op_param.h 102.6 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
朔-望's avatar
朔-望 已提交
22 23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
26 27 28 29 30 31 32

#ifdef PADDLE_MOBILE_FPGA_V1
#include "fpga/V1/api.h"
#endif

#ifdef PADDLE_MOBILE_FPGA_V2
#include "fpga/V2/api.h"
Z
zhangyang 已提交
33
#endif
朔-望's avatar
朔-望 已提交
34

L
liuruilong 已提交
35 36
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
Z
zhangyang 已提交
37
#endif
朔-望's avatar
朔-望 已提交
38 39

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
40 41
namespace operators {

W
wangliu 已提交
42 43 44 45 46
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
E
eclipsess 已提交
47
using framework::Variable;
W
wangliu 已提交
48 49
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
50

N
nhzlx 已提交
51 52 53 54 55 56 57 58 59
template <typename Dtype>
struct DtypeTensorTrait {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
update  
liuruilong 已提交
60
#ifdef PADDLE_MOBILE_CL
L
liuruilong 已提交
61 62 63 64 65 66 67 68
template <>
struct DtypeTensorTrait<GPU_CL> {
  // This is the type we obtained in variable.
  typedef framework::CLImage gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::CLImage rtype;
};
L
update  
liuruilong 已提交
69
#endif
L
liuruilong 已提交
70

L
liuruilong 已提交
71
class OpParam {
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
 public:
  OpParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
          const AttributeMap &attrs, Scope *scope) {
    scope_pointer_ = scope;
    inputs_ = inputs;
  }

  template <typename T>
  T *CreateNewScale() {
    std::string scale_key = Getkey("Scale", inputs_, 0);
    auto var = scope_pointer_->Var(scale_key + "_new");
    return var->GetMutable<T>();
  }

  template <typename T>
  T *CreateNewBiase() {
    std::string biase_key = Getkey("Bias", inputs_, 0);
    auto var = scope_pointer_->Var(biase_key + "_new");
    return var->GetMutable<T>();
  }

  VariableNameMap inputs_;
  Scope *scope_pointer_ = nullptr;

朔-望's avatar
朔-望 已提交
96
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
97 98 99 100
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
Z
zhaojiaying01 已提交
101 102 103 104 105 106 107

  template <typename T>
  static T *InputHiddenPrevFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("HiddenPrev", inputs, scope);
  }

108 109 110 111 112
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

113 114 115 116 117 118 119 120 121
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
122 123 124 125 126
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

154 155 156 157
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
158 159 160 161 162 163

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

164 165 166 167 168
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
169 170 171 172 173
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

174 175 176 177 178
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
179 180 181 182
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
183 184 185 186 187 188 189 190 191 192 193 194
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
195 196 197 198
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
215

E
eclipsess 已提交
216 217 218 219 220 221 222 223 224 225
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
226 227 228 229
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
230

231
  template <typename T>
W
wangliu 已提交
232 233
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
234 235 236
    return GetMultiVarValue<T>("X", inputs, scope);
  }

E
eclipsess 已提交
237 238 239 240 241
  static vector<Variable *> InputMultiVarsFrom(const VariableNameMap &inputs,
                                               const Scope &scope) {
    return GetMultiVar("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
242 243 244 245 246 247
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

Z
zhaojiaying01 已提交
248 249 250 251 252
  template <typename T>
  static T *OutputGateFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Gate", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
253 254 255 256 257 258 259 260 261 262 263
  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

Z
zhaojiaying01 已提交
264 265 266 267 268 269
  template <typename T>
  static T *OutputResetHiddenPrevFrom(const VariableNameMap &outputs,
                                      const Scope &scope) {
    return GetVarValue<T>("ResetHiddenPrev", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
270 271 272 273 274 275 276 277 278 279 280 281
  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

282 283 284 285 286
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

E
eclipsess 已提交
287 288 289 290 291
  static Variable *OutVarFrom(const VariableNameMap &outputs,
                              const Scope &scope) {
    return GetVar("Out", outputs, scope);
  }

292 293 294 295 296
  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
297 298 299 300 301 302
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

303 304 305 306 307
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

L
lijiancheng0614 已提交
308 309 310 311 312 313
  template <typename T>
  static T *OutputXShapeFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("XShape", outputs, scope);
  }

E
eclipsess 已提交
314 315 316 317 318 319
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
320 321 322 323 324
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

Z
zhaojiaying01 已提交
325 326 327 328 329
  template <typename T>
  static T *OutputNormFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Norm", outputs, scope);
  }

E
eclipsess 已提交
330 331 332 333 334 335
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

336 337 338 339 340 341 342 343 344 345 346
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
347
  static const T GetAttr(const string &key, const AttributeMap &map) {
348 349
    return ((Attribute)map.at(key)).Get<T>();
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
350 351
  static const std::string GetStringAttr(const string &key,
                                         const AttributeMap &map) {
352 353
    return ((Attribute)map.at(key)).GetString();
  }
354

355 356 357 358
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

359
  template <typename T>
W
wangliu 已提交
360
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
361
                        const Scope &scope) {
W
wangliu 已提交
362 363
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
364 365 366 367 368 369
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
370
    }
371
  }
朔-望's avatar
朔-望 已提交
372

E
eclipsess 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385
  static Variable *GetVar(const string &key, const VariableNameMap &var_map,
                          const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var;
    } else {
      return nullptr;
    }
  }

386
  static std::string Getkey(const string &key, const VariableNameMap &var_map,
387
                            int index) {
388 389
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > index,
                          "%s is not contained in var_map", key.c_str())
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

408
  template <typename T>
W
wangliu 已提交
409 410 411
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
412 413
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
414
    vector<T *> var_res;
415 416 417
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
418
    }
419 420
    return var_res;
  }
E
eclipsess 已提交
421 422 423 424 425 426 427 428 429 430 431 432 433

  static vector<Variable *> GetMultiVar(const string &key,
                                        const VariableNameMap &var_map,
                                        const Scope &scope) {
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
    vector<Variable *> var_res;
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var);
    }
    return var_res;
  }
朔-望's avatar
朔-望 已提交
434 435
};

N
nhzlx 已提交
436
template <typename Dtype>
437
class ConvParam : public OpParam {
N
nhzlx 已提交
438 439 440
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
441
 public:
442
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
443 444 445 446
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    filter_ = OpParam::FilterFrom<GType>(inputs, *scope);
    input_ = OpParam::InputFrom<GType>(inputs, *scope);
447
    if (outputs.count("Output")) {
448
      output_ = OpParam::OutputFrom<GType>(outputs, *scope);
449 450 451 452 453
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
454
  }
朔-望's avatar
朔-望 已提交
455

N
nhzlx 已提交
456
  const RType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
457

458
  RType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
459

460
  RType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
461

W
wangliu 已提交
462
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
463

W
wangliu 已提交
464
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
465

W
wangliu 已提交
466
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
467

H
hjchen2 已提交
468 469 470 471
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
    EXEC_DEPTHWISE3x3S1P1_FLOAT,
472 473
    EXEC_DEPTHWISE3x3S2P0_FLOAT,
    EXEC_DEPTHWISE3x3S2P1_FLOAT,
H
hjchen2 已提交
474 475 476
    EXEC_DEPTHWISE3x3_FLOAT,
    EXEC_WINOGRAD3X3_FLOAT,
    EXEC_WINOGRAD5X5_FLOAT,
477
    EXEC_DEPTHWISE5x5_FLOAT,
H
hjchen2 已提交
478
    EXEC_GEMM_INT8,
H
hjchen2 已提交
479
    EXEC_DEPTHWISE3x3_INT8,
480
    EXEC_DEPTHWISE5x5_INT8,
H
hjchen2 已提交
481 482 483 484
  };

  ExecMode &ExecMode() const { return exec_mode_; }

485
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
486

487 488 489 490 491 492 493
#ifdef PADDLE_MOBILE_CL
  int Offset() const { return offset_; }

  int SetOffset(int in_offset) { offset_ = in_offset; }

#endif

H
hjchen2 已提交
494
 public:
N
nhzlx 已提交
495
  RType *input_;
496 497
  RType *output_;
  RType *filter_;
H
hjchen2 已提交
498
  RType *transformed_filter_;
W
wangliu 已提交
499 500 501
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
H
hjchen2 已提交
502
  mutable enum ExecMode exec_mode_;
503
  int groups;
504 505 506 507

#ifdef PADDLE_MOBILE_CL
  int offset_;
#endif
Z
zhangyang 已提交
508 509 510

#ifdef PADDLE_MOBILE_FPGA

H
hjchen2 已提交
511
 public:
Z
zhangyang 已提交
512 513 514 515 516
  fpga::SplitConvArgs fpga_conv_args;

 public:
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
517 518 519 520 521 522 523

 public:
  fpga::DWconvArgs fpga_dwconv_args;

 public:
  const fpga::DWconvArgs &FpgaDwconvArgs() const { return fpga_dwconv_args; }
  void SetFpgaArgs(const fpga::DWconvArgs &args) { fpga_dwconv_args = args; }
Z
zhangyang 已提交
524
#endif
朔-望's avatar
朔-望 已提交
525
};
N
nhzlx 已提交
526 527
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
528

N
nhzlx 已提交
529
template <typename Dtype>
530
class ElementwiseAddParam : public OpParam {
N
nhzlx 已提交
531 532 533
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
534
 public:
535
  ElementwiseAddParam(const VariableNameMap &inputs,
536
                      const VariableNameMap &outputs, const AttributeMap &attrs,
537 538 539 540 541
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
542 543 544
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
545
  const GType *InputX() const { return input_x_; }
546

xiebaiyuan's avatar
xiebaiyuan 已提交
547
  const GType *InputY() const { return input_y_; }
548

xiebaiyuan's avatar
xiebaiyuan 已提交
549
  GType *Out() const { return out_; }
550 551 552

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
553
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
554 555 556
  GType *input_x_;
  GType *input_y_;
  GType *out_;
557
  int axis_;
Z
zhangyang 已提交
558 559 560
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
561
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
562 563

 public:
H
hanbuhe 已提交
564 565
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
qnqinan's avatar
qnqinan 已提交
566 567 568 569

 public:
  Tensor float_input_x, float_out;

Z
zhangyang 已提交
570
#endif
朔-望's avatar
朔-望 已提交
571 572
};

E
eclipsess 已提交
573
#ifdef ELEMENTWISEMUL_OP
E
eclipsess 已提交
574
template <typename Dtype>
575
class ElementwiseMulParam : public OpParam {
E
eclipsess 已提交
576 577 578 579 580 581
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseMulParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
582 583 584 585 586
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
qnqinan's avatar
qnqinan 已提交
603 604 605 606 607 608
#ifdef PADDLE_MOBILE_FPGA

 public:
  Tensor float_input_x, float_out;

#endif
E
eclipsess 已提交
609
};
S
suiyang 已提交
610
#endif
E
eclipsess 已提交
611

612
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
613 614
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
615 616
#endif

617
#ifdef ELEMENTWISESUB_OP
618
template <typename Dtype>
619
class ElementwiseSubParam : public OpParam {
620 621 622 623 624 625
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseSubParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
626 627 628 629 630
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
648
#endif
649

L
liuruilong 已提交
650
#ifdef MUL_OP
N
nhzlx 已提交
651
template <typename Dtype>
652
class MulParam : public OpParam {
N
nhzlx 已提交
653 654 655
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
656
 public:
657
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
658 659 660 661 662
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
663 664 665
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
666

xiebaiyuan's avatar
xiebaiyuan 已提交
667
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
668

xiebaiyuan's avatar
xiebaiyuan 已提交
669
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
670

xiebaiyuan's avatar
xiebaiyuan 已提交
671
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
672

673
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
674

675
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
676

朔-望's avatar
朔-望 已提交
677
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
678 679 680
  GType *input_x_;
  GType *input_y_;
  GType *out_;
681 682
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
683
};
L
liuruilong 已提交
684
#endif
朔-望's avatar
朔-望 已提交
685

L
liuruilong 已提交
686
#ifdef CONCAT_OP
N
nhzlx 已提交
687
template <typename Dtype>
朔-望's avatar
朔-望 已提交
688
class ConcatParam : public OpParam {
N
nhzlx 已提交
689 690 691
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
692
 public:
693
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
694 695 696 697
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    inputs_ = InputMultiFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
698 699
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
700

N
nhzlx 已提交
701
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
702

xiebaiyuan's avatar
xiebaiyuan 已提交
703
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
704

705
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
706

朔-望's avatar
朔-望 已提交
707
 private:
N
nhzlx 已提交
708
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
709
  GType *out_;
710
  int axis_;
Z
zhangyang 已提交
711 712 713 714 715 716 717 718 719
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
720
};
L
liuruilong 已提交
721
#endif
朔-望's avatar
朔-望 已提交
722

E
eclipsess 已提交
723 724 725 726 727 728 729 730
#ifdef SUM_OP
template <typename Dtype>
class SumParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SumParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
731 732 733 734 735 736
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    inputs_vars_ = InputMultiVarsFrom(inputs, *scope);
    out_var_ = OutVarFrom(outputs, *scope);
    inputs_ = InputMultiFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
  }

  vector<Variable *> InputsVars() const { return inputs_vars_; }

  Variable *OutVar() const { return out_var_; }

  vector<GType *> Inputs() const { return inputs_; }

  GType *Out() const { return out_; }

 private:
  vector<Variable *> inputs_vars_;
  Variable *out_var_;
  vector<GType *> inputs_;
  GType *out_;
};
#endif

L
liuruilong 已提交
755
#ifdef LRN_OP
N
nhzlx 已提交
756
template <typename Dtype>
E
eclipsess 已提交
757
class LrnParam : public OpParam {
N
nhzlx 已提交
758 759 760
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
761
 public:
762
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
763 764 765 766 767
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    mid_out_ = MidOutFrom<GType>(outputs, *scope);
768 769 770 771
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
772
    data_format_ = GetStringAttr("data_format", attrs);
773
  }
E
eclipsess 已提交
774

N
nhzlx 已提交
775
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
776

N
nhzlx 已提交
777
  RType *Out() const { return out_; }
E
eclipsess 已提交
778

N
nhzlx 已提交
779
  RType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
780

781
  const int &N() const { return n_; }
E
eclipsess 已提交
782

783
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
784

785
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
786

787
  const float &K() const { return k_; }
E
eclipsess 已提交
788

W
wangliu 已提交
789
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
790

朔-望's avatar
朔-望 已提交
791
 private:
N
nhzlx 已提交
792 793 794
  RType *input_x_;
  RType *out_;
  RType *mid_out_;
795 796 797 798
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
799
  string data_format_;
E
eclipsess 已提交
800
};
L
liuruilong 已提交
801 802
#endif

Z
zhaojiaying01 已提交
803 804
#ifdef NORM_OP
template <typename Dtype>
805
class NormParam : public OpParam {
Z
zhaojiaying01 已提交
806 807 808 809 810
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  NormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
811 812 813 814 815
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_norm_ = OutputNormFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
    epsilon_ = GetAttr<float>("epsilon", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const RType *InputX() const { return input_x_; }

  RType *Out() const { return out_; }

  RType *OutputNorm() const { return output_norm_; }

  const float &Epsilon() const { return epsilon_; }

  const int &Axis() const { return axis_; }

 private:
  RType *input_x_;
  RType *out_;
  RType *output_norm_;
  float epsilon_;
  int axis_;
};
#endif

L
liuruilong 已提交
839
#ifdef BATCHNORM_OP
N
nhzlx 已提交
840
template <typename Dtype>
841
class BatchNormParam : public OpParam {
N
nhzlx 已提交
842 843 844
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
845
 public:
846
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
847 848 849 850 851 852 853 854
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_y_ = OutputYFrom<GType>(outputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, *scope);
855 856
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
857
    //    is_test_ = GetAttr<bool>("is_test", attrs);
858
  }
E
eclipsess 已提交
859

N
nhzlx 已提交
860
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
861

N
nhzlx 已提交
862
  RType *OutputY() const { return output_y_; }
E
eclipsess 已提交
863

N
nhzlx 已提交
864
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
865

N
nhzlx 已提交
866
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
867

N
nhzlx 已提交
868
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
869

N
nhzlx 已提交
870
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
871

872
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
873

874
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
875

876
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
877

W
wangliu 已提交
878
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
879

880 881 882 883 884 885 886 887
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

朔-望's avatar
朔-望 已提交
888
 private:
N
nhzlx 已提交
889 890 891 892 893 894
  RType *input_x_;
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
895 896 897
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
898
  string data_format_;
899 900
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
901
};
L
liuruilong 已提交
902 903 904
#endif

#ifdef POOL_OP
N
nhzlx 已提交
905
template <typename Dtype>
906
class PoolParam : public OpParam {
N
nhzlx 已提交
907 908 909
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
910
 public:
911
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
912 913 914
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
915

916
    output_ = OutFrom<GType>(outputs, *scope);
917
    pooling_type_ = GetStringAttr("pooling_type", attrs);
W
wangliu 已提交
918 919 920
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
921
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
922
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
923
  }
924

N
nhzlx 已提交
925
  const RType *Input() const { return input_; }
926

N
nhzlx 已提交
927
  RType *Output() const { return output_; }
928

W
wangliu 已提交
929
  const string &PoolingType() const { return pooling_type_; }
930

W
wangliu 已提交
931
  const vector<int> &Ksize() const { return ksize_; }
932

W
wangliu 已提交
933
  const vector<int> &Strides() const { return strides_; }
934

W
wangliu 已提交
935
  const vector<int> &Paddings() const { return paddings_; }
936

937
  bool isCeilMode() const { return ceil_mode_; }
938

Z
zhangyang 已提交
939
  bool isGlobalPooling() const { return global_pooling_; }
940

朔-望's avatar
朔-望 已提交
941
 private:
N
nhzlx 已提交
942 943
  RType *input_;
  RType *output_;
W
wangliu 已提交
944 945 946 947
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
948
  bool ceil_mode_;
949
  bool global_pooling_ = false;
Z
zhangyang 已提交
950
#ifdef PADDLE_MOBILE_FPGA
951 952

 private:
H
hanbuhe 已提交
953
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
954 955

 public:
H
hanbuhe 已提交
956 957
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
958
#endif
959
};
L
liuruilong 已提交
960 961 962
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
963
template <typename Dtype>
E
eclipsess 已提交
964
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
965 966 967
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
968 969
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
970 971 972 973 974 975
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    input_image_ = InputImageFrom<GType>(inputs, *scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, *scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, *scope);
W
wangliu 已提交
976 977 978 979
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
980 981 982 983

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
Y
yangfei 已提交
984 985
    } else {
      min_max_aspect_ratios_order_ = false;
986
    }
E
eclipsess 已提交
987 988 989 990 991 992
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
N
nhzlx 已提交
993
  const RType *Input() const { return input_; }
E
eclipsess 已提交
994

N
nhzlx 已提交
995
  const RType *InputImage() const { return input_image_; }
E
eclipsess 已提交
996

N
nhzlx 已提交
997
  RType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
998

N
nhzlx 已提交
999
  RType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
1000

W
wangliu 已提交
1001
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
1002

W
wangliu 已提交
1003
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
1004

W
wangliu 已提交
1005
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
1006

W
wangliu 已提交
1007
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

1019 1020 1021 1022
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
1023
 private:
N
nhzlx 已提交
1024 1025 1026 1027
  RType *input_;
  RType *input_image_;
  RType *output_boxes_;
  RType *output_variances_;
W
wangliu 已提交
1028 1029 1030 1031
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
1032 1033 1034 1035 1036
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
1037
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
1038
};
L
liuruilong 已提交
1039
#endif
E
eclipsess 已提交
1040

L
liuruilong 已提交
1041
#ifdef BOXCODER_OP
N
nhzlx 已提交
1042
template <typename Dtype>
E
eclipsess 已提交
1043
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
1044 1045 1046
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1047 1048
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1049 1050 1051 1052 1053 1054
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, *scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, *scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, *scope);
    output_box_ = OutputBoxFrom<GType>(outputs, *scope);
1055
    code_type_ = GetStringAttr("code_type", attrs);
E
eclipsess 已提交
1056
  }
N
nhzlx 已提交
1057
  const RType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
1058

N
nhzlx 已提交
1059
  const RType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
1060

N
nhzlx 已提交
1061
  const RType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
1062

N
nhzlx 已提交
1063
  RType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
1064 1065 1066 1067

  const std::string &CodeType() const { return code_type_; }

 private:
N
nhzlx 已提交
1068 1069 1070 1071
  RType *input_priorbox_;
  RType *input_priorboxvar_;
  RType *input_targetbox_;
  RType *output_box_;
E
eclipsess 已提交
1072 1073
  std::string code_type_;
};
L
liuruilong 已提交
1074
#endif
W
wangliu 已提交
1075

L
liuruilong 已提交
1076
#ifdef SOFTMAX_OP
N
nhzlx 已提交
1077
template <typename Dtype>
W
wangliu 已提交
1078
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
1079 1080 1081
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1082 1083
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1084 1085 1086 1087
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1088
  }
H
hjchen2 已提交
1089 1090
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1091 1092

 private:
H
hjchen2 已提交
1093 1094
  GType *input_x_;
  GType *out_;
H
hanbuhe 已提交
1095 1096 1097 1098

#ifdef PADDLE_MOBILE_FPGA

 private:
N
nhzlx 已提交
1099
  std::shared_ptr<RType> float_input_x_;
H
hanbuhe 已提交
1100 1101 1102
  fpga::BypassArgs fpga_bypass_args;

 public:
1103
  RType *FloatInput() const {
H
hanbuhe 已提交
1104 1105 1106 1107 1108 1109
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
1110
};
L
liuruilong 已提交
1111
#endif
W
wangliu 已提交
1112

L
liuruilong 已提交
1113
#ifdef SIGMOID_OP
N
nhzlx 已提交
1114
template <typename Dtype>
W
wangliu 已提交
1115
class SigmoidParam : public OpParam {
N
nhzlx 已提交
1116 1117 1118
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1119 1120
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1121 1122 1123 1124
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1125
  }
N
nhzlx 已提交
1126 1127
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
1128 1129

 private:
N
nhzlx 已提交
1130 1131
  RType *input_x_;
  RType *out_;
1132 1133 1134 1135 1136 1137 1138 1139 1140
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::BypassArgs fpga_bypass_args;

 public:
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
1141
};
L
liuruilong 已提交
1142 1143 1144
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
1145
template <typename Dtype>
E
eclipsess 已提交
1146
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
1147 1148 1149
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1150 1151 1152
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1153 1154 1155 1156 1157
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, *scope);
    input_scores_ = InputScoresFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1158 1159 1160 1161 1162 1163 1164 1165
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

Y
yangfei 已提交
1166
  RType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
1167

Y
yangfei 已提交
1168
  RType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
1169

N
nhzlx 已提交
1170
  RType *Out() const { return out_; }
E
eclipsess 已提交
1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
N
nhzlx 已提交
1185 1186 1187
  RType *input_bboxes_;
  RType *input_scores_;
  RType *out_;
E
eclipsess 已提交
1188 1189 1190 1191 1192 1193 1194
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
1195
#endif
W
wangliu 已提交
1196

L
lijiancheng0614 已提交
1197 1198 1199 1200 1201 1202 1203 1204 1205
#ifdef POLYGONBOXTRANSFORM_OP
template <typename Dtype>
class PolygonBoxTransformParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  PolygonBoxTransformParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1206 1207 1208 1209
                           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    output_ = OutputFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
  }
  const RType *Input() const { return input_; }
  RType *Output() const { return output_; }

 private:
  RType *input_;
  RType *output_;
};
#endif

N
nhzlx 已提交
1220
template <typename Dtype>
L
liuruilong 已提交
1221
class FeedParam : public OpParam {
N
nhzlx 已提交
1222 1223 1224
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1225 1226
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1227 1228
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
1229 1230 1231 1232 1233 1234
#ifdef PADDLE_MOBILE_FPGA
    static int feed_num = 0;
    auto new_name = std::string("feed") + std::to_string(feed_num++);
    const_cast<VariableNameMap &>(inputs).at("X") = {string(new_name)};
#endif

1235 1236 1237
    input_x_ = InputXFrom<LoDTensor>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    auto var = scope->FindVar("batch_size");
W
wangliu 已提交
1238
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
1239
  }
Y
yangfei 已提交
1240
  const LoDTensor *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1241
  GType *Out() const { return out_; }
W
wangliu 已提交
1242
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
1243

L
liuruilong 已提交
1244
 private:
Y
yangfei 已提交
1245
  LoDTensor *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1246
  GType *out_;
W
wangliu 已提交
1247
  int batch_size;
L
liuruilong 已提交
1248 1249
};

N
nhzlx 已提交
1250
template <typename Dtype>
L
liuruilong 已提交
1251
class FetchParam : public OpParam {
N
nhzlx 已提交
1252 1253 1254
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1255 1256
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1257 1258
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
1259 1260 1261 1262 1263
#ifdef PADDLE_MOBILE_FPGA
    static int fetch_num = 0;
    auto new_name = std::string("fetch") + std::to_string(fetch_num++);
    const_cast<VariableNameMap &>(outputs).at("Out") = {string(new_name)};
#endif
1264 1265
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom(outputs, *scope);
L
liuruilong 已提交
1266
  }
L
liuruilong 已提交
1267

N
nhzlx 已提交
1268
  const RType *InputX() const { return input_x_; }
1269 1270 1271
  Tensor *Out() const { return out_; }

  static Tensor *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
Z
zhaojiaying01 已提交
1272
    return GetVarValue<LoDTensor>("Out", outputs, scope);
1273
  }
L
liuruilong 已提交
1274

L
liuruilong 已提交
1275
 private:
N
nhzlx 已提交
1276
  RType *input_x_;
Y
yangfei 已提交
1277
  Tensor *out_;
qnqinan's avatar
qnqinan 已提交
1278
#ifdef PADDLE_MOBILE_FPGA
1279

1280
 public:
qnqinan's avatar
qnqinan 已提交
1281 1282 1283
  fpga::BypassArgs fpga_bypass_args;

#endif
L
liuruilong 已提交
1284 1285
};

L
lijiancheng0614 已提交
1286 1287 1288 1289 1290 1291 1292 1293 1294
#ifdef FILL_CONSTANT_OP
template <typename Dtype>
class FillConstantParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FillConstantParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1295 1296 1297 1298
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    out_var_ = OutVarFrom(outputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
    dtype_ = GetAttr<int>("dtype", attrs);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    value_ = GetAttr<float>("value", attrs);
  }

  Variable *OutVar() const { return out_var_; }

  RType *Out() const { return out_; }

  const int &DataDtype() const { return dtype_; }

  const vector<int> &Shape() const { return shape_; }

  const float &Value() const { return value_; }

 private:
  Variable *out_var_;
  RType *out_;
  int dtype_;
  vector<int> shape_;
  float value_;
};
#endif

L
liuruilong 已提交
1323
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
1324
template <typename Dtype>
E
eclipsess 已提交
1325
class TransposeParam : public OpParam {
N
nhzlx 已提交
1326 1327 1328
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1329 1330
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1331 1332 1333 1334
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1335 1336 1337
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

N
nhzlx 已提交
1338
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1339

N
nhzlx 已提交
1340
  RType *Out() const { return out_; }
E
eclipsess 已提交
1341 1342 1343 1344

  const vector<int> &Axis() const { return axis_; }

 private:
N
nhzlx 已提交
1345 1346
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1347 1348
  vector<int> axis_;
};
L
liuruilong 已提交
1349
#endif
E
eclipsess 已提交
1350

L
lijiancheng0614 已提交
1351 1352 1353 1354 1355 1356 1357 1358
#ifdef TRANSPOSE2_OP
template <typename Dtype>
class Transpose2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Transpose2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
1359 1360 1361 1362 1363
                  const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

  const RType *InputX() const { return input_x_; }

  RType *Out() const { return out_; }

  RType *OutputXShape() const { return output_xshape_; }

  const vector<int> &Axis() const { return axis_; }

 private:
  RType *input_x_;
  RType *out_;
  RType *output_xshape_;
  vector<int> axis_;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
1383 1384 1385 1386 1387 1388 1389 1390
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1391 1392 1393 1394 1395
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_w_ = InputWFrom<GType>(inputs, *scope);
    input_ids_ = InputIdsFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1422 1423
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
xiebaiyuan's avatar
xiebaiyuan 已提交
1424
    // todo crf params
1425 1426 1427 1428
    input_emission_ = InputEmissionFrom<GType>(inputs, *scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, *scope);
    input_label_ = InputLabelFrom<GType>(inputs, *scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
  //  const RType *InputIds() const { return input_ids_; }
  //  RType *Out() const { return out_; }
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

  //  RType *input_ids_;
  //  RType *out_;
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1451
#ifdef RESHAPE_OP
N
nhzlx 已提交
1452
template <typename Dtype>
E
eclipsess 已提交
1453
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1454 1455 1456
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1457 1458
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1459 1460 1461 1462 1463
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1464
    shape_ = GetAttr<vector<int>>("shape", attrs);
1465 1466 1467 1468 1469 1470 1471

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1472 1473
  }

N
nhzlx 已提交
1474
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1475

N
nhzlx 已提交
1476
  const RType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1477

N
nhzlx 已提交
1478
  RType *Out() const { return out_; }
E
eclipsess 已提交
1479 1480 1481 1482 1483 1484

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1485 1486 1487
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
E
eclipsess 已提交
1488 1489 1490
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1491
#endif
E
eclipsess 已提交
1492

L
lijiancheng0614 已提交
1493 1494 1495 1496 1497 1498 1499 1500
#ifdef RESHAPE2_OP
template <typename Dtype>
class Reshape2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Reshape2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
1501 1502 1503 1504 1505 1506
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, *scope);
L
lijiancheng0614 已提交
1507 1508 1509 1510 1511 1512 1513 1514
    shape_ = GetAttr<vector<int>>("shape", attrs);
    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
    }
  }

E
eclipsess 已提交
1515
  const GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1516

E
eclipsess 已提交
1517
  const GType *InputShape() const { return input_shape_; }
L
lijiancheng0614 已提交
1518

E
eclipsess 已提交
1519
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1520

E
eclipsess 已提交
1521
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1522 1523 1524 1525 1526 1527

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
E
eclipsess 已提交
1528 1529 1530 1531
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1532 1533 1534 1535 1536
  vector<int> shape_;
  bool inplace_;
};
#endif

T
Tian 已提交
1537
#ifdef SCALE_OP
N
nhzlx 已提交
1538
template <typename Dtype>
I
itminner 已提交
1539
class ScaleParam : public OpParam {
N
nhzlx 已提交
1540 1541 1542
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1543 1544
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1545 1546 1547 1548 1549
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
I
itminner 已提交
1550 1551 1552 1553 1554 1555
    inplace_ = GetAttr<bool>("inplace", attrs);
    has_bias_ = GetAttr<bool>("has_bias", attrs);
    scales_ = GetAttr<vector<float>>("scales", attrs);
    biases_ = GetAttr<vector<float>>("biases", attrs);
  }

N
nhzlx 已提交
1556
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1557

N
nhzlx 已提交
1558
  const RType *InputBias() const { return input_bias_; }
I
itminner 已提交
1559

N
nhzlx 已提交
1560
  RType *Out() const { return out_; }
I
itminner 已提交
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570

  const bool &Inplace() const { return inplace_; }

  const bool &HasBias() const { return has_bias_; }

  const vector<float> &Scales() const { return scales_; }

  const vector<float> &Biases() const { return biases_; }

 private:
N
nhzlx 已提交
1571 1572 1573
  RType *input_x_;
  RType *input_bias_;
  RType *out_;
I
itminner 已提交
1574 1575 1576 1577 1578
  bool inplace_;
  bool has_bias_;
  vector<float> scales_;
  vector<float> biases_;
};
T
Tian 已提交
1579 1580 1581
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1582
template <typename Dtype>
I
itminner 已提交
1583
class SliceParam : public OpParam {
N
nhzlx 已提交
1584 1585 1586
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1587 1588
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1589 1590 1591 1592
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
I
itminner 已提交
1593

1594 1595 1596 1597
    axes_ = GetAttr<std::vector<int>>("axes", attrs);
    starts_ = GetAttr<std::vector<int>>("starts", attrs);
    ends_ = GetAttr<std::vector<int>>("ends", attrs);
  }
I
itminner 已提交
1598

1599 1600 1601 1602 1603 1604
 public:
  GType *input_;
  GType *output_;
  std::vector<int> axes_;
  std::vector<int> starts_;
  std::vector<int> ends_;
I
itminner 已提交
1605
};
T
Tian 已提交
1606 1607 1608
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1609
template <typename Dtype>
T
Tian 已提交
1610
class ResizeParam : public OpParam {
N
nhzlx 已提交
1611 1612 1613
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1614 1615
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1616 1617 1618 1619 1620
              const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_shape_ = InputShapeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
I
itminner 已提交
1621 1622 1623 1624 1625 1626
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1627

N
nhzlx 已提交
1628
  const RType *InputX() const { return input_x_; }
T
Tian 已提交
1629

N
nhzlx 已提交
1630
  const RType *InputShape() const { return input_shape_; }
T
Tian 已提交
1631

N
nhzlx 已提交
1632
  RType *Out() const { return out_; }
T
Tian 已提交
1633

I
itminner 已提交
1634
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1635

I
itminner 已提交
1636
  const int &Height() const { return height_; }
T
Tian 已提交
1637

I
itminner 已提交
1638
  const int &Width() const { return width_; }
T
Tian 已提交
1639

I
itminner 已提交
1640
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1641

I
itminner 已提交
1642
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1643

I
itminner 已提交
1644
 private:
N
nhzlx 已提交
1645 1646 1647
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1648 1649 1650 1651 1652
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1653 1654 1655
};
#endif

L
liuruilong 已提交
1656
#ifdef RELU_OP
L
liuruilong 已提交
1657 1658 1659
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1660
template <typename Dtype>
D
relu  
dolphin8 已提交
1661
class ReluParamBase : public OpParam {
N
nhzlx 已提交
1662 1663 1664
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1665
 public:
D
relu  
dolphin8 已提交
1666
  ReluParamBase(const VariableNameMap &inputs, const VariableNameMap &outputs,
1667 1668 1669 1670
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1671 1672
  }

N
nhzlx 已提交
1673
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1674

N
nhzlx 已提交
1675
  RType *Out() const { return out_; }
E
eclipsess 已提交
1676 1677

 private:
N
nhzlx 已提交
1678 1679
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1680
};
D
relu  
dolphin8 已提交
1681 1682 1683

template <typename Dtype>
class ReluParam : public ReluParamBase<Dtype> {
Y
yangfei 已提交
1684
 public:
D
relu  
dolphin8 已提交
1685 1686 1687
  using ReluParamBase<Dtype>::ReluParamBase;
};

Y
yangfei 已提交
1688
#ifdef PADDLE_MOBILE_CL
D
relu  
dolphin8 已提交
1689 1690
template <>
class ReluParam<GPU_CL> : public ReluParamBase<GPU_CL> {
Y
yangfei 已提交
1691
 public:
D
relu  
dolphin8 已提交
1692
  using ReluParamBase<GPU_CL>::ReluParamBase;
Y
yangfei 已提交
1693 1694 1695
  framework::CLImage &getMidImage() { return midImage; }

 private:
D
relu  
dolphin8 已提交
1696 1697
  framework::CLImage midImage;
};
Y
yangfei 已提交
1698
#endif
D
relu  
dolphin8 已提交
1699

L
liuruilong 已提交
1700
#endif
E
eclipsess 已提交
1701

Z
zhangyang 已提交
1702 1703 1704 1705 1706 1707 1708 1709
#ifdef TANH_OP
template <typename Dtype>
class TanhParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TanhParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1710 1711 1712 1713
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Z
zhangyang 已提交
1714 1715 1716 1717 1718 1719 1720
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }

 private:
  RType *input_x_;
  RType *out_;
qnqinan's avatar
qnqinan 已提交
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734
#ifdef PADDLE_MOBILE_FPGA

 private:
  std::shared_ptr<RType> float_input_x_;
  fpga::BypassArgs fpga_bypass_args;

 public:
  RType *FloatInput() const {
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
Z
zhangyang 已提交
1735
};
L
liuruilong 已提交
1736
#endif
E
eclipsess 已提交
1737

T
Tian 已提交
1738
#ifdef PRELU_OP
N
nhzlx 已提交
1739
template <typename Dtype>
T
Tian 已提交
1740
class PReluParam : public OpParam {
N
nhzlx 已提交
1741 1742 1743
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1744 1745
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1746 1747
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
1748
    DLOG << "PReluParam inputs before";
1749 1750
    input_x_ = InputXFrom<GType>(inputs, *scope);
    alpha_ = InputAlphaFrom<GType>(inputs, *scope);
1751
    framework::DDim dims = alpha_->dims();
1752
    out_ = OutFrom<GType>(outputs, *scope);
1753
    mode_ = GetStringAttr("mode", attrs);
1754
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1755
  }
N
nhzlx 已提交
1756
  const RType *InputX() const { return input_x_; }
N
nhzlx 已提交
1757
  const RType *InputAlpha() const { return alpha_; }
N
nhzlx 已提交
1758
  RType *Out() const { return out_; }
1759
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1760

I
itminner 已提交
1761
 private:
N
nhzlx 已提交
1762 1763
  RType *input_x_;
  RType *out_;
N
nhzlx 已提交
1764
  RType *alpha_;
1765
  std::string mode_;
T
Tian 已提交
1766 1767 1768
};
#endif

N
nhzlx 已提交
1769
template <typename Dtype>
L
liuruilong 已提交
1770
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1771 1772 1773
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1774
 public:
L
liuruilong 已提交
1775
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1776 1777 1778 1779 1780 1781
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    input_z_ = InputZFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
E
eclipsess 已提交
1782 1783 1784 1785
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
Y
yangfei 已提交
1786
  GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1787

Y
yangfei 已提交
1788
  RType *InputY() const { return input_y_; }
E
eclipsess 已提交
1789

Y
yangfei 已提交
1790
  RType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1791

xiebaiyuan's avatar
xiebaiyuan 已提交
1792
  GType *Out() const { return out_; }
E
eclipsess 已提交
1793 1794 1795 1796 1797 1798 1799 1800

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1801
  GType *input_x_;
N
nhzlx 已提交
1802 1803
  RType *input_y_;
  RType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1804
  GType *out_;
E
eclipsess 已提交
1805 1806 1807
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1808

Z
ZhenWang 已提交
1809
#ifdef PADDLE_MOBILE_FPGA
1810
 private:  // NOLINT
Z
zhangyang 已提交
1811
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1812 1813

 public:
Z
zhangyang 已提交
1814 1815
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1816
#endif
E
eclipsess 已提交
1817
};
1818 1819

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1820 1821
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1822
#endif
E
eclipsess 已提交
1823

N
nhzlx 已提交
1824
template <typename Dtype>
1825
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1826 1827 1828
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1829
 public:
L
liuruilong 已提交
1830
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1831
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1832
                     Scope *scope)
1833
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1834
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1835
    axis_ = OpParam::GetAttr<int>("axis", attrs);
1836
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
W
wangliu 已提交
1837
  }
N
nhzlx 已提交
1838
  RType *Bias() const { return bias_; }
W
wangliu 已提交
1839 1840 1841

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1842
  RType *Output() const { return output_; }
W
wangliu 已提交
1843

L
liuruilong 已提交
1844
 protected:
N
nhzlx 已提交
1845
  RType *bias_;
W
wangliu 已提交
1846
  int axis_;
N
nhzlx 已提交
1847
  RType *output_;
W
wangliu 已提交
1848 1849
};

N
nhzlx 已提交
1850 1851
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1852

Z
zhangyang 已提交
1853
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1854 1855
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1856
 public:
L
liuruilong 已提交
1857
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1858
                         const VariableNameMap &outputs,
1859
                         const AttributeMap &attrs, Scope *scope)
1860
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1861 1862 1863
};
#endif

1864
#ifdef FUSION_CONVADDPRELU_OP
1865 1866 1867 1868
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1869 1870 1871 1872

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1873
                          const AttributeMap &attrs, Scope *scope)
1874
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1875
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, *scope);
1876
    mode_ = OpParam::GetStringAttr("mode", attrs);
1877
    framework::DDim dims = alpha_->dims();
1878
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1879
    axis_ = OpParam::GetAttr<int>("axis", attrs);
1880
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  RType *Bias() const { return bias_; }
  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1898 1899 1900 1901
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1902 1903 1904 1905

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1906
                             const AttributeMap &attrs, Scope *scope)
1907
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1908 1909
    bias1_ = OpParam::InputYFrom1<GType>(inputs, *scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, *scope);
1910
    mode_ = OpParam::GetStringAttr("mode", attrs);
1911
    framework::DDim dims = alpha_->dims();
1912 1913
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
1914
    axis_ = OpParam::GetAttr<int>("axis", attrs);
1915 1916 1917
    keyOutput_ = OpParam::Getkey("addOut", inputs, 0);
    keyX1_ = OpParam::Getkey("addX", inputs, 1);
    keyY1_ = OpParam::Getkey("Y", inputs, 1);
1918
    if (keyX1_ == keyOutput_) {
1919
      bias1_ = OpParam::InputYFrom1<GType>(inputs, *scope);
1920
    } else if (keyY1_ == keyOutput_) {
1921
      bias1_ = OpParam::InputXFrom1<GType>(inputs, *scope);
1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945
    }
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  const RType *Bias1() const { return bias1_; }

  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
  RType *bias1_;
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
};
#endif

E
eclipsess 已提交
1946
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1947
template <typename Dtype>
1948
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1949 1950 1951
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1952 1953 1954
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1955
                           const AttributeMap &attrs, Scope *scope)
1956
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
1957
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
1958
    axis_ = OpParam::GetAttr<int>("axis", attrs);
1959 1960 1961 1962 1963
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
1964 1965 1966
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1967
  }
N
nhzlx 已提交
1968
  RType *Bias() const { return bias_; }
E
eclipsess 已提交
1969 1970 1971

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1972
  RType *Output() const { return output_; }
E
eclipsess 已提交
1973

N
nhzlx 已提交
1974
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1975

N
nhzlx 已提交
1976
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1977

N
nhzlx 已提交
1978
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1979

N
nhzlx 已提交
1980
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1981 1982 1983 1984 1985 1986 1987

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1988
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1989

N
nhzlx 已提交
1990
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1991

N
nhzlx 已提交
1992
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1993

N
nhzlx 已提交
1994
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1995 1996

 protected:
N
nhzlx 已提交
1997
  RType *bias_;
E
eclipsess 已提交
1998
  int axis_;
N
nhzlx 已提交
1999 2000 2001 2002 2003
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
2004 2005 2006
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2007 2008
  RType *new_bias_;
  RType *new_scale_;
2009 2010 2011 2012 2013
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
2014
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
2015 2016 2017 2018 2019 2020
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
2021
                           const AttributeMap &attrs, Scope *scope)
2022
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2023
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2024
    axis_ = OpParam::GetAttr<int>("axis", attrs);
2025 2026 2027 2028 2029
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2030 2031
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
2032 2033 2034
    keyBNY_ = OpParam::Getkey("BNY", inputs, 0);
    keyX_ = OpParam::Getkey("X", inputs, 0);
    keyY_ = OpParam::Getkey("Y", inputs, 0);
2035
    if (keyX_ == keyBNY_) {
2036
      bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2037
    } else if (keyY_ == keyBNY_) {
2038
      bias_ = OpParam::InputXFrom<GType>(inputs, *scope);
2039
    }
2040
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
E
eclipsess 已提交
2086
};
2087
#endif
E
eclipsess 已提交
2088

Z
zhangyang 已提交
2089
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
2090
template <typename Dtype>
2091
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2092 2093 2094
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
2095 2096 2097
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
2098
                    Scope *scope)
2099
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2100 2101 2102 2103 2104
    output_y_ = OpParam::OutputYFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2105 2106 2107
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
Z
zhangyang 已提交
2108
  }
N
nhzlx 已提交
2109
  RType *Output() const { return output_y_; }
Z
zhangyang 已提交
2110

N
nhzlx 已提交
2111
  const RType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
2112

N
nhzlx 已提交
2113
  const RType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
2114

N
nhzlx 已提交
2115
  const RType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
2116

N
nhzlx 已提交
2117
  const RType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
2118 2119 2120 2121 2122 2123 2124

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2125
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
2126

N
nhzlx 已提交
2127
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
2128

N
nhzlx 已提交
2129
  const RType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
2130

N
nhzlx 已提交
2131
  const RType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
2132 2133

 protected:
N
nhzlx 已提交
2134 2135 2136 2137 2138
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
Z
zhangyang 已提交
2139 2140 2141
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2142 2143
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
2144 2145 2146
};
#endif

2147
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
2148
template <typename Dtype>
2149
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2150 2151 2152
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2153 2154 2155
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
2156
                       const AttributeMap &attrs, Scope *scope)
2157
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2158
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
2159
    axis_ = OpParam::GetAttr<int>("axis", attrs);
2160 2161 2162 2163 2164
    output_y_ = OpParam::OutputYFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2165 2166 2167
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
2168
  }
N
nhzlx 已提交
2169
  RType *Bias() const { return bias_; }
2170 2171 2172

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
2173
  RType *Output() const { return output_y_; }
2174

N
nhzlx 已提交
2175
  const RType *InputBias() const { return input_bias_; }
2176

N
nhzlx 已提交
2177
  const RType *InputMean() const { return input_mean_; }
2178

N
nhzlx 已提交
2179
  const RType *InputScale() const { return input_scale_; }
2180

N
nhzlx 已提交
2181
  const RType *InputVariance() const { return input_variance_; }
2182 2183 2184 2185 2186 2187 2188

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2189
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
2190

N
nhzlx 已提交
2191
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
2192

N
nhzlx 已提交
2193
  const RType *NewScale() const { return new_scale_; }
2194

N
nhzlx 已提交
2195
  const RType *NewBias() const { return new_bias_; }
2196 2197

 protected:
N
nhzlx 已提交
2198
  RType *bias_;
2199
  int axis_;
N
nhzlx 已提交
2200 2201 2202 2203 2204
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
2205 2206 2207
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2208 2209
  RType *new_bias_;
  RType *new_scale_;
2210
};
E
eclipsess 已提交
2211
#endif
Y
Yao,kun 已提交
2212

E
eclipsess 已提交
2213
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
2214
template <typename Dtype>
2215
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2216 2217 2218
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
2219 2220 2221
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2222
                          const AttributeMap &attrs, Scope *scope)
2223
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2224 2225 2226 2227 2228
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2229 2230 2231
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
2232
  }
N
nhzlx 已提交
2233
  RType *Output() const { return output_; }
E
eclipsess 已提交
2234

N
nhzlx 已提交
2235
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
2236

N
nhzlx 已提交
2237
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2238

N
nhzlx 已提交
2239
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2240

N
nhzlx 已提交
2241
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2242 2243 2244 2245 2246 2247 2248

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2249
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
2250

N
nhzlx 已提交
2251
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
2252

N
nhzlx 已提交
2253
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
2254

N
nhzlx 已提交
2255
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
2256 2257

 protected:
N
nhzlx 已提交
2258 2259 2260 2261 2262
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
2263 2264 2265
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2266 2267
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
2268 2269 2270 2271
};

#endif

2272
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
2273
template <typename Dtype>
2274
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2275 2276 2277
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2278 2279 2280
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
2281
                        const AttributeMap &attrs, Scope *scope)
2282
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
2283 2284 2285 2286 2287
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2288 2289 2290
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
2291
  }
N
nhzlx 已提交
2292
  RType *Output() const { return output_; }
2293

N
nhzlx 已提交
2294
  const RType *InputBias() const { return input_bias_; }
2295

N
nhzlx 已提交
2296
  const RType *InputMean() const { return input_mean_; }
2297

N
nhzlx 已提交
2298
  const RType *InputScale() const { return input_scale_; }
2299

N
nhzlx 已提交
2300
  const RType *InputVariance() const { return input_variance_; }
2301 2302 2303 2304 2305 2306 2307

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2308
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
2309

N
nhzlx 已提交
2310
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
2311

N
nhzlx 已提交
2312
  const RType *NewScale() const { return new_scale_; }
2313

N
nhzlx 已提交
2314
  const RType *NewBias() const { return new_bias_; }
2315 2316

 protected:
N
nhzlx 已提交
2317 2318 2319 2320 2321
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
2322 2323 2324
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2325 2326
  RType *new_bias_;
  RType *new_scale_;
2327 2328 2329
};
#endif

Y
Yao,kun 已提交
2330
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
2331
template <typename Dtype>
Y
Yao,kun 已提交
2332
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
2333 2334 2335
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2336 2337 2338
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
2339 2340 2341 2342
                   Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Y
Yao,kun 已提交
2343 2344 2345 2346 2347
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

E
eclipsess 已提交
2348
  const GType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2349

E
eclipsess 已提交
2350
  GType *Output() const { return out_; }
Y
Yao,kun 已提交
2351 2352 2353 2354 2355 2356 2357 2358

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
E
eclipsess 已提交
2359 2360
  GType *input_x_;
  GType *out_;
Y
Yao,kun 已提交
2361 2362 2363 2364
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2365
#endif
Y
Yao,kun 已提交
2366

2367
#ifdef DROPOUT_OP
N
nhzlx 已提交
2368
template <typename Dtype>
Y
Yao,kun 已提交
2369
class DropoutParam : public OpParam {
N
nhzlx 已提交
2370 2371 2372
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2373 2374
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2375 2376 2377 2378
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
Y
yangfei 已提交
2379 2380

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
2381 2382
  }

N
nhzlx 已提交
2383
  const RType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2384

N
nhzlx 已提交
2385
  RType *Out() const { return out_; }
Y
Yao,kun 已提交
2386

Y
yangfei 已提交
2387 2388
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
2389
 private:
N
nhzlx 已提交
2390 2391
  RType *input_x_;
  RType *out_;
Y
yangfei 已提交
2392
  float dropout_prob_;
Y
Yao,kun 已提交
2393
};
2394
#endif
Y
Yao,kun 已提交
2395

N
nhzlx 已提交
2396
template <typename Dtype>
L
liuruilong 已提交
2397
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2398 2399 2400
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2401 2402 2403
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
2404 2405 2406 2407
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    filter_ = FilterFrom<GType>(inputs, *scope);
    input_ = InputFrom<GType>(inputs, *scope);
2408
    // output_ = OutputFrom<GType>(outputs, scope);
qnqinan's avatar
qnqinan 已提交
2409
    if (outputs.count("Output")) {
2410
      output_ = OpParam::OutputFrom<GType>(outputs, *scope);
qnqinan's avatar
qnqinan 已提交
2411
    }
L
liuruilong 已提交
2412 2413 2414 2415 2416 2417
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

N
nhzlx 已提交
2418
  const RType *Input() const { return input_; }
L
liuruilong 已提交
2419

N
nhzlx 已提交
2420
  const RType *Filter() const { return filter_; }
L
liuruilong 已提交
2421

N
nhzlx 已提交
2422
  RType *Output() const { return output_; }
L
liuruilong 已提交
2423 2424 2425 2426 2427 2428 2429 2430 2431 2432

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 private:
N
nhzlx 已提交
2433 2434 2435
  RType *input_;
  RType *output_;
  RType *filter_;
L
liuruilong 已提交
2436 2437 2438 2439
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
Z
zhangyang 已提交
2440 2441 2442 2443 2444

#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::DeconvArgs fpga_conv_args;
qnqinan's avatar
qnqinan 已提交
2445
  fpga::DWDeconvArgs fpga_DWDeconv_args;
Z
zhangyang 已提交
2446 2447 2448

 public:
  const fpga::DeconvArgs &FpgaArgs() const { return fpga_conv_args; }
qnqinan's avatar
qnqinan 已提交
2449 2450 2451
  const fpga::DWDeconvArgs &FpgaDWDconvArgs() const {
    return fpga_DWDeconv_args;
  }
Z
zhangyang 已提交
2452
  void SetFpgaArgs(const fpga::DeconvArgs &args) { fpga_conv_args = args; }
qnqinan's avatar
qnqinan 已提交
2453 2454 2455
  void SetFpgaArgs(const fpga::DWDeconvArgs &args) {
    fpga_DWDeconv_args = args;
  }
Z
zhangyang 已提交
2456
#endif
L
liuruilong 已提交
2457
};
Z
zhangyang 已提交
2458

qnqinan's avatar
qnqinan 已提交
2459 2460 2461 2462 2463
#ifdef FUSION_DECONVADD_OP
template <typename Dtype>
class FusionDeconvAddParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
2464 2465

 public:
qnqinan's avatar
qnqinan 已提交
2466
  FusionDeconvAddParam(const VariableNameMap &inputs,
2467
                       const VariableNameMap &outputs,
2468
                       const AttributeMap &attrs, Scope *scope)
2469
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2470
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
qnqinan's avatar
qnqinan 已提交
2471
    axis_ = OpParam::GetAttr<int>("axis", attrs);
2472
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
qnqinan's avatar
qnqinan 已提交
2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
};
#endif

#ifdef FUSION_DECONVADDRELU_OP
template <typename Dtype>
using FusionDeconvAddReluParam = FusionDeconvAddParam<Dtype>;
#endif
2491 2492 2493 2494 2495 2496 2497 2498 2499
#ifdef FUSION_DECONVADDBN_OP
template <typename Dtype>
class FusionDeconvAddBNParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvAddBNParam(const VariableNameMap &inputs,
                         const VariableNameMap &outputs,
2500
                         const AttributeMap &attrs, Scope *scope)
2501
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2502 2503 2504 2505 2506
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2507 2508 2509 2510 2511 2512 2513
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }
2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
#ifdef FUSION_DECONVBNRELU_OP
template <typename Dtype>
class FusionDeconvBNReluParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
                          const AttributeMap &attrs, const Scope &scope)
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }
2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
#ifdef FUSION_DECONVADDBNRELU_OP
template <typename Dtype>
class FusionDeconvAddBNReluParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDeconvAddBNReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
2613
                             const AttributeMap &attrs, Scope *scope)
2614
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
2615 2616 2617 2618 2619
    output_ = OpParam::OutFrom<GType>(outputs, *scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, *scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, *scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, *scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, *scope);
2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
  }
  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
};
#endif
L
liuruilong 已提交
2661

Z
zhangyang 已提交
2662 2663 2664 2665 2666
#ifdef FUSION_DECONVRELU_OP
template <typename Dtype>
using FusionDeconvReluParam = ConvTransposeParam<Dtype>;
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2681 2682 2683 2684 2685 2686 2687 2688
           const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_input_ = InputFrom<GType>(inputs, *scope);
    input_h0_ = InputH0From<GType>(inputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_weight_ = InputWeightFrom<GType>(inputs, *scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2689
    output_batch_reset_hidden_prev_ =
2690 2691 2692
        OutputBatchResetHiddenPrevFrom<GType>(outputs, *scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, *scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, *scope);
2693 2694
    activation_ = GetStringAttr("activation", attrs);
    gate_activation_ = GetStringAttr("gate_activation", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

Z
zhaojiaying01 已提交
2728 2729 2730 2731 2732 2733 2734
#ifdef GRU_UNIT_OP
template <typename Dtype>
class GruUnitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  GruUnitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2735 2736 2737 2738 2739 2740 2741 2742
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_input_ = InputFrom<GType>(inputs, *scope);
    input_hidden_prev_ = InputHiddenPrevFrom<GType>(inputs, *scope);
    input_bias_ = InputBiasFrom<GType>(inputs, *scope);
    input_weight_ = InputWeightFrom<GType>(inputs, *scope);

    output_gate_ = OutputGateFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
2743
    output_reset_hidden_prev_ =
2744 2745
        OutputResetHiddenPrevFrom<GType>(outputs, *scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773
    activation_ = GetAttr<int>("activation", attrs);
    gate_activation_ = GetAttr<int>("gate_activation", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputHiddenPrev() const { return input_hidden_prev_; }
  const GType *InputBias() const { return input_bias_; }
  const int &Activation() const { return activation_; }
  const int &GateActivation() const { return gate_activation_; }

  GType *OutGate() const { return output_gate_; }
  GType *OutResetHiddenPrev() const { return output_reset_hidden_prev_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_hidden_prev_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_gate_;
  GType *output_reset_hidden_prev_;
  GType *output_hidden_;
  int activation_;
  int gate_activation_;
};
#endif

2774 2775 2776 2777 2778 2779 2780 2781
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2782 2783 2784 2785
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2786
    axis = GetAttr<int>("axis", attrs);
2787 2788 2789
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2790
  const int &Axis() const { return axis; }
2791 2792 2793 2794

 private:
  RType *input_x_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2795
  int axis;
2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2807 2808 2809 2810
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    outs_ = OutMultiFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2811
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2812 2813 2814 2815 2816 2817
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2818 2819
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2820 2821 2822 2823 2824
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2825 2826 2827

 private:
  RType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2828
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2829
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2830 2831 2832
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2833 2834 2835 2836 2837 2838 2839 2840 2841
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::SplitArgs fpga_split_args;

 public:
  const fpga::SplitArgs &FpgaArgs() const { return fpga_split_args; }
  void SetFpgaArgs(const fpga::SplitArgs &args) { fpga_split_args = args; }
#endif
2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
2854 2855 2856 2857 2858
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2859 2860
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2861 2862
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2863
  const RType *InputOutPutSize() const { return input_outsize_; }
2864
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2865 2866
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2867 2868 2869 2870 2871

 private:
  RType *input_x_;
  RType *input_outsize_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2872 2873
  int out_h_;
  int out_w_;
2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2885 2886 2887 2888
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
2889
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
2890
  const RType *Input() const { return input_; }
2891 2892 2893 2894 2895 2896 2897 2898
  RType *Out() const { return out_; }

 private:
  RType *input_;
  RType *out_;
};
#endif

H
hjchen2 已提交
2899 2900 2901 2902 2903 2904 2905 2906
#ifdef TOP_K_OP
template <typename Dtype>
class TopKParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TopKParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2907 2908 2909 2910 2911
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
    indices_ = OpParam::GetVarValue<GType>("Indices", outputs, *scope);
H
hjchen2 已提交
2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930
    k_ = OpParam::GetAttr<int>("k", attrs);
  }

 public:
  RType *input_;
  RType *output_;
  RType *indices_;
  int k_;
};
#endif  // TOP_K_OP

#ifdef CAST_OP
template <typename Dtype>
class CastParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CastParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2931 2932 2933 2934
            const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, *scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, *scope);
H
hjchen2 已提交
2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946
    input_type_ = OpParam::GetAttr<int>("in_dtype", attrs);
    output_type_ = OpParam::GetAttr<int>("out_dtype", attrs);
  }

 public:
  RType *input_;
  RType *output_;
  int input_type_;
  int output_type_;
};
#endif  // CAST_OP

2947
#ifdef QUANT_OP
2948
template <typename Dtype>
2949 2950 2951 2952 2953
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2954
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2955 2956 2957 2958
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
2959 2960
    // online
    // scale = max(abs(x))
2961
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, *scope);
2962
    // offline
2963
    if (inputs.count("InScale")) {
2964
      offline_ = true;
2965
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, *scope);
2966 2967
    }
    // x = round(scale * x)
2968 2969
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
H
hjchen2 已提交
2970
    }
2971 2972 2973 2974
  }

 public:
  // op input
2975
  GType *input_;
2976
  // op output
2977
  GType *output_;
2978
  RType *online_scale_;
2979 2980 2981 2982
  // quantize offline scale
  RType *offline_scale_;
  // if offine scale or not
  bool offline_ = false;
2983
  // round method type
2984 2985
  RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  // RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
2986
};
2987
#endif
2988

2989
#ifdef DEQUANT_OP
2990
template <typename Dtype>
2991 2992 2993 2994 2995
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2996
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
2997 2998 2999 3000 3001
                  const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
    activation_scale_ = OpParam::GetVarValue<GType>("Scale", inputs, *scope);
3002
    // dequantization is performed as x = x / static_scale / online_scale
3003 3004
    if (OpParam::HasAttr("weight_scale", attrs)) {
      weight_scale_ = OpParam::GetAttr<float>("weight_scale", attrs);
3005
    } else {
3006
      weight_scale_ = OpParam::GetAttr<float>("max_range", attrs);
3007 3008 3009 3010 3011
    }
  }

 public:
  // op input
3012
  GType *input_;
3013
  // op output
3014
  GType *output_;
3015 3016 3017
  RType *activation_scale_;
  float weight_scale_;
};
3018
#endif
3019

3020 3021 3022 3023
#if defined(FUSION_DEQUANT_BN_OP) || defined(FUSION_DEQUANT_ADD_BN_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||                             \
    defined(FUSION_DEQUANT_BN_RELU_OP) ||                                 \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) ||                            \
3024
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
H
hjchen2 已提交
3025
template <typename Dtype>
3026
class FusionDequantBNParam : public DequantizeParam<Dtype> {
H
hjchen2 已提交
3027 3028 3029 3030
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
3031 3032
  FusionDequantBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
3033
                       const AttributeMap &attrs, Scope *scope)
H
hjchen2 已提交
3034 3035
      : DequantizeParam<Dtype>(inputs, outputs, attrs, scope) {
    // batch norm params
3036 3037 3038 3039
    bn_mean_ = OpParam::GetVarValue<GType>("BNMean", inputs, *scope);
    bn_variance_ = OpParam::GetVarValue<GType>("BNVariance", inputs, *scope);
    bn_scale_ = OpParam::GetVarValue<GType>("BNScale", inputs, *scope);
    bn_bias_ = OpParam::GetVarValue<GType>("BNBias", inputs, *scope);
H
hjchen2 已提交
3040 3041 3042 3043 3044 3045 3046 3047 3048 3049
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
  }

 public:
  // batch norm
  RType *bn_mean_;
  RType *bn_variance_;
  RType *bn_scale_;
  RType *bn_bias_;
  float epsilon_;
3050 3051 3052
};
#endif

3053 3054 3055 3056
#if defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||  \
    defined(FUSION_DEQUANT_ADD_BN_OP) ||       \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
3057 3058 3059 3060 3061 3062 3063 3064
template <typename Dtype>
class FusionDequantAddBNParam : public FusionDequantBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
3065
                          const AttributeMap &attrs, Scope *scope)
3066 3067 3068
      : FusionDequantBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // element wise add params
    axis_ = OpParam::GetAttr<int>("axis", attrs);
3069
    bias_ = OpParam::InputYFrom<GType>(inputs, *scope);
3070 3071 3072 3073 3074 3075 3076 3077 3078
  }

 public:
  // elementwise add
  int axis_;
  RType *bias_;
};
#endif

3079 3080 3081 3082 3083 3084 3085 3086 3087
#ifdef FUSION_DEQUANT_ADD_BN_QUANT_OP
template <typename Dtype>
class FusionDequantAddBNQuantParam : public FusionDequantAddBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNQuantParam(const VariableNameMap &inputs,
                               const VariableNameMap &outputs,
3088
                               const AttributeMap &attrs, Scope *scope)
3089 3090
      : FusionDequantAddBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // scale output
3091
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, *scope);
3092
    // offline
3093 3094
    if (inputs.count("InScale")) {
      offline_ = true;
3095
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, *scope);
3096 3097 3098 3099 3100 3101 3102 3103 3104
    }
    // x = round(scale * x)
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
  RType *online_scale_;
3105 3106 3107 3108
  // quantize offline scale
  RType *offline_scale_;
  // if offine scale or not
  bool offline_ = false;
3109 3110 3111 3112 3113 3114
  // round method type
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
};
#endif

3115 3116 3117 3118 3119 3120 3121 3122 3123
#ifdef SEQUENCE_EXPAND_OP
template <typename Dtype>
class SequenceExpandParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequenceExpandParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
3124 3125 3126 3127 3128
                      Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
    ref_level_ = -1;
    if (OpParam::HasAttr("ref_level", attrs)) {
      ref_level_ = OpParam::GetAttr<int>("ref_level", attrs);
    }
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int ref_level_;
};
#endif  // SEQUENCE_EXPAND_OP

#ifdef SEQUENCE_POOL_OP
template <typename Dtype>
class SequencePoolParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequencePoolParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3152 3153 3154 3155
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3156 3157
    pool_type_ = "MAX";
    if (OpParam::HasAttr("pooltype", attrs)) {
H
hjchen2 已提交
3158
      pool_type_ = OpParam::GetStringAttr("pooltype", attrs);
3159 3160 3161 3162 3163 3164 3165 3166 3167 3168
    }
  }

 public:
  GType *input_;
  GType *output_;
  std::string pool_type_;
};
#endif  // SEQUENCE_EXPAND_OP

3169 3170 3171 3172 3173 3174 3175 3176
#ifdef LOD_RESET_OP
template <typename Dtype>
class LodResetParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LodResetParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3177 3178 3179 3180
                const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3181 3182
    input_y_ = nullptr;
    if (inputs.count("Y")) {
3183
      input_y_ = InputYFrom<GType>(inputs, *scope);
3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196
    } else {
      target_lod_ = OpParam::GetAttr<vector<int>>("target_lod", attrs);
    }
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  std::vector<int> target_lod_;
};
#endif  // LOD_RESET_OP

3197 3198 3199 3200 3201 3202 3203 3204
#ifdef LESS_THAN_OP
template <typename Dtype>
class CompareParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CompareParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3205 3206 3207 3208 3209
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220
    axis_ = OpParam::GetAttr<int>("axis", attrs);
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int axis_;
};
#endif  // LESS_THAN_OP

Z
zhaojiaying01 已提交
3221
#if defined(LOGICAL_AND_OP) || defined(LOGICAL_OR_OP) || defined(LOGICAL_XOR_OP)
3222
template <typename Dtype>
Z
zhaojiaying01 已提交
3223
class LogicalBinaryParam : public OpParam {
3224 3225 3226 3227
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
3228 3229
  LogicalBinaryParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
3230 3231 3232 3233 3234
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    input_y_ = InputYFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245
  }

  const GType *InputX() const { return input_x_; }
  const GType *InputY() const { return input_y_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
};
Z
zhaojiaying01 已提交
3246
#endif  // LOGICAL_AND_OP LOGICAL_OR_OP LOGICAL_XOR_OP
3247 3248 3249

#ifdef LOGICAL_NOT_OP
template <typename Dtype>
Z
zhaojiaying01 已提交
3250
class LogicalUnaryParam : public OpParam {
3251 3252 3253 3254
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
3255 3256
  LogicalUnaryParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3257 3258 3259 3260
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // LOGICAL_NOT_OP

3272 3273 3274 3275 3276 3277
// #ifdef WHILE_OP
// template <typename Dtype>
// class WhileParam : public OpParam {
//  public:
//   WhileParam(const VariableNameMap &inputs,
//              const VariableNameMap &outputs, const AttributeMap &attrs,
3278
//              const Scope &scope) : OpParam(inputs, outputs, attrs, scope) {
3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
//     cond_ = OpParam::GetVarValue<framework::LoDTensor>("Condition", inputs,
//     scope); block_desc_ = OpParam::GetAttr<framework::BlockDesc
//     *>("sub_block", attrs);
//   }
//
//  public:
//   framework::LoDTensor *cond_;
//   const framework::BlockDesc *block_desc_;
// };
// #endif  // WHILE_OP

#ifdef WRITE_TO_ARRAY_OP
template <typename Dtype>
class WriteToArrayParam : public OpParam {
 public:
  WriteToArrayParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
3296 3297 3298 3299
                    Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_ = OpParam::GetVarValue<framework::LoDTensor>("X", inputs, *scope);
    index_ = OpParam::GetVarValue<framework::LoDTensor>("I", inputs, *scope);
3300
    output_ =
3301
        OpParam::GetVarValue<framework::LoDTensorArray>("Out", outputs, *scope);
3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316
  }

 public:
  framework::LoDTensor *input_;
  framework::LoDTensor *index_;
  framework::LoDTensorArray *output_;
};
#endif

#ifdef READ_FROM_ARRAY_OP
template <typename Dtype>
class ReadFromArrayParam : public OpParam {
 public:
  ReadFromArrayParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
3317 3318
                     Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
3319
    input_ =
3320 3321 3322 3323
        OpParam::GetVarValue<framework::LoDTensorArray>("X", inputs, *scope);
    index_ = OpParam::GetVarValue<framework::LoDTensor>("I", inputs, *scope);
    output_ =
        OpParam::GetVarValue<framework::LoDTensor>("Out", outputs, *scope);
3324 3325 3326 3327 3328 3329 3330 3331 3332
  }

 public:
  framework::LoDTensorArray *input_;
  framework::LoDTensor *index_;
  framework::LoDTensor *output_;
};
#endif

Z
zhaojiaying01 已提交
3333 3334 3335 3336 3337 3338 3339 3340
#ifdef IS_EMPTY_OP
template <typename Dtype>
class IsEmptyParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IsEmptyParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3341 3342 3343 3344
               const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // IS_EMPTY_OP

#ifdef INCREMENT_OP
template <typename Dtype>
class IncrementParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IncrementParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3364 3365 3366 3367
                 const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    output_ = OutFrom<GType>(outputs, *scope);
Z
zhaojiaying01 已提交
3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380
    step_ = OpParam::GetAttr<int>("step", attrs);
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }
  int Step() const { return step_; }

 public:
  GType *input_x_;
  GType *output_;
  int step_;
};
#endif  // INCREMENT_OP
3381 3382 3383 3384 3385 3386 3387 3388
#ifdef PAD2D_OP
template <typename Dtype>
class Pad2dParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Pad2dParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
3389 3390 3391 3392
             const AttributeMap &attrs, Scope *scope)
      : OpParam(inputs, outputs, attrs, scope) {
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
3393 3394 3395 3396 3397 3398 3399 3400 3401
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }

 private:
  RType *input_x_;
  RType *out_;
};
#endif
Z
zhaojiaying01 已提交
3402

朔-望's avatar
朔-望 已提交
3403 3404
}  // namespace operators
}  // namespace paddle_mobile