op_param.h 65.1 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
朔-望's avatar
朔-望 已提交
22 23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
26
#ifdef PADDLE_MOBILE_FPGA
H
hanbuhe 已提交
27
#include "fpga/api.h"
Z
zhangyang 已提交
28
#endif
朔-望's avatar
朔-望 已提交
29

L
liuruilong 已提交
30 31 32 33
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
#endif

朔-望's avatar
朔-望 已提交
34
namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
35 36
namespace operators {

W
wangliu 已提交
37 38 39 40 41 42 43
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
44

N
nhzlx 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
template <typename Dtype>
struct DtypeTensorTrait {
  typedef void ptype;
  typedef void rtype;
};

template <>
struct DtypeTensorTrait<CPU> {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

template <>
struct DtypeTensorTrait<FPGA> {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

template <>
struct DtypeTensorTrait<GPU_MALI> {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
update  
liuruilong 已提交
78
#ifdef PADDLE_MOBILE_CL
L
liuruilong 已提交
79 80 81 82 83 84 85 86
template <>
struct DtypeTensorTrait<GPU_CL> {
  // This is the type we obtained in variable.
  typedef framework::CLImage gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::CLImage rtype;
};
L
update  
liuruilong 已提交
87
#endif
L
liuruilong 已提交
88

L
liuruilong 已提交
89
class OpParam {
朔-望's avatar
朔-望 已提交
90
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
91 92 93 94
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
95 96 97 98 99
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

100 101 102 103 104 105 106 107 108
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
109 110 111 112 113
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

141 142 143 144
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
145 146 147 148 149 150

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

151 152 153 154 155
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
156 157 158 159 160
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

161 162 163 164 165
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
166 167 168 169
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
170 171 172 173 174 175 176 177 178 179 180 181
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
182 183 184 185
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
202

E
eclipsess 已提交
203 204 205 206 207 208 209 210 211 212
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
213 214 215 216
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
217

218
  template <typename T>
W
wangliu 已提交
219 220
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
221 222 223
    return GetMultiVarValue<T>("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

253 254 255 256 257 258 259 260 261 262
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
263 264 265 266 267 268
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

269 270 271 272 273
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

E
eclipsess 已提交
274 275 276 277 278 279
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
280 281 282 283 284
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

E
eclipsess 已提交
285 286 287 288 289 290
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

291 292 293 294 295 296 297 298 299 300 301
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
302
  static const T GetAttr(const string &key, const AttributeMap &map) {
303 304 305
    return ((Attribute)map.at(key)).Get<T>();
  }

306 307 308 309
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

310
  template <typename T>
W
wangliu 已提交
311
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
312
                        const Scope &scope) {
W
wangliu 已提交
313 314
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
315 316 317 318 319 320
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
321
    }
322
  }
朔-望's avatar
朔-望 已提交
323

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
  static std::string getkey(const string &key, const VariableNameMap &var_map,
                            int index) {
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

344
  template <typename T>
W
wangliu 已提交
345 346 347
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
348 349
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
350
    vector<T *> var_res;
351 352 353
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
354
    }
355 356
    return var_res;
  }
朔-望's avatar
朔-望 已提交
357 358
};

N
nhzlx 已提交
359
template <typename Dtype>
360
class ConvParam : public OpParam {
N
nhzlx 已提交
361 362 363
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
364
 public:
365
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
366
            const AttributeMap &attrs, const Scope &scope) {
367 368 369 370 371 372 373 374 375
    filter_ = OpParam::FilterFrom<GType>(inputs, scope);
    input_ = OpParam::InputFrom<GType>(inputs, scope);
    if (outputs.count("Output")) {
      output_ = OpParam::OutputFrom<GType>(outputs, scope);
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
376
  }
朔-望's avatar
朔-望 已提交
377

N
nhzlx 已提交
378
  const RType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
379

N
nhzlx 已提交
380
  RType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
381

N
nhzlx 已提交
382
  RType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
383

W
wangliu 已提交
384
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
385

W
wangliu 已提交
386
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
387

W
wangliu 已提交
388
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
389

390
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
391

朔-望's avatar
朔-望 已提交
392
 private:
N
nhzlx 已提交
393 394 395
  RType *input_;
  RType *output_;
  RType *filter_;
W
wangliu 已提交
396 397 398
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
399
  int groups;
朔-望's avatar
朔-望 已提交
400
};
N
nhzlx 已提交
401 402
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
403

N
nhzlx 已提交
404
template <typename Dtype>
朔-望's avatar
朔-望 已提交
405
class ElementwiseAddParam : OpParam {
N
nhzlx 已提交
406 407 408
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
409
 public:
410
  ElementwiseAddParam(const VariableNameMap &inputs,
411 412
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
N
nhzlx 已提交
413 414 415
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
416 417 418
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
419
  const GType *InputX() const { return input_x_; }
420

xiebaiyuan's avatar
xiebaiyuan 已提交
421
  const GType *InputY() const { return input_y_; }
422

xiebaiyuan's avatar
xiebaiyuan 已提交
423
  GType *Out() const { return out_; }
424 425 426

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
427
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
428 429 430
  GType *input_x_;
  GType *input_y_;
  GType *out_;
431
  int axis_;
Z
zhangyang 已提交
432 433 434
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
435
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
436 437

 public:
H
hanbuhe 已提交
438 439
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
Z
zhangyang 已提交
440
#endif
朔-望's avatar
朔-望 已提交
441 442
};

443
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
444 445
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
446 447 448
#endif

#ifdef MUL_OP
N
nhzlx 已提交
449
template <typename Dtype>
朔-望's avatar
朔-望 已提交
450
class MulParam : OpParam {
N
nhzlx 已提交
451 452 453
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
454
 public:
455
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
456
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
457 458 459
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
460 461 462
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
463

xiebaiyuan's avatar
xiebaiyuan 已提交
464
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
465

xiebaiyuan's avatar
xiebaiyuan 已提交
466
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
467

xiebaiyuan's avatar
xiebaiyuan 已提交
468
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
469

470
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
471

472
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
473

朔-望's avatar
朔-望 已提交
474
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
475 476 477
  GType *input_x_;
  GType *input_y_;
  GType *out_;
478 479
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
480
};
L
liuruilong 已提交
481
#endif
朔-望's avatar
朔-望 已提交
482

L
liuruilong 已提交
483
#ifdef CONCAT_OP
N
nhzlx 已提交
484
template <typename Dtype>
朔-望's avatar
朔-望 已提交
485
class ConcatParam : public OpParam {
N
nhzlx 已提交
486 487 488
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
489
 public:
490
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
491
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
492 493
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
494 495
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
496

N
nhzlx 已提交
497
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
498

xiebaiyuan's avatar
xiebaiyuan 已提交
499
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
500

501
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
502

朔-望's avatar
朔-望 已提交
503
 private:
N
nhzlx 已提交
504
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
505
  GType *out_;
506
  int axis_;
Z
zhangyang 已提交
507 508 509 510 511 512 513 514 515
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
516
};
L
liuruilong 已提交
517
#endif
朔-望's avatar
朔-望 已提交
518

L
liuruilong 已提交
519
#ifdef LRN_OP
N
nhzlx 已提交
520
template <typename Dtype>
E
eclipsess 已提交
521
class LrnParam : public OpParam {
N
nhzlx 已提交
522 523 524
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
525
 public:
526
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
527
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
528 529 530
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    mid_out_ = MidOutFrom<GType>(outputs, scope);
531 532 533 534
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
W
wangliu 已提交
535
    data_format_ = GetAttr<string>("data_format", attrs);
536
  }
E
eclipsess 已提交
537

N
nhzlx 已提交
538
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
539

N
nhzlx 已提交
540
  RType *Out() const { return out_; }
E
eclipsess 已提交
541

N
nhzlx 已提交
542
  RType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
543

544
  const int &N() const { return n_; }
E
eclipsess 已提交
545

546
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
547

548
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
549

550
  const float &K() const { return k_; }
E
eclipsess 已提交
551

W
wangliu 已提交
552
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
553

朔-望's avatar
朔-望 已提交
554
 private:
N
nhzlx 已提交
555 556 557
  RType *input_x_;
  RType *out_;
  RType *mid_out_;
558 559 560 561
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
562
  string data_format_;
E
eclipsess 已提交
563
};
L
liuruilong 已提交
564 565 566
#endif

#ifdef BATCHNORM_OP
N
nhzlx 已提交
567
template <typename Dtype>
E
eclipsess 已提交
568
class BatchNormParam : OpParam {
N
nhzlx 已提交
569 570 571
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
572
 public:
573
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
574
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
575 576 577 578 579 580
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
581 582
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
583
    //    is_test_ = GetAttr<bool>("is_test", attrs);
584
  }
E
eclipsess 已提交
585

N
nhzlx 已提交
586
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
587

N
nhzlx 已提交
588
  RType *OutputY() const { return output_y_; }
E
eclipsess 已提交
589

N
nhzlx 已提交
590
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
591

N
nhzlx 已提交
592
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
593

N
nhzlx 已提交
594
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
595

N
nhzlx 已提交
596
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
597

598
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
599

600
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
601

602
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
603

W
wangliu 已提交
604
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
605

朔-望's avatar
朔-望 已提交
606
 private:
N
nhzlx 已提交
607 608 609 610 611 612
  RType *input_x_;
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
613 614 615
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
616
  string data_format_;
E
eclipsess 已提交
617
};
L
liuruilong 已提交
618 619 620
#endif

#ifdef POOL_OP
N
nhzlx 已提交
621
template <typename Dtype>
622
class PoolParam : public OpParam {
N
nhzlx 已提交
623 624 625
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
626
 public:
627
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
628
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
629
    input_ = InputXFrom<GType>(inputs, scope);
630

N
nhzlx 已提交
631
    output_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
632 633 634 635
    pooling_type_ = GetAttr<string>("pooling_type", attrs);
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
636
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
637
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
638
  }
639

N
nhzlx 已提交
640
  const RType *Input() const { return input_; }
641

N
nhzlx 已提交
642
  RType *Output() const { return output_; }
643

W
wangliu 已提交
644
  const string &PoolingType() const { return pooling_type_; }
645

W
wangliu 已提交
646
  const vector<int> &Ksize() const { return ksize_; }
647

W
wangliu 已提交
648
  const vector<int> &Strides() const { return strides_; }
649

W
wangliu 已提交
650
  const vector<int> &Paddings() const { return paddings_; }
651

652
  bool isCeilMode() const { return ceil_mode_; }
653

Z
zhangyang 已提交
654
  bool isGlobalPooling() const { return global_pooling_; }
655

朔-望's avatar
朔-望 已提交
656
 private:
N
nhzlx 已提交
657 658
  RType *input_;
  RType *output_;
W
wangliu 已提交
659 660 661 662
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
663
  bool ceil_mode_;
664
  bool global_pooling_ = false;
Z
zhangyang 已提交
665
#ifdef PADDLE_MOBILE_FPGA
666 667

 private:
H
hanbuhe 已提交
668
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
669 670

 public:
H
hanbuhe 已提交
671 672
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
673
#endif
674
};
L
liuruilong 已提交
675 676 677
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
678
template <typename Dtype>
E
eclipsess 已提交
679
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
680 681 682
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
683 684
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
685
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
686 687 688 689
    input_ = InputFrom<GType>(inputs, scope);
    input_image_ = InputImageFrom<GType>(inputs, scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, scope);
W
wangliu 已提交
690 691 692 693
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
694

xiebaiyuan's avatar
xiebaiyuan 已提交
695 696 697
    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
698
    }
E
eclipsess 已提交
699 700 701 702 703 704
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
N
nhzlx 已提交
705
  const RType *Input() const { return input_; }
E
eclipsess 已提交
706

N
nhzlx 已提交
707
  const RType *InputImage() const { return input_image_; }
E
eclipsess 已提交
708

N
nhzlx 已提交
709
  RType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
710

N
nhzlx 已提交
711
  RType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
712

W
wangliu 已提交
713
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
714

W
wangliu 已提交
715
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
716

W
wangliu 已提交
717
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
718

W
wangliu 已提交
719
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
720 721 722 723 724 725 726 727 728 729 730

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

731 732 733 734
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
735
 private:
N
nhzlx 已提交
736 737 738 739
  RType *input_;
  RType *input_image_;
  RType *output_boxes_;
  RType *output_variances_;
W
wangliu 已提交
740 741 742 743
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
744 745 746 747 748
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
749
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
750
};
L
liuruilong 已提交
751
#endif
E
eclipsess 已提交
752

L
liuruilong 已提交
753
#ifdef BOXCODER_OP
N
nhzlx 已提交
754
template <typename Dtype>
E
eclipsess 已提交
755
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
756 757 758
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
759 760
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
761
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
762 763 764 765
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, scope);
    output_box_ = OutputBoxFrom<GType>(outputs, scope);
E
eclipsess 已提交
766 767
    code_type_ = GetAttr<std::string>("code_type", attrs);
  }
N
nhzlx 已提交
768
  const RType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
769

N
nhzlx 已提交
770
  const RType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
771

N
nhzlx 已提交
772
  const RType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
773

N
nhzlx 已提交
774
  RType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
775 776 777 778

  const std::string &CodeType() const { return code_type_; }

 private:
N
nhzlx 已提交
779 780 781 782
  RType *input_priorbox_;
  RType *input_priorboxvar_;
  RType *input_targetbox_;
  RType *output_box_;
E
eclipsess 已提交
783 784
  std::string code_type_;
};
L
liuruilong 已提交
785
#endif
W
wangliu 已提交
786

L
liuruilong 已提交
787
#ifdef SOFTMAX_OP
N
nhzlx 已提交
788
template <typename Dtype>
W
wangliu 已提交
789
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
790 791 792
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
793 794
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
795
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
796 797
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
798
  }
N
nhzlx 已提交
799 800
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
801 802

 private:
N
nhzlx 已提交
803 804
  RType *input_x_;
  RType *out_;
H
hanbuhe 已提交
805 806 807 808

#ifdef PADDLE_MOBILE_FPGA

 private:
N
nhzlx 已提交
809
  std::shared_ptr<RType> float_input_x_;
H
hanbuhe 已提交
810 811 812
  fpga::BypassArgs fpga_bypass_args;

 public:
813
  RType *FloatInput() const {
H
hanbuhe 已提交
814 815 816 817 818 819
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
820
};
L
liuruilong 已提交
821
#endif
W
wangliu 已提交
822

L
liuruilong 已提交
823
#ifdef SIGMOID_OP
N
nhzlx 已提交
824
template <typename Dtype>
W
wangliu 已提交
825
class SigmoidParam : public OpParam {
N
nhzlx 已提交
826 827 828
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
829 830
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
831
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
832 833
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
834
  }
N
nhzlx 已提交
835 836
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
837 838

 private:
N
nhzlx 已提交
839 840
  RType *input_x_;
  RType *out_;
W
wangliu 已提交
841
};
L
liuruilong 已提交
842 843 844
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
845
template <typename Dtype>
E
eclipsess 已提交
846
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
847 848 849
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
850 851 852 853
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
854 855 856
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, scope);
    input_scores_ = InputScoresFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
857 858 859 860 861 862 863 864
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

N
nhzlx 已提交
865
  const RType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
866

N
nhzlx 已提交
867
  const RType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
868

N
nhzlx 已提交
869
  RType *Out() const { return out_; }
E
eclipsess 已提交
870 871 872 873 874 875 876 877 878 879 880 881 882 883

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
N
nhzlx 已提交
884 885 886
  RType *input_bboxes_;
  RType *input_scores_;
  RType *out_;
E
eclipsess 已提交
887 888 889 890 891 892 893
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
894
#endif
W
wangliu 已提交
895

N
nhzlx 已提交
896
template <typename Dtype>
L
liuruilong 已提交
897
class FeedParam : public OpParam {
N
nhzlx 已提交
898 899 900
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
901 902
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
903
            const AttributeMap &attrs, Scope *scope) {
N
nhzlx 已提交
904 905
    input_x_ = InputXFrom<GType>(inputs, *scope);
    out_ = OutFrom<GType>(outputs, *scope);
L
liuruilong 已提交
906
    auto var = scope->Var("batch_size");
W
wangliu 已提交
907
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
908
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
909 910
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
911
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
912

L
liuruilong 已提交
913
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
914 915
  GType *input_x_;
  GType *out_;
W
wangliu 已提交
916
  int batch_size;
L
liuruilong 已提交
917 918
};

N
nhzlx 已提交
919
template <typename Dtype>
L
liuruilong 已提交
920
class FetchParam : public OpParam {
N
nhzlx 已提交
921 922 923
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
924 925
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
926
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
927 928
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
L
liuruilong 已提交
929
  }
N
nhzlx 已提交
930 931
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
L
liuruilong 已提交
932

L
liuruilong 已提交
933
 private:
N
nhzlx 已提交
934 935
  RType *input_x_;
  RType *out_;
L
liuruilong 已提交
936 937
};

L
liuruilong 已提交
938
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
939
template <typename Dtype>
E
eclipsess 已提交
940
class TransposeParam : public OpParam {
N
nhzlx 已提交
941 942 943
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
944 945 946
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
947 948
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
949 950 951
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

N
nhzlx 已提交
952
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
953

N
nhzlx 已提交
954
  RType *Out() const { return out_; }
E
eclipsess 已提交
955 956 957 958

  const vector<int> &Axis() const { return axis_; }

 private:
N
nhzlx 已提交
959 960
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
961 962
  vector<int> axis_;
};
L
liuruilong 已提交
963
#endif
E
eclipsess 已提交
964

xiebaiyuan's avatar
xiebaiyuan 已提交
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
    input_w_ = InputWFrom<GType>(inputs, scope);
    input_ids_ = InputIdsFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    // todo crf params
    input_emission_ = InputEmissionFrom<GType>(inputs, scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, scope);
    input_label_ = InputLabelFrom<GType>(inputs, scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, scope);
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
  //  const RType *InputIds() const { return input_ids_; }
  //  RType *Out() const { return out_; }
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

  //  RType *input_ids_;
  //  RType *out_;
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1031
#ifdef RESHAPE_OP
N
nhzlx 已提交
1032
template <typename Dtype>
E
eclipsess 已提交
1033
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1034 1035 1036
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1037 1038 1039
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1040 1041 1042
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1043
    shape_ = GetAttr<vector<int>>("shape", attrs);
1044 1045 1046 1047 1048 1049 1050

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1051 1052
  }

N
nhzlx 已提交
1053
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1054

N
nhzlx 已提交
1055
  const RType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1056

N
nhzlx 已提交
1057
  RType *Out() const { return out_; }
E
eclipsess 已提交
1058 1059 1060 1061 1062 1063

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1064 1065 1066
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
E
eclipsess 已提交
1067 1068 1069
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1070
#endif
E
eclipsess 已提交
1071

T
Tian 已提交
1072
#ifdef SCALE_OP
N
nhzlx 已提交
1073
template <typename Dtype>
I
itminner 已提交
1074
class ScaleParam : public OpParam {
N
nhzlx 已提交
1075 1076 1077
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1078 1079 1080
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1081 1082 1083
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1084 1085 1086 1087 1088 1089
    inplace_ = GetAttr<bool>("inplace", attrs);
    has_bias_ = GetAttr<bool>("has_bias", attrs);
    scales_ = GetAttr<vector<float>>("scales", attrs);
    biases_ = GetAttr<vector<float>>("biases", attrs);
  }

N
nhzlx 已提交
1090
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1091

N
nhzlx 已提交
1092
  const RType *InputBias() const { return input_bias_; }
I
itminner 已提交
1093

N
nhzlx 已提交
1094
  RType *Out() const { return out_; }
I
itminner 已提交
1095 1096 1097 1098 1099 1100 1101 1102 1103 1104

  const bool &Inplace() const { return inplace_; }

  const bool &HasBias() const { return has_bias_; }

  const vector<float> &Scales() const { return scales_; }

  const vector<float> &Biases() const { return biases_; }

 private:
N
nhzlx 已提交
1105 1106 1107
  RType *input_x_;
  RType *input_bias_;
  RType *out_;
I
itminner 已提交
1108 1109 1110 1111 1112
  bool inplace_;
  bool has_bias_;
  vector<float> scales_;
  vector<float> biases_;
};
T
Tian 已提交
1113 1114 1115
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1116
template <typename Dtype>
I
itminner 已提交
1117
class SliceParam : public OpParam {
N
nhzlx 已提交
1118 1119 1120
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1121 1122 1123
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1124 1125 1126
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1127 1128 1129 1130 1131
    axis_ = GetAttr<int>("axis", attrs);
    slice_points_ = GetAttr<vector<int>>("slice_points", attrs);
    inplace_ = GetAttr<bool>("inplace", attrs);
  }

N
nhzlx 已提交
1132
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1133

N
nhzlx 已提交
1134
  const RType *InputShape() const { return input_shape_; }
I
itminner 已提交
1135

N
nhzlx 已提交
1136
  RType *Out() const { return out_; }
I
itminner 已提交
1137 1138 1139 1140 1141 1142 1143 1144

  const int &Axis() const { return axis_; }

  const vector<int> &SlicePoints() const { return slice_points_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1145 1146 1147
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1148 1149 1150 1151
  int axis_;
  vector<int> slice_points_;
  bool inplace_;
};
T
Tian 已提交
1152 1153 1154
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1155
template <typename Dtype>
T
Tian 已提交
1156
class ResizeParam : public OpParam {
N
nhzlx 已提交
1157 1158 1159
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1160 1161 1162
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1163 1164 1165
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1166 1167 1168 1169 1170 1171
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1172

N
nhzlx 已提交
1173
  const RType *InputX() const { return input_x_; }
T
Tian 已提交
1174

N
nhzlx 已提交
1175
  const RType *InputShape() const { return input_shape_; }
T
Tian 已提交
1176

N
nhzlx 已提交
1177
  RType *Out() const { return out_; }
T
Tian 已提交
1178

I
itminner 已提交
1179
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1180

I
itminner 已提交
1181
  const int &Height() const { return height_; }
T
Tian 已提交
1182

I
itminner 已提交
1183
  const int &Width() const { return width_; }
T
Tian 已提交
1184

I
itminner 已提交
1185
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1186

I
itminner 已提交
1187
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1188

I
itminner 已提交
1189
 private:
N
nhzlx 已提交
1190 1191 1192
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1193 1194 1195 1196 1197
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1198 1199 1200
};
#endif

L
liuruilong 已提交
1201
#ifdef RELU_OP
L
liuruilong 已提交
1202 1203 1204
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1205
template <typename Dtype>
E
eclipsess 已提交
1206
class ReluParam : public OpParam {
N
nhzlx 已提交
1207 1208 1209
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1210 1211 1212
 public:
  ReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1213 1214
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1215 1216
  }

N
nhzlx 已提交
1217
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1218

N
nhzlx 已提交
1219
  RType *Out() const { return out_; }
E
eclipsess 已提交
1220 1221

 private:
N
nhzlx 已提交
1222 1223
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1224
};
L
liuruilong 已提交
1225
#endif
E
eclipsess 已提交
1226

T
Tian 已提交
1227
#ifdef PRELU_OP
N
nhzlx 已提交
1228
template <typename Dtype>
T
Tian 已提交
1229
class PReluParam : public OpParam {
N
nhzlx 已提交
1230 1231 1232
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1233 1234 1235
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
1236
    DLOG << "PReluParam inputs before";
N
nhzlx 已提交
1237
    input_x_ = InputXFrom<GType>(inputs, scope);
N
nhzlx 已提交
1238
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
1239
    framework::DDim dims = alpha_->dims();
N
nhzlx 已提交
1240
    out_ = OutFrom<GType>(outputs, scope);
1241 1242
    mode_ = GetAttr<std::string>("mode", attrs);
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1243
  }
N
nhzlx 已提交
1244
  const RType *InputX() const { return input_x_; }
N
nhzlx 已提交
1245
  const RType *InputAlpha() const { return alpha_; }
N
nhzlx 已提交
1246
  RType *Out() const { return out_; }
1247
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1248

I
itminner 已提交
1249
 private:
N
nhzlx 已提交
1250 1251
  RType *input_x_;
  RType *out_;
N
nhzlx 已提交
1252
  RType *alpha_;
1253
  std::string mode_;
T
Tian 已提交
1254 1255 1256
};
#endif

N
nhzlx 已提交
1257
template <typename Dtype>
L
liuruilong 已提交
1258
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1259 1260 1261
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1262
 public:
L
liuruilong 已提交
1263
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1264
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1265 1266 1267 1268
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    input_z_ = InputZFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1269 1270 1271 1272
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
1273
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1274

N
nhzlx 已提交
1275
  const RType *InputY() const { return input_y_; }
E
eclipsess 已提交
1276

N
nhzlx 已提交
1277
  const RType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1278

xiebaiyuan's avatar
xiebaiyuan 已提交
1279
  GType *Out() const { return out_; }
E
eclipsess 已提交
1280 1281 1282 1283 1284 1285 1286 1287

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1288
  GType *input_x_;
N
nhzlx 已提交
1289 1290
  RType *input_y_;
  RType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1291
  GType *out_;
E
eclipsess 已提交
1292 1293 1294
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1295 1296 1297
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1298
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1299 1300

 public:
Z
zhangyang 已提交
1301 1302
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1303
#endif
E
eclipsess 已提交
1304
};
1305 1306

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1307 1308
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1309
#endif
E
eclipsess 已提交
1310

N
nhzlx 已提交
1311
template <typename Dtype>
1312
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1313 1314 1315
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1316
 public:
L
liuruilong 已提交
1317
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1318
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1319 1320 1321 1322 1323
                     const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1324
  }
N
nhzlx 已提交
1325
  RType *Bias() const { return bias_; }
W
wangliu 已提交
1326 1327 1328

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1329
  RType *Output() const { return output_; }
W
wangliu 已提交
1330

L
liuruilong 已提交
1331
 protected:
N
nhzlx 已提交
1332
  RType *bias_;
W
wangliu 已提交
1333
  int axis_;
N
nhzlx 已提交
1334
  RType *output_;
Z
zhangyang 已提交
1335 1336 1337
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1338
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1339 1340

 public:
Z
zhangyang 已提交
1341 1342
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1343
#endif
W
wangliu 已提交
1344 1345
};

N
nhzlx 已提交
1346 1347
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1348

Z
zhangyang 已提交
1349
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1350 1351
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1352
 public:
L
liuruilong 已提交
1353
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1354 1355
                         const VariableNameMap &outputs,
                         const AttributeMap &attrs, const Scope &scope)
N
nhzlx 已提交
1356
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1357 1358 1359
};
#endif

1360
#ifdef FUSION_CONVADDPRELU_OP
1361 1362 1363 1364
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1365 1366 1367 1368

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1369 1370 1371 1372
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
    mode_ = OpParam::GetAttr<std::string>("mode", attrs);
1373
    framework::DDim dims = alpha_->dims();
1374 1375 1376
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  RType *Bias() const { return bias_; }
  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1393
  fpga::WrapperConvArgs fpga_conv_args;
1394 1395

 public:
Z
zhangyang 已提交
1396 1397
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
1398 1399 1400 1401 1402
#endif
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1403 1404 1405 1406
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1407 1408 1409 1410

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1411 1412 1413 1414 1415
                             const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
    mode_ = OpParam::GetAttr<std::string>("mode", attrs);
1416
    framework::DDim dims = alpha_->dims();
1417 1418 1419 1420 1421 1422
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    keyOutput_ = OpParam::getkey("addOut", inputs, 0);
    keyX1_ = OpParam::getkey("addX", inputs, 1);
    keyY1_ = OpParam::getkey("Y", inputs, 1);
1423
    if (keyX1_ == keyOutput_) {
1424
      bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
1425
    } else if (keyY1_ == keyOutput_) {
1426
      bias1_ = OpParam::InputXFrom1<GType>(inputs, scope);
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
    }
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  const RType *Bias1() const { return bias1_; }

  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
  RType *bias1_;
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1451
  fpga::WrapperConvArgs fpga_conv_args;
1452 1453

 public:
Z
zhangyang 已提交
1454 1455
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
1456 1457 1458 1459
#endif
};
#endif

E
eclipsess 已提交
1460
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1461
template <typename Dtype>
1462
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1463 1464 1465
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1466 1467 1468
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1481
  }
N
nhzlx 已提交
1482
  RType *Bias() const { return bias_; }
E
eclipsess 已提交
1483 1484 1485

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1486
  RType *Output() const { return output_; }
E
eclipsess 已提交
1487

N
nhzlx 已提交
1488
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1489

N
nhzlx 已提交
1490
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1491

N
nhzlx 已提交
1492
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1493

N
nhzlx 已提交
1494
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1495 1496 1497 1498 1499 1500 1501

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1502
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1503

N
nhzlx 已提交
1504
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1505

N
nhzlx 已提交
1506
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1507

N
nhzlx 已提交
1508
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1509 1510

 protected:
N
nhzlx 已提交
1511
  RType *bias_;
E
eclipsess 已提交
1512
  int axis_;
N
nhzlx 已提交
1513 1514 1515 1516 1517
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1518 1519 1520
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1521 1522
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1523 1524 1525
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1526
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1527 1528

 public:
Z
zhangyang 已提交
1529 1530
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
1531 1532 1533 1534 1535 1536
#endif
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
1537
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
1538 1539 1540 1541 1542 1543
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    keyBNY_ = OpParam::getkey("BNY", inputs, 0);
    keyX_ = OpParam::getkey("X", inputs, 0);
    keyY_ = OpParam::getkey("Y", inputs, 0);
1558
    if (keyX_ == keyBNY_) {
1559
      bias_ = OpParam::InputYFrom<GType>(inputs, scope);
1560
    } else if (keyY_ == keyBNY_) {
1561
      bias_ = OpParam::InputXFrom<GType>(inputs, scope);
1562
    }
1563
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1612
  fpga::WrapperConvArgs fpga_conv_args;
1613 1614

 public:
Z
zhangyang 已提交
1615 1616
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1617
#endif
E
eclipsess 已提交
1618
};
1619
#endif
E
eclipsess 已提交
1620

Z
zhangyang 已提交
1621
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
1622
template <typename Dtype>
1623
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1624 1625 1626
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
1627 1628 1629
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
                    const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
Z
zhangyang 已提交
1640
  }
N
nhzlx 已提交
1641
  RType *Output() const { return output_y_; }
Z
zhangyang 已提交
1642

N
nhzlx 已提交
1643
  const RType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
1644

N
nhzlx 已提交
1645
  const RType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
1646

N
nhzlx 已提交
1647
  const RType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
1648

N
nhzlx 已提交
1649
  const RType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
1650 1651 1652 1653 1654 1655 1656

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1657
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
1658

N
nhzlx 已提交
1659
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
1660

N
nhzlx 已提交
1661
  const RType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
1662

N
nhzlx 已提交
1663
  const RType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
1664 1665

 protected:
N
nhzlx 已提交
1666 1667 1668 1669 1670
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
Z
zhangyang 已提交
1671 1672 1673
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1674 1675
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1676 1677 1678
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1679
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1680 1681

 public:
Z
zhangyang 已提交
1682 1683
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1684 1685 1686 1687
#endif
};
#endif

1688
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
1689
template <typename Dtype>
1690
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1691 1692 1693
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1694 1695 1696
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708
                       const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1709
  }
N
nhzlx 已提交
1710
  RType *Bias() const { return bias_; }
1711 1712 1713

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1714
  RType *Output() const { return output_y_; }
1715

N
nhzlx 已提交
1716
  const RType *InputBias() const { return input_bias_; }
1717

N
nhzlx 已提交
1718
  const RType *InputMean() const { return input_mean_; }
1719

N
nhzlx 已提交
1720
  const RType *InputScale() const { return input_scale_; }
1721

N
nhzlx 已提交
1722
  const RType *InputVariance() const { return input_variance_; }
1723 1724 1725 1726 1727 1728 1729

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1730
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
1731

N
nhzlx 已提交
1732
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
1733

N
nhzlx 已提交
1734
  const RType *NewScale() const { return new_scale_; }
1735

N
nhzlx 已提交
1736
  const RType *NewBias() const { return new_bias_; }
1737 1738

 protected:
N
nhzlx 已提交
1739
  RType *bias_;
1740
  int axis_;
N
nhzlx 已提交
1741 1742 1743 1744 1745
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
1746 1747 1748
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1749 1750
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1751 1752 1753
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1754
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1755 1756

 public:
Z
zhangyang 已提交
1757 1758
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1759
#endif
1760
};
E
eclipsess 已提交
1761
#endif
Y
Yao,kun 已提交
1762

E
eclipsess 已提交
1763
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
1764
template <typename Dtype>
1765
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1766 1767 1768
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1769 1770 1771
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1782
  }
N
nhzlx 已提交
1783
  RType *Output() const { return output_; }
E
eclipsess 已提交
1784

N
nhzlx 已提交
1785
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1786

N
nhzlx 已提交
1787
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1788

N
nhzlx 已提交
1789
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1790

N
nhzlx 已提交
1791
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1792 1793 1794 1795 1796 1797 1798

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1799
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1800

N
nhzlx 已提交
1801
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1802

N
nhzlx 已提交
1803
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1804

N
nhzlx 已提交
1805
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1806 1807

 protected:
N
nhzlx 已提交
1808 1809 1810 1811 1812
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1813 1814 1815
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1816 1817
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
1818 1819 1820 1821
};

#endif

1822
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
1823
template <typename Dtype>
1824
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1825 1826 1827
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1828 1829 1830
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
                        const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1841
  }
N
nhzlx 已提交
1842
  RType *Output() const { return output_; }
1843

N
nhzlx 已提交
1844
  const RType *InputBias() const { return input_bias_; }
1845

N
nhzlx 已提交
1846
  const RType *InputMean() const { return input_mean_; }
1847

N
nhzlx 已提交
1848
  const RType *InputScale() const { return input_scale_; }
1849

N
nhzlx 已提交
1850
  const RType *InputVariance() const { return input_variance_; }
1851 1852 1853 1854 1855 1856 1857

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1858
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
1859

N
nhzlx 已提交
1860
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
1861

N
nhzlx 已提交
1862
  const RType *NewScale() const { return new_scale_; }
1863

N
nhzlx 已提交
1864
  const RType *NewBias() const { return new_bias_; }
1865 1866

 protected:
N
nhzlx 已提交
1867 1868 1869 1870 1871
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
1872 1873 1874
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1875 1876
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1877 1878 1879
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1880
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1881 1882

 public:
Z
zhangyang 已提交
1883 1884
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1885
#endif
1886 1887 1888
};
#endif

Y
Yao,kun 已提交
1889
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
1890
template <typename Dtype>
Y
Yao,kun 已提交
1891
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
1892 1893 1894
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
1895 1896 1897 1898
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
                   const Scope &scope) {
N
nhzlx 已提交
1899 1900
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
Yao,kun 已提交
1901 1902 1903 1904 1905
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

N
nhzlx 已提交
1906
  const RType *Input() const { return input_x_; }
Y
Yao,kun 已提交
1907

N
nhzlx 已提交
1908
  RType *Output() const { return out_; }
Y
Yao,kun 已提交
1909 1910 1911 1912 1913 1914 1915 1916

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
N
nhzlx 已提交
1917 1918
  RType *input_x_;
  RType *out_;
Y
Yao,kun 已提交
1919 1920 1921 1922
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
1923
#endif
Y
Yao,kun 已提交
1924

1925
#ifdef DROPOUT_OP
N
nhzlx 已提交
1926
template <typename Dtype>
Y
Yao,kun 已提交
1927
class DropoutParam : public OpParam {
N
nhzlx 已提交
1928 1929 1930
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
1931 1932 1933
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1934 1935
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
yangfei 已提交
1936 1937

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
1938 1939
  }

N
nhzlx 已提交
1940
  const RType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
1941

N
nhzlx 已提交
1942
  RType *Out() const { return out_; }
Y
Yao,kun 已提交
1943

Y
yangfei 已提交
1944 1945
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
1946
 private:
N
nhzlx 已提交
1947 1948
  RType *input_x_;
  RType *out_;
Y
yangfei 已提交
1949
  float dropout_prob_;
Y
Yao,kun 已提交
1950
};
1951
#endif
Y
Yao,kun 已提交
1952

L
liuruilong 已提交
1953
#ifdef CONV_TRANSPOSE
N
nhzlx 已提交
1954
template <typename Dtype>
L
liuruilong 已提交
1955
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
1956 1957 1958
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1959 1960 1961 1962
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
1963 1964 1965
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
L
liuruilong 已提交
1966 1967 1968 1969 1970 1971
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

N
nhzlx 已提交
1972
  const RType *Input() const { return input_; }
L
liuruilong 已提交
1973

N
nhzlx 已提交
1974
  const RType *Filter() const { return filter_; }
L
liuruilong 已提交
1975

N
nhzlx 已提交
1976
  RType *Output() const { return output_; }
L
liuruilong 已提交
1977 1978 1979 1980 1981 1982 1983 1984 1985 1986

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 private:
N
nhzlx 已提交
1987 1988 1989
  RType *input_;
  RType *output_;
  RType *filter_;
L
liuruilong 已提交
1990 1991 1992 1993 1994 1995 1996
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    input_input_ = InputFrom<GType>(inputs, scope);
    input_h0_ = InputH0From<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_weight_ = InputWeightFrom<GType>(inputs, scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, scope);
    output_batch_reset_hidden_prev_ =
        OutputBatchResetHiddenPrevFrom<GType>(outputs, scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, scope);
    activation_ = GetAttr<std::string>("activation", attrs);
    gate_activation_ = GetAttr<std::string>("gate_activation", attrs);
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2068
    axis = GetAttr<int>("axis", attrs);
2069 2070 2071
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2072
  const int &Axis() const { return axis; }
2073 2074 2075 2076

 private:
  RType *input_x_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2077
  int axis;
2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2091
    outs_ = OutMultiFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2092
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2093 2094 2095 2096 2097 2098
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2099 2100
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2101 2102 2103 2104 2105
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2106 2107 2108

 private:
  RType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2109
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2110
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2111 2112 2113
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2130 2131
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2132 2133
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2134
  const RType *InputOutPutSize() const { return input_outsize_; }
2135
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2136 2137
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2138 2139 2140 2141 2142

 private:
  RType *input_x_;
  RType *input_outsize_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2143 2144
  int out_h_;
  int out_w_;
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
2160
  const RType *Input() const { return input_; }
2161 2162 2163 2164 2165 2166 2167 2168
  RType *Out() const { return out_; }

 private:
  RType *input_;
  RType *out_;
};
#endif

朔-望's avatar
朔-望 已提交
2169 2170
}  // namespace operators
}  // namespace paddle_mobile