linalg.py 121.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

myq406450149's avatar
myq406450149 已提交
15
import numpy as np
16 17

import paddle
18
from paddle import _C_ops
19 20
from paddle.common_ops_import import VarDesc

21
from ..common_ops_import import Variable
22 23
from ..fluid.data_feeder import (
    check_dtype,
24 25
    check_type,
    check_variable_and_dtype,
26
)
27
from ..framework import LayerHelper, in_dynamic_mode
28
from .creation import full
29
from .manipulation import cast
30

31 32
__all__ = []

33 34 35
# Consistent with kDefaultDim from C++ Backend
K_DEFAULT_DIM = 9

36

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
def transpose(x, perm, name=None):
    """
    Permute the data dimensions of `input` according to `perm`.

    The `i`-th dimension  of the returned tensor will correspond to the
    perm[i]-th dimension of `input`.

    Args:
        x (Tensor): The input Tensor. It is a N-D Tensor of data types bool, float32, float64, int32.
        perm (list|tuple): Permute the input according to the data of perm.
        name (str): The name of this layer. It is optional.

    Returns:
        Tensor: A transposed n-D Tensor, with data type being bool, float32, float64, int32, int64.

    For Example:

        .. code-block:: text

         x = [[[ 1  2  3  4] [ 5  6  7  8] [ 9 10 11 12]]
             [[13 14 15 16] [17 18 19 20] [21 22 23 24]]]
         shape(x) =  [2,3,4]

         # Example 1
         perm0 = [1,0,2]
         y_perm0 = [[[ 1  2  3  4] [13 14 15 16]]
                   [[ 5  6  7  8]  [17 18 19 20]]
                   [[ 9 10 11 12]  [21 22 23 24]]]
         shape(y_perm0) = [3,2,4]

         # Example 2
         perm1 = [2,1,0]
         y_perm1 = [[[ 1 13] [ 5 17] [ 9 21]]
                   [[ 2 14] [ 6 18] [10 22]]
                   [[ 3 15]  [ 7 19]  [11 23]]
                   [[ 4 16]  [ 8 20]  [12 24]]]
         shape(y_perm1) = [4,3,2]

    Examples:

        .. code-block:: python

            import paddle

            x = paddle.randn([2, 3, 4])
            x_transposed = paddle.transpose(x, perm=[1, 0, 2])
            print(x_transposed.shape)
            # [3L, 2L, 4L]

    """
87
    if in_dynamic_mode():
88
        return _C_ops.transpose(x, perm)
89
    else:
90 91 92 93 94 95 96 97 98 99
        check_variable_and_dtype(
            x,
            'x',
            [
                'bool',
                'float16',
                'float32',
                'float64',
                'int32',
                'int64',
100
                'uint16',
101 102 103 104
                'complex64',
                'complex128',
            ],
            'transpose',
105
        )
106 107 108 109
        check_type(perm, 'perm', (list, tuple), 'transpose')
        if isinstance(perm, tuple):
            perm = list(perm)
        if len(perm) != len(x.shape):
110
            raise ValueError(
111 112
                "Input(perm) is the permutation of dimensions of Input(x), "
                "its length should be equal to dimensions of Input(x), "
113 114 115 116
                "but received dimension of Input(x) is {}, "
                "the length of Input(perm) is {}.".format(
                    len(x.shape), len(perm)
                )
117
            )
118 119 120 121 122 123 124
        for idx, dim in enumerate(perm):
            if dim >= len(x.shape):
                raise ValueError(
                    "Each element in Input(perm) should be less than Input(x)'s dimension, "
                    "but %d-th element in Input(perm) is %d which exceeds Input(x)'s "
                    "dimension %d." % (idx, perm[idx], len(x.shape))
                )
125

126 127 128 129 130 131 132 133 134 135
        helper = LayerHelper('transpose', **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
        x_shape = helper.create_variable_for_type_inference(x.dtype)
        helper.append_op(
            type='transpose2',
            inputs={'X': [x]},
            outputs={'Out': [out], 'XShape': [x_shape]},
            attrs={'axis': perm},
        )
        return out
136 137


S
ShenLiang 已提交
138
def matmul(x, y, transpose_x=False, transpose_y=False, name=None):
139
    """
140 141
    Applies matrix multiplication to two tensors. `matmul` follows
    the complete broadcast rules,
S
ShenLiang 已提交
142
    and its behavior is consistent with `np.matmul`.
S
swtkiwi 已提交
143

S
ShenLiang 已提交
144 145
    Currently, the input tensors' number of dimensions can be any, `matmul` can be used to
    achieve the `dot`, `matmul` and `batchmatmul`.
146 147 148 149 150

    The actual behavior depends on the shapes of :math:`x`, :math:`y` and the
    flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:

    - If a transpose flag is specified, the last two dimensions of the tensor
151 152
      are transposed. If the tensor is ndim-1 of shape, the transpose is invalid. If the tensor
      is ndim-1 of shape :math:`[D]`, then for :math:`x` it is treated as :math:`[1, D]`, whereas
S
ShenLiang 已提交
153 154 155 156 157 158 159 160
      for :math:`y` it is the opposite: It is treated as :math:`[D, 1]`.

    The multiplication behavior depends on the dimensions of `x` and `y`. Specifically:

    - If both tensors are 1-dimensional, the dot product result is obtained.

    - If both tensors are 2-dimensional, the matrix-matrix product is obtained.

161 162
    - If the `x` is 1-dimensional and the `y` is 2-dimensional,
      a `1` is prepended to its dimension in order to conduct the matrix multiply.
S
ShenLiang 已提交
163
      After the matrix multiply, the prepended dimension is removed.
164 165

    - If the `x` is 2-dimensional and `y` is 1-dimensional,
S
ShenLiang 已提交
166 167
      the matrix-vector product is obtained.

168 169 170 171 172 173 174 175 176
    - If both arguments are at least 1-dimensional and at least one argument
      is N-dimensional (where N > 2), then a batched matrix multiply is obtained.
      If the first argument is 1-dimensional, a 1 is prepended to its dimension
      in order to conduct the batched matrix multiply and removed after.
      If the second argument is 1-dimensional, a 1 is appended to its
      dimension for the purpose of the batched matrix multiple and removed after.
      The non-matrix (exclude the last two dimensions) dimensions are
      broadcasted according the broadcast rule.
      For example, if input is a (j, 1, n, m) tensor and the other is a (k, m, p) tensor,
S
ShenLiang 已提交
177
      out will be a (j, k, n, p) tensor.
178 179

    Args:
S
ShenLiang 已提交
180 181
        x (Tensor): The input tensor which is a Tensor.
        y (Tensor): The input tensor which is a Tensor.
182 183 184
        transpose_x (bool, optional): Whether to transpose :math:`x` before multiplication.
        transpose_y (bool, optional): Whether to transpose :math:`y` before multiplication.
        name(str, optional): A name for this layer(optional). If set None, the layer
185 186 187
            will be named automatically.

    Returns:
S
ShenLiang 已提交
188
        Tensor: The output Tensor.
189 190 191

    Examples:

C
Chen Long 已提交
192 193 194 195 196 197 198 199 200
        .. code-block:: python

            import paddle

            # vector * vector
            x = paddle.rand([10])
            y = paddle.rand([10])
            z = paddle.matmul(x, y)
            print(z.shape)
201
            # (1,)
C
Chen Long 已提交
202 203 204 205 206 207

            # matrix * vector
            x = paddle.rand([10, 5])
            y = paddle.rand([5])
            z = paddle.matmul(x, y)
            print(z.shape)
208
            # (10,)
C
Chen Long 已提交
209 210 211 212 213 214

            # batched matrix * broadcasted vector
            x = paddle.rand([10, 5, 2])
            y = paddle.rand([2])
            z = paddle.matmul(x, y)
            print(z.shape)
215
            # (10, 5)
C
Chen Long 已提交
216 217 218 219 220 221

            # batched matrix * batched matrix
            x = paddle.rand([10, 5, 2])
            y = paddle.rand([10, 2, 5])
            z = paddle.matmul(x, y)
            print(z.shape)
222
            # (10, 5, 5)
C
Chen Long 已提交
223 224 225 226 227 228

            # batched matrix * broadcasted matrix
            x = paddle.rand([10, 1, 5, 2])
            y = paddle.rand([1, 3, 2, 5])
            z = paddle.matmul(x, y)
            print(z.shape)
229
            # (10, 3, 5, 5)
230 231

    """
232
    if in_dynamic_mode():
233
        return _C_ops.matmul(x, y, transpose_x, transpose_y)
234 235 236 237 238
    else:
        attrs = {
            'trans_x': transpose_x,
            'trans_y': transpose_y,
        }
239

240 241 242 243 244 245 246
        def __check_input(x, y):
            var_names = {'x': x, 'y': y}
            for name, val in var_names.items():
                check_variable_and_dtype(
                    val,
                    name,
                    [
247
                        'uint16',
248 249 250 251 252 253 254 255
                        'float16',
                        'float32',
                        'float64',
                        'complex64',
                        'complex128',
                    ],
                    'matmul',
                )
256

257
        __check_input(x, y)
258

259 260 261 262 263 264 265 266 267
        helper = LayerHelper('matmul_v2', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='matmul_v2',
            inputs={'X': x, 'Y': y},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
Z
Zhang Ting 已提交
268 269


myq406450149's avatar
myq406450149 已提交
270
def norm(x, p='fro', axis=None, keepdim=False, name=None):
271
    """
S
swtkiwi 已提交
272

273 274 275
    Returns the matrix norm (Frobenius) or vector norm (the 1-norm, the Euclidean
    or 2-norm, and in general the p-norm for p > 0) of a given tensor.

276
    Note:
277 278 279 280 281
        This norm API is different from `numpy.linalg.norm`.
        This api supports high-order input tensors (rank >= 3), and certain axis need to be pointed out to calculate the norm.
        But `numpy.linalg.norm` only supports 1-D vector or 2-D matrix as input tensor.
        For p-order matrix norm, this api actually treats matrix as a flattened vector to calculate the vector norm, NOT REAL MATRIX NORM.

282
    Args:
myq406450149's avatar
myq406450149 已提交
283
        x (Tensor): The input tensor could be N-D tensor, and the input data
284
            type could be float32 or float64.
myq406450149's avatar
myq406450149 已提交
285
        p (float|string, optional): Order of the norm. Supported values are `fro`, `0`, `1`, `2`,
286
            `inf`, `-inf` and any positive real number yielding the corresponding p-norm. Not supported: ord < 0 and nuclear norm.
myq406450149's avatar
myq406450149 已提交
287
            Default value is `fro`.
myq406450149's avatar
myq406450149 已提交
288 289
        axis (int|list|tuple, optional): The axis on which to apply norm operation. If axis is int
            or list(int)/tuple(int)  with only one element, the vector norm is computed over the axis.
290
            If `axis < 0`, the dimension to norm operation is rank(input) + axis.
myq406450149's avatar
myq406450149 已提交
291
            If axis is a list(int)/tuple(int) with two elements, the matrix norm is computed over the axis.
292
            Default value is `None`.
293 294 295 296 297 298 299 300
        keepdim (bool, optional): Whether to reserve the reduced dimension in the
            output Tensor. The result tensor will have fewer dimension
            than the :attr:`input` unless :attr:`keepdim` is true, default
            value is False.
        name (str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
myq406450149's avatar
myq406450149 已提交
301
        Tensor: results of norm operation on the specified axis of input tensor,
302
        it's data type is the same as input's Tensor.
303

304 305
    Examples:
        .. code-block:: python
306

307
            import paddle
308 309 310 311 312 313 314 315 316
            x = paddle.arange(24, dtype="float32").reshape([2, 3, 4]) - 12
            # x: Tensor(shape=[2, 3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #          [[[-12., -11., -10., -9. ],
            #            [-8. , -7. , -6. , -5. ],
            #            [-4. , -3. , -2. , -1. ]],

            #           [[ 0. ,  1. ,  2. ,  3. ],
            #            [ 4. ,  5. ,  6. ,  7. ],
            #            [ 8. ,  9. ,  10.,  11.]]])
myq406450149's avatar
myq406450149 已提交
317

318
            # compute frobenius norm along last two dimensions.
319
            out_fro = paddle.linalg.norm(x, p='fro', axis=[0,1])
320 321
            # out_fro: Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                 [17.43559647, 16.91153526, 16.73320007, 16.91153526])
myq406450149's avatar
myq406450149 已提交
322

323
            # compute 2-order vector norm along last dimension.
324
            out_pnorm = paddle.linalg.norm(x, p=2, axis=-1)
325 326 327
            # out_pnorm: Tensor(shape=[2, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                [[21.11871147, 13.19090557, 5.47722578 ],
            #                 [3.74165750 , 11.22497177, 19.13112640]])
myq406450149's avatar
myq406450149 已提交
328 329

            # compute 2-order  norm along [0,1] dimension.
330
            out_pnorm = paddle.linalg.norm(x, p=2, axis=[0,1])
331 332
            # out_pnorm: Tensor(shape=[4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [17.43559647, 16.91153526, 16.73320007, 16.91153526])
myq406450149's avatar
myq406450149 已提交
333 334

            # compute inf-order  norm
335
            out_pnorm = paddle.linalg.norm(x, p=float("inf"))
336 337
            # out_pnorm  = Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                    12.)
338 339 340 341 342 343

            out_pnorm = paddle.linalg.norm(x, p=float("inf"), axis=0)
            # out_pnorm: Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                 [[12., 11., 10., 9. ],
            #                  [8. , 7. , 6. , 7. ],
            #                  [8. , 9. , 10., 11.]])
myq406450149's avatar
myq406450149 已提交
344 345

            # compute -inf-order  norm
346
            out_pnorm = paddle.linalg.norm(x, p=-float("inf"))
347 348
            # out_pnorm: Tensor(shape=[], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  0.)
349 350 351 352 353 354

            out_pnorm = paddle.linalg.norm(x, p=-float("inf"), axis=0)
            # out_pnorm: Tensor(shape=[3, 4], dtype=float32, place=Place(cpu), stop_gradient=True,
            #                  [[0., 1., 2., 3.],
            #                  [4., 5., 6., 5.],
            #                  [4., 3., 2., 1.]])
355 356
    """

myq406450149's avatar
myq406450149 已提交
357
    def frobenius_norm(input, dim=None, keepdim=False, name=None):
358 359 360 361 362 363 364 365 366 367 368
        """
        The frobenius norm OP is to calculate the frobenius norm of certain two dimensions of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          dim (list, optional): None for last two dimensions.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
        if dim is not None and not (isinstance(dim, list) and len(dim) == 2):
            raise ValueError(
                "The dim of frobenius norm op should be None or two elements list!"
            )
F
From00 已提交
369

370
        if in_dynamic_mode():
F
From00 已提交
371
            if dim is None:
372 373
                return _C_ops.frobenius_norm(input, [], keepdim, True)
            return _C_ops.frobenius_norm(input, dim, keepdim, False)
374 375
        else:
            attrs = {'dim': dim, 'keep_dim': keepdim, 'reduce_all': False}
myq406450149's avatar
myq406450149 已提交
376
            if dim is None:
377 378 379
                attrs['reduce_all'] = True
            check_variable_and_dtype(
                input, 'input', ['float32', 'float64'], 'frobenius_norm'
380
            )
381

382 383 384 385
            helper = LayerHelper('frobenius_norm', **locals())
            out = helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
            )
386

387 388 389 390 391 392 393
            helper.append_op(
                type='frobenius_norm',
                inputs={'X': input},
                outputs={'Out': out},
                attrs=attrs,
            )
            return out
394

395 396 397
    def vector_norm(
        input, porder=None, axis=None, keepdim=False, asvector=False, name=None
    ):
398 399 400 401 402 403 404 405
        """
        Calculate the p-order vector norm for certain  dimension of Tensor `input`.
        Args:
          input (Variable): Tensor, data type float32, float64.
          porder (float, optional): None for porder=2.0.
          axis (int, optional): None for last dimension.
          keepdim (bool, optional): Whether keep the dimensions as the `input`, Default False.
        """
406
        if in_dynamic_mode():
407 408
            if axis is None:
                axis = -1
409
            return _C_ops.p_norm(input, porder, axis, 1e-12, keepdim, asvector)
410 411 412 413 414 415
        else:
            if porder is not None:
                check_type(porder, 'porder', (float, int), 'p_norm')
            if axis is not None:
                check_type(axis, 'axis', (int), 'p_norm')
            check_variable_and_dtype(
416 417 418 419
                input,
                'input',
                ['float16', 'uint16', 'float32', 'float64'],
                'p_norm',
420
            )
421

422 423 424 425 426 427 428 429 430 431 432
            attrs = {
                'axis': axis if axis is not None else -1,
                'porder': float(porder) if porder is not None else 2.0,
                'keepdim': keepdim,
                'asvector': asvector,
                'epsilon': 1e-12,
            }
            helper = LayerHelper('p_norm', **locals())
            out = helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
            )
433

434 435 436 437 438 439 440
            helper.append_op(
                type='p_norm',
                inputs={'X': input},
                outputs={'Out': out},
                attrs=attrs,
            )
            return out
441

442 443 444
    def inf_norm(
        input, porder=None, axis=axis, keepdim=False, asvector=False, name=None
    ):
445
        if in_dynamic_mode():
446
            out = _C_ops.abs(input)
447
            if porder == np.float64('inf'):
448
                return _C_ops.max(out, axis, keepdim)
449
            else:
450
                return _C_ops.min(out, axis, keepdim)
451 452 453 454 455 456 457 458 459 460 461
        else:
            helper = LayerHelper('inf_norm', **locals())
            out = helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
            )
            helper.append_op(
                type='abs', inputs={'X': input}, outputs={'Out': out}
            )
            reduce_out = helper.create_variable_for_type_inference(
                dtype=helper.input_dtype()
            )
462

463 464 465 466
            reduce_all = (
                True if axis is None or axis == [] or asvector else False
            )
            axis = axis if axis is not None and axis != [] else [0]
myq406450149's avatar
myq406450149 已提交
467

468 469 470 471 472 473 474 475 476 477 478 479 480
            reduce_type = (
                'reduce_max' if porder == np.float64('inf') else 'reduce_min'
            )
            helper.append_op(
                type=reduce_type,
                inputs={'X': out},
                outputs={'Out': reduce_out},
                attrs={
                    'dim': axis,
                    'keep_dim': keepdim,
                    'reduce_all': reduce_all,
                },
            )
myq406450149's avatar
myq406450149 已提交
481

482
            return reduce_out
myq406450149's avatar
myq406450149 已提交
483

484
    def p_matrix_norm(input, porder=1.0, axis=axis, keepdim=False, name=None):
485 486 487 488
        """
        NOTE:
            This function actually treats the matrix as flattened vector to calculate vector norm instead of matrix norm.
        """
489
        if in_dynamic_mode():
490 491 492
            abs_out = _C_ops.abs(input)
            pow_out = _C_ops.pow(abs_out, porder)
            sum_out = _C_ops.sum(pow_out, axis, None, keepdim)
493
            out = _C_ops.pow(sum_out, float(1.0 / porder))
494 495
            return out

myq406450149's avatar
myq406450149 已提交
496 497
        block = LayerHelper('norm', **locals())
        out = block.create_variable_for_type_inference(
498 499
            dtype=block.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
500
        abs_out = block.create_variable_for_type_inference(
501 502 503 504 505
            dtype=block.input_dtype()
        )
        block.append_op(
            type='abs', inputs={'X': input}, outputs={'Out': abs_out}
        )
myq406450149's avatar
myq406450149 已提交
506
        pow_out = block.create_variable_for_type_inference(
507 508
            dtype=block.input_dtype()
        )
myq406450149's avatar
myq406450149 已提交
509

510 511 512 513 514 515
        block.append_op(
            type='pow',
            inputs={'X': abs_out},
            outputs={'Out': pow_out},
            attrs={'factor': porder},
        )
myq406450149's avatar
myq406450149 已提交
516
        sum_out = block.create_variable_for_type_inference(
517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
            dtype=block.input_dtype()
        )
        block.append_op(
            type='reduce_sum',
            inputs={'X': pow_out},
            outputs={'Out': sum_out},
            attrs={
                'dim': axis,
                'keep_dim': keepdim,
                'reduce_all': True if axis is None else False,
            },
        )
        block.append_op(
            type='pow',
            inputs={'X': sum_out},
            outputs={'Out': out},
            attrs={'factor': float(1.0 / porder)},
        )
myq406450149's avatar
myq406450149 已提交
535 536
        return out

537 538 539
    if axis is None and p is not None:
        if isinstance(p, str):
            if p == "fro":
myq406450149's avatar
myq406450149 已提交
540
                return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
541 542
            else:
                raise ValueError(
543
                    f"only valid string values are 'fro', found {p}"
544
                )
545
        elif isinstance(p, (int, float)):
546 547 548 549 550 551 552 553
            return vector_norm(
                x,
                porder=p,
                axis=axis,
                keepdim=keepdim,
                asvector=True,
                name=name,
            )
554
        else:
555
            raise ValueError(
556
                f"only valid p type is string or float, found {type(p)}"
557
            )
558

myq406450149's avatar
myq406450149 已提交
559 560
    if isinstance(axis, tuple):
        axis = list(axis)
561 562 563
    if isinstance(axis, list) and len(axis) == 1:
        axis = axis[0]

564
    # calculate vector norm, where axis is int or list with only one integer
565
    if isinstance(axis, int):
myq406450149's avatar
myq406450149 已提交
566 567
        if isinstance(p, str):
            if p == "fro":
568 569 570 571 572 573 574 575
                return vector_norm(
                    x,
                    porder=2,
                    axis=axis,
                    keepdim=keepdim,
                    asvector=False,
                    name=name,
                )
myq406450149's avatar
myq406450149 已提交
576 577 578

            else:
                raise ValueError(
579
                    f"only valid string values are 'fro', found {p}"
580
                )
myq406450149's avatar
myq406450149 已提交
581
        elif isinstance(p, (int, float)):
582 583 584 585 586 587 588 589
            return vector_norm(
                x,
                axis=axis,
                porder=p,
                keepdim=keepdim,
                asvector=False,
                name=name,
            )
590 591
        else:
            raise ValueError(
592 593 594 595 596
                "unspport p for p-order vector norm. except float, found {}".format(
                    p
                )
            )
    # calculate matrix norm, where axis is list with two integers
597 598
    elif isinstance(axis, list) and len(axis) == 2:
        if p == "fro":
myq406450149's avatar
myq406450149 已提交
599 600 601
            return frobenius_norm(x, dim=axis, keepdim=keepdim, name=name)
        elif p == np.inf or p == -np.inf:
            return inf_norm(x, porder=p, axis=axis, keepdim=keepdim, name=name)
myq406450149's avatar
myq406450149 已提交
602 603
        elif p == 0:
            raise ValueError(
I
iLeGend 已提交
604
                "just support axis type int or list (length of list <=1) if p = 0, found {}".format(
605 606 607
                    axis
                )
            )
608
        else:
609 610 611
            return p_matrix_norm(
                x, porder=p, axis=axis, keepdim=keepdim, name=name
            )
612 613
    else:
        raise ValueError(
614 615 616 617
            "except axis type int or list (length of list <=2), found {}".format(
                axis
            )
        )
618 619


620
def dist(x, y, p=2, name=None):
621
    r"""
S
swtkiwi 已提交
622

623
    Returns the p-norm of (x - y). It is not a norm in a strict sense, only as a measure
624
    of distance. The shapes of x and y must be broadcastable. The definition is as follows, for
625
    details, please refer to the `Introduction to Tensor <../../guides/beginner/tensor_en.html#chapter5-broadcasting-of-tensor>`_:
Z
Zhang Ting 已提交
626

627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649
    - Each input has at least one dimension.
    - Match the two input dimensions from back to front, the dimension sizes must either be equal, one of them is 1, or one of them does not exist.

    Where, z = x - y, the shapes of x and y are broadcastable, then the shape of z can be
    obtained as follows:

    1. If the number of dimensions of x and y are not equal, prepend 1 to the dimensions of the
    tensor with fewer dimensions.

    For example, The shape of x is [8, 1, 6, 1], the shape of y is [7, 1, 5], prepend 1 to the
    dimension of y.

    x (4-D Tensor):  8 x 1 x 6 x 1

    y (4-D Tensor):  1 x 7 x 1 x 5

    2. Determine the size of each dimension of the output z: choose the maximum value from the
    two input dimensions.

    z (4-D Tensor):  8 x 7 x 6 x 5

    If the number of dimensions of the two inputs are the same, the size of the output can be
    directly determined in step 2. When p takes different values, the norm formula is as follows:
Z
Zhang Ting 已提交
650 651 652 653 654 655 656

    When p = 0, defining $0^0=0$, the zero-norm of z is simply the number of non-zero elements of z.

    .. math::

        ||z||_{0}=\lim_{p \\rightarrow 0}\sum_{i=1}^{m}|z_i|^{p}

Z
Zhong Hui 已提交
657
    When p = inf, the inf-norm of z is the maximum element of the absolute value of z.
Z
Zhang Ting 已提交
658 659 660 661 662

    .. math::

        ||z||_\infty=\max_i |z_i|

Z
Zhong Hui 已提交
663
    When p = -inf, the negative-inf-norm of z is the minimum element of the absolute value of z.
Z
Zhang Ting 已提交
664 665 666 667 668 669 670 671 672 673 674 675

    .. math::

        ||z||_{-\infty}=\min_i |z_i|

    Otherwise, the p-norm of z follows the formula,

    .. math::

        ||z||_{p}=(\sum_{i=1}^{m}|z_i|^p)^{\\frac{1}{p}}

    Args:
676 677
        x (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
        y (Tensor): 1-D to 6-D Tensor, its data type is float32 or float64.
Z
Zhang Ting 已提交
678
        p (float, optional): The norm to be computed, its data type is float32 or float64. Default: 2.
679 680
        name (str, optional): The default value is `None`. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.
Z
Zhang Ting 已提交
681 682

    Returns:
683
        Tensor: Tensor that is the p-norm of (x - y).
Z
Zhang Ting 已提交
684 685 686 687 688 689

    Examples:
        .. code-block:: python

            import paddle

690 691
            x = paddle.to_tensor([[3, 3],[3, 3]], dtype="float32")
            y = paddle.to_tensor([[3, 3],[3, 1]], dtype="float32")
692
            out = paddle.dist(x, y, 0)
693
            print(out) # out = 1.
Z
Zhang Ting 已提交
694

695
            out = paddle.dist(x, y, 2)
696
            print(out) # out = 2.
Z
Zhang Ting 已提交
697

698
            out = paddle.dist(x, y, float("inf"))
699
            print(out) # out = 2.
Z
Zhang Ting 已提交
700

701
            out = paddle.dist(x, y, float("-inf"))
702
            print(out) # out = 0.
Z
Zhang Ting 已提交
703
    """
704
    if in_dynamic_mode():
705
        return _C_ops.dist(x, y, p)
H
hong 已提交
706

707 708
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'dist')
    check_variable_and_dtype(y, 'dtype', ['float32', 'float64'], 'dist')
Z
Zhang Ting 已提交
709 710 711 712 713 714 715
    check_type(p, 'p', (float, int), 'dist')
    helper = LayerHelper("dist", **locals())
    out = helper.create_variable_for_type_inference(x.dtype)

    inputs = {"X": [x], "Y": [y]}
    outputs = {'Out': [out]}
    attrs = {"p": float(p)}
716 717 718
    helper.append_op(
        type='dist', inputs=inputs, outputs={'Out': out}, attrs=attrs
    )
Z
Zhang Ting 已提交
719
    return out
L
liuwei1031 已提交
720 721


722 723 724 725 726 727
def cond(x, p=None, name=None):
    """

    Computes the condition number of a matrix or batches of matrices with respect to a matrix norm ``p``.

    Args:
728 729
        x (Tensor): The input tensor could be tensor of shape ``(*, m, n)`` where ``*`` is zero or more batch dimensions
            for ``p`` in ``(2, -2)``, or of shape ``(*, n, n)`` where every matrix is invertible for any supported ``p``.
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
            And the input data type could be ``float32`` or ``float64``.
        p (float|string, optional): Order of the norm. Supported values are `fro`, `nuc`, `1`, `-1`, `2`, `-2`,
            `inf`, `-inf`. Default value is `None`, meaning that the order of the norm is `2`.
        name (str, optional): The default value is `None`. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: computing results of condition number, its data type is the same as input Tensor ``x``.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1., 0, -1], [0, 1, 0], [1, 0, 1]])

            # compute conditional number when p is None
            out = paddle.linalg.cond(x)
748 749
            # Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        1.41421342)
750 751 752

            # compute conditional number when order of the norm is 'fro'
            out_fro = paddle.linalg.cond(x, p='fro')
753 754
            # Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        3.16227770)
755 756 757

            # compute conditional number when order of the norm is 'nuc'
            out_nuc = paddle.linalg.cond(x, p='nuc')
758 759
            # Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        9.24263859)
760 761 762

            # compute conditional number when order of the norm is 1
            out_1 = paddle.linalg.cond(x, p=1)
763 764
            # Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        2.)
765 766 767

            # compute conditional number when order of the norm is -1
            out_minus_1 = paddle.linalg.cond(x, p=-1)
768 769
            # Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        1.)
770 771 772

            # compute conditional number when order of the norm is 2
            out_2 = paddle.linalg.cond(x, p=2)
773 774
            # Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        1.41421342)
775 776 777

            # compute conditional number when order of the norm is -1
            out_minus_2 = paddle.linalg.cond(x, p=-2)
778 779
            # Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        0.70710683)
780 781

            # compute conditional number when order of the norm is inf
782
            out_inf = paddle.linalg.cond(x, p=float("inf"))
783 784
            # Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        2.)
785 786

            # compute conditional number when order of the norm is -inf
787
            out_minus_inf = paddle.linalg.cond(x, p=-float("inf"))
788 789
            # Tensor(shape=[], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        1.)
790 791 792 793 794 795 796 797 798 799 800 801 802

            a = paddle.randn([2, 4, 4])
            # Tensor(shape=[2, 4, 4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[-0.06784091, -0.07095790,  1.31792855, -0.58959651],
            #          [ 0.20818676, -0.85640615, -0.89998871, -1.47439921],
            #          [-0.49132481,  0.42250812, -0.77383220, -2.19794774],
            #          [-0.33551720, -1.70003879, -1.09795380, -0.63737559]],

            #         [[ 1.12026262, -0.16119350, -1.21157813,  2.74383283],
            #          [-0.15999718,  0.18798758, -0.69392562,  1.35720372],
            #          [-0.53013402, -2.26304483,  1.40843511, -1.02288902],
            #          [ 0.69533503,  2.05261683, -0.02251151, -1.43127477]]])

803
            a_cond_fro = paddle.linalg.cond(a, p='fro')
804 805 806 807 808 809 810 811 812 813 814 815
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [8.86691189 , 75.23817444])

            b = paddle.randn([2, 3, 4])
            # Tensor(shape=[2, 3, 4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [[[-0.43754861,  1.80796063, -0.78729683, -1.82264030],
            #          [-0.27670753,  0.06620564,  0.29072434, -0.31155765],
            #          [ 0.34123746, -0.05444612,  0.05001324, -1.46877074]],

            #         [[-0.64331555, -1.51103854, -1.26277697, -0.68024760],
            #          [ 2.59375715, -1.06665540,  0.96575671, -0.73330832],
            #          [-0.47064447, -0.23945692, -0.95150250, -1.07125998]]])
816
            b_cond_2 = paddle.linalg.cond(b, p=2)
817 818
            # Tensor(shape=[2], dtype=float32, place=Place(gpu:0), stop_gradient=True,
            #        [6.64228773, 3.89068866])
819 820 821

    """

822
    def mat_norm(input, porder=1.0, axis=None):
823 824 825 826 827
        """
        NOTE:
            Calculate the matrix norm of a square matrix or batches of square matrices,
            when porder is in (1, -1, inf, -inf)
        """
828
        if in_dynamic_mode():
829
            abs_out = _C_ops.abs(input)
830
            sum_out = _C_ops.sum(abs_out, axis, None, False)
831 832

            if porder == 1 or porder == np.inf:
833
                return _C_ops.max(sum_out, [-1], False)
834
            if porder == -1 or porder == -np.inf:
835
                return _C_ops.min(sum_out, [-1], False)
836
        else:
837 838
            reduce_all = True if axis is None or axis == [] else False
            axis = axis if axis is not None and axis != [] else [0]
839 840
            block = LayerHelper('norm', **locals())
            abs_out = block.create_variable_for_type_inference(
841 842
                dtype=block.input_dtype()
            )
843
            sum_out = block.create_variable_for_type_inference(
844 845
                dtype=block.input_dtype()
            )
846
            out = block.create_variable_for_type_inference(
847 848 849 850 851 852 853 854 855 856 857
                dtype=block.input_dtype()
            )
            block.append_op(
                type='abs', inputs={'X': input}, outputs={'Out': abs_out}
            )
            block.append_op(
                type='reduce_sum',
                inputs={'X': abs_out},
                outputs={'Out': sum_out},
                attrs={
                    'dim': axis,
858
                    'keep_dim': False,
859 860 861
                    'reduce_all': reduce_all,
                },
            )
862
            if porder == 1 or porder == np.inf:
863 864 865 866 867 868
                block.append_op(
                    type='reduce_max',
                    inputs={'X': sum_out},
                    outputs={'Out': out},
                    attrs={
                        'dim': [-1],
869
                        'keep_dim': False,
870 871 872
                        'reduce_all': reduce_all,
                    },
                )
873
            if porder == -1 or porder == -np.inf:
874 875 876 877 878 879
                block.append_op(
                    type='reduce_min',
                    inputs={'X': sum_out},
                    outputs={'Out': out},
                    attrs={
                        'dim': [-1],
880
                        'keep_dim': False,
881 882 883
                        'reduce_all': reduce_all,
                    },
                )
884
            return out
885 886 887 888 889 890

    def fro_norm(input, porder=2, axis=[-1]):
        """
        NOTE:
            Calculate the frobenius norm of a square matrix or batches of square matrices.
        """
891
        if in_dynamic_mode():
892
            pow_out = _C_ops.pow(input, porder)
893 894
            sum_out_1 = _C_ops.sum(pow_out, axis, None, False)
            sum_out_2 = _C_ops.sum(sum_out_1, axis, None, False)
895
            return _C_ops.pow(sum_out_2, float(1.0 / porder))
896
        else:
897
            reduce_all = True if axis is None or axis == [] else False
898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
            block = LayerHelper('norm', **locals())
            pow_out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            sum_out_1 = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            sum_out_2 = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            block.append_op(
                type='pow',
                inputs={'X': input},
                outputs={'Out': pow_out},
                attrs={'factor': porder},
            )
            block.append_op(
                type='reduce_sum',
                inputs={'X': pow_out},
                outputs={'Out': sum_out_1},
                attrs={
                    'dim': axis,
                    'keep_dim': False,
                    'reduce_all': reduce_all,
                },
            )
            block.append_op(
                type='reduce_sum',
                inputs={'X': sum_out_1},
                outputs={'Out': sum_out_2},
                attrs={
                    'dim': axis,
                    'keep_dim': False,
                    'reduce_all': reduce_all,
                },
            )
            block.append_op(
                type='pow',
                inputs={'X': sum_out_2},
                outputs={'Out': out},
                attrs={'factor': float(1.0 / porder)},
            )
            return out
944 945 946 947 948 949 950 951 952

    def svd_norm(input, porder, axis=[-1]):
        """
        NOTE:
            Calculate the matrix norm, which is related to singular values, of a matrix
            or batches of matrices, including nuclear norm, 2-norm and (-2)-norm.
        """
        u, s, vh = svd(input, full_matrices=False)

953
        if in_dynamic_mode():
954
            if porder == "nuc":
955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
                return _C_ops.sum(s, axis, None, False)
            max_out = _C_ops.max(s, axis, False)
            min_out = _C_ops.min(s, axis, False)
            if porder == 2:
                return _C_ops.divide(max_out, min_out)
            if porder == -2:
                return _C_ops.divide(min_out, max_out)
        else:
            reduce_all = True if axis is None or axis == [] else False
            block = LayerHelper('norm', **locals())
            out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            if porder == "nuc":
                block.append_op(
                    type='reduce_sum',
                    inputs={'X': s},
                    outputs={'Out': out},
                    attrs={
                        'dim': axis,
                        'keep_dim': False,
                        'reduce_all': reduce_all,
                    },
978
                )
979 980 981 982 983 984 985
                return out
            max_out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
            min_out = block.create_variable_for_type_inference(
                dtype=block.input_dtype()
            )
986
            block.append_op(
987
                type='reduce_max',
988
                inputs={'X': s},
989
                outputs={'Out': max_out},
990 991
                attrs={
                    'dim': axis,
992
                    'keep_dim': False,
993 994 995 996
                    'reduce_all': reduce_all,
                },
            )
            block.append_op(
997 998 999 1000 1001 1002 1003 1004
                type='reduce_min',
                inputs={'X': s},
                outputs={'Out': min_out},
                attrs={
                    'dim': axis,
                    'keep_dim': False,
                    'reduce_all': reduce_all,
                },
1005
            )
1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
            if porder == 2:
                block.append_op(
                    type='elementwise_div',
                    inputs={'X': max_out, 'Y': min_out},
                    outputs={'Out': out},
                    attrs={'aixs': axis, 'use_mkldnn': False},
                )
                return out
            if porder == -2:
                block.append_op(
                    type='elementwise_div',
                    inputs={'X': min_out, 'Y': max_out},
                    outputs={'Out': out},
                    attrs={'aixs': axis, 'use_mkldnn': False},
                )
                return out
1022 1023

    def empty_tensor(input, shape):
1024
        if in_dynamic_mode():
1025
            return input.reshape(shape)
1026 1027 1028
        raise ValueError(
            "only support x is nonempty tensor in static graph mode"
        )
1029 1030 1031

    x_shape = list(x.shape)
    if not len(x_shape) >= 2:
1032
        raise ValueError(
1033
            "input should be a matrix or batches of matrices, "
1034
            + f"but the dimention of received input is {len(x_shape)}"
1035
        )
1036
    if p is None:
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
        p = 2
    x_size = 0 if (0 in x_shape) else 1
    if p in ("fro", "nuc", 1, -1, np.inf, -np.inf):
        if x_shape[len(x_shape) - 1] == x_shape[len(x_shape) - 2]:
            if x_size == 0:
                return empty_tensor(x, x_shape[:-2])
            x_inv = x.inverse()
            if p == "fro":
                return fro_norm(x) * fro_norm(x_inv)
            if p == "nuc":
                return svd_norm(x, p) * svd_norm(x_inv, p)
            if p in (1, -1):
1049
                return mat_norm(x, porder=p, axis=[-2]) * mat_norm(
1050 1051
                    x_inv, porder=p, axis=[-2]
                )
1052
            if p in (np.inf, -np.inf):
1053
                return mat_norm(x, porder=p, axis=[-1]) * mat_norm(
1054 1055
                    x_inv, porder=p, axis=[-1]
                )
1056
        else:
1057
            raise ValueError(
1058
                f"only support p is {p} when input is a "
1059 1060
                + "square matrix or batches of square matrices"
            )
1061 1062 1063 1064 1065 1066
    elif p in (2, -2):
        if x_size == 0:
            return empty_tensor(x, x_shape[:-2])
        return svd_norm(x, porder=p)
    else:
        raise ValueError(
1067
            f"unsupported {p} for p, only supporting ('fro', 'nuc', "
1068 1069
            + "1, -1, 2, -2, inf, -inf) or none"
        )
1070 1071


L
liuwei1031 已提交
1072 1073 1074
def dot(x, y, name=None):
    """
    This operator calculates inner product for vectors.
1075

1076
    Note:
1077 1078
       Support 1-d and 2-d Tensor. When it is 2d, the first dimension of this matrix
       is the batch dimension, which means that the vectors of multiple batches are dotted.
L
liuwei1031 已提交
1079 1080

    Parameters:
S
ShenLiang 已提交
1081 1082
        x(Tensor): 1-D or 2-D ``Tensor``. Its dtype should be ``float32``, ``float64``, ``int32``, ``int64``
        y(Tensor): 1-D or 2-D ``Tensor``. Its dtype soulde be ``float32``, ``float64``, ``int32``, ``int64``
L
liuwei1031 已提交
1083 1084
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

1085
    Returns:
1086
        Tensor: the calculated result Tensor.
1087

L
liuwei1031 已提交
1088 1089 1090 1091 1092
    Examples:

    .. code-block:: python

        import paddle
1093

1094 1095 1096 1097
        # 1-D Tensor * 1-D Tensor
        x = paddle.to_tensor([1, 2, 3])
        y = paddle.to_tensor([4, 5, 6])
        z = paddle.dot(x, y)
1098
        print(z)  # 32
1099 1100 1101 1102

        # 2-D Tensor * 2-D Tensor
        x = paddle.to_tensor([[1, 2, 3], [2, 4, 6]])
        y = paddle.to_tensor([[4, 5, 6], [4, 5, 6]])
1103
        z = paddle.dot(x, y)
1104
        print(z)  # [32, 64]
L
liuwei1031 已提交
1105 1106

    """
1107
    if in_dynamic_mode():
1108
        return _C_ops.dot(x, y)
1109 1110
    else:
        op_type = 'dot'
1111

1112 1113
        assert x is not None, f'x cannot be None in {op_type}'
        assert y is not None, f'y cannot be None in {op_type}'
L
liuwei1031 已提交
1114

1115
        check_variable_and_dtype(
1116 1117 1118 1119
            x,
            'x',
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
            op_type,
1120 1121
        )
        check_variable_and_dtype(
1122 1123 1124 1125
            y,
            'y',
            ['float16', 'uint16', 'float32', 'float64', 'int32', 'int64'],
            op_type,
1126
        )
L
liuwei1031 已提交
1127

1128 1129 1130 1131 1132 1133 1134 1135 1136
        helper = LayerHelper(op_type, **locals())
        if name is None:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        else:
            out = helper.create_variable(
                name=name, dtype=x.dtype, persistable=False
            )
        helper.append_op(
            type="dot", inputs={'X': x, 'Y': y}, attrs={}, outputs={"Out": out}
1137
        )
1138
        return out
1139 1140


Z
zhiboniu 已提交
1141 1142 1143 1144 1145
def cov(x, rowvar=True, ddof=True, fweights=None, aweights=None, name=None):
    """
    Estimate the covariance matrix of the input variables, given data and weights.

    A covariance matrix is a square matrix, indicate the covariance of each pair variables in the input matrix.
1146
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the covariance matrix
Z
zhiboniu 已提交
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165
    element Cij is the covariance of xi and xj. The element Cii is the variance of xi itself.

    Parameters:
        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True
        ddof(Bool, optional): If ddof=True will return the unbiased estimate, and ddof=False will return the simple average. Default: True
        fweights(Tensor, optional): 1-D Tensor of integer frequency weights; The number of times each observation vector should be repeated. Default: None
        aweights(Tensor, optional): 1-D Tensor of observation vector weights. How important of the observation vector, larger data means this element is more important. Default: None
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`

    Returns:
        Tensor: The covariance matrix Tensor of the variables.

    Examples:

    .. code-block:: python

        import paddle

1166
        xt = paddle.rand((3, 4))
Z
zhiboniu 已提交
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
        paddle.linalg.cov(xt)

        '''
        Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            [[0.07918842, 0.06127326, 0.01493049],
                [0.06127326, 0.06166256, 0.00302668],
                [0.01493049, 0.00302668, 0.01632146]])
        '''
    """
    op_type = 'cov'
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in cov, but received "
1180 1181
            "length of Input(input) is %s." % len(x.shape)
        )
Z
zhiboniu 已提交
1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cov')
    nx = x
    if len(x.shape) == 1:
        nx = x.reshape((1, -1))
    if not rowvar and nx.shape[0] != 1:
        nx = nx.t()
    w = None
    observation_num = nx.shape[1]
    if fweights is not None:
        w = fweights.astype(nx.dtype)
        if len(w.shape) > 1:
            raise ValueError(
                "Input(fweights) only support N-D (N<=1) tensor in cov, but received "
1195 1196
                "shape of Input(input) is %s." % len(fweights.shape)
            )
Z
zhiboniu 已提交
1197 1198 1199
        if fweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(fweights) should equal to x's dim[1]: {}, but received "
1200 1201 1202 1203
                "size of Input(fweights) is {}.".format(
                    observation_num, fweights.shape[0]
                )
            )
Z
zhiboniu 已提交
1204 1205 1206
        if fweights.min() < 0:
            raise ValueError(
                "The value of Input(fweights) cannot be negtive, but received "
1207 1208
                "min of Input(fweights) is {}.".format(fweights.min())
            )
Z
zhiboniu 已提交
1209 1210 1211 1212 1213 1214 1215 1216
        if not paddle.all(fweights == paddle.round(fweights.astype('float64'))):
            raise ValueError("Input(fweights) must be integer ")

    if aweights is not None:
        aw = aweights.astype(nx.dtype)
        if len(aw.shape) > 1:
            raise ValueError(
                "Input(aweights) only support N-D (N<=1) tensor in cov, but received "
1217 1218 1219 1220 1221
                "length of Input(input) is %s." % len(aweights.shape)
            )
        check_variable_and_dtype(
            aweights, 'dtype', ['float32', 'float64'], 'cov'
        )
Z
zhiboniu 已提交
1222 1223 1224
        if aweights.shape[0] != observation_num:
            raise ValueError(
                "The number of Input(aweights) should equal to x's dim[1]: {}, but received "
1225 1226 1227 1228
                "size of Input(aweights) is {}.".format(
                    observation_num, aweights.shape[0]
                )
            )
Z
zhiboniu 已提交
1229 1230 1231
        if aweights.min() < 0:
            raise ValueError(
                "The value of Input(aweights) cannot be negtive, but received "
1232 1233
                "min of Input(aweights) is {}.".format(aweights.min())
            )
Z
zhiboniu 已提交
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251
        if w is not None:
            w = w * aw
        else:
            w = aw

    w_sum = paddle.to_tensor(observation_num, dtype=nx.dtype)
    if fweights is not None or aweights is not None:
        w_sum = w.sum()
        if w_sum.item() == 0:
            raise ValueError("The sum of weights is zero, can't be normalized.")

    if w is not None:
        nx_w = nx * w
        avg = (nx_w).sum(axis=1) / w_sum
    else:
        avg = nx.sum(axis=1) / w_sum
        nx_w = nx

1252
    if w is not None and aweights is not None and ddof:
Z
zhiboniu 已提交
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
        norm_factor = w_sum - (w * aweights).sum() / w_sum
    else:
        norm_factor = w_sum - ddof
    if norm_factor <= 0:
        norm_factor = paddle.to_tensor(0, dtype=nx.dtype)
    nx = nx - avg.unsqueeze(1)
    xxt = paddle.mm(nx, nx_w.t().conj())
    cov = paddle.divide(xxt, norm_factor).squeeze()
    return cov


1264 1265
def t(input, name=None):
    """
1266 1267
    Transpose <=2-D tensor.
    0-D and 1-D tensors are returned as it is and 2-D tensor is equal to
1268
    the paddle.transpose function which perm dimensions set 0 and 1.
1269

1270
    Args:
1271
        input (Tensor): The input Tensor. It is a N-D (N<=2) Tensor of data types float32, float64, int32, int64.
1272
        name(str, optional): The default value is None.  Normally there is no need for
1273 1274
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`
    Returns:
1275
        Tensor: A transposed n-D Tensor, with data type being float16, float32, float64, int32, int64.
1276

1277
    Examples:
1278

1279 1280 1281
        .. code-block:: python
           :name: code-example
             import paddle
1282

1283
             # Example 1 (0-D tensor)
1284 1285
             x = paddle.to_tensor([0.79])
             paddle.t(x) # [0.79]
1286

1287
             # Example 2 (1-D tensor)
1288 1289 1290
             x = paddle.to_tensor([0.79, 0.84, 0.32])
             paddle.t(x) # [0.79000002, 0.83999997, 0.31999999]
             paddle.t(x).shape # [3]
1291 1292

             # Example 3 (2-D tensor)
1293 1294 1295 1296 1297 1298 1299 1300
             x = paddle.to_tensor([[0.79, 0.84, 0.32],
                                  [0.64, 0.14, 0.57]])
             x.shape # [2, 3]
             paddle.t(x)
             # [[0.79000002, 0.63999999],
             #  [0.83999997, 0.14000000],
             #  [0.31999999, 0.56999999]]
             paddle.t(x).shape # [3, 2]
1301

1302 1303 1304 1305 1306
    """
    if len(input.shape) > 2:
        raise ValueError(
            "Input(input) only support N-D (N<=2) tensor, but received "
            "length of Input(input) is %s. Perhaps you can use paddle."
1307 1308
            "tensor.transpose() instead." % len(input.shape)
        )
1309
    if in_dynamic_mode():
1310
        if len(input.shape) <= 1:
1311 1312 1313
            return input
        # 2-D tensor
        perm = [1, 0]
1314
        out = _C_ops.transpose(input, perm)
1315
        return out
1316 1317 1318 1319 1320 1321 1322
    else:
        check_variable_and_dtype(
            input,
            'input',
            ['float16', 'float32', 'float64', 'int32', 'int64'],
            'transpose',
        )
1323

1324 1325 1326
        helper = LayerHelper('t', **locals())
        out = helper.create_variable_for_type_inference(input.dtype)
        input_shape = helper.create_variable_for_type_inference(input.dtype)
1327
        if len(input.shape) <= 1:
1328 1329 1330 1331 1332 1333 1334 1335
            out = input
        else:
            helper.append_op(
                type='transpose2',
                inputs={'X': [input]},
                outputs={'Out': [out], 'XShape': [input_shape]},
                attrs={'axis': [1, 0]},
            )
1336 1337
        return out

1338

W
wanghuancoder 已提交
1339
def cross(x, y, axis=9, name=None):
1340
    """
1341
    Computes the cross product between two tensors along an axis.
1342

1343 1344
    Inputs must have the same shape, and the length of their axes should be equal to 3.
    If `axis` is not given, it defaults to the first axis found with the length 3.
1345

1346
    Args:
1347 1348
        x (Tensor): The first input tensor, the data type is float16, float32, float64, int32, int64.
        y (Tensor): The second input tensor, the data type is float16, float32, float64, int32, int64.
W
wanghuancoder 已提交
1349
        axis (int, optional): The axis along which to compute the cross product. It defaults to be 9 which indicates using the first axis found with the length 3.
1350
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.
1351 1352

    Returns:
1353
        Tensor. A Tensor with same data type as `x`.
1354

1355 1356
    Examples:
        .. code-block:: python
1357

1358
            import paddle
1359

Z
Zhou Wei 已提交
1360 1361 1362 1363 1364 1365
            x = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [2.0, 2.0, 2.0],
                                  [3.0, 3.0, 3.0]])
            y = paddle.to_tensor([[1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0],
                                  [1.0, 1.0, 1.0]])
1366

1367 1368 1369 1370 1371 1372 1373 1374 1375
            z1 = paddle.cross(x, y)
            # [[-1. -1. -1.]
            #  [ 2.  2.  2.]
            #  [-1. -1. -1.]]

            z2 = paddle.cross(x, y, axis=1)
            # [[0. 0. 0.]
            #  [0. 0. 0.]
            #  [0. 0. 0.]]
1376
    """
1377
    if in_dynamic_mode():
1378
        axis = K_DEFAULT_DIM if axis is None else axis
1379
        return _C_ops.cross(x, y, axis)
J
Jiabin Yang 已提交
1380
    else:
1381 1382 1383
        check_variable_and_dtype(
            x,
            'x',
1384
            ['float16', 'uint16', 'float32', 'float64', "int32", "int64"],
1385 1386 1387 1388 1389
            'cross',
        )
        check_variable_and_dtype(
            y,
            'y',
1390
            ['float16', 'uint16', 'float32', 'float64', "int32", "int64"],
1391 1392
            'cross',
        )
1393 1394
        helper = LayerHelper("cross", **locals())
        out = helper.create_variable_for_type_inference(x.dtype)
1395
        attrs = {}
1396
        attrs['dim'] = axis
J
Jiabin Yang 已提交
1397

1398 1399 1400 1401 1402 1403 1404
        helper.append_op(
            type='cross',
            inputs={'X': x, 'Y': y},
            outputs={'Out': out},
            attrs=attrs,
        )
        return out
1405 1406


1407
def cholesky(x, upper=False, name=None):
1408
    r"""
G
Guo Sheng 已提交
1409
    Computes the Cholesky decomposition of one symmetric positive-definite
1410 1411
    matrix or batches of symmetric positive-definite matrice.

G
Guo Sheng 已提交
1412 1413 1414 1415 1416 1417
    If `upper` is `True`, the decomposition has the form :math:`A = U^{T}U` ,
    and the returned matrix :math:`U` is upper-triangular. Otherwise, the
    decomposition has the form  :math:`A = LL^{T}` , and the returned matrix
    :math:`L` is lower-triangular.

    Args:
1418
        x (Tensor): The input tensor. Its shape should be `[*, M, M]`,
G
Guo Sheng 已提交
1419 1420 1421 1422 1423
            where * is zero or more batch dimensions, and matrices on the
            inner-most 2 dimensions all should be symmetric positive-definite.
            Its data type should be float32 or float64.
        upper (bool): The flag indicating whether to return upper or lower
            triangular matrices. Default: False.
1424 1425
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
G
Guo Sheng 已提交
1426 1427

    Returns:
1428 1429
        Tensor, A Tensor with same shape and data type as `x`. It represents
        triangular matrices generated by Cholesky decomposition.
1430

G
Guo Sheng 已提交
1431 1432 1433 1434 1435
    Examples:
        .. code-block:: python

            import paddle

1436 1437 1438 1439
            a = paddle.rand([3, 3], dtype="float32")
            a_t = paddle.transpose(a, [1, 0])
            x = paddle.matmul(a, a_t) + 1e-03

1440
            out = paddle.linalg.cholesky(x, upper=False)
1441
            print(out)
G
Guo Sheng 已提交
1442
    """
1443
    if in_dynamic_mode():
1444
        return _C_ops.cholesky(x, upper)
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'cholesky')
        check_type(upper, 'upper', bool, 'cholesky')
        helper = LayerHelper('cholesky', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='cholesky',
            inputs={'X': [x]},
            outputs={'Out': out},
            attrs={'upper': upper},
        )
        return out
G
Guo Sheng 已提交
1457 1458


1459 1460 1461 1462
def matrix_rank(x, tol=None, hermitian=False, name=None):
    r"""
    Computes the rank of a matrix.

1463
    The rank of a matrix is the number of singular values that are greater than the specified `tol` threshold when hermitian=False,
1464
    or the number of eigenvalues in absolute value that are greater than the specified `tol` threshold when hermitian=True.
1465 1466

    Args:
1467 1468 1469 1470
        x (Tensor): The input tensor. Its shape should be `[..., m, n]`, where `...` is zero or more batch dimensions. If `x` is a batch
            of matrices then the output has the same batch dimensions. The data type of `x` should be float32 or float64.
        tol (float,Tensor,optional): the tolerance value. Default: None. If `tol` is not specified, and `sigma` is the largest
            singular value (or eigenvalues in absolute value), and `eps` is the epsilon value for the dtype of `x`, then `tol` is computed
1471
            with formula `tol=sigma * max(m,n) * eps`. Note that if `x` is a batch of matrices, `tol` is computed this way for every batch.
1472 1473
        hermitian (bool,optional): indicates whether `x` is Hermitian. Default: False. When hermitian=True, `x` is assumed to be Hermitian,
            enabling a more efficient method for finding eigenvalues, but `x` is not checked inside the function. Instead, We just use
1474
            the lower triangular of the matrix to compute.
1475 1476 1477 1478
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: Rank of tensor x.
1479

1480 1481 1482 1483 1484 1485 1486 1487
    Examples:
        .. code-block:: python

            import paddle

            a = paddle.eye(10)
            b = paddle.linalg.matrix_rank(a)
            print(b)
1488
            # b = 10
1489 1490 1491 1492 1493 1494 1495

            c = paddle.ones(shape=[3, 4, 5, 5])
            d = paddle.linalg.matrix_rank(c, tol=0.01, hermitian=True)
            print(d)
            # d = [[1, 1, 1, 1],
            #      [1, 1, 1, 1],
            #      [1, 1, 1, 1]]
1496

1497
    """
1498
    if in_dynamic_mode():
1499 1500 1501 1502 1503 1504
        if isinstance(tol, Variable):
            if tol.dtype != x.dtype:
                tol_tensor = cast(tol, x.dtype)
            else:
                tol_tensor = tol
            use_default_tol = False
1505 1506 1507
            return _C_ops.matrix_rank_tol(
                x, tol_tensor, use_default_tol, hermitian
            )
1508

1509 1510 1511 1512 1513 1514
        if tol is None:
            tol_attr = 0.0
            use_default_tol = True
        else:
            tol_attr = float(tol)
            use_default_tol = False
Z
zhangyuqin1998 已提交
1515
        return _C_ops.matrix_rank(x, tol_attr, use_default_tol, hermitian)
1516 1517 1518 1519 1520
    else:
        inputs = {}
        attrs = {}
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'matrix_rank')
        inputs['X'] = x
1521
        if tol is None:
1522
            attrs['use_default_tol'] = True
1523
        elif isinstance(tol, Variable):
1524
            attrs['use_default_tol'] = False
1525
            if tol.dtype != x.dtype:
1526
                inputs['TolTensor'] = cast(tol, x.dtype)
1527
            else:
1528
                inputs['TolTensor'] = tol
1529
        else:
1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541
            check_type(tol, 'tol', float, 'matrix_rank')
            attrs['use_default_tol'] = False
            attrs['tol'] = tol
        check_type(hermitian, 'hermitian', bool, 'matrix_rank')
        attrs['hermitian'] = hermitian

        helper = LayerHelper('matrix_rank', **locals())
        out = helper.create_variable_for_type_inference(dtype='int32')
        helper.append_op(
            type='matrix_rank', inputs=inputs, outputs={'Out': out}, attrs=attrs
        )
        return out
1542 1543


1544 1545 1546 1547 1548 1549 1550 1551 1552
def bmm(x, y, name=None):
    """
    Applies batched matrix multiplication to two tensors.

    Both of the two input tensors must be three-dementional and share the same batch size.

    if x is a (b, m, k) tensor, y is a (b, k, n) tensor, the output will be a (b, m, n) tensor.

    Args:
Y
yaoxuefeng 已提交
1553 1554
        x (Tensor): The input Tensor.
        y (Tensor): The input Tensor.
1555 1556 1557 1558
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
Y
yaoxuefeng 已提交
1559
        Tensor: The product Tensor.
1560 1561

    Examples:
S
sunzhongkai588 已提交
1562 1563 1564
        .. code-block:: python

            import paddle
Y
yaoxuefeng 已提交
1565

S
sunzhongkai588 已提交
1566 1567 1568 1569 1570 1571 1572 1573 1574
            # In imperative mode:
            # size x: (2, 2, 3) and y: (2, 3, 2)
            x = paddle.to_tensor([[[1.0, 1.0, 1.0],
                                [2.0, 2.0, 2.0]],
                                [[3.0, 3.0, 3.0],
                                [4.0, 4.0, 4.0]]])
            y = paddle.to_tensor([[[1.0, 1.0],[2.0, 2.0],[3.0, 3.0]],
                                [[4.0, 4.0],[5.0, 5.0],[6.0, 6.0]]])
            out = paddle.bmm(x, y)
1575 1576 1577 1578 1579 1580
            # Tensor(shape=[2, 2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [[[6. , 6. ],
            #          [12., 12.]],

            #         [[45., 45.],
            #          [60., 60.]]])
1581

1582
    """
1583
    if in_dynamic_mode():
1584
        return _C_ops.bmm(x, y)
1585
    else:
W
Weilong Wu 已提交
1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605
        x_shape = x.shape
        y_shape = y.shape
        if not len(x_shape) == len(y_shape) == 3:
            raise ValueError(
                "x and y should be 3-dimensional. But received x's dimention: {}, y's dimention: {}".format(
                    x_shape, y_shape
                )
            )
        if x_shape[2] != y_shape[1]:
            raise ValueError(
                "x's width must be equal with y's height. But received x's shape: {}, y's shape: {}".format(
                    x_shape, y_shape
                )
            )
        if x_shape[0] != y_shape[0]:
            raise ValueError(
                "x's batch (shape[0]) must be equal with y's batch (shape[0]). But received x's shape: {}, y's shape: {}".format(
                    x_shape, y_shape
                )
            )
1606 1607 1608 1609 1610 1611
        helper = LayerHelper('bmm', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='bmm', inputs={'X': x, 'Y': y}, outputs={'Out': out}
        )
        return out
Q
Qi Li 已提交
1612 1613


1614
def histogram(input, bins=100, min=0, max=0, name=None):
Q
Qi Li 已提交
1615
    """
1616
    Computes the histogram of a tensor. The elements are sorted into equal width bins between min and max.
Q
Qi Li 已提交
1617 1618 1619
    If min and max are both zero, the minimum and maximum values of the data are used.

    Args:
1620
        input (Tensor): A Tensor(or LoDTensor) with shape :math:`[N_1, N_2,..., N_k]` . The data type of the input Tensor
Q
Qi Li 已提交
1621
            should be float32, float64, int32, int64.
1622 1623 1624 1625
        bins (int, optional): number of histogram bins.
        min (int, optional): lower end of the range (inclusive).
        max (int, optional): upper end of the range (inclusive).
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
Q
Qi Li 已提交
1626 1627

    Returns:
1628
        Tensor: data type is int64, shape is (nbins,).
Q
Qi Li 已提交
1629

1630
    Examples:
Q
Qi Li 已提交
1631
        .. code-block:: python
1632

Q
Qi Li 已提交
1633
            import paddle
1634

1635
            inputs = paddle.to_tensor([1, 2, 1])
1636 1637
            result = paddle.histogram(inputs, bins=4, min=0, max=3)
            print(result) # [0, 2, 1, 0]
Q
Qi Li 已提交
1638
    """
1639
    if in_dynamic_mode():
1640
        return _C_ops.histogram(input, bins, min, max)
1641 1642 1643 1644
    else:
        helper = LayerHelper('histogram', **locals())
        check_variable_and_dtype(
            input, 'X', ['int32', 'int64', 'float32', 'float64'], 'histogram'
1645
        )
1646 1647 1648 1649 1650 1651 1652 1653
        out = helper.create_variable_for_type_inference(VarDesc.VarType.INT64)
        helper.append_op(
            type='histogram',
            inputs={'X': input},
            outputs={'Out': out},
            attrs={'bins': bins, 'min': min, 'max': max},
        )
        return out
S
smallv0221 已提交
1654 1655 1656 1657


def bincount(x, weights=None, minlength=0, name=None):
    """
1658
    Computes frequency of each value in the input tensor.
S
smallv0221 已提交
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685

    Args:
        x (Tensor): A Tensor with non-negative integer. Should be 1-D tensor.
        weights (Tensor, optional): Weight for each value in the input tensor. Should have the same shape as input. Default is None.
        minlength (int, optional): Minimum number of bins. Should be non-negative integer. Default is 0.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor of frequency.

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([1, 2, 1, 4, 5])
            result1 = paddle.bincount(x)
            print(result1) # [0, 2, 1, 0, 1, 1]

            w = paddle.to_tensor([2.1, 0.4, 0.1, 0.5, 0.5])
            result2 = paddle.bincount(x, weights=w)
            print(result2) # [0., 2.19999981, 0.40000001, 0., 0.50000000, 0.50000000]
    """
    if x.dtype not in [paddle.int32, paddle.int64]:
        raise TypeError("Elements in Input(x) should all be integers")

1686
    if in_dynamic_mode():
1687
        return _C_ops.bincount(x, weights, minlength)
1688 1689
    else:
        helper = LayerHelper('bincount', **locals())
S
smallv0221 已提交
1690

1691
        check_variable_and_dtype(x, 'X', ['int32', 'int64'], 'bincount')
S
smallv0221 已提交
1692

1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707
        if weights is not None:
            check_variable_and_dtype(
                weights,
                'Weights',
                ['int32', 'int64', 'float32', 'float64'],
                'bincount',
            )
            out = helper.create_variable_for_type_inference(dtype=weights.dtype)
        else:
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='bincount',
            inputs={'X': x, 'Weights': weights},
            outputs={'Out': out},
            attrs={'minlength': minlength},
1708
        )
1709
        return out
1710 1711 1712 1713 1714 1715 1716


def mv(x, vec, name=None):
    """
    Performs a matrix-vector product of the matrix x and the vector vec.

    Args:
F
furnace 已提交
1717
        x (Tensor): A tensor with shape :math:`[M, N]` , The data type of the input Tensor x
1718
            should be one of float32, float64.
F
furnace 已提交
1719
        vec (Tensor): A tensor with shape :math:`[N]` , The data type of the input Tensor x
1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
            should be one of float32, float64.
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor which is producted by x and vec.

    Examples:
        .. code-block:: python

            # x: [M, N], vec: [N]
            # paddle.mv(x, vec)  # out: [M]

            import paddle

1735 1736
            x = paddle.to_tensor([[2, 1, 3], [3, 0, 1]]).astype("float64")
            vec = paddle.to_tensor([3, 5, 1]).astype("float64")
1737
            out = paddle.mv(x, vec)
1738 1739 1740
            print(out)
            # Tensor(shape=[2], dtype=float64, place=Place(cpu), stop_gradient=True,
            #        [14., 10.])
1741
    """
1742
    if in_dynamic_mode():
1743
        return _C_ops.mv(x, vec)
J
Jiabin Yang 已提交
1744
    else:
1745

1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
        def __check_input(x, vec):
            var_names = {'x': x, 'vec': vec}
            for name, val in var_names.items():
                check_variable_and_dtype(
                    val, name, ['float32', 'float64'], 'mv'
                )
            x_shape = list(x.shape)
            vec_shape = list(vec.shape)
            if len(x_shape) != 2:
                raise ValueError(
                    "x should be 2-dimensional. But received x's dimention: {}".format(
                        x_shape
1758
                    )
1759 1760 1761 1762 1763
                )
            if len(vec_shape) != 1:
                raise ValueError(
                    "vec should be 1-dimensional. But received vec's dimention: {}".format(
                        vec_shape
1764
                    )
1765
                )
J
Jiabin Yang 已提交
1766

1767
        __check_input(x, vec)
J
Jiabin Yang 已提交
1768

1769 1770 1771 1772 1773 1774
        helper = LayerHelper('mv', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='mv', inputs={'X': x, 'Vec': vec}, outputs={'Out': out}
        )
        return out
1775 1776


1777
def det(x, name=None):
H
huangxu96 已提交
1778
    """
1779

H
huangxu96 已提交
1780
    Calculates determinant value of a square matrix or batches of square matrices.
1781

H
huangxu96 已提交
1782
    Args:
1783
        x (Tensor): the input matrix of size `(n, n)` or the
1784 1785
            batch of matrices of size `(*, n, n)` where `*` is one or more
            batch dimensions.
1786 1787
        name(str, optional): Name of the output. Default is None. It's used
            to print debug info for developers. Details: :ref:`api_guide_Name`
1788

H
huangxu96 已提交
1789
    Returns:
1790
        Tensor, the determinant value of a square matrix or batches of square matrices.
H
huangxu96 已提交
1791

1792
    Examples:
H
huangxu96 已提交
1793 1794
        .. code-block:: python

1795
            import paddle
H
huangxu96 已提交
1796

1797
            x =  paddle.randn([3,3,3])
H
huangxu96 已提交
1798

1799
            A = paddle.linalg.det(x)
H
huangxu96 已提交
1800

1801
            print(A)
1802

1803
            # [ 0.02547996,  2.52317095, -6.15900707])
H
huangxu96 已提交
1804

1805

H
huangxu96 已提交
1806
    """
1807
    if in_dynamic_mode():
1808
        return _C_ops.det(x)
1809
    else:
1810
        check_dtype(x.dtype, 'Input', ['float16', 'float32', 'float64'], 'det')
C
chentianyu03 已提交
1811

1812 1813 1814 1815 1816
        input_shape = list(x.shape)
        assert len(input_shape) >= 2, (
            "The x must be at least 2-dimensional, "
            "but received Input x's dimensional: %s.\n" % len(input_shape)
        )
H
huangxu96 已提交
1817

1818 1819
        assert (
            input_shape[-1] == input_shape[-2]
1820
        ), "Expect squared input," "but received {} by {} matrix.\n".format(
1821 1822 1823 1824 1825
            input_shape[-2],
            input_shape[-1],
        )
        helper = LayerHelper('determinant', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
H
huangxu96 已提交
1826

1827 1828 1829 1830
        helper.append_op(
            type='determinant', inputs={'Input': [x]}, outputs={'Out': [out]}
        )
        return out
H
huangxu96 已提交
1831 1832


1833
def slogdet(x, name=None):
H
huangxu96 已提交
1834
    """
1835

H
huangxu96 已提交
1836
    Calculates the sign and natural logarithm of the absolute value of a square matrix's or batches square matrices' determinant.
1837
    The determinant can be computed with ``sign * exp`` (logabsdet)
1838

H
huangxu96 已提交
1839 1840 1841
    Supports input of float, double

    Note that for matrices that have zero determinant, this returns ``(0, -inf)``
1842

H
huangxu96 已提交
1843 1844 1845 1846 1847
    Args:
        x (Tensor): the batch of matrices of size :math:`(*, n, n)`
            where math:`*` is one or more batch dimensions.

    Returns:
1848
        y (Tensor), A tensor containing the sign of the determinant and the natural logarithm
H
huangxu96 已提交
1849 1850
        of the absolute value of determinant, respectively.

1851
    Examples:
1852
        .. code-block:: python
H
huangxu96 已提交
1853

1854
            import paddle
H
huangxu96 已提交
1855

1856
            x =  paddle.randn([3,3,3])
H
huangxu96 已提交
1857

1858
            A = paddle.linalg.slogdet(x)
H
huangxu96 已提交
1859

1860
            print(A)
1861

1862 1863
            # [[ 1.        ,  1.        , -1.        ],
            # [-0.98610914, -0.43010661, -0.10872950]])
H
huangxu96 已提交
1864 1865

    """
1866
    if in_dynamic_mode():
1867
        return _C_ops.slogdet(x)
1868 1869
    else:
        check_dtype(x.dtype, 'Input', ['float32', 'float64'], 'slogdet')
1870

1871 1872 1873 1874 1875
        input_shape = list(x.shape)
        assert len(input_shape) >= 2, (
            "The x must be at least 2-dimensional, "
            "but received Input x's dimensional: %s.\n" % len(input_shape)
        )
H
huangxu96 已提交
1876

1877 1878
        assert (
            input_shape[-1] == input_shape[-2]
1879
        ), "Expect squared input," "but received {} by {} matrix.\n".format(
1880 1881 1882 1883 1884
            input_shape[-2],
            input_shape[-1],
        )
        helper = LayerHelper('slogdeterminant', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
H
huangxu96 已提交
1885

1886 1887 1888 1889 1890 1891
        helper.append_op(
            type='slogdeterminant',
            inputs={'Input': [x]},
            outputs={'Out': [out]},
        )
        return out
H
huangxu96 已提交
1892 1893


1894 1895
def svd(x, full_matrices=False, name=None):
    r"""
1896 1897 1898 1899 1900
    Computes the singular value decomposition of one matrix or a batch of regular matrices.

    Let :math:`X` be the input matrix or a batch of input matrices, the output should satisfies:

    .. math::
1901 1902
        X = U * diag(S) * VT

1903 1904
    Args:
        x (Tensor): The input tensor. Its shape should be `[..., N, M]`,
1905
            where `...` is zero or more batch dimensions. N and M can be arbitraty
1906 1907
            positive number. Note that if x is sigular matrices, the grad is numerical
            instable. The data type of x should be float32 or float64.
Z
Zman 已提交
1908
        full_matrices (bool, optional): A flag to control the behavor of svd.
1909
            If full_matrices = True, svd op will compute full U and V matrics,
1910
            which means shape of U is `[..., N, N]`, shape of V is `[..., M, M]`. K = min(M, N).
1911
            If full_matrices = False, svd op will use a economic method to store U and V.
1912
            which means shape of U is `[..., N, K]`, shape of V is `[..., M, K]`. K = min(M, N).
Z
Zman 已提交
1913
            Default value is False.
1914
        name (str, optional): Name for the operation (optional, default is None).
1915
            For more information, please refer to :ref:`api_guide_Name`.
1916 1917

    Returns:
Z
Zman 已提交
1918 1919 1920 1921 1922
        - U (Tensor), is the singular value decomposition result U.
        - S (Tensor), is the singular value decomposition result S.
        - VH (Tensor), VH is the conjugate transpose of V, which is the singular value decomposition result V.

        Tuple of 3 tensors(U, S, VH): VH is the conjugate transpose of V. S is the singlar value vectors of matrics with shape `[..., K]`
1923

1924 1925 1926 1927
    Examples:
        .. code-block:: python

            import paddle
1928 1929 1930

            x = paddle.to_tensor([[1.0, 2.0], [1.0, 3.0], [4.0, 6.0]]).astype('float64')
            x = x.reshape([3, 2])
1931
            u, s, vh = paddle.linalg.svd(x)
1932 1933 1934 1935 1936
            print (u)
            #U = [[ 0.27364809, -0.21695147  ],
            #      [ 0.37892198, -0.87112408 ],
            #      [ 0.8840446 ,  0.44053933 ]]

1937
            print (s)
1938
            #S = [8.14753743, 0.78589688]
1939
            print (vh)
1940 1941
            #VT= [[ 0.51411221,  0.85772294],
            #     [ 0.85772294, -0.51411221]]
1942

1943
            # one can verify : U * S * VT == X
1944
            #                  U * UH == I
1945
            #                  V * VH == I
1946
    """
1947

1948
    if in_dynamic_mode():
1949
        return _C_ops.svd(x, full_matrices)
1950 1951 1952 1953 1954 1955 1956
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'svd')
        check_type(full_matrices, 'full_matrices', bool, 'svd')
        helper = LayerHelper('svd', **locals())
        u = helper.create_variable_for_type_inference(dtype=x.dtype)
        vh = helper.create_variable_for_type_inference(dtype=x.dtype)
        s = helper.create_variable_for_type_inference(dtype=x.dtype)
1957
        attrs = {}
1958 1959 1960 1961 1962 1963 1964 1965
        attrs['full_matrices'] = full_matrices
        helper.append_op(
            type='svd',
            inputs={'X': [x]},
            outputs={'U': u, 'VH': vh, 'S': s},
            attrs=attrs,
        )
        return u, s, vh
1966 1967


1968 1969
def matrix_power(x, n, name=None):
    r"""
1970

1971
    Computes the n-th power of a square matrix or a batch of square matrices.
1972

1973 1974 1975 1976 1977
    Let :math:`X` be a sqaure matrix or a batch of square matrices, :math:`n` be
    an exponent, the equation should be:

    .. math::
        Out = X ^ {n}
1978

1979 1980
    Specifically,

1981
    - If `n > 0`, it returns the matrix or a batch of matrices raised to the power of `n`.
1982

1983 1984
    - If `n = 0`, it returns the identity matrix or a batch of identity matrices.

1985
    - If `n < 0`, it returns the inverse of each matrix (if invertible) raised to the power of `abs(n)`.
1986 1987 1988 1989 1990 1991

    Args:
        x (Tensor): A square matrix or a batch of square matrices to be raised
            to power `n`. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
        n (int): The exponent. It can be any positive, negative integer or zero.
1992
        name (str, optional): Name for the operation (optional, default is None).
1993 1994 1995
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
1996 1997
        - Tensor, The n-th power of the matrix (or the batch of matrices) `x`. Its
          data type should be the same as that of `x`.
1998 1999 2000 2001 2002 2003 2004 2005 2006

    Examples:
        .. code-block:: python

            import paddle

            x = paddle.to_tensor([[1, 2, 3],
                                  [1, 4, 9],
                                  [1, 8, 27]], dtype='float64')
2007
            print(paddle.linalg.matrix_power(x, 2))
2008 2009 2010 2011
            # [[6.  , 34. , 102.],
            #  [14. , 90. , 282.],
            #  [36. , 250., 804.]]

2012
            print(paddle.linalg.matrix_power(x, 0))
2013 2014 2015 2016
            # [[1., 0., 0.],
            #  [0., 1., 0.],
            #  [0., 0., 1.]]

2017
            print(paddle.linalg.matrix_power(x, -2))
2018 2019 2020 2021
            # [[ 12.91666667, -12.75000000,  2.83333333 ],
            #  [-7.66666667 ,  8.         , -1.83333333 ],
            #  [ 1.80555556 , -1.91666667 ,  0.44444444 ]]
    """
2022
    if in_dynamic_mode():
2023
        return _C_ops.matrix_power(x, n)
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
    else:
        check_variable_and_dtype(
            x, 'dtype', ['float32', 'float64'], 'matrix_power'
        )
        check_type(n, 'n', int, 'matrix_power')
        helper = LayerHelper('matrix_power', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(
            type='matrix_power',
            inputs={'X': x},
            outputs={'Out': out},
            attrs={'n': n},
        )
        return out
2038 2039


2040 2041 2042 2043 2044 2045 2046
def qr(x, mode="reduced", name=None):
    r"""
    Computes the QR decomposition of one matrix or batches of matrice (backward is unsupported now).

    Args:
        x (Tensor): The input tensor. Its shape should be `[..., M, N]`,
            where ... is zero or more batch dimensions. M and N can be arbitrary
2047 2048
            positive number. The data type of x should be float32 or float64.
        mode (str, optional): A flag to control the behavior of qr, the default is "reduced".
2049
            Suppose x's shape is `[..., M, N]` and denoting `K = min(M, N)`:
2050
            If mode = "reduced", qr op will return reduced Q and R matrices,
2051
            which means Q's shape is `[..., M, K]` and R's shape is `[..., K, N]`.
2052
            If mode = "complete", qr op will return complete Q and R matrices,
2053 2054 2055 2056 2057
            which means Q's shape is `[..., M, M]` and R's shape is `[..., M, N]`.
            If mode = "r", qr op will only return reduced R matrix, which means
            R's shape is `[..., K, N]`.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2058

2059
    Returns:
2060
        If mode = "reduced" or mode = "complete", qr will return a two tensor-tuple, which represents Q and R.
2061
        If mode = "r", qr will return a tensor which represents R.
2062 2063

    Examples:
2064 2065
        .. code-block:: python

2066
            import paddle
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            q, r = paddle.linalg.qr(x)
            print (q)
            print (r)

            # Q = [[-0.16903085,  0.89708523],
            #      [-0.50709255,  0.27602622],
            #      [-0.84515425, -0.34503278]])

            # R = [[-5.91607978, -7.43735744],
            #      [ 0.        ,  0.82807867]])
2079 2080

            # one can verify : X = Q * R ;
2081
    """
2082
    if in_dynamic_mode():
2083
        q, r = _C_ops.qr(x, mode)
Y
Yulong Ao 已提交
2084 2085 2086 2087
        if mode == "r":
            return r
        else:
            return q, r
2088 2089 2090 2091 2092 2093
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'qr')
        check_type(mode, 'mode', str, 'qr')
        helper = LayerHelper('qr', **locals())
        q = helper.create_variable_for_type_inference(dtype=x.dtype)
        r = helper.create_variable_for_type_inference(dtype=x.dtype)
2094
        attrs = {}
2095 2096 2097 2098
        attrs['mode'] = mode
        helper.append_op(
            type='qr', inputs={'X': [x]}, outputs={'Q': q, 'R': r}, attrs=attrs
        )
2099 2100 2101 2102 2103 2104
        if mode == "r":
            return r
        else:
            return q, r


2105 2106
def lu(x, pivot=True, get_infos=False, name=None):
    r"""
2107
    Computes the LU factorization of an N-D(N>=2) matrix x.
2108

2109
    Returns the LU factorization(inplace x) and Pivots. low triangular matrix L and
2110 2111 2112 2113
    upper triangular matrix U are combined to a single LU matrix.

    Pivoting is done if pivot is set to True.
    P mat can be get by pivots:
2114 2115 2116 2117 2118 2119

    .. code-block:: text
        ones = eye(rows) #eye matrix of rank rows
        for i in range(cols):
            swap(ones[i], ones[pivots[i]])
        return ones
2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130

    Args:

        X (Tensor): the tensor to factor of N-dimensions(N>=2).

        pivot (bool, optional): controls whether pivoting is done. Default: True.

        get_infos (bool, optional): if set to True, returns an info IntTensor. Default: False.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2131

2132
    Returns:
2133
        factorization (Tensor), LU matrix, the factorization of input X.
2134

2135 2136 2137
        pivots (IntTensor), the pivots of size(∗(N-2), min(m,n)). `pivots` stores all the
        intermediate transpositions of rows. The final permutation `perm` could be
        reconstructed by this, details refer to upper example.
2138

2139 2140 2141
        infos (IntTensor, optional), if `get_infos` is `True`, this is a tensor of size (∗(N-2))
        where non-zero values indicate whether factorization for the matrix or each minibatch
        has succeeded or failed.
2142

2143 2144

    Examples:
2145 2146
        .. code-block:: python

2147
            import paddle
2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
2163

2164 2165 2166 2167 2168 2169
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
2170
            # [1., 0., 0.]]),
2171 2172 2173 2174
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
2175
            # [0.60000000, 0.50000000]]),
2176 2177 2178 2179 2180
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))

2181 2182

            # one can verify : X = P @ L @ U ;
2183
    """
L
Lin Manhui 已提交
2184

2185
    if in_dynamic_mode():
2186
        lu, p, info = _C_ops.lu(x, pivot)
L
Lin Manhui 已提交
2187 2188 2189 2190 2191 2192
    else:
        check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'lu')
        helper = LayerHelper('lu', **locals())
        lu = helper.create_variable_for_type_inference(dtype=x.dtype)
        p = helper.create_variable_for_type_inference(dtype='int')
        info = helper.create_variable_for_type_inference(dtype='int')
2193
        attrs = {}
L
Lin Manhui 已提交
2194
        attrs['pivot'] = pivot
2195 2196 2197 2198 2199 2200
        helper.append_op(
            type='lu',
            inputs={'X': x},
            outputs={'Out': lu, 'Pivots': p, 'Infos': info},
            attrs=attrs,
        )
2201 2202 2203 2204 2205 2206 2207 2208
    if get_infos:
        return lu, p, info
    else:
        return lu, p


def lu_unpack(x, y, unpack_ludata=True, unpack_pivots=True, name=None):
    r"""
2209
    Unpack L U and P to single matrix tensor .
2210 2211 2212
    unpack L and U matrix from LU, unpack permutation matrix P from Pivtos .

    P mat can be get by pivots:
2213 2214 2215 2216 2217

    .. code-block:: text
        ones = eye(rows) #eye matrix of rank rows
        for i in range(cols):
            swap(ones[i], ones[pivots[i]])
2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230


    Args:
        x (Tensor): The LU tensor get from paddle.linalg.lu, which is combined by L and U.

        y (Tensor): Pivots get from paddle.linalg.lu.

        unpack_ludata (bool,optional): whether to unpack L and U from x. Default: True.

        unpack_pivots (bool, optional): whether to unpack permutation matrix P from Pivtos. Default: True.

        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
2231

2232
    Returns:
2233
        P (Tensor), Permutation matrix P of lu factorization.
2234

2235
        L (Tensor), The lower triangular matrix tensor of lu factorization.
2236

2237
        U (Tensor), The upper triangular matrix tensor of lu factorization.
2238

2239 2240

    Examples:
2241 2242
        .. code-block:: python

2243
            import paddle
2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258

            x = paddle.to_tensor([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]]).astype('float64')
            lu,p,info = paddle.linalg.lu(x, get_infos=True)

            # >>> lu:
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            #    [[5.        , 6.        ],
            #        [0.20000000, 0.80000000],
            #        [0.60000000, 0.50000000]])
            # >>> p
            # Tensor(shape=[2], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    [3, 3])
            # >>> info
            # Tensor(shape=[], dtype=int32, place=CUDAPlace(0), stop_gradient=True,
            #    0)
2259

2260 2261 2262 2263 2264 2265
            P,L,U = paddle.linalg.lu_unpack(lu,p)

            # >>> P
            # (Tensor(shape=[3, 3], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[0., 1., 0.],
            # [0., 0., 1.],
2266
            # [1., 0., 0.]]),
2267 2268 2269 2270
            # >>> L
            # Tensor(shape=[3, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[1.        , 0.        ],
            # [0.20000000, 1.        ],
2271
            # [0.60000000, 0.50000000]]),
2272 2273 2274 2275 2276
            # >>> U
            # Tensor(shape=[2, 2], dtype=float64, place=CUDAPlace(0), stop_gradient=True,
            # [[5.        , 6.        ],
            # [0.        , 0.80000000]]))

2277
            # one can verify : X = P @ L @ U ;
2278 2279
    """

2280
    if in_dynamic_mode():
2281
        P, L, U = _C_ops.lu_unpack(x, y, unpack_ludata, unpack_pivots)
2282
        return P, L, U
2283 2284 2285
    else:
        check_variable_and_dtype(
            x, 'dtype', ['float32', 'float64'], 'lu_unpack'
2286
        )
2287 2288 2289 2290
        helper = LayerHelper('lu_unpack', **locals())
        p = helper.create_variable_for_type_inference(dtype=x.dtype)
        l = helper.create_variable_for_type_inference(dtype=x.dtype)
        u = helper.create_variable_for_type_inference(dtype=x.dtype)
2291

2292
        attrs = {}
2293 2294 2295 2296 2297 2298 2299 2300 2301
        attrs['unpack_ludata'] = unpack_ludata
        attrs['unpack_pivots'] = unpack_pivots
        helper.append_op(
            type='lu_unpack',
            inputs={'X': x, 'Pivots': y},
            outputs={'Pmat': p, 'L': l, 'U': u},
            attrs=attrs,
        )
        return p, l, u
2302 2303


L
Lijunhui 已提交
2304 2305
def eig(x, name=None):
    """
2306
    Performs the eigenvalue decomposition of a square matrix or a batch of square matrices.
L
Lijunhui 已提交
2307

2308 2309 2310 2311 2312 2313
    Note:
        - If the matrix is a Hermitian or a real symmetric matrix, please use :ref:`paddle.linalg.eigh` instead, which is much faster.
        - If only eigenvalues is needed, please use :ref:`paddle.linalg.eigvals` instead.
        - If the matrix is of any shape, please use :ref:`paddle.linalg.svd`.
        - This API is only supported on CPU device.
        - The output datatype is always complex for both real and complex input.
L
Lijunhui 已提交
2314 2315 2316 2317

    Args:
        x (Tensor): A tensor with shape math:`[*, N, N]`, The data type of the x should be one of ``float32``,
            ``float64``, ``compplex64`` or ``complex128``.
2318
        name (str, optional): The default value is `None`. Normally there is no need for user to set
L
Lijunhui 已提交
2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Eigenvalues(Tensors): A tensor with shape math:`[*, N]` refers to the eigen values.
        Eigenvectors(Tensors): A tensor with shape math:`[*, N, N]` refers to the eigen vectors.

    Examples:
        .. code-block:: python

            import paddle

            paddle.device.set_device("cpu")

2332
            x = paddle.to_tensor([[1.6707249, 7.2249975, 6.5045543],
L
Lijunhui 已提交
2333
                               [9.956216,  8.749598,  6.066444 ],
2334
                               [4.4251957, 1.7983172, 0.370647 ]])
L
Lijunhui 已提交
2335
            w, v = paddle.linalg.eig(x)
2336
            print(v)
L
Lijunhui 已提交
2337 2338 2339 2340 2341 2342 2343 2344
            # Tensor(shape=[3, 3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [[(-0.5061363550800655+0j) , (-0.7971760990842826+0j) ,
            #         (0.18518077798279986+0j)],
            #        [(-0.8308237755993192+0j) ,  (0.3463813401919749+0j) ,
            #         (-0.6837005269141947+0j) ],
            #        [(-0.23142567697893396+0j),  (0.4944999840400175+0j) ,
            #         (0.7058765252952796+0j) ]])

2345
            print(w)
L
Lijunhui 已提交
2346 2347 2348 2349
            # Tensor(shape=[3], dtype=complex128, place=CPUPlace, stop_gradient=False,
            #       [ (16.50471283351188+0j)  , (-5.5034820550763515+0j) ,
            #         (-0.21026087843552282+0j)])
    """
2350

2351
    if in_dynamic_mode():
2352
        return _C_ops.eig(x)
2353 2354 2355 2356 2357
    else:
        check_variable_and_dtype(
            x, 'X', ['float32', 'float64', 'complex64', 'complex128'], 'eig'
        )
        helper = LayerHelper('eig', **locals())
L
Lijunhui 已提交
2358

2359 2360
        w = helper.create_variable_for_type_inference(x.dtype)
        v = helper.create_variable_for_type_inference(x.dtype)
L
Lijunhui 已提交
2361

2362 2363 2364
        inputs = {'X': x}
        outputs = {'Eigenvalues': w, 'Eigenvectors': v}
        helper.append_op(type='eig', inputs=inputs, outputs=outputs)
L
Lijunhui 已提交
2365

2366
        return w, v
L
Lijunhui 已提交
2367 2368


2369 2370 2371
def eigvals(x, name=None):
    """
    Compute the eigenvalues of one or more general matrices.
2372 2373 2374

    Warning:
        The gradient kernel of this operator does not yet developed.
2375 2376 2377 2378
        If you need back propagation through this operator, please replace it with paddle.linalg.eig.

    Args:
        x (Tensor): A square matrix or a batch of square matrices whose eigenvalues will be computed.
2379
            Its shape should be `[*, M, M]`, where `*` is zero or more batch dimensions.
2380
            Its data type should be float32, float64, complex64, or complex128.
2381
        name (str, optional): Name for the operation (optional, default is None).
2382
            For more information, please refer to :ref:`api_guide_Name`.
2383

2384
    Returns:
2385 2386
        Tensor, A tensor containing the unsorted eigenvalues which has the same batch
        dimensions with `x`. The eigenvalues are complex-valued even when `x` is real.
2387 2388 2389 2390 2391

    Examples:
        .. code-block:: python

            import paddle
2392

2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407
            paddle.set_device("cpu")
            paddle.seed(1234)

            x = paddle.rand(shape=[3, 3], dtype='float64')
            # [[0.02773777, 0.93004224, 0.06911496],
            #  [0.24831591, 0.45733623, 0.07717843],
            #  [0.48016702, 0.14235102, 0.42620817]])

            print(paddle.linalg.eigvals(x))
            # [(-0.27078833542132674+0j), (0.29962280156230725+0j), (0.8824477020120244+0j)] #complex128
    """

    x_shape = list(x.shape)
    if len(x_shape) < 2:
        raise ValueError(
2408 2409 2410 2411
            "The dimension of Input(x) should be at least 2, but received x's dimention = {}, x's shape = {}".format(
                len(x_shape), x_shape
            )
        )
2412 2413 2414

    if x_shape[-1] != x_shape[-2]:
        raise ValueError(
2415 2416 2417 2418
            "The last two dimensions of Input(x) should be equal, but received x's shape = {}".format(
                x_shape
            )
        )
2419

2420
    if in_dynamic_mode():
2421
        return _C_ops.eigvals(x)
2422
    else:
2423 2424 2425 2426 2427 2428
        check_variable_and_dtype(
            x,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'eigvals',
        )
2429 2430 2431 2432
        helper = LayerHelper('eigvals', **locals())
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
        helper.append_op(type='eigvals', inputs={'X': x}, outputs={'Out': out})
        return out
2433 2434


2435 2436 2437 2438
def multi_dot(x, name=None):
    """
    Multi_dot is an operator that calculates multiple matrix multiplications.

2439
    Supports inputs of float16(only GPU support), float32 and float64 dtypes. This function does not
2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475
    support batched inputs.

    The input tensor in [x] must be 2-D except for the first and last can be 1-D.
    If the first tensor is a 1-D vector of shape(n, ) it is treated as row vector
    of shape(1, n), similarly if the last tensor is a 1D vector of shape(n, ), it
    is treated as a column vector of shape(n, 1).

    If the first and last tensor are 2-D matrix, then the output is also 2-D matrix,
    otherwise the output is a 1-D vector.

    Multi_dot will select the lowest cost multiplication order for calculation. The
    cost of multiplying two matrices with shapes (a, b) and (b, c) is a * b * c.
    Given matrices A, B, C with shapes (20, 5), (5, 100), (100, 10) respectively,
    we can calculate the cost of different multiplication orders as follows:
    - Cost((AB)C) = 20x5x100 + 20x100x10 = 30000
    - Cost(A(BC)) = 5x100x10 + 20x5x10 = 6000

    In this case, multiplying B and C first, then multiply A, which is 5 times faster
    than sequential calculation.

    Args:
        x ([Tensor]): The input tensors which is a list Tensor.
        name(str|None): A name for this layer(optional). If set None, the layer
            will be named automatically.

    Returns:
        Tensor: The output Tensor.


    Examples:

    .. code-block:: python

        import paddle

        # A * B
2476 2477
        A = paddle.rand([3, 4])
        B = paddle.rand([4, 5])
2478
        out = paddle.linalg.multi_dot([A, B])
2479
        print(out.shape)
2480 2481 2482
        # [3, 5]

        # A * B * C
2483 2484 2485
        A = paddle.rand([10, 5])
        B = paddle.rand([5, 8])
        C = paddle.rand([8, 7])
2486
        out = paddle.linalg.multi_dot([A, B, C])
2487
        print(out.shape)
2488 2489 2490
        # [10, 7]

    """
2491
    if in_dynamic_mode():
2492
        return _C_ops.multi_dot(x)
2493 2494 2495 2496 2497 2498
    else:
        check_type(x, 'x', (list, tuple), 'multi_dot')
        for id, item in enumerate(x):
            check_variable_and_dtype(
                item,
                'x[' + str(id) + ']',
2499
                ['float16', 'float32', 'float64', 'uint16'],
2500 2501 2502 2503 2504 2505
                'multi_dot',
            )
            if item.dtype != x[0].dtype:
                raise TypeError(
                    "All the Tensors in the input must have the same data type."
                )
2506

2507 2508 2509 2510 2511
        helper = LayerHelper('multi_dot', **locals())
        dtype = helper.input_dtype(input_param_name='x')
        out = helper.create_variable_for_type_inference(dtype)
        helper.append_op(
            type='multi_dot', inputs={"X": x}, outputs={"Out": out}
2512
        )
2513
        return out
2514 2515 2516 2517


def eigh(x, UPLO='L', name=None):
    """
2518
    Compute the eigenvalues and eigenvectors of a
2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
        x (Tensor): A tensor with shape :math:`[*, N, N]` , The data type of the input Tensor x
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): (string, default 'L'), 'L' represents the lower triangular matrix,
                        "'U' represents the upper triangular matrix.".
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
2530 2531 2532 2533
        - out_value(Tensor):  A Tensor with shape [*, N] and data type of float32 and float64.
            The eigenvalues of eigh op.
        - out_vector(Tensor): A Tensor with shape [*, N, N] and data type of float32,float64,
            complex64 and complex128. The eigenvectors of eigh op.
2534 2535 2536 2537 2538 2539

    Examples:
        .. code-block:: python

            import paddle

2540
            x = paddle.to_tensor([[1, -2j], [2j, 5]])
2541
            out_value, out_vector = paddle.linalg.eigh(x, UPLO='L')
2542 2543 2544 2545 2546 2547 2548
            print(out_value)
            #[0.17157288, 5.82842712]
            print(out_vector)
            #[(-0.9238795325112867+0j), (-0.3826834323650898+0j)],
            #[ 0.3826834323650898j    , -0.9238795325112867j    ]]

    """
2549
    if in_dynamic_mode():
2550
        return _C_ops.eigh(x, UPLO)
2551
    else:
H
hong 已提交
2552

2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567
        def __check_input(x, UPLO):
            x_shape = list(x.shape)
            if len(x.shape) < 2:
                raise ValueError(
                    "Input(input) only support >=2 tensor, but received "
                    "length of Input(input) is %s." % len(x.shape)
                )
            if x_shape[-1] != x_shape[-2]:
                raise ValueError(
                    "The input matrix must be batches of square matrices. But received x's dimention: {}".format(
                        x_shape
                    )
                )
            if UPLO != 'L' and UPLO != 'U':
                raise ValueError(
2568
                    f"UPLO must be L or U. But received UPLO is: {UPLO}"
2569
                )
2570

2571
        __check_input(x, UPLO)
2572

2573 2574 2575 2576 2577 2578 2579
        helper = LayerHelper('eigh', **locals())
        check_variable_and_dtype(
            x,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'eigh',
        )
2580

2581 2582
        out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
        out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)
2583

2584 2585 2586 2587 2588 2589 2590
        helper.append_op(
            type='eigh',
            inputs={'X': x},
            outputs={'Eigenvalues': out_value, 'Eigenvectors': out_vector},
            attrs={'UPLO': UPLO},
        )
        return out_value, out_vector
A
andyjpaddle 已提交
2591 2592 2593 2594


def pinv(x, rcond=1e-15, hermitian=False, name=None):
    r"""
2595
    Calculate pseudo inverse via SVD(singular value decomposition)
A
andyjpaddle 已提交
2596 2597 2598 2599 2600 2601 2602 2603 2604 2605
    of one matrix or batches of regular matrix.

    .. math::

        if hermitian == False:
            x = u * s * vt  (SVD)
            out = v * 1/s * ut
        else:
            x = u * s * ut  (eigh)
            out = u * 1/s * u.conj().transpose(-2,-1)
2606

A
andyjpaddle 已提交
2607 2608 2609
    If x is hermitian or symmetric matrix, svd will be replaced with eigh.

    Args:
2610 2611 2612
        x(Tensor): The input tensor. Its shape should be (*, m, n)
            where * is zero or more batch dimensions. m and n can be
            arbitraty positive number. The data type of x should be
A
andyjpaddle 已提交
2613 2614 2615 2616
            float32 or float64 or complex64 or complex128. When data
            type is complex64 or cpmplex128, hermitian should be set
            True.

2617
        rcond(Tensor, optional): the tolerance value to determine
2618
            when is a singular value zero. Default:1e-15.
2619 2620

        hermitian(bool, optional): indicates whether x is Hermitian
A
andyjpaddle 已提交
2621
            if complex or symmetric if real. Default: False.
2622 2623

        name(str|None): A name for this layer(optional). If set None,
A
andyjpaddle 已提交
2624
            the layer will be named automatically.
2625

A
andyjpaddle 已提交
2626
    Returns:
2627
        Tensor: The tensor with same data type with x. it represents
A
andyjpaddle 已提交
2628
        pseudo inverse of x. Its shape should be (*, n, m).
2629

A
andyjpaddle 已提交
2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
    Examples:
        .. code-block:: python

            import paddle

            x = paddle.arange(15).reshape((3, 5)).astype('float64')
            input = paddle.to_tensor(x)
            out = paddle.linalg.pinv(input)
            print(input)
            print(out)

            # input:
            # [[0. , 1. , 2. , 3. , 4. ],
            # [5. , 6. , 7. , 8. , 9. ],
            # [10., 11., 12., 13., 14.]]

            # out:
            # [[-0.22666667, -0.06666667,  0.09333333],
            # [-0.12333333, -0.03333333,  0.05666667],
            # [-0.02000000,  0.00000000,  0.02000000],
            # [ 0.08333333,  0.03333333, -0.01666667],
            # [ 0.18666667,  0.06666667, -0.05333333]]

            # one can verify : x * out * x = x ;
            # or              out * x * out = x ;
    """
2656
    if in_dynamic_mode():
2657 2658
        if not hermitian:
            # combine svd and matmul op
2659 2660
            u, s, vt = _C_ops.svd(x, False)
            max_singular_val = _C_ops.max(s, [-1], True)
2661 2662 2663 2664
            rcond = paddle.to_tensor(rcond, dtype=x.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=x.dtype)
A
andyjpaddle 已提交
2665

A
andyj 已提交
2666
            singular = paddle.where(s > cutoff, 1 / s, 1 / y)
2667
            st = _C_ops.unsqueeze(singular, [-2])
2668 2669 2670

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
2671
            v = _C_ops.transpose(vt, perm)
2672 2673

            out_1 = v * st
2674
            out_2 = _C_ops.matmul(out_1, u, False, True)
2675 2676 2677
            return out_2
        else:
            # combine eigh and matmul op
2678
            s, u = _C_ops.eigh(x, 'UPLO')
2679
            s_abs = paddle.abs(s)
2680
            max_singular_val = _C_ops.max(s_abs, [-1], True)
2681 2682 2683 2684 2685
            rcond = paddle.to_tensor(rcond, dtype=s.dtype)
            cutoff = rcond * max_singular_val
            y = float('inf')
            y = paddle.to_tensor(y, dtype=s.dtype)

A
andyj 已提交
2686
            singular = paddle.where(s_abs > cutoff, 1 / s, 1 / y)
2687
            st = _C_ops.unsqueeze(singular, [-2])
2688 2689

            out_1 = u * st
2690 2691
            u_conj = _C_ops.conj(u)
            out_2 = _C_ops.matmul(out_1, u_conj, False, True)
2692
            return out_2
A
andyjpaddle 已提交
2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704
    else:
        if not hermitian:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'pinv')

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(dtype)
            vt = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='svd',
                inputs={'X': [x]},
2705
                outputs={'U': u, 'VH': vt, 'S': s},
2706 2707
                attrs={'full_matrices': False},
            )
A
andyjpaddle 已提交
2708 2709

            max_singular_val = helper.create_variable_for_type_inference(dtype)
2710 2711 2712 2713 2714 2715
            helper.append_op(
                type='reduce_max',
                inputs={'X': s},
                outputs={'Out': max_singular_val},
                attrs={'dim': [-1], 'keep_dim': True, 'reduce_all': False},
            )
A
andyjpaddle 已提交
2716

2717
            rcond = full(shape=[1], fill_value=rcond, dtype=dtype)
A
andyjpaddle 已提交
2718 2719
            cutoff = rcond * max_singular_val
            y = float('inf')
2720
            y = full(shape=[1], fill_value=y, dtype=dtype)
A
andyjpaddle 已提交
2721

A
andyj 已提交
2722
            singular = paddle.where(s > cutoff, 1 / s, 1 / y)
A
andyjpaddle 已提交
2723 2724 2725

            st = helper.create_variable_for_type_inference(dtype=dtype)
            st_shape = helper.create_variable_for_type_inference(dtype=dtype)
2726 2727 2728 2729 2730 2731
            helper.append_op(
                type='unsqueeze2',
                inputs={'X': singular},
                attrs={'axes': [-2]},
                outputs={'Out': st, 'XShape': st_shape},
            )
A
andyjpaddle 已提交
2732 2733 2734 2735 2736

            dims = list(range(len(vt.shape)))
            perm = dims[:-2] + [dims[-1]] + [dims[-2]]
            v = helper.create_variable_for_type_inference(dtype)
            v_shape = helper.create_variable_for_type_inference(dtype)
2737 2738 2739 2740 2741 2742
            helper.append_op(
                type='transpose2',
                inputs={'X': [vt]},
                outputs={'Out': [v], 'XShape': [v_shape]},
                attrs={'axis': perm},
            )
A
andyjpaddle 已提交
2743 2744

            out_1 = helper.create_variable_for_type_inference(dtype)
2745 2746 2747 2748 2749 2750
            helper.append_op(
                type='elementwise_mul',
                inputs={'X': v, 'Y': st},
                outputs={'Out': out_1},
                attrs={'axis': -1, 'use_mkldnn': False},
            )
A
andyjpaddle 已提交
2751 2752 2753 2754 2755
            out_1 = helper.append_activation(out_1)

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
2756
                inputs={'X': out_1, 'Y': u},
A
andyjpaddle 已提交
2757
                outputs={'Out': out_2},
2758
                attrs={'trans_x': False, 'trans_y': True},
2759
            )
A
andyjpaddle 已提交
2760 2761 2762 2763 2764
            return out_2
        else:
            helper = LayerHelper('pinv', **locals())
            dtype = x.dtype
            check_variable_and_dtype(
2765 2766 2767 2768 2769
                x,
                'dtype',
                ['float32', 'float64', 'complex64', 'complex128'],
                'pinv',
            )
A
andyjpaddle 已提交
2770 2771 2772 2773 2774 2775 2776 2777 2778 2779

            if dtype == paddle.complex128:
                s_type = 'float64'
            elif dtype == paddle.complex64:
                s_type = 'float32'
            else:
                s_type = dtype

            u = helper.create_variable_for_type_inference(dtype)
            s = helper.create_variable_for_type_inference(s_type)
2780 2781 2782 2783 2784 2785
            helper.append_op(
                type='eigh',
                inputs={'X': x},
                outputs={'Eigenvalues': s, 'Eigenvectors': u},
                attrs={'UPLO': 'L'},
            )
A
andyjpaddle 已提交
2786
            s_abs = helper.create_variable_for_type_inference(s_type)
2787 2788 2789
            helper.append_op(
                type='abs', inputs={'X': s}, outputs={'Out': s_abs}
            )
A
andyjpaddle 已提交
2790
            max_singular_val = helper.create_variable_for_type_inference(s_type)
2791 2792 2793 2794 2795 2796
            helper.append_op(
                type='reduce_max',
                inputs={'X': s_abs},
                outputs={'Out': max_singular_val},
                attrs={'dim': [-1], 'keep_dim': True, 'reduce_all': False},
            )
A
andyjpaddle 已提交
2797

2798
            rcond = full(shape=[1], fill_value=rcond, dtype=s_type)
A
andyjpaddle 已提交
2799 2800
            cutoff = rcond * max_singular_val
            y = float('inf')
2801
            y = full(shape=[1], fill_value=y, dtype=s_type)
A
andyjpaddle 已提交
2802

A
andyj 已提交
2803
            singular = paddle.where(s_abs > cutoff, 1 / s, 1 / y)
A
andyjpaddle 已提交
2804 2805 2806

            st = helper.create_variable_for_type_inference(dtype=s_type)
            st_shape = helper.create_variable_for_type_inference(dtype=s_type)
2807 2808 2809 2810 2811 2812
            helper.append_op(
                type='unsqueeze2',
                inputs={'X': singular},
                attrs={'axes': [-2]},
                outputs={'Out': st, 'XShape': st_shape},
            )
A
andyjpaddle 已提交
2813 2814

            out_1 = helper.create_variable_for_type_inference(dtype)
2815 2816 2817 2818 2819 2820
            helper.append_op(
                type='elementwise_mul',
                inputs={'X': u, 'Y': st},
                outputs={'Out': out_1},
                attrs={'axis': -1, 'use_mkldnn': False},
            )
A
andyjpaddle 已提交
2821 2822 2823
            out_1 = helper.append_activation(out_1)

            u_conj = helper.create_variable_for_type_inference(dtype)
2824 2825 2826
            helper.append_op(
                type='conj', inputs={'X': u}, outputs={'Out': [u_conj]}
            )
A
andyjpaddle 已提交
2827 2828 2829 2830

            out_2 = helper.create_variable_for_type_inference(dtype)
            helper.append_op(
                type='matmul_v2',
2831
                inputs={'X': out_1, 'Y': u_conj},
A
andyjpaddle 已提交
2832
                outputs={'Out': out_2},
2833
                attrs={'trans_x': False, 'trans_y': True},
2834
            )
A
andyjpaddle 已提交
2835
            return out_2
W
Weilong Wu 已提交
2836 2837 2838 2839


def solve(x, y, name=None):
    r"""
2840

W
Weilong Wu 已提交
2841
    Computes the solution of a square system of linear equations with a unique solution for input 'X' and 'Y'.
2842
    Let :math:`X` be a sqaure matrix or a batch of square matrices, :math:`Y` be
W
Weilong Wu 已提交
2843
    a vector/matrix or a batch of vectors/matrices, the equation should be:
2844

W
Weilong Wu 已提交
2845 2846
    .. math::
        Out = X^-1 * Y
2847 2848

    Specifically, this system of linear equations has one solution if and only if input 'X' is invertible.
2849

W
Weilong Wu 已提交
2850
    Args:
2851
        x (Tensor): A square matrix or a batch of square matrices. Its shape should be ``[*, M, M]``, where ``*`` is zero or
W
Weilong Wu 已提交
2852
            more batch dimensions. Its data type should be float32 or float64.
2853
        y (Tensor): A vector/matrix or a batch of vectors/matrices. Its shape should be ``[*, M, K]``, where ``*`` is zero or
W
Weilong Wu 已提交
2854
            more batch dimensions. Its data type should be float32 or float64.
2855
        name(str, optional): Name for the operation (optional, default is None).
W
Weilong Wu 已提交
2856
            For more information, please refer to :ref:`api_guide_Name`.
2857

W
Weilong Wu 已提交
2858
    Returns:
2859
        Tensor: The solution of a square system of linear equations with a unique solution for input 'x' and 'y'.
W
Weilong Wu 已提交
2860
        Its data type should be the same as that of `x`.
2861

W
Weilong Wu 已提交
2862
    Examples:
2863

2864
        .. code-block:: python
2865

2866 2867 2868
            # a square system of linear equations:
            # 2*X0 + X1 = 9
            # X0 + 2*X1 = 8
2869

2870 2871 2872 2873 2874
            import paddle

            x = paddle.to_tensor([[3, 1],[1, 2]], dtype="float64")
            y = paddle.to_tensor([9, 8], dtype="float64")
            out = paddle.linalg.solve(x, y)
2875

2876 2877
            print(out)
            # [2., 3.])
W
Weilong Wu 已提交
2878
    """
2879
    if in_dynamic_mode():
2880
        return _C_ops.solve(x, y)
2881 2882 2883 2884 2885 2886
    else:
        inputs = {"X": [x], "Y": [y]}
        helper = LayerHelper("solve", **locals())
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'solve')
        check_variable_and_dtype(y, 'y', ['float32', 'float64'], 'solve')
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
2887

2888 2889 2890 2891
        helper.append_op(
            type="solve", inputs={"X": x, "Y": y}, outputs={"Out": out}
        )
        return out
2892 2893


2894 2895 2896
def triangular_solve(
    x, y, upper=True, transpose=False, unitriangular=False, name=None
):
2897
    r"""
2898 2899
    Computes the solution of a system of equations with a triangular coefficient.  `x` is coefficient matrix
    `y` is multiple right-hand sides of equations.
2900

2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912
    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs is also
    batches.

    Equations can be described as:

    .. math::
        x * Out = y

    Solution of Equations is:

    .. math::
        Out = x ^ {-1} * y
2913 2914 2915 2916

    Args:
        x (Tensor): The input triangular coefficient matrix. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
2917
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is
2918
            zero or more batch dimensions. Its data type should be float32 or float64.
2919
        upper (bool, optional): Whether to solve the upper-triangular system of equations (default) or the lower-triangular
2920 2921
            system of equations. Default: True.
        transpose (bool, optional): whether `x` should be transposed before calculation. Default: False.
2922
        unitriangular (bool, optional): whether `x` is unit triangular. If True, the diagonal elements of `x` are assumed
2923 2924 2925 2926 2927 2928 2929 2930
            to be 1 and not referenced from `x` . Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type should be the same as that of `x`.

    Examples:
2931
        .. code-block:: python
2932

2933 2934 2935 2936
            # a square system of linear equations:
            # x1 +   x2  +   x3 = 0
            #      2*x2  +   x3 = -9
            #               -x3 = 5
2937

2938 2939 2940 2941 2942 2943
            import paddle
            x = paddle.to_tensor([[1, 1, 1],
                                  [0, 2, 1],
                                  [0, 0,-1]], dtype="float64")
            y = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
            out = paddle.linalg.triangular_solve(x, y, upper=True)
2944

2945 2946
            print(out)
            # [7, -2, -5]
2947
    """
2948
    if in_dynamic_mode():
2949
        return _C_ops.triangular_solve(x, y, upper, transpose, unitriangular)
2950 2951 2952 2953 2954
    else:
        inputs = {"X": [x], "Y": [y]}
        helper = LayerHelper("triangular_solve", **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64'], 'triangular_solve'
2955
        )
2956 2957 2958 2959
        check_variable_and_dtype(
            y, 'y', ['float32', 'float64'], 'triangular_solve'
        )
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
2960

2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
        helper.append_op(
            type='triangular_solve',
            inputs={'X': x, 'Y': y},
            outputs={'Out': out},
            attrs={
                'upper': upper,
                'transpose': transpose,
                'unitriangular': unitriangular,
            },
        )
        return out
2972 2973


Z
zhiboniu 已提交
2974 2975 2976 2977 2978 2979 2980 2981 2982 2983
def cholesky_solve(x, y, upper=False, name=None):
    r"""
    Solves a linear system of equations A @ X = B, given A's Cholesky factor matrix u and  matrix B.

    Input `x` and `y` is 2D matrices or batches of 2D matrices. If the inputs are batches, the outputs
    is also batches.

    Args:
        x (Tensor): The input matrix which is upper or lower triangular Cholesky factor of square matrix A. Its shape should be `[*, M, M]`, where `*` is zero or
            more batch dimensions. Its data type should be float32 or float64.
2984
        y (Tensor): Multiple right-hand sides of system of equations. Its shape should be `[*, M, K]`, where `*` is
Z
zhiboniu 已提交
2985 2986 2987 2988 2989 2990 2991 2992 2993
            zero or more batch dimensions. Its data type should be float32 or float64.
        upper (bool, optional): whether to consider the Cholesky factor as a lower or upper triangular matrix. Default: False.
        name(str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The solution of the system of equations. Its data type is the same as that of `x`.

    Examples:
2994
        .. code-block:: python
Z
zhiboniu 已提交
2995

2996
            import paddle
Z
zhiboniu 已提交
2997

2998 2999 3000 3001 3002
            u = paddle.to_tensor([[1, 1, 1],
                                    [0, 2, 1],
                                    [0, 0,-1]], dtype="float64")
            b = paddle.to_tensor([[0], [-9], [5]], dtype="float64")
            out = paddle.linalg.cholesky_solve(b, u, upper=True)
Z
zhiboniu 已提交
3003

3004 3005
            print(out)
            # [-2.5, -7, 9.5]
Z
zhiboniu 已提交
3006
    """
3007
    if in_dynamic_mode():
3008
        return _C_ops.cholesky_solve(x, y, upper)
3009 3010 3011 3012 3013 3014 3015 3016 3017
    else:
        helper = LayerHelper("cholesky_solve", **locals())
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64'], 'cholesky_solve'
        )
        check_variable_and_dtype(
            y, 'y', ['float32', 'float64'], 'cholesky_solve'
        )
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
H
hong 已提交
3018

3019 3020 3021 3022 3023 3024 3025
        helper.append_op(
            type='cholesky_solve',
            inputs={'X': x, 'Y': y},
            outputs={'Out': out},
            attrs={'upper': upper},
        )
        return out
Z
zhiboniu 已提交
3026 3027


3028 3029
def eigvalsh(x, UPLO='L', name=None):
    """
3030
    Computes the eigenvalues of a
3031 3032 3033
    complex Hermitian (conjugate symmetric) or a real symmetric matrix.

    Args:
3034
        x (Tensor): A tensor with shape :math:`[*, M, M]` , where * is zero or greater batch dimension. The data type of the input Tensor x
3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047
            should be one of float32, float64, complex64, complex128.
        UPLO(str, optional): Lower triangular part of a (‘L’, default) or the upper triangular part (‘U’).
        name(str, optional): The default value is None.  Normally there is no need for user to set this
            property.  For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: The tensor eigenvalues in ascending order.

    Examples:
        .. code-block:: python

            import paddle

3048
            x = paddle.to_tensor([[1, -2j], [2j, 5]])
3049 3050
            out_value = paddle.eigvalsh(x, UPLO='L')
            print(out_value)
3051 3052
            # Tensor(shape=[2], dtype=float32, place=Place(cpu), stop_gradient=True,
            #        [0.17157286, 5.82842731])
3053
    """
3054
    if in_dynamic_mode():
3055
        values, _ = _C_ops.eigvalsh(x, UPLO, x.stop_gradient)
3056
        return values
3057
    else:
3058

3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073
        def __check_input(x, UPLO):
            x_shape = list(x.shape)
            if len(x.shape) < 2:
                raise ValueError(
                    "Input(input) only support >=2 tensor, but received "
                    "length of Input(input) is %s." % len(x.shape)
                )
            if x_shape[-1] != x_shape[-2]:
                raise ValueError(
                    "The input matrix must be batches of square matrices. But received x's dimention: {}".format(
                        x_shape
                    )
                )
            if UPLO != 'L' and UPLO != 'U':
                raise ValueError(
3074
                    f"UPLO must be L or U. But received UPLO is: {UPLO}"
3075
                )
3076

3077
        __check_input(x, UPLO)
3078

3079 3080 3081 3082 3083 3084 3085
        helper = LayerHelper('eigvalsh', **locals())
        check_variable_and_dtype(
            x,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'eigvalsh',
        )
3086

3087 3088
        out_value = helper.create_variable_for_type_inference(dtype=x.dtype)
        out_vector = helper.create_variable_for_type_inference(dtype=x.dtype)
3089

3090 3091 3092 3093 3094 3095 3096 3097
        is_test = x.stop_gradient
        helper.append_op(
            type='eigvalsh',
            inputs={'X': x},
            outputs={'Eigenvalues': out_value, 'Eigenvectors': out_vector},
            attrs={'UPLO': UPLO, 'is_test': is_test},
        )
        return out_value
3098 3099


3100 3101 3102 3103 3104 3105 3106 3107
def lstsq(x, y, rcond=None, driver=None, name=None):
    """
    Computes a solution to
    the least squares problem of a system of linear equations.

    Args:
        x (Tensor): A tensor with shape ``(*, M, N)`` , the data type of the input Tensor ``x``
            should be one of float32, float64.
3108
        y (Tensor): A tensor with shape ``(*, M, K)`` , the data type of the input Tensor ``y``
3109
            should be one of float32, float64.
3110 3111
        rcond(float, optional): The default value is None. A float pointing number used to determine
            the effective rank of ``x``. If ``rcond`` is None, it will be set to max(M, N) times the
3112
            machine precision of x_dtype.
3113 3114 3115
        driver(str, optional): The default value is None. The name of LAPACK method to be used. For
            CPU inputs the valid values are ‘gels’, ‘gelsy’, ‘gelsd, ‘gelss’. For CUDA input, the only
            valid driver is ‘gels’. If ``driver`` is None, ‘gelsy’ is used for CPU inputs and ‘gels’
3116
            for CUDA inputs.
3117
        name(str, optional): The default value is None. Normally there is no need for user to set
3118 3119 3120
            this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3121 3122 3123 3124 3125 3126 3127
        Tuple: A tuple of 4 Tensors which is (``solution``, ``residuals``, ``rank``, ``singular_values``).
        ``solution`` is a tensor with shape ``(*, N, K)``, meaning the least squares solution. ``residuals``
        is a tensor with shape ``(*, K)``, meaning the squared residuals of the solutions, which is computed
        when M > N and every matrix in ``x`` is full-rank, otherwise return an empty tensor. ``rank`` is a tensor
        with shape ``(*)``, meaning the ranks of the matrices in ``x``, which is computed when ``driver`` in
        (‘gelsy’, ‘gelsd’, ‘gelss’), otherwise return an empty tensor. ``singular_values`` is a tensor with
        shape ``(*, min(M, N))``, meaning singular values of the matrices in ``x``, which is computed when
3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159
        ``driver`` in (‘gelsd’, ‘gelss’), otherwise return an empty tensor.

    Examples:
        .. code-block:: python

            import paddle

            paddle.set_device("cpu")
            x = paddle.to_tensor([[1, 3], [3, 2], [5, 6.]])
            y = paddle.to_tensor([[3, 4, 6], [5, 3, 4], [1, 2, 1.]])
            results = paddle.linalg.lstsq(x, y, driver="gelsd")
            print(results[0])
            # [[ 0.78350395, -0.22165027, -0.62371236],
            # [-0.11340097,  0.78866047,  1.14948535]]
            print(results[1])
            # [19.81443405, 10.43814468, 30.56185532])
            print(results[2])
            # 2
            print(results[3])
            # [9.03455734, 1.54167950]

            x = paddle.to_tensor([[10, 2, 3], [3, 10, 5], [5, 6, 12.]])
            y = paddle.to_tensor([[4, 2, 9], [2, 0, 3], [2, 5, 3.]])
            results = paddle.linalg.lstsq(x, y, driver="gels")
            print(results[0])
            # [[ 0.39386186,  0.10230173,  0.93606132],
            # [ 0.10741687, -0.29028133,  0.11892585],
            # [-0.05115091,  0.51918161, -0.19948854]]
            print(results[1])
            # []
    """
    device = paddle.get_device()
3160 3161 3162
    if device == "cpu":
        if driver not in (None, "gels", "gelss", "gelsd", "gelsy"):
            raise ValueError(
3163 3164 3165 3166
                "Only support valid driver is 'gels', 'gelss', 'gelsd', 'gelsy' or None for CPU inputs. But got {}".format(
                    driver
                )
            )
3167 3168 3169 3170
        driver = "gelsy" if driver is None else driver
    elif "gpu" in device:
        if driver not in (None, "gels"):
            raise ValueError(
3171 3172 3173 3174
                "Only support valid driver is 'gels' or None for CUDA inputs. But got {}".format(
                    driver
                )
            )
3175 3176 3177 3178
        driver = "gels" if driver is None else driver
    else:
        raise RuntimeError("Only support lstsq api for CPU or CUDA device.")

3179
    if not (x.dtype == y.dtype and x.dtype in (paddle.float32, paddle.float64)):
3180 3181 3182 3183
        raise ValueError(
            "Only support x and y have the same dtype such as 'float32' and 'float64'."
        )

3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198
    if x.ndim < 2:
        raise ValueError(
            f"The shape of x should be (*, M, N), but received ndim is [{x.ndim} < 2]"
        )

    if y.ndim < 2:
        raise ValueError(
            f"The shape of y should be (*, M, K), but received ndim is [{y.ndim} < 2]"
        )

    if x.shape[-2] != y.shape[-2]:
        raise ValueError(
            f"x with shape (*, M = {x.shape[-2]}, N) and y with shape (*, M = {y.shape[-2]}, K) should have same M."
        )

3199 3200 3201 3202 3203 3204
    if rcond is None:
        if x.dtype == paddle.float32:
            rcond = 1e-7 * max(x.shape[-2], x.shape[-1])
        elif x.dtype == paddle.float64:
            rcond = 1e-15 * max(x.shape[-2], x.shape[-1])

3205
    if in_dynamic_mode():
3206 3207 3208
        solution, residuals, rank, singular_values = _C_ops.lstsq(
            x, y, rcond, driver
        )
3209 3210 3211 3212 3213 3214 3215
        if driver == "gels":
            rank = paddle.empty(shape=[0], dtype=paddle.int32)
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)
        elif driver == "gelsy":
            singular_values = paddle.empty(shape=[0], dtype=x.dtype)

        return solution, residuals, rank, singular_values
3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229
    else:
        helper = LayerHelper('lstsq', **locals())
        check_variable_and_dtype(
            x,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'lstsq',
        )
        check_variable_and_dtype(
            y,
            'dtype',
            ['float32', 'float64', 'complex64', 'complex128'],
            'lstsq',
        )
3230

3231 3232 3233 3234 3235 3236
        solution = helper.create_variable_for_type_inference(dtype=x.dtype)
        residuals = helper.create_variable_for_type_inference(dtype=x.dtype)
        rank = helper.create_variable_for_type_inference(dtype=paddle.int32)
        singular_values = helper.create_variable_for_type_inference(
            dtype=x.dtype
        )
3237

3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248
        helper.append_op(
            type='lstsq',
            inputs={'X': x, 'Y': y},
            outputs={
                'Solution': solution,
                'Residuals': residuals,
                'Rank': rank,
                'SingularValues': singular_values,
            },
            attrs={'rcond': rcond, 'driver': driver},
        )
3249

3250 3251 3252 3253 3254 3255 3256 3257 3258
        if driver == "gels":
            rank = paddle.static.data(name='rank', shape=[0])
            singular_values = paddle.static.data(
                name='singular_values', shape=[0]
            )
        elif driver == "gelsy":
            singular_values = paddle.static.data(
                name='singular_values', shape=[0]
            )
3259

3260
        return solution, residuals, rank, singular_values
3261 3262 3263 3264


def corrcoef(x, rowvar=True, name=None):
    """
3265

3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288
    A correlation coefficient matrix indicate the correlation of each pair variables in the input matrix.
    For example, for an N-dimensional samples X=[x1,x2,…xN]T, then the correlation coefficient matrix
    element Rij is the correlation of xi and xj. The element Rii is the covariance of xi itself.

    The relationship between the correlation coefficient matrix `R` and the
    covariance matrix `C`, is

    .. math:: R_{ij} = \\frac{ C_{ij} } { \\sqrt{ C_{ii} * C_{jj} } }

    The values of `R` are between -1 and 1.

    Parameters:

        x(Tensor): A N-D(N<=2) Tensor containing multiple variables and observations. By default, each row of x represents a variable. Also see rowvar below.
        rowvar(Bool, optional): If rowvar is True (default), then each row represents a variable, with observations in the columns. Default: True.
        name(str, optional): Name of the output. Default is None. It's used to print debug info for developers. Details: :ref:`api_guide_Name`.

    Returns:

        The correlation coefficient matrix of the variables.

    Examples:
        .. code-block:: python
3289

3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303
            import paddle

            xt = paddle.rand((3,4))
            print(paddle.linalg.corrcoef(xt))

            # Tensor(shape=[3, 3], dtype=float32, place=Place(cpu), stop_gradient=True,
            # [[ 1.        , -0.73702252,  0.66228950],
            # [-0.73702258,  1.        , -0.77104872],
            # [ 0.66228974, -0.77104825,  1.        ]])

    """
    if len(x.shape) > 2 or len(x.shape) < 1:
        raise ValueError(
            "Input(x) only support N-D (1<=N<=2) tensor in corrcoef, but received "
3304 3305
            "length of Input(input) is %s." % len(x.shape)
        )
3306 3307 3308
    check_variable_and_dtype(x, 'dtype', ['float32', 'float64'], 'corrcoef')

    c = cov(x, rowvar)
3309
    if c.ndim == 0:
3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323
        # scalar covariance
        # nan if incorrect value (nan, inf, 0), 1 otherwise
        return c / c

    d = paddle.diag(c)

    if paddle.is_complex(d):
        d = d.real()
    stddev = paddle.sqrt(d)
    c /= stddev[:, None]
    c /= stddev[None, :]

    # Clip to [-1, 1].  This does not guarantee
    if paddle.is_complex(c):
3324 3325 3326
        return paddle.complex(
            paddle.clip(c.real(), -1, 1), paddle.clip(c.imag(), -1, 1)
        )
3327 3328 3329 3330
    else:
        c = paddle.clip(c, -1, 1)

    return c