Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle-Lite
提交
10da6491
P
Paddle-Lite
项目概览
PaddlePaddle
/
Paddle-Lite
通知
331
Star
4
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
271
列表
看板
标记
里程碑
合并请求
78
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle-Lite
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
271
Issue
271
列表
看板
标记
里程碑
合并请求
78
合并请求
78
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
10da6491
编写于
9月 10, 2018
作者:
xiebaiyuan
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fssd run pass.
上级
ff6d3d28
变更
11
隐藏空白更改
内联
并排
Showing
11 changed file
with
89 addition
and
82 deletion
+89
-82
src/framework/operator.cpp
src/framework/operator.cpp
+1
-0
src/io/executor.cpp
src/io/executor.cpp
+1
-1
src/operators/flatten_op.cpp
src/operators/flatten_op.cpp
+0
-16
src/operators/flatten_op.h
src/operators/flatten_op.h
+15
-1
src/operators/kernel/central-arm-func/bilinear_interp_arm_func.h
...rators/kernel/central-arm-func/bilinear_interp_arm_func.h
+52
-55
src/operators/kernel/central-arm-func/flatten_arm_func.h
src/operators/kernel/central-arm-func/flatten_arm_func.h
+14
-3
src/operators/kernel/central-arm-func/shape_arm_func.h
src/operators/kernel/central-arm-func/shape_arm_func.h
+1
-1
src/operators/op_param.h
src/operators/op_param.h
+1
-1
src/operators/shape_op.cpp
src/operators/shape_op.cpp
+2
-2
src/operators/split_op.cpp
src/operators/split_op.cpp
+1
-1
test/net/test_mobilenet_025_fssd.cpp
test/net/test_mobilenet_025_fssd.cpp
+1
-1
未找到文件。
src/framework/operator.cpp
浏览文件 @
10da6491
...
...
@@ -59,6 +59,7 @@ template <typename Dtype>
void
OperatorBase
<
Dtype
>::
Run
()
const
{
RunImpl
();
#ifdef PADDLE_MOBILE_DEBUG
DLOG
<<
"-------------"
<<
type_
<<
"----------------------------"
;
vector
<
string
>
input_keys
=
GetInputKeys
();
for
(
const
auto
key
:
input_keys
)
{
Tensor
*
input
=
GetVarValue
<
framework
::
LoDTensor
>
(
key
,
inputs_
,
*
scope_
);
...
...
src/io/executor.cpp
浏览文件 @
10da6491
...
...
@@ -73,6 +73,7 @@ Executor<Dtype, P>::Executor(const framework::Program<Dtype> p, int batch_size,
#ifdef PADDLE_EXECUTOR_MULTITHREAD
depManager
.
resize
(
blocks
.
size
());
#endif
DLOG
<<
"executer in loaddable mode: "
<<
loddable_
;
for
(
int
i
=
0
;
i
<
blocks
.
size
();
++
i
)
{
std
::
shared_ptr
<
framework
::
BlockDesc
>
block_desc
=
blocks
[
i
];
std
::
vector
<
std
::
shared_ptr
<
framework
::
OpDesc
>>
ops
=
block_desc
->
Ops
();
...
...
@@ -82,7 +83,6 @@ Executor<Dtype, P>::Executor(const framework::Program<Dtype> p, int batch_size,
auto
op_base
=
framework
::
OpRegistry
<
Dtype
>::
CreateOp
(
op
->
Type
(),
op
->
GetInputs
(),
op
->
GetOutputs
(),
op
->
GetAttrMap
(),
program_
.
scope
);
DLOG
<<
"executer in loaddable mode: "
<<
loddable_
;
// use pre_infershape to pre resize , but if u use an lod mode tensor u
// need to resize in runtime
if
(
!
loddable_
)
{
...
...
src/operators/flatten_op.cpp
浏览文件 @
10da6491
...
...
@@ -19,22 +19,6 @@ limitations under the License. */
namespace
paddle_mobile
{
namespace
operators
{
static
std
::
vector
<
int32_t
>
GetOutputShape
(
const
int
axis
,
const
framework
::
DDim
&
in_dims
)
{
int64_t
outer
=
1
,
inner
=
1
;
for
(
int
i
=
0
;
i
<
in_dims
.
size
();
++
i
)
{
if
(
i
<
axis
)
{
outer
*=
in_dims
[
i
];
}
else
{
inner
*=
in_dims
[
i
];
}
}
std
::
vector
<
int32_t
>
out_shape
(
2
);
out_shape
[
0
]
=
static_cast
<
int
>
(
outer
);
out_shape
[
1
]
=
static_cast
<
int
>
(
inner
);
return
out_shape
;
}
template
<
typename
DeviceType
,
typename
T
>
void
FlattenOp
<
DeviceType
,
T
>::
InferShape
()
const
{
PADDLE_MOBILE_ENFORCE
(
this
->
param_
.
InputX
()
!=
nullptr
,
...
...
src/operators/flatten_op.h
浏览文件 @
10da6491
...
...
@@ -24,7 +24,21 @@ limitations under the License. */
namespace
paddle_mobile
{
namespace
operators
{
inline
std
::
vector
<
int32_t
>
GetOutputShape
(
const
int
axis
,
const
framework
::
DDim
&
in_dims
)
{
int64_t
outer
=
1
,
inner
=
1
;
for
(
int
i
=
0
;
i
<
in_dims
.
size
();
++
i
)
{
if
(
i
<
axis
)
{
outer
*=
in_dims
[
i
];
}
else
{
inner
*=
in_dims
[
i
];
}
}
std
::
vector
<
int32_t
>
out_shape
(
2
);
out_shape
[
0
]
=
static_cast
<
int
>
(
outer
);
out_shape
[
1
]
=
static_cast
<
int
>
(
inner
);
return
out_shape
;
}
using
paddle_mobile
::
framework
::
Tensor
;
template
<
typename
DeviceType
,
typename
T
>
...
...
src/operators/kernel/central-arm-func/bilinear_interp_arm_func.h
浏览文件 @
10da6491
...
...
@@ -23,69 +23,66 @@ namespace operators {
template
<
typename
P
>
void
BilinearInterpCompute
(
const
BilinearInterpParam
<
CPU
>&
param
)
{
auto
out_dims
=
param
.
Out
()
->
dims
();
auto
*
input
=
param
.
InputX
()
->
data
<
float
>
();
auto
out_size_t
=
param
.
InputOutPutSize
();
auto
out_dims
=
param
.
Out
()
->
dims
();
auto
*
input
=
param
.
InputX
()
->
data
<
float
>
();
auto
out_size_t
=
param
.
InputOutPutSize
();
int
out_h
=
param
.
OutH
();
int
out_w
=
param
.
OutW
();
if
(
out_size_t
!=
nullptr
)
{
auto
out_size_data
=
out_size_t
->
data
<
int
>
();
out_h
=
out_size_data
[
0
];
out_w
=
out_size_data
[
1
];
}
auto
*
output
=
param
.
Out
()
->
mutable_data
<
float
>
(
{
out_dims
[
0
],
out_dims
[
1
],
out_h
,
out_w
});
auto
batch_size
=
param
.
InputX
()
->
dims
()[
0
];
auto
channels
=
param
.
InputX
()
->
dims
()[
1
];
auto
in_h
=
param
.
InputX
()
->
dims
()[
2
];
auto
in_w
=
param
.
InputX
()
->
dims
()[
3
];
int
out_h
=
param
.
OutH
();
int
out_w
=
param
.
OutW
();
if
(
out_size_t
!=
nullptr
)
{
auto
out_size_data
=
out_size_t
->
data
<
int
>
();
out_h
=
out_size_data
[
0
];
out_w
=
out_size_data
[
1
];
}
auto
*
output
=
param
.
Out
()
->
mutable_data
<
float
>
(
{
out_dims
[
0
],
out_dims
[
1
],
out_h
,
out_w
});
auto
batch_size
=
param
.
InputX
()
->
dims
()[
0
];
auto
channels
=
param
.
InputX
()
->
dims
()[
1
];
auto
in_h
=
param
.
InputX
()
->
dims
()[
2
];
auto
in_w
=
param
.
InputX
()
->
dims
()[
3
];
auto
in_hw
=
in_h
*
in_w
;
auto
out_hw
=
out_h
*
out_w
;
auto
in_chw
=
channels
*
in_hw
;
auto
out_chw
=
channels
*
out_hw
;
auto
in_hw
=
in_h
*
in_w
;
auto
out_hw
=
out_h
*
out_w
;
auto
in_chw
=
channels
*
in_hw
;
auto
out_chw
=
channels
*
out_hw
;
float
ratio_h
=
(
out_h
>
1
)
?
static_cast
<
float
>
(
in_h
-
1
)
/
(
out_h
-
1
)
:
0.
f
;
float
ratio_w
=
(
out_w
>
1
)
?
static_cast
<
float
>
(
in_w
-
1
)
/
(
out_w
-
1
)
:
0.
f
;
float
ratio_h
=
(
out_h
>
1
)
?
static_cast
<
float
>
(
in_h
-
1
)
/
(
out_h
-
1
)
:
0.
f
;
float
ratio_w
=
(
out_w
>
1
)
?
static_cast
<
float
>
(
in_w
-
1
)
/
(
out_w
-
1
)
:
0.
f
;
if
(
in_h
==
out_h
&&
in_w
==
out_w
)
{
memcpy
(
output
,
input
,
param
.
InputX
()
->
numel
()
*
sizeof
(
float
));
}
else
{
for
(
int
k
=
0
;
k
<
batch_size
;
++
k
)
{
// loop for batches
for
(
int
i
=
0
;
i
<
out_h
;
++
i
)
{
// loop for images
int
h
=
ratio_h
*
i
;
int
hid
=
(
h
<
in_h
-
1
)
?
1
:
0
;
float
h1lambda
=
ratio_h
*
i
-
h
;
float
h2lambda
=
1.
f
-
h1lambda
;
if
(
in_h
==
out_h
&&
in_w
==
out_w
)
{
memcpy
(
output
,
input
,
param
.
InputX
()
->
numel
()
*
sizeof
(
float
));
}
else
{
for
(
int
k
=
0
;
k
<
batch_size
;
++
k
)
{
// loop for batches
for
(
int
i
=
0
;
i
<
out_h
;
++
i
)
{
// loop for images
int
h
=
ratio_h
*
i
;
int
hid
=
(
h
<
in_h
-
1
)
?
1
:
0
;
float
h1lambda
=
ratio_h
*
i
-
h
;
float
h2lambda
=
1.
f
-
h1lambda
;
for
(
int
j
=
0
;
j
<
out_w
;
++
j
)
{
int
w
=
ratio_w
*
j
;
int
wid
=
(
w
<
in_w
-
1
)
?
1
:
0
;
float
w1lambda
=
ratio_w
*
j
-
w
;
float
w2lambda
=
1.
f
-
w1lambda
;
// calculate four position for bilinear interpolation
const
float
*
in_pos
=
&
input
[
k
*
in_chw
+
h
*
in_w
+
w
];
float
*
out_pos
=
&
output
[
k
*
out_chw
+
i
*
out_w
+
j
];
for
(
int
j
=
0
;
j
<
out_w
;
++
j
)
{
int
w
=
ratio_w
*
j
;
int
wid
=
(
w
<
in_w
-
1
)
?
1
:
0
;
float
w1lambda
=
ratio_w
*
j
-
w
;
float
w2lambda
=
1.
f
-
w1lambda
;
// calculate four position for bilinear interpolation
const
float
*
in_pos
=
&
input
[
k
*
in_chw
+
h
*
in_w
+
w
];
float
*
out_pos
=
&
output
[
k
*
out_chw
+
i
*
out_w
+
j
];
for
(
int
c
=
0
;
c
<
channels
;
++
c
)
{
// loop for channels
// bilinear interpolation
out_pos
[
0
]
=
static_cast
<
float
>
(
h2lambda
*
(
w2lambda
*
in_pos
[
0
]
+
w1lambda
*
in_pos
[
wid
])
+
h1lambda
*
(
w2lambda
*
in_pos
[
hid
*
in_w
]
+
w1lambda
*
in_pos
[
hid
*
in_w
+
wid
]));
in_pos
+=
in_hw
;
out_pos
+=
out_hw
;
}
}
}
for
(
int
c
=
0
;
c
<
channels
;
++
c
)
{
// loop for channels
// bilinear interpolation
out_pos
[
0
]
=
static_cast
<
float
>
(
h2lambda
*
(
w2lambda
*
in_pos
[
0
]
+
w1lambda
*
in_pos
[
wid
])
+
h1lambda
*
(
w2lambda
*
in_pos
[
hid
*
in_w
]
+
w1lambda
*
in_pos
[
hid
*
in_w
+
wid
]));
in_pos
+=
in_hw
;
out_pos
+=
out_hw
;
}
}
}
}
}
}
}
// namespace operators
...
...
src/operators/kernel/central-arm-func/flatten_arm_func.h
浏览文件 @
10da6491
...
...
@@ -15,7 +15,9 @@ limitations under the License. */
#ifdef FLATTEN_OP
#pragma once
#include <operators/kernel/reshape_kernel.h>
#include <vector>
#include "operators/flatten_op.h"
#include "operators/op_param.h"
namespace
paddle_mobile
{
...
...
@@ -23,9 +25,18 @@ namespace operators {
template
<
typename
P
>
void
FlattenCompute
(
const
FlattenParam
<
CPU
>
&
param
)
{
param
.
Out
()
->
mutable_data
<
float
>
();
framework
::
TensorCopy
(
*
param
.
InputX
(),
param
.
Out
());
param
.
Out
()
->
Resize
(
param
.
Out
()
->
dims
());
const
auto
*
input_x
=
param
.
InputX
();
const
auto
axis
=
param
.
Axis
();
const
auto
&
input_x_dims
=
input_x
->
dims
();
auto
*
out
=
param
.
Out
();
const
auto
&
out_shape_v
=
GetOutputShape
(
axis
,
input_x_dims
);
const
framework
::
DDim
&
out_dim
=
ValidateShape
(
out_shape_v
,
input_x_dims
);
out
->
Resize
(
out_dim
);
out
->
mutable_data
<
float
>
();
framework
::
TensorCopy
(
*
input_x
,
out
);
out
->
Resize
(
out_dim
);
}
}
// namespace operators
...
...
src/operators/kernel/central-arm-func/shape_arm_func.h
浏览文件 @
10da6491
...
...
@@ -23,7 +23,7 @@ namespace operators {
template
<
typename
P
>
void
ShapeCompute
(
const
ShapeParam
<
CPU
>&
param
)
{
auto
*
in_t
=
param
.
Input
X
();
auto
*
in_t
=
param
.
Input
();
auto
*
out_t
=
param
.
Out
();
auto
out_data
=
out_t
->
mutable_data
<
int32_t
>
();
auto
in_dims
=
in_t
->
dims
();
...
...
src/operators/op_param.h
浏览文件 @
10da6491
...
...
@@ -2366,7 +2366,7 @@ class ShapeParam : public OpParam {
input_
=
InputFrom
<
GType
>
(
inputs
,
scope
);
out_
=
OutFrom
<
GType
>
(
outputs
,
scope
);
}
const
RType
*
Input
X
()
const
{
return
input_
;
}
const
RType
*
Input
()
const
{
return
input_
;
}
RType
*
Out
()
const
{
return
out_
;
}
private:
...
...
src/operators/shape_op.cpp
浏览文件 @
10da6491
...
...
@@ -20,11 +20,11 @@ namespace paddle_mobile {
namespace
operators
{
template
<
typename
DeviceType
,
typename
T
>
void
ShapeOp
<
DeviceType
,
T
>::
InferShape
()
const
{
PADDLE_MOBILE_ENFORCE
(
this
->
param_
.
Input
X
()
!=
nullptr
,
PADDLE_MOBILE_ENFORCE
(
this
->
param_
.
Input
()
!=
nullptr
,
"Input (Input) of get_shape op should not be null."
);
PADDLE_MOBILE_ENFORCE
(
this
->
param_
.
Out
()
!=
nullptr
,
"Output (Out) of get_shape op should not be null."
);
this
->
param_
.
Out
()
->
Resize
(
this
->
param_
.
InputX
()
->
dims
()
);
this
->
param_
.
Out
()
->
Resize
(
{
this
->
param_
.
Input
()
->
dims
().
size
()}
);
}
}
// namespace operators
...
...
src/operators/split_op.cpp
浏览文件 @
10da6491
...
...
@@ -64,7 +64,7 @@ void SplitOp<DeviceType, T>::InferShape() const {
PADDLE_MOBILE_ENFORCE
(
outs_dims
.
size
()
==
outs
.
size
(),
"length==dims.size() must be true!"
);
for
(
int
j
=
0
;
j
<
outs_dims
.
size
();
++
j
)
{
outs
[
j
]
->
Resize
(
outs_dims
[
j
]);
outs
[
j
]
->
Resize
(
outs_dims
[
j
]);
}
// todo lod impl
...
...
test/net/test_mobilenet_025_fssd.cpp
浏览文件 @
10da6491
...
...
@@ -23,7 +23,7 @@ int main() {
// ../../../test/models/mobilenet
auto
time1
=
time
();
if
(
paddle_mobile
.
Load
(
std
::
string
(
g_fluid_fssd_new
)
+
"/model"
,
std
::
string
(
g_fluid_fssd_new
)
+
"/params"
,
fals
e
))
{
std
::
string
(
g_fluid_fssd_new
)
+
"/params"
,
tru
e
))
{
auto
time2
=
time
();
std
::
cout
<<
"load cost :"
<<
time_diff
(
time1
,
time1
)
<<
"ms"
<<
std
::
endl
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录