paddle.XPUPlace: Created XPU place list.
    Examples:
        .. code-block:: python
S
sunzhongkai588 已提交
910

911 912
            # required: xpu

913 914
            import paddle
            import paddle.static as static
915

916 917 918
            paddle.enable_static()
            xpu_places = static.xpu_places()
    """
919
    assert core.is_compiled_with_xpu(), "Not compiled with XPU"
920 921 922 923 924 925 926
    if device_ids is None:
        device_ids = _xpu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.XPUPlace(dev_id) for dev_id in device_ids]


927 928
def npu_places(device_ids=None):
    """
929 930

    Note:
931
        For multi-card tasks, please use `FLAGS_selected_npus` environment variable to set the visible NPU device.
932

933 934 935 936 937 938 939 940 941
    This function creates a list of :code:`paddle.NPUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_npus` would be checked first. For example, if
    :code:`FLAGS_selected_npus=0,1,2`, the returned list would
    be [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
    If :code:`FLAGS_selected_npus` is not set, all visible
    npu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of NPUs. For example, if :code:`device_ids=[0,1,2]`,
942
    the returned list would be
943
    [paddle.NPUPlace(0), paddle.NPUPlace(1), paddle.NPUPlace(2)].
944

945 946 947 948 949 950 951 952 953 954 955
    Parameters:
        device_ids (list or tuple of int, optional): list of NPU device ids.
    Returns:
        list of paddle.NPUPlace: Created NPU place list.
    Examples:
        .. code-block:: python

            # required: npu

            import paddle
            import paddle.static as static
956

957 958 959
            paddle.enable_static()
            npu_places = static.npu_places()
    """
960
    assert core.is_compiled_with_npu(), "Not compiled with NPU"
961 962 963 964 965 966 967
    if device_ids is None:
        device_ids = _npu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.NPUPlace(dev_id) for dev_id in device_ids]


S
sneaxiy 已提交
968
def cpu_places(device_count=None):
L
lujun 已提交
969
    """
C
Chen Weihang 已提交
970
    This function creates a list of :code:`paddle.CPUPlace` objects, and returns the created list.
T
tangwei12 已提交
971

S
add doc  
sneaxiy 已提交
972
    If :code:`device_count` is None, the device count would
973
    be determined by environment variable :code:`CPU_NUM`.
C
chengduo 已提交
974 975
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
976 977
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
978

979 980
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
981 982

    Returns:
C
Chen Weihang 已提交
983
        list of paddle.CPUPlace: Created list of CPU places.
L
lujun 已提交
984 985

    Examples:
986

L
lujun 已提交
987 988
        .. code-block:: python

C
Chen Weihang 已提交
989 990
            import paddle
            import paddle.static as static
T
tangwei12 已提交
991

C
Chen Weihang 已提交
992 993 994
            paddle.enable_static()

            cpu_places = static.cpu_places()
L
lujun 已提交
995 996
    """

S
sneaxiy 已提交
997 998 999 1000 1001 1002
    if device_count is None:
        device_count = _cpu_num()
    return [core.CPUPlace()] * device_count


def cuda_pinned_places(device_count=None):
L
lujun 已提交
1003
    """
1004
    This function creates a list of :code:`fluid.CUDAPinnedPlace` objects.
S
add doc  
sneaxiy 已提交
1005 1006

    If :code:`device_count` is None, the device count would
1007
    be determined by environment variable :code:`CPU_NUM`.
1008 1009 1010 1011
    If :code:`CPU_NUM` is not set, the default value is 1,
    i.e. CPU_NUM=1.
    :code:`CPU_NUM` indicates the number of devices used in the current task.
    The running of the program can be accelerated if :code:`CPU_NUM` is the same as the number of physical cores.
S
add doc  
sneaxiy 已提交
1012

1013 1014
    Parameters:
        device_count (int, optional): device number. Default: None.
S
add doc  
sneaxiy 已提交
1015 1016

    Returns:
1017
        list of fluid.CUDAPinnedPlace: Created list of CUDA pinned places.
L
lujun 已提交
1018 1019 1020 1021

    Examples:
        .. code-block:: python

1022
            import paddle.fluid as fluid
L
lujun 已提交
1023 1024 1025 1026 1027
            cuda_pinned_places_cpu_num = fluid.cuda_pinned_places()
            # or
            cuda_pinned_places = fluid.cuda_pinned_places(1)

    """
1028
    assert core.is_compiled_with_cuda(), "Not compiled with CUDA"
S
sneaxiy 已提交
1029
    if device_count is None:
1030 1031
        device_count = len(_cuda_ids())
    return [core.CUDAPinnedPlace()] * device_count
S
sneaxiy 已提交
1032 1033


1034 1035
def mlu_places(device_ids=None):
    """
G
gouzil 已提交
1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
    This function creates a list of :code:`paddle.device.MLUPlace` objects.
    If :code:`device_ids` is None, environment variable of
    :code:`FLAGS_selected_mlus` would be checked first. For example, if
    :code:`FLAGS_selected_mlus=0,1,2`, the returned list would
    be [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].
    If :code:`FLAGS_selected_mlus` is not set, all visible
    mlu places would be returned.
    If :code:`device_ids` is not None, it should be the device
    ids of MLUs. For example, if :code:`device_ids=[0,1,2]`,
    the returned list would be
    [paddle.device.MLUPlace(0), paddle.device.MLUPlace(1), paddle.device.MLUPlace(2)].

    Note:
1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
        For multi-card tasks, please use `FLAGS_selected_mlus` environment variable to set the visible MLU device.

    Parameters:
        device_ids (list or tuple of int, optional): list of MLU device ids.

    Returns:
        list of paddle.device.MLUPlace: Created MLU place list.

    Examples:
        .. code-block:: python

            # required: mlu

            import paddle
            import paddle.static as static

            paddle.enable_static()
            mlu_places = static.mlu_places()
    """
1068
    assert core.is_compiled_with_mlu(), "Not compiled with MLU"
1069 1070 1071 1072 1073 1074 1075
    if device_ids is None:
        device_ids = _mlu_ids()
    elif not isinstance(device_ids, (list, tuple)):
        device_ids = [device_ids]
    return [core.MLUPlace(dev_id) for dev_id in device_ids]


1076
class NameScope:
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
1087 1088 1089
            new_child = NameScope(
                prefix + "_%d" % len(self._children[prefix]), self
            )
1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


S
rename  
sneaxiy 已提交
1103
@signature_safe_contextmanager
1104 1105
def name_scope(prefix=None):
    """
1106

1107
    Generate hierarchical name prefix for the operators in Static Graph.
1108

1109
    Note:
T
Tao Luo 已提交
1110 1111
        This should only used for debugging and visualization purpose.
        Don't use it for serious analysis such as graph/program transformations.
1112
        Don't use it in dygraph, since it will cause memory leak.
1113 1114

    Args:
T
Tao Luo 已提交
1115
        prefix(str, optional): prefix. Default is none.
1116 1117

    Examples:
1118

1119
        .. code-block:: python
T
Tink_Y 已提交
1120

1121 1122 1123
          import paddle
          paddle.enable_static()
          with paddle.static.name_scope("s1"):
1124
             a = paddle.static.data(name='data', shape=[None, 1], dtype='int32')
T
Tao Luo 已提交
1125
             b = a + 1
1126
             with paddle.static.name_scope("s2"):
T
Tao Luo 已提交
1127
                c = b * 1
1128
             with paddle.static.name_scope("s3"):
T
Tao Luo 已提交
1129
                d = c / 1
1130 1131 1132
          with paddle.static.name_scope("s1"):
                f = paddle.tensor.pow(d, 2.0)
          with paddle.static.name_scope("s4"):
T
Tao Luo 已提交
1133 1134
                g = f - 1

1135
          # Op are created in the default main program.
1136
          for op in paddle.static.default_main_program().block(0).ops:
T
Tao Luo 已提交
1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
              # elementwise_add is created in /s1/
              if op.type == 'elementwise_add':
                  assert op.desc.attr("op_namescope") == '/s1/'
              # elementwise_mul is created in '/s1/s2'
              elif op.type == 'elementwise_mul':
                  assert op.desc.attr("op_namescope") == '/s1/s2/'
              # elementwise_div is created in '/s1/s3'
              elif op.type == 'elementwise_div':
                  assert op.desc.attr("op_namescope") == '/s1/s3/'
              # elementwise_sum is created in '/s4'
              elif op.type == 'elementwise_sub':
                  assert op.desc.attr("op_namescope") == '/s4/'
              # pow is created in /s1_1/
              elif op.type == 'pow':
                  assert op.desc.attr("op_namescope") == '/s1_1/'
1152 1153
    """
    # TODO(panyx0718): Only [0-9a-z].
1154
    # in dygraph we don't need namescope since it will cause mem leak
J
Jiabin Yang 已提交
1155
    if _non_static_mode():
L
Leo Chen 已提交
1156 1157
        yield
    else:
T
tianshuo78520a 已提交
1158
        assert prefix, "namescope prefix can not be empty."
1159 1160
        global _name_scope
        _name_scope = _name_scope.child(prefix)
1161 1162 1163 1164
        try:
            yield
        finally:
            _name_scope = _name_scope.parent()
1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
1177 1178
def generate_control_dev_var_name():
    import random
1179

W
Wu Yi 已提交
1180
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
1181 1182 1183 1184


def grad_var_name(var_name):
    """
1185 1186
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
1187 1188 1189
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
1190

1191
def convert_np_dtype_to_dtype_(np_dtype):
1192
    """
1193
    Convert the data type in numpy to the data type in Paddle.
1194

1195
    Args:
1196 1197
        np_dtype (np.dtype|str): The data type in numpy or valid data type
            string.
1198

1199
    Returns:
1200
        core.VarDesc.VarType: The data type in Paddle.
1201 1202

    """
1203 1204
    # Convert the data type string to numpy data type.
    if isinstance(np_dtype, str) and np_dtype == "bfloat16":
1205 1206 1207
        dtype = np.uint16
    else:
        dtype = np.dtype(np_dtype)
1208

1209
    if dtype == np.float32:
1210
        return core.VarDesc.VarType.FP32
1211
    elif dtype == np.float64:
1212
        return core.VarDesc.VarType.FP64
1213
    elif dtype == np.float16:
1214
        return core.VarDesc.VarType.FP16
1215
    elif dtype == np.int32:
1216
        return core.VarDesc.VarType.INT32
1217
    elif dtype == np.int16:
1218
        return core.VarDesc.VarType.INT16
1219
    elif dtype == np.int64:
1220
        return core.VarDesc.VarType.INT64
1221
    elif dtype == np.bool_:
1222
        return core.VarDesc.VarType.BOOL
1223
    elif dtype == np.uint16:
1224 1225 1226
        # since there is still no support for bfloat16 in NumPy,
        # uint16 is used for casting bfloat16
        return core.VarDesc.VarType.BF16
1227 1228
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
1229 1230
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
1231 1232 1233 1234
    elif dtype == np.complex64:
        return core.VarDesc.VarType.COMPLEX64
    elif dtype == np.complex128:
        return core.VarDesc.VarType.COMPLEX128
1235
    else:
M
minqiyang 已提交
1236
        raise ValueError("Not supported numpy dtype %s" % dtype)
1237 1238 1239


def dtype_is_floating(dtype):
1240 1241 1242
    """
    Check the data type is floating or not.
    Args:
1243
        dtype(np.dtype|core.VarDesc.VarType): data type.
1244 1245 1246 1247 1248
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
1249
    if not isinstance(dtype, core.VarDesc.VarType):
1250 1251
        dtype = convert_np_dtype_to_dtype_(dtype)

1252
    return dtype in [
1253 1254 1255
        core.VarDesc.VarType.FP16,
        core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64,
1256
    ]
1257 1258


Y
Yang Yang(Tony) 已提交
1259
def _debug_string_(proto, throw_on_error=True):
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
1271
    error_fields = list()
Y
Yang Yang(Tony) 已提交
1272
    if not proto.IsInitialized(error_fields) and throw_on_error:
1273 1274
        raise ValueError(
            "{0} are not initialized.\nThe message is {1}:\n".format(
1275 1276 1277
                error_fields, proto
            )
        )
Y
Yu Yang 已提交
1278 1279 1280
    return proto.__str__()


1281 1282 1283 1284 1285 1286
def _varbase_creator(
    type=core.VarDesc.VarType.LOD_TENSOR,
    name=None,
    shape=None,
    dtype=None,
    persistable=None,
1287
    **kwargs,
1288
):
1289 1290 1291 1292
    if dtype is not None:
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)

J
Jiabin Yang 已提交
1293
    if _in_eager_mode_:
1294
        eager_tensor = core.eager.Tensor(
1295
            dtype if dtype else core.VarDesc.VarType.FP32,
1296 1297
            list(shape) if shape else [],
            name,
1298
            type if type else core.VarDesc.VarType.LOD_TENSOR,
1299 1300
            True if persistable else False,
        )
1301 1302
        eager_tensor.retain_grads()
        return eager_tensor
J
Jiabin Yang 已提交
1303
    else:
1304 1305 1306 1307 1308 1309 1310
        return core.VarBase(
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            type if type else core.VarDesc.VarType.LOD_TENSOR,
            True if persistable else False,
        )
1311 1312


1313 1314 1315 1316 1317 1318 1319
def _all_is_type(vals, expected_type):
    """
    Return True if type of each element is expected_type.

    NOTE: BuiltIn all() will always return True if vals is empty.
    """
    assert isinstance(vals, (list, tuple))
1320 1321
    if not vals:
        return False
1322 1323 1324
    return all(isinstance(v, expected_type) for v in vals)


1325 1326 1327 1328 1329
class VariableMetaClass(type):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1330
            return issubclass(t, core.eager.Tensor)
1331 1332 1333 1334 1335 1336 1337 1338 1339
        else:
            return issubclass(t, Variable)


class ParameterMetaClass(VariableMetaClass):
    @classmethod
    def __instancecheck__(cls, instance):
        t = type(instance)
        if in_dygraph_mode():
J
Jiabin Yang 已提交
1340
            return issubclass(t, EagerParamBase)
1341 1342 1343 1344
        else:
            return issubclass(t, Parameter)


1345
class Variable(metaclass=VariableMetaClass):
1346
    """
J
Jiabin Yang 已提交
1347

U
ustiniankw 已提交
1348 1349 1350 1351
    Notes:
        The constructor of Variable should not be invoked directly.

        In Static Graph Mode: Please use ** `Block.create_var` ** to create a Static variable which has no data until being feed.
1352

U
ustiniankw 已提交
1353
        In Dygraph Mode: Please use ** :ref:`api_fluid_dygraph_to_variable` ** to create a dygraph variable with real data.
J
Jiabin Yang 已提交
1354 1355

    In Fluid, every input and output of an OP is a variable. In most
1356
    cases, variables are used for holding different kinds of data or training
J
Jiabin Yang 已提交
1357 1358
    labels. A variable belongs to a :ref:`api_guide_Block_en` . All variable has its own name and
    two variables in different :ref:`api_guide_Block_en` could have the same name.
1359

1360
    There are many kinds of variables. Each kind of them has its own attributes
J
Jiabin Yang 已提交
1361
    and usages. Please refer to the `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_ for details.
1362

T
tianshuo78520a 已提交
1363
    Most of a Variable's member variables can be set to be None. It mean
1364
    it is not available or will be specified later.
1365

1366
    Examples:
1367 1368
        In Static Graph Mode:

1369 1370
        .. code-block:: python

1371
            import paddle.fluid as fluid
1372
            cur_program = fluid.Program()
1373 1374 1375 1376
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
S
sunzhongkai588 已提交
1377

1378
        In Dygraph  Mode:
1379 1380 1381 1382 1383 1384 1385 1386 1387

        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                new_variable = fluid.dygraph.to_variable(np.arange(10))

1388 1389
    """

1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404
    def __init__(
        self,
        block,
        type=core.VarDesc.VarType.LOD_TENSOR,
        name=None,
        shape=None,
        dtype=None,
        lod_level=None,
        capacity=None,
        persistable=None,
        error_clip=None,
        stop_gradient=False,
        is_data=False,
        need_check_feed=False,
        belong_to_optimizer=False,
1405
        **kwargs,
1406
    ):
Y
Yu Yang 已提交
1407 1408
        self.block = block
        if name is None:
Y
Yu Yang 已提交
1409
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
1410

Y
Yu Yang 已提交
1411
        if dtype is not None:
1412
            if not isinstance(dtype, core.VarDesc.VarType):
1413
                dtype = convert_np_dtype_to_dtype_(dtype)
1414

S
Steffy-zxf 已提交
1415 1416 1417 1418
        if dtype == core.VarDesc.VarType.STRINGS:
            type = core.VarDesc.VarType.STRINGS
            lod_level = None

1419 1420 1421
        if type == core.VarDesc.VarType.SPARSE_COO:
            lod_level = None

H
hong 已提交
1422 1423
        self.belong_to_optimizer = belong_to_optimizer

1424 1425 1426
        self.error_clip = error_clip

        is_new_var = False
1427
        self.desc = self.block.desc.find_var(name.encode())
1428

1429
        if self.desc is None:
1430
            self.desc = self.block.desc.var(name.encode())
1431
            is_new_var = True
1432

1433 1434 1435
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
1436 1437 1438 1439 1440
            raise ValueError(
                "Variable '{0}' has been created before. The "
                "previous type is {1}, the new type is {2}. They"
                " are not matched".format(self.name, self.desc.type(), type)
            )
1441

1442
        if shape is not None:
1443
            if is_new_var:
1444 1445 1446 1447 1448 1449
                self.desc.set_shape(shape)
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
L
Leo Chen 已提交
1450 1451
                        "Variable '{0}' has been created before. The previous "
                        "shape is {1}, the new shape is {2}. They are not "
1452 1453
                        "matched.".format(self.name, old_shape, shape)
                    )
1454 1455 1456 1457 1458 1459
        if dtype is not None:
            if is_new_var:
                self.desc.set_dtype(dtype)
            else:
                old_dtype = self.dtype
                if dtype != old_dtype:
1460 1461 1462 1463 1464 1465
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous data type is {1}, the new "
                        "data type is {2}. They are not "
                        "matched.".format(self.name, old_dtype, dtype)
                    )
1466 1467 1468 1469 1470 1471

        if lod_level is not None:
            if is_new_var:
                self.desc.set_lod_level(lod_level)
            else:
                if lod_level != self.lod_level:
1472 1473 1474 1475 1476 1477
                    raise ValueError(
                        "Variable '{0}' has been created before. "
                        "The previous lod_level is {1}, the new "
                        "lod_level is {2}. They are not "
                        "matched".format(self.name, self.lod_level, lod_level)
                    )
1478 1479 1480 1481 1482 1483
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
L
Leo Chen 已提交
1484 1485
                        "Variable '{0}' has been created before."
                        "The previous persistable is {1}, the new "
1486
                        "persistable is {2}. They are not matched".format(
1487 1488 1489
                            self.name, self.persistable, persistable
                        )
                    )
1490

1491 1492
        if need_check_feed and is_new_var:
            self.desc.set_need_check_feed(need_check_feed)
H
Huihuang Zheng 已提交
1493

1494 1495 1496 1497 1498 1499 1500
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass
1501

1502 1503
        self.block.vars[name] = self
        self.op = None
1504
        self.stop_gradient = stop_gradient
1505
        self.is_data = is_data
Y
Yu Yang 已提交
1506

1507 1508
    def detach(self):
        """
U
ustiniankw 已提交
1509

1510
        Returns a new Variable, detached from the current graph.
1511 1512
        It will share data with origin Variable and without tensor copy.
        In addition, the detached Variable doesn't provide gradient propagation.
1513

1514
        Returns:
U
ustiniankw 已提交
1515
             ( :ref:`api_guide_Variable_en` | dtype is same as current Variable), The detached Variable.
1516 1517 1518 1519

        Examples:
            .. code-block:: python

1520
                import paddle
1521

1522 1523 1524 1525
                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
1526

1527 1528
                # create a detached Variable
                y = x.detach()
U
ustiniankw 已提交
1529

1530
        """
1531

1532 1533 1534 1535
        assert (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ), "only support a variable with SELECTED_ROWS or LOD_TENSOR to be detached"
1536 1537 1538 1539 1540 1541

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key("detach_" + self.name),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
1542 1543
            stop_gradient=True,
        )
1544

1545 1546 1547
        self.block.append_op(
            type='share_data', inputs={'X': [self]}, outputs={'Out': [output]}
        )
1548
        return output
1549

1550
    @fake_interface_only
1551
    def numpy(self):
1552
        """
J
Jiabin Yang 已提交
1553
        **Notes**:
T
tianshuo78520a 已提交
1554
            **This API is ONLY available in Dygraph mode**
1555

J
Jiabin Yang 已提交
1556
        Returns a numpy array shows the value of current :ref:`api_guide_Variable_en`
1557 1558 1559 1560 1561

        Returns:
            ndarray: The numpy value of current Variable.

        Returns type:
J
Jiabin Yang 已提交
1562
            ndarray: dtype is same as current Variable
1563 1564 1565 1566 1567 1568

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
                from paddle.fluid.dygraph.base import to_variable
1569
                from paddle.fluid.dygraph import Linear
1570 1571 1572 1573
                import numpy as np

                data = np.random.uniform(-1, 1, [30, 10, 32]).astype('float32')
                with fluid.dygraph.guard():
1574
                    linear = Linear(32, 64)
1575
                    data = to_variable(data)
1576
                    x = linear(data)
1577 1578 1579
                    print(x.numpy())

        """
1580
        pass
1581

1582
    @fake_interface_only
1583
    def backward(self, retain_graph=False):
1584
        """
J
Jiabin Yang 已提交
1585
        **Notes**:
T
tianshuo78520a 已提交
1586
            **This API is ONLY available in Dygraph mode**
1587

1588
        Run backward of current Graph which starts from current Tensor.
1589

J
Jiabin Yang 已提交
1590
        Args:
1591 1592 1593 1594
            retain_graph(bool, optional): If False, the graph used to compute grads will be freed. If you would
                like to add more ops to the built graph after calling this method( :code:`backward` ), set the parameter
                :code:`retain_graph` to True, then the grads will be retained. Thus, seting it to False is much more memory-efficient.
                Defaults to False.
1595

J
Jiabin Yang 已提交
1596 1597
        Returns:
            NoneType: None
1598 1599 1600 1601 1602

        Examples:
            .. code-block:: python

                import numpy as np
1603 1604
                import paddle
                paddle.disable_static()
1605 1606

                x = np.ones([2, 2], np.float32)
1607 1608 1609 1610 1611 1612 1613
                inputs = []
                for _ in range(10):
                    tmp = paddle.to_tensor(x)
                    # if we don't set tmp's stop_gradient as False then, all path to loss will has no gradient since
                    # there is no one need gradient on it.
                    tmp.stop_gradient=False
                    inputs.append(tmp)
1614 1615
                ret = paddle.add_n(inputs)
                loss = paddle.sum(ret)
1616
                loss.backward()
1617 1618

        """
1619
        pass
1620

1621
    @fake_interface_only
1622
    def gradient(self):
1623
        """
J
Jiabin Yang 已提交
1624
        **Notes**:
T
tianshuo78520a 已提交
1625
            **This API is ONLY available in Dygraph mode**
1626 1627 1628

        Get the Gradient of Current Variable

J
Jiabin Yang 已提交
1629
        Returns:
1630
            ndarray or tuple of ndarray: if Variable's type is LoDTensor, return numpy value of the gradient of current Variable, if Variable's type is SelectedRows, return tuple of ndarray, first element of tuple is numpy value of the gradient of current Variable, second element of tuple is numpy value of the rows of current Variable.
1631 1632 1633 1634

        Examples:
            .. code-block:: python

1635
                import paddle
1636 1637 1638
                import paddle.fluid as fluid
                import numpy as np

1639
                # example1: return ndarray
1640 1641 1642 1643 1644 1645 1646 1647
                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
1648
                    loss2 = paddle.sum(ret2)
1649
                    loss2.backward()
1650 1651
                    print(loss2.gradient())

1652 1653
                # example2: return tuple of ndarray
                with fluid.dygraph.guard():
1654 1655 1656 1657 1658
                    embedding = paddle.nn.Embedding(
                        20,
                        32,
                        weight_attr='emb.w',
                        sparse=True)
1659 1660 1661 1662 1663 1664 1665
                    x_data = np.arange(12).reshape(4, 3).astype('int64')
                    x_data = x_data.reshape((-1, 3, 1))
                    x = fluid.dygraph.base.to_variable(x_data)
                    out = embedding(x)
                    out.backward()
                    print(embedding.weight.gradient())

1666
        """
1667
        pass
1668

1669
    @fake_interface_only
1670
    def clear_gradient(self):
1671
        """
J
Jiabin Yang 已提交
1672
        **Notes**:
T
tianshuo78520a 已提交
1673
            **1. This API is ONLY available in Dygraph mode**
J
Jiabin Yang 已提交
1674 1675

            **2. Use it only Variable has gradient, normally we use this for Parameters since other temporal Variable will be deleted by Python's GC**
1676

J
Jiabin Yang 已提交
1677
        Clear  (set to ``0`` ) the Gradient of Current Variable
1678 1679 1680 1681 1682 1683

        Returns:  None

        Examples:
            .. code-block:: python

1684
                import paddle
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    inputs2 = []
                    for _ in range(10):
                        tmp = fluid.dygraph.base.to_variable(x)
                        tmp.stop_gradient=False
                        inputs2.append(tmp)
                    ret2 = fluid.layers.sums(inputs2)
1696
                    loss2 = paddle.sum(ret2)
1697
                    loss2.backward()
1698 1699 1700 1701 1702
                    print(loss2.gradient())
                    loss2.clear_gradient()
                    print("After clear {}".format(loss2.gradient()))

        """
1703
        pass
X
Xin Pan 已提交
1704

1705 1706 1707 1708
    @fake_interface_only
    def register_hook(self, hook):
        pass

1709
    def __str__(self):
1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
        return self._to_readable_code()

    def _to_readable_code(self):
        """
        Get readable debug string of Variable.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Returns:
            string: The formatted Variable string.

        Examples:
            .. code-block:: python

1726 1727
                import paddle
                import paddle.static as static
1728

1729 1730 1731
                paddle.enable_static()

                cur_program = static.Program()
1732 1733 1734 1735 1736 1737
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
                print(new_variable._to_readable_code())
        """
1738 1739
        # VarType.LOD_TENSOR -> LOD_TENSOR
        type_str = str(self.type).split('.')[1]
1740 1741 1742 1743
        if (
            self.type == core.VarDesc.VarType.SELECTED_ROWS
            or self.type == core.VarDesc.VarType.LOD_TENSOR
        ):
1744
            dtype_str = str(self.dtype).split('.')[1]
1745 1746 1747 1748 1749 1750 1751
            var_str = "{name} : {type}.shape{shape}.dtype({dtype}).stop_gradient({stop_gradient})".format(
                name=self.name,
                type=type_str,
                shape=self.shape,
                dtype=dtype_str,
                stop_gradient=self.stop_gradient,
            )
1752
        else:
1753
            var_str = "{name} : {type})".format(name=self.name, type=type_str)
1754

1755
        if self.is_parameter:
1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
            if self.trainable:
                var_str = "trainable param " + var_str
            else:
                var_str = "param " + var_str
        else:
            var_str = "var " + var_str

        if self.persistable:
            var_str = "persist " + var_str

1766 1767 1768 1769
        from paddle.distributed.auto_parallel.dist_context import (
            get_default_distributed_context,
        )

1770
        dist_context = get_default_distributed_context()
1771 1772
        dist_tensor = dist_context.get_dist_tensor_for_program(self)
        if dist_tensor is not None:
1773 1774 1775
            var_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_tensor
            )
1776

1777
        return var_str
Y
Yang Yang(Tony) 已提交
1778

F
update  
fengjiayi 已提交
1779
    def to_string(self, throw_on_error, with_details=False):
1780 1781 1782
        """
        Get debug string.

J
Jiabin Yang 已提交
1783 1784 1785 1786 1787
        Args:

            throw_on_error (bool): True if raise an exception when self is not initialized.

            with_details (bool): more details about variables and parameters (e.g. trainable, optimize_attr, ...) will be printed when with_details is True. Default value is False;
1788

1789 1790
        Returns:
            str: The debug string.
1791 1792 1793 1794 1795

        Examples:
            .. code-block:: python

                import paddle.fluid as fluid
1796
                import paddle
1797

1798
                paddle.enable_static()
1799 1800 1801 1802 1803
                cur_program = fluid.Program()
                cur_block = cur_program.current_block()
                new_variable = cur_block.create_var(name="X",
                                                    shape=[-1, 23, 48],
                                                    dtype='float32')
1804
                print(new_variable.to_string(True))
J
Jiabin Yang 已提交
1805
                print("=============with detail===============")
1806
                print(new_variable.to_string(True, True))
1807
        """
1808
        assert isinstance(throw_on_error, bool) and isinstance(
1809 1810
            with_details, bool
        )
1811
        protostr = self.desc.serialize_to_string()
1812
        proto = framework_pb2.VarDesc.FromString(bytes(protostr))
F
update  
fengjiayi 已提交
1813 1814
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
1815
            additional_attr = ("error_clip",)
F
update  
fengjiayi 已提交
1816
            for attr_name in additional_attr:
1817
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
1818

F
update  
fengjiayi 已提交
1819
        return res_str
1820 1821 1822

    __repr__ = __str__

1823 1824 1825
    def element_size(self):
        """
        Returns the size in bytes of an element in the Tensor.
1826

1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849
        Examples:
          .. code-block:: python

            import paddle
            paddle.enable_static()

            x = paddle.static.data(name='x1', shape=[3, 2], dtype='bool')
            x.element_size() # 1

            x = paddle.static.data(name='x2', shape=[3, 2], dtype='int16')
            x.element_size() # 2

            x = paddle.static.data(name='x3', shape=[3, 2], dtype='float16')
            x.element_size() # 2

            x = paddle.static.data(name='x4', shape=[3, 2], dtype='float32')
            x.element_size() # 4

            x = paddle.static.data(name='x5', shape=[3, 2], dtype='float64')
            x.element_size() # 8
        """
        return self.desc.element_size()

1850
    @property
1851
    def stop_gradient(self):
J
Jiabin Yang 已提交
1852 1853 1854
        """
        Indicating if we stop gradient from current Variable

1855
        **Notes: This Property has default value as** ``True`` **in** Dygraph **mode, while Parameter's default value is False. However, in Static Graph Mode all Variable's default stop_gradient value is** ``False``
J
Jiabin Yang 已提交
1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            with fluid.dygraph.guard():
                value0 = np.arange(26).reshape(2, 13).astype("float32")
                value1 = np.arange(6).reshape(2, 3).astype("float32")
                value2 = np.arange(10).reshape(2, 5).astype("float32")
1867 1868
                linear = fluid.Linear(13, 5, dtype="float32")
                linear2 = fluid.Linear(3, 3, dtype="float32")
J
Jiabin Yang 已提交
1869 1870 1871
                a = fluid.dygraph.to_variable(value0)
                b = fluid.dygraph.to_variable(value1)
                c = fluid.dygraph.to_variable(value2)
1872 1873
                out1 = linear(a)
                out2 = linear2(b)
J
Jiabin Yang 已提交
1874 1875 1876 1877
                out1.stop_gradient = True
                out = fluid.layers.concat(input=[out1, out2, c], axis=1)
                out.backward()

1878
                assert linear.weight.gradient() is None
J
Jiabin Yang 已提交
1879 1880
                assert (out1.gradient() == 0).all()
        """
1881
        return self.desc.stop_gradient()
1882

1883 1884
    @stop_gradient.setter
    def stop_gradient(self, s):
1885
        self.desc.set_stop_gradient(s)
1886

1887 1888
    @property
    def persistable(self):
J
Jiabin Yang 已提交
1889 1890 1891 1892 1893 1894 1895 1896
        """
        Indicating if we current Variable should be long-term alive


        **Notes: This Property will be deprecated and this API is just to help user understand concept**

            **1. All Variable's persistable is** ``False`` **except Parameters.**

1897
            **2. In** Dygraph **mode, this property should not be changed**
J
Jiabin Yang 已提交
1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("persistable of current Var is: {}".format(new_variable.persistable))
        """
1910
        return self.desc.persistable()
1911

Y
Yu Yang 已提交
1912 1913
    @persistable.setter
    def persistable(self, p):
1914
        self.desc.set_persistable(p)
Y
Yu Yang 已提交
1915

1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
    @property
    def is_parameter(self):
        """
        Indicating if current Variable is a Parameter

        Examples:
          .. code-block:: python

            import paddle
            new_parameter = paddle.static.create_parameter(name="X",
                                                shape=[10, 23, 48],
                                                dtype='float32')
            if new_parameter.is_parameter:
                print("Current var is a Parameter")
            else:
                print("Current var is not a Parameter")

            # Current var is a Parameter
        """
        return self.desc.is_parameter()

    @is_parameter.setter
    def is_parameter(self, p):
        self.desc.set_is_parameter(p)

Y
Yu Yang 已提交
1941 1942
    @property
    def name(self):
J
Jiabin Yang 已提交
1943 1944 1945
        """
        Indicating name of current Variable

1946
        **Notes: If it has two or more Varaible share the same name in the same** :ref:`api_guide_Block_en` **, it means these Variable will share content in no-** Dygraph **mode. This is how we achieve Parameter sharing**
J
Jiabin Yang 已提交
1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("name of current Var is: {}".format(new_variable.name))
        """
1959
        return self.desc.name()
Y
Yu Yang 已提交
1960

1961 1962 1963 1964 1965 1966
    @property
    def grad_name(self):
        """
        Indicating name of the gradient Variable of current Variable.

        **Notes: This is a read-only property. It simply returns name of
S
sunzhongkai588 已提交
1967 1968
        gradient Variable from a naming convention but doesn't guarantee
        the gradient exists.**
T
tangwei12 已提交
1969

1970 1971 1972 1973 1974 1975
        Examples:
          .. code-block:: python

          import paddle.fluid as fluid

          x = fluid.data(name="x", shape=[-1, 23, 48], dtype='float32')
1976
          print(x.grad_name) # output is ``x@GRAD``
1977 1978 1979 1980

        """
        return self.name + "@GRAD"

T
typhoonzero 已提交
1981 1982
    @name.setter
    def name(self, new_name):
1983
        self.desc.set_name(new_name)
T
typhoonzero 已提交
1984

Y
Yu Yang 已提交
1985 1986
    @property
    def shape(self):
J
Jiabin Yang 已提交
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
        """
        Indicating shape of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("shape of current Var is: {}".format(new_variable.shape))

        """
Y
Yu Yang 已提交
2004
        # convert to tuple, make it as same as numpy API.
2005
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
2006 2007

    @property
F
fengjiayi 已提交
2008
    def dtype(self):
J
Jiabin Yang 已提交
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
        """
        Indicating data type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Dtype of current Var is: {}".format(new_variable.dtype))
        """
2025
        return self.desc.dtype()
Y
Yu Yang 已提交
2026 2027 2028

    @property
    def lod_level(self):
J
Jiabin Yang 已提交
2029 2030 2031 2032 2033 2034 2035 2036
        """
        Indicating ``LoD`` info of current Variable, please refer to  :ref:`api_fluid_LoDTensor_en` to check the meaning
        of ``LoD``

        **Notes**:

            **1. This is a read-only property**

2037
            **2. Don't support this property in** Dygraph **mode, it's value should be** ``0(int)``
J
Jiabin Yang 已提交
2038 2039 2040 2041

        Examples:
          .. code-block:: python

2042
            import paddle
J
Jiabin Yang 已提交
2043
            import paddle.fluid as fluid
2044 2045

            paddle.enable_static()
J
Jiabin Yang 已提交
2046 2047 2048 2049 2050 2051 2052
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("LoD Level of current Var is: {}".format(new_variable.lod_level))
        """
2053 2054
        if self.type == core.VarDesc.VarType.SELECTED_ROWS:
            raise Exception("SelectedRows DO NOT supprt lod")
2055 2056
        if self.type == core.VarDesc.VarType.STRINGS:
            return None
2057
        return self.desc.lod_level()
Y
Yu Yang 已提交
2058

Y
Yu Yang 已提交
2059 2060
    @property
    def type(self):
J
Jiabin Yang 已提交
2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
        """
        Indicating Type of current Variable

        **Notes: This is a read-only property**

        Examples:
          .. code-block:: python

            import paddle.fluid as fluid
            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
            print("Type of current Var is: {}".format(new_variable.type))
        """
2077
        return self.desc.type()
Y
Yu Yang 已提交
2078

2079 2080 2081
    @property
    def T(self):
        """
U
ustiniankw 已提交
2082

2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100
        Permute current Variable with its dimensions reversed.

        If `n` is the dimensions of `x` , `x.T` is equivalent to `x.transpose([n-1, n-2, ..., 0])`.

        Examples:

            .. code-block:: python

                import paddle
                paddle.enable_static()

                x = paddle.ones(shape=[2, 3, 5])
                x_T = x.T

                exe = paddle.static.Executor()
                x_T_np = exe.run(paddle.static.default_main_program(), fetch_list=[x_T])[0]
                print(x_T_np.shape)
                # (5, 3, 2)
U
ustiniankw 已提交
2101

2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113
        """
        if len(self.shape) == 1:
            return self
        perm = []
        for i in range(len(self.shape)):
            perm.insert(0, i)

        out = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=self.type,
            persistable=False,
2114 2115
            stop_gradient=False,
        )
2116 2117 2118 2119 2120
        input_shape = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + '.tmp'),
            dtype=self.dtype,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
2121 2122 2123 2124 2125 2126 2127 2128 2129
            stop_gradient=False,
        )

        self.block.append_op(
            type='transpose2',
            inputs={'X': [self]},
            outputs={'Out': [out], 'XShape': [input_shape]},
            attrs={'axis': perm},
        )
2130 2131
        return out

2132 2133 2134
    def clone(self):
        """
        Returns a new static Variable, which is the clone of the original static
2135
        Variable. It remains in the current graph, that is, the cloned Variable
2136 2137 2138 2139
        provides gradient propagation. Calling ``out = tensor.clone()`` is same
        as ``out = assign(tensor)`` .

        Returns:
U
ustiniankw 已提交
2140
            Variable, The cloned Variable.
2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])
                # create a cloned Variable
                y = x.clone()

        """
        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_clone"),
            dtype=self.dtype,
            type=self.type,
            persistable=self.persistable,
2160 2161
            stop_gradient=self.stop_gradient,
        )
2162

2163 2164 2165
        self.block.append_op(
            type='assign', inputs={'X': [self]}, outputs={'Out': [output]}
        )
2166 2167
        return output

W
Wu Yi 已提交
2168
    def _set_error_clip(self, error_clip):
2169
        """
U
ustiniankw 已提交
2170

2171 2172 2173 2174 2175 2176 2177
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
U
ustiniankw 已提交
2178

2179
        """
2180 2181
        self.error_clip = error_clip

2182 2183
    def _set_info(self, key, value):
        """
U
ustiniankw 已提交
2184

2185 2186 2187 2188 2189 2190
        Set key-value information for this variable.

        Args:
            key(str): Key for this information.
            value(object): The value associated to the key.

2191
        Returns:
2192
            None
U
ustiniankw 已提交
2193

2194 2195 2196 2197 2198 2199 2200
        """
        if not hasattr(self, "_info"):
            self._info = {}
        self._info[key] = value

    def _get_info(self, key):
        """
U
ustiniankw 已提交
2201

2202 2203 2204 2205 2206
        Get the information of this variable corresponding to key.

        Args:
            key(str): Key for this information.

2207
        Returns:
2208
            object
U
ustiniankw 已提交
2209

2210 2211 2212 2213 2214
        """
        if hasattr(self, "_info") and key in self._info:
            return self._info[key]
        return None

2215 2216
    def _slice_indices(self, slice, length):
        """
U
ustiniankw 已提交
2217

2218
        Reference implementation for the slice.indices method.
U
ustiniankw 已提交
2219

2220 2221 2222 2223 2224 2225 2226 2227
        """
        # Compute step and length as integers.
        step = 1 if slice.step is None else slice.step

        # Raise ValueError for negative length or zero step.
        if length < 0:
            raise ValueError("length should not be negative")
        if step == 0:
T
tianshuo78520a 已提交
2228
            raise ValueError("slice step can not be zero")
2229 2230 2231 2232 2233 2234 2235 2236 2237 2238

        # Find lower and upper bounds for start and stop.
        lower = -1 if step < 0 else 0
        upper = length - 1 if step < 0 else length

        # Compute start.
        if slice.start is None:
            start = upper if step < 0 else lower
        else:
            start = slice.start
2239 2240 2241
            start = (
                max(start + length, lower) if start < 0 else min(start, upper)
            )
2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286

        # Compute stop.
        if slice.stop is None:
            stop = lower if step < 0 else upper
        else:
            stop = slice.stop
            stop = max(stop + length, lower) if stop < 0 else min(stop, upper)

        return start, stop, step

    def _detectEllipsis(self, item):
        has_ellipsis = False
        start = 0
        end = len(self.shape)
        for index, o in enumerate(item):
            if o is Ellipsis:
                if has_ellipsis:
                    raise ValueError("Index can have one ellipsis only.")
                has_ellipsis = True
                start = index
            else:
                if has_ellipsis:
                    end = index
        return has_ellipsis, start, end

    def _reconstructSliceinfo(self, item):
        has_ellipsis, start, end = self._detectEllipsis(item)
        if has_ellipsis:
            newitem = []
            for i in range(start):
                newitem.append(item[i])
            for i in range(start, end):
                newitem.append(slice(None, None, None))
            for i in range(end, len(item)):
                newitem.append(item[i])
            return newitem
        else:
            return None

    def _detectContinuesSlice(self, item):
        starts = []
        ends = []
        for index, o in enumerate(item):
            if isinstance(o, int):
                start = int(o)
2287 2288 2289
                if (index > 0 and index >= self.shape[index]) or (
                    index < 0 and (index + self.shape[index]) < 0
                ):
2290
                    raise IndexError("invalid index")
2291 2292 2293 2294 2295
                start = (
                    max(start + self.shape[index], 0)
                    if start < 0
                    else min(start, self.shape[index])
                )
2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
                starts.append(start)
                ends.append(start + 1)
            elif isinstance(o, slice):
                start, stop, step = self._slice_indices(o, self.shape[index])
                if step == 1 or step == -1:
                    starts.append(start)
                    ends.append(stop)
                else:
                    return False, None
            else:
                raise IndexError("Valid index accept int or slice or ellipsis")
        return True, [starts, ends]

L
lujun 已提交
2309
    def _cloneVar(self, copy=False):
2310 2311
        if not copy:
            return self.block.create_var(
H
Hongyu Liu 已提交
2312
                name=unique_name.generate_with_ignorable_key(self.name),
2313 2314
                dtype=self.dtype,
            )
2315 2316 2317 2318
        else:
            return self

    def _sliceVar(self, axes, starts, ends):
L
lujun 已提交
2319
        new_var = self._cloneVar()
2320 2321 2322 2323 2324 2325
        self.block.append_op(
            type="slice",
            inputs={'Input': [self]},
            outputs={'Out': [new_var]},
            attrs={'axes': axes, 'starts': starts, 'ends': ends},
        )
2326 2327 2328
        return new_var

    def _concatVar(self, inputs, axis):
L
lujun 已提交
2329
        new_var = self._cloneVar()
2330 2331 2332 2333 2334 2335 2336 2337
        self.block.append_op(
            type="concat",
            inputs={'X': inputs},
            outputs={'Out': [new_var]},
            attrs={
                'axis': axis,
            },
        )
2338 2339 2340 2341 2342
        return new_var

    def _sliceAndConcatVar(self, item, axis):
        if isinstance(item, slice):
            if self.shape[axis] < 0:
L
lujun 已提交
2343
                return self._cloneVar(True)
2344 2345 2346 2347 2348 2349 2350
            start, stop, step = self._slice_indices(item, self.shape[axis])
            if step == 1:
                return self._sliceVar([axis], [start], [stop])
            else:
                vars = []
                if step > 0:
                    while start < stop:
2351 2352 2353
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2354 2355 2356
                        start += step
                else:
                    while start > stop:
2357 2358 2359
                        vars.append(
                            self._sliceVar([axis], [start], [start + 1])
                        )
2360 2361 2362 2363
                        start += step
                return self._concatVar(vars, axis)
        elif isinstance(item, int):
            if self.shape[axis] < 0:
L
lujun 已提交
2364
                return self._cloneVar(True)
2365
            index = int(item)
2366 2367 2368
            if (index > 0 and index >= self.shape[axis]) or (
                index < 0 and (index + self.shape[axis]) < 0
            ):
2369 2370 2371 2372 2373 2374
                raise IndexError("invalid index")
            return self._sliceVar([axis], [index], [index + 1])
        else:
            raise IndexError("Valid index accept int or slice or tuple")

    def __getitem__(self, item):
2375
        return _getitem_impl_(self, item)
2376

2377
    def __setitem__(self, item, value):
2378
        return _setitem_impl_(self, item, value)
2379

2380 2381
    def get_value(self, scope=None):
        """
2382
        Get the value of variable in given scope.
2383 2384

        Args:
2385
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2386 2387 2388 2389
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
U
ustiniankw 已提交
2390
            Tensor, the value in given scope.
2391 2392 2393 2394 2395

        Examples:
            .. code-block:: python

                import paddle
2396
                import paddle.static as static
2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
        """
2421 2422
        # The 'framework' is a low-level module, and 'executor'
        # can not be imported at the begainning of this file.
2423 2424
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
2425

2426 2427
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2428 2429 2430 2431
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2432 2433 2434 2435 2436

        if scope is None:
            scope = global_scope()
        var_temp = scope.find_var(self.name)
        if var_temp is None:
2437 2438 2439
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2440 2441 2442 2443 2444
        t = var_temp.get_tensor()
        return t

    def set_value(self, value, scope=None):
        '''
U
ustiniankw 已提交
2445

2446
        Set the value to the tensor in given scope.
2447 2448 2449

        Args:
            value(Tensor/ndarray) : The value to be set.
2450
            scope(Scope, optional) : If `scope` is None, it will be set to global scope
2451 2452 2453 2454 2455
                obtained through 'paddle.static.global_scope()'. Otherwise, use `scope`.
                Default: None

        Returns:
            None
2456

2457 2458 2459 2460
        Examples:
            .. code-block:: python

                import paddle
2461
                import paddle.static as static
2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484
                import numpy as np

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')

                y = static.nn.fc(x, 10, name='fc')
                place = paddle.CPUPlace()
                exe = static.Executor(place)
                prog = paddle.static.default_main_program()
                exe.run(static.default_startup_program())
                inputs = np.ones((10, 10), dtype='float32')
                exe.run(prog, feed={'x': inputs}, fetch_list=[y, ])
                path = 'temp/tensor_'
                for var in prog.list_vars():
                    if var.persistable:
                        t = var.get_value()
                        paddle.save(t, path+var.name+'.pdtensor')

                for var in prog.list_vars():
                    if var.persistable:
                        t_load = paddle.load(path+var.name+'.pdtensor')
                        var.set_value(t_load)
U
ustiniankw 已提交
2485

2486 2487 2488
        '''

        # The 'framework' is a low-level module, and 'executor'
2489
        # can not be imported at the begainning of this file.
2490 2491 2492 2493 2494
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope

        if not (isinstance(value, np.ndarray) or hasattr(value, '__array__')):
            raise TypeError(
2495 2496 2497 2498
                "`value` should be `numpy.ndarray` or `LoDTensor`, but received {}.".format(
                    type(value)
                )
            )
2499 2500 2501

        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
2502 2503 2504 2505
                "`scope` should be None or `paddle.static.Scope` type, but received {}.".format(
                    type(scope)
                )
            )
2506 2507 2508 2509 2510 2511

        if scope is None:
            scope = global_scope()

        var_temp = scope.find_var(self.name)
        if var_temp is None:
2512 2513 2514
            raise ValueError(
                "Can not find Variable '{}' in the Scope.".format(self.name)
            )
2515 2516 2517 2518 2519 2520 2521 2522 2523 2524

        t = var_temp.get_tensor()

        if hasattr(value, 'shape'):
            if isinstance(value.shape, (MethodType, FunctionType)):
                value_shape = value.shape()
            else:
                value_shape = value.shape
            if list(t.shape()) != list(value_shape):
                raise ValueError(
2525 2526 2527 2528
                    "{} expected a shape {}, but the received shape is {}.".format(
                        self.name, list(t.shape()), list(value_shape)
                    )
                )
2529 2530 2531 2532 2533 2534 2535 2536 2537 2538

        p = t._place()
        if p.is_cpu_place():
            place = core.CPUPlace()
        elif p.is_cuda_pinned_place():
            place = core.CUDAPinnedPlace()
        elif p.is_xpu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.XPUPlace(p.xpu_device_id())
2539 2540 2541 2542
        elif p.is_npu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.NPUPlace(p.npu_device_id())
2543 2544 2545 2546
        elif p.is_mlu_place():
            p = core.Place()
            p.set_place(t._place())
            place = core.MLUPlace(p.mlu_device_id())
2547 2548 2549 2550 2551 2552 2553
        else:
            p = core.Place()
            p.set_place(t._place())
            place = core.CUDAPlace(p.gpu_device_id())

        t.set(value, place)

2554 2555
    def size(self):
        """
U
ustiniankw 已提交
2556

2557 2558 2559
        Returns the number of elements for current Variable, which is a int64 Variable with shape [1]

        Returns:
U
ustiniankw 已提交
2560
            Variable, the number of elements for current Variable
2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573

        Examples:
            .. code-block:: python

                import paddle

                paddle.enable_static()

                # create a static Variable
                x = paddle.static.data(name='x', shape=[3, 2, 1])

                # get the number of elements of the Variable
                y = x.size()
U
ustiniankw 已提交
2574

2575 2576 2577 2578
        """

        output = self.block.create_var(
            name=unique_name.generate_with_ignorable_key(self.name + "_size"),
2579 2580
            dtype=core.VarDesc.VarType.INT64,
        )
2581

2582 2583 2584
        self.block.append_op(
            type='size', inputs={'Input': [self]}, outputs={'Out': [output]}
        )
2585 2586
        return output

2587 2588
    def _set_attr(self, name, val):
        """
U
ustiniankw 已提交
2589

2590 2591 2592 2593 2594
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
U
ustiniankw 已提交
2595

2596 2597 2598 2599 2600
        """
        self._update_desc_attr(name, val)

    def _has_attr(self, name):
        """
U
ustiniankw 已提交
2601

2602 2603 2604 2605 2606 2607
        Whether this Variable has the attribute with the name `name` or not.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2608 2609
            bool, True if has this attribute.

2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630
        """
        return self.desc.has_attr(name)

    def _remove_attr(self, name):
        self.desc.remove_attr(name)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(int|str|list): the value of the attribute.
        """
        self.desc._set_attr(name, val)

    @property
    def attr_names(self):
        """Get the names of all attributes defined."""
        return self.desc.attr_names()

2631
    def attr(self, name):
2632 2633 2634 2635 2636 2637 2638
        """
        Get the attribute by name.

        Args:
            name(str): the attribute name.

        Returns:
U
ustiniankw 已提交
2639
            int|str|list, The attribute value. The return value
2640 2641 2642 2643 2644
            can be any valid attribute type.
        """
        return self.desc.attr(name)

    @property
2645
    def dist_attr(self):
2646
        """
2647
        Get distributed attribute of this Variable.
2648
        """
2649
        return self.desc.dist_attr
2650

2651 2652
    @dist_attr.setter
    def dist_attr(self, dist_attr):
2653
        """
2654
        Set distributed attribute of this Variable.
2655
        """
2656
        self.desc.dist_attr = dist_attr
2657

Y
Yu Yang 已提交
2658

F
fengjiayi 已提交
2659 2660 2661
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
2662

2663 2664
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
2665 2666 2667 2668
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
2669
        op_proto = framework_pb2.OpProto.FromString(bytes(pbstr))
F
fengjiayi 已提交
2670 2671 2672 2673
        ret_values.append(op_proto)
    return ret_values


2674
class OpProtoHolder:
2675 2676 2677 2678
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
2679 2680 2681 2682 2683 2684 2685 2686
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
2687 2688
            self.__class__, '_instance'
        ), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
2689 2690 2691 2692 2693 2694
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
2695 2696 2697 2698 2699 2700 2701 2702
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
2703 2704
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
2705 2706
        return self.op_proto_map[type]

2707 2708
    def update_op_proto(self):
        op_protos = get_all_op_protos()
2709
        custom_op_names = []
2710 2711 2712
        for proto in op_protos:
            if proto.type not in self.op_proto_map:
                self.op_proto_map[proto.type] = proto
2713 2714 2715
                custom_op_names.append(proto.type)

        return custom_op_names
2716

2717 2718 2719 2720
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
2721
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
2722
            core.op_proto_and_checker_maker.kOpNameScopeAttrName(),
2723
            core.op_proto_and_checker_maker.kOpCreationCallstackAttrName(),
2724
            core.op_proto_and_checker_maker.kOpDeviceAttrName(),
2725 2726
        }

F
fengjiayi 已提交
2727

2728
class Operator:
2729
    """
2730 2731 2732 2733 2734 2735 2736
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
2737
        type(str): The type of operator. Default None.
2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
2758
        Block.append_op or Block._prepend_op instead.
2759 2760 2761 2762

    Examples:
        .. code-block:: python

2763
            import paddle.fluid as fluid
2764
            cur_program = fluid.Program()
2765 2766 2767 2768 2769
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
2770
    """
2771

2772
    OP_WITHOUT_KERNEL_SET = {
2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
        'feed',
        'fetch',
        'recurrent',
        'go',
        'rnn_memory_helper_grad',
        'conditional_block',
        'while',
        'send',
        'recv',
        'listen_and_serv',
        'fl_listen_and_serv',
        'ncclInit',
        'select',
        'checkpoint_notify',
        'gen_bkcl_id',
        'c_gen_bkcl_id',
        'gen_nccl_id',
        'c_gen_nccl_id',
        'c_comm_init',
        'c_sync_calc_stream',
        'c_sync_comm_stream',
        'queue_generator',
        'dequeue',
        'enqueue',
        'heter_listen_and_serv',
        'c_wait_comm',
        'c_wait_compute',
        'c_gen_hccl_id',
        'c_comm_init_hccl',
        'copy_cross_scope',
        'c_gen_cncl_id',
2804
    }
2805

2806 2807 2808
    def __init__(
        self, block, desc, type=None, inputs=None, outputs=None, attrs=None
    ):
2809 2810 2811 2812 2813 2814 2815 2816 2817 2818
        # read attr type index from op proto to avoid unexpected type
        # conversions, e.g. narrowing conversion like double to float
        try:
            proto = OpProtoHolder.instance().get_op_proto(type)
            self._attr_types = {}
            for attr in proto.attrs:
                self._attr_types[attr.name] = attr.type
        except ValueError:
            pass

J
Jiabin Yang 已提交
2819
        if _non_static_mode():
2820 2821
            if type is None:
                raise ValueError(
2822 2823
                    "`type` to initialized an Operator can not be None."
                )
J
Jiabin Yang 已提交
2824
            self._type = type
M
minqiyang 已提交
2825
            self.attrs = attrs if attrs else {}
2826 2827 2828 2829 2830 2831 2832 2833 2834 2835
        else:
            self.block = block
            self.desc = desc
            # note: not add self.attrs here:
            # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
            op_attrs = attrs
            if op_attrs is None:
                op_attrs = dict()
            del attrs

2836 2837 2838
            # attr for static mode cuda graph
            self._cuda_graph_attr = _current_cuda_graph_mode

2839 2840 2841
            op_maker = core.op_proto_and_checker_maker

            if op_maker.kOpRoleAttrName() not in op_attrs:
2842
                op_attrs[
2843 2844
                    op_maker.kOpRoleAttrName()
                ] = self.block.program._op_role
2845 2846

            role_var_name = op_maker.kOpRoleVarAttrName()
2847 2848 2849 2850
            if (
                len(self.block.program._op_role_var) != 0
                and role_var_name not in op_attrs
            ):
2851
                op_attrs[role_var_name] = self.block.program._op_role_var
2852 2853 2854 2855 2856

            if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
                del op_attrs[role_var_name]

            if len(self.desc.type()) != 0:
2857 2858 2859 2860 2861
                # NOTE(Aurelius84): prog.clone() will lead that var.op is always None,
                # we add this to fix the problem.
                for arg in self.desc.output_arg_names():
                    if block.has_var(arg) and block.var(arg).op is None:
                        block.var(arg).op = self
2862 2863 2864
                return
            if type is None:
                raise ValueError(
2865 2866
                    "`type` to initialized an Operator can not be None."
                )
2867 2868
            else:
                callstack_var_name = op_maker.kOpCreationCallstackAttrName()
2869 2870 2871
                op_attrs[callstack_var_name] = []
                for frame in traceback.extract_stack():
                    op_attrs[callstack_var_name].append(
2872
                        '  File "{}", line {}, in {}'.format(
2873 2874 2875 2876 2877 2878
                            frame[0], frame[1], frame[2]
                        )
                    )
                    op_attrs[callstack_var_name].append(
                        '    {}'.format(frame[3])
                    )
2879 2880 2881 2882 2883 2884 2885

            self.desc.set_type(type)
            proto = OpProtoHolder.instance().get_op_proto(type)

            namescope_var_name = op_maker.kOpNameScopeAttrName()
            op_attrs[namescope_var_name] = _full_name_scope()

2886 2887 2888 2889 2890 2891 2892 2893
            # set device for op with kernels, give warning for op without kernels
            # when force_cpu and device_guard are used at the same time, a warning will be given.
            # TODO(zhangting2020): when force_cpu is removed, clear warning below.
            if _current_device is not None:
                if self._has_kernel(type):
                    op_device = op_maker.kOpDeviceAttrName()
                    op_attrs[op_device] = _current_device
                else:
2894 2895 2896
                    warnings.warn(
                        "The Op(%s) is not support to set device." % type
                    )
2897
                if 'force_cpu' in op_attrs:
2898
                    if (
2899 2900
                        type == 'less_than'
                        and op_attrs['force_cpu'] is not None
2901
                    ) or op_attrs['force_cpu'] != False:
2902 2903 2904
                        warnings.warn(
                            "The Attr(force_cpu) of Op(%s) will be deprecated in the future, "
                            "please use 'device_guard' instead. 'device_guard' has higher priority when they are "
2905 2906
                            "used at the same time." % type
                        )
2907
            if _current_pipeline_stage is not None:
2908 2909 2910 2911 2912
                pipeline_attr_name = (
                    'pipeline_stage' + core.kAutoParallelSuffix()
                )
                self._update_desc_attr(
                    pipeline_attr_name, _current_pipeline_stage
2913
                )
2914

2915 2916 2917 2918 2919 2920 2921 2922 2923
            def find_name(var_list, name):
                for var_name in var_list:
                    if var_list[var_name] is not None and var_name == name:
                        return True
                return False

            if inputs is not None:
                for in_proto in proto.inputs:
                    found = find_name(inputs, in_proto.name)
2924 2925 2926
                    assert (
                        found or in_proto.dispensable
                    ), "Input {} not found".format(in_proto.name)
2927 2928
                    if found:
                        in_args = inputs[in_proto.name]
2929
                        if not isinstance(in_args, (list, tuple)):
2930 2931 2932 2933
                            in_args = [in_args]
                        if not in_proto.duplicable and len(in_args) > 1:
                            raise ValueError(
                                "Input %s expects only one input, but %d are given."
2934 2935
                                % (in_proto.name, len(in_args))
                            )
2936
                        in_arg_names = []
2937
                        for index, arg in enumerate(in_args):
2938
                            if isinstance(arg, str):
2939
                                in_arg_names.append(arg)
2940
                            elif isinstance(arg, bytes):
2941
                                in_arg_names.append(arg.decode())
2942
                            elif isinstance(arg, (Variable, core.VarBase)):
2943
                                in_arg_names.append(arg.name)
2944
                            else:
2945
                                raise TypeError(
2946 2947
                                    f"The type of '%{in_proto.name}' in operator {type} should be "
                                    f"one of [str, bytes, Variable]. but received : {arg}"
2948
                                )
2949 2950 2951 2952 2953 2954 2955 2956 2957
                        self.desc.set_input(in_proto.name, in_arg_names)
                    else:
                        self.desc.set_input(in_proto.name, [])

            if outputs is not None:
                for m in proto.outputs:
                    if (m.name not in outputs) and m.dispensable:
                        continue
                    if not ((m.name in outputs) or m.dispensable):
2958
                        raise ValueError(
2959 2960 2961 2962 2963 2964
                            (
                                "Incorrect setting for output(s) of "
                                "operator \"%s\", should set: [%s]."
                            )
                            % (type, m.name)
                        )
2965 2966 2967 2968 2969 2970 2971 2972 2973
                for out_proto in proto.outputs:
                    if out_proto.name not in outputs:
                        continue
                    out_args = outputs[out_proto.name]
                    if not isinstance(out_args, list):
                        out_args = [out_args]
                    if not out_proto.duplicable and len(out_args) > 1:
                        raise ValueError(
                            "Output %s expects only one output, but %d are given."
2974 2975
                            % (out_proto.name, len(out_args))
                        )
2976 2977
                    out_arg_names = []
                    for arg in out_args:
2978
                        if isinstance(arg, str):
2979 2980
                            out_arg_names.append(arg)
                        else:
2981
                            out_arg_names.append(arg.name)
2982
                        # TODO(minqiyang): could we remove variable's op in static mode?
J
Jiabin Yang 已提交
2983
                        if not _non_static_mode():
2984
                            if isinstance(arg, str):
2985 2986 2987
                                block.var(arg).op = self
                            else:
                                arg.op = self
2988 2989
                    self.desc.set_output(out_proto.name, out_arg_names)

2990
            extra_attrs_map = core.get_op_extra_attrs(type)
2991 2992 2993 2994 2995
            if op_attrs is not None:
                if not isinstance(op_attrs, dict):
                    raise TypeError("'attrs' should be a dict.")
                for attr in proto.attrs:
                    attr_name = attr.name
2996 2997 2998
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
2999 3000 3001
                        continue
                    attr_val = op_attrs[attr_name]
                    self._update_desc_attr(attr_name, attr_val)
3002
                for attr_name in extra_attrs_map.keys():
3003 3004 3005 3006 3007 3008
                    if (attr_name not in op_attrs) or (
                        op_attrs[attr_name] is None
                    ):
                        self._update_desc_attr(
                            attr_name, extra_attrs_map[attr_name]
                        )
3009 3010
                    else:
                        self._update_desc_attr(attr_name, op_attrs[attr_name])
3011

J
jianghaicheng 已提交
3012 3013
            # proto.attrs doesn't include ipu_index
            if core.is_compiled_with_ipu():
3014
                if global_ipu_index >= 0:
3015 3016 3017
                    self._update_desc_attr(
                        ipu_index_attr_name, global_ipu_index
                    )
3018
                if global_ipu_stage >= 0:
3019 3020 3021
                    self._update_desc_attr(
                        ipu_stage_attr_name, global_ipu_stage
                    )
J
jianghaicheng 已提交
3022

3023 3024 3025 3026 3027
            self.desc.check_attrs()
            if self._has_kernel(type):
                self.desc.infer_var_type(self.block.desc)
                self.desc.infer_shape(self.block.desc)

W
Wu Yi 已提交
3028
    def _has_kernel(self, op_type):
3029 3030
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
3031
    def to_string(self, throw_on_error):
3032
        """
3033 3034
        Get debug string.

3035
        Args:
3036 3037
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
3038

3039 3040
        Returns:
            str: The debug string.
3041 3042

        """
3043
        protostr = self.desc.serialize_to_string()
3044
        proto = framework_pb2.OpDesc.FromString(bytes(protostr))
Y
Yang Yang(Tony) 已提交
3045 3046
        return _debug_string_(proto, throw_on_error)

3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078
    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Operator.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Operator string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
            print(new_op._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3079
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3080 3081
            type(skip_op_callstack)
        )
3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107
        outputs_str = "{"
        for i in range(0, len(self.output_names)):
            outputs_str += "{name}=".format(name=self.output_names[i])
            o = self.output(self.output_names[i])
            outputs_str += "{value}".format(value=o)
            if i != len(self.output_names) - 1:
                outputs_str += ", "
        outputs_str += "}"

        inputs_str = "{"
        for i in range(0, len(self.input_names)):
            inputs_str += "{name}=".format(name=self.input_names[i])
            o = self.input(self.input_names[i])
            inputs_str += "{value}".format(value=o)

            if i != len(self.input_names) - 1:
                inputs_str += ", "
        inputs_str += "}"

        attr_names = sorted(self.attr_names)
        attrs_str = ""
        for i in range(0, len(attr_names)):
            name = attr_names[i]
            if skip_op_callstack and name == "op_callstack":
                continue

3108 3109 3110
            attr_type = self.desc.attr_type(name, True)
            if attr_type == core.AttrType.VAR:
                attr_var_name = self.desc.attr(name, True).name()
3111 3112 3113
                a = "{name} = Var['{value}']".format(
                    name=name, type=attr_type, value=attr_var_name
                )
3114 3115 3116 3117 3118 3119 3120 3121 3122 3123
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.VARS:
                attr_var_names = [
                    "'%s'" % var.name() for var in self.desc.attr(name, True)
                ]
                a = "{name} = Vars[{value}]".format(
3124 3125
                    name=name, type=attr_type, value=','.join(attr_var_names)
                )
3126 3127 3128 3129 3130
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3131 3132
            if attr_type == core.AttrType.BLOCK:
                a = "{name} = block[{value}]".format(
3133 3134
                    name=name, type=attr_type, value=self._block_attr_id(name)
                )
3135 3136 3137 3138 3139 3140 3141
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

            if attr_type == core.AttrType.BLOCKS:
                a = "{name} = blocks{value}".format(
3142 3143
                    name=name, type=attr_type, value=self._blocks_attr_ids(name)
                )
3144 3145 3146 3147 3148
                attrs_str += a
                if i != len(attr_names) - 1:
                    attrs_str += ", "
                continue

3149
            # it is bytes of serialized protobuf
3150 3151 3152 3153 3154
            if (
                is_compiled_with_cinn()
                and self.type == 'cinn_launch'
                and name == 'compilation_key'
            ):
3155 3156
                key = self.desc.attr(name)
                v = core.get_serialize_comile_key(key)
3157 3158 3159 3160 3161 3162 3163 3164 3165
                prog = Program()
                prog = prog.parse_from_string(v)
                s = prog._to_readable_code()
                lines = s.split('\n')
                value = '\n'.join(['      ' + line for line in lines])
                value = '\n' + value
            else:
                value = self.desc.attr(name)

3166 3167 3168
            a = "{name} = {value}".format(
                name=name, type=attr_type, value=value
            )
3169

3170 3171 3172 3173
            attrs_str += a
            if i != len(attr_names) - 1:
                attrs_str += ", "

3174 3175 3176 3177
        from paddle.distributed.auto_parallel.dist_context import (
            get_default_distributed_context,
        )

3178
        dist_context = get_default_distributed_context()
3179 3180
        dist_op = dist_context.get_dist_op_for_program(self)
        if dist_op is not None:
3181 3182 3183
            attrs_str += ", {name} = {value}".format(
                name="dist_attr", value=dist_op
            )
3184

3185
        if outputs_str != "{}":
3186 3187 3188 3189 3190 3191
            op_str = "{outputs} = {op_type}(inputs={inputs}, {attrs})".format(
                outputs=outputs_str,
                op_type=self.type,
                inputs=inputs_str,
                attrs=attrs_str,
            )
3192
        else:
3193 3194 3195
            op_str = "{op_type}(inputs={inputs}, {attrs})".format(
                op_type=self.type, inputs=inputs_str, attrs=attrs_str
            )
3196 3197
        return op_str

Y
Yang Yang(Tony) 已提交
3198
    def __str__(self):
3199
        return self._to_readable_code()
3200 3201 3202

    __repr__ = __str__

F
fengjiayi 已提交
3203 3204
    @property
    def type(self):
3205
        return self.desc.type()
F
fengjiayi 已提交
3206 3207

    def input(self, name):
3208
        r"""
U
ustiniankw 已提交
3209

3210
        Get the input arguments according to the input parameter name.
3211

3212 3213
        Args:
            name(str): The input parameter name.
3214

3215
        Returns:
U
ustiniankw 已提交
3216
            list, return the list of argument names that associated with \
3217
                the specific parameter name.
U
ustiniankw 已提交
3218

3219
        """
F
fengjiayi 已提交
3220 3221
        return self.desc.input(name)

W
Wu Yi 已提交
3222
    def _rename_input(self, old_name, new_name):
3223 3224 3225 3226 3227 3228 3229 3230 3231 3232
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
3233
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
3234

W
Wu Yi 已提交
3235
    def _rename_output(self, old_name, new_name):
3236 3237 3238 3239 3240 3241 3242 3243 3244 3245
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
3246
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
3247

F
fengjiayi 已提交
3248 3249 3250 3251
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
3252 3253 3254 3255 3256 3257 3258 3259
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
3260
    def output(self, name):
3261
        r"""
3262
        Get output arguments by the output parameter name.
3263

3264 3265
        Args:
            name(str): The output parameter name.
3266

3267 3268 3269
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
3270
        """
F
fengjiayi 已提交
3271 3272 3273 3274 3275 3276
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

3277 3278 3279 3280 3281 3282
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
3283 3284
            "Can't find op itself in it's block. It could be a bug of Paddle."
        )
3285

F
fengjiayi 已提交
3286
    def has_attr(self, name):
3287
        """
3288 3289
        Whether this Operator has the attribute with name or not.

3290
        Args:
3291
            name(str): the attribute name.
3292

3293 3294
        Returns:
            bool: True if has this attribute.
3295 3296

        """
F
fengjiayi 已提交
3297 3298 3299
        return self.desc.has_attr(name)

    def attr_type(self, name):
3300
        """
3301
        Get the type of attribute by attribute's name.
3302

3303 3304
        Args:
            name(str): the attribute name.
3305

3306 3307
        Returns:
            core.AttrType: the attribute type.
3308
        """
3309
        return self.desc.attr_type(name, True)
F
fengjiayi 已提交
3310

W
Wu Yi 已提交
3311
    def _set_attr(self, name, val):
3312 3313 3314 3315 3316 3317 3318 3319 3320 3321
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
3322 3323
        self._update_desc_attr(name, val)

3324 3325 3326
    def _remove_attr(self, name):
        self.desc.remove_attr(name)

G
gongweibao 已提交
3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337
    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
3338 3339 3340 3341 3342
        if isinstance(val, Variable):
            self.desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            self.desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
Q
Qiyang Min 已提交
3343
            self.desc.set_block_attr(name, val.desc)
3344
        elif isinstance(val, list) and val and _all_is_type(val, Block):
3345
            self.desc.set_blocks_attr(name, [v.desc for v in val])
3346 3347 3348
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
Q
Qiyang Min 已提交
3349 3350
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386
            self._update_desc_plain_attr(name, val)

    def _update_desc_plain_attr(self, name, val):
        desc = self.desc
        if not hasattr(self, "_attr_types") or (name not in self._attr_types):
            desc._set_attr(name, val)
            return

        type_index = self._attr_types[name]
        if type_index == core.AttrType.BOOL:
            desc._set_bool_attr(name, val)
        elif type_index == core.AttrType.INT:
            desc._set_int32_attr(name, val)
        elif type_index == core.AttrType.LONG:
            desc._set_int64_attr(name, val)
        elif type_index == core.AttrType.FLOAT:
            desc._set_float32_attr(name, val)
        # elif type_index == core.AttrType.FLOAT64:
        #     desc._set_float64_attr(name, val)
        elif type_index == core.AttrType.STRING:
            desc._set_str_attr(name, val)
        elif type_index == core.AttrType.BOOLS:
            desc._set_bools_attr(name, val)
        elif type_index == core.AttrType.INTS:
            desc._set_int32s_attr(name, val)
        elif type_index == core.AttrType.LONGS:
            desc._set_int64s_attr(name, val)
        elif type_index == core.AttrType.FLOATS:
            desc._set_float32s_attr(name, val)
        elif type_index == core.AttrType.FLOAT64S:
            desc._set_float64s_attr(name, val)
        elif type_index == core.AttrType.STRINGS:
            desc._set_strs_attr(name, val)
        else:
            # defaults to old methods
            desc._set_attr(name, val)
Y
yuyang18 已提交
3387

F
fengjiayi 已提交
3388 3389
    @property
    def attr_names(self):
3390
        return self.desc.attr_names(True)
F
fengjiayi 已提交
3391 3392

    def attr(self, name):
3393
        """
3394 3395
        Get the attribute by name.

3396
        Args:
3397
            name(str): the attribute name.
3398

3399 3400
        Returns:
            bool|int|str|float|list: The attribute value. The return value
3401 3402
            can be any valid attribute type.
        """
F
fengjiayi 已提交
3403
        return self.desc.attr(name)
Y
Yu Yang 已提交
3404

W
Wu Yi 已提交
3405
    def _block_attr_id(self, name):
3406
        """
G
gongweibao 已提交
3407
        Get the block attribute's id by name.
3408

3409 3410
        Args:
            name(str): the attribute name.
3411

3412 3413
        Returns:
            int: the block index.
3414
        """
W
Wu Yi 已提交
3415
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
3416

W
Wu Yi 已提交
3417
    def _block_attr(self, name):
G
gongweibao 已提交
3418 3419 3420 3421 3422 3423 3424 3425 3426 3427
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
3428
        id = self._block_attr_id(name)
3429
        assert id >= 0 and id < len(self.block.program.blocks)
G
gongweibao 已提交
3430 3431
        return self.block.program.blocks[id]

W
Wu Yi 已提交
3432
    def _blocks_attr(self, name):
G
gongweibao 已提交
3433 3434 3435 3436 3437 3438 3439 3440 3441 3442
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
3443
        for i in self._blocks_attr_ids(name):
3444
            assert i >= 0 and i < len(self.block.program.blocks)
G
gongweibao 已提交
3445 3446 3447 3448
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
3449
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
3450 3451 3452 3453 3454 3455 3456 3457 3458 3459
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
3460
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
3461

3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472
    def _var_attr(self, name):
        """
        Get the Variable attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variable: the Variable attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3473 3474 3475 3476 3477
        assert (
            attr_type == core.AttrType.VAR
        ), "Required type attr({}) is Variable, but received {}".format(
            name, attr_type
        )
3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491
        attr_var_name = self.desc.attr(name, True).name()
        return self.block._var_recursive(attr_var_name)

    def _vars_attr(self, name):
        """
        Get the Variables attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            Variables: the Variables attribute.
        """
        attr_type = self.desc.attr_type(name, True)
3492 3493 3494 3495 3496
        assert (
            attr_type == core.AttrType.VARS
        ), "Required type attr({}) is list[Variable], but received {}".format(
            name, attr_type
        )
3497 3498 3499 3500 3501 3502
        attr_vars = [
            self.block._var_recursive(var.name())
            for var in self.desc.attr(name, True)
        ]
        return attr_vars

J
JiayiFeng 已提交
3503
    def all_attrs(self):
F
fengjiayi 已提交
3504
        """
3505 3506 3507
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
3508
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
3509 3510 3511 3512
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
3513
            attr_type = self.desc.attr_type(n, True)
G
gongweibao 已提交
3514
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
3515
                attr_map[n] = self._block_attr(n)
3516
            elif attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
3517
                attr_map[n] = self._blocks_attr(n)
3518 3519 3520 3521 3522 3523
            elif attr_type == core.AttrType.VAR:
                attr_map[n] = self._var_attr(n)
            elif attr_type == core.AttrType.VARS:
                attr_map[n] = self._vars_attr(n)
            else:
                attr_map[n] = self.attr(n)
G
gongweibao 已提交
3524

F
fengjiayi 已提交
3525 3526
        return attr_map

3527 3528 3529
    def _is_optimize_op(self):
        op_maker = core.op_proto_and_checker_maker
        OPTIMIZE = core.op_proto_and_checker_maker.OpRole.Optimize
3530 3531 3532 3533

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
            return False

3534 3535 3536
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(OPTIMIZE):
            return True
3537 3538 3539 3540 3541 3542 3543 3544

        return False

    def _is_backward_op(self):
        op_maker = core.op_proto_and_checker_maker
        BACKWARD = core.op_proto_and_checker_maker.OpRole.Backward

        if not self.desc.has_attr(op_maker.kOpRoleAttrName()):
3545 3546
            return False

3547 3548 3549 3550 3551 3552
        op_role = self.desc.attr(op_maker.kOpRoleAttrName())
        if op_role & int(BACKWARD):
            return True

        return False

3553
    @property
3554
    def dist_attr(self):
3555
        """
3556
        Get distributed attribute of this Variable.
3557
        """
3558
        return self.desc.dist_attr
3559

3560 3561
    @dist_attr.setter
    def dist_attr(self, dist_attr):
3562
        """
3563
        Set distributed attribute of this Variable.
3564
        """
3565
        self.desc.dist_attr = dist_attr
3566

Y
Yu Yang 已提交
3567

3568
class Block:
3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
3583
        use `Program._create_block()` to create a block.
3584 3585 3586 3587

    Examples:
        .. code-block:: python

3588 3589 3590
            import paddle.fluid as fluid

            cur_program = fluid.Program()
3591 3592 3593 3594 3595 3596 3597 3598 3599
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
3600
    def __init__(self, program, idx):
Y
Yu Yang 已提交
3601
        self.desc = program.desc.block(idx)
3602
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
3603
        self.ops = list()  # operator list
Y
Yu Yang 已提交
3604
        self.program = program
3605
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
3606

3607
    def __str__(self):
3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Block.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Block string.

        Examples:
            .. code-block:: python

            import paddle.fluid as fluid

            cur_program = fluid.Program()
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_block._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
3642
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
3643 3644
            type(skip_op_callstack)
        )
3645 3646 3647 3648 3649 3650 3651
        block_str = "{ // block "
        block_str += "{}\n".format(self.idx)
        for var in list(self.vars.values()):
            block_str += "    {}\n".format(var._to_readable_code())
        block_str += "\n"
        for op in self.ops:
            block_str += "    {}\n".format(
3652 3653
                op._to_readable_code(skip_op_callstack)
            )
3654 3655
        block_str += "}"
        return block_str
Y
Yang Yang(Tony) 已提交
3656

F
fengjiayi 已提交
3657 3658
    def to_string(self, throw_on_error, with_details=False):
        """
3659 3660
        Get debug string.

F
fengjiayi 已提交
3661 3662
        Args:
            throw_on_error(bool): raise exception when self is not initialized
3663
                when throw_on_error is True.
F
update  
fengjiayi 已提交
3664
            with_details(bool): more details about variables and parameters
3665 3666
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
3667

3668 3669
        Returns:
            str: The debug string.
F
fengjiayi 已提交
3670
        """
3671
        assert isinstance(throw_on_error, bool) and isinstance(
3672 3673
            with_details, bool
        )
F
fengjiayi 已提交
3674
        if with_details:
F
fengjiayi 已提交
3675
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
3676
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
3677 3678 3679
                self.idx,
                self.parent_idx,
            )
3680
            for var in list(self.vars.values()):
F
fengjiayi 已提交
3681
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
3682 3683
                    r"\n    \1", var.to_string(throw_on_error, with_details)
                )
F
fengjiayi 已提交
3684
            for op in self.ops:
F
fengjiayi 已提交
3685
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
3686 3687
                    r"\n    \1", op.to_string(throw_on_error)
                )
F
fengjiayi 已提交
3688 3689 3690
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
3691
            proto = framework_pb2.BlockDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
3692 3693
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
3694 3695 3696

    __repr__ = __str__

Y
Yu Yang 已提交
3697 3698
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
3699
        return self.desc.parent
Y
Yu Yang 已提交
3700

Y
Yu Yang 已提交
3701 3702 3703 3704
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
3705
    def _set_forward_block_idx(self, idx):
3706 3707 3708 3709 3710 3711 3712 3713 3714
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
3715
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
3716

3717 3718 3719 3720 3721 3722 3723 3724
    @property
    def backward_block_idx(self):
        cur_block_idx = self.idx
        for block in self.program.blocks:
            if block.forward_block_idx == cur_block_idx:
                return block.idx
        return -1

Y
Yu Yang 已提交
3725 3726
    @property
    def idx(self):
Y
Yu Yang 已提交
3727
        return self.desc.id
Y
Yu Yang 已提交
3728

Q
Qiao Longfei 已提交
3729
    def var(self, name):
3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
3743
        if not isinstance(name, str):
M
minqiyang 已提交
3744
            raise TypeError(
3745 3746 3747
                "var require string as parameter, but get %s instead."
                % (type(name))
            )
Y
Yu Yang 已提交
3748 3749
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
3750
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
3751
        return v
Q
Qiao Longfei 已提交
3752

X
Xin Pan 已提交
3753
    def _find_var_recursive(self, name):
3754 3755 3756 3757 3758 3759 3760
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
3761
            Variable: the Variable with the giving name. Or None if not found.
3762
        """
Y
Yu Yang 已提交
3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
3787
        return None
Y
Yu Yang 已提交
3788

X
Xin Pan 已提交
3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
3808

Q
Qiao Longfei 已提交
3809
    def all_parameters(self):
3810
        return list(self.iter_parameters())
3811

3812
    def iter_parameters(self):
3813 3814 3815 3816 3817
        return (
            item[1]
            for item in self.vars.items()
            if isinstance(item[1], Parameter)
        )
Q
Qiao Longfei 已提交
3818

Y
Yu Yang 已提交
3819
    def create_var(self, *args, **kwargs):
J
Jiabin Yang 已提交
3820
        if _non_static_mode():
L
Leo Chen 已提交
3821 3822
            var = _varbase_creator(*args, **kwargs)
        else:
3823 3824 3825
            var = Variable(block=self, *args, **kwargs)
            if 'initializer' in kwargs:
                kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
3826
        return var
Y
Yu Yang 已提交
3827

Q
Qiao Longfei 已提交
3828 3829 3830
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
3831
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
3832 3833
        """
        Rename variable in vars and ops' inputs and outputs
3834 3835

        Args:
3836 3837
            name(str|bytes): the name that need to be renamed.
            new_name(str|bytes): the name that need to rename to.
3838 3839 3840 3841 3842 3843 3844 3845

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
3846
        """
3847 3848
        # Ensure the type of name and new_name is str
        name = name.decode() if isinstance(name, bytes) else name
3849 3850 3851
        new_name = (
            new_name.decode() if isinstance(new_name, bytes) else new_name
        )
M
minqiyang 已提交
3852

T
typhoonzero 已提交
3853
        if not self.has_var(name):
3854
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
3855 3856
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
3857
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
3858 3859 3860 3861 3862 3863
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
3864
            var_type = "Variable"
T
wip  
typhoonzero 已提交
3865 3866 3867 3868
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
3869
        orig_var_type = v.type
3870
        self.desc._rename_var(name.encode(), new_name.encode())
W
Wu Yi 已提交
3871
        # NOTE: v is destroyed by C++ after calling _rename_var.
3872
        d = self.desc.find_var(new_name.encode())
T
typhoonzero 已提交
3873
        if var_type == "Parameter":
L
Leo Chen 已提交
3874
            if in_dygraph_mode():
3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885
                var = EagerParamBase(
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
3886
            else:
姜永久 已提交
3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898
                var = Parameter(
                    self,
                    d.shape(),
                    d.dtype(),
                    type=orig_var_type,
                    name=new_name,
                    stop_gradient=stop_gradient,
                    trainable=trainable,
                    optimize_attr=optimize_attr,
                    regularizer=regularizer,
                    error_clip=error_clip,
                )
T
typhoonzero 已提交
3899
        elif var_type == "Variable":
3900 3901 3902 3903 3904 3905 3906
            var = Variable(
                self,
                type=orig_var_type,
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient,
            )
T
wip  
typhoonzero 已提交
3907

W
Wu Yi 已提交
3908
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
3909 3910 3911
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
3912
        self._sync_with_cpp()
3913
        return var
T
typhoonzero 已提交
3914

3915 3916 3917
    def _remove_var(self, name, sync=True):
        if sync == True:
            self._sync_with_cpp()
3918
        self.desc._remove_var(name.encode())
3919 3920
        del self.vars[name]

Y
Yu Yang 已提交
3921 3922
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
3923
        param = None
L
Leo Chen 已提交
3924
        if in_dygraph_mode():
J
Jiabin Yang 已提交
3925
            param = EagerParamBase(*args, **kwargs)
L
Leo Chen 已提交
3926
        else:
姜永久 已提交
3927
            param = Parameter(global_block, *args, **kwargs)
3928

3929
        if 'initializer' in kwargs:
3930 3931 3932 3933 3934

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
3935
                        # In startup_program, "c_broadcast" and "c_sync_comm_stream"
T
tangwei12 已提交
3936
                        # are treated as initialization ops that cause error.
3937
                        # Think of "c_broadcast" and "c_sync_comm_stream" as a special case here.
3938 3939
                        # NOTE: "coalesce_tensor" is a special case for rnn with cudnn support
                        if op.type in [
3940 3941 3942
                            "c_broadcast",
                            "c_sync_comm_stream",
                            "coalesce_tensor",
3943
                        ]:
3944
                            continue
3945 3946 3947 3948 3949 3950 3951
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
3952 3953 3954 3955 3956 3957
                raise RuntimeError(
                    "param "
                    + param.name
                    + " is inited by multiple init ops "
                    + str(init_ops)
                )
3958
            elif init_ops_len == 1:
3959
                # TODO already inited, do nothing, should log a warning
3960 3961 3962
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
3963
        return param
Y
Yu Yang 已提交
3964

Y
Yu Yang 已提交
3965
    def append_op(self, *args, **kwargs):
3966 3967 3968 3969 3970 3971
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
J
Jiabin Yang 已提交
3972
        if _non_static_mode():
3973
            attrs = kwargs.get("attrs", {})
Z
zyfncg 已提交
3974
            inplace_map = kwargs.get("inplace_map", None)
J
Jiabin Yang 已提交
3975
            type = kwargs.get("type", None)
3976 3977 3978
            warnings.warn(
                "Op `%s` is executed through `append_op` under the dynamic mode, "
                "the corresponding API implementation needs to be upgraded to "
3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989
                "using `_C_ops` method." % type,
                DeprecationWarning,
            )
            op = Operator(
                block=self,
                desc=None,
                type=type,
                inputs=None,
                outputs=None,
                attrs=attrs,
            )
3990

M
minqiyang 已提交
3991 3992 3993
            # record ops in tracer rather than blocks
            #
            # TODO(minqiyang): add op stop_gradient support in static mode too.
L
lujun 已提交
3994
            # currently, we only support stop_gradient in dygraph mode.
J
Jiabin Yang 已提交
3995

3996 3997 3998 3999 4000 4001 4002 4003
            _dygraph_tracer().trace_op(
                type,
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
                inplace_map,
            )
M
minqiyang 已提交
4004
        else:
4005 4006
            from paddle.fluid.dygraph.base import param_guard

4007
            op_desc = self.desc.append_op()
4008 4009 4010 4011 4012 4013
            # NOTE(Aurelius84): In case of @to_static, all VarBase(s) should
            # be converted into Variable(s) with same name and block location.
            # This is ONE and ONLY logic of type transformation of dy2static.
            inputs = kwargs.get("inputs", None)
            outputs = kwargs.get("outputs", None)
            with param_guard(inputs), param_guard(outputs):
4014 4015 4016 4017 4018 4019 4020 4021
                op = Operator(
                    block=self,
                    desc=op_desc,
                    type=kwargs.get("type", None),
                    inputs=inputs,
                    outputs=outputs,
                    attrs=kwargs.get("attrs", None),
                )
4022

M
minqiyang 已提交
4023
            self.ops.append(op)
M
minqiyang 已提交
4024

4025 4026
        return op

W
Wu Yi 已提交
4027
    def _insert_op(self, index, *args, **kwargs):
4028 4029 4030 4031 4032 4033 4034 4035 4036
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
4037
        self._sync_with_cpp()
F
fangshuixun007 已提交
4038
        return self._insert_op_without_sync(index, *args, **kwargs)
Q
qiaolongfei 已提交
4039

4040 4041
    def _insert_op_without_sync(self, index, *args, **kwargs):
        """
4042
        Insert an Operator according to the giving arguments,
4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056
        without sync_with_cpp to meke the compilation faster.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
        op_desc = self.desc._insert_op(index)
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

    def _remove_op(self, index, sync=True):
4057 4058 4059 4060 4061 4062 4063 4064 4065
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
4066 4067
        if sync == True:
            self._sync_with_cpp()
W
Wu Yi 已提交
4068
        self.desc._remove_op(index, index + 1)
4069 4070
        del self.ops[index]

W
Wu Yi 已提交
4071
    def _slice_ops(self, start, end):
4072 4073 4074 4075 4076 4077 4078 4079 4080 4081
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
4082
        return self.ops[start:end]
Y
Yancey1989 已提交
4083

W
Wu Yi 已提交
4084
    def _prepend_op(self, *args, **kwargs):
J
Jiabin Yang 已提交
4085
        if _non_static_mode():
J
Jiabin Yang 已提交
4086 4087
            type = kwargs.get("type", None)
            attrs = kwargs.get("attrs", {})
4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098
            op = Operator(
                self, None, type=type, inputs=None, outputs=None, attrs=attrs
            )

            _dygraph_tracer().trace_op(
                type,
                kwargs.get("inputs", {}),
                kwargs.get("outputs", {}),
                attrs if attrs else {},
                kwargs.get("stop_gradient", False),
            )
M
minqiyang 已提交
4099
        else:
4100
            op_desc = self.desc._prepend_op()
4101 4102 4103 4104 4105 4106 4107 4108
            op = Operator(
                self,
                op_desc,
                type=kwargs.get("type", None),
                inputs=kwargs.get("inputs", None),
                outputs=kwargs.get("outputs", None),
                attrs=kwargs.get("attrs", None),
            )
M
minqiyang 已提交
4109
            self.ops.insert(0, op)
4110

Y
Yu Yang 已提交
4111 4112
        return op

W
Wu Yi 已提交
4113
    def _sync_with_cpp(self):
4114
        """
4115 4116
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
4117
        """
Q
Qiao Longfei 已提交
4118 4119 4120
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
4121 4122 4123 4124
                is_stop_gradient = False
                if var.has_stop_gradient():
                    is_stop_gradient = var.stop_gradient()
                if var.has_is_parameter() and var.is_parameter():
4125 4126 4127 4128 4129 4130 4131 4132
                    self.create_parameter(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        shape=var.shape(),
                        dtype=var.dtype(),
                        stop_gradient=is_stop_gradient,
                    )
4133
                else:
4134 4135 4136 4137 4138 4139
                    self.create_var(
                        name=var.name(),
                        desc=var,
                        type=var.type(),
                        stop_gradient=is_stop_gradient,
                    )
Q
Qiao Longfei 已提交
4140

4141
        # sync variables removed from c++ end
4142
        for var in list(self.vars.keys()):
4143
            if not self.desc.find_var(var.encode()):
4144 4145
                self.vars.pop(var)

Q
Qiao Longfei 已提交
4146
        # sync operators from cpp
4147 4148 4149 4150
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
4167 4168 4169 4170 4171

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
4172
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
4173 4174 4175 4176 4177 4178 4179

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

4180 4181 4182 4183 4184
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
4185 4186 4187 4188 4189 4190
                self.ops
            ) and ops_in_cpp_index < len(ops_in_cpp):
                if (
                    self.ops[ops_in_python_index].desc
                    != ops_in_cpp[ops_in_cpp_index]
                ):
4191 4192 4193 4194 4195
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
4196 4197 4198 4199
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
4200
    def _copy_param_info_from(self, other):
4201
        """
4202 4203
        Copy the information of parameters from the other block.

4204
        Args:
4205 4206 4207 4208 4209
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
4210 4211 4212 4213 4214

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
4215
            raise TypeError(
4216 4217
                "_copy_param_info_from should be invoked with Block"
            )
4218
        for p in other.iter_parameters():
4219 4220 4221
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
4222 4223
                # if the Parameter is pruned, v may be None
                continue
4224
            assert isinstance(v, Variable)
4225
            new_p = None
L
Leo Chen 已提交
4226
            if in_dygraph_mode():
4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238
                new_p = EagerParamBase(
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4239
            else:
姜永久 已提交
4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254
                new_p = Parameter(
                    block=self,
                    shape=v.shape,
                    dtype=v.dtype,
                    type=v.type,
                    lod_level=v.lod_level
                    if v.type == core.VarDesc.VarType.LOD_TENSOR
                    else None,
                    stop_gradient=p.stop_gradient,
                    trainable=p.trainable,
                    optimize_attr=p.optimize_attr,
                    regularizer=p.regularizer,
                    error_clip=p.error_clip,
                    name=v.name,
                )
4255 4256
            self.vars[new_p.name] = new_p

4257
    def _clone_variable(self, var, force_persistable=True):
4258 4259
        """
        Clone a variable into current block.
4260

4261 4262
        Args:
            var: the variable to be cloned.
4263 4264 4265
            force_persistable(bool): True means setting the result variable to being persistable.
                                     False means setting the persistable the same with that of input var.
                                     default: True.
4266 4267

        Returns:
4268
            Variable: the new  variable cloned from 'var' in current block.
4269 4270
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
4271 4272 4273
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
4274 4275 4276
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
tangwei12 已提交
4277
        elif var.type == core.VarDesc.VarType.RAW:
4278 4279 4280
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type
            )
T
typhoonzero 已提交
4281 4282 4283 4284 4285 4286
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
4287
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4288
                is_data=var.is_data,
4289 4290
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4291 4292 4293 4294 4295 4296 4297
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
4298
                persistable=True if force_persistable else var.persistable,
H
Huihuang Zheng 已提交
4299
                is_data=var.is_data,
4300 4301
                need_check_feed=var.desc.need_check_feed(),
            )
T
update  
typhoonzero 已提交
4302
        return ret_var
4303

Y
Yu Yang 已提交
4304

4305 4306 4307 4308
# NOTE(zjl): you should be careful that after you call this method,
# some Python Variable and all Python Operators should not be used
# again. Because all Python Variables and all Python Operators are
# re-constructed inside this method. The underlying VarDesc(OpDesc)
4309
# of some old Python Variables(all old Python Operators) may have
4310
# been destructed.
4311 4312 4313
def _apply_pass(
    main_program, startup_program, pass_name, pass_attrs={}, pass_attr_types={}
):
4314 4315 4316 4317
    assert isinstance(pass_attrs, dict), "pass_attrs must be dict"
    assert isinstance(pass_attr_types, dict), "pass_attr_types must be dict"
    tmp_main_program = core.ProgramDesc(main_program.desc)
    tmp_startup_program = core.ProgramDesc(startup_program.desc)
4318 4319 4320 4321 4322 4323 4324
    attrs = core.apply_pass(
        tmp_main_program,
        tmp_startup_program,
        pass_name,
        pass_attrs,
        pass_attr_types,
    )
4325 4326 4327 4328 4329
    main_program._rebuild_from_desc(tmp_main_program)
    startup_program._rebuild_from_desc(tmp_startup_program)
    return attrs


4330
class IrNode:
4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341
    """
    Python IrNode. Beneath it is a core.Node, which is used for Ir Pass.
    """

    def __init__(self, node):
        """
        Construct an IrNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4342 4343 4344
        assert isinstance(
            node, core.Node
        ), 'node must be the instance of core.Node.'
4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425
        self.node = node

    def name(self):
        """
        Return the node name.

        Returns:
            str: node name.
        """
        return self.node.name()

    def node_type(self):
        """
        Return the node type.

        Returns:
            core.Node.Type: node type(core.Node.Type.Operation or core.Node.Type.Variable).
        """
        return self.node.node_type()

    def var(self):
        """
        Return the node variable description.

        Returns:
            core.VarDesc: node variable description.
        """
        return self.node.var()

    def op(self):
        """
        Return the node operator description.

        Returns:
            core.OpDesc: node operator description.
        """
        return self.node.op()

    def id(self):
        """
        Return the node id.

        Returns:
            int: node id.
        """
        return self.node.id()

    def is_op(self):
        """
        If the node is an operator, then return true.

        Returns:
            bool: indicate whether the node is an operator.
        """
        return self.node.is_op()

    def is_var(self):
        """
        If the node is a variable, then return true.

        Returns:
            bool: indicate whether the node is a variable.
        """
        return self.node.is_var()

    def is_ctrl_var(self):
        """
        If the node is a control dependence variable, then return true.

        Returns:
            bool: indicate whether the node is a control dependence variable.
        """
        return self.node.is_ctrl_var()

    def clear_inputs(self):
        """
        Clear the node inputs. After executing the `clear_inputs` function,
        the node inputs will be empty.
        """
        self.node.clear_inputs()

4426
    def remove_input_by_id(self, node_id):
4427 4428 4429 4430 4431 4432
        """
        Remove a node from inputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4433
        self.node.remove_input(node_id)
4434

4435
    def remove_input(self, node):
4436 4437 4438 4439
        """
        Remove a node from inputs.

        Args:
4440
            node(IrNode): the node being removed.
4441
        """
4442
        self.node.remove_input(node.node)
4443

4444
    def append_input(self, node):
4445 4446 4447 4448
        """
        Append a node in inputs.

        Args:
4449
            node(IrNode): the node being appended.
4450
        """
4451
        self.node.append_input(node.node)
4452 4453 4454 4455 4456 4457 4458 4459

    def clear_outputs(self):
        """
        Clear the node outputs. After executing the `clear_outputs` function,
        the node outputs will be empty.
        """
        self.node.clear_outputs()

4460
    def remove_output_by_id(self, node_id):
4461 4462 4463 4464 4465 4466
        """
        Remove a node from outputs by the given node id.

        Args:
            node_id(int): the given node id.
        """
4467
        self.node.remove_output(node_id)
4468

4469
    def remove_output(self, node):
4470 4471 4472 4473
        """
        Remove a node from outputs.

        Args:
4474
            node(IrNode): the node being removed.
4475
        """
4476
        self.node.remove_output(node.node)
4477

4478
    def append_output(self, node):
4479 4480 4481 4482
        """
        Append a node in outputs.

        Args:
4483
            node(IrNode): the node being appended.
4484
        """
4485
        self.node.append_output(node.node)
4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519

    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrNode): node inputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrNode): node outputs wrapped by IrNode.
        """
        return [IrNode(n) for n in self.node.outputs]


class IrVarNode(IrNode):
    """
    Python IrVarNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrVarNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4520 4521 4522
        assert (
            isinstance(node, core.Node) and node.is_var()
        ), 'node must be the instance of core.Node and it must be a variable node.'
4523
        super().__init__(node)
4524 4525 4526 4527 4528 4529 4530 4531 4532
        self.node = node

    def set_shape(self, shape):
        """
        Set the node variable shape.

        Args:
            shape(list): shape to be set.
        """
4533 4534 4535
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4536 4537 4538 4539 4540 4541 4542 4543 4544
        self.node.var().set_shape(shape)

    def persistable(self):
        """
        If the variable node is a persistable variable, then return true.

        Returns:
            bool: indicate whether the variable is persistable.
        """
4545 4546 4547
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4548 4549
        return self.node.var().persistable()

4550 4551 4552 4553 4554 4555 4556
    def type(self):
        """
        Return the variable type.

        Returns:
            core.VarDesc.VarType: the variable type.
        """
4557 4558 4559
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4560 4561 4562 4563 4564 4565 4566 4567 4568
        return self.node.var().type()

    def dtype(self):
        """
        Return the variable data type.

        Returns:
            core.VarDesc.VarType: the variable data type.
        """
4569 4570 4571
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4572 4573 4574 4575 4576 4577 4578 4579 4580
        return self.node.var().dtype()

    def shape(self):
        """
        Return the variable shape.

        Returns:
            list: the variable shape.
        """
4581 4582 4583
        assert (
            self.node.var() is not None
        ), "The node variable description can not be None."
4584 4585
        return self.node.var().shape()

4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrOpNode): node inputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrOpNode): node outputs wrapped by IrOpNode.
        """
        return [IrOpNode(n) for n in self.node.outputs]


class IrOpNode(IrNode):
    """
    Python IrOpNode. Beneath it is a core.Node, it inherits from IrNode.
    """

    def __init__(self, node):
        """
        Construct an IrOpNode using core.Node.

        Args:
            node(core.Node): C++ Node.
        """
4619 4620 4621
        assert (
            isinstance(node, core.Node) and node.is_op()
        ), 'node must be the instance of core.Node and it must be a operator node.'
4622
        super().__init__(node)
4623 4624 4625 4626 4627 4628 4629 4630 4631 4632
        self.node = node

    def rename_input(self, old_input_name, new_input_name):
        """
        Rename the input of this node.

        Args:
            old_input_name(str): the old input name.
            new_input_name(str): the new input name.
        """
4633 4634 4635
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4636 4637
        self.node.op()._rename_input(old_input_name, new_input_name)

4638 4639 4640 4641 4642 4643 4644 4645
    def rename_output(self, old_output_name, new_output_name):
        """
        Rename the output of this node.

        Args:
            old_output_name(str): the old output name.
            new_output_name(str): the new output name.
        """
4646 4647 4648
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4649 4650
        self.node.op()._rename_output(old_output_name, new_output_name)

4651 4652 4653 4654 4655 4656 4657 4658 4659 4660
    def input(self, name):
        """
        Get the argument name list by the parameter name for input.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4661 4662 4663
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675
        return self.node.op().input(name)

    def output(self, name):
        """
        Get the argument name list by the parameter name for output.

        Args:
            name(str): the parameter name.

        Returns:
            list(str): the argument name list.
        """
4676 4677 4678
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4679 4680 4681 4682 4683 4684 4685 4686 4687
        return self.node.op().output(name)

    def set_type(self, new_type):
        """
        Change the operator type into new type.

        Args:
            new_type(str): new operator type to be set.
        """
4688 4689 4690
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4691 4692
        return self.node.op().set_type(new_type)

4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706
    def set_attr(self, name, val):
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.
        """
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of the op desc's attribute by attribute's name.
        """
4707 4708 4709
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4710
        desc = self.node.op()
4711 4712 4713 4714 4715
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
4716
            desc.set_block_attr(name, val.desc)
4717
        elif isinstance(val, list) and val and _all_is_type(val, Block):
4718
            desc.set_blocks_attr(name, [v.desc for v in val])
4719 4720 4721
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
4722 4723 4724 4725
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)

4726 4727 4728 4729 4730 4731 4732
    def input_arg_names(self):
        """
        Return input arguments' names of this op node.

        Returns:
            list(str): input arguments' names of this op node.
        """
4733 4734 4735
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4736 4737 4738 4739 4740 4741 4742 4743 4744
        return self.node.op().input_arg_names()

    def output_arg_names(self):
        """
        Return output arguments' names of this op node.

        Returns:
            list(str): output arguments' names of this op node.
        """
4745 4746 4747
        assert (
            self.node.op() is not None
        ), "The node operator description can not be None."
4748 4749
        return self.node.op().output_arg_names()

4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770
    @property
    def inputs(self):
        """
        Return the node inputs.

        Returns:
            list(IrVarNode): node inputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.inputs]

    @property
    def outputs(self):
        """
        Return the node outputs.

        Returns:
            list(IrVarNode): node outputs wrapped by IrVarNode.
        """
        return [IrVarNode(n) for n in self.node.outputs]


4771
class IrGraph:
4772
    """
4773
    Python IrGraph. Beneath it is a core.Graph, which is used for
4774
    creating a c++ Ir Pass Graph. An IrGraph is just a graph view of
4775 4776
    a Program. In an IrGraph, both Variables and Operators are graph
    nodes.
4777 4778 4779 4780
    """

    def __init__(self, graph, for_test=False):
        """
4781 4782
        Construct an IrGraph using core.Graph.

4783 4784 4785 4786 4787
        Args:
            graph(core.Graph): C++ Graph.
            for_test(bool): True for the test graph and false for the train graph.
        """
        assert isinstance(
4788 4789
            graph, core.Graph
        ), 'graph must be the instance of core.Graph.'
4790 4791 4792
        self.graph = graph
        self._for_test = for_test

4793 4794 4795 4796
    def clone(self):
        """
        Create a new and duplicated IrGraph.

4797 4798 4799
        Warns:
            The method only clones the graph structure, not its attributes.

4800 4801 4802
        Returns:
            IrGraph: A new and duplicated graph.
        """
4803
        g = self.graph.clone()
4804 4805
        return IrGraph(g, self._for_test)

4806
    def is_test(self):
4807 4808 4809
        """
        If the graph is used for testing, the function returns true. Otherwise, returns false.
        """
4810 4811
        return self._for_test

W
WangZhen 已提交
4812
    def all_nodes(self):
4813 4814 4815
        """
        Return all nodes included in the graph as a set.
        """
4816
        return {IrNode(node) for node in self.graph.nodes()}
4817

4818
    def all_var_nodes(self):
4819 4820 4821
        """
        Return all variable nodes included in the graph as a set.
        """
4822
        return {IrVarNode(node) for node in self.graph.nodes() if node.is_var()}
4823

4824
    def all_persistable_nodes(self):
4825 4826 4827
        """
        Return all persistable variable nodes included in the graph as a set.
        """
W
WangZhen 已提交
4828 4829
        persistable_nodes = set()
        for node in self.graph.nodes():
4830 4831 4832 4833 4834
            if (
                node.is_var()
                and node.var() is not None
                and node.var().persistable()
            ):
W
WangZhen 已提交
4835
                persistable_nodes.add(node)
4836
        return {IrVarNode(p) for p in persistable_nodes}
W
WangZhen 已提交
4837

4838
    def all_op_nodes(self):
4839 4840 4841
        """
        Return all operator nodes included in the graph as a set.
        """
4842
        return {IrOpNode(node) for node in self.graph.nodes() if node.is_op()}
4843

4844 4845 4846 4847 4848 4849
    def all_sub_graphs(self, for_test=False):
        """
        Return all sub_graphs included in the main graph as a set.
        """

        return [
4850
            IrGraph(self.graph.get_sub_graph(i), for_test=for_test)
4851 4852 4853 4854 4855 4856 4857 4858 4859
            for i in range(self.graph.sub_graph_size())
        ]

    def get_sub_graph(self, i, for_test=False):
        """
        Return i-th sub_graph in the main graph.
        """
        return IrGraph(self.graph.get_sub_graph(i), for_test=for_test)

4860
    def create_persistable_node(self, name, var_type, shape, var_dtype):
4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871
        """
        Create a persistable variable node in the graph. In IrGraph,
        it can not distinguish between persistable variables and parameters.

        Args:
            name(str): the name of the persistable variable node.
            vart_type(core.VarDesc.VarType): the type of the persistable variable node.
            shape(list): the shape of the persistable variable node.
            var_dtype(core.VarDesc.VarType): the data type of the persistable variable node.

        Returns:
4872
            IrVarNode: the created persistable variable node.
4873
        """
4874 4875 4876 4877 4878
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
        var_desc.set_persistable(True)
4879
        return IrVarNode(self.graph.create_var_node(var_desc))
4880 4881

    def create_var_node(self, name, var_type, shape, var_dtype):
4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892
        """
        Create a variable node in the graph. The created variable node is
        not persistable.

        Args:
            name(str): the name of the variable node.
            vart_type(core.VarDesc.VarType): the type of the variable node.
            shape(list): the shape of the variable node.
            var_dtype(core.VarDesc.VarType): the data type of the variable node.

        Returns:
4893
            IrVarNode: the created variable node.
4894 4895
        """

4896 4897 4898 4899
        var_desc = core.VarDesc(name)
        var_desc.set_type(var_type)
        var_desc.set_shape(shape)
        var_desc.set_dtype(var_dtype)
4900
        return IrVarNode(self.graph.create_var_node(var_desc))
4901

4902 4903 4904 4905 4906 4907
    def create_control_dep_var(self):
        """
        create a control var
        """
        return IrVarNode(self.graph.create_control_dep_var())

4908
    def create_var_node_from_desc(self, var_desc):
4909 4910 4911 4912 4913 4914 4915 4916
        """
        Create a variable node by using an existing VarDesc in the graph.
        Depend on the giving VarDesc, the created variable node may be persistable.

        Args:
            var_desc(core.VarDesc): the giving variable description.

        Returns:
4917
            IrVarNode: the created variable node.
4918
        """
4919
        return IrVarNode(self.graph.create_var_node(var_desc))
4920 4921

    def create_op_node(self, op_type, attrs, inputs, outputs):
4922 4923 4924 4925 4926 4927 4928
        """
        Create a operator node in the graph.

        Args:
            op_type(str): the type of the operator node.
            attrs(dict): the attributes of the operator node.
            inputs(dict): the inputs of the operator node.
T
tianshuo78520a 已提交
4929
            outputs(dict): the outputs of the operator node.
4930 4931

        Returns:
4932
            IrOpNode: the created operator node.
4933
        """
4934 4935
        op_desc = core.OpDesc()
        op_desc.set_type(op_type)
4936
        for attr, value in attrs.items():
4937
            self._update_desc_attr(op_desc, attr, value)
4938
        for input_name, var_nodes in inputs.items():
4939 4940
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
4941 4942 4943
            op_desc.set_input(
                input_name, [var_node.name() for var_node in var_nodes]
            )
4944
        for output_name, var_nodes in outputs.items():
4945 4946
            if not isinstance(var_nodes, list):
                var_nodes = [var_nodes]
4947 4948 4949
            op_desc.set_output(
                output_name, [var_node.name() for var_node in var_nodes]
            )
4950
        return IrOpNode(self.graph.create_op_node(op_desc))
4951 4952

    def create_op_node_from_desc(self, op_desc):
4953 4954 4955 4956 4957 4958 4959
        """
        Create a operator node by using an existing OpDesc in the graph.

        Args:
            op_desc(core.VarDesc): the giving operator description.

        Returns:
4960
            IrOpNode: the created operator node.
4961
        """
4962
        return IrOpNode(self.graph.create_op_node(op_desc))
4963 4964

    def update_input_link(self, old_input_node, new_input_node, op_node):
4965 4966 4967 4968
        """
        Update the input's link of a operator node.

        Args:
4969 4970 4971
            old_input_node(IrNode): the old input node of the giving op_node.
            new_input_node(IrNode): the new input node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
4972
        """
4973 4974 4975 4976 4977
        assert (
            old_input_node.node in self.graph.nodes()
            and new_input_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_input_node&new_input_node&op_node) must be in the graph nodes.'
4978 4979 4980 4981
        old_input_node.remove_output(op_node)
        op_node.remove_input(old_input_node)
        new_input_node.append_output(op_node)
        op_node.append_input(new_input_node)
4982
        op_node.rename_input(old_input_node.name(), new_input_node.name())
4983

4984 4985 4986 4987 4988 4989 4990 4991 4992
    def update_output_link(self, old_output_node, new_output_node, op_node):
        """
        Update the output's link of an operator node.

        Args:
            old_output_node(IrNode): the old output node of the giving op_node.
            new_output_node(IrNode): the new output node of the giving op_node.
            op_node(IrOpNode): the operator node that is needed to update input's link.
        """
4993 4994 4995 4996 4997
        assert (
            old_output_node.node in self.graph.nodes()
            and new_output_node.node in self.graph.nodes()
            and op_node.node in self.graph.nodes()
        ), 'The three arguments(old_output_node &new_output_node &op_node) must be in the graph nodes.'
4998 4999 5000 5001 5002 5003
        old_output_node.remove_input(op_node)
        op_node.remove_output(old_output_node)
        new_output_node.append_input(op_node)
        op_node.append_output(new_output_node)
        op_node.rename_output(old_output_node.name(), new_output_node.name())

5004
    def link_to(self, node_in, node_out):
5005 5006 5007 5008
        """
        Connect two nodes.

        Args:
5009 5010
            node_in(IrNode): the input node.
            node_out(IrNode): the output node.
5011
        """
5012
        assert node_in.node in self.graph.nodes(), (
5013 5014
            'node_in(%s) must be in the graph nodes.' % node_in.node.name()
        )
5015
        assert node_out.node in self.graph.nodes(), (
5016 5017
            'node_out(%s) must be in the graph nodes.' % node_out.node.name()
        )
5018 5019
        node_in.append_output(node_out)
        node_out.append_input(node_in)
5020 5021

    def safe_remove_nodes(self, remove_nodes):
5022 5023 5024 5025 5026 5027 5028
        """
        Remove nodes safely since links connected to these removed nodes are
        also removed.

        Args:
            remove_nodes(set): the nodes prepared to be removed.
        """
5029
        if not isinstance(remove_nodes, set):
W
WangZhen 已提交
5030 5031 5032 5033
            if isinstance(remove_nodes, Iterable):
                remove_nodes = set(remove_nodes)
            else:
                remove_nodes = {remove_nodes}
5034 5035
        original_nodes = {n.node for n in remove_nodes}
        core.graph_safe_remove_nodes(self.graph, original_nodes)
5036

Z
Zhen Wang 已提交
5037 5038 5039 5040 5041 5042 5043 5044
    def resolve_hazard(self):
        ordered_nodes = core.topology_sort(self.graph)
        var_nodes = dict()
        for node in ordered_nodes:
            if node.is_op() and node.op() is not None:
                for each_var_name in node.op().input_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5045
                            self._find_node_by_name(node.inputs, each_var_name)
Z
Zhen Wang 已提交
5046 5047 5048 5049
                        ]
                for each_var_name in node.op().output_arg_names():
                    if each_var_name not in var_nodes:
                        var_nodes[each_var_name] = [
5050
                            self._find_node_by_name(node.outputs, each_var_name)
Z
Zhen Wang 已提交
5051 5052 5053
                        ]
                    else:
                        var_nodes[each_var_name].append(
5054 5055
                            self._find_node_by_name(node.outputs, each_var_name)
                        )
Z
Zhen Wang 已提交
5056 5057
        self.graph.resolve_hazard(var_nodes)

W
WangZhen 已提交
5058
    def has_circle(self):
5059 5060 5061 5062 5063 5064
        """
        Check if the graph has a circle.

        Returns:
            bool: True if the graph has a circle else False.
        """
W
WangZhen 已提交
5065 5066 5067
        return core.has_circle(self.graph)

    def graph_num(self):
5068 5069 5070 5071 5072 5073
        """
        Count the number of unconnected graphs in this graph.

        Returns:
            int: the number of unconnected graphs.
        """
W
WangZhen 已提交
5074 5075 5076
        return core.graph_num(self.graph)

    def topology_sort(self):
5077 5078 5079
        """
        Perform the topology sort operation on the graph.

T
tianshuo78520a 已提交
5080
        Notes: the `graph` can not contain a circle.
5081 5082

        Returns:
Z
Zhen Wang 已提交
5083
            list(IrNode): nodes in topology order.
5084
        """
5085
        ordered_nodes = core.topology_sort(self.graph)
Z
Zhen Wang 已提交
5086
        return [IrNode(n) for n in ordered_nodes]
W
WangZhen 已提交
5087 5088

    def build_adjacency_list(self):
5089 5090 5091 5092
        """
        Build an adjacency list of operations for the `graph`.

        Returns:
5093
            dict{IrNode: set(IrNode)}: the adjacency list.
5094
        """
5095 5096
        adj_list = core.build_adjacency_list(self.graph)
        wrapped_adj_list = dict()
5097
        for k, v in adj_list.items():
5098 5099
            wrapped_adj_list[IrNode(k)] = {IrNode(n) for n in v}
        return wrapped_adj_list
W
WangZhen 已提交
5100

5101 5102 5103 5104 5105 5106 5107 5108
    def draw(self, save_path, name, marked_nodes=None, remove_ctr_var=True):
        """
        Draw the graph. If `dot` command is installed, the drawn graph
        will be saved as pdf file type, otherwise dot file type is used.

        Args:
            save_path(str): the save path of drawn graph.
            name(str): the name of drawn graph.
5109
            marked_nodes(set(IrNode)): nodes that are needed to be marked.
5110 5111 5112 5113 5114
            Default value is None.
            remove_ctr_var(bool): If it is set True, all control variable nodes
            in the graph will be removed. Default value is True.
        """

5115 5116
        def _convert_to_pdf(dot_file_path):
            pdf_save_path = os.path.splitext(dot_file_path)[0] + '.pdf'
5117 5118 5119 5120
            exited_code = subprocess.call(
                'dot -Tpdf ' + dot_file_path + ' -o ' + pdf_save_path,
                shell=True,
            )
5121 5122
            if exited_code != 0:
                print('The dot command is needed for creating pdf files.')
5123 5124 5125
                print(
                    'The {} is saved as the dot filetype.'.format(dot_file_path)
                )
5126

5127
        remove_ctr_vars = set()
5128
        if remove_ctr_var:
5129
            for node in self.all_var_nodes():
5130 5131 5132
                if node.is_ctrl_var():
                    remove_ctr_vars.add(node)
            self.safe_remove_nodes(remove_ctr_vars)
5133 5134
        print('Total ops num = {}.'.format(len(self.all_op_nodes())))

5135 5136
        if marked_nodes is not None:
            if not isinstance(marked_nodes, set):
5137 5138 5139 5140 5141 5142
                if isinstance(marked_nodes, Iterable):
                    marked_nodes = set(marked_nodes)
                else:
                    marked_nodes = {marked_nodes}
            marked_nodes = {n.node for n in marked_nodes}
            remove_ctr_vars = {n.node for n in remove_ctr_vars}
5143 5144 5145 5146
            marked_nodes = marked_nodes - remove_ctr_vars
            if self.graph.has('__graphviz__marked_node__'):
                self.graph.erase('__graphviz__marked_node__')
            self.graph.set('__graphviz__marked_node__', marked_nodes)
5147 5148
        if not os.path.exists(save_path):
            os.makedirs(save_path)
5149 5150 5151 5152 5153 5154 5155
        viz_dot_path = os.path.join(save_path, name) + '.dot'
        viz_pass = core.get_pass('graph_viz_pass')
        viz_pass.set('graph_viz_path', viz_dot_path)
        viz_pass.apply(self.graph)
        _convert_to_pdf(viz_dot_path)

    def to_program(self):
5156 5157 5158
        """
        Convert the graph into a Program.

Z
Zhen Wang 已提交
5159
        WARN: When the graph includes backward operator nodes, the
5160 5161 5162 5163 5164 5165
        conversion process may be failed. Usually, this function is
        only used to convert a test graph.

        Returns:
            Program: a program converted from the graph.
        """
5166
        convert_pass = core.get_pass('graph_to_program_pass')
5167 5168
        desc = core.ProgramDesc()
        convert_pass.set_not_owned('program', desc)
5169 5170 5171 5172
        convert_pass.apply(self.graph)
        program = Program._construct_from_desc(desc)
        return program

5173 5174 5175 5176 5177 5178 5179 5180
    def _find_node_by_name(self, nodes, node_name):
        """
        Find a node in the giving nodes set by the name.
        """
        target_node = None
        for n in nodes:
            if n.name() == node_name:
                target_node = n
5181
        assert target_node is not None, (
5182 5183
            "Cannot find the target node (%s)in the giving set." % node_name
        )
5184 5185
        return target_node

5186 5187 5188 5189
    def _update_desc_attr(self, desc, name, val):
        """
        Update the value of desc's attribute by attribute's name.
        """
5190 5191 5192 5193 5194
        if isinstance(val, Variable):
            desc.set_var_attr(name, val.desc)
        elif isinstance(val, list) and _all_is_type(val, Variable):
            desc.set_vars_attr(name, [v.desc for v in val])
        elif isinstance(val, Block):
5195
            desc.set_block_attr(name, val.desc)
5196
        elif isinstance(val, list) and val and _all_is_type(val, Block):
5197
            desc.set_blocks_attr(name, [v.desc for v in val])
5198 5199 5200
        elif isinstance(val, core.BlockDesc) or isinstance(
            val, core.ProgramDesc
        ):
5201 5202 5203 5204 5205
            desc.set_serialized_attr(name, val.serialize_to_string())
        else:
            desc._set_attr(name, val)


5206
class Program:
D
dzhwinter 已提交
5207
    """
5208
    Create Python Program.  It has at least one :ref:`api_guide_Block_en`, when the
5209
    control flow op like conditional_block, while :ref:`api_paddle_fluid_layers_While` is included,
J
Jiabin Yang 已提交
5210
    it will contain nested block.
5211

J
Jiabin Yang 已提交
5212 5213 5214
    Please reference the
    `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
    for details.
D
dzhwinter 已提交
5215

J
Jiabin Yang 已提交
5216
    A set of Program usually contains startup program and main program.
J
Jiabin Yang 已提交
5217
    A startup program is set to contain some initial work, eg. initialize the ``Parameter``, and the main
J
Jiabin Yang 已提交
5218 5219 5220 5221 5222 5223 5224
    program will contain the network structure and vars for train.

    A set of Program can be used for test or train, in train program ,
    Paddle will contain all content to build a train network,  in test
    program Paddle will prune some content which is irrelevant to test, eg.
    backward ops and vars.

J
Jiabin Yang 已提交
5225
    **Notes**:
5226 5227 5228
        **we have** :ref:`api_paddle_fluid_framework_default_startup_program` **and** :ref:`api_paddle_fluid_framework_default_main_program`
        **by default, a pair of them will shared the parameters. The** :ref:`api_paddle_fluid_framework_default_startup_program` **only run once to initialize parameters,**
        :ref:`api_paddle_fluid_framework_default_main_program` **run in every mini batch and adjust the weights.**
D
dzhwinter 已提交
5229 5230

    Returns:
J
Jiabin Yang 已提交
5231
        Program: An empty Program.
D
dzhwinter 已提交
5232 5233

    Examples:
5234 5235
        .. code-block:: python

5236 5237 5238 5239
            import paddle
            import paddle.static as static

            paddle.enable_static()
5240

5241 5242 5243 5244 5245
            main_program = static.Program()
            startup_program = static.Program()
            with static.program_guard(main_program=main_program, startup_program=startup_program):
                x = static.data(name="x", shape=[-1, 784], dtype='float32')
                y = static.data(name="y", shape=[-1, 1], dtype='int32')
5246
                z = static.nn.fc(name="fc", x=x, size=10, activation="relu")
5247 5248 5249

            print("main program is: {}".format(main_program))
            print("start up program is: {}".format(startup_program))
D
dzhwinter 已提交
5250 5251 5252

    """

5253 5254
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
5255 5256
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
5257 5258
        global global_prog_seed
        self._seed = global_prog_seed
Y
yuyang18 已提交
5259
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
5260
        self.__op_role_var = []
T
tangwei12 已提交
5261

5262 5263
        # for distribute training
        # _is_distributed = True if under distributed training
T
tangwei12 已提交
5264
        self._is_distributed = False
5265
        # _is_chief = True if the trainer is the first one, usually No.0
T
tangwei12 已提交
5266
        self._is_chief = False
5267 5268 5269
        # _parameters_on_pservers records all the parameters distributed on parameter servers.
        self._parameters_on_pservers = None
        # _endpoints is a list about parameter servers ip:port, such as ["ip:port","ip:port"]
T
tangwei12 已提交
5270
        self._endpoints = []
5271 5272 5273
        # if current role is parameter server, the _ps_endpoint is its "ip:port"
        self._ps_endpoint = None
        # trainers_endpoints, it is used for distribution.
5274
        self._trainers_endpoints = []
5275
        # the distributed lookup table names
T
tangwei12 已提交
5276
        self._distributed_lookup_table = None
5277 5278 5279

        # use Deep gradient comrepssion or not
        self._enable_dgc = False
5280 5281
        self._use_lamb = False

5282 5283 5284
        self._nccl_comm_num = 1
        self._use_hierarchical_allreduce = False
        self._hierarchical_allreduce_inter_nranks = 0
5285

5286 5287 5288
        # if this program has been optimized by distributed optimizer
        # fleet_opt will be given a value
        self._fleet_opt = None
D
dongdaxiang 已提交
5289
        self._program_config = None
5290

H
hutuxian 已提交
5291 5292 5293
        # assigned if this program has been parsed by a pipeline optimizer
        self._pipeline_opt = None

5294 5295 5296
        # assigned if this program has been parsed by a heter pipeline parameter server optimizer
        self._heter_pipeline_opt = None

5297 5298 5299
        # appending gradients times
        self._appending_grad_times = 0

5300 5301
        # identifier for auto checkpoint
        self._auto_checkpoint_name = unique_name.generate(
5302 5303
            "__auto_checkpoint_program__"
        )
5304

5305 5306
        # compiled program, i.e. Graph
        self._graph = None
5307 5308
        # to tag whether is startup_program
        self._is_start_up_program_ = False
5309

5310
    def _find_var_class_kwargs(self, new_desc):
5311 5312 5313 5314 5315 5316 5317 5318
        # NOTE: not all variables support shape/dtype/lod_level methods.
        # For example: RAW, STEP_SCOPES, etc.
        def get_var_desc_attr_or_none(var_desc, attr_name, allowed_types):
            if var_desc.type() in allowed_types:
                return getattr(var_desc, attr_name)()
            else:
                return None

5319 5320 5321 5322
        old_desc = self.desc
        all_new_vars = []
        block_num = new_desc.num_blocks()
        for idx in range(block_num):
5323
            if idx > (len(self.blocks) - 1):
5324
                self._create_block()
5325 5326 5327 5328 5329 5330 5331 5332 5333 5334
            new_block_desc = new_desc.block(idx)
            all_new_vars.append([])
            block_new_vars = all_new_vars[-1]
            for new_var_desc in new_block_desc.all_vars():
                if self.blocks[idx].has_var(new_var_desc.name()):
                    old_var = self.blocks[idx].var(new_var_desc.name())
                else:
                    old_var = None

                kwargs = {
5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375
                    'type': new_var_desc.type(),
                    'name': new_var_desc.name(),
                    'shape': get_var_desc_attr_or_none(
                        new_var_desc,
                        "shape",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'dtype': get_var_desc_attr_or_none(
                        new_var_desc,
                        "dtype",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.SELECTED_ROWS,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'lod_level': get_var_desc_attr_or_none(
                        new_var_desc,
                        "lod_level",
                        [
                            core.VarDesc.VarType.LOD_TENSOR,
                            core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                        ],
                    ),
                    'error_clip': old_var.error_clip
                    if old_var is not None
                    else None,
                    'stop_gradient': old_var.stop_gradient
                    if old_var is not None
                    else False,
                    'is_data': old_var.is_data
                    if old_var is not None
                    else False,
                    'need_check_feed': new_var_desc.need_check_feed(),
                    'belong_to_optimizer': old_var.belong_to_optimizer
                    if old_var is not None
                    else False,
5376 5377 5378
                }

                if isinstance(old_var, Parameter):
5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395
                    kwargs.update(
                        {
                            'trainable': old_var.trainable,
                            'optimize_attr': old_var.optimize_attr,
                            'regularizer': old_var.regularizer,
                            'do_model_average': old_var.do_model_average,
                            'need_clip': old_var.need_clip,
                            'is_distributed': old_var.is_distributed,
                            'is_parameter': old_var.is_parameter,
                        }
                    )
                    block_new_vars.append(
                        {
                            'class': Parameter,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5396 5397
                else:
                    kwargs['persistable'] = new_var_desc.persistable()
5398 5399 5400 5401 5402 5403
                    block_new_vars.append(
                        {
                            'class': Variable,
                            'kwargs': copy.deepcopy(kwargs),
                        }
                    )
5404 5405 5406 5407 5408 5409 5410

        return all_new_vars

    def _rebuild_from_desc(self, desc):
        all_new_vars = self._find_var_class_kwargs(desc)
        block_num = desc.num_blocks()
        assert block_num == len(all_new_vars)
5411
        assert block_num == self.desc.num_blocks()
5412 5413

        # clear old blocks and desc
5414 5415 5416 5417 5418 5419 5420 5421 5422
        for idx in range(block_num):
            block = self.blocks[idx]
            block.vars.clear()
            block.ops.clear()

        for idx in range(block_num):
            block_desc = self.blocks[idx].desc
            new_block_desc = desc.block(idx)
            block_desc._move_from(new_block_desc)
5423

5424
        del desc
5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443

        # add new vars first
        for idx in range(block_num):
            block = self.blocks[idx]
            for new_var in all_new_vars[idx]:
                clazz = new_var['class']
                kwargs = new_var['kwargs']
                kwargs['block'] = block
                clazz(**kwargs)

        # then append op
        for idx in range(block_num):
            block = self.blocks[idx]
            block_desc = self.desc.block(idx)
            for op_idx in range(block_desc.op_size()):
                op_desc = block_desc.op(op_idx)
                op = Operator(block=block, desc=op_desc)
                block.ops.append(op)

5444 5445 5446 5447 5448 5449 5450 5451 5452 5453
    def global_seed(self, seed=0):
        """
        Set global seed for Program

        Returns:
            None.

        Examples:
            .. code-block:: python

5454 5455
                import paddle
                import paddle.static as static
5456

5457 5458 5459
                paddle.enable_static()

                prog = static.default_main_program()
5460 5461 5462 5463 5464
                print(prog.random_seed)
                ## 0
                ## the default random seed is 0

                prog.global_seed(102)
5465
                prog1 = static.default_main_program()
5466 5467 5468 5469 5470 5471 5472 5473
                print(prog1.random_seed)
                ## 102
                ## the random seed is 102
        """
        global global_prog_seed
        global_prog_seed = seed
        self._seed = global_prog_seed

Y
yuyang18 已提交
5474
    @property
5475
    def _op_role(self):
Y
yuyang18 已提交
5476 5477 5478 5479 5480 5481 5482 5483
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
5484
        parameter gradient of backward (use :code:`_op_role_var` to get this
Y
yuyang18 已提交
5485 5486 5487 5488
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
5489 5490
        return self._current_role

5491 5492
    @_op_role.setter
    def _op_role(self, role):
Y
yuyang18 已提交
5493 5494 5495
        self._current_role = role

    @property
5496
    def _op_role_var(self):
Y
yuyang18 已提交
5497
        """
5498
        The auxiliary variables for :code:`_op_role` property.
Y
yuyang18 已提交
5499

5500
        See Also: :code:`Program._op_role`'s documentation for details.
Y
yuyang18 已提交
5501 5502 5503

        Notes: This is a very low-level API. Users should not use it directly.
        """
5504
        return self.__op_role_var
Y
yuyang18 已提交
5505

5506
    @signature_safe_contextmanager
5507 5508 5509 5510 5511
    def _backward_role_guard(self):
        tmp_role = self._current_role

        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Backward
5512 5513 5514 5515
        try:
            yield
        finally:
            self._current_role = tmp_role
5516

S
rename  
sneaxiy 已提交
5517
    @signature_safe_contextmanager
W
Wu Yi 已提交
5518
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
5519 5520 5521 5522 5523 5524 5525
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
5526
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
5527 5528 5529

        Examples:

5530
            >>> import paddle.fluid as fluid
Y
yuyang18 已提交
5531
            >>> p, g = backward(...)
W
Wu Yi 已提交
5532
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
5533 5534
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
5535
        tmp_role = self._current_role
5536
        tmp_var = self.__op_role_var
X
Xin Pan 已提交
5537

Y
yuyang18 已提交
5538 5539
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
5540
        self.__op_role_var = [
5541 5542 5543
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
5544 5545 5546 5547 5548
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
Y
Yu Yang 已提交
5549

S
rename  
sneaxiy 已提交
5550
    @signature_safe_contextmanager
X
Xin Pan 已提交
5551
    def _lr_schedule_guard(self, is_with_opt=False):
5552 5553 5554 5555 5556 5557 5558
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
5559 5560 5561 5562
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
5563 5564 5565

        Examples:

5566
            >>> import paddle.fluid as fluid
5567 5568 5569 5570
            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
5571 5572

        tmp_role = self._current_role
5573
        tmp_var = self.__op_role_var
5574

5575 5576
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
5577 5578
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
5579
        # TODO(typhoonzero): how to set target learning rate var
5580
        self.__op_role_var = []
5581 5582 5583 5584 5585
        try:
            yield
        finally:
            self.__op_role_var = tmp_var
            self._current_role = tmp_role
5586

5587
    def __str__(self):
Y
yuyang18 已提交
5588 5589 5590 5591 5592 5593 5594 5595 5596
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616
        return self._to_readable_code()

    def _to_readable_code(self, skip_op_callstack=True):
        """
        Get readable debug string of Program.

        .. note::
            If you want to get the debug string in protobuf format,
            please use :code:`to_string` method.

        Args:
            skip_op_callstack(bool): whether to skip parsing Operator's attribute
                op_callstack, default value is True

        Returns:
            string: The formatted Program string.

        Examples:
            .. code-block:: python

5617 5618
            import paddle
            import paddle.static as static
5619

5620 5621 5622
            paddle.enable_static()

            cur_program = static.Program()
5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633
            cur_block = cur_program.current_block()
            new_var = cur_block.create_var(name="X",
                                           shape=[-1, 23, 48],
                                           dtype='float32')
            new_op = cur_block.append_op(type="abs",
                                inputs={"X": [new_var]},
                                outputs={"Out": [new_var]})
            print(cur_program._to_readable_code())
        """
        assert isinstance(
            skip_op_callstack, bool
Z
zhangchunle 已提交
5634
        ), "skip_op_callstack parameter's type is error, expect bool, received {}".format(
5635 5636
            type(skip_op_callstack)
        )
5637 5638 5639
        program_str = ""
        for block in self.blocks:
            program_str += block._to_readable_code(skip_op_callstack)
5640
            program_str += '\n'
5641
        return program_str
Y
Yang Yang(Tony) 已提交
5642

F
fengjiayi 已提交
5643 5644 5645
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
5646

J
Jiabin Yang 已提交
5647 5648 5649
        Args:

            throw_on_error (bool): raise Value error when any of required fields is not set.
F
fengjiayi 已提交
5650

J
Jiabin Yang 已提交
5651
            with_details (bool): True if more details about variables and parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need to print.
Y
yuyang18 已提交
5652

H
haowang101779990 已提交
5653
        Returns:
J
Jiabin Yang 已提交
5654
            str: The debug string describe current Program.
Y
yuyang18 已提交
5655 5656

        Raises:
J
Jiabin Yang 已提交
5657
            ValueError: If any of required fields is not set and throw_on_error is True.
F
fengjiayi 已提交
5658

5659 5660 5661
        Examples:
            .. code-block:: python

5662 5663 5664 5665
                import paddle
                import paddle.static as static

                paddle.enable_static()
5666

5667 5668 5669
                prog = static.default_main_program()
                x = static.data(name="X", shape=[2,3], dtype="float32")
                pred = static.nn.fc(x, size=3)
5670
                prog_string = prog.to_string(throw_on_error=True, with_details=False)
5671
                prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
T
tianshuo78520a 已提交
5672
                print("program string without detail: {}".format(prog_string))
5673
                print("program string with detail: {}".format(prog_string_with_details))
F
fengjiayi 已提交
5674
        """
5675 5676 5677
        assert isinstance(
            throw_on_error, bool
        ), "The type of throw_on_error parameter is wrong, expected bool, but received {}.".format(
5678 5679
            type(throw_on_error)
        )
5680 5681 5682
        assert isinstance(
            with_details, bool
        ), "The type of with_details parameter is wrong, expected bool, but received {}.".format(
5683 5684
            type(with_details)
        )
5685

F
fengjiayi 已提交
5686 5687 5688 5689 5690 5691
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
5692
            proto = framework_pb2.ProgramDesc.FromString(bytes(protostr))
F
fengjiayi 已提交
5693 5694
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
5695

W
Wu Yi 已提交
5696
    def _get_desc(self):
Y
yuyang18 已提交
5697 5698 5699 5700 5701 5702 5703
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
5704 5705
        return self.desc

X
version  
Xin Pan 已提交
5706 5707 5708
    def _version(self):
        return self.desc._version()

5709
    def clone(self, for_test=False):
Y
yuyang18 已提交
5710
        """
5711
        .. note:::
5712 5713
            1. :code:`Program.clone()` method DOES NOT clone :ref:`api_paddle_io_DataLoader` .
            2. Recommend you to use :code:`clone` before using :code:`Opimizer.minimize` .
5714
            3. This API has no effect in Dygraph Mode.
Y
yuyang18 已提交
5715

5716
        Create a new Program with forward content of original one when ``for_test=True``.
5717
        Create a new Program as same as the original one when ``for_test=False``.
5718

5719
        Some operators, e.g., :ref:`api_paddle_fluid_layers_batch_norm` , behave differently between
Y
yuyang18 已提交
5720 5721 5722
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
5723

5724 5725
        * Set for_test to False when you want to clone the program for training.
        * Set for_test to True when you want to clone the program for testing.
5726 5727
          We will prune the backward and optimize part of the program when you
          use :code:`clone` after :code:`Opimizer.minimize`, but we still
J
Jiabin Yang 已提交
5728
          recommend you to use :code:`clone` before using :code:`Opimizer.minimize`.
Y
yuyang18 已提交
5729

J
Jiabin Yang 已提交
5730
        For Example:
5731
          ::
L
Luo Tao 已提交
5732

5733 5734 5735 5736 5737 5738
            import paddle
            import paddle.static as static

            paddle.enable_static()

            img = static.data(name='image', shape=[None, 784])
5739
            pred = static.nn.fc(x=img, size=10, actvation='relu')
5740
            loss = paddle.mean(pred)
5741
            # Here we use clone before Momentum
5742 5743
            test_program = static.default_main_program().clone(for_test=True)
            optimizer = paddle.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
5744
            optimizer.minimize(loss)
5745

J
Jiabin Yang 已提交
5746
        Args:
5747

5748 5749
            for_test (bool): True if change the :code:`is_test` attribute of operators to :code:`True`
                and prune the backward and optimize part of the program. The default value is :code:`False` .
5750

J
Jiabin Yang 已提交
5751
        Returns:
5752
            Program: A new Program with forward content of original one when ``for_test=True``.  A new Program as same as the original one when ``for_test=False``
5753

Y
yuyang18 已提交
5754 5755 5756

        Examples:

5757 5758 5759 5760 5761 5762 5763
            .. note::
                The Program's order maybe different after :code:`clone` and
                this will not affect your training or testing progress. In the following
                example we give you an simple method :code:`print_prog(program)` to
                print Program Descs inorder to make sure you have same print result
                after :code:`clone`:

5764 5765
            .. code-block:: python

5766
                import paddle
5767 5768

                def print_prog(prog):
5769
                    for name, value in sorted(prog.block(0).vars.items()):
5770 5771 5772 5773 5774
                        print(value)
                    for op in prog.block(0).ops:
                        print("op type is {}".format(op.type))
                        print("op inputs are {}".format(op.input_arg_names))
                        print("op outputs are {}".format(op.output_arg_names))
5775
                        for key, value in sorted(op.all_attrs().items()):
5776 5777 5778 5779
                            if key not in ['op_callstack', 'op_role_var']:
                                print(" [ attrs: {}:   {} ]".format(key, value))


5780
            1. To clone a test program, the sample code is:
5781 5782
                .. code-block:: python

5783 5784 5785 5786 5787 5788
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5789 5790

                    def print_prog(prog):
5791
                        for name, value in sorted(prog.block(0).vars.items()):
5792 5793 5794 5795 5796
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
5797
                            for key, value in sorted(op.all_attrs().items()):
5798 5799 5800
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))

5801 5802
                    train_program = static.Program()
                    startup_program = static.Program()
J
Jiabin Yang 已提交
5803 5804 5805

                    # startup_program is used to do some parameter init work,
                    # and main program is used to hold the network
5806 5807 5808
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            img = static.data(name='image', shape=[None, 784])
5809
                            hidden = static.nn.fc(x=img, size=200, activation='relu')
5810 5811
                            hidden = F.dropout(hidden, p=0.5)
                            loss = F.cross_entropy(
5812
                                input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5813 5814
                                label=static.data(name='label', shape=[1], dtype='int64'))
                            avg_loss = paddle.mean(loss)
5815
                            test_program = train_program.clone(for_test=True)
5816
                    print_prog(test_program)
J
Jiabin Yang 已提交
5817 5818 5819 5820

                    # Due to parameter sharing usage for train and test, so we need to use startup program of train
                    # instead of using test startup program, while nothing is in test's startup program

5821
                    # In Paddle we will share weights by using the same Tensor name. In train and test program
J
Jiabin Yang 已提交
5822 5823 5824 5825
                    # all parameters will have the same name and this can make train and test program sharing parameters,
                    # that's why we need to use startup program of train. And for startup program of test, it has nothing,
                    # since it is a new program.

5826 5827 5828
                    with static.program_guard(train_program, startup_program):
                        with utils.unique_name.guard():
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5829 5830 5831
                            sgd.minimize(avg_loss)


5832
            2. The clone method can be avoid if you create program for training and program for testing individually.
5833 5834
                .. code-block:: python

5835 5836 5837 5838 5839 5840
                    import paddle
                    import paddle.static as static
                    import paddle.utils as utils
                    import paddle.nn.functional as F

                    paddle.enable_static()
5841 5842

                    def print_prog(prog):
5843
                        for name, value in sorted(prog.block(0).vars.items()):
5844 5845 5846 5847 5848
                            print(value)
                        for op in prog.block(0).ops:
                            print("op type is {}".format(op.type))
                            print("op inputs are {}".format(op.input_arg_names))
                            print("op outputs are {}".format(op.output_arg_names))
5849
                            for key, value in sorted(op.all_attrs().items()):
5850 5851
                                if key not in ['op_callstack', 'op_role_var']:
                                    print(" [ attrs: {}:   {} ]".format(key, value))
5852

5853
                    def network():
5854
                        img = static.data(name='image', shape=[None, 784])
5855
                        hidden = static.nn.fc(x=img, size=200, activation='relu')
5856 5857
                        hidden = F.dropout(hidden, p=0.5)
                        loss = F.cross_entropy(
5858
                            input=static.nn.fc(x=hidden, size=10, activation='softmax'),
5859 5860
                            label=static.data(name='label', shape=[1], dtype='int64'))
                        avg_loss = paddle.mean(loss)
5861 5862
                        return avg_loss

5863 5864 5865 5866 5867
                    train_program_2 = static.Program()
                    startup_program_2 = static.Program()
                    test_program_2 = static.Program()
                    with static.program_guard(train_program_2, startup_program_2):
                        with utils.unique_name.guard():
5868
                            avg_loss = network()
5869
                            sgd = paddle.optimizer.SGD(learning_rate=1e-3)
5870
                            sgd.minimize(avg_loss)
5871
                    # the test startup program is not used.
5872 5873
                    with static.program_guard(test_program_2, startup_program_2):
                        with utils.unique_name.guard():
5874 5875
                            avg_loss = network()
                    print_prog(test_program_2)
5876

5877
            The two code snippets above will generate and print same programs.
5878
        """
5879

T
tangwei12 已提交
5880
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5881 5882 5883
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5884
        pruned_origin_block_id_map = None
5885
        if for_test:
5886 5887
            forward_prog = Program()
            forward_prog.desc, pruned_origin_block_id_map = core.prune_backward(
5888 5889
                self.desc
            )
5890 5891
            forward_prog.blocks = [
                Block(forward_prog, i)
5892
                for i in range(forward_prog.desc.num_blocks())
5893 5894 5895
            ]
            forward_prog._sync_with_cpp()
            p = forward_prog._inference_optimize(prune_read_op=False)
5896
        else:
5897
            p = Program()
G
gongweibao 已提交
5898 5899
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
5900
            p.desc = core.ProgramDesc(self.desc)
5901
            p.blocks = [Block(p, i) for i in range(self.desc.num_blocks())]
G
gongweibao 已提交
5902 5903

            p._current_role = self._current_role
5904
            p.__op_role_var = self.__op_role_var
5905
            p._appending_grad_times = self._appending_grad_times
5906 5907
            if hasattr(self, 'lr_sheduler'):
                p.lr_sheduler = self.lr_sheduler
G
gongweibao 已提交
5908

T
tangwei12 已提交
5909
            # NOTE(zhiqiu): we sync the cloned program, to update its program by
5910
            # its desc.
W
Wu Yi 已提交
5911
            p._sync_with_cpp()
5912

W
Wu Yi 已提交
5913
        p._copy_param_info_from(self)
5914
        p._copy_data_info_from(self, pruned_origin_block_id_map)
5915
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
5916
        return p
5917

5918
    def _prune(self, targets):
Y
yuyang18 已提交
5919 5920 5921 5922 5923 5924 5925 5926
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
5927
            targets(list|Variable|Operator): A list of variables, operators, or variable names
Y
yuyang18 已提交
5928 5929 5930 5931
                need to be pruned

        Returns:
            Program:  A new, pruned program.
5932
        """
5933
        return self._prune_with_input([], targets)
5934 5935

    def _prune_with_input(self, feeded_var_names, targets):
Y
yuyang18 已提交
5936
        """
5937
        Prune operators and variables which are not needed to generate
5938 5939
        :code:`targets`. Prune operators and variables which are needed
        to generate feeded_var
5940 5941 5942 5943 5944 5945 5946

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            feeded_var_names(list|str): A list of variable names from where
                pruning start. If it is set as [], this API works just like _prune()
5947
            targets(list|Variable|Operator): A list of variables, operators, or variable names
5948 5949 5950 5951 5952 5953
                need to be pruned

        Returns:
            Program:  A new, pruned program.
        """

T
tangwei12 已提交
5954
        # NOTE(zhiqiu): we sync the original program first, since its program may diff with
5955 5956 5957
        # its desc due to modifying desc in c++ space. E.g. save op will add kLookupTablePath in desc.
        self._sync_with_cpp()

5958 5959
        if not isinstance(feeded_var_names, list):
            feeded_var_names = [feeded_var_names]
5960 5961
        if not isinstance(targets, list):
            targets = [targets]
5962 5963

        for var in feeded_var_names:
5964
            if not isinstance(var, str):
5965 5966
                raise ValueError(
                    "All feeded_var_names of Program._prune_with_input() can only be "
5967 5968
                    "str, but received %s." % type(var)
                )
5969

5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985
        # find out all variables that can be generated or updated with given feed
        generatable_vars = set()

        for idx, op in enumerate(self.global_block().ops):
            runnable_op = True
            for name in op.input_arg_names:
                if not self.global_block().has_var(name):
                    continue
                if self.global_block().var(name).persistable:
                    continue
                if name not in generatable_vars.union(feeded_var_names):
                    runnable_op = False
                    break
            if runnable_op:
                generatable_vars = generatable_vars.union(op.output_arg_names)

5986 5987 5988 5989
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
5990
                    name = t.name
5991
                elif isinstance(t, str):
5992
                    name = str(t)
5993
                else:
5994 5995
                    raise ValueError(
                        "All targets of Program._prune_with_input() can only be "
5996 5997
                        "Variable or Operator, but received %s." % type(t)
                    )
5998 5999 6000 6001 6002 6003

                # NOTEZ(zhiqiu): For variable to be fed in fetch_list, there two cases:
                # (1) the variable is leaf, it has no op that generates it;
                # (2) the variable is not leaf, and we need to prune the op that generates it.
                # In both cases, wo can just skip target_op of that it.
                if name in feeded_var_names:
6004 6005 6006
                    # however if the var is also updated by a runnable op, will shall keep it
                    if name not in generatable_vars:
                        continue
6007

6008 6009 6010 6011 6012 6013 6014 6015 6016
                # After transpiler processing, the op that output this
                # variable maybe has been changed, so t.op is not reliable
                # and we need to find the current op that generate this
                # variable here.
                target_op = None
                global_block = self.global_block()
                for idx, op in enumerate(global_block.ops):
                    if name in op.output_arg_names:
                        # NOTE(zhiqiu): Find op that generate target name.
T
tangwei12 已提交
6017
                        # Skip optimize op except for optimize op in targets,
6018 6019 6020 6021 6022
                        # since optimize op generates parameters.
                        if op._is_optimize_op() and op not in targets:
                            continue
                        else:
                            target_op = op
6023

6024
                if target_op is not None:
6025 6026 6027
                    targets_idx.append([target_op.block.idx, target_op.idx])
            else:
                targets_idx.append([t.block.idx, t.idx])
6028

6029
        res = Program()
6030
        res.desc, pruned_origin_block_id_map = core.prune(
6031 6032
            self.desc, set(feeded_var_names), targets_idx
        )
6033
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6034
        res._sync_with_cpp()
6035 6036 6037 6038 6039

        res._copy_param_info_from(self)
        res._copy_data_info_from(self, pruned_origin_block_id_map)
        res._copy_dist_param_info_from(self)

6040 6041
        return res

X
Xin Pan 已提交
6042
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
6043
        """
F
fengjiayi 已提交
6044 6045 6046 6047 6048
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

6049
        3. change the :code:`is_test`
Y
yuyang18 已提交
6050 6051 6052
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

6053
        Args:
X
Xin Pan 已提交
6054 6055
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
6056

Y
yuyang18 已提交
6057 6058 6059 6060 6061 6062
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
6063
        res = Program()
6064
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
6065 6066 6067 6068

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
6069
        if prune_read_op:
6070
            while True:
6071 6072 6073 6074
                if (
                    read_op_idx >= root_block.op_size()
                    or root_block.op(read_op_idx).type() == 'read'
                ):
6075 6076 6077 6078 6079 6080
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
6081
                    root_block._remove_var(var.name().encode())
F
fengjiayi 已提交
6082 6083

        # change all `is_test` attributes to True
6084
        for i in range(res.desc.num_blocks()):
6085
            block = res.desc.block(i)
6086
            for j in range(block.op_size()):
6087 6088
                op = block.op(j)
                if op.has_attr('is_test'):
6089
                    op._set_bool_attr('is_test', True)
6090 6091 6092
                if op.type() == "batch_norm":
                    # Remove the output ReserveSpace of batch_norm if exists.
                    op.remove_output("ReserveSpace")
6093
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
W
Wu Yi 已提交
6094
        res._sync_with_cpp()
6095 6096
        return res

6097
    def _remove_training_info(self, clip_extra=True):
6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111
        """
        This method will create a new program and do following adjustments on it:
        1. Remove all variable's `is_parameter` attribute if exist.

        2. Remove all variable's `stop_gradient` attribute if exist.

        Notes: This API is a very low level API.

        Returns:
            Program: The new program.
        """
        res = Program()
        res.desc = core.ProgramDesc(self.desc)

6112
        res.blocks = [Block(res, i) for i in range(res.desc.num_blocks())]
6113 6114
        res._sync_with_cpp()

6115 6116
        # Note: The op_role and op_role_var cann't be deleted currently,
        # and we will try to remove them in the future.
6117
        common_clipped_attrs_list = ['op_callstack', 'with_quant_attr']
6118

6119
        for i in range(res.desc.num_blocks()):
6120 6121 6122 6123
            block = res.desc.block(i)
            for var in block.all_vars():
                var.clear_is_parameter()
                var.clear_stop_gradient()
6124 6125
            if not clip_extra:
                continue
6126 6127 6128 6129
            for op_idx in range(0, block.op_size()):
                op = block.op(op_idx)
                if op.type() not in OpProtoHolder.instance().op_proto_map:
                    continue
6130 6131 6132

                extra_attrs_map = core.get_op_extra_attrs(op.type())

6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145
                proto = OpProtoHolder.instance().get_op_proto(op.type())
                remove_input_list = []
                for name in op.input_names():
                    find = False
                    for input_proto in proto.inputs:
                        if input_proto.name != name:
                            continue
                        if input_proto.extra:
                            remove_input_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_input_list.append(name)
6146 6147 6148
                # The extra input of op will be removed in the future
                # for name in remove_input_list:
                #     op.remove_input(name)
6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161

                remove_output_list = []
                for name in op.output_names():
                    find = False
                    for output_proto in proto.outputs:
                        if output_proto.name != name:
                            continue
                        if output_proto.extra:
                            remove_output_list.append(name)
                        find = True
                        break
                    if not find:
                        remove_output_list.append(name)
6162
                # The extra output of op will be removed in the future
6163 6164
                for name in remove_output_list:
                    op.remove_output(name)
6165

6166 6167 6168 6169 6170 6171 6172
                op_quant_name = (
                    core.op_proto_and_checker_maker.kOpWithQuantAttrName()
                )
                quant = (
                    bool(op.attr(op_quant_name))
                    if op_quant_name in op.attr_names()
                    else False
6173 6174
                )
                quant_attrs = [
6175 6176 6177 6178 6179 6180 6181
                    op_quant_name,
                    "quantization_type",
                    "skip_quant",
                    "activation_bits",
                    "bit_length",
                    "quantize_weight_bits",
                    "weight_quant_scale",
6182
                ]
6183 6184
                for extra_attr_name in extra_attrs_map.keys():
                    op.remove_attr(extra_attr_name)
6185
                remove_attr_list = []
6186 6187 6188 6189 6190 6191
                for name in op.attr_names():
                    if quant:
                        if name in quant_attrs:
                            continue
                        if name.endswith("_threshold"):
                            continue
6192
                    if len(extra_attrs_map) > 0:
6193
                        if name in common_clipped_attrs_list:
6194
                            op.remove_attr(name)
6195
                        continue
6196 6197 6198 6199 6200 6201 6202 6203 6204 6205
                    find = False
                    for attr_proto in proto.attrs:
                        if attr_proto.name != name:
                            continue
                        find = True
                        break
                    if not find:
                        remove_attr_list.append(name)
                for name in remove_attr_list:
                    op.remove_attr(name)
6206 6207
        return res

6208 6209
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
6210
        """
6211
        .. note::
6212
            1. All information about parameters will be lost after serialization;
6213
            2. This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6214

6215 6216
        Deserialize a Program from  `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_  binary string.
        This method always use to save and load model
Y
yuyang18 已提交
6217

J
Jiabin Yang 已提交
6218
        Args:
Y
yuyang18 已提交
6219

J
Jiabin Yang 已提交
6220
            binary_str_type (str): the binary prootbuf string.
6221

J
Jiabin Yang 已提交
6222 6223
        Returns:
            Program: A deserialized Program.
6224 6225 6226 6227

        Examples:
            .. code-block:: python

6228 6229 6230 6231
                import paddle
                import paddle.static as static

                paddle.enable_static()
6232

6233 6234 6235 6236
                startup_prog = static.Program()
                main_prog = static.Program()
                with static.program_guard(startup_prog, main_prog):
                    x = static.data(name='X', shape=[1000, 784], dtype='float32')
6237

6238
                    y = static.data(name='Y', shape=[784, 100], dtype='float32')
6239

6240
                    z = paddle.matmul(x=x, y=y)
6241

6242 6243
                    binary_str = static.default_main_program().desc.serialize_to_string()
                    prog_restored = static.default_main_program().parse_from_string(binary_str)
6244

6245
                    print(static.default_main_program())
6246
                    print(prog_restored)
Y
yuyang18 已提交
6247
        """
6248 6249
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
6250
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
W
Wu Yi 已提交
6251
        p._sync_with_cpp()
6252
        return p
Y
Yu Yang 已提交
6253

6254
    @staticmethod
6255
    def _construct_from_desc(desc):
6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266
        """
        Construct a program from program desc.

        Args:
            desc(core.ProgramDesc): The program desc for constructing.

        Returns:
            Program: A program.
        """
        p = Program()
        p.desc = desc
6267
        p.blocks = [Block(p, i) for i in range(p.desc.num_blocks())]
6268 6269 6270
        p._sync_with_cpp()
        return p

D
dzhwinter 已提交
6271 6272
    @property
    def random_seed(self):
Y
yuyang18 已提交
6273
        """
J
Jiabin Yang 已提交
6274
        The default random seed for random operators in Program. ``0`` means get
Y
yuyang18 已提交
6275 6276
        the random seed from random device.

6277
        .. note::
6278
            It must be set before the operators have been added.
J
Jiabin Yang 已提交
6279 6280 6281

        Returns:
            int64: Random seed in current Program
6282

6283 6284 6285 6286

        Examples:
            .. code-block:: python

6287 6288 6289
                import paddle
                import paddle.static as static
                import paddle.nn.functional as F
6290

6291 6292 6293
                paddle.enable_static()

                prog = static.default_main_program()
6294
                random_seed = prog.random_seed
6295
                x_var = static.data(name="X", shape=[3,3], dtype="float32")
6296 6297 6298
                print(random_seed)
                ## 0
                ## the default random seed is 0
6299

6300
                # Here we need to set random seed before we use paddle.nn.functional.dropout
6301
                prog.random_seed = 1
6302
                z_var = F.dropout(x_var, 0.7)
6303

6304
                print(prog.random_seed)
6305 6306
                ## 1
                ## the random seed is change to 1
Y
yuyang18 已提交
6307
        """
D
dzhwinter 已提交
6308 6309
        return self._seed

Q
qiaolongfei 已提交
6310 6311
    @property
    def num_blocks(self):
Y
yuyang18 已提交
6312
        """
6313 6314
        The number of :ref:`api_guide_Block_en`  in this Program.

6315
        .. note::
6316
            This API has no effect in Dygraph mode.
J
Jiabin Yang 已提交
6317 6318 6319

        Returns:
            int(Platform-dependent size): num of :ref:`api_guide_Block_en`  in current Program
6320

6321 6322 6323 6324

        Examples:
            .. code-block:: python

6325 6326 6327 6328
                import paddle
                import paddle.static as static

                paddle.enable_static()
6329

6330
                prog = static.default_main_program()
6331 6332
                num_blocks = prog.num_blocks
                print(num_blocks)
6333

6334 6335
                # print result:
                # 1
Y
yuyang18 已提交
6336
        """
Q
qiaolongfei 已提交
6337 6338
        return self.desc.num_blocks()

D
dzhwinter 已提交
6339 6340 6341
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
6342 6343
            raise ValueError(
                "Program.random_seed's input seed must be an integer, but received %s."
6344 6345
                % type(seed)
            )
D
dzhwinter 已提交
6346 6347
        self._seed = seed

Y
Yu Yang 已提交
6348
    def __repr__(self):
6349
        return self.__str__()
6350

Y
Yu Yang 已提交
6351
    def global_block(self):
Y
yuyang18 已提交
6352
        """
6353 6354
        .. note::
            This API has no effect in Dygraph mode.
6355 6356 6357

        Get the first :ref:`api_guide_Block_en` of this Program.

J
Jiabin Yang 已提交
6358 6359
        Returns:
            :ref:`api_guide_Block_en`: The first :ref:`api_guide_Block_en`  of this Program.
6360

6361 6362 6363 6364

        Examples:
            .. code-block:: python

6365 6366 6367 6368
                import paddle
                import paddle.static as static

                paddle.enable_static()
6369

6370
                prog = static.default_main_program()
6371 6372
                gb_block = prog.global_block()
                print(gb_block)
6373

Y
yuyang18 已提交
6374
        """
Y
Yu Yang 已提交
6375 6376
        return self.blocks[0]

Q
Qiao Longfei 已提交
6377
    def block(self, index):
Y
yuyang18 已提交
6378
        """
6379 6380
        .. note::
            This API has no effect in Dygraph mode.
Y
yuyang18 已提交
6381

6382 6383
        Get the :code:`index`  :ref:`api_guide_Block_en`  of this Program

J
Jiabin Yang 已提交
6384 6385
        Args:
            index (int) - The index of  :ref:`api_guide_Block_en`  to get
6386

J
Jiabin Yang 已提交
6387 6388
        Returns:
            :ref:`api_guide_Block_en`: The :code:`index` block
6389 6390 6391 6392

        Examples:
            .. code-block:: python

6393 6394 6395 6396
                import paddle
                import paddle.static as static

                paddle.enable_static()
6397

6398
                prog = static.default_main_program()
6399 6400
                block_0 = prog.block(0)
                print(block_0)
Y
yuyang18 已提交
6401
        """
Q
Qiao Longfei 已提交
6402 6403
        return self.blocks[index]

Y
Yu Yang 已提交
6404
    def current_block(self):
Y
yuyang18 已提交
6405
        """
6406 6407
        .. note::
            This API has no effect in Dygraph mode.
6408

J
Jiabin Yang 已提交
6409 6410
        Get the current  :ref:`api_guide_Block_en` . The :code:`current`  :ref:`api_guide_Block_en`
        is the  :ref:`api_guide_Block_en`  to append operators.
6411

J
Jiabin Yang 已提交
6412 6413
        Returns:
             :ref:`api_guide_Block_en`: The :code:`index`  :ref:`api_guide_Block_en`
6414

6415 6416 6417
        Examples:
            .. code-block:: python

6418 6419 6420 6421
                import paddle
                import paddle.static as static

                paddle.enable_static()
6422

6423
                prog = static.default_main_program()
6424 6425
                current_blk = prog.current_block()
                print(current_blk)
Y
yuyang18 已提交
6426
        """
Y
Yu Yang 已提交
6427 6428
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
6429
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
6430 6431 6432 6433 6434
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
J
Jiabin Yang 已提交
6435

Y
yuyang18 已提交
6436 6437 6438 6439 6440
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
6441
        new_block_idx = len(self.blocks)
6442 6443 6444 6445 6446
        parent = (
            self.current_block()
            if parent_idx is None
            else self.block(parent_idx)
        )
F
update  
fengjiayi 已提交
6447
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
6448 6449 6450 6451
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
6452
    def _rollback(self):
Y
yuyang18 已提交
6453 6454 6455 6456 6457
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
6458 6459
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
6460
    def _sync_with_cpp(self):
Y
yuyang18 已提交
6461 6462 6463 6464 6465 6466 6467 6468 6469 6470
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
6471 6472 6473
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
6474
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
6475

W
Wu Yi 已提交
6476
    def _copy_param_info_from(self, other):
6477
        """
6478
        Copy the information of parameters from other program.
D
dzhwinter 已提交
6479

Y
yuyang18 已提交
6480 6481 6482
        Notes: This is a very low level API. Users should not invoke it
        directly.

6483 6484 6485 6486 6487 6488 6489
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6490 6491
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6492 6493
                % type(other)
            )
6494

W
Wu Yi 已提交
6495
        self.global_block()._copy_param_info_from(other.global_block())
6496

6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
6508 6509
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6510 6511
                % type(other)
            )
6512 6513
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
6514
        self._parameters_on_pservers = other._parameters_on_pservers
6515
        self._endpoints = other._endpoints
6516
        self._ps_endpoint = other._ps_endpoint
6517 6518
        self._distributed_lookup_table = other._distributed_lookup_table

6519
    def _copy_data_info_from(self, other, pruned_origin_block_id_map=None):
F
fengjiayi 已提交
6520 6521
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
6522

Y
yuyang18 已提交
6523 6524 6525
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
6526 6527
        Args:
            other(Program): Other program
6528
            pruned_origin_block_id_map(dict{int:int}): A dict which maps the block id in program
6529 6530
            self to the block id in program other. For example, {0:0, 1:1, 2:3} means block 0 in self is
            cloned from block 0 in other, etc. Default is None, which means default mapped,
6531
            {0:0, 1:1,..., n:n}.
F
fengjiayi 已提交
6532 6533 6534 6535 6536

        Returns:
            None
        """
        if not isinstance(other, Program):
6537 6538
            raise TypeError(
                "Function Program._copy_param_info_from() needs to pass in a source Program, but received %s"
6539 6540
                % type(other)
            )
F
fengjiayi 已提交
6541

6542 6543
        if not pruned_origin_block_id_map:
            pruned_origin_block_id_map = {
6544
                i: i for i in range(self.desc.num_blocks())
6545
            }
6546 6547 6548

        # NOTE(zhiqiu): All vars in cloned program exist in original program.
        # The reverse is not true, due to backward pruning.
6549 6550
        for i, block in enumerate(self.blocks):
            other_block = other.blocks[pruned_origin_block_id_map[i]]
6551
            for var in list(block.vars.values()):
6552 6553 6554 6555 6556 6557 6558
                other_var = other_block.var(var.name)
                if other_var.is_data:
                    var.is_data = True
                if other_var.desc.need_check_feed():
                    var.desc.set_need_check_feed(True)
                if other_var.stop_gradient:
                    var.stop_gradient = True
F
fengjiayi 已提交
6559

6560
    def list_vars(self):
Y
yuyang18 已提交
6561
        """
6562
        Get all Tensors from this Program. A iterable object is returned.
Y
yuyang18 已提交
6563

J
Jiabin Yang 已提交
6564
        Returns:
6565
            iterable Tensors: The Generator will yield every Tensor in this program.
6566 6567 6568 6569

        Examples:
            .. code-block:: python

6570 6571
                import paddle
                import paddle.static as static
6572

6573 6574 6575 6576 6577
                paddle.enable_static()

                prog = static.default_main_program()
                img = static.data(name='img', shape=[None, 1,28,28], dtype='float32')
                label = static.data(name='label', shape=[None,1], dtype='int64')
6578 6579
                for var in prog.list_vars():
                    print(var)
T
tangwei12 已提交
6580

6581 6582
                # var img : LOD_TENSOR.shape(-1, 1, 28, 28).dtype(float32).stop_gradient(True)
                # var label : LOD_TENSOR.shape(-1, 1).dtype(int64).stop_gradient(True)
Y
yuyang18 已提交
6583
        """
6584
        for each_block in self.blocks:
6585
            for each_var in list(each_block.vars.values()):
6586 6587
                yield each_var

6588 6589 6590 6591 6592 6593 6594 6595 6596 6597
    def all_parameters(self):
        """
        Get all :ref:`api_guide_parameter_en` from this Program. A list object is returned.

        Returns:
            list[ :ref:`api_guide_parameter_en` ]: The list contians all parameters in this program.

        Examples:
            .. code-block:: python

6598 6599 6600 6601
                import paddle
                import paddle.static as static

                paddle.enable_static()
6602

6603 6604
                program = static.default_main_program()
                data = static.data(name='x', shape=[None, 13], dtype='float32')
6605
                hidden = static.nn.fc(x=data, size=10)
6606 6607
                loss = paddle.mean(hidden)
                paddle.optimizer.SGD(learning_rate=0.01).minimize(loss)
6608 6609 6610 6611 6612 6613 6614

                for param in program.all_parameters():
                    print(param)

                # Here will print all parameters in current program, in this example,
                # the result is like:
                #
6615 6616
                # persist trainable param fc_0.w_0 : LOD_TENSOR.shape(13, 10).dtype(float32).stop_gradient(False)
                # persist trainable param fc_0.b_0 : LOD_TENSOR.shape(10,).dtype(float32).stop_gradient(False)
6617 6618 6619 6620 6621 6622 6623 6624 6625 6626
                #
                # Here print(param) will print out all the properties of a parameter,
                # including name, type and persistable, you can access to specific
                # property of a parameter, such as param.name, param.type
        """
        parameters = []
        for each_block in self.blocks:
            parameters.extend(each_block.all_parameters())
        return parameters

6627 6628 6629 6630 6631 6632 6633 6634 6635
    def state_dict(self, mode='all', scope=None):
        """
        Get parameters and persistable buffers of program as a dict. The key is the name of the parameter or the name of the buffer.
        The value is the tensor of this variable in the given scope.

        .. note::
            This function MUST called after run start_up_program

        Args:
6636 6637 6638
            mode(str, optional): Source of the obtained parameters and buffers.
                    'opt' :  The return value only contains the variable in the optimizer.
                    'param' : The return value only contains the variable in the network, not the variable in the optimizer.
6639 6640
                    'all' : The return value contains the variable in the network and optimizer.
                    Default: 'all'
6641
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None

        Retruns:
            dict: a dict contains the parameters and persistable buffers.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
        """
        # The 'framework' is a low-level module, and 'executor'
6669
        # can not be imported at the begainning of this file.
6670 6671
        # Therefore, the above two modules are dynamically imported.
        from .executor import global_scope
6672

6673 6674
        if scope is not None and not isinstance(scope, core._Scope):
            raise TypeError(
6675 6676 6677 6678
                "`scope` should be None or `paddle.static.Scope'` type, but received {}.".format(
                    type(scope)
                )
            )
6679 6680 6681 6682 6683

        if scope is None:
            scope = global_scope()

        if not isinstance(mode, str):
6684 6685
            raise TypeError(
                "Type of `mode` should be string, but received {}.".format(
6686 6687 6688
                    type(mode)
                )
            )
6689 6690 6691 6692 6693

        def is_parameter(var):
            return isinstance(var, Parameter)

        def is_persistable(var):
6694 6695 6696 6697 6698
            if (
                var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH
                or var.desc.type() == core.VarDesc.VarType.FETCH_LIST
                or var.desc.type() == core.VarDesc.VarType.READER
            ):
6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716
                return False
            return var.persistable

        def is_belong_to_optimizer(var):
            if not (isinstance(var, Parameter) or var.desc.need_check_feed()):
                return is_persistable(var)
            return False

        def condition(var):

            if mode == 'param':
                return is_parameter(var)
            elif mode == 'opt':
                return is_belong_to_optimizer(var)
            elif mode == 'all':
                return is_parameter(var) or is_belong_to_optimizer(var)
            else:
                raise ValueError(
6717 6718 6719 6720
                    "`mode` string should be 'param', 'opt' or 'all', but received {}.".format(
                        mode
                    )
                )
6721 6722 6723 6724 6725 6726 6727 6728

        var_list = filter(condition, self.list_vars())

        state_dict = dict()
        for var in var_list:
            var_temp = scope.find_var(var.name)
            if var_temp is None:
                raise ValueError(
6729 6730 6731 6732
                    "Can not find Variable '{}' in the scope. Make sure it is initialized".format(
                        var.name
                    )
                )
6733 6734 6735 6736 6737 6738
            state_dict[var.name] = var_temp.get_tensor()

        return state_dict

    def set_state_dict(self, state_dict, scope=None):
        """
6739
        Set parameters and persistable buffers in state_dict to program.
6740
        An exception will throw if shape or dtype of the parameters is not match.
6741

6742 6743 6744 6745
        .. note::
            This function MUST called after run start_up_program

        Args:
6746
            state_dict(dict): the dict store parameters and persistable buffers.
6747 6748
                The key is the name of the parameter or the name of the buffer.
                The value is the tensor of this variable in the given scope.
6749
            scope(Scope, optional) : If scope is None, state_dict will be set to global scope
6750 6751
                obtained through 'paddle.static.global_scope()'. Otherwise, value will be set to scope.
                Default: None
6752

6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781
        Returns:
            None

        Examples:
            .. code-block:: python

                import paddle
                import paddle.static as static

                paddle.enable_static()

                x = static.data(name="x", shape=[10, 10], dtype='float32')
                y = static.nn.fc(x, 10)
                z = static.nn.fc(y, 10)

                place = paddle.CPUPlace()
                exe = static.Executor(place)
                exe.run(static.default_startup_program())
                prog = static.default_main_program()

                path = "./temp/model.pdparams"
                paddle.save(prog.state_dict(), path)
                state_dict_load = paddle.load(path)
                prog.set_state_dict(state_dict_load)
        """

        if not isinstance(state_dict, dict):
            raise TypeError(
                "Type of `state_dict` should be dict, but received {}.".format(
6782 6783 6784
                    type(state_dict)
                )
            )
6785 6786

        vars_dict = {var.name: var for var in self.list_vars()}
6787 6788 6789
        condition = (
            True if 'StructuredToParameterName@@' in state_dict else False
        )
6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800
        for name, value in state_dict.items():
            if condition:
                if name == "StructuredToParameterName@@":
                    continue
                if name in state_dict['StructuredToParameterName@@']:
                    name = state_dict['StructuredToParameterName@@'][name]
            if name in vars_dict:
                try:
                    vars_dict[name].set_value(value, scope)
                except ValueError as err:
                    warnings.warn(
6801 6802
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
6803 6804
                except TypeError as err:
                    warnings.warn(
6805 6806
                        ("Skip loading for '{}'. ".format(name) + str(err))
                    )
6807
            else:
6808
                warnings.warn(
6809 6810 6811 6812 6813 6814
                    (
                        "Skip loading for '{0}'. Because '{0}' not in the program.".format(
                            name
                        )
                    )
                )
6815

Y
Yu Yang 已提交
6816

6817
class Parameter(Variable, metaclass=ParameterMetaClass):
6818
    """
6819
    Parameter is derived from Variable. A parameter is a persistable
6820
    Variable, and will be updated by optimizers after each iteration.
6821
    The training of a neural network is essentially the updating of
6822 6823
    its parameters.

6824
    Relative to a general Variable, a Parameter has several its own
6825 6826
    member variables:

6827 6828 6829 6830 6831 6832 6833 6834 6835 6836
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
6837
        need_clip (bool): Whether the parameter gradient need to be cliped
6838
            in optimizer. Default is True.
6839 6840
    """

6841 6842 6843 6844 6845 6846
    def __init__(
        self,
        block,
        shape,
        dtype,
        type=core.VarDesc.VarType.LOD_TENSOR,
6847
        **kwargs,
6848
    ):
6849 6850 6851 6852 6853
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

Y
Yu Yang 已提交
6854 6855
        for each in shape:
            if each < 0:
6856 6857
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
6858 6859 6860 6861 6862 6863 6864 6865 6866 6867
                    % list(shape)
                )

        Variable.__init__(
            self,
            block,
            persistable=True,
            shape=shape,
            dtype=dtype,
            type=type,
6868
            **kwargs,
6869
        )
Y
Yu Yang 已提交
6870 6871 6872 6873
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

6874 6875
        self.regularizer = kwargs.get('regularizer', None)

W
wanghaoshuang 已提交
6876
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
6877

6878 6879
        self.need_clip = kwargs.get('need_clip', True)

6880 6881
        self.is_distributed = False

6882 6883
        self.is_parameter = True

F
fengjiayi 已提交
6884
    def __str__(self):
6885
        return self._to_readable_code()
F
fengjiayi 已提交
6886

F
update  
fengjiayi 已提交
6887 6888 6889
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
6890

F
update  
fengjiayi 已提交
6891 6892 6893 6894 6895 6896 6897 6898
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

6899 6900 6901 6902 6903 6904 6905 6906 6907
        Examples:
            .. code-block:: python

                import paddle.fluid as fluid

                prog = fluid.default_main_program()
                rlt = fluid.layers.data("fake_data", shape=[1,1], dtype='float32')
                debug_str = prog.to_string(throw_on_error=True, with_details=False)
                print(debug_str)
F
update  
fengjiayi 已提交
6908
        """
6909
        assert isinstance(throw_on_error, bool) and isinstance(
6910 6911
            with_details, bool
        )
F
update  
fengjiayi 已提交
6912 6913
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
6914 6915 6916 6917 6918 6919 6920
            additional_attr = (
                "trainable",
                "optimize_attr",
                "regularizer",
                "do_model_average",
                "need_clip",
            )
F
update  
fengjiayi 已提交
6921
            for attr_name in additional_attr:
6922
                res_str += "%s: %s\n" % (attr_name, getattr(self, attr_name))
F
update  
fengjiayi 已提交
6923 6924
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
6925 6926 6927 6928
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
6929

6930 6931
class ParamBase(core.VarBase):
    """
6932 6933
    ParamBase is derived from Tensor( Which is the concept in Dygraph Mode).
    A ParamBase is a persistable Tensor, and will be updated by optimizers
6934
    after each iteration.
6935 6936 6937
    The training of a neural network is essentially the updating of
    its ParamBase.

6938
    Relative to a general Tensor, a ParamBase has several its own
6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950
    member variables:

    Args:
        trainable(bool): True if the ParamBase need to be updated after
            iterations.
        optimize_attr(map): ParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the ParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this ParamBase.
6951
        need_clip (bool): Whether the parameter gradient need to be cliped
6952
            in optimizer. Default is True.
6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
6966 6967
                    % list(shape)
                )
6968 6969 6970 6971 6972 6973 6974

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_param_base'))

6975
        super().__init__(
6976 6977 6978 6979 6980 6981
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            core.VarDesc.VarType.LOD_TENSOR,
            True,
        )
6982

6983 6984
        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable
6985 6986 6987 6988 6989 6990 6991

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

6992 6993
        self.need_clip = kwargs.get('need_clip', True)

6994
        self.is_distributed = kwargs.get('is_distributed', False)
6995
        # self.block = default_main_program().global_block()
6996

6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007
    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
7008 7009
                type(trainable),
            )
7010

7011
    def __str__(self):
7012
        """
7013
        Convert a ParamBase object to a readable string.
7014

7015
        Returns(str): A readable string.
7016 7017 7018 7019

        Examples:
            .. code-block:: python

7020
                import paddle
7021 7022 7023 7024 7025 7026 7027
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
7028
        """
7029
        return "Parameter containing:\n{tensor}".format(
7030
            tensor=super().__str__()
7031
        )
7032

7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043
    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)
T
tangwei12 已提交
7044

7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = ParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

7063 7064 7065 7066
    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = ParamBase(self.shape, self.dtype, **state)
        core.varbase_copy(self, new_param, device, blocking)
7067 7068 7069 7070 7071 7072
        return new_param

    __repr__ = __str__


if hasattr(core, "eager"):
7073
    _core_eager_eagertensor = core.eager.Tensor
7074 7075 7076 7077 7078 7079
else:
    _core_eager_eagertensor = object


class EagerParamBase(_core_eager_eagertensor):
    """
7080 7081
    EagerParamBase is derived from Tensor( Which is the concept in Eager-Dygraph Mode).
    A EagerParamBase is a persistable Tensor, and will be updated by optimizers
7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098
    after each iteration.
    The training of a neural network is essentially the updating of
    its EagerParamBase.

    Relative to a general Tensor, a EagerParamBase has several its own
    member variables:

    Args:
        trainable(bool): True if the EagerParamBase need to be updated after
            iterations.
        optimize_attr(map): EagerParamBase attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the EagerParamBase. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this EagerParamBase.
7099
        need_clip (bool): Whether the parameter gradient need to be cliped
7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113
            in optimizer. Default is True.
    """

    @dygraph_only
    def __init__(self, shape, dtype, **kwargs):
        if shape is None:
            raise ValueError("The shape of Parameter should not be None")
        if dtype is None:
            raise ValueError("The dtype of Parameter should not be None")

        for each in shape:
            if each < 0:
                raise ValueError(
                    "Each dimension of shape for Parameter must be greater than 0, but received %s"
7114 7115
                    % list(shape)
                )
7116 7117 7118 7119 7120 7121 7122

        if dtype is not None:
            if not isinstance(dtype, core.VarDesc.VarType):
                dtype = convert_np_dtype_to_dtype_(dtype)

        name = kwargs.get('name', unique_name.generate('_eager_param_base'))

7123 7124 7125
        if isinstance(shape, core.eager.Tensor):
            shape = shape.numpy()

7126
        super().__init__(
7127 7128 7129 7130 7131 7132
            dtype if dtype else core.VarDesc.VarType.FP32,
            list(shape) if shape else [],
            name,
            core.VarDesc.VarType.LOD_TENSOR,
            True,
        )
7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146
        self.retain_grads()

        trainable = kwargs.get('trainable', True)
        self.stop_gradient = not trainable

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

        self.regularizer = kwargs.get('regularizer', None)

        self.do_model_average = kwargs.get('do_model_average', None)

        self.need_clip = kwargs.get('need_clip', True)

        self.is_distributed = kwargs.get('is_distributed', False)
7147 7148 7149
        # hook functions for lazy initialization
        self._init_func = None
        self._init_op_creator = None
7150 7151

    def set_init_func(self, obj):
7152
        self._init_func = obj
7153 7154 7155

    @dygraph_only
    def initialize(self):
7156 7157 7158
        assert (
            self._init_func is not None
        ), "Required self._init_func is not None, but received None."
7159
        self._init_func()
7160
        # clear function handle to release resource
7161
        self._init_func = None
7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173

    @property
    def trainable(self):
        return not self.stop_gradient

    @trainable.setter
    def trainable(self, trainable):
        if isinstance(trainable, bool):
            self.stop_gradient = not trainable
        else:
            raise ValueError(
                "The type of trainable MUST be bool, but the type is ",
7174 7175
                type(trainable),
            )
7176

7177 7178 7179 7180
    def _create_init_op(self, block):
        """
        Call init_op_creator function to create initializer operation in block.
        """
7181 7182 7183
        assert (
            self._init_op_creator is not None
        ), "Required self._init_op_creator is not None, but received None."
7184 7185
        self._init_op_creator(block)

7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204
    def __str__(self):
        """
        Convert a EagerParamBase object to a readable string.

        Returns(str): A readable string.

        Examples:
            .. code-block:: python

                import paddle
                linear = paddle.nn.Linear(3, 3)
                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[3, 3], dtype=float32, place=CUDAPlace(0), stop_gradient=False,
                #        [[ 0.48948765,  0.05829060, -0.25524026],
                #         [-0.70368278,  0.52986908, -0.68742192],
                #         [-0.54217887,  0.48439729,  0.34082305]])
        """
        return "Parameter containing:\n{tensor}".format(
7205
            tensor=super().__str__()
7206
        )
7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241

    def __deepcopy__(self, memo):
        """
        Deep copy parameter, it will always performs Tensor copy.

        Examples:
            .. code-block:: python

                import paddle
                import copy
                linear = paddle.nn.Linear(1, 3)
                linear_copy = copy.deepcopy(linear)

                print(linear.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

                print(linear_copy.weight)
                # Parameter containing:
                # Tensor(shape=[1, 3], dtype=float32, place=CPUPlace, stop_gradient=False,
                #     [[-0.30929261, -0.90929240, -1.07851017]])

        """
        state = copy.deepcopy(self.__dict__, memo)
        state["name"] = self.name + unique_name.generate("_deepcopy")
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        memo[id(self)] = new_param
        new_param.copy_(self, True)
        return new_param

    def _copy_to(self, device, blocking):
        state = copy.deepcopy(self.__dict__)
        new_param = EagerParamBase(self.shape, self.dtype, **state)
        core.eager.tensor_copy(self, new_param, device, blocking)
7242 7243
        return new_param

7244 7245 7246
    __repr__ = __str__


Y
Yu Yang 已提交
7247
# program is a global instance.
Y
Yu Yang 已提交
7248 7249
_main_program_ = Program()
_startup_program_ = Program()
7250
_startup_program_._is_start_up_program_ = True
7251

7252

7253
def default_startup_program():
Y
Yu Yang 已提交
7254
    """
Y
yuyang18 已提交
7255 7256
    Get default/global startup program.

7257
    The :code:`paddle.nn` function will append the initialization operators into startup program.
7258
    The :code:`startup_program` will initialize the parameters by the OPs.
T
tangwei12 已提交
7259

7260 7261
    This method will return the default or the current startup program. Users can use
    :ref:`api_paddle_fluid_framework_program_guard`  to switch :ref:`api_paddle_fluid_framework_Program` .
Y
yuyang18 已提交
7262

7263 7264
    Returns:
        Program: current default startup program.
7265

7266
    Returns type:
7267 7268 7269 7270

    Examples:
        .. code-block:: python

7271
            import paddle
7272

7273
            paddle.enable_static()
7274 7275 7276 7277
            x = paddle.static.data(name="x", shape=[-1, 784], dtype='float32')
            out = paddle.static.nn.fc(name="fc", x=x, size=10, activation="relu")
            print("main program is: {}".format(paddle.static.default_main_program()))
            print("start up program is: {}".format(paddle.static.default_startup_program()))
Y
Yu Yang 已提交
7278
    """
Y
Yu Yang 已提交
7279
    return _startup_program_
7280

7281

7282
def default_main_program():
Y
Yu Yang 已提交
7283
    """
7284
    This API can be used to get ``default main program`` which store the
7285
    descriptions of Ops and tensors.
T
tangwei12 已提交
7286

7287 7288
    For example ``z = paddle.add(x, y)`` will create a new ``add``
    Op and a new ``z`` tensor, and they will be recorded in ``default main program`` .
Y
yuyang18 已提交
7289

7290
    The ``default main program`` is the default value for ``Program`` parameter in
7291
    a lot of APIs. For example, the :code:`Executor.run()` will execute the
Y
yuyang18 已提交
7292
    :code:`default_main_program` when the program is not specified.
7293

7294
    If you want to switch the ``default main program``, you can use :ref:`api_paddle_fluid_framework_program_guard` .
T
tangwei12 已提交
7295

Y
Yu Yang 已提交
7296
    Returns:
7297
        Program: A ``Program`` which holding the descriptions of OPs and tensors in the network.
7298 7299 7300 7301

    Examples:
        ..  code-block:: python

7302
            import paddle
7303

7304
            paddle.enable_static()
7305
            # Sample Network:
7306 7307 7308
            x = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            y = paddle.static.data(name='x', shape=[100, 100], dtype='float32')
            out = paddle.add(x, y)
7309

7310 7311 7312
            #print the number of blocks in the program, 1 in this case
            print(paddle.static.default_main_program().num_blocks) # 1
            #print the default_main_program
7313
            print(paddle.static.default_main_program())
Y
Yu Yang 已提交
7314
    """
Y
Yu Yang 已提交
7315
    return _main_program_
Y
Yu Yang 已提交
7316 7317 7318 7319 7320


def switch_main_program(program):
    """
    Switch the main program to a new program.
7321

Y
Yu Yang 已提交
7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
7336
    Switch the startup program to a new program
Y
Yu Yang 已提交
7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


S
rename  
sneaxiy 已提交
7349
@signature_safe_contextmanager
Y
Yu Yang 已提交
7350 7351
def program_guard(main_program, startup_program=None):
    """
7352 7353
    :api_attr: Static Graph

7354 7355 7356
    Change the global main program and startup program with ``with`` statement.
    Layer functions in the Python ``with`` block will append operators and
    Tensors to the new main programs.
7357

G
guofei 已提交
7358
    Args:
7359
        main_program(Program): New main program inside ``with`` statement.
7360 7361
        startup_program(Program, optional): New startup program inside ``with``
            statement. :code:`None` means not changing startup program,
G
guofei 已提交
7362 7363 7364
            default_startup_program is still used.
            Default: None.

Y
Yu Yang 已提交
7365
    Examples:
7366
       .. code-block:: python
T
tangwei12 已提交
7367

7368
          import paddle
Y
yuyang18 已提交
7369

7370 7371 7372 7373 7374
          paddle.enable_static()
          main_program = paddle.static.Program()
          startup_program = paddle.static.Program()
          with paddle.static.program_guard(main_program, startup_program):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
7375
              hidden = paddle.static.nn.fc(x=data, size=10, activation='relu')
Y
yuyang18 已提交
7376 7377 7378

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
7379

Y
Yu Yang 已提交
7380
    Examples:
7381
       .. code-block:: python
Y
yuyang18 已提交
7382

7383
          import paddle
7384

7385 7386 7387 7388 7389
          paddle.enable_static()
          main_program = paddle.static.Program()
          # does not care about startup program. Just pass a temporary value.
          with paddle.static.program_guard(main_program, paddle.static.Program()):
              data = paddle.static.data(name='image', shape=[None, 784, 784], dtype='float32')
T
tangwei12 已提交
7390

Y
Yu Yang 已提交
7391
    """
7392
    from .data_feeder import check_type
7393 7394 7395 7396

    check_type(
        main_program, 'main_program', Program, 'paddle.static.program_guard'
    )
Y
Yu Yang 已提交
7397 7398
    main_program = switch_main_program(main_program)
    if startup_program is not None:
7399 7400 7401 7402 7403 7404
        check_type(
            startup_program,
            'startup_program',
            Program,
            'paddle.static.program_guard',
        )
7405 7406
        # Tag the program __is_start_up as True
        startup_program._is_start_up_program_ = True
Y
Yu Yang 已提交
7407
        startup_program = switch_startup_program(startup_program)
7408 7409 7410 7411 7412 7413
    try:
        yield
    finally:
        switch_main_program(main_program)
        if startup_program is not None:
            switch_startup_program(startup_program)
X
xuwei06 已提交
7414 7415


W
Wu Yi 已提交
7416
def _get_var(name, program=None):
X
xuwei06 已提交
7417
    """
Y
yuyang18 已提交
7418
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
7419

X
xuwei06 已提交
7420 7421 7422
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
7423
        If None, default_global_program() will be used.
X
xuwei06 已提交
7424 7425 7426 7427 7428 7429 7430

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
7431
    assert isinstance(program, Program)
X
xuwei06 已提交
7432 7433

    return program.global_block().var(name)
7434 7435


S
rename  
sneaxiy 已提交
7436
@signature_safe_contextmanager
L
lujun 已提交
7437 7438
def _dygraph_guard(tracer):
    global _dygraph_tracer_
7439
    tmp_tracer = _dygraph_tracer_
L
lujun 已提交
7440
    _dygraph_tracer_ = tracer
7441
    core._switch_tracer(tracer)
M
minqiyang 已提交
7442

7443 7444 7445
    try:
        yield
    finally:
7446 7447
        core._switch_tracer(tmp_tracer)
        _dygraph_tracer_ = tmp_tracer
P
Paddle CI 已提交
7448 7449


S
rename  
sneaxiy 已提交
7450
@signature_safe_contextmanager
L
lujun 已提交
7451
def _dygraph_place_guard(place):
7452 7453 7454
    global _global_expected_place_
    tmp_place = _global_expected_place_
    _global_expected_place_ = place
7455 7456
    _set_dygraph_tracer_expected_place(place)

7457 7458 7459
    try:
        yield
    finally:
7460
        _global_expected_place_ = tmp_place
J
Jiabin Yang 已提交
7461
        _set_dygraph_tracer_expected_place(_global_expected_place_)
7462 7463


7464 7465 7466 7467 7468 7469 7470 7471 7472 7473
def switch_device(device):
    global _current_device
    pre_device = _current_device
    _current_device = device
    return pre_device


@signature_safe_contextmanager
def device_guard(device=None):
    """
7474

7475 7476
    Note:
        The API only supports static mode.
7477 7478 7479 7480

    A context manager that specifies the device on which the OP will be placed.

    Args:
7481
        device(str|None): Specify the device to use in the context. It should be ``cpu``,
7482
            ``gpu`` or ``gpu:x``, where ``x`` is the index of the GPUs.
7483 7484 7485 7486 7487 7488 7489
            When it is set to 'cpu' or 'gpu', all OPs created in the context will be
            placed on CPUPlace or CUDAPlace. When 'gpu' is set and the program runs on
            single-card, the device index will be the same as the device on which the
            executor runs. Default: None, OPs in this context will be automatically
            assigned devices.

    Examples:
7490

7491
        .. code-block:: python
7492

7493
            # required: gpu
Z
Zhang Ting 已提交
7494
            import paddle
7495

Z
Zhang Ting 已提交
7496 7497 7498
            paddle.enable_static()
            support_gpu = paddle.is_compiled_with_cuda()
            place = paddle.CPUPlace()
7499
            if support_gpu:
Z
Zhang Ting 已提交
7500
                place = paddle.CUDAPlace(0)
7501 7502

            # if GPU is supported, the three OPs below will be automatically assigned to CUDAPlace(0)
Z
Zhang Ting 已提交
7503 7504 7505
            data1 = paddle.full(shape=[1, 3, 8, 8], fill_value=0.5, dtype='float32')
            data2 = paddle.full(shape=[1, 3, 64], fill_value=0.5, dtype='float32')
            shape = paddle.shape(data2)
7506

Z
Zhang Ting 已提交
7507
            with paddle.static.device_guard("cpu"):
7508
                # Ops created here will be placed on CPUPlace
Z
Zhang Ting 已提交
7509 7510
                shape = paddle.slice(shape, axes=[0], starts=[0], ends=[4])
            with paddle.static.device_guard('gpu'):
7511
                # if GPU is supported, OPs created here will be placed on CUDAPlace(0), otherwise on CPUPlace
Z
Zhang Ting 已提交
7512
                out = paddle.reshape(data1, shape=shape)
7513

Z
Zhang Ting 已提交
7514 7515
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
7516 7517 7518
            result = exe.run(fetch_list=[out])
    """

7519 7520 7521 7522 7523
    index = None
    if device and ':' in device:
        device, index = device.split(':')
        if device == 'cpu':
            raise ValueError("Should not set device id for cpu.")
7524
    if device not in ['cpu', 'gpu', 'npu', 'xpu', 'mlu', '', None]:
7525
        raise ValueError(
7526
            "The Attr(device) should be 'cpu' 'npu' 'xpu' 'mlu' or 'gpu', and it can also be empty string or None "
7527 7528
            "when there is no need to specify device. But received %s" % device
        )
7529 7530
    if index:
        device = ":".join([device, index])
7531
    pre_device = switch_device(device)
7532 7533 7534 7535
    try:
        yield
    finally:
        switch_device(pre_device)
G
guofei 已提交
7536 7537


7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557
def _switch_cuda_graph_mode(cuda_graph_attr):
    global _current_cuda_graph_mode
    pre_mode = _current_cuda_graph_mode
    _current_cuda_graph_mode = cuda_graph_attr
    return pre_mode


@signature_safe_contextmanager
def _cuda_graph_guard(cuda_graph_attr=None):
    """

    Note:
        The API only supports static mode.

    A context manager that specifies the cuda_graph_mode which indicating the cuda graph capture under static mode.

    Args:
        cuda_graph_attr(str|None): The cuda graph attr with the format of:
                                   cuda_graph_capture_mode;memory_pool_id;cuda_graph_id
    """
7558 7559
    assert (
        not _non_static_mode()
7560
    ), "cuda_graph_guard only works under static mode"
7561 7562
    assert (
        core.is_compiled_with_cuda()
7563 7564 7565 7566 7567 7568 7569 7570
    ), "cuda_graph_guard context can be only used when Paddle is compiled with cuda"
    pre_mode = _switch_cuda_graph_mode(cuda_graph_attr)
    try:
        yield
    finally:
        _switch_cuda_graph_mode(pre_mode)


G
guofei 已提交
7571 7572 7573
def set_flags(flags):
    """
    This function sets the GFlags value in Paddle.
7574
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7575 7576 7577 7578 7579 7580 7581

    Args:
        flags (dict): A dict contains flags and its value.

    Examples:
            .. code-block:: python

7582 7583
                import paddle
                paddle.set_flags({'FLAGS_eager_delete_tensor_gb': 1.0})
G
guofei 已提交
7584 7585 7586 7587
    """
    if not isinstance(flags, dict):
        raise TypeError('flags in set_flags should be a dict')
    for key, value in flags.items():
7588 7589
        if _global_flags().is_public(key):
            _global_flags()[key] = value
G
guofei 已提交
7590 7591
        else:
            raise ValueError(
7592 7593
                "Flag %s cannot set its value through this function." % (key)
            )
G
guofei 已提交
7594 7595 7596 7597 7598


def get_flags(flags):
    """
    This function gets the GFlags value in Paddle.
7599
    For FLAGS please refer to :ref:`en_guides_flags_flags`
G
guofei 已提交
7600 7601 7602 7603 7604 7605 7606 7607 7608 7609

    Args:
        flags(list|tuple|str): A list/tuple of string or a string which is the flag's name.

    Returns:
        flag's value in Paddle.

    Examples:
        .. code-block:: python

7610
            import paddle
G
guofei 已提交
7611 7612

            flags = ['FLAGS_eager_delete_tensor_gb', 'FLAGS_check_nan_inf']
7613
            res = paddle.get_flags(flags)
G
guofei 已提交
7614 7615 7616 7617 7618 7619
            print(res)
            # {'FLAGS_eager_delete_tensor_gb': 0.0, 'FLAGS_check_nan_inf': False}
    """
    flags_value = {}
    if isinstance(flags, (list, tuple)):
        for key in flags:
7620
            if _global_flags().is_public(key):
7621
                value = _global_flags()[key]
G
guofei 已提交
7622 7623 7624 7625
                temp = {key: value}
                flags_value.update(temp)
            else:
                raise ValueError(
7626 7627 7628
                    'Flag %s cannot get its value through this function.'
                    % (key)
                )
G
guofei 已提交
7629
    elif isinstance(flags, str):
7630
        if _global_flags().is_public(flags):
7631
            value = _global_flags()[flags]
G
guofei 已提交
7632 7633 7634 7635
            temp = {flags: value}
            flags_value.update(temp)
        else:
            raise ValueError(
7636 7637
                'Flag %s cannot get its value through this function.' % (flags)
            )
G
guofei 已提交
7638 7639 7640
    else:
        raise TypeError('Flags in get_flags should be a list, tuple or string.')
    return flags_value
7641 7642 7643 7644 7645 7646


def _get_paddle_place(place):
    "convert the string to paddle Place"
    if place is None:
        return place
7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660
    if isinstance(
        place,
        (
            core.Place,
            core.XPUPlace,
            core.CPUPlace,
            core.CUDAPinnedPlace,
            core.CUDAPlace,
            core.NPUPlace,
            core.IPUPlace,
            core.MLUPlace,
            core.CustomPlace,
        ),
    ):
7661 7662 7663 7664
        return place

    if not isinstance(place, str):
        raise ValueError(
7665 7666
            "place only support string which is 'Place' and so on."
        )
7667 7668

    place = place.lower()
7669
    if place == "cpu":
7670
        return core.CPUPlace()
7671

7672
    if place == "device":
7673 7674
        return core.Place()

7675
    # GPU
7676 7677 7678 7679
    avaliable_gpu_place = re.match(r'gpu:\d+', place)
    if place == "gpu_pinned" or place == "gpu" or avaliable_gpu_place:
        if not core.is_compiled_with_cuda():
            raise ValueError(
7680 7681 7682
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with CUDA".format(avaliable_gpu_place)
            )
7683 7684 7685 7686 7687 7688 7689 7690 7691
        if place == "gpu_pinned":
            return core.CUDAPinnedPlace()
        elif place == "gpu":
            return core.CUDAPlace(0)
        else:
            place_info_list = place.split(':', 1)
            device_id = place_info_list[1]
            device_id = int(device_id)
            return core.CUDAPlace(device_id)
7692 7693

    # XPU
7694 7695 7696 7697
    avaliable_xpu_place = re.match(r'xpu:\d+', place)
    if avaliable_xpu_place:
        if not core.is_compiled_with_xpu():
            raise ValueError(
7698 7699 7700
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with XPU".format(avaliable_xpu_place)
            )
7701 7702 7703 7704
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.XPUPlace(device_id)
7705 7706 7707 7708 7709 7710

    # NPU
    avaliable_npu_place = re.match(r'npu:\d+', place)
    if avaliable_npu_place:
        if not core.is_compiled_with_npu():
            raise ValueError(
7711 7712 7713
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with NPU".format(avaliable_npu_place)
            )
7714 7715 7716 7717 7718
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.NPUPlace(device_id)

J
jianghaicheng 已提交
7719 7720 7721 7722 7723
    # IPU
    avaliable_ipu_place = re.match(r'ipu:\d+', place)
    if avaliable_ipu_place:
        if not core.is_compiled_with_ipu():
            raise ValueError(
7724 7725 7726
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with IPU".format(avaliable_ipu_place)
            )
J
jianghaicheng 已提交
7727 7728 7729 7730 7731
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.IPUPlace(device_id)

7732 7733 7734 7735 7736
    # MLU
    avaliable_mlu_place = re.match(r'mlu:\d+', place)
    if avaliable_mlu_place:
        if not core.is_compiled_with_mlu():
            raise ValueError(
7737 7738 7739
                "The device should not be {}, since PaddlePaddle is "
                "not compiled with MLU".format(avaliable_mlu_place)
            )
7740 7741 7742 7743 7744
        place_info_list = place.split(':', 1)
        device_id = place_info_list[1]
        device_id = int(device_id)
        return core.MLUPlace(device_id)

7745
    raise ValueError(
7746 7747 7748 7749
        "Paddle supports CPUPlace, CUDAPlace,CUDAPinnedPlace, XPUPlace, IPUPlace, MLUPlace and NPUPlace, but received {}.".format(
            place
        )
    )
7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762


def _get_paddle_place_list(places):

    if not isinstance(places, (list, tuple)):
        raise TypeError("places must to be List or Tuple")

    ret = []
    for p in places:
        p = _get_paddle_place(p)
        ret.append(p)

    return ret