op_teller.cc 105.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/tensorrt/op_teller.h"
16

17
#include <bitset>
18

19
#include "paddle/fluid/framework/block_desc.h"
20
#include "paddle/fluid/framework/data_layout.h"
W
weishengying 已提交
21 22 23 24
#include "paddle/fluid/framework/phi_utils.h"
#include "paddle/fluid/inference/tensorrt/dynamic_shape_infermeta_factory.h"
#include "paddle/phi/core/compat/op_utils.h"
#include "paddle/phi/core/kernel_factory.h"
25

W
wanghuancoder 已提交
26 27 28 29 30 31
namespace paddle {
namespace framework {
class OpDesc;
}  // namespace framework
}  // namespace paddle

32 33 34 35 36 37
namespace paddle {
namespace inference {
namespace tensorrt {

// Just tell by the op_types.
struct SimpleOpTypeSetTeller : public Teller {
38
  SimpleOpTypeSetTeller() {
39
#if IS_TRT_VERSION_GE(7130)
Z
Zhang Jun 已提交
40
    // use TensorRT plugin
41
    teller_set.insert("group_norm");
Z
Zhang Jun 已提交
42 43
    teller_set.insert("multiclass_nms3");
    teller_set.insert("multiclass_nms");
44 45
    int8_teller_set.insert("multiclass_nms3");
    int8_teller_set.insert("multiclass_nms");
46
#endif
W
wenbin 已提交
47 48
#if IS_TRT_VERSION_GE(7000)
    teller_set.insert("tile");
49
    teller_set.insert("flatten_contiguous_range");
50
    int8_teller_set.insert("flatten_contiguous_range");
Z
zhoutianzi666 已提交
51 52 53 54
    teller_set.insert("rnn");
    int8_teller_set.insert("rnn");
    teller_set.insert("fill_constant_batch_size_like");
    int8_teller_set.insert("fill_constant_batch_size_like");
W
wenbin 已提交
55
#endif
W
wenbin 已提交
56
#if CUDA_VERSION >= 10020
W
Wangzheee 已提交
57 58
    teller_set.insert("reshape");
    teller_set.insert("reshape2");
59 60
    int8_teller_set.insert("reshape");
    int8_teller_set.insert("reshape2");
61 62 63 64 65 66
#endif
#if IS_TRT_VERSION_GE(8000)
    teller_set.insert("sparse_fc");
    int8_teller_set.insert("sparse_fc");
    teller_set.insert("sparse_multihead_matmul");
    int8_teller_set.insert("sparse_multihead_matmul");
67
#endif
68 69 70 71 72
#if IS_TRT_VERSION_GE(8522)
    teller_set.insert("flash_multihead_matmul");
    int8_teller_set.insert("flash_multihead_matmul");
    teller_set.insert("cross_multihead_matmul");
    int8_teller_set.insert("cross_multihead_matmul");
73 74
    teller_set.insert("qk_multihead_matmul");
    int8_teller_set.insert("qk_multihead_matmul");
75
#endif
76 77 78
#if IS_TRT_VERSION_GE(8200)
    teller_set.insert("round");
    int8_teller_set.insert("round");
X
xjmxyt 已提交
79
    teller_set.insert("set_value");
X
xjmxyt 已提交
80 81
    teller_set.insert("index_select");
    int8_teller_set.insert("index_select");
82 83
    int8_teller_set.insert("einsum");
    teller_set.insert("einsum");
84 85
#endif
  }
86

W
weishengying 已提交
87 88 89 90
  bool operator()(const framework::OpDesc& desc,
                  bool use_no_calib_int8 = false,
                  bool with_dynamic_shape = false) override {
    const std::string op_type = desc.Type();
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133

    std::unordered_set<std::string> control_set = {"conditional_block",
                                                   "while"};
    std::unordered_set<std::string> feed_fetch_set = {"feed", "fetch"};
    if (control_set.find(op_type) != control_set.end()) {
      return false;
    }

    if (feed_fetch_set.find(op_type) != feed_fetch_set.end()) {
      return false;
    }

    // Dont.t allow fp64!
    {
      auto inputs = desc.Inputs();
      for (auto iter : inputs) {
        for (auto var_name : iter.second) {
          auto* block = desc.Block();
          if (block) {
            auto* var_desc = block->FindVar(var_name);
            auto dtype = var_desc->GetDataType();
            if (dtype == framework::proto::VarType::FP64) {
              return false;
            }
          }
        }
      }

      auto outputs = desc.Outputs();
      for (auto iter : outputs) {
        for (auto var_name : iter.second) {
          auto* block = desc.Block();
          if (block) {
            auto* var_desc = block->FindVar(var_name);
            auto dtype = var_desc->GetDataType();
            if (dtype == framework::proto::VarType::FP64) {
              return false;
            }
          }
        }
      }
    }

W
weishengying 已提交
134 135 136 137 138 139
    // do not support the op which is labeled the `skip_quant`
    if ((desc.HasAttr("namescope") &&
         PADDLE_GET_CONST(std::string, desc.GetAttr("op_namescope")) ==
             "/skip_quant_2/") ||
        desc.HasAttr("skip_quant"))
      return false;
140
    std::unordered_set<std::string> act_op_list = {
141 142 143 144 145 146 147 148 149 150 151
        "relu",       "relu6",       "sigmoid",
        "elu",        "selu",        "softsign",
        "softplus",   "stanh",       "thresholded_relu",
        "exp",        "log",         "sqrt",
        "abs",        "sin",         "cos",
        "tan",        "tanh",        "sinh",
        "cosh",       "asin",        "acos",
        "atan",       "asinh",       "acosh",
        "atanh",      "ceil",        "celu",
        "erf",        "floor",       "round",
        "sign",       "silu",        "logical_not",
152
        "reciprocal", "tanh_shrink", "logsigmoid",
153 154
        "rsqrt",      "swish",       "hard_sigmoid",
        "hard_swish", "leaky_relu"};
155
    std::unordered_set<std::string> unary_list = {
156 157 158 159 160 161
        "exp",   "log",         "sqrt",       "abs",         "sin",
        "cos",   "tan",         "tanh",       "sinh",        "cosh",
        "asin",  "acos",        "atan",       "asinh",       "acosh",
        "atanh", "ceil",        "celu",       "floor",       "round",
        "sign",  "logical_not", "reciprocal", "tanh_shrink", "logsigmoid",
        "erf",   "bitwise_not", "equal",      "not_equal",   "rsqrt"};
162 163 164 165 166 167 168 169 170 171 172 173

    // Static shape does not support 0 or 1 dim's input.
    if (!with_dynamic_shape) {
      auto inputs = desc.Inputs();
      for (auto iter : inputs) {
        for (auto var_name : iter.second) {
          auto* block = desc.Block();
          if (block) {
            auto* var_desc = block->FindVar(var_name);
            // Can't get feed op's TensorDesc
            if (op_type != "feed" && var_desc && !var_desc->Persistable()) {
              const auto shape = var_desc->GetShape();
174
              if (shape.size() == 1 || shape.empty()) return false;
175 176 177 178 179 180
            }
          }
        }
      }
    }

181
    if (act_op_list.find(op_type) != act_op_list.end()) {
J
JingZhuangzhuang 已提交
182
      auto* block = desc.Block();
183 184 185 186 187 188
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
189 190 191 192 193
#if !IS_TRT_VERSION_GE(7000)
      if (op_type == "erf") {
        VLOG(3) << op_type << " op does not support tensorrt.";
        return false;
      }
194 195
#endif
#if !IS_TRT_VERSION_GE(8600)
196 197 198
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
199
      if (x_shape.empty() && unary_list.find(op_type) != unary_list.end()) {
200 201 202 203
        VLOG(3) << op_type
                << " op does not support 0 dim input when TensorRT < 8.6.";
        return false;
      }
204
#endif
J
JingZhuangzhuang 已提交
205
    }
206

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
    if (op_type == "dropout") {
      /*
       * Some OpDescs Attribute support both constant value and dynamic
       * runtime value (which is a Variable(s) type). But TensorRT maybe
       * only support constant value Attribute, so we shall distinguish
       * this case in time and return False in OpTeller.Tell().
       * If Attribute is Variable(s), HasAttr() will return False
       */
      if (!desc.HasAttr("dropout_prob", /*with_attr_var=*/false)) {
        VLOG(3)
            << "Skip to convert into TRT while found Attribute('dropout_prob') "
               "is Variable type in dropout.";
        return false;
      }
    }

223
    if (op_type == "pool2d") {
224 225 226 227 228 229 230
      // If Attribute is Variable(s), HasAttr() will return False
      if (!desc.HasAttr("ksize", /*with_attr_var=*/false)) {
        VLOG(3) << "Skip to convert into TRT while found Attribute('ksize') is "
                   "Variable type in pool2d.";
        return false;
      }

231
      std::vector<int> paddings =
R
Ruibiao Chen 已提交
232
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
233 234
      if (paddings.size() > 2) {
        return false;
235
      }
236 237 238 239 240 241 242 243 244 245
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "TRT Pool2d expect 1 input, but got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "TRT Pool2d has only 1 output, but got "
                << desc.Output("Out").size();
        return false;
      }
W
wenbin 已提交
246 247
      if (desc.HasAttr("data_format")) {
        std::string data_format =
R
Ruibiao Chen 已提交
248
            PADDLE_GET_CONST(std::string, desc.GetAttr("data_format"));
W
wenbin 已提交
249 250 251 252
        if (data_format == "NHWC" || data_format == "NDHWC") {
          return false;
        }
      }
253 254 255 256
      if (!desc.HasAttr("pooling_type")) {
        return false;
      } else {
        std::string pool_type =
R
Ruibiao Chen 已提交
257
            PADDLE_GET_CONST(std::string, desc.GetAttr("pooling_type"));
258 259 260 261 262
        if (pool_type != "max" && pool_type != "avg") {
          VLOG(3) << "Wrong pool op type, the trt do not support the "
                  << pool_type << " pool type.";
          return false;
        }
263 264
        if (pool_type == "avg") {
          if (desc.HasAttr("global_pooling")) {
R
Ruibiao Chen 已提交
265
            if (!PADDLE_GET_CONST(bool, desc.GetAttr("global_pooling"))) {
266
              if (desc.HasAttr("exclusive")) {
R
Ruibiao Chen 已提交
267
                if (PADDLE_GET_CONST(bool, desc.GetAttr("exclusive"))) {
268
                  std::vector<int> ksize =
R
Ruibiao Chen 已提交
269
                      PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("ksize"));
270 271 272 273 274 275 276 277 278 279 280 281 282
                  for (size_t i = 0; i < ksize.size(); i++) {
                    if (ksize[i] <= paddings[i]) {
                      VLOG(3) << "the padding size should be less than the "
                                 "filter size "
                                 "for exclusive-counting pooling.";
                      return false;
                    }
                  }
                }
              }
            }
          }
        }
283 284 285 286
      }
    }

    if (op_type == "conv2d" || op_type == "conv2d_transpose" ||
287 288
        op_type == "conv2d_fusion" || op_type == "depthwise_conv2d" ||
        op_type == "depthwise_conv2d_transpose") {
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
      if (desc.Input("Input").size() != 1) {
        VLOG(3) << "TRT Conv2d expect 1 input, but got "
                << desc.Input("Input").size() << " input.";
        return false;
      }

      if (desc.Input("Filter").size() != 1) {
        VLOG(3) << "TRT Conv2d expect 1 filter, but got "
                << desc.Input("Filter").size() << " filter.";
        return false;
      }

      if (desc.HasAttr("enable_int8")) {
        if (op_type == "conv2d" || op_type == "conv2d_fusion") {
          if (!desc.HasAttr("Input_scale")) {
            VLOG(3) << "Input scale not found. TRT int8"
                       " requires conv/deconv to have "
                       "input quantization scales.";
            return false;
          }
        }
      }

312 313
      if (op_type == "conv2d_transpose" ||
          op_type == "depthwise_conv2d_transpose") {
314 315 316 317
        if (!desc.HasAttr("dilations")) {
          return false;
        } else {
          const std::vector<int> dilations =
R
Ruibiao Chen 已提交
318
              PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("dilations"));
319 320 321 322 323 324 325 326 327 328 329 330 331 332
          if (dilations[0] != 1 || dilations[1] != 1) {
            VLOG(3) << "In conv2d_transpose, Dilations must be (1, 1) for "
                       "tensorRT, but given ("
                    << dilations[0] << ", " << dilations[1] << ")";
            return false;
          }
        }
      }

      if (desc.Output("Output").size() != 1) {
        VLOG(3) << "TRT Conv2d expect 1 output, but got "
                << desc.Output("Output").size() << " output.";
        return false;
      }
333

W
wenbin 已提交
334
// strides > 1 and 'SAME' is only supported by trt7.0 above
335
#if !IS_TRT_VERSION_GE(7000)
W
wenbin 已提交
336 337 338 339
      if (op_type == "conv2d" || op_type == "conv2d_fusion" ||
          op_type == "depthwise_conv2d") {
        if (desc.HasAttr("padding_algorithm") && with_dynamic_shape) {
          auto padding_algorithm =
R
Ruibiao Chen 已提交
340
              PADDLE_GET_CONST(std::string, desc.GetAttr("padding_algorithm"));
W
wenbin 已提交
341 342
          if (padding_algorithm == "SAME" && desc.HasAttr("strides")) {
            const std::vector<int> strides =
R
Ruibiao Chen 已提交
343
                PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("strides"));
W
wenbin 已提交
344 345 346 347 348 349
            // there is no issue if strides.size() less than 2
            if (strides.size() > 1) {
              for (size_t i = 0; i < strides.size(); i++) {
                if (strides[i] > 1) return false;
              }
            }
350 351 352 353
          }
        }
      }
#endif
354 355 356 357 358 359 360 361 362
      auto* block = desc.Block();
      if (block) {
        auto* filter_var_desc = block->FindVar(desc.Input("Filter")[0]);
        if (!filter_var_desc->Persistable()) {
          VLOG(3) << "Trt not support filter is  a intermediate tensor in "
                     "conv2d op.";
          return false;
        }
      }
363 364
    }

W
wangxinxin08 已提交
365
    if (op_type == "deformable_conv") {
366 367 368
      if (!desc.HasAttr("groups") || !desc.HasAttr("strides") ||
          !desc.HasAttr("paddings"))
        return false;
W
wangxinxin08 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
      auto* block = desc.Block();
      auto input_name = desc.Input("Input")[0];
      auto* input_desc = block->FindVar(input_name);
      const auto input_shape = input_desc->GetShape();

      if (input_shape.size() != 4) {
        VLOG(3) << "Input of deformable conv should be 4-D Tensor, but got "
                << input_shape.size();
        return false;
      }

      auto filter_name = desc.Input("Filter")[0];
      auto* filter_desc = block->FindVar(filter_name);
      const auto filter_shape = filter_desc->GetShape();

R
Ruibiao Chen 已提交
384
      int groups = PADDLE_GET_CONST(int, desc.GetAttr("groups"));
W
wangxinxin08 已提交
385 386 387 388 389 390 391 392
      if (input_shape[1] != filter_shape[1] * groups) {
        VLOG(3) << "The number of input channels should be equal to filter "
                << "channels * groups. But got input channels "
                << input_shape[1] << "filter channels " << filter_shape[1];
        return false;
      }

      const std::vector<int> strides =
R
Ruibiao Chen 已提交
393
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("strides"));
W
wangxinxin08 已提交
394 395 396 397 398 399 400
      if (strides.size() != 2) {
        VLOG(3) << "The size of strides should be 2, but got "
                << strides.size();
        return false;
      }

      const std::vector<int> paddings =
R
Ruibiao Chen 已提交
401
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
W
wangxinxin08 已提交
402 403 404 405 406 407 408
      if (paddings.size() != 2) {
        VLOG(3) << "The size of paddings shoule be 2, but got "
                << paddings.size();
        return false;
      }
    }

409 410 411 412 413 414
    if (op_type == "bmm") {
      if (!with_dynamic_shape) {
        return false;
      }
    }

415 416 417 418
    if (op_type == "range") {
      if (!with_dynamic_shape) {
        return false;
      }
419 420 421 422 423 424 425 426 427
#if IS_TRT_VERSION_LT(8400)
      auto* block = desc.Block();
      auto start_var_name = desc.Input("Start")[0];
      auto* start_var_desc = block->FindVar(start_var_name);
      auto start_dtype = start_var_desc->GetDataType();
      if (start_dtype == framework::proto::VarType::FP32) {
        return false;
      }
#endif
428 429
    }

430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
    if (op_type == "sign") {
#if IS_TRT_VERSION_GE(8200)
      if (!with_dynamic_shape) {
        return false;
      }
#else
      VLOG(3) << "sign op is only supported by trt8.2 above ";
      return false;
#endif
    }

    if (op_type == "logical_not") {
#if IS_TRT_VERSION_GE(8400)
      if (!with_dynamic_shape) {
        return false;
      }
#else
      VLOG(3) << "logical_not op is only supported by trt8.4 above because of "
                 "cast op";
      return false;
#endif
    }
452

W
Wilber 已提交
453 454 455 456 457 458 459 460 461 462 463
    if (op_type == "softmax") {
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
464

465
      if (with_dynamic_shape && (x_shape.size() == 1 || x_shape.empty())) {
466 467 468 469 470 471 472
        int axis = desc.HasAttr("axis")
                       ? PADDLE_GET_CONST(int, desc.GetAttr("axis"))
                       : -1;
        if (axis > 0) {
          return false;
        }
      }
W
Wilber 已提交
473
    }
474

475
    if (op_type == "group_norm") {
476 477 478 479
      if (!desc.HasAttr("epsilon") || !desc.HasAttr("groups") ||
          !desc.HasAttr("data_layout"))
        return false;

480 481
      auto registry = GetPluginRegistry();
      if (registry == nullptr) return false;
482 483 484 485 486 487 488
      std::string layout_str =
          PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout"));
      if (layout_str != "NCHW") {
        VLOG(3) << "Group norm trt plugin only support NCHW layout, but got "
                << layout_str;
        return false;
      }
489 490 491 492
    }
    if (op_type == "concat") {
      if (!desc.HasAttr("axis")) {
        return false;
W
Wilber 已提交
493
      }
R
Ruibiao Chen 已提交
494
      int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
495 496
      if (!with_dynamic_shape) {
        if (axis == 0) return false;
W
Wilber 已提交
497 498 499
      }
      auto concat_inputs = desc.Inputs();
      if (concat_inputs.find("AxisTensor") != concat_inputs.end()) {
500
        if (!desc.Input("AxisTensor").empty()) {
W
Wilber 已提交
501
          return false;
502
        }
503 504
      }
    }
505 506 507
    if (op_type == "transpose2" || op_type == "transpose") {
      if (!desc.HasAttr("axis")) {
        return false;
508 509
      }
      std::vector<int> axis =
R
Ruibiao Chen 已提交
510
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("axis"));
511 512 513 514
      if (!with_dynamic_shape && axis[0] != 0) return false;
      if (axis.size() >= nvinfer1::Dims::MAX_DIMS) return false;

      auto* block = desc.Block();
515 516 517 518 519 520
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
521 522 523
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
W
wenbin 已提交
524
      if (axis.size() != x_shape.size()) return false;
525
      int dims = x_shape.size();
W
wenbin 已提交
526

527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
      std::vector<int> perm(nvinfer1::Dims::MAX_DIMS);
      for (int i = 0; i < dims; i++) {
        perm[i] = axis[i];
      }
      auto is_valid_permutation = [&](int dims,
                                      const std::vector<int>& permutation) {
        std::bitset<nvinfer1::Dims::MAX_DIMS> found;
        for (int i = 0; i < dims; ++i) {
          const int x = permutation[i];
          if ((x < 0) || (x >= dims) || found[x])
            return false;  // Out of bounds or duplicate
          found.set(x);
        }
        return true;
      };
      if (!is_valid_permutation(dims, perm)) {
        VLOG(3) << "Invalid permutation dimensions for trt transpose op "
                   "converter: duplicate or out of bound.";
W
wenbin 已提交
545
        return false;
546 547
      }
    }
548
    if (op_type == "flatten2" || op_type == "flatten") {
549 550 551
      if (!desc.HasAttr("axis")) {
        return false;
      } else {
552 553
#if IS_TRT_VERSION_GE(7130)
#else
554
        if (with_dynamic_shape) return false;
555
#endif
R
Ruibiao Chen 已提交
556
        int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
557 558 559
        if (axis != 1) return false;
      }
    }
560 561
    if (op_type == "flatten_contiguous_range") {
      if (!with_dynamic_shape) {
562 563 564
        if (!desc.HasAttr("start_axis") || !desc.HasAttr("stop_axis")) {
          return false;
        }
R
Ruibiao Chen 已提交
565 566
        int start_axis = PADDLE_GET_CONST(int, desc.GetAttr("start_axis"));
        int stop_axis = PADDLE_GET_CONST(int, desc.GetAttr("stop_axis"));
567 568 569 570 571 572 573 574 575 576 577
        auto x_var_name = desc.Input("X")[0];
        auto* block = desc.Block();
        if (block == nullptr) {
          VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                     "Developers need to check whether block_desc is passed in "
                     "the pass.";
          return false;
        }
        auto* x_var_desc = block->FindVar(x_var_name);
        const auto x_shape = x_var_desc->GetShape();
        int dims = x_shape.size();
578 579 580 581 582 583
        if (dims == 0) {
          VLOG(3) << op_type
                  << " op does not support input's dim is 0 in tensorrt "
                     "static shape mode.";
          return false;
        }
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599
        if (start_axis < 0) start_axis += dims;
        if (start_axis == 0) {
          VLOG(3) << "TRT flatten_contiguous_range not support the "
                     "batch-dimension being changed";
          return false;
        }
        if (stop_axis < 0) stop_axis += dims;
        for (int i = start_axis; i <= stop_axis; ++i) {
          if (x_shape[i] < 0) {
            VLOG(3) << "On TRT static shape,flatten_contiguous_range input dim "
                       "should be > 0";
            return false;
          }
        }
      }
    }
600

601
    if (op_type == "gather") {
602 603
      auto gather_inputs = desc.Inputs();
      if (gather_inputs.find("Axis") != gather_inputs.end()) {
604
        if (!desc.Input("Axis").empty()) {
605 606 607 608 609 610
          return false;
        }
      }
      if (!with_dynamic_shape) {
        return false;
      } else {
611
        auto* block = desc.Block();
612 613 614 615 616 617
        if (block == nullptr) {
          VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                     "Developers need to check whether block_desc is passed in "
                     "the pass.";
          return false;
        }
F
feng_shuai 已提交
618
#if !IS_TRT_VERSION_GE(7000)
619 620 621 622 623 624
        auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
        const auto x_shape = x_var_desc->GetShape();
        if (x_shape.size() == 1) {
          VLOG(3) << "Gather does not support 1-dimensional input in tensorrt";
          return false;
        }
F
feng_shuai 已提交
625
#endif
626
      }
627
    }
Z
zlsh80826 已提交
628

629
    if (op_type == "gather_nd") {
630 631
      if (!with_dynamic_shape) return false;

632
      auto* block = desc.Block();
633 634 635 636 637 638
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
639
#if IS_TRT_VERSION_LT(8200)
640 641
      auto index_var_name = desc.Input("Index")[0];
      auto* index_var_desc = block->FindVar(index_var_name);
642 643
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
644 645
      const auto index_shape = index_var_desc->GetShape();
      const auto x_shape = x_var_desc->GetShape();
646 647 648 649 650 651
      if (x_shape.size() <= 2) {
        VLOG(3) << "gather_nd op requires the input's dimension to be greater "
                   "than 2";
        return false;
      }

652 653 654 655 656
      if (x_shape.size() != index_shape.size()) {
        VLOG(3) << "gather_nd op Index input dims size [" << index_shape.size()
                << " ] not equal to x dims size [" << x_shape.size() << "]";
        return false;
      }
657
#endif
658
    }
X
xjmxyt 已提交
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676
    if (op_type == "index_select") {
#if !IS_TRT_VERSION_GE(8200)
      return false;
#endif
      auto gather_inputs = desc.Inputs();
      if (!with_dynamic_shape) {
        return false;
      } else {
        auto* block = desc.Block();
        if (block == nullptr) {
          VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                     "Developers need to check whether block_desc is passed in "
                     "the pass.";
          return false;
        }

        auto index_var_name = desc.Input("Index")[0];
        auto* index_var_desc = block->FindVar(index_var_name);
677

X
xjmxyt 已提交
678 679 680 681 682 683 684 685 686 687 688
        // The index input must be int32 or int64 datatype.
        if (index_var_desc->GetDataType() !=
                paddle::framework::proto::VarType_Type::VarType_Type_INT32 &&
            index_var_desc->GetDataType() !=
                paddle::framework::proto::VarType_Type::VarType_Type_INT64) {
          VLOG(3)
              << "Index select op Index input data type must be int32 or int64";
          return false;
        }
      }
    }
689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
    if (op_type == "take_along_axis") {
#if IS_TRT_VERSION_GE(8200)
      if (!with_dynamic_shape) return false;
      auto* block = desc.Block();
      auto input_var_name = desc.Input("Input")[0];
      auto index_var_name = desc.Input("Index")[0];
      auto* input_var_desc = block->FindVar(input_var_name);
      auto* index_var_desc = block->FindVar(index_var_name);

      const auto input_shape = input_var_desc->GetShape();
      const auto index_shape = index_var_desc->GetShape();
      if (input_shape.size() != index_shape.size()) {
        VLOG(3) << "take_along_axis op Index input dims size ["
                << index_shape.size() << " ] not equal to input dims size ["
                << input_shape.size() << "]";
        return false;
      }
#else
      VLOG(3) << "take_along_axis op is only supported by trt8.2 above ";
      return false;
#endif
    }

712 713 714 715
    if (op_type == "anchor_generator") {
      if (!with_dynamic_shape) return false;
    }

Z
zlsh80826 已提交
716 717 718 719 720 721
    if (op_type == "yolo_box") {
      if (with_dynamic_shape) return false;
      bool has_attrs =
          (desc.HasAttr("class_num") && desc.HasAttr("anchors") &&
           desc.HasAttr("downsample_ratio") && desc.HasAttr("conf_thresh") &&
           desc.HasAttr("clip_bbox") && desc.HasAttr("scale_x_y"));
Z
zlsh80826 已提交
722
      if (!has_attrs) return false;
Z
zlsh80826 已提交
723 724
    }

725 726 727 728 729 730
    if (op_type == "yolo_box_head") {
      if (with_dynamic_shape) return false;
      bool has_attrs = desc.HasAttr("class_num") && desc.HasAttr("anchors");
      if (!has_attrs) return false;
    }

731
    if (op_type == "arg_max" || op_type == "arg_min") {
732 733 734 735 736 737
      if (!desc.HasAttr("axis", /*with_attr_var=*/false)) {
        VLOG(3) << "Skip to convert into TRT while found Attribute('axis') is "
                   "Variable type in arg_max.";
        return false;
      }

738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      auto x_dtype = x_var_desc->GetDataType();

      if (!(x_dtype == framework::proto::VarType::FP32 ||
            x_dtype == framework::proto::VarType::FP16)) {
        return false;
      }

754
      int axis = desc.HasAttr("axis")
R
Ruibiao Chen 已提交
755
                     ? PADDLE_GET_CONST(int64_t, desc.GetAttr("axis"))
756
                     : -1;
X
xiaoxiaohehe001 已提交
757 758 759 760 761 762
      bool flatten = desc.HasAttr("flatten")
                         ? PADDLE_GET_CONST(bool, desc.GetAttr("flatten"))
                         : false;
      int dtype = desc.HasAttr("dtype")
                      ? PADDLE_GET_CONST(int, desc.GetAttr("dtype"))
                      : 3;
763
      if (axis == 0 || flatten || (dtype != 2 && dtype != 3)) return false;
764 765
    }

766 767
    if (op_type == "affine_channel") {
      if (!desc.HasAttr("data_layout")) return false;
768
      auto data_layout = phi::StringToDataLayout(
R
Ruibiao Chen 已提交
769
          PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout")));
770
      if (data_layout != phi::DataLayout::kNCHW) return false;
771 772

      auto* block = desc.Block();
773 774 775 776 777 778
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
779 780 781 782 783 784
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 2) {
        return false;
      }
785 786
    }

787
    if (op_type == "multiclass_nms" || op_type == "multiclass_nms3") {
Z
zlsh80826 已提交
788
      auto* block = desc.Block();
789 790 791 792 793 794
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
795 796 797
      auto multiclass_nms_inputs = desc.Inputs();
      if (multiclass_nms_inputs.find("RoisNum") !=
          multiclass_nms_inputs.end()) {
798
        if (!desc.Input("RoisNum").empty()) {
799 800 801 802
          return false;
        }
      }
      for (auto& param_name : multiclass_nms_inputs) {
Z
zlsh80826 已提交
803 804 805 806
        for (auto& var_name : param_name.second) {
          auto* var_desc = block->FindVar(var_name);
          const auto shape = var_desc->GetShape();
          if (shape.size() != 3) {
807
            VLOG(3) << "multiclass_nms op dims != 3 not supported in tensorrt, "
Z
zlsh80826 已提交
808 809 810 811 812 813 814 815 816 817 818 819
                       "but got dims "
                    << shape.size() << ", so jump it.";
            return false;
          }
        }
      }
      bool has_attrs =
          (desc.HasAttr("background_label") &&
           desc.HasAttr("score_threshold") && desc.HasAttr("nms_top_k") &&
           desc.HasAttr("keep_top_k") && desc.HasAttr("normalized"));
      if (has_attrs == false) return false;

820 821 822
      // TODO(wangxinxin08): tricky solution because the outputs of batchedNMS
      // plugin are not constient with those of multiclass_nms3
      if (desc.HasAttr("nms_eta") == false) return false;
R
Ruibiao Chen 已提交
823
      auto nms_eta = PADDLE_GET_CONST(float, desc.GetAttr("nms_eta"));
824 825
      if (nms_eta <= 1.0) return false;

R
Ruibiao Chen 已提交
826
      auto nms_top_k = PADDLE_GET_CONST(int, desc.GetAttr("nms_top_k"));
Z
zlsh80826 已提交
827 828
      if (nms_top_k < 0) return false;

R
Ruibiao Chen 已提交
829
      auto keep_top_k = PADDLE_GET_CONST(int, desc.GetAttr("keep_top_k"));
Z
zlsh80826 已提交
830 831 832 833 834 835
      if (keep_top_k < 0) return false;

      auto registry = GetPluginRegistry();
      if (registry == nullptr) return false;
    }

836
    if (op_type == "nearest_interp") {
C
ccrrong 已提交
837 838
      std::vector<std::string> attrs{
          "interp_method", "align_corners", "scale", "out_h", "out_w"};
839
      for (auto const& attr : attrs) {
840 841
        if (!desc.HasAttr(attr)) return false;
      }
842
      if (desc.HasAttr("data_layout")) {
843
        auto data_layout = phi::StringToDataLayout(
R
Ruibiao Chen 已提交
844
            PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout")));
845 846
        if (data_layout != phi::DataLayout::kNCHW &&
            data_layout != phi::DataLayout::kNHWC)
847 848
          return false;
      }
849
      auto interp_method =
R
Ruibiao Chen 已提交
850
          PADDLE_GET_CONST(std::string, desc.GetAttr("interp_method"));
851
      if (interp_method != "nearest") return false;
R
Ruibiao Chen 已提交
852 853 854 855 856
      auto scale = PADDLE_GET_CONST(float, desc.GetAttr("scale"));
      auto out_h = PADDLE_GET_CONST(int, desc.GetAttr("out_h"));
      auto out_w = PADDLE_GET_CONST(int, desc.GetAttr("out_w"));
      auto align_corners =
          PADDLE_GET_CONST(bool, desc.GetAttr("align_corners"));
857 858 859 860
      if (!(scale > 0.f && (out_h <= 0 && out_w <= 0))) {
        if (out_h <= 0) {
          VLOG(3) << "out_h must be greater than 0 if scale is not set.";
          return false;
861
        }
862 863
        if (out_w <= 0) {
          VLOG(3) << "out_w must be greater than 0 if scale is not set.";
已提交
864 865
          return false;
        }
866
      }
867 868 869 870 871 872 873 874 875
      if ((scale <= 0.f) && with_dynamic_shape) {
        VLOG(3) << "dynamic shape not support scale not set.";
        return false;
      }
      // When align_corners = true, the paddle's and trt_layer's results has
      // diff
      if (align_corners && scale != 1) {
        return false;
      }
876
    }
877

878
    if (op_type == "nearest_interp_v2") {
C
ccrrong 已提交
879 880 881 882 883 884
      std::vector<std::string> attrs{"data_layout",
                                     "interp_method",
                                     "align_corners",
                                     "scale",
                                     "out_h",
                                     "out_w"};
885
      for (auto const& attr : attrs) {
886 887
        if (!desc.HasAttr(attr)) return false;
      }
888
      auto data_layout = phi::StringToDataLayout(
R
Ruibiao Chen 已提交
889
          PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout")));
890 891
      if (data_layout != phi::DataLayout::kNCHW &&
          data_layout != phi::DataLayout::kNHWC)
892 893
        return false;
      auto interp_method =
R
Ruibiao Chen 已提交
894
          PADDLE_GET_CONST(std::string, desc.GetAttr("interp_method"));
895
      if (interp_method != "nearest") return false;
896

897
#if IS_TRT_VERSION_GE(8200)
898 899 900 901 902 903
      auto resize_inputs = desc.Inputs();
      if (with_dynamic_shape &&
          resize_inputs.find("SizeTensor") != resize_inputs.end() &&
          desc.Input("SizeTensor").size() == 2) {
        return true;
      }
904
#endif
905

R
Ruibiao Chen 已提交
906 907 908
      auto scale = PADDLE_GET_CONST(std::vector<float>, desc.GetAttr("scale"));
      auto out_h = PADDLE_GET_CONST(int, desc.GetAttr("out_h"));
      auto out_w = PADDLE_GET_CONST(int, desc.GetAttr("out_w"));
909
      if (!(out_h > 0 && out_w > 0)) {
W
wenbin 已提交
910
        if (scale.size() < 2) return false;
911 912 913 914 915 916 917 918
        if (scale[0] <= 0.f || scale[1] <= 0.f) {
          VLOG(3) << "scale factor must be greater than 0 if out_h or out_w is "
                     "not set.";
          return false;
        }
      }
    }

919
    if (op_type == "bilinear_interp_v2") {
920 921 922 923
      // trt 7011 result in test_solov2_trt_fp32.py TRT fp32 diff
#if IS_TRT_VERSION_LT(7100)
      return false;
#endif
C
ccrrong 已提交
924 925 926 927 928 929
      std::vector<std::string> attrs{"data_layout",
                                     "interp_method",
                                     "align_corners",
                                     "scale",
                                     "out_h",
                                     "out_w"};
930
      for (auto const& attr : attrs) {
931 932 933 934 935 936 937 938 939
        if (!desc.HasAttr(attr)) {
          VLOG(3) << "The op_type " << op_type << " doesn't have the attr "
                  << attr << " and return false";
          return false;
        }
      }

      auto resize_inputs = desc.Inputs();
      if (resize_inputs.find("SizeTensor") != resize_inputs.end()) {
940
        if (!desc.Input("SizeTensor").empty()) {
941 942 943 944 945 946 947 948
          VLOG(3)
              << "The Paddle-TRT doesn't support the SizeTensor for op_type "
              << op_type;
          return false;
        }
      }

      if (resize_inputs.find("OutSize") != resize_inputs.end()) {
949 950
        if (!with_dynamic_shape) {
          VLOG(3) << "Static shape don't support the OutSize for op_type "
951 952 953 954 955
                  << op_type;
          return false;
        }
      }

956
      auto data_layout = phi::StringToDataLayout(
R
Ruibiao Chen 已提交
957
          PADDLE_GET_CONST(std::string, desc.GetAttr("data_layout")));
958 959
      if (data_layout != phi::DataLayout::kNCHW &&
          data_layout != phi::DataLayout::kNHWC) {
960 961 962 963 964
        VLOG(3) << "The op_type " << op_type
                << " is not NCHW or NHWC return false";
        return false;
      }
      auto interp_method =
R
Ruibiao Chen 已提交
965
          PADDLE_GET_CONST(std::string, desc.GetAttr("interp_method"));
966 967 968 969 970 971
      if (interp_method != "bilinear") {
        VLOG(3) << "The interp_method of op_type " << op_type
                << " is not bilinear";
        return false;
      }

R
Ruibiao Chen 已提交
972 973
      auto align_corners =
          PADDLE_GET_CONST(bool, desc.GetAttr("align_corners"));
974 975 976 977 978 979 980 981 982 983 984
      if (align_corners != false) {
        VLOG(3)
            << "The bilinear_interp_v2 only supports align_corners with false.";
        return false;
      }

      bool has_scale_input_size =
          (resize_inputs.find("Scale") != resize_inputs.end());

      if (has_scale_input_size && desc.Input("Scale").size() != 1) {
        const std::vector<float> scale =
R
Ruibiao Chen 已提交
985
            PADDLE_GET_CONST(std::vector<float>, desc.GetAttr("scale"));
986 987 988 989 990 991 992
        if (scale.size() <= 1) {
          if (!desc.HasAttr("out_h") || !desc.HasAttr("out_w")) {
            VLOG(3) << "The op_type " << op_type
                    << " doesn't have Scale and the scale size <=1 and without "
                       "out_h / out_w, it will return false";
            return false;
          }
R
Ruibiao Chen 已提交
993 994
          auto out_h = PADDLE_GET_CONST(int, desc.GetAttr("out_h"));
          auto out_w = PADDLE_GET_CONST(int, desc.GetAttr("out_w"));
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019
          if (!(out_h <= 0 && out_w <= 0)) {
            if (out_h <= 0) {
              VLOG(3) << "The op_type " << op_type
                      << "'s out_h must be greater than 0 if scale is not set.";
              return false;
            }
            if (out_w <= 0) {
              VLOG(3) << "The op_type " << op_type
                      << "'s out_w must be greater than 0 if scale is not set.";
              return false;
            }
          }
        } else {
          for (size_t i = 0; i < scale.size(); i++) {
            if (scale[i] <= 0 && with_dynamic_shape) {
              VLOG(3) << "dynamic shape not support Attr(scale[" << i << "]) "
                      << scale[i]
                      << " less than 1 and Input(Scale) vector not set.";
              return false;
            }
          }
        }
      }
    }

1020
    if (op_type == "squeeze2") {
1021 1022 1023 1024 1025 1026 1027
      // If Attribute is Variable(s), HasAttr() will return False
      if (!desc.HasAttr("axes", /*with_attr_var=*/false)) {
        VLOG(3) << "Skip to convert into TRT while found Attribute('axes') is "
                   "Variable type in squeeze2.";
        return false;
      }

1028 1029
      std::vector<int> axes;
      if (desc.HasAttr("axes")) {
R
Ruibiao Chen 已提交
1030
        axes = PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("axes"));
1031
      }
1032
      if (axes.empty()) {
W
wenbin 已提交
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
        auto* block = desc.Block();
        if (block) {
          auto input_var_name = desc.Input("X")[0];
          auto* input_var_desc = block->FindVar(input_var_name);
          const auto input_shape = input_var_desc->GetShape();
          for (int s : input_shape) {
            if (s == -1) {
              VLOG(3) << "The necessary attributes of the squeeze2 operator "
                         "axes is "
                         "missing. ss ==== -1";
              return false;
            } else if (s == 1) {
              axes.push_back(s);
            }
          }
        }
1049
        if (axes.empty()) {
W
wenbin 已提交
1050 1051 1052 1053 1054
          VLOG(3)
              << "The necessary attributes of the squeeze2 operator axes is "
                 "missing.";
          return false;
        }
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
      }
      if (!with_dynamic_shape) {
        if (std::find(axes.begin(), axes.end(), 0) != axes.end()) {
          VLOG(3) << "Invalid squeeze axes. Axes having batch axis is not "
                     "supported in static shape";
          return false;
        }
      }
    }

    if (op_type == "unsqueeze2") {
      std::vector<int> axes;
      if (desc.HasAttr("axes")) {
R
Ruibiao Chen 已提交
1068
        axes = PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("axes"));
1069
      }
1070
      if (axes.empty()) {
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
        VLOG(3) << "The necessary attributes of the squeeze2 operator axes is "
                   "missing.";
        return false;
      }
      if (!with_dynamic_shape) {
        if (std::find(axes.begin(), axes.end(), 0) != axes.end()) {
          VLOG(3) << "Invalid squeeze axes. Axes having batch axis is not "
                     "supported in static shape";
          return false;
        }
      }
    }

1084
    if (op_type == "batch_norm") {
C
ccrrong 已提交
1085 1086
      const std::vector<std::string> bn_inputs = {
          "X", "Bias", "Mean", "Scale", "Variance"};
1087 1088 1089 1090 1091 1092 1093 1094 1095
      for (unsigned int i = 0; i < bn_inputs.size(); i++) {
        if (desc.Input(bn_inputs[i]).size() != 1) {
          VLOG(3) << "Invalid " << bn_inputs[i]
                  << "'s size of batch_norm TRT "
                     "converter. Expected 1, received "
                  << desc.Input(bn_inputs[i]).size() << ".";
          return false;
        }
      }
1096 1097
      auto batch_norm_inputs = desc.Inputs();
      if (batch_norm_inputs.find("MomentumTensor") != batch_norm_inputs.end()) {
1098
        if (!desc.Input("MomentumTensor").empty()) {
1099 1100 1101
          return false;
        }
      }
1102 1103 1104 1105 1106 1107
      if (desc.Output("Y").size() != 1) {
        VLOG(3) << "Invalid output Y's size of batch_norm TRT "
                   "converter. Expected 1, received "
                << desc.Output("Y").size() << ".";
        return false;
      }
W
Wilber 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
1118 1119 1120 1121 1122 1123 1124 1125 1126
    }

    if (op_type == "split") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid input X's size of split TRT converter. "
                   "Expected 1, received "
                << desc.Input("X").size() << ".";
        return false;
      }
1127 1128
      auto split_inputs = desc.Inputs();
      if (split_inputs.find("AxisTensor") != split_inputs.end()) {
1129
        if (!desc.Input("AxisTensor").empty()) {
1130 1131 1132 1133
          return false;
        }
      }
      if (split_inputs.find("SectionsTensorList") != split_inputs.end()) {
1134
        if (!desc.Input("SectionsTensorList").empty()) {
1135 1136 1137
          if (!with_dynamic_shape) {
            return false;
          }
1138 1139
        }
      }
1140 1141
      if (!desc.HasAttr("axis")) {
        return false;
1142
      }
R
Ruibiao Chen 已提交
1143
      int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
1144

1145
      if (!with_dynamic_shape && axis == 0) {
1146
        VLOG(3) << "Invalid split axis. Split on batch is not supported in "
1147
                   "TensorRT with static shape";
1148 1149 1150
        return false;
      }
      auto* block = desc.Block();
1151 1152 1153 1154 1155 1156
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1157 1158 1159 1160 1161 1162 1163
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      size_t output_num = desc.Output("Out").size();
      std::vector<int> output_lengths;
      int num = 0;
      if (desc.HasAttr("num")) {
R
Ruibiao Chen 已提交
1164
        num = PADDLE_GET_CONST(int, desc.GetAttr("num"));
1165 1166 1167
      }
      if (desc.HasAttr("sections")) {
        output_lengths =
R
Ruibiao Chen 已提交
1168
            PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("sections"));
1169
      }
1170
      if (output_lengths.empty() && num == 0) {
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187
        VLOG(3) << "sections and num cannot be equal to 0 at the same time";
        return false;
      }
      if (with_dynamic_shape) {
#if IS_TRT_VERSION_GE(6000)
#else
        VLOG(3) << "You are running the TRT Dynamic Shape mode, need to "
                   "confirm that "
                   "your TRT version is no less than 6.0";
        return false;
#endif
      }
      axis += (axis < 0) ? x_shape.size() : 0;
      if (x_shape[axis] == -1) {
        VLOG(3) << "The (" << axis << ") dim of input should not be -1";
        return false;
      }
1188
      if (output_lengths.empty()) {
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
        if (num > 0) {
          int64_t in_axis_dim = x_shape[axis];
          if (in_axis_dim % num != 0) {
            VLOG(3) << "Invalid number to split. Tensor split does not result"
                       " in an equal division of dimensions. Axis dim = "
                    << in_axis_dim << " num = " << num << "!= 0";
            return false;
          }
          size_t out_axis_dim = in_axis_dim / num;
          for (int i = 0; i < num; ++i) {
            output_lengths.push_back(out_axis_dim);
          }
1201 1202
        }
      }
1203 1204 1205 1206
      if (output_lengths.size() != output_num) {
        VLOG(3) << "The output_length should be equal to the output size.";
        return false;
      }
1207
    }
1208

1209 1210 1211
    if (op_type == "scale") {
      auto scale_inputs = desc.Inputs();
      if (scale_inputs.find("ScaleTensor") != scale_inputs.end()) {
1212
        if (!desc.Input("ScaleTensor").empty()) {
1213 1214 1215 1216
          return false;
        }
      }
      auto* block = desc.Block();
1217 1218 1219 1220 1221 1222
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1223 1224 1225
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
1226
      auto dtype = x_var_desc->GetDataType();
W
wenbin 已提交
1227 1228 1229 1230 1231 1232 1233
      if (!with_dynamic_shape) {
        // At present, only support float32 or float16 into trt.
        if (!(dtype == framework::proto::VarType::FP32 ||
              dtype == framework::proto::VarType::FP16)) {
          return false;
        }
      } else {
1234 1235
        // At present, only support float32 or float16 or int32 or int64 into
        // trt.
W
wenbin 已提交
1236 1237
        if (!(dtype == framework::proto::VarType::FP32 ||
              dtype == framework::proto::VarType::FP16 ||
1238 1239
              dtype == framework::proto::VarType::INT32 ||
              dtype == framework::proto::VarType::INT64)) {
W
wenbin 已提交
1240 1241
          return false;
        }
1242
      }
1243
    }
1244

F
feng_shuai 已提交
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
    if (op_type == "roll") {
#if !IS_TRT_VERSION_GE(7000)
      VLOG(3) << "roll converter does not support trt versions below 7.0";
      return false;
#endif
      if (!with_dynamic_shape) {
        return false;
      }
    }

    if (op_type == "strided_slice") {
1256 1257 1258 1259 1260
#if !IS_TRT_VERSION_GE(7000)
      VLOG(3)
          << "strided_slice converter does not support trt versions below 7.0";
      return false;
#endif
F
feng_shuai 已提交
1261 1262 1263 1264 1265 1266 1267 1268
      if (!desc.HasAttr("axes") || !desc.HasAttr("starts") ||
          !desc.HasAttr("ends") || !desc.HasAttr("strides")) {
        VLOG(3)
            << "The necessary attributes of the strided_slice operator miss ";
        return false;
      }
    }

Z
zhoutianzi666 已提交
1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284
    if (op_type == "rnn") {
      if (!with_dynamic_shape) {
        return false;
      }
      if (desc.HasAttr("mode")) {
        std::string mode = PADDLE_GET_CONST(std::string, desc.GetAttr("mode"));
        if (mode != "LSTM") return false;
      }
      if (desc.HasAttr("dropout_prob")) {
        float dropout_prob =
            PADDLE_GET_CONST(float, desc.GetAttr("dropout_prob"));
        if (dropout_prob > 1e-5) return false;
      }
      // not support following four inputs for rnn in paddle-trt
      auto rnn_inputs = desc.Inputs();
      if (rnn_inputs.find("SequenceLength") != rnn_inputs.end()) {
1285
        if (!desc.Input("SequenceLength").empty()) {
Z
zhoutianzi666 已提交
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319
          return false;
        }
      }
    }

    if (op_type == "fill_constant_batch_size_like") {
      if (!with_dynamic_shape) {
        return false;
      }
      if (!desc.HasAttr("input_dim_idx")) {
        return false;
      }
      if (!desc.HasAttr("output_dim_idx")) {
        return false;
      }
      if (!desc.HasAttr("shape")) {
        return false;
      }
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("Input")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      auto dtype = x_var_desc->GetDataType();
      // At present, only support float32 into trt.
      if (dtype != 5) {
        return false;
      }
    }

1320 1321 1322 1323 1324
    if (op_type == "fill_any_like") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the fill_any_like does not support static shape yet";
        return false;
      }
1325 1326 1327
      int dtype = desc.HasAttr("dtype")
                      ? PADDLE_GET_CONST(int, desc.GetAttr("dtype"))
                      : -1;
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
      auto* block = desc.Block();
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
      auto input_type = x_var_desc->GetDataType();
#if IS_TRT_VERSION_GE(8400)
      if (dtype == 0 ||
          (dtype == -1 && input_type == framework::proto::VarType::BOOL)) {
        VLOG(3) << "the fill_any_like supports input of BOOL by trt8.4 above";
        return true;
      }
#endif
1338
      if (dtype != -1 && dtype != 2 && dtype != 5) {
1339 1340
        VLOG(3) << "the fill_any_like only supports int32 and float32 by "
                   "trt8.4 below";
1341 1342 1343 1344 1345
        return false;
      }
      if (dtype == -1) {
        if (input_type != framework::proto::VarType::INT32 &&
            input_type != framework::proto::VarType::FP32) {
1346 1347
          VLOG(3) << "the fill_any_like only supports int32 and float32 by "
                     "trt8.4 below";
1348 1349 1350 1351 1352
          return false;
        }
      }
    }

1353
    if (op_type == "slice") {
1354 1355
      if (desc.HasAttr("decrease_axis")) {
        std::vector<int> decrease_axis =
R
Ruibiao Chen 已提交
1356
            PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("decrease_axis"));
1357 1358 1359
        if (!with_dynamic_shape) {
          if (decrease_axis.end() !=
              std::find(decrease_axis.begin(), decrease_axis.end(), 0)) {
1360 1361
            return false;
          }
1362 1363
        }
      }
1364 1365
      std::vector<int> axes;
      if (!desc.HasAttr("axes")) {
1366
        VLOG(3) << "The necessary attributes of the slice operator axes "
1367
                   " are missing.";
1368 1369
        return false;
      } else {
1370
        axes = PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("axes"));
1371 1372 1373 1374 1375 1376 1377 1378 1379 1380
        if (!with_dynamic_shape) {
          for (size_t i = 0; i < axes.size(); i++) {
            if (axes[i] == 0) {
              VLOG(3) << "Invalid slice axis. Slice on batch axis is not "
                         "supported in TensorRT";
              return false;
            }
          }
        }
      }
1381 1382
      // not support following four inputs for slice in paddle-trt
      auto slice_inputs = desc.Inputs();  // its size == 5
1383
      if (slice_inputs.find("StartsTensor") != slice_inputs.end() &&
1384
          !desc.Input("StartsTensor").empty()) {
1385 1386 1387 1388 1389 1390
        VLOG(3) << "The Slice has StartsTensor input.";
      } else {
        if (!desc.HasAttr("starts")) {
          VLOG(3) << "The necessary attributes of the slice operator starts or "
                     "StartsTensor"
                     " are missing.";
1391
          return false;
1392 1393 1394 1395 1396 1397 1398 1399
        } else {
          std::vector<int> starts =
              PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("starts"));
          if (axes.size() != starts.size()) {
            VLOG(3) << "The shape of attributes of the slice operator axes "
                       "and starts are not equal.";
            return false;
          }
1400 1401
        }
      }
1402
      if (slice_inputs.find("EndsTensor") != slice_inputs.end() &&
1403
          !desc.Input("EndsTensor").empty()) {
1404 1405 1406 1407 1408 1409
        VLOG(3) << "The Slice has EndsTensor input.";
      } else {
        if (!desc.HasAttr("ends")) {
          VLOG(3) << "The necessary attributes of the slice operator ends or "
                     "EndsTensor"
                     " are missing.";
1410
          return false;
1411 1412 1413 1414 1415 1416 1417 1418
        } else {
          std::vector<int> ends =
              PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("ends"));
          if (axes.size() != ends.size()) {
            VLOG(3) << "The shape of attributes of the slice operator axes "
                       "and ends are not equal.";
            return false;
          }
1419 1420 1421
        }
      }
      if (slice_inputs.find("StartsTensorList") != slice_inputs.end()) {
周周周 已提交
1422
        VLOG(3) << "The Slice has StartsTensorList input.";
1423 1424
      }
      if (slice_inputs.find("EndsTensorList") != slice_inputs.end()) {
周周周 已提交
1425
        VLOG(3) << "The Slice has EndsTensorList input.";
1426
      }
1427 1428
    }

1429 1430
    if (op_type == "less_than" || op_type == "greater_than" ||
        op_type == "logical_or" || op_type == "logical_xor" ||
1431 1432
        op_type == "logical_and" || op_type == "less_equal" ||
        op_type == "greater_equal") {
1433
#if IS_TRT_VERSION_GE(8400)
1434
      // TRT does not support kEQUAL/kGREATER/kLESS work with implicit batch
1435
      if (!with_dynamic_shape) {
1436
        VLOG(3) << "Ops(" << op_type << ") do not support static shape yet.";
1437 1438
        return false;
      }
1439 1440 1441 1442 1443
      auto* block = desc.Block();
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
      auto* y_var_desc = block->FindVar(desc.Input("Y")[0]);
      auto x_dtype = x_var_desc->GetDataType();
      auto y_dtype = y_var_desc->GetDataType();
1444 1445 1446 1447
      if (op_type == "logical_or" || op_type == "logical_xor" ||
          op_type == "logical_and") {
        if (x_dtype != framework::proto::VarType::BOOL ||
            y_dtype != framework::proto::VarType::BOOL) {
1448 1449 1450 1451 1452
          VLOG(3) << "the op (" << op_type << ") only support input of BOOL.";
          return false;
        }
      }
      if (op_type == "less_than" || op_type == "greater_than" ||
1453
          op_type == "less_equal" || op_type == "greater_equal") {
1454 1455 1456 1457 1458
        if (x_dtype == framework::proto::VarType::BOOL ||
            y_dtype == framework::proto::VarType::BOOL) {
          VLOG(3)
              << "ElementWiseOperation::kLESS/ElementWiseOperation::kGREATER "
                 "do not support boolean datatype.";
1459 1460 1461 1462 1463 1464 1465 1466
          return false;
        }
      }
#else
      VLOG(3) << "these are not supported when TensorRT < 8.4";
      return false;
#endif
    }
1467
    if (op_type == "elementwise_add" || op_type == "elementwise_mul" ||
S
shentanyue 已提交
1468
        op_type == "elementwise_sub" || op_type == "elementwise_div" ||
1469
        op_type == "elementwise_pow" || op_type == "elementwise_min" ||
1470 1471
        op_type == "elementwise_max" || op_type == "elementwise_floordiv" ||
        op_type == "elementwise_mod") {
1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "The input op's Input(\"X\").size() "
                   "should equal to 1, but received Input(\"X\").size() = "
                << desc.Input("X").size() << ".";
        return false;
      }
      if (desc.Input("Y").size() != 1) {
        VLOG(3) << "The input op's Input(\"Y\").size() "
                   "should equal to 1, but received Input(\"Y\").size() = "
                << desc.Input("Y").size() << ".";
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "The input op's Output(\"Out\").size() "
                   "should equal to 1, but reveceid Output(\"Out\").size() = "
                << desc.Output("Out").size() << ".";
        return false;
      }
1490
      auto* block = desc.Block();
1491 1492 1493 1494 1495 1496
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1497 1498 1499 1500
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
      auto* y_var_desc = block->FindVar(desc.Input("Y")[0]);
      const auto x_shape = x_var_desc->GetShape();
      const auto y_shape = y_var_desc->GetShape();
1501

1502 1503 1504 1505
      // These operations do not support boolean datatype.
      if (op_type == "elementwise_add" || op_type == "elementwise_mul" ||
          op_type == "elementwise_sub" || op_type == "elementwise_div" ||
          op_type == "elementwise_pow" || op_type == "elementwise_min" ||
1506 1507
          op_type == "elementwise_max" || op_type == "elementwise_floordiv" ||
          op_type == "elementwise_mod") {
1508 1509
        if (x_var_desc->GetDataType() ==
            paddle::framework::proto::VarType_Type::VarType_Type_BOOL) {
1510 1511 1512 1513
          VLOG(3)
              << "These operations "
                 "(elementwise_add/mul/sub/div/pow/min/max/floordiv/mod) do "
                 "not support boolean datatype.";
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526
          return false;
        }
      }
      // These operations input do not support int32 datatype.
      if (op_type == "elementwise_pow") {
        if (x_var_desc->GetDataType() ==
            paddle::framework::proto::VarType_Type::VarType_Type_INT32) {
          VLOG(3) << "These operations (elementwise_pow) do not support int32 "
                     "datatype.";
          return false;
        }
      }

1527 1528 1529 1530 1531 1532
      // The case when x_shape.size() == 1 is dealt with in common case
      if (!with_dynamic_shape && (!y_var_desc->Persistable()) &&
          y_shape.size() == 1) {
        VLOG(3) << "Static shape in trt not support y is  a 1D intermediate "
                   "tensor in "
                   "elementwise op.";
1533 1534
        return false;
      }
1535

1536 1537 1538 1539
      if (x_var_desc->Persistable() && !with_dynamic_shape) {
        VLOG(3)
            << "Input X is a parameter which is not supported for "
               "elementwise in tensorrt's static shape, swap x and y will work";
S
shentanyue 已提交
1540
        return false;
1541
      }
1542 1543
    }

W
Wilber 已提交
1544 1545 1546 1547 1548 1549 1550 1551 1552
    if (op_type == "pow") {
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
1553

W
Wilber 已提交
1554 1555 1556 1557 1558 1559 1560 1561 1562
      // the same as `elementwise_pow`.
      if (x_var_desc->GetDataType() ==
          paddle::framework::proto::VarType_Type::VarType_Type_INT32) {
        VLOG(3) << "These operations (pow) do not support int32 "
                   "datatype.";
        return false;
      }
    }

1563 1564 1565 1566 1567 1568 1569 1570 1571
    if (op_type == "stack") {
      if (!with_dynamic_shape) {
        VLOG(3)
            << "static shape mode is not supported for TRT stack.\n"
               "You can use the config.SetTRTDynamicShapeInfo(...) interface"
               " to set the shape information to run the dynamic shape "
               "mode.";
        return false;
      }
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      int rank = x_shape.size();
      int axis = desc.HasAttr("axis")
                     ? PADDLE_GET_CONST(int, desc.GetAttr("axis"))
                     : -1;
      if (axis > rank || axis < -(rank + 1)) {
        return false;
      }
1590
    }
1591

1592 1593 1594
    if (op_type == "shape" && !with_dynamic_shape) {
      return false;
    }
1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605

    if (op_type == "fused_embedding_eltwise_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "fused_embedding_eltwise_layernorm should run on dynamic "
                   "shape mode.";
        return false;
      }
      if (desc.Input("Ids").size() != desc.Input("Embs").size()) {
        return false;
      }
    }
W
Wang Bojun 已提交
1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
    if (op_type == "fused_bias_dropout_residual_layer_norm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "fused_bias_dropout_residual_layer_norm should run on "
                   "dynamic shape mode.";
        return false;
      }
      float dropout_rate =
          PADDLE_GET_CONST(float, desc.GetAttr("dropout_rate"));
      if (dropout_rate != 0.0f) {
        VLOG(4) << "preln_residual_bias trt layer can not work with "
                   "fused_bias_dropout_residual_layer_norm op in which the "
                   "dropout_rate != 0, stop convert";
        return false;
      }
    }
1621 1622
    if (op_type == "fused_preln_embedding_eltwise_layernorm") {
      if (!with_dynamic_shape) {
1623 1624 1625
        VLOG(3) << "fused_preln_embedding_eltwise_layernorm should run on "
                   "dynamic "
                   "shape mode.";
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638
        return false;
      }
      if (desc.Input("Ids").size() != desc.Input("Embs").size()) {
        VLOG(3) << "The id and emb size of fused PrelnEmbEltwiseLayerNormOp "
                   "should be same ";
        return false;
      }
      if (!desc.HasAttr("enable_int8")) {
        VLOG(3) << "PrelnEmbEltwiseLayerNormOp must use int8 mode.";
        return false;
      }
    }

1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649
    if (op_type == "gelu") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "gelu op has only 1 input, but got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "gelu op has only 1 output, but got "
                << desc.Output("Out").size();
        return false;
      }
1650

1651
#if IS_TRT_VERSION_LT(7000)
1652
      if (desc.HasAttr("approximate")) {
1653
        VLOG(3) << "approximate gelu op needs TensorRT 7.0 and after";
R
Ruibiao Chen 已提交
1654
        if (PADDLE_GET_CONST(bool, desc.GetAttr("approximate"))) return false;
1655
      }
1656
#endif
1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681
    }

    if (op_type == "layer_norm") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "input of layer_norm op converter should be 1, got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Input("Bias").size() != 1) {
        VLOG(3) << "Bias of layer_norm op converter should be 1, got "
                << desc.Input("Bias").size();
        return false;
      }
      if (desc.Input("Scale").size() != 1) {
        VLOG(3) << "Scale of layer_norm op converter should be 1, got "
                << desc.Input("Scale").size();
        return false;
      }
      if (desc.Output("Y").size() != 1) {
        VLOG(3) << "output of layer_norm op converter should be 1, got "
                << desc.Output("Y").size();
        return false;
      }
    }

1682 1683 1684 1685
    if (op_type == "fill_constant") {
      auto fill_constant_inputs = desc.Inputs();
      if (fill_constant_inputs.find("ValueTensor") !=
          fill_constant_inputs.end()) {
1686
        if (!desc.Input("ValueTensor").empty()) return false;
1687 1688 1689
      }
      if (fill_constant_inputs.find("ShapeTensor") !=
          fill_constant_inputs.end()) {
1690
        if (!desc.Input("ShapeTensor").empty()) return false;
1691 1692 1693
      }
      if (fill_constant_inputs.find("ShapeTensorList") !=
          fill_constant_inputs.end()) {
1694
        if (!desc.Input("ShapeTensorList").empty()) return false;
1695
      }
1696 1697 1698
      int dtype = desc.HasAttr("dtype")
                      ? PADDLE_GET_CONST(int, desc.GetAttr("dtype"))
                      : 5;
1699 1700 1701 1702 1703 1704
      // only support int32, int64, float32
      if (!(dtype == 2 || dtype == 3 || dtype == 5)) {
        return false;
      }
    }

已提交
1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725
    if (op_type == "instance_norm") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "input of instance_norm op converter should be 1, got "
                << desc.Input("X").size();
        return false;
      }
      if (desc.Input("Bias").size() != 1) {
        VLOG(3) << "Bias of instance_norm op converter should be 1, got "
                << desc.Input("Bias").size();
        return false;
      }
      if (desc.Input("Scale").size() != 1) {
        VLOG(3) << "Scale of instance_norm op converter should be 1, got "
                << desc.Input("Scale").size();
        return false;
      }
      if (desc.Output("Y").size() != 1) {
        VLOG(3) << "output of layer_norm op converter should be 1, got "
                << desc.Output("Y").size();
        return false;
      }
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() != 4) {
        VLOG(3) << "The instance_norm op only support 4-dimensional input in "
                   "tensorrt.";
        return false;
      }
已提交
1742 1743
    }

1744
    if (op_type == "pad") {
1745
      if (!desc.HasAttr("pad_value") || !desc.HasAttr("paddings")) return false;
R
Ruibiao Chen 已提交
1746 1747
      const float pad_value =
          PADDLE_GET_CONST(float, desc.GetAttr("pad_value"));
1748 1749 1750 1751
      if (pad_value != 0.0f) {
        VLOG(3) << "The pad layer of TRT only support zero.";
        return false;
      }
已提交
1752 1753
      std::vector<int64_t> shape;
      auto* block = desc.Block();
1754 1755 1756 1757 1758 1759
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
已提交
1760 1761 1762 1763 1764 1765 1766 1767
      for (auto& param_name : desc.Inputs()) {
        for (auto& var_name : param_name.second) {
          auto* var_desc = block->FindVar(var_name);
          shape = var_desc->GetShape();
        }
      }
      int nbDims = shape.size();
      std::vector<int> paddings =
R
Ruibiao Chen 已提交
1768
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
已提交
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780
      int pad_size = paddings.size();
      if (nbDims < 2) {
        return false;
      }
      if (nbDims * 2 != pad_size) {
        return false;
      }
      for (int i = 0; i < pad_size - 4; i++) {
        if (paddings[i] != 0) {
          return false;
        }
      }
1781 1782
    }

1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811
    if (op_type == "pad3d") {
#if !IS_TRT_VERSION_GE(8200)
      VLOG(3) << "pad3d is not supported when TensorRT < 8.2";
      return false;
#endif
      if (!with_dynamic_shape) {
        VLOG(3) << "pad3d is not supported static shape";
        return false;
      }
      if (!desc.HasAttr("paddings") && !desc.HasInput("Paddings")) {
        return false;
      }
      if (desc.HasAttr("mode")) {
        std::string mode = PADDLE_GET_CONST(std::string, desc.GetAttr("mode"));
        if (mode != "constant" && mode != "reflect" && mode != "replicate") {
          VLOG(3) << "The pad3d layer of TRT only support "
                     "constant/reflect/replicate mode.";
          return false;
        }
      }
      if (desc.HasAttr("data_format")) {
        std::string data_format =
            PADDLE_GET_CONST(std::string, desc.GetAttr("data_format"));
        if (data_format != "NCDHW") {
          VLOG(3) << "The pad3d layer of TRT only support NCDHW data format.";
          return false;
        }
      }
    }
1812

1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
    if (op_type == "prelu") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid input X's size of prelu TRT converter. "
                   "Expected 1, received "
                << desc.Input("X").size() << ".";
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "Invalid output Out's size of prelu TRT converter. "
                   "Expected 1, received "
                << desc.Output("Out").size() << ".";
        return false;
      }
1826 1827

      auto* block = desc.Block();
1828 1829 1830 1831 1832 1833
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
1834 1835
      auto* alpha_var = block->FindVar(desc.Input("Alpha")[0]);
      if (!alpha_var) {
1836 1837 1838
        VLOG(3) << "Variable Alpha of prelu TRT converter not found.";
        return false;
      }
1839
      auto alpha_shape = alpha_var->GetShape();
1840
      if (!with_dynamic_shape && alpha_shape.empty()) {
1841 1842 1843
        VLOG(3) << op_type
                << " op does not support alpha's dim is 0 in tensorrt "
                   "static shape mode.";
1844 1845
        return false;
      }
1846 1847
    }

W
wangxinxin08 已提交
1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862
    if (op_type == "mish") {
      if (desc.Input("X").size() != 1) {
        VLOG(3) << "Invalid input X's size of mish TRT converter. "
                   "Expected 1, received "
                << desc.Input("X").size() << ".";
        return false;
      }
      if (desc.Output("Out").size() != 1) {
        VLOG(3) << "Invalid output Out's size of mish TRT converter. "
                   "Expected 1, received "
                << desc.Output("Out").size() << ".";
        return false;
      }
    }

1863 1864 1865 1866 1867 1868 1869
    if (op_type == "roi_align") {
      if (!with_dynamic_shape) {
        VLOG(3) << "TRT roi align plugin only accept the dynamic shape, "
                   "because that "
                   "the roi_align will change the batch size.";
        return false;
      }
C
ccrrong 已提交
1870 1871 1872 1873
      std::vector<std::string> attrs{"pooled_height",
                                     "pooled_width",
                                     "spatial_scale",
                                     "sampling_ratio",
F
fengkuangxiaxia 已提交
1874
                                     "aligned"};
1875
      for (auto const& attr : attrs) {
1876 1877 1878 1879
        if (!desc.HasAttr(attr)) return false;
      }

      const auto pooled_height =
R
Ruibiao Chen 已提交
1880
          PADDLE_GET_CONST(int, desc.GetAttr("pooled_height"));
1881 1882 1883
      if (pooled_height <= 0) return false;

      const auto pooled_width =
R
Ruibiao Chen 已提交
1884
          PADDLE_GET_CONST(int, desc.GetAttr("pooled_width"));
1885 1886 1887
      if (pooled_width <= 0) return false;

      const auto spatial_scale =
R
Ruibiao Chen 已提交
1888
          PADDLE_GET_CONST(float, desc.GetAttr("spatial_scale"));
1889 1890 1891 1892
      if (spatial_scale <= 0.f) return false;

      auto roi_align_inputs = desc.Inputs();
      if (roi_align_inputs.find("RoisNum") != roi_align_inputs.end()) {
1893
        if (!desc.Input("RoisNum").empty()) {
1894 1895 1896
          return false;
        }
      }
1897 1898 1899
    }

    if (op_type == "shuffle_channel") {
1900
#if !IS_TRT_VERSION_GE(8000)
1901 1902
      if (with_dynamic_shape) {
        VLOG(3) << "You are running the TRT Dynamic Shape mode, "
1903 1904
                   "the shuffle_channel op does not support dynamic shape "
                   "trt versions below 8.0 yet";
1905 1906
        return false;
      }
1907
#endif
1908 1909
    }

1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
    if (op_type == "where") {
#if !IS_TRT_VERSION_GE(8400)
      VLOG(3) << "where is not supported when TensorRT < 8.4";
      return false;
#endif
      if (!with_dynamic_shape) {
        VLOG(3) << "the where op does not support static shape yet";
        return false;
      }
    }

1921 1922 1923 1924 1925
    if (op_type == "bitwise_not") {
      auto* block = desc.Block();
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      auto dtype = x_var_desc->GetDataType();
1926
      if (dtype == framework::proto::VarType::INT8 ||
1927
          dtype == framework::proto::VarType::UINT8) {
1928
        VLOG(3) << "INT8 / UINT8 type convert to trt is not supported";
1929 1930
        return false;
      }
1931 1932 1933 1934 1935 1936
      if (dtype == framework::proto::VarType::BOOL) {
#if !IS_TRT_VERSION_GE(8400)
        VLOG(3) << "BOOL type support requires TensorRT 8.4";
        return false;
#elif !IS_TRT_VERSION_GE(8600)
        const auto x_shape = x_var_desc->GetShape();
1937
        if (x_shape.empty()) {
1938 1939 1940 1941
          VLOG(3)
              << "BOOL type does not support 0 dim input when TensorRT < 8.6.";
          return false;
        }
1942
#endif
1943
      }
1944 1945
    }

1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
    if (op_type == "one_hot" || op_type == "one_hot_v2") {
#if IS_TRT_VERSION_LT(8510)
      VLOG(3) << "one_hot/one_hot_v2 is not supported when TensorRT < 8.5.1";
      return false;
#endif
      if (!with_dynamic_shape) {
        VLOG(3)
            << "the one_hot/one_hot_v2 op does not support static shape yet";
        return false;
      }
      if (desc.HasAttr("allow_out_of_range")) {
        VLOG(3)
            << "allow_out_of_range one_hot/one_hot_v2 op is not supported now.";
        if (PADDLE_GET_CONST(bool, desc.GetAttr("allow_out_of_range")))
          return false;
      }
      if (desc.HasAttr("dtype")) {
        const int dtype = PADDLE_GET_CONST(int, desc.GetAttr("dtype"));
        if (dtype != 2 && dtype != 3 && dtype != 5) {
          VLOG(3) << "one_hot/one_hot_v2 op only support int32, int64, float.";
          return false;
        }
      }
      auto one_hot_inputs = desc.Inputs();
      if (one_hot_inputs.find("depth_tensor") != one_hot_inputs.end()) {
1971
        if (!desc.Input("depth_tensor").empty()) {
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984
          return true;
        }
      }

      if (desc.HasAttr("depth")) {
        const int depth = PADDLE_GET_CONST(int, desc.GetAttr("depth"));
        if (depth <= 0) {
          VLOG(3) << "depth only support positive in one_hot/one_hot_v2 op.";
          return false;
        }
      }
    }

1985 1986 1987 1988 1989 1990 1991
    if (op_type == "skip_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the skip_layernorm does not support static shape yet";
        return false;
      }
    }

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
    if (op_type == "preln_skip_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the preln_skip_layernorm does not support static shape yet";
        return false;
      }
      if (!desc.HasAttr("enable_int8")) {
        VLOG(3) << "PrelnEmbEltwiseLayerNormOp must use int8 mode.";
        return false;
      }
    }

2003 2004 2005 2006 2007
    if (op_type == "multihead_matmul") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the multihead_matmul does not support static shape yet";
        return false;
      }
2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

      if (desc.HasAttr("enable_int8") && !desc.HasAttr("Input_scale")) {
        VLOG(3) << "Multihead layers must have input scale in int8 mode.";
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto* input_desc = block->FindVar(desc.Input("Input").front());
      const auto input_shape = input_desc->GetShape();
      const auto head_number =
R
Ruibiao Chen 已提交
2024
          PADDLE_GET_CONST(int, desc.GetAttr("head_number"));
F
feng_shuai 已提交
2025 2026 2027 2028 2029 2030 2031 2032 2033
      auto inputs = desc.Inputs();
      bool has_bias_qk = (inputs.find("BiasQK") == inputs.end()) ? false : true;
      if (has_bias_qk) {
        auto* biasqk_desc = block->FindVar(desc.Input("BiasQK").front());
        const auto biasqk_shape = biasqk_desc->GetShape();
        // The BiasQK's shape requires to be
        // [batch, 1, 1, length] or [batch, head, length, length].
        bool has_same_shape = head_number == biasqk_shape[1] &&
                              input_shape[1] == biasqk_shape[2] &&
2034
                              input_shape[1] == biasqk_shape[3];
F
feng_shuai 已提交
2035 2036
        bool is_broadcastable = biasqk_shape[1] == 1 && biasqk_shape[2] == 1 &&
                                input_shape[1] == biasqk_shape[3];
2037 2038 2039 2040
        is_broadcastable =
            is_broadcastable || (biasqk_shape[0] == 1 && biasqk_shape[1] == 1 &&
                                 input_shape[1] == biasqk_shape[2] &&
                                 input_shape[1] == biasqk_shape[3]);
F
feng_shuai 已提交
2041 2042
        if (!(has_same_shape || is_broadcastable)) {
          VLOG(3) << "The BiasQK's shape is invalid, expect [" << input_shape[0]
2043 2044 2045 2046 2047 2048 2049
                  << ", 1, 1, " << input_shape[1] << "] "
                  << "or [" << input_shape[0] << ", " << head_number << ", "
                  << input_shape[1] << ", " << input_shape[1] << "] "
                  << "or [" << input_shape[0] << "/1, " << 1 << ", "
                  << input_shape[1] << ", " << input_shape[1] << "] "
                  << "but got [" << biasqk_shape[0] << ", " << biasqk_shape[1]
                  << ", " << biasqk_shape[2] << ", " << biasqk_shape[3] << "].";
F
feng_shuai 已提交
2050 2051 2052
          return false;
        }
      } else {
2053 2054 2055
#if (IS_TRT_VERSION_GE(8000) && IS_TRT_VERSION_LT(8100)) || \
    (IS_TRT_VERSION_LT(7200))
        VLOG(3) << "There are some bugs with trt 8.0";
2056
        return false;
F
feng_shuai 已提交
2057
#endif
2058
      }
2059 2060
    }

2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
    if (op_type == "multihead_matmul_roformer") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the multihead_matmul_roformer does not support static "
                   "shape yet";
        return false;
      }

      if (desc.HasAttr("enable_int8") && !desc.HasAttr("Input_scale")) {
        VLOG(3) << "Multihead layers must have input scale in int8 mode.";
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto* input_desc = block->FindVar(desc.Input("Input").front());
      const auto input_shape = input_desc->GetShape();
      const auto head_number =
          PADDLE_GET_CONST(int, desc.GetAttr("head_number"));
      auto inputs = desc.Inputs();
      bool has_bias_qk = (inputs.find("BiasQK") == inputs.end()) ? false : true;
      if (has_bias_qk) {
        auto* biasqk_desc = block->FindVar(desc.Input("BiasQK").front());
        const auto biasqk_shape = biasqk_desc->GetShape();
        // The BiasQK's shape requires to be
        // [batch, 1, 1, length] or [batch, head, length, length].
        bool has_same_shape = head_number == biasqk_shape[1] &&
                              input_shape[1] == biasqk_shape[2] &&
                              input_shape[1] == biasqk_shape[3];
        bool is_broadcastable = biasqk_shape[1] == 1 && biasqk_shape[2] == 1 &&
                                input_shape[1] == biasqk_shape[3];
        if (!(has_same_shape || is_broadcastable)) {
          VLOG(3) << "The BiasQK's shape is invalid, expect [" << input_shape[0]
                  << ", 1, 1, " << input_shape[1] << "] or [" << input_shape[0]
                  << ", " << head_number << ", " << input_shape[1] << ", "
                  << input_shape[1] << "] but [" << biasqk_shape[0] << ", "
                  << biasqk_shape[1] << ", " << biasqk_shape[2] << ", "
                  << biasqk_shape[3] << "].";
          return false;
        }
      } else {
#if !IS_TRT_VERSION_GE(8000)
        VLOG(3) << "The version of TRT must be greater than 8000";
        return false;
#endif
      }
    }

W
Wangzheee 已提交
2113 2114 2115
    if (op_type == "reshape" || op_type == "reshape2") {
      if (!desc.HasAttr("shape")) {
        return false;
W
Wilber 已提交
2116
      }
2117 2118 2119 2120
      if (with_dynamic_shape) {
        return true;
      }
      // Static shape does not support the input tensors: Shape and ShapeTensor
2121
      auto reshape_inputs = desc.Inputs();
2122
      if (reshape_inputs.find("Shape") != reshape_inputs.end()) {
2123
        if (!desc.Input("Shape").empty()) {
2124 2125 2126 2127
          return false;
        }
      }
      if (reshape_inputs.find("ShapeTensor") != reshape_inputs.end()) {
2128
        if (!desc.Input("ShapeTensor").empty()) {
2129 2130
          return false;
        }
W
Wangzheee 已提交
2131
      }
W
Wilber 已提交
2132
      std::vector<int> shape =
R
Ruibiao Chen 已提交
2133
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("shape"));
W
Wilber 已提交
2134
      if (shape.size() >= nvinfer1::Dims::MAX_DIMS) return false;
X
xiaoxiaohehe001 已提交
2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145
      if (!with_dynamic_shape) {
        if (shape.size() == 1) {
          return false;
        }
        if (shape[0] == 0) {
          return true;
        } else {
          auto* block = desc.Block();
          auto x_var_name = desc.Input("X")[0];
          auto* x_var_desc = block->FindVar(x_var_name);
          const auto x_shape = x_var_desc->GetShape();
C
ccrrong 已提交
2146 2147 2148 2149
          int input_num = std::accumulate(
              x_shape.begin() + 1, x_shape.end(), 1, std::multiplies<int>());
          int shape_num = std::accumulate(
              shape.begin() + 1, shape.end(), 1, std::multiplies<int>());
X
xiaoxiaohehe001 已提交
2150 2151 2152 2153
          if (input_num == shape_num) {
            return true;
          }
        }
2154
        return false;
X
xiaoxiaohehe001 已提交
2155
      }
W
Wangzheee 已提交
2156
    }
2157

2158 2159 2160 2161
    if (op_type == "clip") {
      // Paddle-TRT does not support the input tensors: Min and Max
      auto clip_inputs = desc.Inputs();
      if (clip_inputs.find("Min") != clip_inputs.end()) {
2162
        if (!desc.Input("Min").empty()) {
2163 2164 2165 2166
          return false;
        }
      }
      if (clip_inputs.find("Max") != clip_inputs.end()) {
2167
        if (!desc.Input("Max").empty()) {
2168 2169 2170 2171 2172
          return false;
        }
      }

      auto* block = desc.Block();
2173 2174 2175 2176 2177 2178
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
2179 2180 2181
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
2182
      if (!with_dynamic_shape && (x_shape.size() == 1 || x_shape.empty())) {
2183 2184 2185 2186 2187
        VLOG(3) << op_type
                << " op does not support input's dim is 1 or 0 in tensorrt "
                   "static shape mode.";
        return false;
      }
2188 2189
    }

2190
    if (op_type == "reduce_sum" || op_type == "reduce_mean" ||
2191
        op_type == "reduce_max" || op_type == "reduce_min" ||
2192 2193
        op_type == "reduce_prod" || op_type == "reduce_any" ||
        op_type == "reduce_all") {
2194 2195 2196 2197 2198 2199 2200
      if (!desc.HasAttr("dim", /*with_attr_var=*/false)) {
        VLOG(3) << "Skip to convert into TRT while found Attribute('dim') is "
                   "Variable type in "
                << desc.Type();
        return false;
      }

2201 2202
      if (!(desc.HasAttr("keep_dim") && desc.HasAttr("dim") &&
            desc.HasAttr("reduce_all"))) {
W
wenbin 已提交
2203 2204
        VLOG(3) << "the " << op_type
                << " does not have attr (keep_dim or dim or "
2205
                   "reduce_all)";
2206 2207 2208 2209 2210 2211 2212 2213
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
2214 2215
        return false;
      }
W
wenbin 已提交
2216 2217

      // The batch size dimension cannot be reduced if it's not dynamic shape.
2218
      auto* x_var_desc = block->FindVar(desc.Input("X")[0]);
W
wenbin 已提交
2219
      if (!with_dynamic_shape) {
R
Ruibiao Chen 已提交
2220
        if (PADDLE_GET_CONST(bool, desc.GetAttr("reduce_all"))) return false;
W
wenbin 已提交
2221
        std::vector<int32_t> dim =
R
Ruibiao Chen 已提交
2222
            PADDLE_GET_CONST(std::vector<int32_t>, desc.GetAttr("dim"));
2223
        const auto input_shape = x_var_desc->GetShape();
W
wenbin 已提交
2224
        for (auto x : dim) {
2225
          if (x == 0 || (x + input_shape.size() == 0)) return false;
W
wenbin 已提交
2226
        }
2227

2228
      } else {
R
Ruibiao Chen 已提交
2229 2230
        if (PADDLE_GET_CONST(bool, desc.GetAttr("reduce_all")) &&
            !PADDLE_GET_CONST(bool, desc.GetAttr("keep_dim")))
2231 2232
          return false;
      }
2233 2234

      auto dtype = x_var_desc->GetDataType();
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253
      if (op_type == "reduce_all" || op_type == "reduce_any") {
        if (dtype != framework::proto::VarType::BOOL) {
          VLOG(3)
              << "reduce_all and reduce_any op input data type must be bool";
          return false;
        }
      } else {
#if IS_TRT_VERSION_GE(7000)
        if (dtype != framework::proto::VarType::INT32 &&
            dtype != framework::proto::VarType::FP32) {
          VLOG(3) << "reduce op input data type must be int32 or float32";
          return false;
        }
#else
        if (dtype != framework::proto::VarType::FP32) {
          VLOG(3) << "reduce op input data type must be float32 using TensorRT "
                     "< 7.0";
          return false;
        }
2254
#endif
2255
      }
2256
    }
W
wenbin 已提交
2257 2258 2259
#if IS_TRT_VERSION_GE(7000)
    if (op_type == "tile") {
      // Paddle-TRT does not support the input tensors.
2260
      auto tile_inputs = desc.Inputs();
2261 2262
      if (!with_dynamic_shape) {
        if (tile_inputs.find("repeat_times_tensor") != tile_inputs.end()) {
2263
          if (!desc.Input("repeat_times_tensor").empty()) {
2264 2265
            return false;
          }
2266
        }
2267
        if (tile_inputs.find("RepeatTimes") != tile_inputs.end()) {
2268
          if (!desc.Input("RepeatTimes").empty()) {
2269 2270
            return false;
          }
2271
        }
2272
        if (!desc.HasAttr("repeat_times")) return false;
W
wenbin 已提交
2273 2274 2275
      }
    }
#endif
2276

2277 2278 2279 2280 2281
    // conv3d_transpose
    if (op_type == "conv3d_transpose") {
      // trt doen't support output_padding when < 8406
      // output_padding is usually set when stride > 1
#if !IS_TRT_VERSION_GE(8400)
2282 2283
      if (desc.HasAttr("output_padding")) {
        const std::vector<int> output_padding =
R
Ruibiao Chen 已提交
2284
            PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("output_padding"));
2285 2286 2287 2288 2289 2290
        if (output_padding.size() > 0) {
          int max_padding =
              *std::max_element(output_padding.begin(), output_padding.end());
          if (max_padding > 0) return false;
        }
      }
2291
#endif
2292 2293
    }

W
wenbin 已提交
2294 2295 2296
    if (op_type == "conv3d" || op_type == "conv3d_transpose") {
      if (desc.HasAttr("padding_algorithm")) {
        std::string padding_algorithm =
R
Ruibiao Chen 已提交
2297
            PADDLE_GET_CONST(std::string, desc.GetAttr("padding_algorithm"));
W
wenbin 已提交
2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311

        // trt error is arised if conv3d_transpose and SAME
        if (op_type == "conv3d_transpose" && padding_algorithm == "SAME" &&
            !with_dynamic_shape) {
          return false;
        }
      }

#if !IS_TRT_VERSION_GE(7000)
      // looks like some issues with trt6.0
      if (with_dynamic_shape) {
        return false;
      }
#endif
2312

W
wenbin 已提交
2313
      std::vector<int> paddings =
R
Ruibiao Chen 已提交
2314
          PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("paddings"));
W
wenbin 已提交
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335

      // conv3d and conv3d_transpose need padding check
      if (paddings.size() > 3) return false;

      if (desc.Input("Input").size() != 1) {
        VLOG(3) << "TRT Conv3d expect 1 input, but got "
                << desc.Input("Input").size() << " input.";
        return false;
      }

      if (desc.Input("Filter").size() != 1) {
        VLOG(3) << "TRT Conv3d expect 1 filter, but got "
                << desc.Input("Filter").size() << " filter.";
        return false;
      }

      if (op_type == "conv3d_transpose") {
        if (!desc.HasAttr("dilations")) {
          return false;
        } else {
          const std::vector<int> dilations =
R
Ruibiao Chen 已提交
2336
              PADDLE_GET_CONST(std::vector<int>, desc.GetAttr("dilations"));
W
wenbin 已提交
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
          if (dilations[0] != 1 || dilations[1] != 1 || dilations[2] != 1) {
            VLOG(3) << "In conv3d_transpose, Dilations must be (1, 1, 1) for "
                       "tensorRT, but given ("
                    << dilations[0] << ", " << dilations[1] << ", "
                    << dilations[2] << ")";
            return false;
          }
        }
      }

      if (desc.Output("Output").size() != 1) {
        VLOG(3) << "TRT Conv3d expect 1 output, but got "
                << desc.Output("Output").size() << " output.";
        return false;
      }
    }

C
ccrrong 已提交
2354
    if (op_type == "cast") {
Z
zhoutianzi666 已提交
2355 2356 2357 2358
// trt 6015 result in Windows ppyolo_mbv3 TRT fp32 diff
#if !IS_TRT_VERSION_GE(7000)
      return false;
#endif
C
ccrrong 已提交
2359 2360 2361 2362 2363 2364
      if (!(desc.HasAttr("in_dtype") && desc.HasAttr("out_dtype"))) {
        VLOG(3) << "the " << op_type
                << " does not have attr (in_dtype or "
                   "out_dtype)";
        return false;
      }
R
Ruibiao Chen 已提交
2365 2366
      int in_dtype = PADDLE_GET_CONST(int, desc.GetAttr("in_dtype"));
      int out_dtype = PADDLE_GET_CONST(int, desc.GetAttr("out_dtype"));
2367

2368
      if (in_dtype == 0 || out_dtype == 0) {
2369
#if IS_TRT_VERSION_GE(8400)
2370 2371 2372 2373 2374 2375
        if (with_dynamic_shape) {
          VLOG(3) << "the cast op supports inputs and outputs of BOOL by "
                     "trt8.4 above ";
          return true;
        }
#endif
C
ccrrong 已提交
2376 2377
        return false;
      }
2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
2388
      if (!with_dynamic_shape && (x_shape.size() == 1 || x_shape.empty())) {
2389 2390 2391 2392 2393
        VLOG(3) << op_type
                << " op does not support input's dim is 1 or 0 in tensorrt "
                   "static shape mode.";
        return false;
      }
C
ccrrong 已提交
2394 2395
    }

X
xjmxyt 已提交
2396 2397 2398 2399
    if (op_type == "set_value") {
#if !IS_TRT_VERSION_GE(8200)
      return false;
#endif
2400 2401
      auto inputs = desc.Inputs();
      if (inputs.find("StartsTensorList") != inputs.end()) {
2402
        if (!desc.Input("StartsTensorList").empty()) {
2403 2404 2405 2406
          return false;
        }
      }
      if (inputs.find("EndsTensorList") != inputs.end()) {
2407
        if (!desc.Input("EndsTensorList").empty()) {
2408 2409 2410 2411
          return false;
        }
      }
      if (inputs.find("StepsTensorList") != inputs.end()) {
2412
        if (!desc.Input("StepsTensorList").empty()) {
2413 2414 2415
          return false;
        }
      }
X
xjmxyt 已提交
2416 2417 2418 2419 2420 2421 2422 2423 2424
      if (!(desc.HasAttr("axes") && desc.HasAttr("starts") &&
            desc.HasAttr("steps"))) {
        VLOG(3) << "the " << op_type
                << " does not have attr (axes or "
                   "starts or steps)";
        return false;
      }
    }

2425 2426
    if (op_type == "top_k_v2" || op_type == "top_k") {
      if (desc.HasAttr("axis")) {
R
Ruibiao Chen 已提交
2427
        int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
2428
        if (!with_dynamic_shape && axis == 0) {
2429
          VLOG(3) << "top_k_v2 does not support axis == 0 in "
2430
                     "tensorrt static shape.";
2431 2432 2433 2434
          return false;
        }
      }
      if (desc.HasAttr("sorted")) {
R
Ruibiao Chen 已提交
2435
        bool sorted = PADDLE_GET_CONST(bool, desc.GetAttr("sorted"));
2436
        if (!sorted) {
2437 2438
          VLOG(3) << op_type
                  << " does not support results not sorted in "
2439 2440 2441 2442 2443 2444
                     "tensorrt";
          return false;
        }
      }
    }

2445 2446 2447 2448 2449 2450 2451 2452 2453 2454
#if IS_TRT_VERSION_GE(8000)
    if (op_type == "sparse_fc" || op_type == "sparse_multihead_matmul") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the sparse_fc and sparse_multihead_matmul does not support "
                   "static shape yet";
        return false;
      }
    }
#endif

S
Sanbu 已提交
2455
    if (op_type == "equal" || op_type == "not_equal") {
C
ccrrong 已提交
2456
#if !IS_TRT_VERSION_GE(8000)
2457
      VLOG(3) << "equal is not supported when TensorRT < 8.0";
C
ccrrong 已提交
2458 2459
      return false;
#else
2460 2461 2462 2463 2464 2465
      // TRT does not support kEQUAL/kGREATER/kLESS work with implicit batch
      if (!with_dynamic_shape) {
        VLOG(3) << "the equal does not support "
                   "static shape yet";
        return false;
      }
2466 2467 2468
      if (!desc.HasAttr("axis")) {
        return false;
      }
R
Ruibiao Chen 已提交
2469
      int axis = PADDLE_GET_CONST(int, desc.GetAttr("axis"));
C
ccrrong 已提交
2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482
      if (axis == 0) {
        return false;
      }
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
#endif
    }

W
wenbin 已提交
2483 2484 2485 2486 2487 2488 2489
    if (op_type == "layernorm_shift_partition") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the layernorm_shift_partition does not support "
                   "static shape yet";
        return false;
      }
    }
W
wenbin 已提交
2490 2491 2492 2493 2494 2495 2496 2497 2498

    if (op_type == "preln_layernorm_shift_partition") {
      if (!with_dynamic_shape) {
        VLOG(3) << "the layernorm_shift_partition does not support "
                   "static shape yet";
        return false;
      }
    }

W
Wang Bojun 已提交
2499 2500 2501 2502 2503 2504 2505
    if (op_type == "merge_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The merge_layernorm op does not support "
                   "static shape yet";
        return false;
      }
    }
W
wenbin 已提交
2506

W
Wang Bojun 已提交
2507 2508 2509 2510 2511 2512 2513
    if (op_type == "reverse_roll") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The reverse roll fused op does not support static shape "
                   "mode yet.";
        return false;
      }
    }
W
wenbin 已提交
2514 2515 2516 2517 2518 2519 2520 2521
    if (op_type == "skip_merge_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The merge_layernorm op does not support "
                   "static shape yet";
        return false;
      }
    }

W
wenbin 已提交
2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536
    if (op_type == "skip_groupnorm_act") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The skip_groupnorm_act op does not support "
                   "static shape yet";
        return false;
      }
    }

    if (op_type == "preln_groupnorm_act") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The preln_groupnorm_act op does not support "
                   "static shape yet";
        return false;
      }
    }
2537 2538 2539 2540 2541 2542 2543
    if (op_type == "trans_layernorm") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The trans_layernorm op does not support "
                   "static shape yet";
        return false;
      }
    }
2544 2545 2546 2547 2548 2549 2550
    if (op_type == "fuse_eleadd_transpose") {
      if (!with_dynamic_shape) {
        VLOG(3) << "The fuse_eleadd_transpose op does not support "
                   "static shape yet";
        return false;
      }
    }
2551
    if (op_type == "lookup_table" || op_type == "lookup_table_v2") {
2552 2553 2554 2555 2556 2557 2558
      if (!with_dynamic_shape) {
        VLOG(3) << "the lookup_table does not support "
                   "static shape yet";
        return false;
      }
    }

2559
    if (op_type == "expand_as_v2" || op_type == "expand_v2") {
2560
      if (!with_dynamic_shape) {
2561 2562 2563
        VLOG(3) << "the " << op_type
                << "does not support "
                   "static shape yet";
2564 2565
        return false;
      }
2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587

      auto inputs = desc.Inputs();
      if (op_type == "expand_as_v2") {
        if (!desc.HasAttr("target_shape") && inputs.find("Y") == inputs.end()) {
          VLOG(3)
              << "expand_as_v2 op need have input(Y) or attr(target_shape). ";
          return false;
        }
      } else if (op_type == "expand_v2") {
        if (!desc.HasAttr("shape") && inputs.find("Shape") == inputs.end() &&
            inputs.find("expand_shapes_tensor") == inputs.end()) {
          VLOG(3) << "expand_v2 op need have input(Shape) or "
                     "input(expand_shapes_tensor) or attr(shape) . ";
          return false;
        }
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
2588 2589
        return false;
      }
2590 2591 2592 2593 2594 2595 2596 2597 2598

#if IS_TRT_VERSION_LT(8000)
      auto x_var_name = desc.Input("X")[0];
      auto* x_var_desc = block->FindVar(x_var_name);
      const auto x_shape = x_var_desc->GetShape();
      if (x_shape.size() == 0) {
        return false;  // not supported 0 dim.
      }
#endif
2599 2600
    }

2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642
    if (op_type == "grid_sampler") {
#if !IS_TRT_VERSION_GE(8510)
      VLOG(3) << "grid_sampler is not supported when TensorRT < 8.5.1";
      return false;
#else
      if (!with_dynamic_shape) {
        VLOG(3) << "the grid_sampler does not support "
                   "static shape yet";
        return false;
      }

      if (!desc.HasAttr("mode") || !desc.HasAttr("padding_mode") ||
          !desc.HasAttr("align_corners")) {
        VLOG(3) << "grid_sampler need attributes : mode, padding_mode, "
                   "align_corners";
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto input_name = desc.Input("X")[0];
      auto* input_desc = block->FindVar(input_name);
      const auto input_shape = input_desc->GetShape();

      auto grid_name = desc.Input("Grid")[0];
      auto* grid_desc = block->FindVar(grid_name);
      const auto grid_shape = grid_desc->GetShape();

      if (input_shape.size() != 4 || grid_shape.size() != 4) {
        VLOG(3) << "The input and grid tensors must be shape tensors of rank 4 "
                   "using TRT GridSample layer.";
        return false;
      }

#endif
    }

2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661
    if (op_type == "cumsum") {
#if !IS_TRT_VERSION_GE(7220)
      VLOG(3) << "cumsum is not supported when TensorRT < 7.2.2";
      return false;
#endif
      if (!with_dynamic_shape) {
        VLOG(3) << "the cumsum does not support "
                   "static shape yet";
        return false;
      }
      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
    }

2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697
    if (op_type == "temporal_shift") {
#if !IS_TRT_VERSION_GE(8200)
      VLOG(3) << "temporal_shift is not supported when TensorRT < 8.2";
      return false;
#endif

      if (!with_dynamic_shape) {
        VLOG(3) << "the temporal shift does not support "
                   "static shape yet";
        return false;
      }

      if (!desc.HasAttr("shift_ratio") || !desc.HasAttr("seg_num")) {
        VLOG(3) << "temporal shift need attributes : shift_ratio and seg_num";
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }

      auto input_name = desc.Input("X")[0];
      auto* input_desc = block->FindVar(input_name);
      const auto input_shape = input_desc->GetShape();

      if (input_shape.size() != 4) {
        VLOG(3) << "The input and grid tensors must be shape tensors of rank 4 "
                   "using TRT TemporalShift layer.";
        return false;
      }
    }

2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730
    if (op_type == "einsum") {
#if !IS_TRT_VERSION_GE(8200)
      VLOG(3) << "einsum is not supported when TensorRT < 8.2";
      return false;
#else
      if (!with_dynamic_shape) {
        VLOG(3) << "the einsum does not support "
                   "static shape yet";
        return false;
      }
      auto operand_inputs = desc.Input("Operands");
      if (operand_inputs.size() > 2) {
        VLOG(3) << "TensorRT currently supports up to 2 input tensors"
                << "to einsum but operation had" << operand_inputs.size()
                << "input tensors !";
        return false;
      }

      auto* block = desc.Block();
      if (block == nullptr) {
        VLOG(3) << "The block desc is nullptr, we can't continue to analyze. "
                   "Developers need to check whether block_desc is passed in "
                   "the pass.";
        return false;
      }
      auto equation = PADDLE_GET_CONST(std::string, desc.GetAttr("equation"));
      if (equation.find("...") != std::string::npos) {
        VLOG(3) << "TensorRT currently does not support ellipses !";
        return false;
      }
#endif
    }

W
weishengying 已提交
2731 2732 2733 2734 2735
    if (use_no_calib_int8) {
      return int8_teller_set.count(op_type);
    } else {
      return teller_set.count(op_type);
    }
2736
  }
W
wenbin 已提交
2737

W
weishengying 已提交
2738 2739 2740
 private:
  // use this set for no calib int8.
  std::unordered_set<std::string> int8_teller_set{
2741
      "matrix_multiply",
2742
      "bmm",
2743
      "range",
W
weishengying 已提交
2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
      "conv2d",
      "conv2d_fusion",
      "pool2d",
      "relu",
      "elu",
      "selu",
      "softsign",
      "softplus",
      "stanh",
      "thresholded_relu",
      "exp",
      "log",
      "sqrt",
      "abs",
      "sin",
      "cos",
      "tan",
      "sinh",
      "cosh",
      "asin",
      "acos",
      "atan",
      "asinh",
2767
      "acosh",
W
weishengying 已提交
2768 2769 2770
      "atanh",
      "ceil",
      "floor",
G
gem5 已提交
2771
      "rsqrt",
2772
      "sign",
G
gem5 已提交
2773
      "reciprocal",
2774
      "logical_not",
W
weishengying 已提交
2775
      "erf",
2776
      "square",
W
weishengying 已提交
2777 2778 2779 2780 2781 2782 2783
      "softmax",
      "sigmoid",
      "hard_swish",
      "depthwise_conv2d",
      "batch_norm",
      "concat",
      "tanh",
2784
      "pad3d",
W
weishengying 已提交
2785 2786 2787 2788 2789 2790
      "pad",
      "elementwise_add",
      "elementwise_sub",
      "elementwise_mul",
      "elementwise_div",
      "elementwise_pow",
2791 2792
      "elementwise_min",
      "elementwise_max",
W
wenbin 已提交
2793
      "elementwise_floordiv",
2794
      "elementwise_mod",
W
weishengying 已提交
2795
      "equal",
S
Sanbu 已提交
2796
      "not_equal",
2797 2798 2799 2800 2801 2802
      "less_than",
      "greater_than",
      "logical_or",
      "logical_xor",
      "logical_and",
      "less_equal",
2803
      "greater_equal",
W
weishengying 已提交
2804
      "dropout",
2805
      "fill_any_like",
W
weishengying 已提交
2806 2807 2808 2809 2810
      "prelu",
      "conv2d_transpose",
      "depthwise_conv2d_transpose",
      "leaky_relu",
      "shuffle_channel",
2811
      "where",
2812
      "bitwise_not",
2813 2814
      "one_hot",
      "one_hot_v2",
W
weishengying 已提交
2815 2816
      "swish",
      "silu",
2817
      "celu",
W
weishengying 已提交
2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
      "split",
      "instance_norm",
      "gelu",
      "layer_norm",
      "scale",
      "stack",
      "transpose2",
      "transpose",
      "top_k",
      "top_k_v2",
      "flatten2",
      "flatten",
      "gather",
      "gather_nd",
X
xiaoxiaohehe001 已提交
2832
      "group_norm",
W
weishengying 已提交
2833 2834 2835
      "yolo_box",
      "yolo_box_head",
      "arg_max",
2836
      "arg_min",
W
weishengying 已提交
2837 2838 2839 2840
      "roi_align",
      "affine_channel",
      "nearest_interp",
      "anchor_generator",
2841
      "reduce_max",
2842
      "reduce_min",
W
weishengying 已提交
2843
      "reduce_mean",
2844
      "reduce_sum",
2845 2846 2847
      "reduce_prod",
      "reduce_any",
      "reduce_all",
W
weishengying 已提交
2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859
      "conv3d",
      "conv3d_transpose",
      "mish",
      "nearest_interp_v2",
      "bilinear_interp_v2",
      "pool3d",
      "deformable_conv",
      "relu6",
      "hard_sigmoid",
      "clip",
      "fused_embedding_eltwise_layernorm",
      "multihead_matmul",
2860
      "multihead_matmul_roformer",
W
weishengying 已提交
2861 2862 2863 2864
      "skip_layernorm",
      "slice",
      "strided_slice",
      "fused_preln_embedding_eltwise_layernorm",
W
Wang Bojun 已提交
2865
      "fused_bias_dropout_residual_layer_norm",
W
weishengying 已提交
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880
      "c_allreduce_sum",
      "c_allreduce_min",
      "c_allreduce_max",
      "c_allreduce_prod",
      "roll",
      "cast",
      "preln_skip_layernorm",
      "transformer_input_convert",
      "recover_padding",
      "remove_padding",
      "fill_constant",
      "sum",
      "shape",
      "squeeze2",
      "unsqueeze2",
2881
      "layernorm_shift_partition",
W
Wang Bojun 已提交
2882
      "reverse_roll",
2883
      "take_along_axis",
2884 2885
      "tanh_shrink",
      "logsigmoid",
W
wenbin 已提交
2886
      "preln_layernorm_shift_partition",
2887
      "lookup_table",
2888
      "lookup_table_v2",
2889
      "trans_layernorm",
W
wenbin 已提交
2890 2891
      "merge_layernorm",
      "skip_merge_layernorm",
W
wenbin 已提交
2892
      "expand_v2",
2893
      "expand_as_v2",
2894
      "fuse_eleadd_transpose",
W
wenbin 已提交
2895
      "skip_groupnorm_act",
2896
      "preln_groupnorm_act",
2897
      "temporal_shift",
2898
      "grid_sampler",
M
ming1753 已提交
2899 2900
      "cumsum",
      "assign"};
W
wenbin 已提交
2901

W
weishengying 已提交
2902
  std::unordered_set<std::string> teller_set{
2903
      "matrix_multiply",
2904
      "bmm",
2905
      "range",
W
weishengying 已提交
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928
      "conv2d",
      "conv2d_fusion",
      "pool2d",
      "relu",
      "elu",
      "selu",
      "softsign",
      "softplus",
      "stanh",
      "thresholded_relu",
      "exp",
      "log",
      "sqrt",
      "abs",
      "sin",
      "cos",
      "tan",
      "sinh",
      "cosh",
      "asin",
      "acos",
      "atan",
      "asinh",
2929
      "acosh",
W
weishengying 已提交
2930 2931 2932
      "atanh",
      "ceil",
      "floor",
G
gem5 已提交
2933
      "rsqrt",
2934
      "sign",
G
gem5 已提交
2935
      "reciprocal",
2936
      "logical_not",
W
weishengying 已提交
2937
      "erf",
2938
      "square",
W
weishengying 已提交
2939 2940 2941 2942 2943 2944 2945
      "softmax",
      "sigmoid",
      "hard_swish",
      "depthwise_conv2d",
      "batch_norm",
      "concat",
      "tanh",
2946
      "pad3d",
W
weishengying 已提交
2947 2948 2949 2950 2951 2952
      "pad",
      "elementwise_add",
      "elementwise_sub",
      "elementwise_mul",
      "elementwise_div",
      "elementwise_pow",
W
Wilber 已提交
2953
      "pow",
2954 2955
      "elementwise_min",
      "elementwise_max",
W
wenbin 已提交
2956
      "elementwise_floordiv",
2957
      "elementwise_mod",
W
weishengying 已提交
2958
      "equal",
S
Sanbu 已提交
2959
      "not_equal",
2960 2961 2962 2963 2964 2965
      "less_than",
      "greater_than",
      "logical_or",
      "logical_xor",
      "logical_and",
      "less_equal",
2966
      "greater_equal",
W
weishengying 已提交
2967
      "dropout",
2968
      "fill_any_like",
W
weishengying 已提交
2969 2970 2971 2972 2973
      "prelu",
      "conv2d_transpose",
      "depthwise_conv2d_transpose",
      "leaky_relu",
      "shuffle_channel",
2974
      "where",
2975
      "bitwise_not",
2976 2977
      "one_hot",
      "one_hot_v2",
W
weishengying 已提交
2978 2979
      "swish",
      "silu",
2980
      "celu",
W
weishengying 已提交
2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997
      "split",
      "instance_norm",
      "gelu",
      "layer_norm",
      "scale",
      "stack",
      "transpose2",
      "transpose",
      "top_k",
      "top_k_v2",
      "flatten2",
      "flatten",
      "gather",
      "gather_nd",
      "yolo_box",
      "yolo_box_head",
      "arg_max",
2998
      "arg_min",
W
weishengying 已提交
2999 3000 3001 3002
      "roi_align",
      "affine_channel",
      "nearest_interp",
      "anchor_generator",
3003
      "reduce_max",
3004
      "reduce_min",
W
weishengying 已提交
3005
      "reduce_mean",
3006
      "reduce_sum",
3007 3008 3009
      "reduce_prod",
      "reduce_any",
      "reduce_all",
W
weishengying 已提交
3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021
      "conv3d",
      "conv3d_transpose",
      "mish",
      "bilinear_interp_v2",
      "nearest_interp_v2",
      "pool3d",
      "deformable_conv",
      "relu6",
      "hard_sigmoid",
      "clip",
      "fused_embedding_eltwise_layernorm",
      "multihead_matmul",
3022
      "multihead_matmul_roformer",
W
weishengying 已提交
3023 3024 3025 3026 3027
      "skip_layernorm",
      "slice",
      "strided_slice",
      "fused_preln_embedding_eltwise_layernorm",
      "preln_skip_layernorm",
W
Wang Bojun 已提交
3028
      "fused_bias_dropout_residual_layer_norm",
W
weishengying 已提交
3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043
      "c_allreduce_sum",
      "c_allreduce_min",
      "c_allreduce_max",
      "c_allreduce_prod",
      "roll",
      "cast",
      "transformer_input_convert",
      "recover_padding",
      "remove_padding",
      "fill_constant",
      "sum",
      "shape",
      "squeeze2",
      "unsqueeze2",
      "fused_token_prune",
3044
      "layernorm_shift_partition",
W
Wang Bojun 已提交
3045
      "reverse_roll",
3046
      "tanh_shrink",
3047
      "take_along_axis",
3048
      "logsigmoid",
W
wenbin 已提交
3049
      "preln_layernorm_shift_partition",
3050
      "trans_layernorm",
W
Wang Bojun 已提交
3051
      "merge_layernorm",
W
wenbin 已提交
3052
      "skip_merge_layernorm",
3053
      "lookup_table",
3054
      "lookup_table_v2",
W
wenbin 已提交
3055
      "expand_v2",
3056
      "expand_as_v2",
3057
      "fuse_eleadd_transpose",
W
wenbin 已提交
3058
      "skip_groupnorm_act",
3059
      "preln_groupnorm_act",
3060
      "temporal_shift",
3061
      "grid_sampler",
M
ming1753 已提交
3062 3063
      "cumsum",
      "assign"};
W
weishengying 已提交
3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076
};

struct GenericPluginTeller : public Teller {
 public:
  GenericPluginTeller() {}
  bool operator()(const framework::OpDesc& desc,
                  bool use_no_calib_int8 = false,
                  bool with_dynamic_shape = false) override {
    const std::string op_type = desc.Type();
    // only consider dynamic_shape mode
    if (!with_dynamic_shape) {
      return false;
    }
3077 3078 3079 3080
    if (op_type == "yolo_box") {
      if (!desc.HasAttr("iou_aware") && !desc.HasAttr("iou_aware_factor"))
        return false;
    }
W
weishengying 已提交
3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138
    if (use_no_calib_int8) {
      return false;
    } else {
      framework::InitDefaultKernelSignatureMap();
      bool res = phi::OpUtilsMap::Instance().HasArgumentMappingFn(op_type) ||
                 phi::DefaultKernelSignatureMap::Instance().Has(op_type);
      if (!res) {
        VLOG(3) << op_type << " has no KernelSignature";
        return false;
      }
      res = phi::KernelFactory::Instance().HasCompatiblePhiKernel(op_type);
      if (!res) {
        VLOG(3) << op_type << " has no CompatiblePhiKernel in phi.";
        return false;
      }
      auto& dynamic_infermeta_factory =
          tensorrt::DynamicMetaFnFactory::Instance();
      res = dynamic_infermeta_factory.Contains(op_type);
      if (!res) {
        VLOG(3) << op_type << " has no DynamicMetaFn.";
        return false;
      }
      return true;
    }
  }
};

struct CustomPluginTeller : public Teller {
 public:
  CustomPluginTeller() {}
  bool operator()(const framework::OpDesc& desc,
                  bool use_no_calib_int8 = false,
                  bool with_dynamic_shape = false) override {
    const std::string op_type = desc.Type();
    std::string expect_plugin_name;

    if (with_dynamic_shape) {
      expect_plugin_name = op_type + "_paddle_trt_dynamic_plugin";
    } else {
      expect_plugin_name = op_type + "_paddle_trt_plugin";
    }

    int num = 0;
    auto creators = GetPluginRegistry()->getPluginCreatorList(&num);

    for (int i = 0; i < num; i++) {
      if (std::string(creators[i]->getPluginName()) == expect_plugin_name)
        return true;
    }
    return false;
  }
};

bool OpTeller::Tell(const framework::ir::Node* node,
                    bool use_no_calib_int8,
                    bool with_dynamic_shape) {
  const std::string op_type = node->Op()->Type();
  const framework::OpDesc desc = *node->Op();
W
Wangzheee 已提交
3139 3140 3141 3142 3143 3144
  // do not support the op which is labeled the `skip_quant`
  if ((desc.HasAttr("namescope") &&
       PADDLE_GET_CONST(std::string, desc.GetAttr("op_namescope")) ==
           "/skip_quant_2/") ||
      desc.HasAttr("skip_quant"))
    return false;
W
weishengying 已提交
3145 3146
  auto& default_teller = GetDefaultTeller();
  if ((*default_teller)(desc, use_no_calib_int8, with_dynamic_shape)) {
3147
    SetOpConverterType(node->Op(), OpConverterType::Default);
W
weishengying 已提交
3148 3149 3150 3151
    return true;
  }
  auto& generic_plugin_teller = GetGenericPluginTeller();
  if ((*generic_plugin_teller)(desc, use_no_calib_int8, with_dynamic_shape)) {
3152
    SetOpConverterType(node->Op(), OpConverterType::GenericPluginCreater);
W
weishengying 已提交
3153 3154 3155 3156
    return true;
  }
  auto& custom_plugin_teller = GetCustomPluginTeller();
  if ((*custom_plugin_teller)(desc, use_no_calib_int8, with_dynamic_shape)) {
3157
    SetOpConverterType(node->Op(), OpConverterType::CustomPluginCreater);
W
weishengying 已提交
3158 3159
    return true;
  }
3160 3161
  return false;
}
3162

W
weishengying 已提交
3163 3164 3165 3166 3167
OpTeller::OpTeller() {
  tellers_.emplace_back(new tensorrt::SimpleOpTypeSetTeller);
  tellers_.emplace_back(new tensorrt::GenericPluginTeller);
  tellers_.emplace_back(new tensorrt::CustomPluginTeller);
}
3168

3169 3170 3171
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle