op_param.h 93.0 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
朔-望's avatar
朔-望 已提交
22 23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
26 27 28 29 30 31 32

#ifdef PADDLE_MOBILE_FPGA_V1
#include "fpga/V1/api.h"
#endif

#ifdef PADDLE_MOBILE_FPGA_V2
#include "fpga/V2/api.h"
Z
zhangyang 已提交
33
#endif
朔-望's avatar
朔-望 已提交
34

L
liuruilong 已提交
35 36
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
Z
zhangyang 已提交
37
#endif
朔-望's avatar
朔-望 已提交
38 39

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
40 41
namespace operators {

W
wangliu 已提交
42 43 44 45 46
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
E
eclipsess 已提交
47
using framework::Variable;
W
wangliu 已提交
48 49
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
50

N
nhzlx 已提交
51 52 53 54 55 56 57 58 59
template <typename Dtype>
struct DtypeTensorTrait {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
update  
liuruilong 已提交
60
#ifdef PADDLE_MOBILE_CL
L
liuruilong 已提交
61 62 63 64 65 66 67 68
template <>
struct DtypeTensorTrait<GPU_CL> {
  // This is the type we obtained in variable.
  typedef framework::CLImage gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::CLImage rtype;
};
L
update  
liuruilong 已提交
69
#endif
L
liuruilong 已提交
70

L
liuruilong 已提交
71
class OpParam {
朔-望's avatar
朔-望 已提交
72
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
73 74 75 76
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
Z
zhaojiaying01 已提交
77 78 79 80 81 82 83

  template <typename T>
  static T *InputHiddenPrevFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("HiddenPrev", inputs, scope);
  }

84 85 86 87 88
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

89 90 91 92 93 94 95 96 97
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
98 99 100 101 102
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

130 131 132 133
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
134 135 136 137 138 139

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

140 141 142 143 144
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
145 146 147 148 149
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

150 151 152 153 154
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
155 156 157 158
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
159 160 161 162 163 164 165 166 167 168 169 170
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
171 172 173 174
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
191

E
eclipsess 已提交
192 193 194 195 196 197 198 199 200 201
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
202 203 204 205
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
206

207
  template <typename T>
W
wangliu 已提交
208 209
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
210 211 212
    return GetMultiVarValue<T>("X", inputs, scope);
  }

E
eclipsess 已提交
213 214 215 216 217
  static vector<Variable *> InputMultiVarsFrom(const VariableNameMap &inputs,
                                               const Scope &scope) {
    return GetMultiVar("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
218 219 220 221 222 223
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

Z
zhaojiaying01 已提交
224 225 226 227 228
  template <typename T>
  static T *OutputGateFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Gate", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
229 230 231 232 233 234 235 236 237 238 239
  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

Z
zhaojiaying01 已提交
240 241 242 243 244 245
  template <typename T>
  static T *OutputResetHiddenPrevFrom(const VariableNameMap &outputs,
                                      const Scope &scope) {
    return GetVarValue<T>("ResetHiddenPrev", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
246 247 248 249 250 251 252 253 254 255 256 257
  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

258 259 260 261 262
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

E
eclipsess 已提交
263 264 265 266 267
  static Variable *OutVarFrom(const VariableNameMap &outputs,
                              const Scope &scope) {
    return GetVar("Out", outputs, scope);
  }

268 269 270 271 272
  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
273 274 275 276 277 278
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

279 280 281 282 283
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

L
lijiancheng0614 已提交
284 285 286 287 288 289
  template <typename T>
  static T *OutputXShapeFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("XShape", outputs, scope);
  }

E
eclipsess 已提交
290 291 292 293 294 295
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
296 297 298 299 300
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

Z
zhaojiaying01 已提交
301 302 303 304 305
  template <typename T>
  static T *OutputNormFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Norm", outputs, scope);
  }

E
eclipsess 已提交
306 307 308 309 310 311
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

312 313 314 315 316 317 318 319 320 321 322
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
323
  static const T GetAttr(const string &key, const AttributeMap &map) {
324 325
    return ((Attribute)map.at(key)).Get<T>();
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
326 327
  static const std::string GetStringAttr(const string &key,
                                         const AttributeMap &map) {
328 329
    return ((Attribute)map.at(key)).GetString();
  }
330

331 332 333 334
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

335
  template <typename T>
W
wangliu 已提交
336
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
337
                        const Scope &scope) {
W
wangliu 已提交
338 339
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
340 341 342 343 344 345
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
346
    }
347
  }
朔-望's avatar
朔-望 已提交
348

E
eclipsess 已提交
349 350 351 352 353 354 355 356 357 358 359 360 361
  static Variable *GetVar(const string &key, const VariableNameMap &var_map,
                          const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var;
    } else {
      return nullptr;
    }
  }

362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
  static std::string getkey(const string &key, const VariableNameMap &var_map,
                            int index) {
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

382
  template <typename T>
W
wangliu 已提交
383 384 385
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
386 387
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
388
    vector<T *> var_res;
389 390 391
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
392
    }
393 394
    return var_res;
  }
E
eclipsess 已提交
395 396 397 398 399 400 401 402 403 404 405 406 407

  static vector<Variable *> GetMultiVar(const string &key,
                                        const VariableNameMap &var_map,
                                        const Scope &scope) {
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
    vector<Variable *> var_res;
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var);
    }
    return var_res;
  }
朔-望's avatar
朔-望 已提交
408 409
};

N
nhzlx 已提交
410
template <typename Dtype>
411
class ConvParam : public OpParam {
N
nhzlx 已提交
412 413 414
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
415
 public:
416
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
417
            const AttributeMap &attrs, const Scope &scope) {
418 419 420 421 422 423 424 425 426
    filter_ = OpParam::FilterFrom<GType>(inputs, scope);
    input_ = OpParam::InputFrom<GType>(inputs, scope);
    if (outputs.count("Output")) {
      output_ = OpParam::OutputFrom<GType>(outputs, scope);
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
427
  }
朔-望's avatar
朔-望 已提交
428

N
nhzlx 已提交
429
  const RType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
430

431
  RType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
432

433
  RType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
434

W
wangliu 已提交
435
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
436

W
wangliu 已提交
437
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
438

W
wangliu 已提交
439
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
440

H
hjchen2 已提交
441 442 443 444
  enum ExecMode {
    EXEC_INVALID = 0,
    EXEC_GEMM_FLOAT,
    EXEC_DEPTHWISE3x3S1P1_FLOAT,
445 446
    EXEC_DEPTHWISE3x3S2P0_FLOAT,
    EXEC_DEPTHWISE3x3S2P1_FLOAT,
H
hjchen2 已提交
447 448 449
    EXEC_DEPTHWISE3x3_FLOAT,
    EXEC_WINOGRAD3X3_FLOAT,
    EXEC_WINOGRAD5X5_FLOAT,
450
    EXEC_DEPTHWISE5x5_FLOAT,
H
hjchen2 已提交
451
    EXEC_GEMM_INT8,
H
hjchen2 已提交
452
    EXEC_DEPTHWISE3x3_INT8,
453
    EXEC_DEPTHWISE5x5_INT8,
H
hjchen2 已提交
454 455 456 457
  };

  ExecMode &ExecMode() const { return exec_mode_; }

458
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
459

460 461 462 463 464 465 466
#ifdef PADDLE_MOBILE_CL
  int Offset() const { return offset_; }

  int SetOffset(int in_offset) { offset_ = in_offset; }

#endif

H
hjchen2 已提交
467
 public:
N
nhzlx 已提交
468
  RType *input_;
469 470
  RType *output_;
  RType *filter_;
H
hjchen2 已提交
471
  RType *transformed_filter_;
W
wangliu 已提交
472 473 474
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
H
hjchen2 已提交
475
  mutable enum ExecMode exec_mode_;
476
  int groups;
477 478 479 480

#ifdef PADDLE_MOBILE_CL
  int offset_;
#endif
Z
zhangyang 已提交
481 482 483

#ifdef PADDLE_MOBILE_FPGA

H
hjchen2 已提交
484
 public:
Z
zhangyang 已提交
485 486 487 488 489
  fpga::SplitConvArgs fpga_conv_args;

 public:
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
490 491 492 493 494 495 496

 public:
  fpga::DWconvArgs fpga_dwconv_args;

 public:
  const fpga::DWconvArgs &FpgaDwconvArgs() const { return fpga_dwconv_args; }
  void SetFpgaArgs(const fpga::DWconvArgs &args) { fpga_dwconv_args = args; }
Z
zhangyang 已提交
497
#endif
朔-望's avatar
朔-望 已提交
498
};
N
nhzlx 已提交
499 500
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
501

N
nhzlx 已提交
502
template <typename Dtype>
朔-望's avatar
朔-望 已提交
503
class ElementwiseAddParam : OpParam {
N
nhzlx 已提交
504 505 506
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
507
 public:
508
  ElementwiseAddParam(const VariableNameMap &inputs,
509 510
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
N
nhzlx 已提交
511 512 513
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
514 515 516
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
517
  const GType *InputX() const { return input_x_; }
518

xiebaiyuan's avatar
xiebaiyuan 已提交
519
  const GType *InputY() const { return input_y_; }
520

xiebaiyuan's avatar
xiebaiyuan 已提交
521
  GType *Out() const { return out_; }
522 523 524

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
525
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
526 527 528
  GType *input_x_;
  GType *input_y_;
  GType *out_;
529
  int axis_;
Z
zhangyang 已提交
530 531 532
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
533
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
534 535

 public:
H
hanbuhe 已提交
536 537
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
Z
zhangyang 已提交
538
#endif
朔-望's avatar
朔-望 已提交
539 540
};

E
eclipsess 已提交
541
#ifdef ELEMENTWISEMUL_OP
E
eclipsess 已提交
542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
template <typename Dtype>
class ElementwiseMulParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseMulParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
S
suiyang 已提交
571
#endif
E
eclipsess 已提交
572

573
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
574 575
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
576 577
#endif

578
#ifdef ELEMENTWISESUB_OP
579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
template <typename Dtype>
class ElementwiseSubParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ElementwiseSubParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const GType *InputX() const { return input_x_; }

  const GType *InputY() const { return input_y_; }

  GType *Out() const { return out_; }

  const int &Axis() const { return axis_; }

 private:
  GType *input_x_;
  GType *input_y_;
  GType *out_;
  int axis_;
};
608
#endif
609

L
liuruilong 已提交
610
#ifdef MUL_OP
N
nhzlx 已提交
611
template <typename Dtype>
朔-望's avatar
朔-望 已提交
612
class MulParam : OpParam {
N
nhzlx 已提交
613 614 615
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
616
 public:
617
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
618
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
619 620 621
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
622 623 624
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
625

xiebaiyuan's avatar
xiebaiyuan 已提交
626
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
627

xiebaiyuan's avatar
xiebaiyuan 已提交
628
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
629

xiebaiyuan's avatar
xiebaiyuan 已提交
630
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
631

632
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
633

634
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
635

朔-望's avatar
朔-望 已提交
636
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
637 638 639
  GType *input_x_;
  GType *input_y_;
  GType *out_;
640 641
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
642
};
L
liuruilong 已提交
643
#endif
朔-望's avatar
朔-望 已提交
644

L
liuruilong 已提交
645
#ifdef CONCAT_OP
N
nhzlx 已提交
646
template <typename Dtype>
朔-望's avatar
朔-望 已提交
647
class ConcatParam : public OpParam {
N
nhzlx 已提交
648 649 650
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
651
 public:
652
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
653
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
654 655
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
656 657
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
658

N
nhzlx 已提交
659
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
660

xiebaiyuan's avatar
xiebaiyuan 已提交
661
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
662

663
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
664

朔-望's avatar
朔-望 已提交
665
 private:
N
nhzlx 已提交
666
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
667
  GType *out_;
668
  int axis_;
Z
zhangyang 已提交
669 670 671 672 673 674 675 676 677
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
678
};
L
liuruilong 已提交
679
#endif
朔-望's avatar
朔-望 已提交
680

E
eclipsess 已提交
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711
#ifdef SUM_OP
template <typename Dtype>
class SumParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SumParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    inputs_vars_ = InputMultiVarsFrom(inputs, scope);
    out_var_ = OutVarFrom(outputs, scope);
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }

  vector<Variable *> InputsVars() const { return inputs_vars_; }

  Variable *OutVar() const { return out_var_; }

  vector<GType *> Inputs() const { return inputs_; }

  GType *Out() const { return out_; }

 private:
  vector<Variable *> inputs_vars_;
  Variable *out_var_;
  vector<GType *> inputs_;
  GType *out_;
};
#endif

L
liuruilong 已提交
712
#ifdef LRN_OP
N
nhzlx 已提交
713
template <typename Dtype>
E
eclipsess 已提交
714
class LrnParam : public OpParam {
N
nhzlx 已提交
715 716 717
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
718
 public:
719
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
720
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
721 722 723
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    mid_out_ = MidOutFrom<GType>(outputs, scope);
724 725 726 727
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
728
    data_format_ = GetStringAttr("data_format", attrs);
729
  }
E
eclipsess 已提交
730

N
nhzlx 已提交
731
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
732

N
nhzlx 已提交
733
  RType *Out() const { return out_; }
E
eclipsess 已提交
734

N
nhzlx 已提交
735
  RType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
736

737
  const int &N() const { return n_; }
E
eclipsess 已提交
738

739
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
740

741
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
742

743
  const float &K() const { return k_; }
E
eclipsess 已提交
744

W
wangliu 已提交
745
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
746

朔-望's avatar
朔-望 已提交
747
 private:
N
nhzlx 已提交
748 749 750
  RType *input_x_;
  RType *out_;
  RType *mid_out_;
751 752 753 754
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
755
  string data_format_;
E
eclipsess 已提交
756
};
L
liuruilong 已提交
757 758
#endif

Z
zhaojiaying01 已提交
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
#ifdef NORM_OP
template <typename Dtype>
class NormParam : OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  NormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    output_norm_ = OutputNormFrom<GType>(outputs, scope);
    epsilon_ = GetAttr<float>("epsilon", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }

  const RType *InputX() const { return input_x_; }

  RType *Out() const { return out_; }

  RType *OutputNorm() const { return output_norm_; }

  const float &Epsilon() const { return epsilon_; }

  const int &Axis() const { return axis_; }

 private:
  RType *input_x_;
  RType *out_;
  RType *output_norm_;
  float epsilon_;
  int axis_;
};
#endif

L
liuruilong 已提交
794
#ifdef BATCHNORM_OP
N
nhzlx 已提交
795
template <typename Dtype>
E
eclipsess 已提交
796
class BatchNormParam : OpParam {
N
nhzlx 已提交
797 798 799
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
800
 public:
801
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
802
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
803 804 805 806 807 808
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
809 810
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
811
    //    is_test_ = GetAttr<bool>("is_test", attrs);
812
  }
E
eclipsess 已提交
813

N
nhzlx 已提交
814
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
815

N
nhzlx 已提交
816
  RType *OutputY() const { return output_y_; }
E
eclipsess 已提交
817

N
nhzlx 已提交
818
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
819

N
nhzlx 已提交
820
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
821

N
nhzlx 已提交
822
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
823

N
nhzlx 已提交
824
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
825

826
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
827

828
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
829

830
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
831

W
wangliu 已提交
832
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
833

834 835 836 837 838 839 840 841
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

朔-望's avatar
朔-望 已提交
842
 private:
N
nhzlx 已提交
843 844 845 846 847 848
  RType *input_x_;
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
849 850 851
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
852
  string data_format_;
853 854
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
855
};
L
liuruilong 已提交
856 857 858
#endif

#ifdef POOL_OP
N
nhzlx 已提交
859
template <typename Dtype>
860
class PoolParam : public OpParam {
N
nhzlx 已提交
861 862 863
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
864
 public:
865
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
866
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
867
    input_ = InputXFrom<GType>(inputs, scope);
868

N
nhzlx 已提交
869
    output_ = OutFrom<GType>(outputs, scope);
870
    pooling_type_ = GetStringAttr("pooling_type", attrs);
W
wangliu 已提交
871 872 873
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
874
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
875
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
876
  }
877

N
nhzlx 已提交
878
  const RType *Input() const { return input_; }
879

N
nhzlx 已提交
880
  RType *Output() const { return output_; }
881

W
wangliu 已提交
882
  const string &PoolingType() const { return pooling_type_; }
883

W
wangliu 已提交
884
  const vector<int> &Ksize() const { return ksize_; }
885

W
wangliu 已提交
886
  const vector<int> &Strides() const { return strides_; }
887

W
wangliu 已提交
888
  const vector<int> &Paddings() const { return paddings_; }
889

890
  bool isCeilMode() const { return ceil_mode_; }
891

Z
zhangyang 已提交
892
  bool isGlobalPooling() const { return global_pooling_; }
893

朔-望's avatar
朔-望 已提交
894
 private:
N
nhzlx 已提交
895 896
  RType *input_;
  RType *output_;
W
wangliu 已提交
897 898 899 900
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
901
  bool ceil_mode_;
902
  bool global_pooling_ = false;
Z
zhangyang 已提交
903
#ifdef PADDLE_MOBILE_FPGA
904 905

 private:
H
hanbuhe 已提交
906
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
907 908

 public:
H
hanbuhe 已提交
909 910
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
911
#endif
912
};
L
liuruilong 已提交
913 914 915
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
916
template <typename Dtype>
E
eclipsess 已提交
917
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
918 919 920
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
921 922
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
923
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
924 925 926 927
    input_ = InputFrom<GType>(inputs, scope);
    input_image_ = InputImageFrom<GType>(inputs, scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, scope);
W
wangliu 已提交
928 929 930 931
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
932 933 934 935

    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
Y
yangfei 已提交
936 937
    } else {
      min_max_aspect_ratios_order_ = false;
938
    }
E
eclipsess 已提交
939 940 941 942 943 944
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
N
nhzlx 已提交
945
  const RType *Input() const { return input_; }
E
eclipsess 已提交
946

N
nhzlx 已提交
947
  const RType *InputImage() const { return input_image_; }
E
eclipsess 已提交
948

N
nhzlx 已提交
949
  RType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
950

N
nhzlx 已提交
951
  RType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
952

W
wangliu 已提交
953
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
954

W
wangliu 已提交
955
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
956

W
wangliu 已提交
957
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
958

W
wangliu 已提交
959
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
960 961 962 963 964 965 966 967 968 969 970

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

971 972 973 974
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
975
 private:
N
nhzlx 已提交
976 977 978 979
  RType *input_;
  RType *input_image_;
  RType *output_boxes_;
  RType *output_variances_;
W
wangliu 已提交
980 981 982 983
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
984 985 986 987 988
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
989
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
990
};
L
liuruilong 已提交
991
#endif
E
eclipsess 已提交
992

L
liuruilong 已提交
993
#ifdef BOXCODER_OP
N
nhzlx 已提交
994
template <typename Dtype>
E
eclipsess 已提交
995
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
996 997 998
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
999 1000
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1001
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1002 1003 1004 1005
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, scope);
    output_box_ = OutputBoxFrom<GType>(outputs, scope);
1006
    code_type_ = GetStringAttr("code_type", attrs);
E
eclipsess 已提交
1007
  }
N
nhzlx 已提交
1008
  const RType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
1009

N
nhzlx 已提交
1010
  const RType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
1011

N
nhzlx 已提交
1012
  const RType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
1013

N
nhzlx 已提交
1014
  RType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
1015 1016 1017 1018

  const std::string &CodeType() const { return code_type_; }

 private:
N
nhzlx 已提交
1019 1020 1021 1022
  RType *input_priorbox_;
  RType *input_priorboxvar_;
  RType *input_targetbox_;
  RType *output_box_;
E
eclipsess 已提交
1023 1024
  std::string code_type_;
};
L
liuruilong 已提交
1025
#endif
W
wangliu 已提交
1026

L
liuruilong 已提交
1027
#ifdef SOFTMAX_OP
N
nhzlx 已提交
1028
template <typename Dtype>
W
wangliu 已提交
1029
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
1030 1031 1032
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1033 1034
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1035
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1036 1037
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1038
  }
H
hjchen2 已提交
1039 1040
  const GType *InputX() const { return input_x_; }
  GType *Out() const { return out_; }
W
wangliu 已提交
1041 1042

 private:
H
hjchen2 已提交
1043 1044
  GType *input_x_;
  GType *out_;
H
hanbuhe 已提交
1045 1046 1047 1048

#ifdef PADDLE_MOBILE_FPGA

 private:
N
nhzlx 已提交
1049
  std::shared_ptr<RType> float_input_x_;
H
hanbuhe 已提交
1050 1051 1052
  fpga::BypassArgs fpga_bypass_args;

 public:
1053
  RType *FloatInput() const {
H
hanbuhe 已提交
1054 1055 1056 1057 1058 1059
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
1060
};
L
liuruilong 已提交
1061
#endif
W
wangliu 已提交
1062

L
liuruilong 已提交
1063
#ifdef SIGMOID_OP
N
nhzlx 已提交
1064
template <typename Dtype>
W
wangliu 已提交
1065
class SigmoidParam : public OpParam {
N
nhzlx 已提交
1066 1067 1068
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1069 1070
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1071
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1072 1073
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1074
  }
N
nhzlx 已提交
1075 1076
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
1077 1078

 private:
N
nhzlx 已提交
1079 1080
  RType *input_x_;
  RType *out_;
1081 1082 1083 1084 1085 1086 1087 1088 1089
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::BypassArgs fpga_bypass_args;

 public:
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
1090
};
L
liuruilong 已提交
1091 1092 1093
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
1094
template <typename Dtype>
E
eclipsess 已提交
1095
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
1096 1097 1098
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1099 1100 1101 1102
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
1103 1104 1105
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, scope);
    input_scores_ = InputScoresFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1106 1107 1108 1109 1110 1111 1112 1113
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

Y
yangfei 已提交
1114
  RType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
1115

Y
yangfei 已提交
1116
  RType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
1117

N
nhzlx 已提交
1118
  RType *Out() const { return out_; }
E
eclipsess 已提交
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
N
nhzlx 已提交
1133 1134 1135
  RType *input_bboxes_;
  RType *input_scores_;
  RType *out_;
E
eclipsess 已提交
1136 1137 1138 1139 1140 1141 1142
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
1143
#endif
W
wangliu 已提交
1144

L
lijiancheng0614 已提交
1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
#ifdef POLYGONBOXTRANSFORM_OP
template <typename Dtype>
class PolygonBoxTransformParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  PolygonBoxTransformParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
                           const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
  }
  const RType *Input() const { return input_; }
  RType *Output() const { return output_; }

 private:
  RType *input_;
  RType *output_;
};
#endif

N
nhzlx 已提交
1167
template <typename Dtype>
L
liuruilong 已提交
1168
class FeedParam : public OpParam {
N
nhzlx 已提交
1169 1170 1171
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1172 1173
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
Y
yangfei 已提交
1174 1175 1176 1177
            const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    auto var = scope.FindVar("batch_size");
W
wangliu 已提交
1178
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
1179
  }
Y
yangfei 已提交
1180
  const LoDTensor *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
1181
  GType *Out() const { return out_; }
W
wangliu 已提交
1182
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
1183

L
liuruilong 已提交
1184
 private:
Y
yangfei 已提交
1185
  LoDTensor *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1186
  GType *out_;
W
wangliu 已提交
1187
  int batch_size;
L
liuruilong 已提交
1188 1189
};

N
nhzlx 已提交
1190
template <typename Dtype>
L
liuruilong 已提交
1191
class FetchParam : public OpParam {
N
nhzlx 已提交
1192 1193 1194
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1195 1196
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
1197
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1198
    input_x_ = InputXFrom<GType>(inputs, scope);
1199
    out_ = OutFrom(outputs, scope);
L
liuruilong 已提交
1200
  }
L
liuruilong 已提交
1201

N
nhzlx 已提交
1202
  const RType *InputX() const { return input_x_; }
1203 1204 1205
  Tensor *Out() const { return out_; }

  static Tensor *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
Z
zhaojiaying01 已提交
1206
    return GetVarValue<LoDTensor>("Out", outputs, scope);
1207
  }
L
liuruilong 已提交
1208

L
liuruilong 已提交
1209
 private:
N
nhzlx 已提交
1210
  RType *input_x_;
Y
yangfei 已提交
1211
  Tensor *out_;
qnqinan's avatar
qnqinan 已提交
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225
#ifdef PADDLE_MOBILE_FPGA

 private:
  std::shared_ptr<RType> float_input_x_;
  fpga::BypassArgs fpga_bypass_args;

 public:
  RType *FloatInput() const {
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
L
liuruilong 已提交
1226 1227
};

L
lijiancheng0614 已提交
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
#ifdef FILL_CONSTANT_OP
template <typename Dtype>
class FillConstantParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FillConstantParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    const Scope &scope) {
    out_var_ = OutVarFrom(outputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    dtype_ = GetAttr<int>("dtype", attrs);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    value_ = GetAttr<float>("value", attrs);
  }

  Variable *OutVar() const { return out_var_; }

  RType *Out() const { return out_; }

  const int &DataDtype() const { return dtype_; }

  const vector<int> &Shape() const { return shape_; }

  const float &Value() const { return value_; }

 private:
  Variable *out_var_;
  RType *out_;
  int dtype_;
  vector<int> shape_;
  float value_;
};
#endif

L
liuruilong 已提交
1264
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
1265
template <typename Dtype>
E
eclipsess 已提交
1266
class TransposeParam : public OpParam {
N
nhzlx 已提交
1267 1268 1269
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1270 1271 1272
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1273 1274
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1275 1276 1277
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

N
nhzlx 已提交
1278
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1279

N
nhzlx 已提交
1280
  RType *Out() const { return out_; }
E
eclipsess 已提交
1281 1282 1283 1284

  const vector<int> &Axis() const { return axis_; }

 private:
N
nhzlx 已提交
1285 1286
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1287 1288
  vector<int> axis_;
};
L
liuruilong 已提交
1289
#endif
E
eclipsess 已提交
1290

L
lijiancheng0614 已提交
1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
#ifdef TRANSPOSE2_OP
template <typename Dtype>
class Transpose2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Transpose2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
                  const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, scope);
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

  const RType *InputX() const { return input_x_; }

  RType *Out() const { return out_; }

  RType *OutputXShape() const { return output_xshape_; }

  const vector<int> &Axis() const { return axis_; }

 private:
  RType *input_x_;
  RType *out_;
  RType *output_xshape_;
  vector<int> axis_;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
    input_w_ = InputWFrom<GType>(inputs, scope);
    input_ids_ = InputIdsFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    // todo crf params
    input_emission_ = InputEmissionFrom<GType>(inputs, scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, scope);
    input_label_ = InputLabelFrom<GType>(inputs, scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, scope);
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
  //  const RType *InputIds() const { return input_ids_; }
  //  RType *Out() const { return out_; }
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

  //  RType *input_ids_;
  //  RType *out_;
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1388
#ifdef RESHAPE_OP
N
nhzlx 已提交
1389
template <typename Dtype>
E
eclipsess 已提交
1390
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1391 1392 1393
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1394 1395 1396
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1397 1398 1399
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1400
    shape_ = GetAttr<vector<int>>("shape", attrs);
1401 1402 1403 1404 1405 1406 1407

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1408 1409
  }

N
nhzlx 已提交
1410
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1411

N
nhzlx 已提交
1412
  const RType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1413

N
nhzlx 已提交
1414
  RType *Out() const { return out_; }
E
eclipsess 已提交
1415 1416 1417 1418 1419 1420

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1421 1422 1423
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
E
eclipsess 已提交
1424 1425 1426
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1427
#endif
E
eclipsess 已提交
1428

L
lijiancheng0614 已提交
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449
#ifdef RESHAPE2_OP
template <typename Dtype>
class Reshape2Param : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  Reshape2Param(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    output_xshape_ = OutputXShapeFrom<GType>(outputs, scope);
    shape_ = GetAttr<vector<int>>("shape", attrs);
    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
    }
  }

E
eclipsess 已提交
1450
  const GType *InputX() const { return input_x_; }
L
lijiancheng0614 已提交
1451

E
eclipsess 已提交
1452
  const GType *InputShape() const { return input_shape_; }
L
lijiancheng0614 已提交
1453

E
eclipsess 已提交
1454
  GType *Out() const { return out_; }
L
lijiancheng0614 已提交
1455

E
eclipsess 已提交
1456
  GType *OutputXShape() const { return output_xshape_; }
L
lijiancheng0614 已提交
1457 1458 1459 1460 1461 1462

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
E
eclipsess 已提交
1463 1464 1465 1466
  GType *input_x_;
  GType *input_shape_;
  GType *out_;
  GType *output_xshape_;
L
lijiancheng0614 已提交
1467 1468 1469 1470 1471
  vector<int> shape_;
  bool inplace_;
};
#endif

T
Tian 已提交
1472
#ifdef SCALE_OP
N
nhzlx 已提交
1473
template <typename Dtype>
I
itminner 已提交
1474
class ScaleParam : public OpParam {
N
nhzlx 已提交
1475 1476 1477
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1478 1479 1480
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1481 1482 1483
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1484 1485 1486 1487 1488 1489
    inplace_ = GetAttr<bool>("inplace", attrs);
    has_bias_ = GetAttr<bool>("has_bias", attrs);
    scales_ = GetAttr<vector<float>>("scales", attrs);
    biases_ = GetAttr<vector<float>>("biases", attrs);
  }

N
nhzlx 已提交
1490
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1491

N
nhzlx 已提交
1492
  const RType *InputBias() const { return input_bias_; }
I
itminner 已提交
1493

N
nhzlx 已提交
1494
  RType *Out() const { return out_; }
I
itminner 已提交
1495 1496 1497 1498 1499 1500 1501 1502 1503 1504

  const bool &Inplace() const { return inplace_; }

  const bool &HasBias() const { return has_bias_; }

  const vector<float> &Scales() const { return scales_; }

  const vector<float> &Biases() const { return biases_; }

 private:
N
nhzlx 已提交
1505 1506 1507
  RType *input_x_;
  RType *input_bias_;
  RType *out_;
I
itminner 已提交
1508 1509 1510 1511 1512
  bool inplace_;
  bool has_bias_;
  vector<float> scales_;
  vector<float> biases_;
};
T
Tian 已提交
1513 1514 1515
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1516
template <typename Dtype>
I
itminner 已提交
1517
class SliceParam : public OpParam {
N
nhzlx 已提交
1518 1519 1520
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1521 1522 1523
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
1524 1525
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1526

1527 1528 1529 1530
    axes_ = GetAttr<std::vector<int>>("axes", attrs);
    starts_ = GetAttr<std::vector<int>>("starts", attrs);
    ends_ = GetAttr<std::vector<int>>("ends", attrs);
  }
I
itminner 已提交
1531

1532 1533 1534 1535 1536 1537
 public:
  GType *input_;
  GType *output_;
  std::vector<int> axes_;
  std::vector<int> starts_;
  std::vector<int> ends_;
I
itminner 已提交
1538
};
T
Tian 已提交
1539 1540 1541
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1542
template <typename Dtype>
T
Tian 已提交
1543
class ResizeParam : public OpParam {
N
nhzlx 已提交
1544 1545 1546
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1547 1548 1549
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1550 1551 1552
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1553 1554 1555 1556 1557 1558
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1559

N
nhzlx 已提交
1560
  const RType *InputX() const { return input_x_; }
T
Tian 已提交
1561

N
nhzlx 已提交
1562
  const RType *InputShape() const { return input_shape_; }
T
Tian 已提交
1563

N
nhzlx 已提交
1564
  RType *Out() const { return out_; }
T
Tian 已提交
1565

I
itminner 已提交
1566
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1567

I
itminner 已提交
1568
  const int &Height() const { return height_; }
T
Tian 已提交
1569

I
itminner 已提交
1570
  const int &Width() const { return width_; }
T
Tian 已提交
1571

I
itminner 已提交
1572
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1573

I
itminner 已提交
1574
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1575

I
itminner 已提交
1576
 private:
N
nhzlx 已提交
1577 1578 1579
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1580 1581 1582 1583 1584
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1585 1586 1587
};
#endif

L
liuruilong 已提交
1588
#ifdef RELU_OP
L
liuruilong 已提交
1589 1590 1591
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1592
template <typename Dtype>
D
relu  
dolphin8 已提交
1593
class ReluParamBase : public OpParam {
N
nhzlx 已提交
1594 1595 1596
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1597
 public:
D
relu  
dolphin8 已提交
1598
  ReluParamBase(const VariableNameMap &inputs, const VariableNameMap &outputs,
Y
yangfei 已提交
1599
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1600 1601
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1602 1603
  }

N
nhzlx 已提交
1604
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1605

N
nhzlx 已提交
1606
  RType *Out() const { return out_; }
E
eclipsess 已提交
1607 1608

 private:
N
nhzlx 已提交
1609 1610
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1611
};
D
relu  
dolphin8 已提交
1612 1613 1614

template <typename Dtype>
class ReluParam : public ReluParamBase<Dtype> {
Y
yangfei 已提交
1615
 public:
D
relu  
dolphin8 已提交
1616 1617 1618
  using ReluParamBase<Dtype>::ReluParamBase;
};

Y
yangfei 已提交
1619
#ifdef PADDLE_MOBILE_CL
D
relu  
dolphin8 已提交
1620 1621
template <>
class ReluParam<GPU_CL> : public ReluParamBase<GPU_CL> {
Y
yangfei 已提交
1622
 public:
D
relu  
dolphin8 已提交
1623
  using ReluParamBase<GPU_CL>::ReluParamBase;
Y
yangfei 已提交
1624 1625 1626
  framework::CLImage &getMidImage() { return midImage; }

 private:
D
relu  
dolphin8 已提交
1627 1628
  framework::CLImage midImage;
};
Y
yangfei 已提交
1629
#endif
D
relu  
dolphin8 已提交
1630

L
liuruilong 已提交
1631
#endif
E
eclipsess 已提交
1632

Z
zhangyang 已提交
1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
#ifdef TANH_OP
template <typename Dtype>
class TanhParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TanhParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }

 private:
  RType *input_x_;
  RType *out_;
qnqinan's avatar
qnqinan 已提交
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
#ifdef PADDLE_MOBILE_FPGA

 private:
  std::shared_ptr<RType> float_input_x_;
  fpga::BypassArgs fpga_bypass_args;

 public:
  RType *FloatInput() const {
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
Z
zhangyang 已提交
1665
};
L
liuruilong 已提交
1666
#endif
E
eclipsess 已提交
1667

T
Tian 已提交
1668
#ifdef PRELU_OP
N
nhzlx 已提交
1669
template <typename Dtype>
T
Tian 已提交
1670
class PReluParam : public OpParam {
N
nhzlx 已提交
1671 1672 1673
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1674 1675 1676
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
1677
    DLOG << "PReluParam inputs before";
N
nhzlx 已提交
1678
    input_x_ = InputXFrom<GType>(inputs, scope);
N
nhzlx 已提交
1679
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
1680
    framework::DDim dims = alpha_->dims();
N
nhzlx 已提交
1681
    out_ = OutFrom<GType>(outputs, scope);
1682
    mode_ = GetStringAttr("mode", attrs);
1683
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1684
  }
N
nhzlx 已提交
1685
  const RType *InputX() const { return input_x_; }
N
nhzlx 已提交
1686
  const RType *InputAlpha() const { return alpha_; }
N
nhzlx 已提交
1687
  RType *Out() const { return out_; }
1688
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1689

I
itminner 已提交
1690
 private:
N
nhzlx 已提交
1691 1692
  RType *input_x_;
  RType *out_;
N
nhzlx 已提交
1693
  RType *alpha_;
1694
  std::string mode_;
T
Tian 已提交
1695 1696 1697
};
#endif

N
nhzlx 已提交
1698
template <typename Dtype>
L
liuruilong 已提交
1699
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1700 1701 1702
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1703
 public:
L
liuruilong 已提交
1704
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1705
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1706 1707 1708 1709
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    input_z_ = InputZFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1710 1711 1712 1713
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
Y
yangfei 已提交
1714
  GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1715

Y
yangfei 已提交
1716
  RType *InputY() const { return input_y_; }
E
eclipsess 已提交
1717

Y
yangfei 已提交
1718
  RType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1719

xiebaiyuan's avatar
xiebaiyuan 已提交
1720
  GType *Out() const { return out_; }
E
eclipsess 已提交
1721 1722 1723 1724 1725 1726 1727 1728

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1729
  GType *input_x_;
N
nhzlx 已提交
1730 1731
  RType *input_y_;
  RType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1732
  GType *out_;
E
eclipsess 已提交
1733 1734 1735
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1736

Z
ZhenWang 已提交
1737
#ifdef PADDLE_MOBILE_FPGA
1738
 private:  // NOLINT
Z
zhangyang 已提交
1739
  fpga::SplitConvArgs fpga_conv_args;
Z
zhangyang 已提交
1740 1741

 public:
Z
zhangyang 已提交
1742 1743
  const fpga::SplitConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::SplitConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1744
#endif
E
eclipsess 已提交
1745
};
1746 1747

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1748 1749
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1750
#endif
E
eclipsess 已提交
1751

N
nhzlx 已提交
1752
template <typename Dtype>
1753
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1754 1755 1756
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1757
 public:
L
liuruilong 已提交
1758
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1759
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1760 1761 1762 1763 1764
                     const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1765
  }
N
nhzlx 已提交
1766
  RType *Bias() const { return bias_; }
W
wangliu 已提交
1767 1768 1769

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1770
  RType *Output() const { return output_; }
W
wangliu 已提交
1771

L
liuruilong 已提交
1772
 protected:
N
nhzlx 已提交
1773
  RType *bias_;
W
wangliu 已提交
1774
  int axis_;
N
nhzlx 已提交
1775
  RType *output_;
W
wangliu 已提交
1776 1777
};

N
nhzlx 已提交
1778 1779
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1780

Z
zhangyang 已提交
1781
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1782 1783
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1784
 public:
L
liuruilong 已提交
1785
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1786 1787
                         const VariableNameMap &outputs,
                         const AttributeMap &attrs, const Scope &scope)
1788
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1789 1790 1791
};
#endif

1792
#ifdef FUSION_CONVADDPRELU_OP
1793 1794 1795 1796
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1797 1798 1799 1800

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1801 1802 1803
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1804
    mode_ = OpParam::GetStringAttr("mode", attrs);
1805
    framework::DDim dims = alpha_->dims();
1806 1807 1808
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  RType *Bias() const { return bias_; }
  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1826 1827 1828 1829
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1830 1831 1832 1833

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1834 1835 1836 1837
                             const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
1838
    mode_ = OpParam::GetStringAttr("mode", attrs);
1839
    framework::DDim dims = alpha_->dims();
1840 1841 1842 1843 1844 1845
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    keyOutput_ = OpParam::getkey("addOut", inputs, 0);
    keyX1_ = OpParam::getkey("addX", inputs, 1);
    keyY1_ = OpParam::getkey("Y", inputs, 1);
1846
    if (keyX1_ == keyOutput_) {
1847
      bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
1848
    } else if (keyY1_ == keyOutput_) {
1849
      bias1_ = OpParam::InputXFrom1<GType>(inputs, scope);
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873
    }
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  const RType *Bias1() const { return bias1_; }

  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
  RType *bias1_;
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
};
#endif

E
eclipsess 已提交
1874
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1875
template <typename Dtype>
1876
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1877 1878 1879
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1880 1881 1882
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1895
  }
N
nhzlx 已提交
1896
  RType *Bias() const { return bias_; }
E
eclipsess 已提交
1897 1898 1899

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1900
  RType *Output() const { return output_; }
E
eclipsess 已提交
1901

N
nhzlx 已提交
1902
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1903

N
nhzlx 已提交
1904
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1905

N
nhzlx 已提交
1906
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1907

N
nhzlx 已提交
1908
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1909 1910 1911 1912 1913 1914 1915

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1916
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1917

N
nhzlx 已提交
1918
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1919

N
nhzlx 已提交
1920
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1921

N
nhzlx 已提交
1922
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1923 1924

 protected:
N
nhzlx 已提交
1925
  RType *bias_;
E
eclipsess 已提交
1926
  int axis_;
N
nhzlx 已提交
1927 1928 1929 1930 1931
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1932 1933 1934
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1935 1936
  RType *new_bias_;
  RType *new_scale_;
1937 1938 1939 1940 1941
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
1942
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
1943 1944 1945 1946 1947 1948
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    keyBNY_ = OpParam::getkey("BNY", inputs, 0);
    keyX_ = OpParam::getkey("X", inputs, 0);
    keyY_ = OpParam::getkey("Y", inputs, 0);
1963
    if (keyX_ == keyBNY_) {
1964
      bias_ = OpParam::InputYFrom<GType>(inputs, scope);
1965
    } else if (keyY_ == keyBNY_) {
1966
      bias_ = OpParam::InputXFrom<GType>(inputs, scope);
1967
    }
1968
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
E
eclipsess 已提交
2014
};
2015
#endif
E
eclipsess 已提交
2016

Z
zhangyang 已提交
2017
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
2018
template <typename Dtype>
2019
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2020 2021 2022
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
2023 2024 2025
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035
                    const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
Z
zhangyang 已提交
2036
  }
N
nhzlx 已提交
2037
  RType *Output() const { return output_y_; }
Z
zhangyang 已提交
2038

N
nhzlx 已提交
2039
  const RType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
2040

N
nhzlx 已提交
2041
  const RType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
2042

N
nhzlx 已提交
2043
  const RType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
2044

N
nhzlx 已提交
2045
  const RType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
2046 2047 2048 2049 2050 2051 2052

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2053
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
2054

N
nhzlx 已提交
2055
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
2056

N
nhzlx 已提交
2057
  const RType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
2058

N
nhzlx 已提交
2059
  const RType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
2060 2061

 protected:
N
nhzlx 已提交
2062 2063 2064 2065 2066
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
Z
zhangyang 已提交
2067 2068 2069
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2070 2071
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
2072 2073 2074
};
#endif

2075
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
2076
template <typename Dtype>
2077
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2078 2079 2080
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2081 2082 2083
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
                       const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
2096
  }
N
nhzlx 已提交
2097
  RType *Bias() const { return bias_; }
2098 2099 2100

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
2101
  RType *Output() const { return output_y_; }
2102

N
nhzlx 已提交
2103
  const RType *InputBias() const { return input_bias_; }
2104

N
nhzlx 已提交
2105
  const RType *InputMean() const { return input_mean_; }
2106

N
nhzlx 已提交
2107
  const RType *InputScale() const { return input_scale_; }
2108

N
nhzlx 已提交
2109
  const RType *InputVariance() const { return input_variance_; }
2110 2111 2112 2113 2114 2115 2116

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2117
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
2118

N
nhzlx 已提交
2119
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
2120

N
nhzlx 已提交
2121
  const RType *NewScale() const { return new_scale_; }
2122

N
nhzlx 已提交
2123
  const RType *NewBias() const { return new_bias_; }
2124 2125

 protected:
N
nhzlx 已提交
2126
  RType *bias_;
2127
  int axis_;
N
nhzlx 已提交
2128 2129 2130 2131 2132
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
2133 2134 2135
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2136 2137
  RType *new_bias_;
  RType *new_scale_;
2138
};
E
eclipsess 已提交
2139
#endif
Y
Yao,kun 已提交
2140

E
eclipsess 已提交
2141
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
2142
template <typename Dtype>
2143
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2144 2145 2146
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
2147 2148 2149
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
2160
  }
N
nhzlx 已提交
2161
  RType *Output() const { return output_; }
E
eclipsess 已提交
2162

N
nhzlx 已提交
2163
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
2164

N
nhzlx 已提交
2165
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
2166

N
nhzlx 已提交
2167
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
2168

N
nhzlx 已提交
2169
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
2170 2171 2172 2173 2174 2175 2176

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2177
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
2178

N
nhzlx 已提交
2179
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
2180

N
nhzlx 已提交
2181
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
2182

N
nhzlx 已提交
2183
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
2184 2185

 protected:
N
nhzlx 已提交
2186 2187 2188 2189 2190
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
2191 2192 2193
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2194 2195
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
2196 2197 2198 2199
};

#endif

2200
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
2201
template <typename Dtype>
2202
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
2203 2204 2205
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

2206 2207 2208
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
2209 2210 2211 2212 2213 2214 2215 2216 2217 2218
                        const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
2219
  }
N
nhzlx 已提交
2220
  RType *Output() const { return output_; }
2221

N
nhzlx 已提交
2222
  const RType *InputBias() const { return input_bias_; }
2223

N
nhzlx 已提交
2224
  const RType *InputMean() const { return input_mean_; }
2225

N
nhzlx 已提交
2226
  const RType *InputScale() const { return input_scale_; }
2227

N
nhzlx 已提交
2228
  const RType *InputVariance() const { return input_variance_; }
2229 2230 2231 2232 2233 2234 2235

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
2236
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
2237

N
nhzlx 已提交
2238
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
2239

N
nhzlx 已提交
2240
  const RType *NewScale() const { return new_scale_; }
2241

N
nhzlx 已提交
2242
  const RType *NewBias() const { return new_bias_; }
2243 2244

 protected:
N
nhzlx 已提交
2245 2246 2247 2248 2249
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
2250 2251 2252
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
2253 2254
  RType *new_bias_;
  RType *new_scale_;
2255 2256 2257
};
#endif

Y
Yao,kun 已提交
2258
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
2259
template <typename Dtype>
Y
Yao,kun 已提交
2260
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
2261 2262 2263
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2264 2265 2266 2267
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
                   const Scope &scope) {
N
nhzlx 已提交
2268 2269
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
Yao,kun 已提交
2270 2271 2272 2273 2274
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

E
eclipsess 已提交
2275
  const GType *Input() const { return input_x_; }
Y
Yao,kun 已提交
2276

E
eclipsess 已提交
2277
  GType *Output() const { return out_; }
Y
Yao,kun 已提交
2278 2279 2280 2281 2282 2283 2284 2285

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
E
eclipsess 已提交
2286 2287
  GType *input_x_;
  GType *out_;
Y
Yao,kun 已提交
2288 2289 2290 2291
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
2292
#endif
Y
Yao,kun 已提交
2293

2294
#ifdef DROPOUT_OP
N
nhzlx 已提交
2295
template <typename Dtype>
Y
Yao,kun 已提交
2296
class DropoutParam : public OpParam {
N
nhzlx 已提交
2297 2298 2299
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
2300 2301 2302
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
2303 2304
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
yangfei 已提交
2305 2306

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
2307 2308
  }

N
nhzlx 已提交
2309
  const RType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
2310

N
nhzlx 已提交
2311
  RType *Out() const { return out_; }
Y
Yao,kun 已提交
2312

Y
yangfei 已提交
2313 2314
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
2315
 private:
N
nhzlx 已提交
2316 2317
  RType *input_x_;
  RType *out_;
Y
yangfei 已提交
2318
  float dropout_prob_;
Y
Yao,kun 已提交
2319
};
2320
#endif
Y
Yao,kun 已提交
2321

N
nhzlx 已提交
2322
template <typename Dtype>
L
liuruilong 已提交
2323
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
2324 2325 2326
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
2327 2328 2329 2330
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
2331 2332
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
2333
    // output_ = OutputFrom<GType>(outputs, scope);
qnqinan's avatar
qnqinan 已提交
2334
    if (outputs.count("Output")) {
2335
      output_ = OpParam::OutputFrom<GType>(outputs, scope);
qnqinan's avatar
qnqinan 已提交
2336
    }
L
liuruilong 已提交
2337 2338 2339 2340 2341 2342
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

N
nhzlx 已提交
2343
  const RType *Input() const { return input_; }
L
liuruilong 已提交
2344

N
nhzlx 已提交
2345
  const RType *Filter() const { return filter_; }
L
liuruilong 已提交
2346

N
nhzlx 已提交
2347
  RType *Output() const { return output_; }
L
liuruilong 已提交
2348 2349 2350 2351 2352 2353 2354 2355 2356 2357

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 private:
N
nhzlx 已提交
2358 2359 2360
  RType *input_;
  RType *output_;
  RType *filter_;
L
liuruilong 已提交
2361 2362 2363 2364
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
Z
zhangyang 已提交
2365 2366 2367 2368 2369

#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::DeconvArgs fpga_conv_args;
qnqinan's avatar
qnqinan 已提交
2370
  fpga::DWDeconvArgs fpga_DWDeconv_args;
Z
zhangyang 已提交
2371 2372 2373

 public:
  const fpga::DeconvArgs &FpgaArgs() const { return fpga_conv_args; }
qnqinan's avatar
qnqinan 已提交
2374 2375 2376
  const fpga::DWDeconvArgs &FpgaDWDconvArgs() const {
    return fpga_DWDeconv_args;
  }
Z
zhangyang 已提交
2377
  void SetFpgaArgs(const fpga::DeconvArgs &args) { fpga_conv_args = args; }
qnqinan's avatar
qnqinan 已提交
2378 2379 2380
  void SetFpgaArgs(const fpga::DWDeconvArgs &args) {
    fpga_DWDeconv_args = args;
  }
Z
zhangyang 已提交
2381
#endif
L
liuruilong 已提交
2382
};
Z
zhangyang 已提交
2383

qnqinan's avatar
qnqinan 已提交
2384 2385 2386 2387 2388
#ifdef FUSION_DECONVADD_OP
template <typename Dtype>
class FusionDeconvAddParam : public ConvTransposeParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
2389 2390

 public:
qnqinan's avatar
qnqinan 已提交
2391
  FusionDeconvAddParam(const VariableNameMap &inputs,
2392 2393 2394
                       const VariableNameMap &outputs,
                       const AttributeMap &attrs, const Scope &scope)
      : ConvTransposeParam<Dtype>(inputs, outputs, attrs, scope) {
qnqinan's avatar
qnqinan 已提交
2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
};
#endif

#ifdef FUSION_DECONVADDRELU_OP
template <typename Dtype>
using FusionDeconvAddReluParam = FusionDeconvAddParam<Dtype>;
#endif
L
liuruilong 已提交
2416

Z
zhangyang 已提交
2417 2418 2419 2420 2421
#ifdef FUSION_DECONVRELU_OP
template <typename Dtype>
using FusionDeconvReluParam = ConvTransposeParam<Dtype>;
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    input_input_ = InputFrom<GType>(inputs, scope);
    input_h0_ = InputH0From<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_weight_ = InputWeightFrom<GType>(inputs, scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, scope);
    output_batch_reset_hidden_prev_ =
        OutputBatchResetHiddenPrevFrom<GType>(outputs, scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, scope);
2447 2448
    activation_ = GetStringAttr("activation", attrs);
    gate_activation_ = GetStringAttr("gate_activation", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

Z
zhaojiaying01 已提交
2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526
#ifdef GRU_UNIT_OP
template <typename Dtype>
class GruUnitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  GruUnitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_input_ = InputFrom<GType>(inputs, scope);
    input_hidden_prev_ = InputHiddenPrevFrom<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_weight_ = InputWeightFrom<GType>(inputs, scope);

    output_gate_ = OutputGateFrom<GType>(outputs, scope);
    output_reset_hidden_prev_ =
        OutputResetHiddenPrevFrom<GType>(outputs, scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, scope);
    activation_ = GetAttr<int>("activation", attrs);
    gate_activation_ = GetAttr<int>("gate_activation", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputHiddenPrev() const { return input_hidden_prev_; }
  const GType *InputBias() const { return input_bias_; }
  const int &Activation() const { return activation_; }
  const int &GateActivation() const { return gate_activation_; }

  GType *OutGate() const { return output_gate_; }
  GType *OutResetHiddenPrev() const { return output_reset_hidden_prev_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_hidden_prev_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_gate_;
  GType *output_reset_hidden_prev_;
  GType *output_hidden_;
  int activation_;
  int gate_activation_;
};
#endif

2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2538
    axis = GetAttr<int>("axis", attrs);
2539 2540 2541
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2542
  const int &Axis() const { return axis; }
2543 2544 2545 2546

 private:
  RType *input_x_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2547
  int axis;
2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2561
    outs_ = OutMultiFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2562
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2563 2564 2565 2566 2567 2568
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2569 2570
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2571 2572 2573 2574 2575
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2576 2577 2578

 private:
  RType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2579
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2580
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2581 2582 2583
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2584 2585 2586 2587 2588 2589 2590 2591 2592
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::SplitArgs fpga_split_args;

 public:
  const fpga::SplitArgs &FpgaArgs() const { return fpga_split_args; }
  void SetFpgaArgs(const fpga::SplitArgs &args) { fpga_split_args = args; }
#endif
2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2609 2610
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2611 2612
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2613
  const RType *InputOutPutSize() const { return input_outsize_; }
2614
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2615 2616
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2617 2618 2619 2620 2621

 private:
  RType *input_x_;
  RType *input_outsize_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2622 2623
  int out_h_;
  int out_w_;
2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
2639
  const RType *Input() const { return input_; }
2640 2641 2642 2643 2644 2645 2646 2647
  RType *Out() const { return out_; }

 private:
  RType *input_;
  RType *out_;
};
#endif

H
hjchen2 已提交
2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693
#ifdef TOP_K_OP
template <typename Dtype>
class TopKParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  TopKParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, scope);
    indices_ = OpParam::GetVarValue<GType>("Indices", outputs, scope);
    k_ = OpParam::GetAttr<int>("k", attrs);
  }

 public:
  RType *input_;
  RType *output_;
  RType *indices_;
  int k_;
};
#endif  // TOP_K_OP

#ifdef CAST_OP
template <typename Dtype>
class CastParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CastParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
    input_ = OpParam::GetVarValue<GType>("X", inputs, scope);
    output_ = OpParam::GetVarValue<GType>("Out", outputs, scope);
    input_type_ = OpParam::GetAttr<int>("in_dtype", attrs);
    output_type_ = OpParam::GetAttr<int>("out_dtype", attrs);
  }

 public:
  RType *input_;
  RType *output_;
  int input_type_;
  int output_type_;
};
#endif  // CAST_OP

2694
#ifdef QUANT_OP
2695
template <typename Dtype>
2696 2697 2698 2699 2700
class QuantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2701 2702
  QuantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
2703
    input_ = InputXFrom<GType>(inputs, scope);
H
hjchen2 已提交
2704
    output_ = OutFrom<GType>(outputs, scope);
2705 2706
    // online
    // scale = max(abs(x))
H
hjchen2 已提交
2707
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, scope);
2708
    // offline
2709
    if (inputs.count("InScale")) {
2710 2711
      offline_ = true;
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, scope);
2712 2713
    }
    // x = round(scale * x)
2714 2715
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
H
hjchen2 已提交
2716
    }
2717 2718 2719 2720
  }

 public:
  // op input
2721
  GType *input_;
2722
  // op output
2723
  GType *output_;
2724
  RType *online_scale_;
2725 2726 2727 2728
  // quantize offline scale
  RType *offline_scale_;
  // if offine scale or not
  bool offline_ = false;
2729
  // round method type
2730 2731
  RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  // RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
2732
};
2733
#endif
2734

2735
#ifdef DEQUANT_OP
2736
template <typename Dtype>
2737 2738 2739 2740 2741
class DequantizeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2742 2743
  DequantizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                  const AttributeMap &attrs, const Scope &scope) {
2744
    input_ = InputXFrom<GType>(inputs, scope);
2745
    output_ = OutFrom<GType>(outputs, scope);
H
hjchen2 已提交
2746
    activation_scale_ = OpParam::GetVarValue<GType>("Scale", inputs, scope);
2747
    // dequantization is performed as x = x / static_scale / online_scale
2748 2749
    if (OpParam::HasAttr("weight_scale", attrs)) {
      weight_scale_ = OpParam::GetAttr<float>("weight_scale", attrs);
2750
    } else {
2751
      weight_scale_ = OpParam::GetAttr<float>("max_range", attrs);
2752 2753 2754 2755 2756
    }
  }

 public:
  // op input
2757
  GType *input_;
2758
  // op output
2759
  GType *output_;
2760 2761 2762
  RType *activation_scale_;
  float weight_scale_;
};
2763
#endif
2764

2765 2766 2767 2768
#if defined(FUSION_DEQUANT_BN_OP) || defined(FUSION_DEQUANT_ADD_BN_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||                             \
    defined(FUSION_DEQUANT_BN_RELU_OP) ||                                 \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) ||                            \
2769
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
H
hjchen2 已提交
2770
template <typename Dtype>
2771
class FusionDequantBNParam : public DequantizeParam<Dtype> {
H
hjchen2 已提交
2772 2773 2774 2775
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
2776 2777 2778
  FusionDequantBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
                       const AttributeMap &attrs, const Scope &scope)
H
hjchen2 已提交
2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794
      : DequantizeParam<Dtype>(inputs, outputs, attrs, scope) {
    // batch norm params
    bn_mean_ = OpParam::GetVarValue<GType>("BNMean", inputs, scope);
    bn_variance_ = OpParam::GetVarValue<GType>("BNVariance", inputs, scope);
    bn_scale_ = OpParam::GetVarValue<GType>("BNScale", inputs, scope);
    bn_bias_ = OpParam::GetVarValue<GType>("BNBias", inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
  }

 public:
  // batch norm
  RType *bn_mean_;
  RType *bn_variance_;
  RType *bn_scale_;
  RType *bn_bias_;
  float epsilon_;
2795 2796 2797
};
#endif

2798 2799 2800 2801
#if defined(FUSION_DEQUANT_ADD_BN_RELU_OP) ||  \
    defined(FUSION_DEQUANT_ADD_BN_OP) ||       \
    defined(FUSION_DEQUANT_ADD_BN_QUANT_OP) || \
    defined(FUSION_DEQUANT_ADD_BN_RELU_QUANT_OP)
2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823
template <typename Dtype>
class FusionDequantAddBNParam : public FusionDequantBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
                          const AttributeMap &attrs, const Scope &scope)
      : FusionDequantBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // element wise add params
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
  }

 public:
  // elementwise add
  int axis_;
  RType *bias_;
};
#endif

2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
#ifdef FUSION_DEQUANT_ADD_BN_QUANT_OP
template <typename Dtype>
class FusionDequantAddBNQuantParam : public FusionDequantAddBNParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionDequantAddBNQuantParam(const VariableNameMap &inputs,
                               const VariableNameMap &outputs,
                               const AttributeMap &attrs, const Scope &scope)
      : FusionDequantAddBNParam<Dtype>(inputs, outputs, attrs, scope) {
    // scale output
    online_scale_ = OpParam::GetVarValue<GType>("OutScale", outputs, scope);
    // offline
2838 2839 2840
    if (inputs.count("InScale")) {
      offline_ = true;
      offline_scale_ = OpParam::GetVarValue<GType>("InScale", inputs, scope);
2841 2842 2843 2844 2845 2846 2847 2848 2849
    }
    // x = round(scale * x)
    if (OpParam::HasAttr("round_type", attrs)) {
      round_type_ = OpParam::GetAttr<RoundType>("round_type", attrs);
    }
  }

 public:
  RType *online_scale_;
2850 2851 2852 2853
  // quantize offline scale
  RType *offline_scale_;
  // if offine scale or not
  bool offline_ = false;
2854 2855 2856 2857 2858 2859
  // round method type
  // RoundType round_type_ = ROUND_NEAREST_AWAY_ZERO;
  RoundType round_type_ = ROUND_NEAREST_TOWARDS_ZERO;
};
#endif

2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900
#ifdef SEQUENCE_EXPAND_OP
template <typename Dtype>
class SequenceExpandParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequenceExpandParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    ref_level_ = -1;
    if (OpParam::HasAttr("ref_level", attrs)) {
      ref_level_ = OpParam::GetAttr<int>("ref_level", attrs);
    }
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int ref_level_;
};
#endif  // SEQUENCE_EXPAND_OP

#ifdef SEQUENCE_POOL_OP
template <typename Dtype>
class SequencePoolParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SequencePoolParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    const Scope &scope) {
    input_ = InputXFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    pool_type_ = "MAX";
    if (OpParam::HasAttr("pooltype", attrs)) {
H
hjchen2 已提交
2901
      pool_type_ = OpParam::GetStringAttr("pooltype", attrs);
2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
    }
  }

 public:
  GType *input_;
  GType *output_;
  std::string pool_type_;
};
#endif  // SEQUENCE_EXPAND_OP

2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938
#ifdef LOD_RESET_OP
template <typename Dtype>
class LodResetParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LodResetParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    input_y_ = nullptr;
    if (inputs.count("Y")) {
      input_y_ = InputYFrom<GType>(inputs, scope);
    } else {
      target_lod_ = OpParam::GetAttr<vector<int>>("target_lod", attrs);
    }
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  std::vector<int> target_lod_;
};
#endif  // LOD_RESET_OP

2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
#ifdef LESS_THAN_OP
template <typename Dtype>
class CompareParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  CompareParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
  }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
  int axis_;
};
#endif  // LESS_THAN_OP

Z
zhaojiaying01 已提交
2962
#if defined(LOGICAL_AND_OP) || defined(LOGICAL_OR_OP) || defined(LOGICAL_XOR_OP)
2963
template <typename Dtype>
Z
zhaojiaying01 已提交
2964
class LogicalBinaryParam : public OpParam {
2965 2966 2967 2968
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
2969 2970 2971
  LogicalBinaryParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
  }

  const GType *InputX() const { return input_x_; }
  const GType *InputY() const { return input_y_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *input_y_;
  GType *output_;
};
Z
zhaojiaying01 已提交
2986
#endif  // LOGICAL_AND_OP LOGICAL_OR_OP LOGICAL_XOR_OP
2987 2988 2989

#ifdef LOGICAL_NOT_OP
template <typename Dtype>
Z
zhaojiaying01 已提交
2990
class LogicalUnaryParam : public OpParam {
2991 2992 2993 2994
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
Z
zhaojiaying01 已提交
2995 2996 2997
  LogicalUnaryParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    const Scope &scope) {
2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // LOGICAL_NOT_OP

3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068
// #ifdef WHILE_OP
// template <typename Dtype>
// class WhileParam : public OpParam {
//  public:
//   WhileParam(const VariableNameMap &inputs,
//              const VariableNameMap &outputs, const AttributeMap &attrs,
//              const Scope &scope) {
//     cond_ = OpParam::GetVarValue<framework::LoDTensor>("Condition", inputs,
//     scope); block_desc_ = OpParam::GetAttr<framework::BlockDesc
//     *>("sub_block", attrs);
//   }
//
//  public:
//   framework::LoDTensor *cond_;
//   const framework::BlockDesc *block_desc_;
// };
// #endif  // WHILE_OP

#ifdef WRITE_TO_ARRAY_OP
template <typename Dtype>
class WriteToArrayParam : public OpParam {
 public:
  WriteToArrayParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
                    const Scope &scope) {
    input_ = OpParam::GetVarValue<framework::LoDTensor>("X", inputs, scope);
    index_ = OpParam::GetVarValue<framework::LoDTensor>("I", inputs, scope);
    output_ =
        OpParam::GetVarValue<framework::LoDTensorArray>("Out", outputs, scope);
  }

 public:
  framework::LoDTensor *input_;
  framework::LoDTensor *index_;
  framework::LoDTensorArray *output_;
};
#endif

#ifdef READ_FROM_ARRAY_OP
template <typename Dtype>
class ReadFromArrayParam : public OpParam {
 public:
  ReadFromArrayParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
    input_ =
        OpParam::GetVarValue<framework::LoDTensorArray>("X", inputs, scope);
    index_ = OpParam::GetVarValue<framework::LoDTensor>("I", inputs, scope);
    output_ = OpParam::GetVarValue<framework::LoDTensor>("Out", outputs, scope);
  }

 public:
  framework::LoDTensorArray *input_;
  framework::LoDTensor *index_;
  framework::LoDTensor *output_;
};
#endif

Z
zhaojiaying01 已提交
3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115
#ifdef IS_EMPTY_OP
template <typename Dtype>
class IsEmptyParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IsEmptyParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }

 public:
  GType *input_x_;
  GType *output_;
};
#endif  // IS_EMPTY_OP

#ifdef INCREMENT_OP
template <typename Dtype>
class IncrementParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  IncrementParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_ = OutFrom<GType>(outputs, scope);
    step_ = OpParam::GetAttr<int>("step", attrs);
  }

  const GType *InputX() const { return input_x_; }
  GType *Out() const { return output_; }
  int Step() const { return step_; }

 public:
  GType *input_x_;
  GType *output_;
  int step_;
};
#endif  // INCREMENT_OP

朔-望's avatar
朔-望 已提交
3116 3117
}  // namespace operators
}  // namespace paddle_mobile