op_param.h 65.3 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

15
#pragma once
朔-望's avatar
朔-望 已提交
16

E
eclipsess 已提交
17
#include <string>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/log.h"
朔-望's avatar
朔-望 已提交
20
#include "common/type_define.h"
N
nhzlx 已提交
21
#include "common/types.h"
朔-望's avatar
朔-望 已提交
22 23 24 25
#include "framework/lod_tensor.h"
#include "framework/scope.h"
#include "framework/tensor.h"
#include "framework/variable.h"
Z
zhangyang 已提交
26
#ifdef PADDLE_MOBILE_FPGA
H
hanbuhe 已提交
27
#include "fpga/api.h"
Z
zhangyang 已提交
28
#endif
朔-望's avatar
朔-望 已提交
29

L
liuruilong 已提交
30 31 32 33
#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
#endif

朔-望's avatar
朔-望 已提交
34
namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
35 36
namespace operators {

W
wangliu 已提交
37 38 39 40 41 42 43
using framework::Attribute;
using framework::AttributeMap;
using framework::LoDTensor;
using framework::Scope;
using framework::Tensor;
using std::string;
using std::vector;
朔-望's avatar
朔-望 已提交
44

N
nhzlx 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
template <typename Dtype>
struct DtypeTensorTrait {
  typedef void ptype;
  typedef void rtype;
};

template <>
struct DtypeTensorTrait<CPU> {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

template <>
struct DtypeTensorTrait<FPGA> {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

template <>
struct DtypeTensorTrait<GPU_MALI> {
  // This is the type we obtained in variable.
  typedef framework::LoDTensor gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::Tensor rtype;
};

L
update  
liuruilong 已提交
78
#ifdef PADDLE_MOBILE_CL
L
liuruilong 已提交
79 80 81 82 83 84 85 86
template <>
struct DtypeTensorTrait<GPU_CL> {
  // This is the type we obtained in variable.
  typedef framework::CLImage gtype;
  // This type will be the parent class type
  // or the same type.
  typedef framework::CLImage rtype;
};
L
update  
liuruilong 已提交
87
#endif
L
liuruilong 已提交
88

L
liuruilong 已提交
89
class OpParam {
朔-望's avatar
朔-望 已提交
90
 protected:
xiebaiyuan's avatar
xiebaiyuan 已提交
91 92 93 94
  template <typename T>
  static T *InputH0From(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("H0", inputs, scope);
  }
95 96 97 98 99
  template <typename T>
  static T *InputAlphaFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Alpha", inputs, scope);
  }

100 101 102 103 104 105 106 107 108
  template <typename T>
  static T *InputFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Input", inputs, scope);
  }

  template <typename T>
  static T *InputXFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("X", inputs, scope);
  }
109 110 111 112 113
  template <typename T>
  static T *InputOutSizeFrom(const VariableNameMap &inputs,
                             const Scope &scope) {
    return GetVarValue<T>("OutSize", inputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140

  template <typename T>
  static T *InputWFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("W", inputs, scope);
  }

  template <typename T>
  static T *InputIdsFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Ids", inputs, scope);
  }

  template <typename T>
  static T *InputEmissionFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Emission", inputs, scope);
  }

  template <typename T>
  static T *InputTransitionFrom(const VariableNameMap &inputs,
                                const Scope &scope) {
    return GetVarValue<T>("Transition", inputs, scope);
  }
  template <typename T>
  static T *InputLabelFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Label", inputs, scope);
  }

141 142 143 144
  template <typename T>
  static T *InputXFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("addX", inputs, scope);
  }
145 146 147 148 149 150

  template <typename T>
  static T *InputYFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Y", inputs, scope);
  }

151 152 153 154 155
  template <typename T>
  static T *InputYFrom1(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue1<T>("Y", inputs, scope);
  }

E
eclipsess 已提交
156 157 158 159 160
  template <typename T>
  static T *InputZFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Z", inputs, scope);
  }

161 162 163 164 165
  template <typename T>
  static T *InputBiasFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Bias", inputs, scope);
  }
  template <typename T>
xiebaiyuan's avatar
xiebaiyuan 已提交
166 167 168 169
  static T *InputWeightFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Weight", inputs, scope);
  }
  template <typename T>
170 171 172 173 174 175 176 177 178 179 180 181
  static T *InputVarianceFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("Variance", inputs, scope);
  }
  template <typename T>
  static T *InputMeanFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Mean", inputs, scope);
  }
  template <typename T>
  static T *InputScaleFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scale", inputs, scope);
  }
E
eclipsess 已提交
182 183 184 185
  template <typename T>
  static T *InputImageFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Image", inputs, scope);
  }
E
eclipsess 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
  template <typename T>
  static T *InputPriorBoxFrom(const VariableNameMap &inputs,
                              const Scope &scope) {
    return GetVarValue<T>("PriorBox", inputs, scope);
  }
  template <typename T>
  static T *InputPriorBoxVarFrom(const VariableNameMap &inputs,
                                 const Scope &scope) {
    return GetVarValue<T>("PriorBoxVar", inputs, scope);
  }
  // LoDTensor but now use Tensor
  template <typename T>
  static T *InputTargetBoxFrom(const VariableNameMap &inputs,
                               const Scope &scope) {
    return GetVarValue<T>("TargetBox", inputs, scope);
  }
202

E
eclipsess 已提交
203 204 205 206 207 208 209 210 211 212
  template <typename T>
  static T *InputBBoxesFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("BBoxes", inputs, scope);
  }

  template <typename T>
  static T *InputScoresFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Scores", inputs, scope);
  }

E
eclipsess 已提交
213 214 215 216
  template <typename T>
  static T *InputShapeFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Shape", inputs, scope);
  }
E
eclipsess 已提交
217

218
  template <typename T>
W
wangliu 已提交
219 220
  static vector<T *> InputMultiFrom(const VariableNameMap &inputs,
                                    const Scope &scope) {
221 222 223
    return GetMultiVarValue<T>("X", inputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
  template <typename T>
  static T *OutputBatchGateFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("BatchGate", outputs, scope);
  }

  template <typename T>
  static T *OutputViterbiPathFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("ViterbiPath", outputs, scope);
  }
  template <typename T>
  static T *OutputBatchResetHiddenPrevFrom(const VariableNameMap &outputs,
                                           const Scope &scope) {
    return GetVarValue<T>("BatchResetHiddenPrev", outputs, scope);
  }

  template <typename T>
  static T *OutputBatchHiddenFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetVarValue<T>("BatchHidden", outputs, scope);
  }

  template <typename T>
  static T *OutputHiddenFrom(const VariableNameMap &outputs,
                             const Scope &scope) {
    return GetVarValue<T>("Hidden", outputs, scope);
  }

253 254 255 256 257 258 259 260 261 262
  template <typename T>
  static T *OutputFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Output", outputs, scope);
  }

  template <typename T>
  static T *OutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Out", outputs, scope);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
263 264 265 266 267 268
  template <typename T>
  static vector<T *> OutMultiFrom(const VariableNameMap &outputs,
                                  const Scope &scope) {
    return GetMultiVarValue<T>("Out", outputs, scope);
  }

269 270 271 272 273
  template <typename T>
  static T *OutputYFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("Y", outputs, scope);
  }

E
eclipsess 已提交
274 275 276 277 278 279
  template <typename T>
  static T *OutputBoxesFrom(const VariableNameMap &outputs,
                            const Scope &scope) {
    return GetVarValue<T>("Boxes", outputs, scope);
  }

E
eclipsess 已提交
280 281 282 283 284
  template <typename T>
  static T *OutputBoxFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("OutputBox", outputs, scope);
  }

E
eclipsess 已提交
285 286 287 288 289 290
  template <typename T>
  static T *OutputVariancesFrom(const VariableNameMap &outputs,
                                const Scope &scope) {
    return GetVarValue<T>("Variances", outputs, scope);
  }

291 292 293 294 295 296 297 298 299 300 301
  template <typename T>
  static T *MidOutFrom(const VariableNameMap &outputs, const Scope &scope) {
    return GetVarValue<T>("MidOut", outputs, scope);
  }

  template <typename T>
  static T *FilterFrom(const VariableNameMap &inputs, const Scope &scope) {
    return GetVarValue<T>("Filter", inputs, scope);
  }

  template <typename T>
W
wangliu 已提交
302
  static const T GetAttr(const string &key, const AttributeMap &map) {
303 304 305
    return ((Attribute)map.at(key)).Get<T>();
  }

306 307 308 309
  static const bool HasAttr(const string &key, const AttributeMap &map) {
    return map.count(key) > 0;
  }

310
  template <typename T>
W
wangliu 已提交
311
  static T *GetVarValue(const string &key, const VariableNameMap &var_map,
312
                        const Scope &scope) {
W
wangliu 已提交
313 314
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
315 316 317 318 319 320
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[0]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
朔-望's avatar
朔-望 已提交
321
    }
322
  }
朔-望's avatar
朔-望 已提交
323

324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
  static std::string getkey(const string &key, const VariableNameMap &var_map,
                            int index) {
    auto var_vec = var_map.at(key);
    return var_vec[index];
  }

  template <typename T>
  static T *GetVarValue1(const string &key, const VariableNameMap &var_map,
                         const Scope &scope) {
    PADDLE_MOBILE_ENFORCE(var_map.count(key) > 0,
                          "%s is not contained in var_map", key.c_str())
    auto var_vec = var_map.at(key);
    if (!var_vec.empty()) {
      auto var = scope.FindVar(var_vec[1]);
      return var->GetMutable<T>();
    } else {
      return nullptr;
    }
  }

344
  template <typename T>
W
wangliu 已提交
345 346 347
  static vector<T *> GetMultiVarValue(const string &key,
                                      const VariableNameMap &var_map,
                                      const Scope &scope) {
348 349
    auto var_vecs = var_map.at(key);
    assert(var_vecs.size() > 1);
W
wangliu 已提交
350
    vector<T *> var_res;
351 352 353
    for (auto &var_vec : var_vecs) {
      auto var = scope.FindVar(var_vec);
      var_res.push_back(var->GetMutable<T>());
朔-望's avatar
朔-望 已提交
354
    }
355 356
    return var_res;
  }
朔-望's avatar
朔-望 已提交
357 358
};

N
nhzlx 已提交
359
template <typename Dtype>
360
class ConvParam : public OpParam {
N
nhzlx 已提交
361 362 363
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
364
 public:
365
  ConvParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
366
            const AttributeMap &attrs, const Scope &scope) {
367 368 369 370 371 372 373 374 375
    filter_ = OpParam::FilterFrom<GType>(inputs, scope);
    input_ = OpParam::InputFrom<GType>(inputs, scope);
    if (outputs.count("Output")) {
      output_ = OpParam::OutputFrom<GType>(outputs, scope);
    }
    strides_ = OpParam::GetAttr<vector<int>>("strides", attrs);
    paddings_ = OpParam::GetAttr<vector<int>>("paddings", attrs);
    dilations_ = OpParam::GetAttr<vector<int>>("dilations", attrs);
    groups = OpParam::GetAttr<int>("groups", attrs);
376
  }
朔-望's avatar
朔-望 已提交
377

N
nhzlx 已提交
378
  const RType *Input() const { return input_; }
朔-望's avatar
朔-望 已提交
379

N
nhzlx 已提交
380
  RType *Filter() const { return filter_; }
朔-望's avatar
朔-望 已提交
381

N
nhzlx 已提交
382
  RType *Output() const { return output_; }
朔-望's avatar
朔-望 已提交
383

W
wangliu 已提交
384
  const vector<int> &Strides() const { return strides_; }
朔-望's avatar
朔-望 已提交
385

W
wangliu 已提交
386
  const vector<int> &Paddings() const { return paddings_; }
朔-望's avatar
朔-望 已提交
387

W
wangliu 已提交
388
  const vector<int> &Dilations() const { return dilations_; }
朔-望's avatar
朔-望 已提交
389

390
  const int &Groups() const { return groups; }
朔-望's avatar
朔-望 已提交
391

392 393 394 395 396 397 398
#ifdef PADDLE_MOBILE_CL
  int Offset() const { return offset_; }

  int SetOffset(int in_offset) { offset_ = in_offset; }

#endif

朔-望's avatar
朔-望 已提交
399
 private:
N
nhzlx 已提交
400 401 402
  RType *input_;
  RType *output_;
  RType *filter_;
W
wangliu 已提交
403 404 405
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
406
  int groups;
407 408 409 410

#ifdef PADDLE_MOBILE_CL
  int offset_;
#endif
朔-望's avatar
朔-望 已提交
411
};
N
nhzlx 已提交
412 413
template <typename Dtype>
Print &operator<<(Print &printer, const ConvParam<Dtype> &conv_param);
朔-望's avatar
朔-望 已提交
414

N
nhzlx 已提交
415
template <typename Dtype>
朔-望's avatar
朔-望 已提交
416
class ElementwiseAddParam : OpParam {
N
nhzlx 已提交
417 418 419
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
420
 public:
421
  ElementwiseAddParam(const VariableNameMap &inputs,
422 423
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
N
nhzlx 已提交
424 425 426
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
427 428 429
    axis_ = GetAttr<int>("axis", attrs);
  }

xiebaiyuan's avatar
xiebaiyuan 已提交
430
  const GType *InputX() const { return input_x_; }
431

xiebaiyuan's avatar
xiebaiyuan 已提交
432
  const GType *InputY() const { return input_y_; }
433

xiebaiyuan's avatar
xiebaiyuan 已提交
434
  GType *Out() const { return out_; }
435 436 437

  const int &Axis() const { return axis_; }

朔-望's avatar
朔-望 已提交
438
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
439 440 441
  GType *input_x_;
  GType *input_y_;
  GType *out_;
442
  int axis_;
Z
zhangyang 已提交
443 444 445
#ifdef PADDLE_MOBILE_FPGA

 private:
H
hanbuhe 已提交
446
  fpga::EWAddArgs fpga_EW_add_args;
Z
zhangyang 已提交
447 448

 public:
H
hanbuhe 已提交
449 450
  const fpga::EWAddArgs &FpgaArgs() const { return fpga_EW_add_args; }
  void SetFpgaArgs(const fpga::EWAddArgs &args) { fpga_EW_add_args = args; }
Z
zhangyang 已提交
451
#endif
朔-望's avatar
朔-望 已提交
452 453
};

454
#ifdef FUSION_ELEMENTWISEADDRELU_OP
N
nhzlx 已提交
455 456
template <typename Dtype>
using ElementwiseAddReluParam = ElementwiseAddParam<Dtype>;
L
liuruilong 已提交
457 458 459
#endif

#ifdef MUL_OP
N
nhzlx 已提交
460
template <typename Dtype>
朔-望's avatar
朔-望 已提交
461
class MulParam : OpParam {
N
nhzlx 已提交
462 463 464
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
465
 public:
466
  MulParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
467
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
468 469 470
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
471 472 473
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
  }
朔-望's avatar
朔-望 已提交
474

xiebaiyuan's avatar
xiebaiyuan 已提交
475
  const GType *InputX() const { return input_x_; }
朔-望's avatar
朔-望 已提交
476

xiebaiyuan's avatar
xiebaiyuan 已提交
477
  const GType *InputY() const { return input_y_; }
朔-望's avatar
朔-望 已提交
478

xiebaiyuan's avatar
xiebaiyuan 已提交
479
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
480

481
  const int &XNumColDims() const { return x_num_col_dims_; }
朔-望's avatar
朔-望 已提交
482

483
  const int &YNumColDims() const { return y_num_col_dims_; }
朔-望's avatar
朔-望 已提交
484

朔-望's avatar
朔-望 已提交
485
 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
486 487 488
  GType *input_x_;
  GType *input_y_;
  GType *out_;
489 490
  int x_num_col_dims_;
  int y_num_col_dims_;
朔-望's avatar
朔-望 已提交
491
};
L
liuruilong 已提交
492
#endif
朔-望's avatar
朔-望 已提交
493

L
liuruilong 已提交
494
#ifdef CONCAT_OP
N
nhzlx 已提交
495
template <typename Dtype>
朔-望's avatar
朔-望 已提交
496
class ConcatParam : public OpParam {
N
nhzlx 已提交
497 498 499
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
500
 public:
501
  ConcatParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
502
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
503 504
    inputs_ = InputMultiFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
505 506
    axis_ = GetAttr<int>("axis", attrs);
  }
朔-望's avatar
朔-望 已提交
507

N
nhzlx 已提交
508
  vector<GType *> Inputs() const { return inputs_; }
朔-望's avatar
朔-望 已提交
509

xiebaiyuan's avatar
xiebaiyuan 已提交
510
  GType *Out() const { return out_; }
朔-望's avatar
朔-望 已提交
511

512
  const int &Axis() const { return axis_; }
朔-望's avatar
朔-望 已提交
513

朔-望's avatar
朔-望 已提交
514
 private:
N
nhzlx 已提交
515
  vector<GType *> inputs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
516
  GType *out_;
517
  int axis_;
Z
zhangyang 已提交
518 519 520 521 522 523 524 525 526
#ifdef PADDLE_MOBILE_FPGA

 private:
  fpga::ConcatArgs fpga_concat_args;

 public:
  const fpga::ConcatArgs &FpgaArgs() const { return fpga_concat_args; }
  void SetFpgaArgs(const fpga::ConcatArgs &args) { fpga_concat_args = args; }
#endif
朔-望's avatar
朔-望 已提交
527
};
L
liuruilong 已提交
528
#endif
朔-望's avatar
朔-望 已提交
529

L
liuruilong 已提交
530
#ifdef LRN_OP
N
nhzlx 已提交
531
template <typename Dtype>
E
eclipsess 已提交
532
class LrnParam : public OpParam {
N
nhzlx 已提交
533 534 535
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
536
 public:
537
  LrnParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
538
           const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
539 540 541
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    mid_out_ = MidOutFrom<GType>(outputs, scope);
542 543 544 545
    n_ = GetAttr<int>("n", attrs);
    alpha_ = GetAttr<float>("alpha", attrs);
    beta_ = GetAttr<float>("beta", attrs);
    k_ = GetAttr<float>("k", attrs);
W
wangliu 已提交
546
    data_format_ = GetAttr<string>("data_format", attrs);
547
  }
E
eclipsess 已提交
548

N
nhzlx 已提交
549
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
550

N
nhzlx 已提交
551
  RType *Out() const { return out_; }
E
eclipsess 已提交
552

N
nhzlx 已提交
553
  RType *MidOut() const { return mid_out_; }
E
eclipsess 已提交
554

555
  const int &N() const { return n_; }
E
eclipsess 已提交
556

557
  const float &Alpha() const { return alpha_; }
E
eclipsess 已提交
558

559
  const float &Beta() const { return beta_; }
E
eclipsess 已提交
560

561
  const float &K() const { return k_; }
E
eclipsess 已提交
562

W
wangliu 已提交
563
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
564

朔-望's avatar
朔-望 已提交
565
 private:
N
nhzlx 已提交
566 567 568
  RType *input_x_;
  RType *out_;
  RType *mid_out_;
569 570 571 572
  int n_;
  float alpha_;
  float beta_;
  float k_;
W
wangliu 已提交
573
  string data_format_;
E
eclipsess 已提交
574
};
L
liuruilong 已提交
575 576 577
#endif

#ifdef BATCHNORM_OP
N
nhzlx 已提交
578
template <typename Dtype>
E
eclipsess 已提交
579
class BatchNormParam : OpParam {
N
nhzlx 已提交
580 581 582
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
583
 public:
584
  BatchNormParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
585
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
586 587 588 589 590 591
    input_x_ = InputXFrom<GType>(inputs, scope);
    output_y_ = OutputYFrom<GType>(outputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_mean_ = InputMeanFrom<GType>(inputs, scope);
    input_scale_ = InputScaleFrom<GType>(inputs, scope);
    input_variance_ = InputVarianceFrom<GType>(inputs, scope);
592 593
    epsilon_ = GetAttr<float>("epsilon", attrs);
    momentum_ = GetAttr<float>("momentum", attrs);
L
liuruilong 已提交
594
    //    is_test_ = GetAttr<bool>("is_test", attrs);
595
  }
E
eclipsess 已提交
596

N
nhzlx 已提交
597
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
598

N
nhzlx 已提交
599
  RType *OutputY() const { return output_y_; }
E
eclipsess 已提交
600

N
nhzlx 已提交
601
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
602

N
nhzlx 已提交
603
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
604

N
nhzlx 已提交
605
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
606

N
nhzlx 已提交
607
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
608

609
  const float &Epsilon() const { return epsilon_; }
E
eclipsess 已提交
610

611
  const float &Momentum() const { return momentum_; }
E
eclipsess 已提交
612

613
  const bool &IsTest() const { return is_test_; }
E
eclipsess 已提交
614

W
wangliu 已提交
615
  const string &DataFormat() const { return data_format_; }
E
eclipsess 已提交
616

朔-望's avatar
朔-望 已提交
617
 private:
N
nhzlx 已提交
618 619 620 621 622 623
  RType *input_x_;
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
624 625 626
  float epsilon_;
  float momentum_;
  bool is_test_;
W
wangliu 已提交
627
  string data_format_;
E
eclipsess 已提交
628
};
L
liuruilong 已提交
629 630 631
#endif

#ifdef POOL_OP
N
nhzlx 已提交
632
template <typename Dtype>
633
class PoolParam : public OpParam {
N
nhzlx 已提交
634 635 636
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

朔-望's avatar
朔-望 已提交
637
 public:
638
  PoolParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
639
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
640
    input_ = InputXFrom<GType>(inputs, scope);
641

N
nhzlx 已提交
642
    output_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
643 644 645 646
    pooling_type_ = GetAttr<string>("pooling_type", attrs);
    ksize_ = GetAttr<vector<int>>("ksize", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
647
    ceil_mode_ = GetAttr<bool>("ceil_mode", attrs);
648
    global_pooling_ = GetAttr<bool>("global_pooling", attrs);
649
  }
650

N
nhzlx 已提交
651
  const RType *Input() const { return input_; }
652

N
nhzlx 已提交
653
  RType *Output() const { return output_; }
654

W
wangliu 已提交
655
  const string &PoolingType() const { return pooling_type_; }
656

W
wangliu 已提交
657
  const vector<int> &Ksize() const { return ksize_; }
658

W
wangliu 已提交
659
  const vector<int> &Strides() const { return strides_; }
660

W
wangliu 已提交
661
  const vector<int> &Paddings() const { return paddings_; }
662

663
  bool isCeilMode() const { return ceil_mode_; }
664

Z
zhangyang 已提交
665
  bool isGlobalPooling() const { return global_pooling_; }
666

朔-望's avatar
朔-望 已提交
667
 private:
N
nhzlx 已提交
668 669
  RType *input_;
  RType *output_;
W
wangliu 已提交
670 671 672 673
  string pooling_type_;
  vector<int> ksize_;
  vector<int> strides_;
  vector<int> paddings_;
674
  bool ceil_mode_;
675
  bool global_pooling_ = false;
Z
zhangyang 已提交
676
#ifdef PADDLE_MOBILE_FPGA
677 678

 private:
H
hanbuhe 已提交
679
  fpga::PoolingArgs fpga_pool_args;
Z
zhangyang 已提交
680 681

 public:
H
hanbuhe 已提交
682 683
  const fpga::PoolingArgs &FpgaArgs() const { return fpga_pool_args; }
  void SetFpgaArgs(const fpga::PoolingArgs &args) { fpga_pool_args = args; }
Z
zhangyang 已提交
684
#endif
685
};
L
liuruilong 已提交
686 687 688
#endif

#ifdef PRIORBOX_OP
N
nhzlx 已提交
689
template <typename Dtype>
E
eclipsess 已提交
690
class PriorBoxParam : public OpParam {
N
nhzlx 已提交
691 692 693
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
694 695
 public:
  PriorBoxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
696
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
697 698 699 700
    input_ = InputFrom<GType>(inputs, scope);
    input_image_ = InputImageFrom<GType>(inputs, scope);
    output_boxes_ = OutputBoxesFrom<GType>(outputs, scope);
    output_variances_ = OutputVariancesFrom<GType>(outputs, scope);
W
wangliu 已提交
701 702 703 704
    min_sizes_ = GetAttr<vector<float>>("min_sizes", attrs);
    max_sizes_ = GetAttr<vector<float>>("max_sizes", attrs);
    aspect_ratios_ = GetAttr<vector<float>>("aspect_ratios", attrs);
    variances_ = GetAttr<vector<float>>("variances", attrs);
705

xiebaiyuan's avatar
xiebaiyuan 已提交
706 707 708
    if (HasAttr("min_max_aspect_ratios_order", attrs)) {
      min_max_aspect_ratios_order_ =
          GetAttr<bool>("min_max_aspect_ratios_order", attrs);
709
    }
E
eclipsess 已提交
710 711 712 713 714 715
    flip_ = GetAttr<bool>("flip", attrs);
    clip_ = GetAttr<bool>("clip", attrs);
    step_w_ = GetAttr<float>("step_w", attrs);
    step_h_ = GetAttr<float>("step_h", attrs);
    offset_ = GetAttr<float>("offset", attrs);
  }
N
nhzlx 已提交
716
  const RType *Input() const { return input_; }
E
eclipsess 已提交
717

N
nhzlx 已提交
718
  const RType *InputImage() const { return input_image_; }
E
eclipsess 已提交
719

N
nhzlx 已提交
720
  RType *OutputBoxes() const { return output_boxes_; }
E
eclipsess 已提交
721

N
nhzlx 已提交
722
  RType *OutputVariances() const { return output_variances_; }
E
eclipsess 已提交
723

W
wangliu 已提交
724
  const vector<float> &MinSizes() const { return min_sizes_; }
E
eclipsess 已提交
725

W
wangliu 已提交
726
  const vector<float> &MaxSizes() const { return max_sizes_; }
E
eclipsess 已提交
727

W
wangliu 已提交
728
  const vector<float> &AspectRatios() const { return aspect_ratios_; }
E
eclipsess 已提交
729

W
wangliu 已提交
730
  const vector<float> &Variances() const { return variances_; }
E
eclipsess 已提交
731 732 733 734 735 736 737 738 739 740 741

  const bool &Flip() const { return flip_; }

  const bool &Clip() const { return clip_; }

  const float &StepW() const { return step_w_; }

  const float &StepH() const { return step_h_; }

  const float &Offset() const { return offset_; }

742 743 744 745
  const bool &MinMaxAspectRatiosOrder() const {
    return min_max_aspect_ratios_order_;
  }

E
eclipsess 已提交
746
 private:
N
nhzlx 已提交
747 748 749 750
  RType *input_;
  RType *input_image_;
  RType *output_boxes_;
  RType *output_variances_;
W
wangliu 已提交
751 752 753 754
  vector<float> min_sizes_;
  vector<float> max_sizes_;
  vector<float> aspect_ratios_;
  vector<float> variances_;
E
eclipsess 已提交
755 756 757 758 759
  bool flip_;
  bool clip_;
  float step_w_;
  float step_h_;
  float offset_;
760
  bool min_max_aspect_ratios_order_;
E
eclipsess 已提交
761
};
L
liuruilong 已提交
762
#endif
E
eclipsess 已提交
763

L
liuruilong 已提交
764
#ifdef BOXCODER_OP
N
nhzlx 已提交
765
template <typename Dtype>
E
eclipsess 已提交
766
class BoxCoderParam : public OpParam {
N
nhzlx 已提交
767 768 769
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
770 771
 public:
  BoxCoderParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
772
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
773 774 775 776
    input_priorbox_ = InputPriorBoxFrom<GType>(inputs, scope);
    input_priorboxvar_ = InputPriorBoxVarFrom<GType>(inputs, scope);
    input_targetbox_ = InputTargetBoxFrom<GType>(inputs, scope);
    output_box_ = OutputBoxFrom<GType>(outputs, scope);
E
eclipsess 已提交
777 778
    code_type_ = GetAttr<std::string>("code_type", attrs);
  }
N
nhzlx 已提交
779
  const RType *InputPriorBox() const { return input_priorbox_; }
E
eclipsess 已提交
780

N
nhzlx 已提交
781
  const RType *InputPriorBoxVar() const { return input_priorboxvar_; }
E
eclipsess 已提交
782

N
nhzlx 已提交
783
  const RType *InputTargetBox() const { return input_targetbox_; }
E
eclipsess 已提交
784

N
nhzlx 已提交
785
  RType *OutputBox() const { return output_box_; }
E
eclipsess 已提交
786 787 788 789

  const std::string &CodeType() const { return code_type_; }

 private:
N
nhzlx 已提交
790 791 792 793
  RType *input_priorbox_;
  RType *input_priorboxvar_;
  RType *input_targetbox_;
  RType *output_box_;
E
eclipsess 已提交
794 795
  std::string code_type_;
};
L
liuruilong 已提交
796
#endif
W
wangliu 已提交
797

L
liuruilong 已提交
798
#ifdef SOFTMAX_OP
N
nhzlx 已提交
799
template <typename Dtype>
W
wangliu 已提交
800
class SoftmaxParam : public OpParam {
N
nhzlx 已提交
801 802 803
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
804 805
 public:
  SoftmaxParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
806
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
807 808
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
809
  }
N
nhzlx 已提交
810 811
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
812 813

 private:
N
nhzlx 已提交
814 815
  RType *input_x_;
  RType *out_;
H
hanbuhe 已提交
816 817 818 819

#ifdef PADDLE_MOBILE_FPGA

 private:
N
nhzlx 已提交
820
  std::shared_ptr<RType> float_input_x_;
H
hanbuhe 已提交
821 822 823
  fpga::BypassArgs fpga_bypass_args;

 public:
824
  RType *FloatInput() const {
H
hanbuhe 已提交
825 826 827 828 829 830
    return float_input_x_ == nullptr ? input_x_ : float_input_x_.get();
  }
  void SetFloatInput(Tensor *input) { float_input_x_.reset(input); }
  const fpga::BypassArgs &FpgaArgs() const { return fpga_bypass_args; }
  void SetFpgaArgs(const fpga::BypassArgs &args) { fpga_bypass_args = args; }
#endif
W
wangliu 已提交
831
};
L
liuruilong 已提交
832
#endif
W
wangliu 已提交
833

L
liuruilong 已提交
834
#ifdef SIGMOID_OP
N
nhzlx 已提交
835
template <typename Dtype>
W
wangliu 已提交
836
class SigmoidParam : public OpParam {
N
nhzlx 已提交
837 838 839
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
840 841
 public:
  SigmoidParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
842
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
843 844
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
W
wangliu 已提交
845
  }
N
nhzlx 已提交
846 847
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
W
wangliu 已提交
848 849

 private:
N
nhzlx 已提交
850 851
  RType *input_x_;
  RType *out_;
W
wangliu 已提交
852
};
L
liuruilong 已提交
853 854 855
#endif

#ifdef MULTICLASSNMS_OP
N
nhzlx 已提交
856
template <typename Dtype>
E
eclipsess 已提交
857
class MultiClassNMSParam : public OpParam {
N
nhzlx 已提交
858 859 860
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
861 862 863 864
 public:
  MultiClassNMSParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
865 866 867
    input_bboxes_ = InputBBoxesFrom<GType>(inputs, scope);
    input_scores_ = InputScoresFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
868 869 870 871 872 873 874 875
    background_label_ = GetAttr<int>("background_label", attrs);
    nms_top_k_ = GetAttr<int>("nms_top_k", attrs);
    keep_top_k_ = GetAttr<int>("keep_top_k", attrs);
    nms_threshold_ = GetAttr<float>("nms_threshold", attrs);
    nms_eta_ = GetAttr<float>("nms_eta", attrs);
    score_threshold_ = GetAttr<float>("score_threshold", attrs);
  }

N
nhzlx 已提交
876
  const RType *InputBBoxes() const { return input_bboxes_; }
E
eclipsess 已提交
877

N
nhzlx 已提交
878
  const RType *InputScores() const { return input_scores_; }
E
eclipsess 已提交
879

N
nhzlx 已提交
880
  RType *Out() const { return out_; }
E
eclipsess 已提交
881 882 883 884 885 886 887 888 889 890 891 892 893 894

  const int &BackGroundLabel() const { return background_label_; }

  const int &NMSTopK() const { return nms_top_k_; }

  const int &KeepTopK() const { return keep_top_k_; }

  const float &NMSThreshold() const { return nms_threshold_; }

  const float &NMSEta() const { return nms_eta_; }

  const float &ScoreThreshold() const { return score_threshold_; }

 private:
N
nhzlx 已提交
895 896 897
  RType *input_bboxes_;
  RType *input_scores_;
  RType *out_;
E
eclipsess 已提交
898 899 900 901 902 903 904
  int background_label_;
  int nms_top_k_;
  int keep_top_k_;
  float nms_threshold_;
  float nms_eta_;
  float score_threshold_;
};
L
liuruilong 已提交
905
#endif
W
wangliu 已提交
906

N
nhzlx 已提交
907
template <typename Dtype>
L
liuruilong 已提交
908
class FeedParam : public OpParam {
N
nhzlx 已提交
909 910 911
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
912 913
 public:
  FeedParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
Y
yangfei 已提交
914 915 916 917
            const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<LoDTensor>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    auto var = scope.FindVar("batch_size");
W
wangliu 已提交
918
    batch_size = var->GetValue<int>();
L
liuruilong 已提交
919
  }
Y
yangfei 已提交
920
  const LoDTensor *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
921
  GType *Out() const { return out_; }
W
wangliu 已提交
922
  const int BatchSize() const { return batch_size; }
L
liuruilong 已提交
923

L
liuruilong 已提交
924
 private:
Y
yangfei 已提交
925
  LoDTensor *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
926
  GType *out_;
W
wangliu 已提交
927
  int batch_size;
L
liuruilong 已提交
928 929
};

N
nhzlx 已提交
930
template <typename Dtype>
L
liuruilong 已提交
931
class FetchParam : public OpParam {
N
nhzlx 已提交
932 933 934
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
935 936
 public:
  FetchParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
937
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
938 939
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
L
liuruilong 已提交
940
  }
N
nhzlx 已提交
941 942
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
L
liuruilong 已提交
943

L
liuruilong 已提交
944
 private:
N
nhzlx 已提交
945 946
  RType *input_x_;
  RType *out_;
L
liuruilong 已提交
947 948
};

L
liuruilong 已提交
949
#ifdef TRANSPOSE_OP
N
nhzlx 已提交
950
template <typename Dtype>
E
eclipsess 已提交
951
class TransposeParam : public OpParam {
N
nhzlx 已提交
952 953 954
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
955 956 957
 public:
  TransposeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
                 const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
958 959
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
960 961 962
    axis_ = GetAttr<vector<int>>("axis", attrs);
  }

N
nhzlx 已提交
963
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
964

N
nhzlx 已提交
965
  RType *Out() const { return out_; }
E
eclipsess 已提交
966 967 968 969

  const vector<int> &Axis() const { return axis_; }

 private:
N
nhzlx 已提交
970 971
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
972 973
  vector<int> axis_;
};
L
liuruilong 已提交
974
#endif
E
eclipsess 已提交
975

xiebaiyuan's avatar
xiebaiyuan 已提交
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041
#ifdef LOOKUP_OP
template <typename Dtype>
class LookupParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  LookupParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
    input_w_ = InputWFrom<GType>(inputs, scope);
    input_ids_ = InputIdsFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }

  const GType *InputW() const { return input_w_; }
  const GType *InputIds() const { return input_ids_; }
  GType *Out() const { return out_; }
  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_w_;
  GType *input_ids_;
  GType *out_;
  int64_t padding_idx_;
};
#endif

#ifdef CRF_OP
template <typename Dtype>
class CrfParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  //    {G_OP_TYPE_CRF, {{"Emission", "Transition", "Label"}, {"ViterbiPath"}}},

  CrfParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    // todo crf params
    input_emission_ = InputEmissionFrom<GType>(inputs, scope);
    input_transition_ = InputTransitionFrom<GType>(inputs, scope);
    input_label_ = InputLabelFrom<GType>(inputs, scope);
    output_viterbipath_ = OutputViterbiPathFrom<GType>(outputs, scope);
    //    padding_idx_ = GetAttr<int64_t>("padding_idx", attrs);
  }
  const GType *InputEmission() const { return input_emission_; }
  const GType *InputTransition() const { return input_transition_; }
  const GType *InputLabel() const { return input_label_; }
  GType *outputVBP() const { return output_viterbipath_; }
  //  const RType *InputIds() const { return input_ids_; }
  //  RType *Out() const { return out_; }
  //  int64_t PaddingIdx() const { return padding_idx_; }

 private:
  GType *input_emission_;
  GType *input_transition_;
  GType *input_label_;
  GType *output_viterbipath_;

  //  RType *input_ids_;
  //  RType *out_;
  //  int64_t padding_idx_;
};
#endif

L
liuruilong 已提交
1042
#ifdef RESHAPE_OP
N
nhzlx 已提交
1043
template <typename Dtype>
E
eclipsess 已提交
1044
class ReshapeParam : public OpParam {
N
nhzlx 已提交
1045 1046 1047
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1048 1049 1050
 public:
  ReshapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1051 1052 1053
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1054
    shape_ = GetAttr<vector<int>>("shape", attrs);
1055 1056 1057 1058 1059 1060 1061

    if (HasAttr("inplace", attrs)) {
      inplace_ = GetAttr<bool>("inplace", attrs);
    } else {
      inplace_ = false;
      DLOG << "ReshapeParam lost inplace params. maybe fluid updated";
    }
E
eclipsess 已提交
1062 1063
  }

N
nhzlx 已提交
1064
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1065

N
nhzlx 已提交
1066
  const RType *InputShape() const { return input_shape_; }
E
eclipsess 已提交
1067

N
nhzlx 已提交
1068
  RType *Out() const { return out_; }
E
eclipsess 已提交
1069 1070 1071 1072 1073 1074

  const vector<int> &Shape() const { return shape_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1075 1076 1077
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
E
eclipsess 已提交
1078 1079 1080
  vector<int> shape_;
  bool inplace_;
};
L
liuruilong 已提交
1081
#endif
E
eclipsess 已提交
1082

T
Tian 已提交
1083
#ifdef SCALE_OP
N
nhzlx 已提交
1084
template <typename Dtype>
I
itminner 已提交
1085
class ScaleParam : public OpParam {
N
nhzlx 已提交
1086 1087 1088
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1089 1090 1091
 public:
  ScaleParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1092 1093 1094
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1095 1096 1097 1098 1099 1100
    inplace_ = GetAttr<bool>("inplace", attrs);
    has_bias_ = GetAttr<bool>("has_bias", attrs);
    scales_ = GetAttr<vector<float>>("scales", attrs);
    biases_ = GetAttr<vector<float>>("biases", attrs);
  }

N
nhzlx 已提交
1101
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1102

N
nhzlx 已提交
1103
  const RType *InputBias() const { return input_bias_; }
I
itminner 已提交
1104

N
nhzlx 已提交
1105
  RType *Out() const { return out_; }
I
itminner 已提交
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115

  const bool &Inplace() const { return inplace_; }

  const bool &HasBias() const { return has_bias_; }

  const vector<float> &Scales() const { return scales_; }

  const vector<float> &Biases() const { return biases_; }

 private:
N
nhzlx 已提交
1116 1117 1118
  RType *input_x_;
  RType *input_bias_;
  RType *out_;
I
itminner 已提交
1119 1120 1121 1122 1123
  bool inplace_;
  bool has_bias_;
  vector<float> scales_;
  vector<float> biases_;
};
T
Tian 已提交
1124 1125 1126
#endif

#ifdef SLICE_OP
N
nhzlx 已提交
1127
template <typename Dtype>
I
itminner 已提交
1128
class SliceParam : public OpParam {
N
nhzlx 已提交
1129 1130 1131
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1132 1133 1134
 public:
  SliceParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1135 1136 1137
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1138 1139 1140 1141 1142
    axis_ = GetAttr<int>("axis", attrs);
    slice_points_ = GetAttr<vector<int>>("slice_points", attrs);
    inplace_ = GetAttr<bool>("inplace", attrs);
  }

N
nhzlx 已提交
1143
  const RType *InputX() const { return input_x_; }
I
itminner 已提交
1144

N
nhzlx 已提交
1145
  const RType *InputShape() const { return input_shape_; }
I
itminner 已提交
1146

N
nhzlx 已提交
1147
  RType *Out() const { return out_; }
I
itminner 已提交
1148 1149 1150 1151 1152 1153 1154 1155

  const int &Axis() const { return axis_; }

  const vector<int> &SlicePoints() const { return slice_points_; }

  const bool &Inplace() const { return inplace_; }

 private:
N
nhzlx 已提交
1156 1157 1158
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1159 1160 1161 1162
  int axis_;
  vector<int> slice_points_;
  bool inplace_;
};
T
Tian 已提交
1163 1164 1165
#endif

#ifdef RESIZE_OP
N
nhzlx 已提交
1166
template <typename Dtype>
T
Tian 已提交
1167
class ResizeParam : public OpParam {
N
nhzlx 已提交
1168 1169 1170
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1171 1172 1173
 public:
  ResizeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
              const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1174 1175 1176
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_shape_ = InputShapeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
I
itminner 已提交
1177 1178 1179 1180 1181 1182
    is_pyramid_test_ = GetAttr<bool>("is_pyramid_test", attrs);
    height_ = GetAttr<int>("height", attrs);
    width_ = GetAttr<int>("width", attrs);
    out_height_scale_ = GetAttr<float>("out_height_scale", attrs);
    out_width_scale_ = GetAttr<float>("out_width_scale", attrs);
  }
T
Tian 已提交
1183

N
nhzlx 已提交
1184
  const RType *InputX() const { return input_x_; }
T
Tian 已提交
1185

N
nhzlx 已提交
1186
  const RType *InputShape() const { return input_shape_; }
T
Tian 已提交
1187

N
nhzlx 已提交
1188
  RType *Out() const { return out_; }
T
Tian 已提交
1189

I
itminner 已提交
1190
  const bool &IsPyramidTest() const { return is_pyramid_test_; }
T
Tian 已提交
1191

I
itminner 已提交
1192
  const int &Height() const { return height_; }
T
Tian 已提交
1193

I
itminner 已提交
1194
  const int &Width() const { return width_; }
T
Tian 已提交
1195

I
itminner 已提交
1196
  const float &OutHeightScale() const { return out_height_scale_; }
T
Tian 已提交
1197

I
itminner 已提交
1198
  const float &OutWidthScale() const { return out_width_scale_; }
T
Tian 已提交
1199

I
itminner 已提交
1200
 private:
N
nhzlx 已提交
1201 1202 1203
  RType *input_x_;
  RType *input_shape_;
  RType *out_;
I
itminner 已提交
1204 1205 1206 1207 1208
  bool is_pyramid_test_;
  int height_;
  int width_;
  float out_height_scale_;
  float out_width_scale_;
T
Tian 已提交
1209 1210 1211
};
#endif

L
liuruilong 已提交
1212
#ifdef RELU_OP
L
liuruilong 已提交
1213 1214 1215
/*
 * @b op 层实例化好这个 param 传递给 kernel 层使用
 * */
N
nhzlx 已提交
1216
template <typename Dtype>
E
eclipsess 已提交
1217
class ReluParam : public OpParam {
N
nhzlx 已提交
1218 1219 1220
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1221 1222 1223
 public:
  ReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
            const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1224 1225
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1226 1227
  }

N
nhzlx 已提交
1228
  const RType *InputX() const { return input_x_; }
E
eclipsess 已提交
1229

N
nhzlx 已提交
1230
  RType *Out() const { return out_; }
E
eclipsess 已提交
1231 1232

 private:
N
nhzlx 已提交
1233 1234
  RType *input_x_;
  RType *out_;
E
eclipsess 已提交
1235
};
L
liuruilong 已提交
1236
#endif
E
eclipsess 已提交
1237

T
Tian 已提交
1238
#ifdef PRELU_OP
N
nhzlx 已提交
1239
template <typename Dtype>
T
Tian 已提交
1240
class PReluParam : public OpParam {
N
nhzlx 已提交
1241 1242 1243
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

I
itminner 已提交
1244 1245 1246
 public:
  PReluParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
1247
    DLOG << "PReluParam inputs before";
N
nhzlx 已提交
1248
    input_x_ = InputXFrom<GType>(inputs, scope);
N
nhzlx 已提交
1249
    alpha_ = InputAlphaFrom<GType>(inputs, scope);
1250
    framework::DDim dims = alpha_->dims();
N
nhzlx 已提交
1251
    out_ = OutFrom<GType>(outputs, scope);
1252 1253
    mode_ = GetAttr<std::string>("mode", attrs);
    DLOG << "PReluParam mode after" << mode_;
I
itminner 已提交
1254
  }
N
nhzlx 已提交
1255
  const RType *InputX() const { return input_x_; }
N
nhzlx 已提交
1256
  const RType *InputAlpha() const { return alpha_; }
N
nhzlx 已提交
1257
  RType *Out() const { return out_; }
1258
  const std::string &Mode() const { return mode_; }
T
Tian 已提交
1259

I
itminner 已提交
1260
 private:
N
nhzlx 已提交
1261 1262
  RType *input_x_;
  RType *out_;
N
nhzlx 已提交
1263
  RType *alpha_;
1264
  std::string mode_;
T
Tian 已提交
1265 1266 1267
};
#endif

N
nhzlx 已提交
1268
template <typename Dtype>
L
liuruilong 已提交
1269
class FusionFcParam : public OpParam {
N
nhzlx 已提交
1270 1271 1272
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1273
 public:
L
liuruilong 已提交
1274
  FusionFcParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
L
liuruilong 已提交
1275
                const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1276 1277 1278 1279
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_y_ = InputYFrom<GType>(inputs, scope);
    input_z_ = InputZFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
E
eclipsess 已提交
1280 1281 1282 1283
    x_num_col_dims_ = GetAttr<int>("x_num_col_dims", attrs);
    y_num_col_dims_ = GetAttr<int>("y_num_col_dims", attrs);
    axis_ = GetAttr<int>("axis", attrs);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
1284
  const GType *InputX() const { return input_x_; }
E
eclipsess 已提交
1285

N
nhzlx 已提交
1286
  const RType *InputY() const { return input_y_; }
E
eclipsess 已提交
1287

N
nhzlx 已提交
1288
  const RType *InputZ() const { return input_z_; }
E
eclipsess 已提交
1289

xiebaiyuan's avatar
xiebaiyuan 已提交
1290
  GType *Out() const { return out_; }
E
eclipsess 已提交
1291 1292 1293 1294 1295 1296 1297 1298

  const int &XNumColDims() const { return x_num_col_dims_; }

  const int &YNumColDims() const { return y_num_col_dims_; }

  const int &Axis() const { return axis_; }

 private:
xiebaiyuan's avatar
xiebaiyuan 已提交
1299
  GType *input_x_;
N
nhzlx 已提交
1300 1301
  RType *input_y_;
  RType *input_z_;
xiebaiyuan's avatar
xiebaiyuan 已提交
1302
  GType *out_;
E
eclipsess 已提交
1303 1304 1305
  int x_num_col_dims_;
  int y_num_col_dims_;
  int axis_;
Z
zhangyang 已提交
1306 1307 1308
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1309
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1310 1311

 public:
Z
zhangyang 已提交
1312 1313
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1314
#endif
E
eclipsess 已提交
1315
};
1316 1317

#ifdef FUSION_FCRELU_OP
N
nhzlx 已提交
1318 1319
template <typename DeviceType>
using FusionFcReluParam = FusionFcParam<DeviceType>;
L
liuruilong 已提交
1320
#endif
E
eclipsess 已提交
1321

N
nhzlx 已提交
1322
template <typename Dtype>
1323
class FusionConvAddParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1324 1325 1326
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

W
wangliu 已提交
1327
 public:
L
liuruilong 已提交
1328
  FusionConvAddParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1329
                     const VariableNameMap &outputs, const AttributeMap &attrs,
1330 1331 1332 1333 1334
                     const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
W
wangliu 已提交
1335
  }
N
nhzlx 已提交
1336
  RType *Bias() const { return bias_; }
W
wangliu 已提交
1337 1338 1339

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1340
  RType *Output() const { return output_; }
W
wangliu 已提交
1341

L
liuruilong 已提交
1342
 protected:
N
nhzlx 已提交
1343
  RType *bias_;
W
wangliu 已提交
1344
  int axis_;
N
nhzlx 已提交
1345
  RType *output_;
Z
zhangyang 已提交
1346 1347 1348
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1349
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1350 1351

 public:
Z
zhangyang 已提交
1352 1353
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1354
#endif
W
wangliu 已提交
1355 1356
};

N
nhzlx 已提交
1357 1358
template <typename Dtype>
Print &operator<<(Print &printer, const FusionConvAddParam<Dtype> &conv_param);
W
wangliu 已提交
1359

Z
zhangyang 已提交
1360
#ifdef FUSION_CONVADDRELU_OP
N
nhzlx 已提交
1361 1362
template <typename DeviceType>
class FusionConvAddReluParam : public FusionConvAddParam<DeviceType> {
L
liuruilong 已提交
1363
 public:
L
liuruilong 已提交
1364
  FusionConvAddReluParam(const VariableNameMap &inputs,
L
liuruilong 已提交
1365 1366
                         const VariableNameMap &outputs,
                         const AttributeMap &attrs, const Scope &scope)
N
nhzlx 已提交
1367
      : FusionConvAddParam<DeviceType>(inputs, outputs, attrs, scope) {}
L
liuruilong 已提交
1368 1369 1370
};
#endif

1371
#ifdef FUSION_CONVADDPRELU_OP
1372 1373 1374 1375
template <typename Dtype>
class FusionConvAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1376 1377 1378 1379

 public:
  FusionConvAddPReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1380 1381 1382 1383
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
    mode_ = OpParam::GetAttr<std::string>("mode", attrs);
1384
    framework::DDim dims = alpha_->dims();
1385 1386 1387
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  RType *Bias() const { return bias_; }
  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1404
  fpga::WrapperConvArgs fpga_conv_args;
1405 1406

 public:
Z
zhangyang 已提交
1407 1408
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
1409 1410 1411 1412 1413
#endif
};
#endif

#ifdef FUSION_CONVADDADDPRELU_OP
1414 1415 1416 1417
template <typename Dtype>
class FusionConvAddAddPReluParam : public ConvParam<Dtype> {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;
1418 1419 1420 1421

 public:
  FusionConvAddAddPReluParam(const VariableNameMap &inputs,
                             const VariableNameMap &outputs,
1422 1423 1424 1425 1426
                             const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
    alpha_ = OpParam::InputAlphaFrom<GType>(inputs, scope);
    mode_ = OpParam::GetAttr<std::string>("mode", attrs);
1427
    framework::DDim dims = alpha_->dims();
1428 1429 1430 1431 1432 1433
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    keyOutput_ = OpParam::getkey("addOut", inputs, 0);
    keyX1_ = OpParam::getkey("addX", inputs, 1);
    keyY1_ = OpParam::getkey("Y", inputs, 1);
1434
    if (keyX1_ == keyOutput_) {
1435
      bias1_ = OpParam::InputYFrom1<GType>(inputs, scope);
1436
    } else if (keyY1_ == keyOutput_) {
1437
      bias1_ = OpParam::InputXFrom1<GType>(inputs, scope);
1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461
    }
  }
  const RType *InputAlpha() const { return alpha_; }
  const std::string &Mode() const { return mode_; }
  const RType *Bias1() const { return bias1_; }

  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }
  RType *Output() const { return output_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *alpha_;
  std::string mode_;
  RType *bias1_;
  std::string keyOutput_;
  std::string keyX1_;
  std::string keyY1_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1462
  fpga::WrapperConvArgs fpga_conv_args;
1463 1464

 public:
Z
zhangyang 已提交
1465 1466
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
1467 1468 1469 1470
#endif
};
#endif

E
eclipsess 已提交
1471
#ifdef FUSION_CONVADDBNRELU_OP
N
nhzlx 已提交
1472
template <typename Dtype>
1473
class FusionConvAddBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1474 1475 1476
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1477 1478 1479
 public:
  FusionConvAddBNReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1492
  }
N
nhzlx 已提交
1493
  RType *Bias() const { return bias_; }
E
eclipsess 已提交
1494 1495 1496

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1497
  RType *Output() const { return output_; }
E
eclipsess 已提交
1498

N
nhzlx 已提交
1499
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1500

N
nhzlx 已提交
1501
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1502

N
nhzlx 已提交
1503
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1504

N
nhzlx 已提交
1505
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1506 1507 1508 1509 1510 1511 1512

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1513
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1514

N
nhzlx 已提交
1515
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1516

N
nhzlx 已提交
1517
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1518

N
nhzlx 已提交
1519
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1520 1521

 protected:
N
nhzlx 已提交
1522
  RType *bias_;
E
eclipsess 已提交
1523
  int axis_;
N
nhzlx 已提交
1524 1525 1526 1527 1528
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1529 1530 1531
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1532 1533
  RType *new_bias_;
  RType *new_scale_;
1534

Z
zhangyang 已提交
1535 1536 1537
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1538
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1539 1540

 public:
Z
zhangyang 已提交
1541 1542
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
1543 1544 1545 1546 1547 1548
#endif
};
#endif

#ifdef FUSION_CONVBNADDRELU_OP
template <typename Dtype>
1549
class FusionConvBNAddReluParam : public ConvParam<Dtype> {
1550 1551 1552 1553 1554 1555
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FusionConvBNAddReluParam(const VariableNameMap &inputs,
                           const VariableNameMap &outputs,
1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569
                           const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    keyBNY_ = OpParam::getkey("BNY", inputs, 0);
    keyX_ = OpParam::getkey("X", inputs, 0);
    keyY_ = OpParam::getkey("Y", inputs, 0);
1570
    if (keyX_ == keyBNY_) {
1571
      bias_ = OpParam::InputYFrom<GType>(inputs, scope);
1572
    } else if (keyY_ == keyBNY_) {
1573
      bias_ = OpParam::InputXFrom<GType>(inputs, scope);
1574
    }
1575
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623
  }
  RType *Bias() const { return bias_; }

  const int &Axis() const { return axis_; }

  RType *Output() const { return output_; }

  const RType *InputBias() const { return input_bias_; }

  const RType *InputMean() const { return input_mean_; }

  const RType *InputScale() const { return input_scale_; }

  const RType *InputVariance() const { return input_variance_; }

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }

  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }

  const RType *NewScale() const { return new_scale_; }

  const RType *NewBias() const { return new_bias_; }

 protected:
  RType *bias_;
  int axis_;
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
  float epsilon_;
  float momentum_;
  bool is_test_;
  RType *new_bias_;
  RType *new_scale_;
  std::string keyBNY_;
  std::string keyX_;
  std::string keyY_;
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1624
  fpga::WrapperConvArgs fpga_conv_args;
1625 1626

 public:
Z
zhangyang 已提交
1627 1628
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1629
#endif
E
eclipsess 已提交
1630
};
1631
#endif
E
eclipsess 已提交
1632

Z
zhangyang 已提交
1633
#ifdef FUSION_CONVBN_OP
N
nhzlx 已提交
1634
template <typename Dtype>
1635
class FusionConvBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1636 1637 1638
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Z
zhangyang 已提交
1639 1640 1641
 public:
  FusionConvBNParam(const VariableNameMap &inputs,
                    const VariableNameMap &outputs, const AttributeMap &attrs,
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651
                    const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
Z
zhangyang 已提交
1652
  }
N
nhzlx 已提交
1653
  RType *Output() const { return output_y_; }
Z
zhangyang 已提交
1654

N
nhzlx 已提交
1655
  const RType *InputBias() const { return input_bias_; }
Z
zhangyang 已提交
1656

N
nhzlx 已提交
1657
  const RType *InputMean() const { return input_mean_; }
Z
zhangyang 已提交
1658

N
nhzlx 已提交
1659
  const RType *InputScale() const { return input_scale_; }
Z
zhangyang 已提交
1660

N
nhzlx 已提交
1661
  const RType *InputVariance() const { return input_variance_; }
Z
zhangyang 已提交
1662 1663 1664 1665 1666 1667 1668

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1669
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
Z
zhangyang 已提交
1670

N
nhzlx 已提交
1671
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
Z
zhangyang 已提交
1672

N
nhzlx 已提交
1673
  const RType *NewScale() const { return new_scale_; }
Z
zhangyang 已提交
1674

N
nhzlx 已提交
1675
  const RType *NewBias() const { return new_bias_; }
Z
zhangyang 已提交
1676 1677

 protected:
N
nhzlx 已提交
1678 1679 1680 1681 1682
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
Z
zhangyang 已提交
1683 1684 1685
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1686 1687
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1688 1689 1690
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1691
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1692 1693

 public:
Z
zhangyang 已提交
1694 1695
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1696 1697 1698 1699
#endif
};
#endif

1700
#ifdef FUSION_CONVADDBN_OP
N
nhzlx 已提交
1701
template <typename Dtype>
1702
class FusionConvAddBNParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1703 1704 1705
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1706 1707 1708
 public:
  FusionConvAddBNParam(const VariableNameMap &inputs,
                       const VariableNameMap &outputs,
1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720
                       const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    bias_ = OpParam::InputYFrom<GType>(inputs, scope);
    axis_ = OpParam::GetAttr<int>("axis", attrs);
    output_y_ = OpParam::OutputYFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1721
  }
N
nhzlx 已提交
1722
  RType *Bias() const { return bias_; }
1723 1724 1725

  const int &Axis() const { return axis_; }

N
nhzlx 已提交
1726
  RType *Output() const { return output_y_; }
1727

N
nhzlx 已提交
1728
  const RType *InputBias() const { return input_bias_; }
1729

N
nhzlx 已提交
1730
  const RType *InputMean() const { return input_mean_; }
1731

N
nhzlx 已提交
1732
  const RType *InputScale() const { return input_scale_; }
1733

N
nhzlx 已提交
1734
  const RType *InputVariance() const { return input_variance_; }
1735 1736 1737 1738 1739 1740 1741

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1742
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
1743

N
nhzlx 已提交
1744
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
1745

N
nhzlx 已提交
1746
  const RType *NewScale() const { return new_scale_; }
1747

N
nhzlx 已提交
1748
  const RType *NewBias() const { return new_bias_; }
1749 1750

 protected:
N
nhzlx 已提交
1751
  RType *bias_;
1752
  int axis_;
N
nhzlx 已提交
1753 1754 1755 1756 1757
  RType *output_y_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
1758 1759 1760
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1761 1762
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1763 1764 1765
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1766
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1767 1768

 public:
Z
zhangyang 已提交
1769 1770
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1771
#endif
1772
};
E
eclipsess 已提交
1773
#endif
Y
Yao,kun 已提交
1774

E
eclipsess 已提交
1775
#ifdef FUSION_DWCONVBNRELU_OP
N
nhzlx 已提交
1776
template <typename Dtype>
1777
class FusionDWConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1778 1779 1780
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

E
eclipsess 已提交
1781 1782 1783
 public:
  FusionDWConvBNReluParam(const VariableNameMap &inputs,
                          const VariableNameMap &outputs,
1784 1785 1786 1787 1788 1789 1790 1791 1792 1793
                          const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
E
eclipsess 已提交
1794
  }
N
nhzlx 已提交
1795
  RType *Output() const { return output_; }
E
eclipsess 已提交
1796

N
nhzlx 已提交
1797
  const RType *InputBias() const { return input_bias_; }
E
eclipsess 已提交
1798

N
nhzlx 已提交
1799
  const RType *InputMean() const { return input_mean_; }
E
eclipsess 已提交
1800

N
nhzlx 已提交
1801
  const RType *InputScale() const { return input_scale_; }
E
eclipsess 已提交
1802

N
nhzlx 已提交
1803
  const RType *InputVariance() const { return input_variance_; }
E
eclipsess 已提交
1804 1805 1806 1807 1808 1809 1810

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1811
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
E
eclipsess 已提交
1812

N
nhzlx 已提交
1813
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
E
eclipsess 已提交
1814

N
nhzlx 已提交
1815
  const RType *NewScale() const { return new_scale_; }
E
eclipsess 已提交
1816

N
nhzlx 已提交
1817
  const RType *NewBias() const { return new_bias_; }
E
eclipsess 已提交
1818 1819

 protected:
N
nhzlx 已提交
1820 1821 1822 1823 1824
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
E
eclipsess 已提交
1825 1826 1827
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1828 1829
  RType *new_bias_;
  RType *new_scale_;
E
eclipsess 已提交
1830 1831 1832 1833
};

#endif

1834
#ifdef FUSION_CONVBNRELU_OP
N
nhzlx 已提交
1835
template <typename Dtype>
1836
class FusionConvBNReluParam : public ConvParam<Dtype> {
N
nhzlx 已提交
1837 1838 1839
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

1840 1841 1842
 public:
  FusionConvBNReluParam(const VariableNameMap &inputs,
                        const VariableNameMap &outputs,
1843 1844 1845 1846 1847 1848 1849 1850 1851 1852
                        const AttributeMap &attrs, const Scope &scope)
      : ConvParam<Dtype>(inputs, outputs, attrs, scope) {
    output_ = OpParam::OutFrom<GType>(outputs, scope);
    input_bias_ = OpParam::InputBiasFrom<GType>(inputs, scope);
    input_mean_ = OpParam::InputMeanFrom<GType>(inputs, scope);
    input_scale_ = OpParam::InputScaleFrom<GType>(inputs, scope);
    input_variance_ = OpParam::InputVarianceFrom<GType>(inputs, scope);
    epsilon_ = OpParam::GetAttr<float>("epsilon", attrs);
    momentum_ = OpParam::GetAttr<float>("momentum", attrs);
    //    is_test_ = OpParam::GetAttr<bool>("is_test", attrs);
1853
  }
N
nhzlx 已提交
1854
  RType *Output() const { return output_; }
1855

N
nhzlx 已提交
1856
  const RType *InputBias() const { return input_bias_; }
1857

N
nhzlx 已提交
1858
  const RType *InputMean() const { return input_mean_; }
1859

N
nhzlx 已提交
1860
  const RType *InputScale() const { return input_scale_; }
1861

N
nhzlx 已提交
1862
  const RType *InputVariance() const { return input_variance_; }
1863 1864 1865 1866 1867 1868 1869

  const float &Epsilon() const { return epsilon_; }

  const float &Momentum() const { return momentum_; }

  const bool &IsTest() const { return is_test_; }

N
nhzlx 已提交
1870
  void SetNewScale(RType *new_scale) { new_scale_ = new_scale; }
1871

N
nhzlx 已提交
1872
  void SetNewBias(RType *new_bias) { new_bias_ = new_bias; }
1873

N
nhzlx 已提交
1874
  const RType *NewScale() const { return new_scale_; }
1875

N
nhzlx 已提交
1876
  const RType *NewBias() const { return new_bias_; }
1877 1878

 protected:
N
nhzlx 已提交
1879 1880 1881 1882 1883
  RType *output_;
  RType *input_bias_;
  RType *input_mean_;
  RType *input_scale_;
  RType *input_variance_;
1884 1885 1886
  float epsilon_;
  float momentum_;
  bool is_test_;
N
nhzlx 已提交
1887 1888
  RType *new_bias_;
  RType *new_scale_;
Z
zhangyang 已提交
1889 1890 1891
#ifdef PADDLE_MOBILE_FPGA

 private:
Z
zhangyang 已提交
1892
  fpga::WrapperConvArgs fpga_conv_args;
Z
zhangyang 已提交
1893 1894

 public:
Z
zhangyang 已提交
1895 1896
  const fpga::WrapperConvArgs &FpgaArgs() const { return fpga_conv_args; }
  void SetFpgaArgs(const fpga::WrapperConvArgs &args) { fpga_conv_args = args; }
Z
zhangyang 已提交
1897
#endif
1898 1899 1900
};
#endif

Y
Yao,kun 已提交
1901
#ifdef IM2SEQUENCE_OP
N
nhzlx 已提交
1902
template <typename Dtype>
Y
Yao,kun 已提交
1903
class Im2SequenceParam : public OpParam {
N
nhzlx 已提交
1904 1905 1906
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
1907 1908 1909 1910
 public:
  Im2SequenceParam(const VariableNameMap &inputs,
                   const VariableNameMap &outputs, const AttributeMap &attrs,
                   const Scope &scope) {
N
nhzlx 已提交
1911 1912
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
Yao,kun 已提交
1913 1914 1915 1916 1917
    kernels_ = GetAttr<vector<int>>("kernels", attrs);
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
  }

N
nhzlx 已提交
1918
  const RType *Input() const { return input_x_; }
Y
Yao,kun 已提交
1919

N
nhzlx 已提交
1920
  RType *Output() const { return out_; }
Y
Yao,kun 已提交
1921 1922 1923 1924 1925 1926 1927 1928

  const vector<int> &Kernels() const { return kernels_; }

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

 private:
N
nhzlx 已提交
1929 1930
  RType *input_x_;
  RType *out_;
Y
Yao,kun 已提交
1931 1932 1933 1934
  vector<int> kernels_;
  vector<int> strides_;
  vector<int> paddings_;
};
1935
#endif
Y
Yao,kun 已提交
1936

1937
#ifdef DROPOUT_OP
N
nhzlx 已提交
1938
template <typename Dtype>
Y
Yao,kun 已提交
1939
class DropoutParam : public OpParam {
N
nhzlx 已提交
1940 1941 1942
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

Y
Yao,kun 已提交
1943 1944 1945
 public:
  DropoutParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
N
nhzlx 已提交
1946 1947
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
Y
yangfei 已提交
1948 1949

    dropout_prob_ = GetAttr<float>("dropout_prob", attrs);
Y
Yao,kun 已提交
1950 1951
  }

N
nhzlx 已提交
1952
  const RType *InputX() const { return input_x_; }
Y
Yao,kun 已提交
1953

N
nhzlx 已提交
1954
  RType *Out() const { return out_; }
Y
Yao,kun 已提交
1955

Y
yangfei 已提交
1956 1957
  float DropoutProb() const { return dropout_prob_; }

Y
Yao,kun 已提交
1958
 private:
N
nhzlx 已提交
1959 1960
  RType *input_x_;
  RType *out_;
Y
yangfei 已提交
1961
  float dropout_prob_;
Y
Yao,kun 已提交
1962
};
1963
#endif
Y
Yao,kun 已提交
1964

L
liuruilong 已提交
1965
#ifdef CONV_TRANSPOSE
N
nhzlx 已提交
1966
template <typename Dtype>
L
liuruilong 已提交
1967
class ConvTransposeParam : public OpParam {
N
nhzlx 已提交
1968 1969 1970
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

L
liuruilong 已提交
1971 1972 1973 1974
 public:
  ConvTransposeParam(const VariableNameMap &inputs,
                     const VariableNameMap &outputs, const AttributeMap &attrs,
                     const Scope &scope) {
N
nhzlx 已提交
1975 1976 1977
    filter_ = FilterFrom<GType>(inputs, scope);
    input_ = InputFrom<GType>(inputs, scope);
    output_ = OutputFrom<GType>(outputs, scope);
L
liuruilong 已提交
1978 1979 1980 1981 1982 1983
    strides_ = GetAttr<vector<int>>("strides", attrs);
    paddings_ = GetAttr<vector<int>>("paddings", attrs);
    dilations_ = GetAttr<vector<int>>("dilations", attrs);
    groups = GetAttr<int>("groups", attrs);
  }

N
nhzlx 已提交
1984
  const RType *Input() const { return input_; }
L
liuruilong 已提交
1985

N
nhzlx 已提交
1986
  const RType *Filter() const { return filter_; }
L
liuruilong 已提交
1987

N
nhzlx 已提交
1988
  RType *Output() const { return output_; }
L
liuruilong 已提交
1989 1990 1991 1992 1993 1994 1995 1996 1997 1998

  const vector<int> &Strides() const { return strides_; }

  const vector<int> &Paddings() const { return paddings_; }

  const vector<int> &Dilations() const { return dilations_; }

  const int &Groups() const { return groups; }

 private:
N
nhzlx 已提交
1999 2000 2001
  RType *input_;
  RType *output_;
  RType *filter_;
L
liuruilong 已提交
2002 2003 2004 2005 2006 2007 2008
  vector<int> strides_;
  vector<int> paddings_;
  vector<int> dilations_;
  int groups;
};
#endif

xiebaiyuan's avatar
xiebaiyuan 已提交
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068
#ifdef GRU_OP
template <typename Dtype>
class GruParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;

 public:
  /**
   *
   * @param inputs
   * @param outputs
   * @param attrs
   * @param scope
   * */
  GruParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
           const AttributeMap &attrs, const Scope &scope) {
    input_input_ = InputFrom<GType>(inputs, scope);
    input_h0_ = InputH0From<GType>(inputs, scope);
    input_bias_ = InputBiasFrom<GType>(inputs, scope);
    input_weight_ = InputWeightFrom<GType>(inputs, scope);

    output_batch_gate_ = OutputBatchGateFrom<GType>(outputs, scope);
    output_batch_reset_hidden_prev_ =
        OutputBatchResetHiddenPrevFrom<GType>(outputs, scope);
    output_batch_hidden_ = OutputBatchHiddenFrom<GType>(outputs, scope);
    output_hidden_ = OutputHiddenFrom<GType>(outputs, scope);
    activation_ = GetAttr<std::string>("activation", attrs);
    gate_activation_ = GetAttr<std::string>("gate_activation", attrs);
    is_reverse_ = GetAttr<bool>("is_reverse", attrs);
  }
  const GType *InputInput() const { return input_input_; }
  const GType *InputWeight() const { return input_weight_; }
  const GType *InputH0() const { return input_h0_; }
  const GType *InputBias() const { return input_bias_; }
  const std::string &Activation() const { return activation_; }
  const std::string &GateActivation() const { return gate_activation_; }
  const bool &IsReverse() const { return is_reverse_; }

  GType *OutBatchGate() const { return output_batch_gate_; }
  GType *OutBatchResetHiddenPrev() const {
    return output_batch_reset_hidden_prev_;
  }
  GType *OutBatchHidden() const { return output_batch_hidden_; }
  GType *OutHidden() const { return output_hidden_; }

 private:
  GType *input_input_;
  GType *input_h0_;
  GType *input_bias_;
  GType *input_weight_;

  GType *output_batch_gate_;
  GType *output_batch_reset_hidden_prev_;
  GType *output_batch_hidden_;
  GType *output_hidden_;
  std::string activation_;
  std::string gate_activation_;
  bool is_reverse_;
};
#endif

2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
#ifdef FLATTEN_OP
template <typename Dtype>
class FlattenParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  FlattenParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
               const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2080
    axis = GetAttr<int>("axis", attrs);
2081 2082 2083
  }
  const RType *InputX() const { return input_x_; }
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2084
  const int &Axis() const { return axis; }
2085 2086 2087 2088

 private:
  RType *input_x_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2089
  int axis;
2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102
};
#endif

#ifdef SPLIT_OP
template <typename Dtype>
class SplitParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  SplitParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2103
    outs_ = OutMultiFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2104
    axis = GetAttr<int>("axis", attrs);
xiebaiyuan's avatar
xiebaiyuan 已提交
2105 2106 2107 2108 2109 2110
    num = GetAttr<int>("num", attrs);
    sections = GetAttr<std::vector<int>>("sections", attrs);

    //    for (int i = 0; i < outs_.size(); ++i) {
    //      out_ts_.push_back(*scope.FindVar(outs_[i])->GetMutable());
    //    }
2111 2112
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2113 2114 2115 2116 2117
  std::vector<GType *> Outs() const { return outs_; }
  int Axis() const { return axis; }
  int Num() const { return num; }
  std::vector<int> Sections() const { return sections; }
  //  std::vector<GType> OutTs() const { return out_ts_; }
2118 2119 2120

 private:
  RType *input_x_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2121
  std::vector<GType *> outs_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2122
  int axis;
xiebaiyuan's avatar
xiebaiyuan 已提交
2123 2124 2125
  int num;
  std::vector<int> sections;
  //  std::vector<GType> out_ts_;
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141
};
#endif

#ifdef BILINEAR_INTERP_OP
template <typename Dtype>
class BilinearInterpParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  BilinearInterpParam(const VariableNameMap &inputs,
                      const VariableNameMap &outputs, const AttributeMap &attrs,
                      const Scope &scope) {
    input_x_ = InputXFrom<GType>(inputs, scope);
    input_outsize_ = InputOutSizeFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
xiebaiyuan's avatar
xiebaiyuan 已提交
2142 2143
    out_h_ = GetAttr<int>("out_h", attrs);
    out_w_ = GetAttr<int>("out_w", attrs);
2144 2145
  }
  const RType *InputX() const { return input_x_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2146
  const RType *InputOutPutSize() const { return input_outsize_; }
2147
  RType *Out() const { return out_; }
xiebaiyuan's avatar
xiebaiyuan 已提交
2148 2149
  int OutH() const { return out_h_; }
  int OutW() const { return out_w_; }
2150 2151 2152 2153 2154

 private:
  RType *input_x_;
  RType *input_outsize_;
  RType *out_;
xiebaiyuan's avatar
xiebaiyuan 已提交
2155 2156
  int out_h_;
  int out_w_;
2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
};
#endif

#ifdef SHAPE_OP
template <typename Dtype>
class ShapeParam : public OpParam {
  typedef typename DtypeTensorTrait<Dtype>::gtype GType;
  typedef typename DtypeTensorTrait<Dtype>::rtype RType;

 public:
  ShapeParam(const VariableNameMap &inputs, const VariableNameMap &outputs,
             const AttributeMap &attrs, const Scope &scope) {
    input_ = InputFrom<GType>(inputs, scope);
    out_ = OutFrom<GType>(outputs, scope);
  }
xiebaiyuan's avatar
xiebaiyuan 已提交
2172
  const RType *Input() const { return input_; }
2173 2174 2175 2176 2177 2178 2179 2180
  RType *Out() const { return out_; }

 private:
  RType *input_;
  RType *out_;
};
#endif

朔-望's avatar
朔-望 已提交
2181 2182
}  // namespace operators
}  // namespace paddle_mobile